Contract Diff Checker

Contract Name:
Quests

Contract Source Code:

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {ContextUpgradeable} from "../utils/ContextUpgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
    /// @custom:storage-location erc7201:openzeppelin.storage.Ownable
    struct OwnableStorage {
        address _owner;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Ownable")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant OwnableStorageLocation = 0x9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c199300;

    function _getOwnableStorage() private pure returns (OwnableStorage storage $) {
        assembly ("memory-safe") {
            $.slot := OwnableStorageLocation
        }
    }

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    function __Ownable_init(address initialOwner) internal onlyInitializing {
        __Ownable_init_unchained(initialOwner);
    }

    function __Ownable_init_unchained(address initialOwner) internal onlyInitializing {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        OwnableStorage storage $ = _getOwnableStorage();
        return $._owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        OwnableStorage storage $ = _getOwnableStorage();
        address oldOwner = $._owner;
        $._owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol)

pragma solidity ^0.8.20;

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
 * case an upgrade adds a module that needs to be initialized.
 *
 * For example:
 *
 * [.hljs-theme-light.nopadding]
 * ```solidity
 * contract MyToken is ERC20Upgradeable {
 *     function initialize() initializer public {
 *         __ERC20_init("MyToken", "MTK");
 *     }
 * }
 *
 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
 *     function initializeV2() reinitializer(2) public {
 *         __ERC20Permit_init("MyToken");
 *     }
 * }
 * ```
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 *
 * [CAUTION]
 * ====
 * Avoid leaving a contract uninitialized.
 *
 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * /// @custom:oz-upgrades-unsafe-allow constructor
 * constructor() {
 *     _disableInitializers();
 * }
 * ```
 * ====
 */
abstract contract Initializable {
    /**
     * @dev Storage of the initializable contract.
     *
     * It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions
     * when using with upgradeable contracts.
     *
     * @custom:storage-location erc7201:openzeppelin.storage.Initializable
     */
    struct InitializableStorage {
        /**
         * @dev Indicates that the contract has been initialized.
         */
        uint64 _initialized;
        /**
         * @dev Indicates that the contract is in the process of being initialized.
         */
        bool _initializing;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00;

    /**
     * @dev The contract is already initialized.
     */
    error InvalidInitialization();

    /**
     * @dev The contract is not initializing.
     */
    error NotInitializing();

    /**
     * @dev Triggered when the contract has been initialized or reinitialized.
     */
    event Initialized(uint64 version);

    /**
     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
     * `onlyInitializing` functions can be used to initialize parent contracts.
     *
     * Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any
     * number of times. This behavior in the constructor can be useful during testing and is not expected to be used in
     * production.
     *
     * Emits an {Initialized} event.
     */
    modifier initializer() {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        // Cache values to avoid duplicated sloads
        bool isTopLevelCall = !$._initializing;
        uint64 initialized = $._initialized;

        // Allowed calls:
        // - initialSetup: the contract is not in the initializing state and no previous version was
        //                 initialized
        // - construction: the contract is initialized at version 1 (no reininitialization) and the
        //                 current contract is just being deployed
        bool initialSetup = initialized == 0 && isTopLevelCall;
        bool construction = initialized == 1 && address(this).code.length == 0;

        if (!initialSetup && !construction) {
            revert InvalidInitialization();
        }
        $._initialized = 1;
        if (isTopLevelCall) {
            $._initializing = true;
        }
        _;
        if (isTopLevelCall) {
            $._initializing = false;
            emit Initialized(1);
        }
    }

    /**
     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
     * used to initialize parent contracts.
     *
     * A reinitializer may be used after the original initialization step. This is essential to configure modules that
     * are added through upgrades and that require initialization.
     *
     * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
     * cannot be nested. If one is invoked in the context of another, execution will revert.
     *
     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
     * a contract, executing them in the right order is up to the developer or operator.
     *
     * WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization.
     *
     * Emits an {Initialized} event.
     */
    modifier reinitializer(uint64 version) {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        if ($._initializing || $._initialized >= version) {
            revert InvalidInitialization();
        }
        $._initialized = version;
        $._initializing = true;
        _;
        $._initializing = false;
        emit Initialized(version);
    }

    /**
     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
     * {initializer} and {reinitializer} modifiers, directly or indirectly.
     */
    modifier onlyInitializing() {
        _checkInitializing();
        _;
    }

    /**
     * @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}.
     */
    function _checkInitializing() internal view virtual {
        if (!_isInitializing()) {
            revert NotInitializing();
        }
    }

    /**
     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
     * through proxies.
     *
     * Emits an {Initialized} event the first time it is successfully executed.
     */
    function _disableInitializers() internal virtual {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        if ($._initializing) {
            revert InvalidInitialization();
        }
        if ($._initialized != type(uint64).max) {
            $._initialized = type(uint64).max;
            emit Initialized(type(uint64).max);
        }
    }

    /**
     * @dev Returns the highest version that has been initialized. See {reinitializer}.
     */
    function _getInitializedVersion() internal view returns (uint64) {
        return _getInitializableStorage()._initialized;
    }

    /**
     * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
     */
    function _isInitializing() internal view returns (bool) {
        return _getInitializableStorage()._initializing;
    }

    /**
     * @dev Returns a pointer to the storage namespace.
     */
    // solhint-disable-next-line var-name-mixedcase
    function _getInitializableStorage() private pure returns (InitializableStorage storage $) {
        assembly ("memory-safe") {
            $.slot := INITIALIZABLE_STORAGE
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (proxy/utils/UUPSUpgradeable.sol)

pragma solidity ^0.8.20;

import {IERC1822Proxiable} from "@openzeppelin/contracts/interfaces/draft-IERC1822.sol";
import {ERC1967Utils} from "@openzeppelin/contracts/proxy/ERC1967/ERC1967Utils.sol";
import {Initializable} from "./Initializable.sol";

/**
 * @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an
 * {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy.
 *
 * A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is
 * reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing
 * `UUPSUpgradeable` with a custom implementation of upgrades.
 *
 * The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism.
 */
abstract contract UUPSUpgradeable is Initializable, IERC1822Proxiable {
    /// @custom:oz-upgrades-unsafe-allow state-variable-immutable
    address private immutable __self = address(this);

    /**
     * @dev The version of the upgrade interface of the contract. If this getter is missing, both `upgradeTo(address)`
     * and `upgradeToAndCall(address,bytes)` are present, and `upgradeTo` must be used if no function should be called,
     * while `upgradeToAndCall` will invoke the `receive` function if the second argument is the empty byte string.
     * If the getter returns `"5.0.0"`, only `upgradeToAndCall(address,bytes)` is present, and the second argument must
     * be the empty byte string if no function should be called, making it impossible to invoke the `receive` function
     * during an upgrade.
     */
    string public constant UPGRADE_INTERFACE_VERSION = "5.0.0";

    /**
     * @dev The call is from an unauthorized context.
     */
    error UUPSUnauthorizedCallContext();

    /**
     * @dev The storage `slot` is unsupported as a UUID.
     */
    error UUPSUnsupportedProxiableUUID(bytes32 slot);

    /**
     * @dev Check that the execution is being performed through a delegatecall call and that the execution context is
     * a proxy contract with an implementation (as defined in ERC-1967) pointing to self. This should only be the case
     * for UUPS and transparent proxies that are using the current contract as their implementation. Execution of a
     * function through ERC-1167 minimal proxies (clones) would not normally pass this test, but is not guaranteed to
     * fail.
     */
    modifier onlyProxy() {
        _checkProxy();
        _;
    }

    /**
     * @dev Check that the execution is not being performed through a delegate call. This allows a function to be
     * callable on the implementing contract but not through proxies.
     */
    modifier notDelegated() {
        _checkNotDelegated();
        _;
    }

    function __UUPSUpgradeable_init() internal onlyInitializing {
    }

    function __UUPSUpgradeable_init_unchained() internal onlyInitializing {
    }
    /**
     * @dev Implementation of the ERC-1822 {proxiableUUID} function. This returns the storage slot used by the
     * implementation. It is used to validate the implementation's compatibility when performing an upgrade.
     *
     * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
     * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
     * function revert if invoked through a proxy. This is guaranteed by the `notDelegated` modifier.
     */
    function proxiableUUID() external view virtual notDelegated returns (bytes32) {
        return ERC1967Utils.IMPLEMENTATION_SLOT;
    }

    /**
     * @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call
     * encoded in `data`.
     *
     * Calls {_authorizeUpgrade}.
     *
     * Emits an {Upgraded} event.
     *
     * @custom:oz-upgrades-unsafe-allow-reachable delegatecall
     */
    function upgradeToAndCall(address newImplementation, bytes memory data) public payable virtual onlyProxy {
        _authorizeUpgrade(newImplementation);
        _upgradeToAndCallUUPS(newImplementation, data);
    }

    /**
     * @dev Reverts if the execution is not performed via delegatecall or the execution
     * context is not of a proxy with an ERC-1967 compliant implementation pointing to self.
     * See {_onlyProxy}.
     */
    function _checkProxy() internal view virtual {
        if (
            address(this) == __self || // Must be called through delegatecall
            ERC1967Utils.getImplementation() != __self // Must be called through an active proxy
        ) {
            revert UUPSUnauthorizedCallContext();
        }
    }

    /**
     * @dev Reverts if the execution is performed via delegatecall.
     * See {notDelegated}.
     */
    function _checkNotDelegated() internal view virtual {
        if (address(this) != __self) {
            // Must not be called through delegatecall
            revert UUPSUnauthorizedCallContext();
        }
    }

    /**
     * @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by
     * {upgradeToAndCall}.
     *
     * Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}.
     *
     * ```solidity
     * function _authorizeUpgrade(address) internal onlyOwner {}
     * ```
     */
    function _authorizeUpgrade(address newImplementation) internal virtual;

    /**
     * @dev Performs an implementation upgrade with a security check for UUPS proxies, and additional setup call.
     *
     * As a security check, {proxiableUUID} is invoked in the new implementation, and the return value
     * is expected to be the implementation slot in ERC-1967.
     *
     * Emits an {IERC1967-Upgraded} event.
     */
    function _upgradeToAndCallUUPS(address newImplementation, bytes memory data) private {
        try IERC1822Proxiable(newImplementation).proxiableUUID() returns (bytes32 slot) {
            if (slot != ERC1967Utils.IMPLEMENTATION_SLOT) {
                revert UUPSUnsupportedProxiableUUID(slot);
            }
            ERC1967Utils.upgradeToAndCall(newImplementation, data);
        } catch {
            // The implementation is not UUPS
            revert ERC1967Utils.ERC1967InvalidImplementation(newImplementation);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract ContextUpgradeable is Initializable {
    function __Context_init() internal onlyInitializing {
    }

    function __Context_init_unchained() internal onlyInitializing {
    }
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC1822.sol)

pragma solidity ^0.8.20;

/**
 * @dev ERC-1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified
 * proxy whose upgrades are fully controlled by the current implementation.
 */
interface IERC1822Proxiable {
    /**
     * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation
     * address.
     *
     * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
     * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
     * function revert if invoked through a proxy.
     */
    function proxiableUUID() external view returns (bytes32);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC1967.sol)

pragma solidity ^0.8.20;

/**
 * @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC.
 */
interface IERC1967 {
    /**
     * @dev Emitted when the implementation is upgraded.
     */
    event Upgraded(address indexed implementation);

    /**
     * @dev Emitted when the admin account has changed.
     */
    event AdminChanged(address previousAdmin, address newAdmin);

    /**
     * @dev Emitted when the beacon is changed.
     */
    event BeaconUpgraded(address indexed beacon);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/beacon/IBeacon.sol)

pragma solidity ^0.8.20;

/**
 * @dev This is the interface that {BeaconProxy} expects of its beacon.
 */
interface IBeacon {
    /**
     * @dev Must return an address that can be used as a delegate call target.
     *
     * {UpgradeableBeacon} will check that this address is a contract.
     */
    function implementation() external view returns (address);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (proxy/ERC1967/ERC1967Utils.sol)

pragma solidity ^0.8.21;

import {IBeacon} from "../beacon/IBeacon.sol";
import {IERC1967} from "../../interfaces/IERC1967.sol";
import {Address} from "../../utils/Address.sol";
import {StorageSlot} from "../../utils/StorageSlot.sol";

/**
 * @dev This library provides getters and event emitting update functions for
 * https://eips.ethereum.org/EIPS/eip-1967[ERC-1967] slots.
 */
library ERC1967Utils {
    /**
     * @dev Storage slot with the address of the current implementation.
     * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1.
     */
    // solhint-disable-next-line private-vars-leading-underscore
    bytes32 internal constant IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;

    /**
     * @dev The `implementation` of the proxy is invalid.
     */
    error ERC1967InvalidImplementation(address implementation);

    /**
     * @dev The `admin` of the proxy is invalid.
     */
    error ERC1967InvalidAdmin(address admin);

    /**
     * @dev The `beacon` of the proxy is invalid.
     */
    error ERC1967InvalidBeacon(address beacon);

    /**
     * @dev An upgrade function sees `msg.value > 0` that may be lost.
     */
    error ERC1967NonPayable();

    /**
     * @dev Returns the current implementation address.
     */
    function getImplementation() internal view returns (address) {
        return StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value;
    }

    /**
     * @dev Stores a new address in the ERC-1967 implementation slot.
     */
    function _setImplementation(address newImplementation) private {
        if (newImplementation.code.length == 0) {
            revert ERC1967InvalidImplementation(newImplementation);
        }
        StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value = newImplementation;
    }

    /**
     * @dev Performs implementation upgrade with additional setup call if data is nonempty.
     * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected
     * to avoid stuck value in the contract.
     *
     * Emits an {IERC1967-Upgraded} event.
     */
    function upgradeToAndCall(address newImplementation, bytes memory data) internal {
        _setImplementation(newImplementation);
        emit IERC1967.Upgraded(newImplementation);

        if (data.length > 0) {
            Address.functionDelegateCall(newImplementation, data);
        } else {
            _checkNonPayable();
        }
    }

    /**
     * @dev Storage slot with the admin of the contract.
     * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1.
     */
    // solhint-disable-next-line private-vars-leading-underscore
    bytes32 internal constant ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;

    /**
     * @dev Returns the current admin.
     *
     * TIP: To get this value clients can read directly from the storage slot shown below (specified by ERC-1967) using
     * the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
     * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
     */
    function getAdmin() internal view returns (address) {
        return StorageSlot.getAddressSlot(ADMIN_SLOT).value;
    }

    /**
     * @dev Stores a new address in the ERC-1967 admin slot.
     */
    function _setAdmin(address newAdmin) private {
        if (newAdmin == address(0)) {
            revert ERC1967InvalidAdmin(address(0));
        }
        StorageSlot.getAddressSlot(ADMIN_SLOT).value = newAdmin;
    }

    /**
     * @dev Changes the admin of the proxy.
     *
     * Emits an {IERC1967-AdminChanged} event.
     */
    function changeAdmin(address newAdmin) internal {
        emit IERC1967.AdminChanged(getAdmin(), newAdmin);
        _setAdmin(newAdmin);
    }

    /**
     * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
     * This is the keccak-256 hash of "eip1967.proxy.beacon" subtracted by 1.
     */
    // solhint-disable-next-line private-vars-leading-underscore
    bytes32 internal constant BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;

    /**
     * @dev Returns the current beacon.
     */
    function getBeacon() internal view returns (address) {
        return StorageSlot.getAddressSlot(BEACON_SLOT).value;
    }

    /**
     * @dev Stores a new beacon in the ERC-1967 beacon slot.
     */
    function _setBeacon(address newBeacon) private {
        if (newBeacon.code.length == 0) {
            revert ERC1967InvalidBeacon(newBeacon);
        }

        StorageSlot.getAddressSlot(BEACON_SLOT).value = newBeacon;

        address beaconImplementation = IBeacon(newBeacon).implementation();
        if (beaconImplementation.code.length == 0) {
            revert ERC1967InvalidImplementation(beaconImplementation);
        }
    }

    /**
     * @dev Change the beacon and trigger a setup call if data is nonempty.
     * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected
     * to avoid stuck value in the contract.
     *
     * Emits an {IERC1967-BeaconUpgraded} event.
     *
     * CAUTION: Invoking this function has no effect on an instance of {BeaconProxy} since v5, since
     * it uses an immutable beacon without looking at the value of the ERC-1967 beacon slot for
     * efficiency.
     */
    function upgradeBeaconToAndCall(address newBeacon, bytes memory data) internal {
        _setBeacon(newBeacon);
        emit IERC1967.BeaconUpgraded(newBeacon);

        if (data.length > 0) {
            Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
        } else {
            _checkNonPayable();
        }
    }

    /**
     * @dev Reverts if `msg.value` is not zero. It can be used to avoid `msg.value` stuck in the contract
     * if an upgrade doesn't perform an initialization call.
     */
    function _checkNonPayable() private {
        if (msg.value > 0) {
            revert ERC1967NonPayable();
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC1155/IERC1155.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../../utils/introspection/IERC165.sol";

/**
 * @dev Required interface of an ERC-1155 compliant contract, as defined in the
 * https://eips.ethereum.org/EIPS/eip-1155[ERC].
 */
interface IERC1155 is IERC165 {
    /**
     * @dev Emitted when `value` amount of tokens of type `id` are transferred from `from` to `to` by `operator`.
     */
    event TransferSingle(address indexed operator, address indexed from, address indexed to, uint256 id, uint256 value);

    /**
     * @dev Equivalent to multiple {TransferSingle} events, where `operator`, `from` and `to` are the same for all
     * transfers.
     */
    event TransferBatch(
        address indexed operator,
        address indexed from,
        address indexed to,
        uint256[] ids,
        uint256[] values
    );

    /**
     * @dev Emitted when `account` grants or revokes permission to `operator` to transfer their tokens, according to
     * `approved`.
     */
    event ApprovalForAll(address indexed account, address indexed operator, bool approved);

    /**
     * @dev Emitted when the URI for token type `id` changes to `value`, if it is a non-programmatic URI.
     *
     * If an {URI} event was emitted for `id`, the standard
     * https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[guarantees] that `value` will equal the value
     * returned by {IERC1155MetadataURI-uri}.
     */
    event URI(string value, uint256 indexed id);

    /**
     * @dev Returns the value of tokens of token type `id` owned by `account`.
     */
    function balanceOf(address account, uint256 id) external view returns (uint256);

    /**
     * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {balanceOf}.
     *
     * Requirements:
     *
     * - `accounts` and `ids` must have the same length.
     */
    function balanceOfBatch(
        address[] calldata accounts,
        uint256[] calldata ids
    ) external view returns (uint256[] memory);

    /**
     * @dev Grants or revokes permission to `operator` to transfer the caller's tokens, according to `approved`,
     *
     * Emits an {ApprovalForAll} event.
     *
     * Requirements:
     *
     * - `operator` cannot be the zero address.
     */
    function setApprovalForAll(address operator, bool approved) external;

    /**
     * @dev Returns true if `operator` is approved to transfer ``account``'s tokens.
     *
     * See {setApprovalForAll}.
     */
    function isApprovedForAll(address account, address operator) external view returns (bool);

    /**
     * @dev Transfers a `value` amount of tokens of type `id` from `from` to `to`.
     *
     * WARNING: This function can potentially allow a reentrancy attack when transferring tokens
     * to an untrusted contract, when invoking {onERC1155Received} on the receiver.
     * Ensure to follow the checks-effects-interactions pattern and consider employing
     * reentrancy guards when interacting with untrusted contracts.
     *
     * Emits a {TransferSingle} event.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - If the caller is not `from`, it must have been approved to spend ``from``'s tokens via {setApprovalForAll}.
     * - `from` must have a balance of tokens of type `id` of at least `value` amount.
     * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
     * acceptance magic value.
     */
    function safeTransferFrom(address from, address to, uint256 id, uint256 value, bytes calldata data) external;

    /**
     * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {safeTransferFrom}.
     *
     * WARNING: This function can potentially allow a reentrancy attack when transferring tokens
     * to an untrusted contract, when invoking {onERC1155BatchReceived} on the receiver.
     * Ensure to follow the checks-effects-interactions pattern and consider employing
     * reentrancy guards when interacting with untrusted contracts.
     *
     * Emits either a {TransferSingle} or a {TransferBatch} event, depending on the length of the array arguments.
     *
     * Requirements:
     *
     * - `ids` and `values` must have the same length.
     * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
     * acceptance magic value.
     */
    function safeBatchTransferFrom(
        address from,
        address to,
        uint256[] calldata ids,
        uint256[] calldata values,
        bytes calldata data
    ) external;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Address.sol)

pragma solidity ^0.8.20;

import {Errors} from "./Errors.sol";

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert Errors.InsufficientBalance(address(this).balance, amount);
        }

        (bool success, ) = recipient.call{value: amount}("");
        if (!success) {
            revert Errors.FailedCall();
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {Errors.FailedCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert Errors.InsufficientBalance(address(this).balance, value);
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case
     * of an unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {Errors.FailedCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            assembly ("memory-safe") {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert Errors.FailedCall();
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of common custom errors used in multiple contracts
 *
 * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
 * It is recommended to avoid relying on the error API for critical functionality.
 *
 * _Available since v5.1._
 */
library Errors {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error InsufficientBalance(uint256 balance, uint256 needed);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedCall();

    /**
     * @dev The deployment failed.
     */
    error FailedDeployment();

    /**
     * @dev A necessary precompile is missing.
     */
    error MissingPrecompile(address);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[ERC].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
            // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2²⁵⁶ + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly ("memory-safe") {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= prod1) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly ("memory-safe") {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly ("memory-safe") {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 exp;
        unchecked {
            exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
            value >>= exp;
            result += exp;

            exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
            value >>= exp;
            result += exp;

            exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
            value >>= exp;
            result += exp;

            exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
            value >>= exp;
            result += exp;

            exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
            value >>= exp;
            result += exp;

            exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
            value >>= exp;
            result += exp;

            exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
            value >>= exp;
            result += exp;

            result += SafeCast.toUint(value > 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 isGt;
        unchecked {
            isGt = SafeCast.toUint(value > (1 << 128) - 1);
            value >>= isGt * 128;
            result += isGt * 16;

            isGt = SafeCast.toUint(value > (1 << 64) - 1);
            value >>= isGt * 64;
            result += isGt * 8;

            isGt = SafeCast.toUint(value > (1 << 32) - 1);
            value >>= isGt * 32;
            result += isGt * 4;

            isGt = SafeCast.toUint(value > (1 << 16) - 1);
            value >>= isGt * 16;
            result += isGt * 2;

            result += SafeCast.toUint(value > (1 << 8) - 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC-1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(newImplementation.code.length > 0);
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {SlotDerivation}.
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct Int256Slot {
        int256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Int256Slot` with member `value` located at `slot`.
     */
    function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns a `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/structs/BitMaps.sol)
pragma solidity ^0.8.20;

/**
 * @dev Library for managing uint256 to bool mapping in a compact and efficient way, provided the keys are sequential.
 * Largely inspired by Uniswap's https://github.com/Uniswap/merkle-distributor/blob/master/contracts/MerkleDistributor.sol[merkle-distributor].
 *
 * BitMaps pack 256 booleans across each bit of a single 256-bit slot of `uint256` type.
 * Hence booleans corresponding to 256 _sequential_ indices would only consume a single slot,
 * unlike the regular `bool` which would consume an entire slot for a single value.
 *
 * This results in gas savings in two ways:
 *
 * - Setting a zero value to non-zero only once every 256 times
 * - Accessing the same warm slot for every 256 _sequential_ indices
 */
library BitMaps {
    struct BitMap {
        mapping(uint256 bucket => uint256) _data;
    }

    /**
     * @dev Returns whether the bit at `index` is set.
     */
    function get(BitMap storage bitmap, uint256 index) internal view returns (bool) {
        uint256 bucket = index >> 8;
        uint256 mask = 1 << (index & 0xff);
        return bitmap._data[bucket] & mask != 0;
    }

    /**
     * @dev Sets the bit at `index` to the boolean `value`.
     */
    function setTo(BitMap storage bitmap, uint256 index, bool value) internal {
        if (value) {
            set(bitmap, index);
        } else {
            unset(bitmap, index);
        }
    }

    /**
     * @dev Sets the bit at `index`.
     */
    function set(BitMap storage bitmap, uint256 index) internal {
        uint256 bucket = index >> 8;
        uint256 mask = 1 << (index & 0xff);
        bitmap._data[bucket] |= mask;
    }

    /**
     * @dev Unsets the bit at `index`.
     */
    function unset(BitMap storage bitmap, uint256 index) internal {
        uint256 bucket = index >> 8;
        uint256 mask = 1 << (index & 0xff);
        bitmap._data[bucket] &= ~mask;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import {Skill, Attire, CombatStyle, CombatStats} from "./misc.sol";
import {GuaranteedReward, RandomReward} from "./rewards.sol";

enum ActionQueueStrategy {
  OVERWRITE,
  APPEND,
  KEEP_LAST_IN_PROGRESS
}

struct QueuedActionInput {
  Attire attire;
  uint16 actionId;
  uint16 regenerateId; // Food (combat), maybe something for non-combat later
  uint16 choiceId; // Melee/Ranged/Magic (combat), logs, ore (non-combat)
  uint16 rightHandEquipmentTokenId; // Axe/Sword/bow, can be empty
  uint16 leftHandEquipmentTokenId; // Shield, can be empty
  uint24 timespan; // How long to queue the action for
  uint8 combatStyle; // CombatStyle specific style of combat
  uint40 petId; // id of the pet (can be empty)
}

struct QueuedAction {
  uint16 actionId;
  uint16 regenerateId; // Food (combat), maybe something for non-combat later
  uint16 choiceId; // Melee/Ranged/Magic (combat), logs, ore (non-combat)
  uint16 rightHandEquipmentTokenId; // Axe/Sword/bow, can be empty
  uint16 leftHandEquipmentTokenId; // Shield, can be empty
  uint24 timespan; // How long to queue the action for
  uint24 prevProcessedTime; // How long the action has been processed for previously
  uint24 prevProcessedXPTime; // How much XP has been gained for this action so far
  uint64 queueId; // id of this queued action
  bytes1 packed; // 1st bit is isValid (not used yet), 2nd bit is for hasPet (decides if the 2nd storage slot is read)
  uint8 combatStyle;
  uint24 reserved;
  // Next storage slot
  uint40 petId; // id of the pet (can be empty)
}

// This is only used as an input arg (and events)
struct ActionInput {
  uint16 actionId;
  ActionInfo info;
  GuaranteedReward[] guaranteedRewards;
  RandomReward[] randomRewards;
  CombatStats combatStats;
}

struct ActionInfo {
  uint8 skill;
  bool actionChoiceRequired; // If true, then the user must choose an action choice
  uint24 xpPerHour;
  uint32 minXP;
  uint24 numSpawned; // Mostly for combat, capped respawn rate for xp/drops. Per hour, base 10000
  uint16 handItemTokenIdRangeMin; // Inclusive
  uint16 handItemTokenIdRangeMax; // Inclusive
  uint8 successPercent; // 0-100
  uint8 worldLocation; // 0 is the main starting world
  bool isFullModeOnly;
  bool isAvailable;
  uint16 questPrerequisiteId;
}

uint16 constant ACTIONCHOICE_MELEE_BASIC_SWORD = 1500;
uint16 constant ACTIONCHOICE_MAGIC_SHADOW_BLAST = 2000;
uint16 constant ACTIONCHOICE_RANGED_BASIC_BOW = 3000;

// Allows for 2, 4 or 8 hour respawn time
uint256 constant SPAWN_MUL = 1000;
uint256 constant RATE_MUL = 1000;
uint256 constant GUAR_MUL = 10; // Guaranteeded reward multiplier (1 decimal, allows for 2 hour action times)

uint256 constant MAX_QUEUEABLE_ACTIONS = 3; // Available slots to queue actions

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import "./actions.sol";
import "./items.sol";
import "./misc.sol";
import "./players.sol";
import "./rewards.sol";
import "./quests.sol";
import "./promotions.sol";
import "./clans.sol";
import "./pets.sol";

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import {IBank} from "../interfaces/IBank.sol";

enum ClanRank {
  NONE, // Not in a clan
  COMMONER, // Member of the clan
  SCOUT, // Invite and kick commoners
  COLONEL, // Can launch attacks and assign combatants
  TREASURER, // Can withdraw from bank
  LEADER, // Can edit clan details
  OWNER // Can do everything and transfer ownership
}

enum BattleResultEnum {
  DRAW,
  WIN,
  LOSE
}

struct ClanBattleInfo {
  uint40 lastClanIdAttackOtherClanIdCooldownTimestamp;
  uint8 numReattacks;
  uint40 lastOtherClanIdAttackClanIdCooldownTimestamp;
  uint8 numReattacksOtherClan;
}

// Packed for gas efficiency
struct Vault {
  bool claimed; // Only applies to the first one, if it's claimed without the second one being claimed
  uint40 timestamp;
  uint80 amount;
  uint40 timestamp1;
  uint80 amount1;
}

struct VaultClanInfo {
  IBank bank;
  uint96 totalBrushLocked;
  // New storage slot
  uint40 attackingCooldownTimestamp;
  uint40 assignCombatantsCooldownTimestamp;
  bool currentlyAttacking;
  uint24 defendingVaultsOffset;
  uint40 blockAttacksTimestamp;
  uint8 blockAttacksCooldownHours;
  bool isInMMRArray;
  uint40 superAttackCooldownTimestamp;
  uint64[] playerIds;
  Vault[] defendingVaults; // Append only, and use defendingVaultsOffset to decide where the real start is
}

uint256 constant MAX_CLAN_COMBATANTS = 20;
uint256 constant CLAN_WARS_GAS_PRICE_WINDOW_SIZE = 4;

bool constant XP_EMITTED_ELSEWHERE = true;

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

uint16 constant NONE = 0;

uint16 constant COMBAT_BASE = 2048;
// Melee
uint16 constant SWORD_BASE = COMBAT_BASE;
uint16 constant BRONZE_SWORD = SWORD_BASE;

// Woodcutting (2816 - 3071)
uint16 constant WOODCUTTING_BASE = 2816;
uint16 constant BRONZE_AXE = WOODCUTTING_BASE;

// Firemaking (3328 - 3583)
uint16 constant FIRE_BASE = 3328;
uint16 constant MAGIC_FIRE_STARTER = FIRE_BASE;
uint16 constant FIRE_MAX = FIRE_BASE + 255;

// Fishing (3072 - 3327)
uint16 constant FISHING_BASE = 3072;
uint16 constant NET_STICK = FISHING_BASE;

// Mining (2560 - 2815)
uint16 constant MINING_BASE = 2560;
uint16 constant BRONZE_PICKAXE = MINING_BASE;

// Magic
uint16 constant STAFF_BASE = COMBAT_BASE + 50;
uint16 constant TOTEM_STAFF = STAFF_BASE;

// Ranged
uint16 constant BOW_BASE = COMBAT_BASE + 100;
uint16 constant BASIC_BOW = BOW_BASE;

// Cooked fish
uint16 constant COOKED_FISH_BASE = 11008;
uint16 constant COOKED_FEOLA = COOKED_FISH_BASE + 3;

// Scrolls
uint16 constant SCROLL_BASE = 12032;
uint16 constant SHADOW_SCROLL = SCROLL_BASE;

// Boosts
uint16 constant BOOST_BASE = 12800;
uint16 constant COMBAT_BOOST = BOOST_BASE;
uint16 constant XP_BOOST = BOOST_BASE + 1;
uint16 constant GATHERING_BOOST = BOOST_BASE + 2;
uint16 constant SKILL_BOOST = BOOST_BASE + 3;
uint16 constant ABSENCE_BOOST = BOOST_BASE + 4;
uint16 constant LUCKY_POTION = BOOST_BASE + 5;
uint16 constant LUCK_OF_THE_DRAW = BOOST_BASE + 6;
uint16 constant PRAY_TO_THE_BEARDIE = BOOST_BASE + 7;
uint16 constant PRAY_TO_THE_BEARDIE_2 = BOOST_BASE + 8;
uint16 constant PRAY_TO_THE_BEARDIE_3 = BOOST_BASE + 9;
uint16 constant BOOST_RESERVED_1 = BOOST_BASE + 10;
uint16 constant BOOST_RESERVED_2 = BOOST_BASE + 11;
uint16 constant BOOST_RESERVED_3 = BOOST_BASE + 12;
uint16 constant GO_OUTSIDE = BOOST_BASE + 13;
uint16 constant RAINING_RARES = BOOST_BASE + 14;
uint16 constant CLAN_BOOSTER = BOOST_BASE + 15;
uint16 constant CLAN_BOOSTER_2 = BOOST_BASE + 16;
uint16 constant CLAN_BOOSTER_3 = BOOST_BASE + 17;
uint16 constant BOOST_RESERVED_4 = BOOST_BASE + 18;
uint16 constant BOOST_RESERVED_5 = BOOST_BASE + 19;
uint16 constant BOOST_RESERVED_6 = BOOST_BASE + 20;
uint16 constant BOOST_MAX = 13055;

// Eggs
uint16 constant EGG_BASE = 12544;
uint16 constant SECRET_EGG_1_TIER1 = EGG_BASE;
uint16 constant SECRET_EGG_2_TIER1 = EGG_BASE + 1;
uint16 constant EGG_MAX = 12799;

// Miscs
uint16 constant MISC_BASE = 65535;
uint16 constant RAID_PASS = MISC_BASE - 1;

struct BulkTransferInfo {
  uint256[] tokenIds;
  uint256[] amounts;
  address to;
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

enum BoostType {
  NONE,
  ANY_XP,
  COMBAT_XP,
  NON_COMBAT_XP,
  GATHERING,
  ABSENCE,
  PASSIVE_SKIP_CHANCE,
  // Clan wars
  PVP_BLOCK,
  PVP_REATTACK,
  PVP_SUPER_ATTACK,
  // Combat stats
  COMBAT_FIXED
}

struct Equipment {
  uint16 itemTokenId;
  uint24 amount;
}

enum Skill {
  NONE,
  COMBAT, // This is a helper which incorporates all combat skills, attack <-> magic, defence, health etc
  MELEE,
  RANGED,
  MAGIC,
  DEFENCE,
  HEALTH,
  RESERVED_COMBAT,
  MINING,
  WOODCUTTING,
  FISHING,
  SMITHING,
  THIEVING,
  CRAFTING,
  COOKING,
  FIREMAKING,
  FARMING,
  ALCHEMY,
  FLETCHING,
  FORGING,
  RESERVED2,
  RESERVED3,
  RESERVED4,
  RESERVED5,
  RESERVED6,
  RESERVED7,
  RESERVED8,
  RESERVED9,
  RESERVED10,
  RESERVED11,
  RESERVED12,
  RESERVED13,
  RESERVED14,
  RESERVED15,
  RESERVED16,
  RESERVED17,
  RESERVED18,
  RESERVED19,
  RESERVED20,
  TRAVELING // Helper Skill for travelling
}

struct Attire {
  uint16 head;
  uint16 neck;
  uint16 body;
  uint16 arms;
  uint16 legs;
  uint16 feet;
  uint16 ring;
  uint16 reserved1;
}

struct CombatStats {
  // From skill points
  int16 meleeAttack;
  int16 magicAttack;
  int16 rangedAttack;
  int16 health;
  // These include equipment
  int16 meleeDefence;
  int16 magicDefence;
  int16 rangedDefence;
}

enum CombatStyle {
  NONE,
  ATTACK,
  DEFENCE
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import {Skill} from "./misc.sol";

enum PetSkin {
  NONE,
  DEFAULT,
  OG,
  ONEKIN,
  FROST,
  CRYSTAL,
  ANNIV1,
  KRAGSTYR
}

enum PetEnhancementType {
  NONE,
  MELEE,
  MAGIC,
  RANGED,
  DEFENCE,
  HEALTH,
  MELEE_AND_DEFENCE,
  MAGIC_AND_DEFENCE,
  RANGED_AND_DEFENCE
}

struct Pet {
  Skill skillEnhancement1;
  uint8 skillFixedEnhancement1;
  uint8 skillPercentageEnhancement1;
  Skill skillEnhancement2;
  uint8 skillFixedEnhancement2;
  uint8 skillPercentageEnhancement2;
  uint40 lastAssignmentTimestamp;
  address owner; // Will be used as an optimization to avoid having to look up the owner of the pet in another storage slot
  bool isTransferable;
  // New storage slot
  uint24 baseId;
  // These are used when training a pet
  uint40 lastTrainedTimestamp;
  uint8 skillFixedEnhancementMax1; // The maximum possible value for skillFixedEnhancement1 when training
  uint8 skillFixedEnhancementMax2;
  uint8 skillPercentageEnhancementMax1;
  uint8 skillPercentageEnhancementMax2;
  uint64 xp;
}

struct BasePetMetadata {
  string description;
  uint8 tier;
  PetSkin skin;
  PetEnhancementType enhancementType;
  Skill skillEnhancement1;
  uint8 skillFixedMin1;
  uint8 skillFixedMax1;
  uint8 skillFixedIncrement1;
  uint8 skillPercentageMin1;
  uint8 skillPercentageMax1;
  uint8 skillPercentageIncrement1;
  uint8 skillMinLevel1;
  Skill skillEnhancement2;
  uint8 skillFixedMin2;
  uint8 skillFixedMax2;
  uint8 skillFixedIncrement2;
  uint8 skillPercentageMin2;
  uint8 skillPercentageMax2;
  uint8 skillPercentageIncrement2;
  uint8 skillMinLevel2;
  uint16 fixedStarThreshold;
  uint16 percentageStarThreshold;
  bool isTransferable;
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import {QueuedAction} from "./actions.sol";
import {Skill, BoostType, CombatStats, Equipment} from "./misc.sol";
import {PlayerQuest} from "./quests.sol";

// 4 bytes for each level. 0x00000000 is the first level, 0x00000054 is the second, etc.
bytes constant XP_BYTES = hex"0000000000000054000000AE0000010E00000176000001E60000025E000002DE00000368000003FD0000049B00000546000005FC000006C000000792000008730000096400000A6600000B7B00000CA400000DE100000F36000010A200001229000013CB0000158B0000176B0000196E00001B9400001DE20000205A000022FF000025D5000028DD00002C1E00002F99000033540000375200003B9A000040300000451900004A5C00004FFF0000560900005C810000637000006ADD000072D100007B570000847900008E42000098BE0000A3F90000B0020000BCE70000CAB80000D9860000E9630000FA6200010C990001201D0001350600014B6F0001637300017D2E000198C10001B64E0001D5F80001F7E600021C430002433B00026CFD000299BE0002C9B30002FD180003342B00036F320003AE730003F23D00043AE3000488BE0004DC2F0005359B000595700005FC2400066A360006E02D00075E990007E6160008774C000912EB0009B9B4000A6C74000B2C06000BF956000CD561000DC134000EBDF3000FCCD40010EF2400122648001373BF0014D9230016582C0017F2B00019AAA9001B8234001D7B95001F99390021DDBC00244BE60026E6B60029B15F002CAF51002FE43A0033540D00370303003AF5A4003F30CC0043B9B0004895E3004DCB600053609100595C53005FC6030066A585006E034D0075E86C007E5E980087703B0091287D009B935300A6BD8F00B2B4EE00BF882800CD470500DC026F00EBCC8500FCB8B7010EDBD5";
uint256 constant MAX_LEVEL = 140; // Original max level
uint256 constant MAX_LEVEL_1 = 160; // TODO: Update later
uint256 constant MAX_LEVEL_2 = 190; // TODO: Update later

enum EquipPosition {
  NONE,
  HEAD,
  NECK,
  BODY,
  ARMS,
  LEGS,
  FEET,
  RING,
  SPARE2,
  LEFT_HAND,
  RIGHT_HAND,
  BOTH_HANDS,
  QUIVER,
  MAGIC_BAG,
  FOOD,
  AUX, // wood, seeds  etc..
  BOOST_VIAL,
  EXTRA_BOOST_VIAL,
  GLOBAL_BOOST_VIAL,
  CLAN_BOOST_VIAL,
  PASSIVE_BOOST_VIAL,
  LOCKED_VAULT,
  TERRITORY
}

struct Player {
  uint40 currentActionStartTimestamp; // The in-progress start time of the first queued action
  Skill currentActionProcessedSkill1; // The skill that the queued action has already gained XP in
  uint24 currentActionProcessedXPGained1; // The amount of XP that the queued action has already gained
  Skill currentActionProcessedSkill2;
  uint24 currentActionProcessedXPGained2;
  Skill currentActionProcessedSkill3;
  uint24 currentActionProcessedXPGained3;
  uint16 currentActionProcessedFoodConsumed;
  uint16 currentActionProcessedBaseInputItemsConsumedNum; // e.g scrolls, crafting materials etc
  Skill skillBoosted1; // The first skill that is boosted
  Skill skillBoosted2; // The second skill that is boosted (if applicable)
  uint48 totalXP;
  uint16 totalLevel; // Doesn't not automatically add new skills to it
  bytes1 packedData; // Contains worldLocation in first 6 bits (0 is the main starting randomnessBeacon), and full mode unlocked in the upper most bit
  // TODO: Can be up to 7
  QueuedAction[] actionQueue;
  string name; // Raw name
}

struct Item {
  EquipPosition equipPosition;
  bytes1 packedData; // 0x1 exists, upper most bit is full mode
  uint16 questPrerequisiteId;
  // Can it be transferred?
  bool isTransferable; // TODO: Move into packedData
  // Food
  uint16 healthRestored;
  // Boost vial
  BoostType boostType;
  uint16 boostValue; // Varies, could be the % increase
  uint24 boostDuration; // How long the effect of the boost last
  // Combat stats
  int16 meleeAttack;
  int16 magicAttack;
  int16 rangedAttack;
  int16 meleeDefence;
  int16 magicDefence;
  int16 rangedDefence;
  int16 health;
  // Minimum requirements in this skill to use this item (can be NONE)
  Skill skill;
  uint32 minXP;
}

// Used for events
struct BoostInfo {
  uint40 startTime;
  uint24 duration;
  uint16 value;
  uint16 itemTokenId; // Get the effect of it
  BoostType boostType;
}

struct PlayerBoostInfo {
  uint40 startTime;
  uint24 duration;
  uint16 value;
  uint16 itemTokenId; // Get the effect of it
  BoostType boostType;
  // Another boost slot (for global/clan boosts this is the "last", for users it is the "extra")
  uint40 extraOrLastStartTime;
  uint24 extraOrLastDuration;
  uint16 extraOrLastValue;
  uint16 extraOrLastItemTokenId;
  BoostType extraOrLastBoostType;
  uint40 cooldown; // Just put here for packing
}

// This is effectively a ratio to produce 1 of outputTokenId.
// Available choices that can be undertaken for an action
struct ActionChoiceInput {
  uint8 skill; // Skill that this action choice is related to
  uint24 rate; // Rate of output produced per hour (base 1000) 3 decimals
  uint24 xpPerHour;
  uint16[] inputTokenIds;
  uint24[] inputAmounts;
  uint16 outputTokenId;
  uint8 outputAmount;
  uint8 successPercent; // 0-100
  uint16 handItemTokenIdRangeMin; // Inclusive
  uint16 handItemTokenIdRangeMax; // Inclusive
  bool isFullModeOnly;
  bool isAvailable;
  uint16 questPrerequisiteId;
  uint8[] skills; // Skills required to do this action choice
  uint32[] skillMinXPs; // Min XP in the corresponding skills to be able to do this action choice
  int16[] skillDiffs; // How much the skill is increased/decreased by this action choice
}

struct ActionChoice {
  uint8 skill; // Skill that this action choice is related to
  uint24 rate; // Rate of output produced per hour (base 1000) 3 decimals
  uint24 xpPerHour;
  uint16 inputTokenId1;
  uint24 inputAmount1;
  uint16 inputTokenId2;
  uint24 inputAmount2;
  uint16 inputTokenId3;
  uint24 inputAmount3;
  uint16 outputTokenId;
  uint8 outputAmount;
  uint8 successPercent; // 0-100
  uint8 skill1; // Skills required to do this action choice, commonly the same as skill
  uint32 skillMinXP1; // Min XP in the skill to be able to do this action choice
  int16 skillDiff1; // How much the skill is increased/decreased by this action choice
  uint8 skill2;
  uint32 skillMinXP2;
  int16 skillDiff2;
  uint8 skill3;
  uint32 skillMinXP3;
  int16 skillDiff3;
  uint16 handItemTokenIdRangeMin; // Inclusive
  uint16 handItemTokenIdRangeMax; // Inclusive
  uint16 questPrerequisiteId;
  // FullMode is last bit, first 6 bits is worldLocation,
  // 2nd last bit is if there are other skills in next storage slot to check,
  // 3rd last bit if the input amounts should be used
  bytes1 packedData;
}

// Must be in the same order as Skill enum
struct PackedXP {
  uint40 melee;
  uint40 ranged;
  uint40 magic;
  uint40 defence;
  uint40 health;
  uint40 reservedCombat;
  bytes2 packedDataIsMaxed; // 2 bits per skill to indicate whether the maxed skill is reached. I think this was added in case we added a new max level which a user had already passed so old & new levels are the same and it would not trigger a level up event.
  // Next slot
  uint40 mining;
  uint40 woodcutting;
  uint40 fishing;
  uint40 smithing;
  uint40 thieving;
  uint40 crafting;
  bytes2 packedDataIsMaxed1; // 2 bits per skill to indicate whether the maxed skill is reached
  // Next slot
  uint40 cooking;
  uint40 firemaking;
  uint40 farming;
  uint40 alchemy;
  uint40 fletching;
  uint40 forging;
  bytes2 packedDataIsMaxed2; // 2 bits per skill to indicate whether the maxed skill is reached
}

struct AvatarInfo {
  string name;
  string description;
  string imageURI;
  Skill[2] startSkills; // Can be NONE
}

struct PastRandomRewardInfo {
  uint16 itemTokenId;
  uint24 amount;
  uint64 queueId;
}

struct PendingQueuedActionEquipmentState {
  uint256[] consumedItemTokenIds;
  uint256[] consumedAmounts;
  uint256[] producedItemTokenIds;
  uint256[] producedAmounts;
}

struct PendingQueuedActionMetadata {
  uint32 xpGained; // total xp gained
  uint32 rolls;
  bool died;
  uint16 actionId;
  uint64 queueId;
  uint24 elapsedTime;
  uint24 xpElapsedTime;
  uint8 checkpoint;
}

struct PendingQueuedActionData {
  // The amount of XP that the queued action has already gained
  Skill skill1;
  uint24 xpGained1;
  Skill skill2; // Most likely health
  uint24 xpGained2;
  Skill skill3; // Could come
  uint24 xpGained3;
  // How much food is consumed in the current action so far
  uint16 foodConsumed;
  // How many base consumables are consumed in the current action so far
  uint16 baseInputItemsConsumedNum;
}

struct PendingQueuedActionProcessed {
  // XP gained during this session
  Skill[] skills;
  uint32[] xpGainedSkills;
  // Data for the current action which has been previously processed, this is used to store on the Player
  PendingQueuedActionData currentAction;
}

struct QuestState {
  uint256[] consumedItemTokenIds;
  uint256[] consumedAmounts;
  uint256[] rewardItemTokenIds;
  uint256[] rewardAmounts;
  PlayerQuest[] activeQuestInfo;
  uint256[] questsCompleted;
  Skill[] skills; // Skills gained XP in
  uint32[] xpGainedSkills; // XP gained in these skills
}

struct LotteryWinnerInfo {
  uint16 lotteryId;
  uint24 raffleId;
  uint16 itemTokenId;
  uint16 amount;
  bool instantConsume;
  uint64 playerId;
}

struct PendingQueuedActionState {
  // These 2 are in sync. Separated to reduce gas/deployment costs as these are passed down many layers.
  PendingQueuedActionEquipmentState[] equipmentStates;
  PendingQueuedActionMetadata[] actionMetadatas;
  QueuedAction[] remainingQueuedActions;
  PastRandomRewardInfo[] producedPastRandomRewards;
  uint256[] xpRewardItemTokenIds;
  uint256[] xpRewardAmounts;
  uint256[] dailyRewardItemTokenIds;
  uint256[] dailyRewardAmounts;
  PendingQueuedActionProcessed processedData;
  bytes32 dailyRewardMask;
  QuestState quests;
  uint256 numPastRandomRewardInstancesToRemove;
  uint8 worldLocation;
  LotteryWinnerInfo lotteryWinner;
}

struct FullAttireBonusInput {
  Skill skill;
  uint8 bonusXPPercent;
  uint8 bonusRewardsPercent; // 3 = 3%
  uint16[5] itemTokenIds; // 0 = head, 1 = body, 2 arms, 3 body, 4 = feet
}

// Contains everything you need to create an item
struct ItemInput {
  CombatStats combatStats;
  uint16 tokenId;
  EquipPosition equipPosition;
  bool isTransferable;
  bool isFullModeOnly;
  bool isAvailable;
  uint16 questPrerequisiteId;
  // Minimum requirements in this skill
  Skill skill;
  uint32 minXP;
  // Food
  uint16 healthRestored;
  // Boost
  BoostType boostType;
  uint16 boostValue; // Varies, could be the % increase
  uint24 boostDuration; // How long the effect of the boost vial last
  // uri
  string metadataURI;
  string name;
}

/* Order head, neck, body, arms, legs, feet, ring, reserved1,
   leftHandEquipment, rightHandEquipment,
   Not used yet: input1, input2,input3, regenerate, reserved2, reserved3 */
struct CheckpointEquipments {
  uint16[16] itemTokenIds;
  uint16[16] balances;
}

struct ActivePlayerInfo {
  uint64 playerId;
  uint40 checkpoint;
  uint24 timespan;
  uint24 timespan1;
  uint24 timespan2;
}

uint8 constant START_LEVEL = 17; // Needs updating when there is a new skill. Only useful for new heroes.

uint256 constant MAX_UNIQUE_TICKETS = 64;
// Used in a bunch of places
uint256 constant IS_FULL_MODE_BIT = 7;

// Passive/Instant/InstantVRF/Actions/ActionChoices/Item action
uint256 constant IS_AVAILABLE_BIT = 6;

// Passive actions
uint256 constant HAS_RANDOM_REWARDS_BIT = 5;

// The rest use world location for first 4 bits

// Queued action
uint256 constant HAS_PET_BIT = 2;
uint256 constant IS_VALID_BIT = 1;

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

enum Promotion {
  NONE,
  STARTER,
  HALLOWEEN_2023,
  XMAS_2023,
  HALLOWEEN_2024,
  HOLIDAY4, // Just have placeholders for now
  HOLIDAY5,
  HOLIDAY6,
  HOLIDAY7,
  HOLIDAY8,
  HOLIDAY9,
  HOLIDAY10
}

enum PromotionMintStatus {
  NONE,
  SUCCESS,
  PROMOTION_ALREADY_CLAIMED,
  ORACLE_NOT_CALLED,
  MINTING_OUTSIDE_AVAILABLE_DATE,
  PLAYER_DOES_NOT_QUALIFY,
  PLAYER_NOT_HIT_ENOUGH_CLAIMS_FOR_STREAK_BONUS,
  DEPENDENT_QUEST_NOT_COMPLETED
}

struct PromotionInfoInput {
  Promotion promotion;
  uint40 startTime;
  uint40 endTime; // Exclusive
  uint8 numDailyRandomItemsToPick; // Number of items to pick
  uint40 minTotalXP; // Minimum xp required to claim
  uint256 tokenCost; // Cost in brush to start the promotion, max 16mil
  // Special promotion specific (like 1kin)
  uint8 redeemCodeLength; // Length of the redeem code
  bool adminOnly; // Only admins can mint the promotion, like for 1kin (Not used yet)
  bool promotionTiedToUser; // If the promotion is tied to a user
  bool promotionTiedToPlayer; // If the promotion is tied to the player
  bool promotionMustOwnPlayer; // Must own the player to get the promotion
  // Evolution specific
  bool evolvedHeroOnly; // Only allow evolved heroes to claim
  // Multiday specific
  bool isMultiday; // The promotion is multi-day
  uint256 brushCostMissedDay; // Cost in brush to mint the promotion if they miss a day (in ether), max 25.6 (base 100)
  uint8 numDaysHitNeededForStreakBonus; // How many days to hit for the streak bonus
  uint8 numDaysClaimablePeriodStreakBonus; // If there is a streak bonus, how many days to claim it after the promotion ends. If no final day bonus, set to 0
  uint8 numRandomStreakBonusItemsToPick1; // Number of items to pick for the streak bonus
  uint8 numRandomStreakBonusItemsToPick2; // Number of random items to pick for the streak bonus
  uint16[] randomStreakBonusItemTokenIds1;
  uint32[] randomStreakBonusAmounts1;
  uint16[] randomStreakBonusItemTokenIds2;
  uint32[] randomStreakBonusAmounts2;
  uint16[] guaranteedStreakBonusItemTokenIds;
  uint16[] guaranteedStreakBonusAmounts;
  // Single and multiday
  uint16[] guaranteedItemTokenIds; // Guaranteed items for the promotions each day, if empty then they are handled in a specific way for the promotion like daily rewards
  uint32[] guaranteedAmounts; // Corresponding amounts to the itemTokenIds
  uint16[] randomItemTokenIds; // Possible items for the promotions each day, if empty then they are handled in a specific way for the promotion like daily rewards
  uint32[] randomAmounts; // Corresponding amounts to the randomItemTokenIds
  // Quests
  uint16 questPrerequisiteId;
}

struct PromotionInfo {
  Promotion promotion;
  uint40 startTime;
  uint8 numDays;
  uint8 numDailyRandomItemsToPick; // Number of items to pick
  uint40 minTotalXP; // Minimum xp required to claim
  uint24 tokenCost; // Cost in brush to mint the promotion (in ether), max 16mil
  // Quests
  uint16 questPrerequisiteId;
  // Special promotion specific (like 1kin), could pack these these later
  uint8 redeemCodeLength; // Length of the redeem code
  bool adminOnly; // Only admins can mint the promotion, like for 1kin
  bool promotionTiedToUser; // If the promotion is tied to a user
  bool promotionTiedToPlayer; // If the promotion is tied to the player
  bool promotionMustOwnPlayer; // Must own the player to get the promotion
  // Evolution specific
  bool evolvedHeroOnly; // Only allow evolved heroes to claim
  // Multiday specific
  bool isMultiday; // The promotion is multi-day
  uint8 brushCostMissedDay; // Cost in brush to mint the promotion if they miss a day (in ether), max 25.5, base 100
  uint8 numDaysHitNeededForStreakBonus; // How many days to hit for the streak bonus
  uint8 numDaysClaimablePeriodStreakBonus; // If there is a streak bonus, how many days to claim it after the promotion ends. If no final day bonus, set to 0
  uint8 numRandomStreakBonusItemsToPick1; // Number of items to pick for the streak bonus
  uint8 numRandomStreakBonusItemsToPick2; // Number of random items to pick for the streak bonus
  // Misc
  uint16[] randomStreakBonusItemTokenIds1;
  uint32[] randomStreakBonusAmounts1;
  uint16[] randomStreakBonusItemTokenIds2; // Not used yet
  uint32[] randomStreakBonusAmounts2; // Not used yet
  uint16[] guaranteedStreakBonusItemTokenIds; // Not used yet
  uint16[] guaranteedStreakBonusAmounts; // Not used yet
  // Single and multiday
  uint16[] guaranteedItemTokenIds; // Guaranteed items for the promotions each day, if empty then they are handled in a specific way for the promotion like daily rewards
  uint32[] guaranteedAmounts; // Corresponding amounts to the itemTokenIds
  uint16[] randomItemTokenIds; // Possible items for the promotions each day, if empty then they are handled in a specific way for the promotion like daily rewards
  uint32[] randomAmounts; // Corresponding amounts to the randomItemTokenIds
}

uint256 constant BRUSH_COST_MISSED_DAY_MUL = 10;

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import {Skill} from "./misc.sol";

struct QuestInput {
  uint16 dependentQuestId; // The quest that must be completed before this one can be started
  uint16 actionId1; // action to do
  uint16 actionNum1; // how many (up to 65535)
  uint16 actionId2; // another action to do
  uint16 actionNum2; // how many (up to 65535)
  uint16 actionChoiceId; // actionChoice to perform
  uint16 actionChoiceNum; // how many to do (base number), (up to 65535)
  Skill skillReward; // The skill to reward XP to
  uint24 skillXPGained; // The amount of XP to give (up to 65535)
  uint16 rewardItemTokenId1; // Reward an item
  uint16 rewardAmount1; // amount of the reward (up to 65535)
  uint16 rewardItemTokenId2; // Reward another item
  uint16 rewardAmount2; // amount of the reward (up to 65535)
  uint16 burnItemTokenId; // Burn an item
  uint16 burnAmount; // amount of the burn (up to 65535)
  uint16 questId; // Unique id for this quest
  bool isFullModeOnly; // If true this quest requires the user be evolved
  uint8 worldLocation; // 0 is the main starting world
}

struct Quest {
  uint16 dependentQuestId; // The quest that must be completed before this one can be started
  uint16 actionId1; // action to do
  uint16 actionNum1; // how many (up to 65535)
  uint16 actionId2; // another action to do
  uint16 actionNum2; // how many (up to 65535)
  uint16 actionChoiceId; // actionChoice to perform
  uint16 actionChoiceNum; // how many to do (base number), (up to 65535)
  Skill skillReward; // The skill to reward XP to
  uint24 skillXPGained; // The amount of XP to give (up to 65535)
  uint16 rewardItemTokenId1; // Reward an item
  uint16 rewardAmount1; // amount of the reward (up to 65535)
  uint16 rewardItemTokenId2; // Reward another item
  uint16 rewardAmount2; // amount of the reward (up to 65535)
  uint16 burnItemTokenId; // Burn an item
  uint16 burnAmount; // amount of the burn (up to 65535)
  uint16 reserved; // Reserved for future use (previously was questId and cleared)
  bytes1 packedData; // FullMode is last bit, first 6 bits is worldLocation
}

struct PlayerQuest {
  uint32 questId;
  uint16 actionCompletedNum1;
  uint16 actionCompletedNum2;
  uint16 actionChoiceCompletedNum;
  uint16 burnCompletedAmount;
}

uint256 constant QUEST_PURSE_STRINGS = 5; // MAKE SURE THIS MATCHES definitions

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import {BoostType, Equipment} from "./misc.sol";

struct GuaranteedReward {
  uint16 itemTokenId;
  uint16 rate; // num per hour (base 10, 1 decimal) for actions and num per duration for passive actions
}

struct RandomReward {
  uint16 itemTokenId;
  uint16 chance; // out of 65535
  uint8 amount; // out of 255
}

struct PendingRandomReward {
  uint16 actionId;
  uint40 startTime;
  uint24 xpElapsedTime;
  uint16 boostItemTokenId;
  uint24 elapsedTime;
  uint40 boostStartTime; // When the boost was started
  uint24 sentinelElapsedTime;
  // Full equipment at the time this was generated
  uint8 fullAttireBonusRewardsPercent;
  uint64 queueId; // TODO: Could reduce this if more stuff is needed
}

struct ActionRewards {
  uint16 guaranteedRewardTokenId1;
  uint16 guaranteedRewardRate1; // Num per hour base 10 (1 decimal) for actions (Max 6553.5 per hour), num per duration for passive actions
  uint16 guaranteedRewardTokenId2;
  uint16 guaranteedRewardRate2;
  uint16 guaranteedRewardTokenId3;
  uint16 guaranteedRewardRate3;
  // Random chance rewards
  uint16 randomRewardTokenId1;
  uint16 randomRewardChance1; // out of 65535
  uint8 randomRewardAmount1; // out of 255
  uint16 randomRewardTokenId2;
  uint16 randomRewardChance2;
  uint8 randomRewardAmount2;
  uint16 randomRewardTokenId3;
  uint16 randomRewardChance3;
  uint8 randomRewardAmount3;
  uint16 randomRewardTokenId4;
  uint16 randomRewardChance4;
  uint8 randomRewardAmount4;
  // No more room in this storage slot!
}

struct XPThresholdReward {
  uint32 xpThreshold;
  Equipment[] rewards;
}

enum InstantVRFActionType {
  NONE,
  GENERIC,
  FORGING,
  EGG
}

struct InstantVRFActionInput {
  uint16 actionId;
  uint16[] inputTokenIds;
  uint24[] inputAmounts;
  bytes data;
  InstantVRFActionType actionType;
  bool isFullModeOnly;
  bool isAvailable;
  uint16 questPrerequisiteId;
}

struct InstantVRFRandomReward {
  uint16 itemTokenId;
  uint16 chance; // out of 65535
  uint16 amount; // out of 65535
}

uint256 constant MAX_GUARANTEED_REWARDS_PER_ACTION = 3;
uint256 constant MAX_RANDOM_REWARDS_PER_ACTION = 4;
uint256 constant MAX_REWARDS_PER_ACTION = MAX_GUARANTEED_REWARDS_PER_ACTION + MAX_RANDOM_REWARDS_PER_ACTION;
uint256 constant MAX_CONSUMED_PER_ACTION = 3;
uint256 constant MAX_QUEST_REWARDS = 2;

uint256 constant TIER_1_DAILY_REWARD_START_XP = 0;
uint256 constant TIER_2_DAILY_REWARD_START_XP = 7_650;
uint256 constant TIER_3_DAILY_REWARD_START_XP = 33_913;
uint256 constant TIER_4_DAILY_REWARD_START_XP = 195_864;
uint256 constant TIER_5_DAILY_REWARD_START_XP = 784_726;
uint256 constant TIER_6_DAILY_REWARD_START_XP = 2_219_451;

// 4 bytes for each threshold, starts at 500 xp in decimal
bytes constant XP_THRESHOLD_REWARDS = hex"00000000000001F4000003E8000009C40000138800002710000075300000C350000186A00001D4C0000493E0000557300007A120000927C0000B71B0000DBBA0000F424000124F800016E360001B7740001E8480002625A0002932E0002DC6C0003567E0003D0900004C4B40005B8D80006ACFC0007A1200008954400098968000A7D8C000B71B0000C65D4000D59F8000E4E1C0";

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

struct Route {
  address from;
  address to;
  bool stable;
}

interface ISolidlyRouter {
  function swapExactETHForTokens(
    uint256 amountOutMin,
    Route[] calldata routes,
    address to,
    uint256 deadline
  ) external payable returns (uint256[] memory amounts);

  function swapETHForExactTokens(
    uint256 amountOut,
    Route[] calldata routes,
    address to,
    uint256 deadline
  ) external payable returns (uint256[] memory amounts);

  function swapExactTokensForETH(
    uint256 amountIn,
    uint256 amountOutMin,
    Route[] calldata routes,
    address to,
    uint256 deadline
  ) external returns (uint256[] memory amounts);

  function swapTokensForExactETH(
    uint256 amountOut,
    uint256 amountInMax,
    Route[] calldata routes,
    address to,
    uint256 deadline
  ) external returns (uint256[] memory amounts);
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

interface IBank {
  function initialize() external;

  function initializeAddresses(
    uint256 clanId,
    address bankRegistry,
    address bankRelay,
    address playerNFT,
    address itemNFT,
    address clans,
    address players,
    address lockedBankVaults,
    address raids
  ) external;

  function depositToken(address sender, address from, uint256 playerId, address token, uint256 amount) external;

  function setAllowBreachedCapacity(bool allow) external;
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import "../globals/misc.sol";
import "../globals/players.sol";

interface IPlayers {
  function clearEverythingBeforeTokenTransfer(address from, uint256 tokenId) external;

  function beforeTokenTransferTo(address to, uint256 tokenId) external;

  function getURI(
    uint256 playerId,
    string calldata name,
    string calldata avatarName,
    string calldata avatarDescription,
    string calldata imageURI
  ) external view returns (string memory);

  function mintedPlayer(
    address from,
    uint256 playerId,
    Skill[2] calldata startSkills,
    bool makeActive,
    uint256[] calldata startingItemTokenIds,
    uint256[] calldata startingAmounts
  ) external;

  function upgradePlayer(uint256 playerId) external;

  function isPlayerEvolved(uint256 playerId) external view returns (bool);

  function isOwnerOfPlayerAndActive(address from, uint256 playerId) external view returns (bool);

  function getAlphaCombatParams() external view returns (uint8 alphaCombat, uint8 betaCombat, uint8 alphaCombatHealing);

  function getActivePlayer(address owner) external view returns (uint256 playerId);

  function getPlayerXP(uint256 playerId, Skill skill) external view returns (uint256 xp);

  function getLevel(uint256 playerId, Skill skill) external view returns (uint256 level);

  function getTotalXP(uint256 playerId) external view returns (uint256 totalXP);

  function getTotalLevel(uint256 playerId) external view returns (uint256 totalLevel);

  function getActiveBoost(uint256 playerId) external view returns (PlayerBoostInfo memory);

  function modifyXP(address from, uint256 playerId, Skill skill, uint56 xp, bool skipEffects) external;

  function beforeItemNFTTransfer(address from, address to, uint256[] calldata ids, uint256[] calldata amounts) external;
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import {UUPSUpgradeable} from "@openzeppelin/contracts-upgradeable/proxy/utils/UUPSUpgradeable.sol";
import {OwnableUpgradeable} from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
import {BitMaps} from "@openzeppelin/contracts/utils/structs/BitMaps.sol";
import {IERC1155} from "@openzeppelin/contracts/token/ERC1155/IERC1155.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {IPlayers} from "./interfaces/IPlayers.sol";
import {ISolidlyRouter, Route} from "./interfaces/external/ISolidlyRouter.sol";

import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";

// solhint-disable-next-line no-global-import
import "./globals/all.sol";

contract Quests is UUPSUpgradeable, OwnableUpgradeable {
  using Math for uint256;
  using BitMaps for BitMaps.BitMap;

  event AddQuests(QuestInput[] quests, MinimumRequirement[3][] minimumRequirements);
  event EditQuests(QuestInput[] quests, MinimumRequirement[3][] minimumRequirements);
  event RemoveQuest(uint256 questId);
  event ActivateQuest(address from, uint256 playerId, uint256 questId);
  event DeactivateQuest(uint256 playerId, uint256 questId);
  event QuestCompleted(address from, uint256 playerId, uint256 questId);
  event UpdateQuestProgress(uint256 playerId, PlayerQuest playerQuest);
  // Just for the bridge
  event QuestCompletedFromBridge(
    address from,
    uint256 playerId,
    uint256 questId,
    uint256[] extraItemTokenIds,
    uint256[] extraItemAMounts,
    Skill[] extraSkills,
    uint256[] extraSkillXPs
  );

  error NotWorld();
  error NotOwnerOfPlayerAndActive();
  error NotPlayers();
  error QuestDoesntExist();
  error InvalidQuestId();
  error QuestWithIdAlreadyExists();
  error QuestCompletedAlready();
  error InvalidRewardAmount();
  error InvalidActionNum();
  error InvalidActionChoiceNum();
  error LengthMismatch(uint256 questsLength, uint256 minimumRequirementsLength);
  error InvalidSkillXPGained();
  error InvalidFTMAmount();
  error InvalidBrushAmount();
  error InvalidActiveQuest();
  error InvalidBurnAmount();
  error NoActiveQuest();
  error ActivatingQuestAlreadyActivated();
  error DependentQuestNotCompleted(uint16 dependentQuestId);
  error RefundFailed();
  error InvalidMinimumRequirement();
  error NotSupported();
  error CannotStartFullModeQuest();
  error CannotChangeBackToFullMode();
  error NotBridge();

  struct MinimumRequirement {
    Skill skill;
    uint64 xp;
  }

  struct PlayerQuestInfo {
    uint32 numFixedQuestsCompleted;
  }

  address private _randomnessBeacon;
  IPlayers private _players;
  uint16 private _numTotalQuests;
  // For buying/selling brush
  ISolidlyRouter private _router;
  address private _wNative; // wFTM
  address private _brush; // brush

  mapping(uint256 questId => Quest quest) private _allFixedQuests;
  mapping(uint256 playerId => BitMaps.BitMap) private _questsCompleted;
  mapping(uint256 playerId => PlayerQuest playerQuest) private _activeQuests;
  mapping(uint256 playerId => mapping(uint256 questId => PlayerQuest quest)) private _inProgressFixedQuests; // Only puts it here if changing active quests for another one or pausing
  mapping(uint256 questId => MinimumRequirement[3]) private _minimumRequirements;
  mapping(uint256 playerId => PlayerQuestInfo) private _playerInfo;
  address private _bridge; // TODO: Bridge Can remove later

  modifier onlyPlayers() {
    require(_msgSender() == address(_players), NotPlayers());
    _;
  }

  modifier isOwnerOfPlayerAndActive(uint256 playerId) {
    require(_players.isOwnerOfPlayerAndActive(_msgSender(), playerId), NotOwnerOfPlayerAndActive());
    _;
  }

  modifier onlyBridge() {
    require(_msgSender() == _bridge, NotBridge());
    _;
  }

  /// @custom:oz-upgrades-unsafe-allow constructor
  constructor() {
    _disableInitializers();
  }

  function initialize(
    address randomnessBeacon,
    address bridge,
    ISolidlyRouter router,
    address[2] calldata path
  ) external initializer {
    __Ownable_init(_msgSender());
    __UUPSUpgradeable_init();

    _randomnessBeacon = randomnessBeacon;
    _bridge = bridge;
    _router = router;
    _wNative = path[0];
    _brush = path[1];

    IERC20(_brush).approve(address(router), type(uint256).max);
  }

  function allFixedQuests(uint256 questId) external view returns (Quest memory) {
    return _allFixedQuests[questId];
  }

  function activeQuests(uint256 playerId) external view returns (PlayerQuest memory) {
    return _activeQuests[playerId];
  }

  function activateQuest(address from, uint256 playerId, uint256 questId) external onlyPlayers {
    require(questId != 0, InvalidQuestId());
    require(_questExists(questId), QuestDoesntExist());
    require(!_questsCompleted[playerId].get(questId), QuestCompletedAlready());

    Quest storage quest = _allFixedQuests[questId];
    if (quest.dependentQuestId != 0) {
      require(
        _questsCompleted[playerId].get(quest.dependentQuestId),
        DependentQuestNotCompleted(quest.dependentQuestId)
      );
    }

    require(
      !_isQuestPackedDataFullMode(quest.packedData) || _players.isPlayerEvolved(playerId),
      CannotStartFullModeQuest()
    );

    for (uint256 i = 0; i < _minimumRequirements[questId].length; ++i) {
      MinimumRequirement storage minimumRequirement = _minimumRequirements[questId][i];
      if (minimumRequirement.skill != Skill.NONE) {
        uint256 xp = _players.getPlayerXP(playerId, minimumRequirement.skill);
        require(xp >= minimumRequirement.xp, InvalidMinimumRequirement());
      }
    }

    uint256 existingActiveQuestId = _activeQuests[playerId].questId;
    require(existingActiveQuestId != questId, ActivatingQuestAlreadyActivated());

    if (existingActiveQuestId != 0) {
      // Another quest was activated
      emit DeactivateQuest(playerId, existingActiveQuestId);
      _inProgressFixedQuests[playerId][existingActiveQuestId] = _activeQuests[playerId];
    }

    if (_inProgressFixedQuests[playerId][questId].questId != 0) {
      // If the quest is already in progress, just activate it
      _activeQuests[playerId] = _inProgressFixedQuests[playerId][questId];
    } else {
      // Start fresh quest
      PlayerQuest memory playerQuest;
      playerQuest.questId = uint32(questId);
      _activeQuests[playerId] = playerQuest;
    }
    emit ActivateQuest(from, playerId, questId);
  }

  function deactivateQuest(uint256 playerId) external onlyPlayers {
    PlayerQuest storage playerQuest = _activeQuests[playerId];
    uint256 questId = playerQuest.questId;
    require(questId != 0, NoActiveQuest());

    // Move it to in progress
    _inProgressFixedQuests[playerId][_activeQuests[playerId].questId] = _activeQuests[playerId];
    delete _activeQuests[playerId];

    emit DeactivateQuest(playerId, questId);
  }

  function processQuests(
    address from,
    uint256 playerId,
    PlayerQuest[] calldata activeQuestInfo,
    uint256[] memory questsCompleted
  ) external onlyPlayers {
    if (questsCompleted.length != 0) {
      uint256 bounds = questsCompleted.length;
      for (uint256 i; i < bounds; ++i) {
        uint256 questId = questsCompleted[i];
        _questCompleted(from, playerId, questId);
      }
    } else if (activeQuestInfo.length != 0) {
      PlayerQuest storage activeQuest = _activeQuests[playerId];
      // Only handling 1 active quest at a time currently
      PlayerQuest calldata activeQuestInfo0 = activeQuestInfo[0];
      bool hasQuestProgress = activeQuestInfo0.actionCompletedNum1 != activeQuest.actionCompletedNum1 ||
        activeQuestInfo0.actionChoiceCompletedNum != activeQuest.actionChoiceCompletedNum ||
        activeQuestInfo0.burnCompletedAmount != activeQuest.burnCompletedAmount;

      if (hasQuestProgress) {
        _activeQuests[playerId] = activeQuestInfo0;
        emit UpdateQuestProgress(playerId, activeQuestInfo0);
      }
    }
  }

  function processQuestsBridge(
    address from,
    uint256 playerId,
    uint256[] calldata questsCompleted,
    uint256[] calldata questIds,
    uint256[] calldata questActionCompletedNum1s,
    uint256[] calldata questActionCompletedNum2s,
    uint256[] calldata questActionChoiceCompletedNums,
    uint256[] calldata questBurnCompletedAmounts
  ) external onlyBridge {
    for (uint256 i; i < questsCompleted.length; ++i) {
      uint256 questId = questsCompleted[i];
      _questCompletedBridge(from, playerId, questId);
    }

    for (uint256 i; i < questIds.length; ++i) {
      uint256 questId = questIds[i];
      PlayerQuest memory playerQuest;
      if (questId != 0) {
        playerQuest.questId = uint32(questId);
        playerQuest.actionCompletedNum1 = uint16(questActionCompletedNum1s[i]);
        playerQuest.actionCompletedNum2 = uint16(questActionCompletedNum2s[i]);
        playerQuest.actionChoiceCompletedNum = uint16(questActionChoiceCompletedNums[i]);
        playerQuest.burnCompletedAmount = uint16(questBurnCompletedAmounts[i]);
        _inProgressFixedQuests[playerId][questId] = playerQuest;
        emit UpdateQuestProgress(playerId, playerQuest);
      }
    }
  }

  function buyBrushQuest(
    address from,
    address to,
    uint256 playerId,
    uint256 minimumBrushBack,
    bool useExactETH
  ) external payable onlyPlayers returns (bool success) {
    PlayerQuest storage playerQuest = _activeQuests[playerId];
    require(playerQuest.questId == QUEST_PURSE_STRINGS, InvalidActiveQuest());
    uint256[] memory amounts = buyBrush(to, minimumBrushBack, useExactETH);
    if (amounts[0] != 0) {
      // Refund the rest if it isn't players contract calling it otherwise do it elsewhere
      (success, ) = from.call{value: msg.value - amounts[0]}("");
      require(success, RefundFailed());
    }
    _questCompleted(from, playerId, playerQuest.questId);
    success = true;
  }

  function buyBrush(
    address to,
    uint256 minimumBrushExpected,
    bool useExactETH
  ) public payable returns (uint256[] memory amounts) {
    require(msg.value != 0, InvalidFTMAmount());

    uint256 deadline = block.timestamp + 10 minutes;
    // Buy brush and send it back to the user
    Route[] memory routes = new Route[](1);
    routes[0] = Route({from: _wNative, to: _brush, stable: false});

    if (useExactETH) {
      uint256 amountOutMin = minimumBrushExpected;
      amounts = _router.swapExactETHForTokens{value: msg.value}(amountOutMin, routes, to, deadline);
    } else {
      uint256 amountOut = minimumBrushExpected;
      amounts = _router.swapETHForExactTokens{value: msg.value}(amountOut, routes, to, deadline);
      if (amounts[0] != 0 && _msgSender() != address(_players)) {
        // Refund the rest if it isn't players contract calling it otherwise do it elsewhere
        (bool success, ) = _msgSender().call{value: msg.value - amounts[0]}("");
        require(success, RefundFailed());
      }
    }
  }

  // This doesn't really belong here, just for consistency
  function sellBrush(address to, uint256 brushAmount, uint256 minFTM, bool useExactETH) external {
    require(brushAmount != 0, InvalidBrushAmount());

    uint256 deadline = block.timestamp + 10 minutes;
    Route[] memory routes = new Route[](1);
    routes[0] = Route({from: _brush, to: _wNative, stable: false});
    address token = _brush;
    IERC20(token).transferFrom(_msgSender(), address(this), brushAmount);

    if (useExactETH) {
      uint256 amountOut = minFTM;
      uint256 amountInMax = brushAmount;
      _router.swapTokensForExactETH(amountOut, amountInMax, routes, to, deadline);
    } else {
      _router.swapExactTokensForETH(brushAmount, minFTM, routes, to, deadline);
    }
  }

  function _questCompleted(address from, uint256 playerId, uint256 questId) private {
    emit QuestCompleted(from, playerId, questId);
    _questsCompleted[playerId].set(questId);
    delete _activeQuests[playerId];
    ++_playerInfo[playerId].numFixedQuestsCompleted;
  }

  // TODO: Delete after bridge is removed
  uint256 private constant QUEST_WAY_OF_THE_AXE = 25;
  uint256 private constant QUEST_BAIT_AND_STRING_V = 39;
  uint256 private constant QUEST_SPECIAL_ASSIGNMENT = 47;
  uint256 private constant QUEST_SPECIAL_ASSIGNMENT_V = 51;

  function _isCompletedBridgedQuest(uint256 questId) private view returns (Skill skill, uint32 skillXP) {
    if (
      (questId >= QUEST_WAY_OF_THE_AXE && questId <= QUEST_BAIT_AND_STRING_V) ||
      (questId >= QUEST_SPECIAL_ASSIGNMENT && questId <= QUEST_SPECIAL_ASSIGNMENT_V)
    ) {
      return (_allFixedQuests[questId].skillReward, _allFixedQuests[questId].skillXPGained);
    }
  }

  function _questCompletedBridge(
    address from,
    uint256 playerId,
    uint256 questId
  ) private returns (Skill skill, uint32 skillXP) {
    (skill, skillXP) = _isCompletedBridgedQuest(questId);
    uint256[] memory extraItemTokenIds;
    uint256[] memory extraItemAmounts;
    Skill[] memory extraSkills = new Skill[](skill != Skill.NONE ? 1 : 0);
    uint256[] memory extraSkillXPs = new uint256[](skill != Skill.NONE ? 1 : 0);

    if (skill != Skill.NONE) {
      extraSkills[0] = skill;
      extraSkillXPs[0] = skillXP;

      uint xp = _players.getPlayerXP(playerId, skill);
      // Allow XP threshold rewards if this ends up passing any thresholds
      _players.modifyXP(from, playerId, skill, uint56(xp + skillXP), false);
    }
    emit QuestCompletedFromBridge(
      from,
      playerId,
      questId,
      extraItemTokenIds,
      extraItemAmounts,
      extraSkills,
      extraSkillXPs
    );
    _questsCompleted[playerId].set(questId);
    ++_playerInfo[playerId].numFixedQuestsCompleted;
  }

  function _addToBurn(
    Quest storage quest,
    PlayerQuest memory playerQuest,
    uint256 burnedAmountOwned
  ) private view returns (uint256 amountBurned) {
    // Handle quest that burns and requires actions to be done at the same time
    uint256 burnRemainingAmount = quest.burnAmount > playerQuest.burnCompletedAmount
      ? quest.burnAmount - playerQuest.burnCompletedAmount
      : 0;
    amountBurned = Math.min(burnRemainingAmount, burnedAmountOwned);
    if (amountBurned != 0) {
      playerQuest.burnCompletedAmount += uint16(amountBurned);
    }
  }

  function _processQuestView(
    uint256[] calldata actionIds,
    uint256[] calldata actionAmounts,
    uint256[] calldata choiceIds,
    uint256[] calldata choiceAmounts,
    PlayerQuest memory playerQuest,
    uint256 burnedAmountOwned
  )
    private
    view
    returns (
      uint256[] memory itemTokenIds,
      uint256[] memory amounts,
      uint256 itemTokenIdBurned,
      uint256 amountBurned,
      Skill skillGained,
      uint32 xpGained,
      bool questCompleted
    )
  {
    Quest storage quest = _allFixedQuests[playerQuest.questId];
    uint256 bounds = actionIds.length;
    for (uint256 i; i < bounds; ++i) {
      if (quest.actionId1 == actionIds[i]) {
        uint256 remainingAmount = quest.actionNum1 > playerQuest.actionCompletedNum1
          ? quest.actionNum1 - playerQuest.actionCompletedNum1
          : 0;
        uint256 amount = Math.min(remainingAmount, actionAmounts[i]);
        if (quest.burnItemTokenId != NONE) {
          amount = Math.min(burnedAmountOwned, amount);
          burnedAmountOwned -= amount;
          amount = _addToBurn(quest, playerQuest, amount);
          amountBurned += amount;

          if (
            amount == 0 &&
            playerQuest.burnCompletedAmount >= quest.burnAmount &&
            playerQuest.actionCompletedNum1 < quest.actionNum1
          ) {
            // Needed in case the quest is changed later where the amount to burn has already been exceeded
            playerQuest.actionCompletedNum1 = playerQuest.burnCompletedAmount;
          }
        }
        playerQuest.actionCompletedNum1 += uint16(amount);
      }
    }

    bounds = choiceIds.length;
    for (uint256 i; i < bounds; ++i) {
      if (quest.actionChoiceId == choiceIds[i]) {
        uint256 remainingAmount = quest.actionChoiceNum > playerQuest.actionChoiceCompletedNum
          ? quest.actionChoiceNum - playerQuest.actionChoiceCompletedNum
          : 0;
        uint256 amount = Math.min(remainingAmount, choiceAmounts[i]);
        if (quest.burnItemTokenId != NONE) {
          amount = Math.min(burnedAmountOwned, amount);
          burnedAmountOwned -= amount;
          amount = _addToBurn(quest, playerQuest, amount);
          amountBurned += amount;

          if (
            amount == 0 &&
            playerQuest.burnCompletedAmount >= quest.burnAmount &&
            playerQuest.actionChoiceCompletedNum < quest.actionChoiceNum
          ) {
            // Needed in case the quest is changed later where the amount to burn has already been exceeded
            playerQuest.actionChoiceCompletedNum = playerQuest.burnCompletedAmount;
          }
        }
        playerQuest.actionChoiceCompletedNum += uint16(amount);
      }
    }

    if (amountBurned != 0) {
      itemTokenIdBurned = quest.burnItemTokenId;
    }

    // Buy brush quest is handled specially for instance and doesn't have any of these set
    if (quest.actionNum1 != 0 || quest.actionChoiceNum != 0 || quest.burnAmount != 0) {
      questCompleted =
        playerQuest.actionCompletedNum1 >= quest.actionNum1 &&
        playerQuest.actionChoiceCompletedNum >= quest.actionChoiceNum &&
        playerQuest.burnCompletedAmount >= quest.burnAmount;
    }

    if (questCompleted) {
      (itemTokenIds, amounts, skillGained, xpGained) = getQuestCompletedRewards(playerQuest.questId);
    }
  }

  function _checkQuest(QuestInput calldata quest) private pure {
    require(quest.rewardItemTokenId1 == NONE || quest.rewardAmount1 != 0, InvalidRewardAmount());
    require(quest.rewardItemTokenId2 == NONE || quest.rewardAmount2 != 0, InvalidRewardAmount());
    require(quest.actionId1 == 0 || quest.actionNum1 != 0, InvalidActionNum());
    require(quest.actionId2 == 0 || quest.actionNum2 != 0, InvalidActionNum());
    require(quest.actionChoiceId == 0 || quest.actionChoiceNum != 0, InvalidActionChoiceNum());
    require(quest.skillReward == Skill.NONE || quest.skillXPGained != 0, InvalidSkillXPGained());
    require(quest.burnItemTokenId == NONE || quest.burnAmount != 0, InvalidBurnAmount());
    require(quest.questId != 0, InvalidQuestId());
  }

  function _addQuest(QuestInput calldata quest, MinimumRequirement[3] calldata minimumRequirements) private {
    _checkQuest(quest);

    bool anyMinimumRequirement;
    uint256 bounds = minimumRequirements.length;
    for (uint256 i; i < bounds; ++i) {
      if (minimumRequirements[i].skill != Skill.NONE) {
        anyMinimumRequirement = true;
        break;
      }
    }

    if (anyMinimumRequirement) {
      _minimumRequirements[quest.questId] = minimumRequirements;
    }

    require(!_questExists(quest.questId), QuestWithIdAlreadyExists());

    _allFixedQuests[quest.questId] = _packQuest(quest);
  }

  function _editQuest(QuestInput calldata quest, MinimumRequirement[3] calldata minimumRequirements) private {
    _checkQuest(quest);

    _minimumRequirements[quest.questId] = minimumRequirements;

    require(_questExists(quest.questId), QuestDoesntExist());
    // Cannot change from free to full-mode
    require(
      _isQuestPackedDataFullMode(_allFixedQuests[quest.questId].packedData) == quest.isFullModeOnly,
      CannotChangeBackToFullMode()
    );

    _allFixedQuests[quest.questId] = _packQuest(quest);
  }

  function _questExists(uint256 questId) private view returns (bool) {
    Quest memory quest = _allFixedQuests[questId];
    return
      quest.actionId1 != NONE ||
      quest.actionChoiceId != NONE ||
      quest.skillReward != Skill.NONE ||
      quest.rewardItemTokenId1 != NONE;
  }

  function _isQuestPackedDataFullMode(bytes1 packedData) private pure returns (bool) {
    return uint8(packedData >> IS_FULL_MODE_BIT) & 1 == 1;
  }

  function _packQuest(QuestInput calldata questInput) private pure returns (Quest memory quest) {
    bytes1 packedData = bytes1(uint8(questInput.isFullModeOnly ? 1 << IS_FULL_MODE_BIT : 0));
    quest = Quest({
      dependentQuestId: questInput.dependentQuestId,
      actionId1: questInput.actionId1,
      actionNum1: questInput.actionNum1,
      actionId2: questInput.actionId2,
      actionNum2: questInput.actionNum2,
      actionChoiceId: questInput.actionChoiceId,
      actionChoiceNum: questInput.actionChoiceNum,
      skillReward: questInput.skillReward,
      skillXPGained: questInput.skillXPGained,
      rewardItemTokenId1: questInput.rewardItemTokenId1,
      rewardAmount1: questInput.rewardAmount1,
      rewardItemTokenId2: questInput.rewardItemTokenId2,
      rewardAmount2: questInput.rewardAmount2,
      burnItemTokenId: questInput.burnItemTokenId,
      burnAmount: questInput.burnAmount,
      reserved: 0,
      packedData: packedData
    });
  }

  function processQuestsView(
    uint256 playerId,
    uint256[] calldata actionIds,
    uint256[] calldata actionAmounts,
    uint256[] calldata choiceIds,
    uint256[] calldata choiceAmounts,
    uint256 burnedAmountOwned
  )
    external
    view
    returns (
      uint256[] memory itemTokenIds,
      uint256[] memory amounts,
      uint256[] memory itemTokenIdsBurned,
      uint256[] memory amountsBurned,
      Skill[] memory skillsGained,
      uint32[] memory xpGained,
      uint256[] memory questsCompleted,
      PlayerQuest[] memory activeQuestsCompletionInfo
    )
  {
    // Handle active quest
    PlayerQuest memory questCompletionInfo = _activeQuests[playerId];
    if (questCompletionInfo.questId != 0) {
      activeQuestsCompletionInfo = new PlayerQuest[](2);
      itemTokenIds = new uint256[](2 * MAX_QUEST_REWARDS);
      amounts = new uint256[](2 * MAX_QUEST_REWARDS);
      itemTokenIdsBurned = new uint256[](2);
      amountsBurned = new uint256[](2);
      skillsGained = new Skill[](2);
      xpGained = new uint32[](2);
      questsCompleted = new uint256[](2);
      uint256 itemTokenIdsLength;
      uint256 itemTokenIdsBurnedLength;
      uint256 skillsGainedLength;
      uint256 questsCompletedLength;
      uint256 activeQuestsLength;

      (
        uint256[] memory itemTokenIds_,
        uint256[] memory amounts_,
        uint256 itemTokenIdBurned,
        uint256 amountBurned,
        Skill skillGained,
        uint32 xp,
        bool questCompleted
      ) = _processQuestView(actionIds, actionAmounts, choiceIds, choiceAmounts, questCompletionInfo, burnedAmountOwned);

      uint256 bounds = itemTokenIds_.length;
      for (uint256 i; i < bounds; ++i) {
        itemTokenIds[itemTokenIdsLength] = itemTokenIds_[i];
        amounts[itemTokenIdsLength] = amounts_[i];
        itemTokenIdsLength++;
      }

      if (questCompleted) {
        questsCompleted[questsCompletedLength++] = questCompletionInfo.questId;
      } else {
        activeQuestsCompletionInfo[activeQuestsLength++] = questCompletionInfo;
      }
      if (itemTokenIdBurned != NONE) {
        itemTokenIdsBurned[itemTokenIdsBurnedLength] = itemTokenIdBurned;
        amountsBurned[itemTokenIdsBurnedLength++] = amountBurned;
      }
      if (xp != 0) {
        skillsGained[skillsGainedLength] = skillGained;
        xpGained[skillsGainedLength++] = xp;
      }

      assembly ("memory-safe") {
        mstore(itemTokenIds, itemTokenIdsLength)
        mstore(amounts, itemTokenIdsLength)
        mstore(itemTokenIdsBurned, itemTokenIdsBurnedLength)
        mstore(amountsBurned, itemTokenIdsBurnedLength)
        mstore(skillsGained, skillsGainedLength)
        mstore(xpGained, skillsGainedLength)
        mstore(questsCompleted, questsCompletedLength)
        mstore(activeQuestsCompletionInfo, activeQuestsLength)
      }
    }
  }

  function isQuestCompleted(uint256 playerId, uint256 questId) external view returns (bool) {
    return _questsCompleted[playerId].get(questId);
  }

  function getActiveQuestId(uint256 playerId) external view returns (uint256) {
    return _activeQuests[playerId].questId;
  }

  function getActiveQuestBurnedItemTokenId(uint256 playerId) external view returns (uint256) {
    uint256 questId = _activeQuests[playerId].questId;
    if (questId == 0) {
      return NONE;
    }

    return _allFixedQuests[questId].burnItemTokenId;
  }

  function getQuestCompletedRewards(
    uint256 questId
  ) public view returns (uint256[] memory itemTokenIds, uint256[] memory amounts, Skill skillGained, uint32 xpGained) {
    Quest storage quest = _allFixedQuests[questId];
    // length can be 0, 1 or 2
    uint256 mintLength = quest.rewardItemTokenId1 == NONE ? 0 : 1;
    mintLength += (quest.rewardItemTokenId2 == NONE ? 0 : 1);

    itemTokenIds = new uint256[](mintLength);
    amounts = new uint256[](mintLength);
    if (quest.rewardItemTokenId1 != NONE) {
      itemTokenIds[0] = quest.rewardItemTokenId1;
      amounts[0] = quest.rewardAmount1;
    }
    if (quest.rewardItemTokenId2 != NONE) {
      itemTokenIds[1] = quest.rewardItemTokenId2;
      amounts[1] = quest.rewardAmount2;
    }
    skillGained = quest.skillReward;
    xpGained = quest.skillXPGained;
  }

  function setPlayers(IPlayers players) external onlyOwner {
    _players = players;
  }

  function addQuests(
    QuestInput[] calldata quests,
    MinimumRequirement[3][] calldata minimumRequirements
  ) external onlyOwner {
    require(quests.length == minimumRequirements.length, LengthMismatch(quests.length, minimumRequirements.length));

    uint256 bounds = quests.length;
    for (uint256 i; i < bounds; ++i) {
      _addQuest(quests[i], minimumRequirements[i]);
    }
    _numTotalQuests += uint16(quests.length);
    emit AddQuests(quests, minimumRequirements);
  }

  function editQuests(
    QuestInput[] calldata quests,
    MinimumRequirement[3][] calldata minimumRequirements
  ) external onlyOwner {
    for (uint256 i = 0; i < quests.length; ++i) {
      _editQuest(quests[i], minimumRequirements[i]);
    }
    emit EditQuests(quests, minimumRequirements);
  }

  function removeQuest(uint256 questId) external onlyOwner {
    require(questId != 0, InvalidQuestId());
    require(_questExists(questId), QuestDoesntExist());

    delete _allFixedQuests[questId];
    emit RemoveQuest(questId);
    --_numTotalQuests;
  }

  receive() external payable {}

  // solhint-disable-next-line no-empty-blocks
  function _authorizeUpgrade(address newImplementation) internal override onlyOwner {}
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):