S Price: $0.714979 (-6.22%)

Contract

0xf042AbbA98A3c5ABC3B30bdDdea29d95d778A318

Overview

S Balance

Sonic LogoSonic LogoSonic Logo0 S

S Value

$0.00

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To

There are no matching entries

Please try again later

Parent Transaction Hash Block From To
View All Internal Transactions
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
FundsFacet

Compiler Version
v0.8.28+commit.7893614a

Optimization Enabled:
Yes with 10000 runs

Other Settings:
cancun EvmVersion
File 1 of 45 : FundsFacet.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import {ERC1155SupplyUpgradeable} from
    "@openzeppelin-upgradeable/contracts/token/ERC1155/extensions/ERC1155SupplyUpgradeable.sol";
import {Address} from "@openzeppelin/contracts/utils/Address.sol";
import {SafeCast} from "@openzeppelin/contracts/utils/math/SafeCast.sol";
import {SafeTransferLib, ERC20} from "@solmate/utils/SafeTransferLib.sol";
import {FixedPointMathLib} from "@solady/utils/FixedPointMathLib.sol";

import {IStrategyBase, Reward} from "src/interfaces/IStrategyBase.sol";
import {IFundsFacet, StrategyArgs} from "src/interfaces/IFundsFacet.sol";
import {ISwapper, SwapArgs} from "src/interfaces/ISwapper.sol";

import {RoleCheck} from "src/abstract/RoleCheck.sol";
import {PausableCheck} from "src/abstract/PausableCheck.sol";

import {LibFunds} from "src/libraries/LibFunds.sol";
import {LibClients} from "src/libraries/LibClients.sol";
import {LibManagement} from "src/libraries/LibManagement.sol";
import {LibRoles} from "src/libraries/LibRoles.sol";
import {LibEvents} from "src/libraries/LibEvents.sol";
import {LibErrors} from "src/libraries/LibErrors.sol";

/**
 * @title FundsFacet
 * @dev Contract that manages funds, including deposits, withdrawals, reallocation, compounding etc.
 */
contract FundsFacet is RoleCheck, PausableCheck, ERC1155SupplyUpgradeable, IFundsFacet {
    using Address for address;
    using SafeTransferLib for ERC20;
    using FixedPointMathLib for uint256;

    uint256 constant YIELD_PROJECT_ID = 0;
    uint256 constant WITHDRAW_MARGIN = 10;

    ISwapper private immutable _swapper;

    /**
     * @dev Initializes the contract with the given swapper.
     * @param swapper_ The address of the swapper contract.
     */
    constructor(ISwapper swapper_) {
        _swapper = swapper_;
    }

    /// @inheritdoc IFundsFacet
    function totalSupply() public view override(ERC1155SupplyUpgradeable, IFundsFacet) returns (uint256) {
        return super.totalSupply();
    }

    /// @inheritdoc IFundsFacet
    function totalSupply(uint256 id) public view override(ERC1155SupplyUpgradeable, IFundsFacet) returns (uint256) {
        return super.totalSupply(id);
    }

    /// @inheritdoc IFundsFacet
    function lastTotalAssets() external view returns (uint256) {
        LibFunds.FundsStorage storage sF = LibFunds._getFundsStorage();
        return sF.lastTotalAssets;
    }

    /// @inheritdoc IFundsFacet
    function lastTotalAssetsTimestamp() external view returns (uint64) {
        LibFunds.FundsStorage storage sF = LibFunds._getFundsStorage();
        return sF.lastTotalAssetsTimestamp;
    }

    /// @inheritdoc IFundsFacet
    function lastTotalAssetsUpdateInterval() external view returns (uint64) {
        LibFunds.FundsStorage storage sF = LibFunds._getFundsStorage();
        return sF.lastTotalAssetsUpdateInterval;
    }

    /// @inheritdoc IFundsFacet
    function setLastTotalAssetsUpdateInterval(uint64 interval) external notPaused onlyRole(LibRoles.FUNDS_OPERATOR) {
        LibFunds.FundsStorage storage sF = LibFunds._getFundsStorage();
        sF.lastTotalAssetsUpdateInterval = interval;
        emit LibEvents.UpdateLastTotalAssetsUpdateInterval(interval);
    }

    /// @inheritdoc IFundsFacet
    function underlyingBalance() external view returns (uint256) {
        LibFunds.FundsStorage storage sF = LibFunds._getFundsStorage();
        return sF.underlyingBalance;
    }

    /// @inheritdoc IFundsFacet
    function underlyingAsset() external view returns (address) {
        LibFunds.FundsStorage storage sF = LibFunds._getFundsStorage();
        return address(sF.underlyingAsset);
    }

    /// @inheritdoc IFundsFacet
    function yieldExtractor() external view returns (address) {
        LibFunds.FundsStorage storage sF = LibFunds._getFundsStorage();
        return sF.yieldExtractor;
    }

    /// @inheritdoc IFundsFacet
    function swapper() external view returns (address) {
        return address(_swapper);
    }

    /// @inheritdoc IFundsFacet
    function totalAssets() public view returns (uint256 assets) {
        LibFunds.FundsStorage storage sF = LibFunds._getFundsStorage();
        LibManagement.ManagementStorage storage sM = LibManagement._getManagementStorage();

        assets = sF.underlyingBalance;
        for (uint256 i; i < sM.activeStrategies.length; ++i) {
            assets += LibManagement._strategyAssets(i);
        }
    }

    /// @inheritdoc IFundsFacet
    function strategyAssets(uint256 index) external view returns (uint256) {
        return LibManagement._strategyAssets(index);
    }

    /// @inheritdoc IFundsFacet
    function strategyRewards(uint256 index) external view returns (Reward[] memory rewards) {
        require(tx.origin == address(0), LibErrors.OnlyView());
        LibManagement.ManagementStorage storage sM = LibManagement._getManagementStorage();
        rewards = IStrategyBase(sM.activeStrategies[index].adapter).viewRewards(
            address(this), sM.activeStrategies[index].supplement
        );
    }

    /// @inheritdoc IFundsFacet
    function deposit(uint256 assets, uint256 projectId, address receiver) external notPaused returns (uint256 shares) {
        require(LibClients._isProjectActive(projectId), LibErrors.ProjectInactive());

        LibFunds.FundsStorage storage sF = LibFunds._getFundsStorage();
        uint256 newTotalAssets;
        if (sF.lastTotalAssetsTimestamp + sF.lastTotalAssetsUpdateInterval < block.timestamp) {
            newTotalAssets = _mintFee(sF);
            sF.lastTotalAssetsTimestamp = SafeCast.toUint64(block.timestamp);
        } else {
            newTotalAssets = sF.lastTotalAssets;
        }
        LibManagement.ManagementStorage storage sM = LibManagement._getManagementStorage();

        shares = _convertToShares(assets, totalSupply(), newTotalAssets);

        sF.underlyingAsset.safeTransferFrom(msg.sender, address(this), assets);
        _mint(receiver, projectId, shares, "");
        bool success;
        for (uint256 i; i < sM.depositQueue.length; i++) {
            (success,) = sM.activeStrategies[sM.depositQueue[i]].adapter.delegatecall(
                abi.encodeWithSelector(
                    IStrategyBase.deposit.selector, assets, sM.activeStrategies[sM.depositQueue[i]].supplement
                )
            );
            if (success) {
                break;
            }
        }
        if (!success) {
            sF.underlyingBalance += SafeCast.toUint192(assets);
        }
        _updateLastTotalAssets(sF, newTotalAssets + assets);

        emit LibEvents.Deposit(projectId, msg.sender, receiver, assets, shares);
    }

    /// @inheritdoc IFundsFacet
    function redeem(uint256 shares, uint256 projectId, address receiver) external notPaused returns (uint256 assets) {
        LibFunds.FundsStorage storage sF = LibFunds._getFundsStorage();
        LibManagement.ManagementStorage storage sM = LibManagement._getManagementStorage();

        uint256 newTotalAssets = _mintFee(sF);

        assets = _convertToAssets(shares, totalSupply(), newTotalAssets);
        require(assets > WITHDRAW_MARGIN, LibErrors.MinRedeem());

        _updateLastTotalAssets(sF, newTotalAssets.zeroFloorSub(assets));

        uint256 withdrawn;
        for (uint256 i; i < sM.withdrawQueue.length; i++) {
            uint256 toWithdraw = assets - withdrawn;
            if (toWithdraw <= WITHDRAW_MARGIN) break;
            uint256 assetBalance = IStrategyBase(sM.activeStrategies[sM.withdrawQueue[i]].adapter).assetBalance(
                address(this), sM.activeStrategies[sM.withdrawQueue[i]].supplement
            );
            if (assetBalance == 0) continue;
            uint256 availableToWithdraw = FixedPointMathLib.min(assetBalance, toWithdraw);
            (bool success, bytes memory result) = sM.activeStrategies[sM.withdrawQueue[i]].adapter.delegatecall(
                abi.encodeWithSelector(
                    IStrategyBase.withdraw.selector,
                    availableToWithdraw,
                    sM.activeStrategies[sM.withdrawQueue[i]].supplement
                )
            );
            if (success) {
                withdrawn += SafeCast.toUint192(abi.decode(result, (uint256)));
            }
        }
        sF.underlyingBalance += SafeCast.toUint192(withdrawn);
        uint256 lack = assets.zeroFloorSub(withdrawn);
        // if withdrawal is almost covered by strategies (except WITHDRAW_MARGIN difference) - use what is withdrawn
        // otherwise what is calculated in _convertToAssets
        uint256 toReturn = lack > WITHDRAW_MARGIN ? assets : assets - lack;
        // ensure we have enough funds in vault
        require(sF.underlyingBalance + WITHDRAW_MARGIN >= toReturn, LibErrors.NotEnoughInternalFunds());
        // normalize for the last withdrawal - we already know that they are close together
        toReturn = FixedPointMathLib.min(sF.underlyingBalance, toReturn);
        sF.underlyingBalance -= SafeCast.toUint192(toReturn);
        sF.underlyingAsset.safeTransfer(receiver, toReturn);
        _burn(msg.sender, projectId, shares);

        emit LibEvents.Redeem(projectId, msg.sender, receiver, toReturn, shares);
    }

    /// @inheritdoc IFundsFacet
    function migratePosition(uint256 fromProjectId, uint256 toProjectId, uint256 amount) external notPaused {
        require(
            LibClients._isProjectActive(fromProjectId) && LibClients._isProjectActive(toProjectId)
                && LibClients._sameClient(fromProjectId, toProjectId),
            LibErrors.PositionMigrationForbidden()
        );
        _accrueFee();
        _burn(msg.sender, fromProjectId, amount);
        _mint(msg.sender, toProjectId, amount, "");
        emit LibEvents.PositionMigrated(msg.sender, fromProjectId, toProjectId, amount);
    }

    /// @inheritdoc IFundsFacet
    function managedDeposit(StrategyArgs calldata strategyArgs) public onlyRole(LibRoles.FUNDS_OPERATOR) notPaused {
        LibManagement.ManagementStorage storage sM = LibManagement._getManagementStorage();
        LibFunds.FundsStorage storage sF = LibFunds._getFundsStorage();
        _managedDeposit(sM, sF, strategyArgs);
    }

    /// @inheritdoc IFundsFacet
    function managedWithdraw(StrategyArgs calldata strategyArgs) public onlyRole(LibRoles.FUNDS_OPERATOR) notPaused {
        LibManagement.ManagementStorage storage sM = LibManagement._getManagementStorage();
        LibFunds.FundsStorage storage sF = LibFunds._getFundsStorage();
        _managedWithdraw(sM, sF, strategyArgs);
    }

    /// @inheritdoc IFundsFacet
    function reallocate(StrategyArgs[] calldata withdrawals, StrategyArgs[] calldata deposits)
        external
        onlyRole(LibRoles.FUNDS_OPERATOR)
        notPaused
    {
        LibManagement.ManagementStorage storage sM = LibManagement._getManagementStorage();
        LibFunds.FundsStorage storage sF = LibFunds._getFundsStorage();
        for (uint256 i; i < withdrawals.length; i++) {
            _managedWithdraw(sM, sF, withdrawals[i]);
        }
        for (uint256 i; i < deposits.length; i++) {
            _managedDeposit(sM, sF, deposits[i]);
        }
    }

    /// @inheritdoc IFundsFacet
    function swapRewards(SwapArgs[] memory swapArgs)
        external
        notPaused
        onlyRole(LibRoles.FUNDS_OPERATOR)
        returns (uint256 compounded)
    {
        LibFunds.FundsStorage storage sF = LibFunds._getFundsStorage();
        address _underlyingAsset = address(sF.underlyingAsset);
        for (uint256 i; i < swapArgs.length; i++) {
            require(swapArgs[i].tokenIn != _underlyingAsset, LibErrors.CompoundUnderlyingForbidden());
            uint256 tokenInAmount = ERC20(swapArgs[i].tokenIn).balanceOf(address(this));
            ERC20(swapArgs[i].tokenIn).safeTransfer(address(_swapper), tokenInAmount);
        }
        compounded = _swapper.swap(swapArgs, _underlyingAsset);
        sF.underlyingBalance += SafeCast.toUint192(compounded);
        _accrueFee();
        emit LibEvents.Compounded(compounded);
    }

    /// @inheritdoc IFundsFacet
    function accrueFee() public notPaused onlyRole(LibRoles.FUNDS_OPERATOR) {
        _accrueFee();
    }

    /**
     * @dev Internal function to accrue fees.
     */
    function _accrueFee() internal {
        LibFunds.FundsStorage storage sF = LibFunds._getFundsStorage();
        uint256 newTotalAssets = _mintFee(sF);
        _updateLastTotalAssets(sF, newTotalAssets);
        sF.lastTotalAssetsTimestamp = SafeCast.toUint64(block.timestamp);
    }

    /// @inheritdoc IFundsFacet
    function claimStrategyRewards(uint256 index) external notPaused onlyRole(LibRoles.FUNDS_OPERATOR) {
        LibManagement.ManagementStorage storage sM = LibManagement._getManagementStorage();
        sM.activeStrategies[index].adapter.functionDelegateCall(
            abi.encodeWithSelector(IStrategyBase.claimRewards.selector, sM.activeStrategies[index].supplement)
        );
    }

    /**
     * @dev Internal function to deposit assets into a strategy.
     * @param sM The management storage.
     * @param sF The funds storage.
     * @param strategyArgs The strategy arguments.
     */
    function _managedDeposit(
        LibManagement.ManagementStorage storage sM,
        LibFunds.FundsStorage storage sF,
        StrategyArgs calldata strategyArgs
    ) internal {
        sM.activeStrategies[strategyArgs.index].adapter.functionDelegateCall(
            abi.encodeWithSelector(
                IStrategyBase.deposit.selector, strategyArgs.amount, sM.activeStrategies[strategyArgs.index].supplement
            )
        );
        sF.underlyingBalance -= SafeCast.toUint192(strategyArgs.amount);
        emit LibEvents.ManagedDeposit(sM.activeStrategies[strategyArgs.index].name, strategyArgs.amount);
    }

    /**
     * @dev Internal function to withdraw assets from a strategy.
     * @param sM The management storage.
     * @param sF The funds storage.
     * @param strategyArgs The strategy arguments.
     */
    function _managedWithdraw(
        LibManagement.ManagementStorage storage sM,
        LibFunds.FundsStorage storage sF,
        StrategyArgs calldata strategyArgs
    ) internal {
        bytes memory payload = strategyArgs.amount == type(uint256).max
            ? abi.encodeWithSelector(IStrategyBase.withdrawAll.selector, sM.activeStrategies[strategyArgs.index].supplement)
            : abi.encodeWithSelector(
                IStrategyBase.withdraw.selector, strategyArgs.amount, sM.activeStrategies[strategyArgs.index].supplement
            );
        bytes memory result = sM.activeStrategies[strategyArgs.index].adapter.functionDelegateCall(payload);
        uint256 withdrawn = abi.decode(result, (uint256));
        sF.underlyingBalance += SafeCast.toUint192(withdrawn);
        emit LibEvents.ManagedWithdraw(sM.activeStrategies[strategyArgs.index].name, withdrawn);
    }

    /**
     * @dev Internal function to mint fees.
     * @param sF The funds storage.
     * @return newTotalAssets The new total assets value.
     */
    function _mintFee(LibFunds.FundsStorage storage sF) internal returns (uint256 newTotalAssets) {
        newTotalAssets = totalAssets();

        uint256 totalInterest = newTotalAssets.zeroFloorSub(sF.lastTotalAssets);
        if (totalInterest > 0) {
            uint256 feeShares = _convertToShares(totalInterest, totalSupply(), sF.lastTotalAssets);
            if (feeShares > 0) {
                _mint(sF.yieldExtractor, YIELD_PROJECT_ID, feeShares, "");
            }
            emit LibEvents.AccrueInterest(newTotalAssets, totalInterest, feeShares);
        }
    }

    /**
     * @dev Internal function to update the last total assets value.
     * @param sF The funds storage.
     * @param updatedTotalAssets The updated total assets value.
     */
    function _updateLastTotalAssets(LibFunds.FundsStorage storage sF, uint256 updatedTotalAssets) internal {
        sF.lastTotalAssets = SafeCast.toUint192(updatedTotalAssets);
        emit LibEvents.UpdateLastTotalAssets(updatedTotalAssets);
    }

    /**
     * @dev Internal function to convert assets to shares.
     * @param assets The amount of assets.
     * @param newTotalSupply The new total supply.
     * @param newTotalAssets The new total assets.
     * @return The amount of shares.
     */
    function _convertToShares(uint256 assets, uint256 newTotalSupply, uint256 newTotalAssets)
        internal
        pure
        returns (uint256)
    {
        return newTotalSupply == 0 ? assets : assets.mulDiv(newTotalSupply, newTotalAssets);
    }

    /**
     * @dev Internal function to convert shares to assets.
     * @param shares The amount of shares.
     * @param newTotalSupply The new total supply.
     * @param newTotalAssets The new total assets.
     * @return The amount of assets.
     */
    function _convertToAssets(uint256 shares, uint256 newTotalSupply, uint256 newTotalAssets)
        internal
        pure
        returns (uint256)
    {
        return shares.mulDiv(newTotalAssets, newTotalSupply);
    }
}

File 2 of 45 : AccessControlUpgradeable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/AccessControl.sol)

pragma solidity ^0.8.20;

import {IAccessControl} from "@openzeppelin/contracts/access/IAccessControl.sol";
import {ContextUpgradeable} from "../utils/ContextUpgradeable.sol";
import {ERC165Upgradeable} from "../utils/introspection/ERC165Upgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Contract module that allows children to implement role-based access
 * control mechanisms. This is a lightweight version that doesn't allow enumerating role
 * members except through off-chain means by accessing the contract event logs. Some
 * applications may benefit from on-chain enumerability, for those cases see
 * {AccessControlEnumerable}.
 *
 * Roles are referred to by their `bytes32` identifier. These should be exposed
 * in the external API and be unique. The best way to achieve this is by
 * using `public constant` hash digests:
 *
 * ```solidity
 * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
 * ```
 *
 * Roles can be used to represent a set of permissions. To restrict access to a
 * function call, use {hasRole}:
 *
 * ```solidity
 * function foo() public {
 *     require(hasRole(MY_ROLE, msg.sender));
 *     ...
 * }
 * ```
 *
 * Roles can be granted and revoked dynamically via the {grantRole} and
 * {revokeRole} functions. Each role has an associated admin role, and only
 * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
 *
 * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
 * that only accounts with this role will be able to grant or revoke other
 * roles. More complex role relationships can be created by using
 * {_setRoleAdmin}.
 *
 * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
 * grant and revoke this role. Extra precautions should be taken to secure
 * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
 * to enforce additional security measures for this role.
 */
abstract contract AccessControlUpgradeable is Initializable, ContextUpgradeable, IAccessControl, ERC165Upgradeable {
    struct RoleData {
        mapping(address account => bool) hasRole;
        bytes32 adminRole;
    }

    bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;


    /// @custom:storage-location erc7201:openzeppelin.storage.AccessControl
    struct AccessControlStorage {
        mapping(bytes32 role => RoleData) _roles;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.AccessControl")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant AccessControlStorageLocation = 0x02dd7bc7dec4dceedda775e58dd541e08a116c6c53815c0bd028192f7b626800;

    function _getAccessControlStorage() private pure returns (AccessControlStorage storage $) {
        assembly {
            $.slot := AccessControlStorageLocation
        }
    }

    /**
     * @dev Modifier that checks that an account has a specific role. Reverts
     * with an {AccessControlUnauthorizedAccount} error including the required role.
     */
    modifier onlyRole(bytes32 role) {
        _checkRole(role);
        _;
    }

    function __AccessControl_init() internal onlyInitializing {
    }

    function __AccessControl_init_unchained() internal onlyInitializing {
    }
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
    }

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) public view virtual returns (bool) {
        AccessControlStorage storage $ = _getAccessControlStorage();
        return $._roles[role].hasRole[account];
    }

    /**
     * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `_msgSender()`
     * is missing `role`. Overriding this function changes the behavior of the {onlyRole} modifier.
     */
    function _checkRole(bytes32 role) internal view virtual {
        _checkRole(role, _msgSender());
    }

    /**
     * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `account`
     * is missing `role`.
     */
    function _checkRole(bytes32 role, address account) internal view virtual {
        if (!hasRole(role, account)) {
            revert AccessControlUnauthorizedAccount(account, role);
        }
    }

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) public view virtual returns (bytes32) {
        AccessControlStorage storage $ = _getAccessControlStorage();
        return $._roles[role].adminRole;
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleGranted} event.
     */
    function grantRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
        _grantRole(role, account);
    }

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleRevoked} event.
     */
    function revokeRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
        _revokeRole(role, account);
    }

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been revoked `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `callerConfirmation`.
     *
     * May emit a {RoleRevoked} event.
     */
    function renounceRole(bytes32 role, address callerConfirmation) public virtual {
        if (callerConfirmation != _msgSender()) {
            revert AccessControlBadConfirmation();
        }

        _revokeRole(role, callerConfirmation);
    }

    /**
     * @dev Sets `adminRole` as ``role``'s admin role.
     *
     * Emits a {RoleAdminChanged} event.
     */
    function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
        AccessControlStorage storage $ = _getAccessControlStorage();
        bytes32 previousAdminRole = getRoleAdmin(role);
        $._roles[role].adminRole = adminRole;
        emit RoleAdminChanged(role, previousAdminRole, adminRole);
    }

    /**
     * @dev Attempts to grant `role` to `account` and returns a boolean indicating if `role` was granted.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleGranted} event.
     */
    function _grantRole(bytes32 role, address account) internal virtual returns (bool) {
        AccessControlStorage storage $ = _getAccessControlStorage();
        if (!hasRole(role, account)) {
            $._roles[role].hasRole[account] = true;
            emit RoleGranted(role, account, _msgSender());
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Attempts to revoke `role` to `account` and returns a boolean indicating if `role` was revoked.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleRevoked} event.
     */
    function _revokeRole(bytes32 role, address account) internal virtual returns (bool) {
        AccessControlStorage storage $ = _getAccessControlStorage();
        if (hasRole(role, account)) {
            $._roles[role].hasRole[account] = false;
            emit RoleRevoked(role, account, _msgSender());
            return true;
        } else {
            return false;
        }
    }
}

File 3 of 45 : AccessControlEnumerableUpgradeable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (access/extensions/AccessControlEnumerable.sol)

pragma solidity ^0.8.20;

import {IAccessControlEnumerable} from "@openzeppelin/contracts/access/extensions/IAccessControlEnumerable.sol";
import {AccessControlUpgradeable} from "../AccessControlUpgradeable.sol";
import {EnumerableSet} from "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";
import {Initializable} from "../../proxy/utils/Initializable.sol";

/**
 * @dev Extension of {AccessControl} that allows enumerating the members of each role.
 */
abstract contract AccessControlEnumerableUpgradeable is Initializable, IAccessControlEnumerable, AccessControlUpgradeable {
    using EnumerableSet for EnumerableSet.AddressSet;

    /// @custom:storage-location erc7201:openzeppelin.storage.AccessControlEnumerable
    struct AccessControlEnumerableStorage {
        mapping(bytes32 role => EnumerableSet.AddressSet) _roleMembers;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.AccessControlEnumerable")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant AccessControlEnumerableStorageLocation = 0xc1f6fe24621ce81ec5827caf0253cadb74709b061630e6b55e82371705932000;

    function _getAccessControlEnumerableStorage() private pure returns (AccessControlEnumerableStorage storage $) {
        assembly {
            $.slot := AccessControlEnumerableStorageLocation
        }
    }

    function __AccessControlEnumerable_init() internal onlyInitializing {
    }

    function __AccessControlEnumerable_init_unchained() internal onlyInitializing {
    }
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IAccessControlEnumerable).interfaceId || super.supportsInterface(interfaceId);
    }

    /**
     * @dev Returns one of the accounts that have `role`. `index` must be a
     * value between 0 and {getRoleMemberCount}, non-inclusive.
     *
     * Role bearers are not sorted in any particular way, and their ordering may
     * change at any point.
     *
     * WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure
     * you perform all queries on the same block. See the following
     * https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post]
     * for more information.
     */
    function getRoleMember(bytes32 role, uint256 index) public view virtual returns (address) {
        AccessControlEnumerableStorage storage $ = _getAccessControlEnumerableStorage();
        return $._roleMembers[role].at(index);
    }

    /**
     * @dev Returns the number of accounts that have `role`. Can be used
     * together with {getRoleMember} to enumerate all bearers of a role.
     */
    function getRoleMemberCount(bytes32 role) public view virtual returns (uint256) {
        AccessControlEnumerableStorage storage $ = _getAccessControlEnumerableStorage();
        return $._roleMembers[role].length();
    }

    /**
     * @dev Return all accounts that have `role`
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function getRoleMembers(bytes32 role) public view virtual returns (address[] memory) {
        AccessControlEnumerableStorage storage $ = _getAccessControlEnumerableStorage();
        return $._roleMembers[role].values();
    }

    /**
     * @dev Overload {AccessControl-_grantRole} to track enumerable memberships
     */
    function _grantRole(bytes32 role, address account) internal virtual override returns (bool) {
        AccessControlEnumerableStorage storage $ = _getAccessControlEnumerableStorage();
        bool granted = super._grantRole(role, account);
        if (granted) {
            $._roleMembers[role].add(account);
        }
        return granted;
    }

    /**
     * @dev Overload {AccessControl-_revokeRole} to track enumerable memberships
     */
    function _revokeRole(bytes32 role, address account) internal virtual override returns (bool) {
        AccessControlEnumerableStorage storage $ = _getAccessControlEnumerableStorage();
        bool revoked = super._revokeRole(role, account);
        if (revoked) {
            $._roleMembers[role].remove(account);
        }
        return revoked;
    }
}

File 4 of 45 : Initializable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol)

pragma solidity ^0.8.20;

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
 * case an upgrade adds a module that needs to be initialized.
 *
 * For example:
 *
 * [.hljs-theme-light.nopadding]
 * ```solidity
 * contract MyToken is ERC20Upgradeable {
 *     function initialize() initializer public {
 *         __ERC20_init("MyToken", "MTK");
 *     }
 * }
 *
 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
 *     function initializeV2() reinitializer(2) public {
 *         __ERC20Permit_init("MyToken");
 *     }
 * }
 * ```
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 *
 * [CAUTION]
 * ====
 * Avoid leaving a contract uninitialized.
 *
 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * /// @custom:oz-upgrades-unsafe-allow constructor
 * constructor() {
 *     _disableInitializers();
 * }
 * ```
 * ====
 */
abstract contract Initializable {
    /**
     * @dev Storage of the initializable contract.
     *
     * It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions
     * when using with upgradeable contracts.
     *
     * @custom:storage-location erc7201:openzeppelin.storage.Initializable
     */
    struct InitializableStorage {
        /**
         * @dev Indicates that the contract has been initialized.
         */
        uint64 _initialized;
        /**
         * @dev Indicates that the contract is in the process of being initialized.
         */
        bool _initializing;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00;

    /**
     * @dev The contract is already initialized.
     */
    error InvalidInitialization();

    /**
     * @dev The contract is not initializing.
     */
    error NotInitializing();

    /**
     * @dev Triggered when the contract has been initialized or reinitialized.
     */
    event Initialized(uint64 version);

    /**
     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
     * `onlyInitializing` functions can be used to initialize parent contracts.
     *
     * Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any
     * number of times. This behavior in the constructor can be useful during testing and is not expected to be used in
     * production.
     *
     * Emits an {Initialized} event.
     */
    modifier initializer() {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        // Cache values to avoid duplicated sloads
        bool isTopLevelCall = !$._initializing;
        uint64 initialized = $._initialized;

        // Allowed calls:
        // - initialSetup: the contract is not in the initializing state and no previous version was
        //                 initialized
        // - construction: the contract is initialized at version 1 (no reininitialization) and the
        //                 current contract is just being deployed
        bool initialSetup = initialized == 0 && isTopLevelCall;
        bool construction = initialized == 1 && address(this).code.length == 0;

        if (!initialSetup && !construction) {
            revert InvalidInitialization();
        }
        $._initialized = 1;
        if (isTopLevelCall) {
            $._initializing = true;
        }
        _;
        if (isTopLevelCall) {
            $._initializing = false;
            emit Initialized(1);
        }
    }

    /**
     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
     * used to initialize parent contracts.
     *
     * A reinitializer may be used after the original initialization step. This is essential to configure modules that
     * are added through upgrades and that require initialization.
     *
     * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
     * cannot be nested. If one is invoked in the context of another, execution will revert.
     *
     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
     * a contract, executing them in the right order is up to the developer or operator.
     *
     * WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization.
     *
     * Emits an {Initialized} event.
     */
    modifier reinitializer(uint64 version) {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        if ($._initializing || $._initialized >= version) {
            revert InvalidInitialization();
        }
        $._initialized = version;
        $._initializing = true;
        _;
        $._initializing = false;
        emit Initialized(version);
    }

    /**
     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
     * {initializer} and {reinitializer} modifiers, directly or indirectly.
     */
    modifier onlyInitializing() {
        _checkInitializing();
        _;
    }

    /**
     * @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}.
     */
    function _checkInitializing() internal view virtual {
        if (!_isInitializing()) {
            revert NotInitializing();
        }
    }

    /**
     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
     * through proxies.
     *
     * Emits an {Initialized} event the first time it is successfully executed.
     */
    function _disableInitializers() internal virtual {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        if ($._initializing) {
            revert InvalidInitialization();
        }
        if ($._initialized != type(uint64).max) {
            $._initialized = type(uint64).max;
            emit Initialized(type(uint64).max);
        }
    }

    /**
     * @dev Returns the highest version that has been initialized. See {reinitializer}.
     */
    function _getInitializedVersion() internal view returns (uint64) {
        return _getInitializableStorage()._initialized;
    }

    /**
     * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
     */
    function _isInitializing() internal view returns (bool) {
        return _getInitializableStorage()._initializing;
    }

    /**
     * @dev Returns a pointer to the storage namespace.
     */
    // solhint-disable-next-line var-name-mixedcase
    function _getInitializableStorage() private pure returns (InitializableStorage storage $) {
        assembly {
            $.slot := INITIALIZABLE_STORAGE
        }
    }
}

File 5 of 45 : ERC1155Upgradeable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC1155/ERC1155.sol)

pragma solidity ^0.8.20;

import {IERC1155} from "@openzeppelin/contracts/token/ERC1155/IERC1155.sol";
import {IERC1155MetadataURI} from "@openzeppelin/contracts/token/ERC1155/extensions/IERC1155MetadataURI.sol";
import {ERC1155Utils} from "@openzeppelin/contracts/token/ERC1155/utils/ERC1155Utils.sol";
import {ContextUpgradeable} from "../../utils/ContextUpgradeable.sol";
import {IERC165} from "@openzeppelin/contracts/utils/introspection/IERC165.sol";
import {ERC165Upgradeable} from "../../utils/introspection/ERC165Upgradeable.sol";
import {Arrays} from "@openzeppelin/contracts/utils/Arrays.sol";
import {IERC1155Errors} from "@openzeppelin/contracts/interfaces/draft-IERC6093.sol";
import {Initializable} from "../../proxy/utils/Initializable.sol";

/**
 * @dev Implementation of the basic standard multi-token.
 * See https://eips.ethereum.org/EIPS/eip-1155
 * Originally based on code by Enjin: https://github.com/enjin/erc-1155
 */
abstract contract ERC1155Upgradeable is Initializable, ContextUpgradeable, ERC165Upgradeable, IERC1155, IERC1155MetadataURI, IERC1155Errors {
    using Arrays for uint256[];
    using Arrays for address[];

    /// @custom:storage-location erc7201:openzeppelin.storage.ERC1155
    struct ERC1155Storage {
        mapping(uint256 id => mapping(address account => uint256)) _balances;

        mapping(address account => mapping(address operator => bool)) _operatorApprovals;

        // Used as the URI for all token types by relying on ID substitution, e.g. https://token-cdn-domain/{id}.json
        string _uri;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.ERC1155")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant ERC1155StorageLocation = 0x88be536d5240c274a3b1d3a1be54482fd9caa294f08c62a7cde569f49a3c4500;

    function _getERC1155Storage() private pure returns (ERC1155Storage storage $) {
        assembly {
            $.slot := ERC1155StorageLocation
        }
    }

    /**
     * @dev See {_setURI}.
     */
    function __ERC1155_init(string memory uri_) internal onlyInitializing {
        __ERC1155_init_unchained(uri_);
    }

    function __ERC1155_init_unchained(string memory uri_) internal onlyInitializing {
        _setURI(uri_);
    }

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165Upgradeable, IERC165) returns (bool) {
        return
            interfaceId == type(IERC1155).interfaceId ||
            interfaceId == type(IERC1155MetadataURI).interfaceId ||
            super.supportsInterface(interfaceId);
    }

    /**
     * @dev See {IERC1155MetadataURI-uri}.
     *
     * This implementation returns the same URI for *all* token types. It relies
     * on the token type ID substitution mechanism
     * https://eips.ethereum.org/EIPS/eip-1155#metadata[defined in the ERC].
     *
     * Clients calling this function must replace the `\{id\}` substring with the
     * actual token type ID.
     */
    function uri(uint256 /* id */) public view virtual returns (string memory) {
        ERC1155Storage storage $ = _getERC1155Storage();
        return $._uri;
    }

    /**
     * @dev See {IERC1155-balanceOf}.
     */
    function balanceOf(address account, uint256 id) public view virtual returns (uint256) {
        ERC1155Storage storage $ = _getERC1155Storage();
        return $._balances[id][account];
    }

    /**
     * @dev See {IERC1155-balanceOfBatch}.
     *
     * Requirements:
     *
     * - `accounts` and `ids` must have the same length.
     */
    function balanceOfBatch(
        address[] memory accounts,
        uint256[] memory ids
    ) public view virtual returns (uint256[] memory) {
        if (accounts.length != ids.length) {
            revert ERC1155InvalidArrayLength(ids.length, accounts.length);
        }

        uint256[] memory batchBalances = new uint256[](accounts.length);

        for (uint256 i = 0; i < accounts.length; ++i) {
            batchBalances[i] = balanceOf(accounts.unsafeMemoryAccess(i), ids.unsafeMemoryAccess(i));
        }

        return batchBalances;
    }

    /**
     * @dev See {IERC1155-setApprovalForAll}.
     */
    function setApprovalForAll(address operator, bool approved) public virtual {
        _setApprovalForAll(_msgSender(), operator, approved);
    }

    /**
     * @dev See {IERC1155-isApprovedForAll}.
     */
    function isApprovedForAll(address account, address operator) public view virtual returns (bool) {
        ERC1155Storage storage $ = _getERC1155Storage();
        return $._operatorApprovals[account][operator];
    }

    /**
     * @dev See {IERC1155-safeTransferFrom}.
     */
    function safeTransferFrom(address from, address to, uint256 id, uint256 value, bytes memory data) public virtual {
        address sender = _msgSender();
        if (from != sender && !isApprovedForAll(from, sender)) {
            revert ERC1155MissingApprovalForAll(sender, from);
        }
        _safeTransferFrom(from, to, id, value, data);
    }

    /**
     * @dev See {IERC1155-safeBatchTransferFrom}.
     */
    function safeBatchTransferFrom(
        address from,
        address to,
        uint256[] memory ids,
        uint256[] memory values,
        bytes memory data
    ) public virtual {
        address sender = _msgSender();
        if (from != sender && !isApprovedForAll(from, sender)) {
            revert ERC1155MissingApprovalForAll(sender, from);
        }
        _safeBatchTransferFrom(from, to, ids, values, data);
    }

    /**
     * @dev Transfers a `value` amount of tokens of type `id` from `from` to `to`. Will mint (or burn) if `from`
     * (or `to`) is the zero address.
     *
     * Emits a {TransferSingle} event if the arrays contain one element, and {TransferBatch} otherwise.
     *
     * Requirements:
     *
     * - If `to` refers to a smart contract, it must implement either {IERC1155Receiver-onERC1155Received}
     *   or {IERC1155Receiver-onERC1155BatchReceived} and return the acceptance magic value.
     * - `ids` and `values` must have the same length.
     *
     * NOTE: The ERC-1155 acceptance check is not performed in this function. See {_updateWithAcceptanceCheck} instead.
     */
    function _update(address from, address to, uint256[] memory ids, uint256[] memory values) internal virtual {
        ERC1155Storage storage $ = _getERC1155Storage();
        if (ids.length != values.length) {
            revert ERC1155InvalidArrayLength(ids.length, values.length);
        }

        address operator = _msgSender();

        for (uint256 i = 0; i < ids.length; ++i) {
            uint256 id = ids.unsafeMemoryAccess(i);
            uint256 value = values.unsafeMemoryAccess(i);

            if (from != address(0)) {
                uint256 fromBalance = $._balances[id][from];
                if (fromBalance < value) {
                    revert ERC1155InsufficientBalance(from, fromBalance, value, id);
                }
                unchecked {
                    // Overflow not possible: value <= fromBalance
                    $._balances[id][from] = fromBalance - value;
                }
            }

            if (to != address(0)) {
                $._balances[id][to] += value;
            }
        }

        if (ids.length == 1) {
            uint256 id = ids.unsafeMemoryAccess(0);
            uint256 value = values.unsafeMemoryAccess(0);
            emit TransferSingle(operator, from, to, id, value);
        } else {
            emit TransferBatch(operator, from, to, ids, values);
        }
    }

    /**
     * @dev Version of {_update} that performs the token acceptance check by calling
     * {IERC1155Receiver-onERC1155Received} or {IERC1155Receiver-onERC1155BatchReceived} on the receiver address if it
     * contains code (eg. is a smart contract at the moment of execution).
     *
     * IMPORTANT: Overriding this function is discouraged because it poses a reentrancy risk from the receiver. So any
     * update to the contract state after this function would break the check-effect-interaction pattern. Consider
     * overriding {_update} instead.
     */
    function _updateWithAcceptanceCheck(
        address from,
        address to,
        uint256[] memory ids,
        uint256[] memory values,
        bytes memory data
    ) internal virtual {
        _update(from, to, ids, values);
        if (to != address(0)) {
            address operator = _msgSender();
            if (ids.length == 1) {
                uint256 id = ids.unsafeMemoryAccess(0);
                uint256 value = values.unsafeMemoryAccess(0);
                ERC1155Utils.checkOnERC1155Received(operator, from, to, id, value, data);
            } else {
                ERC1155Utils.checkOnERC1155BatchReceived(operator, from, to, ids, values, data);
            }
        }
    }

    /**
     * @dev Transfers a `value` tokens of token type `id` from `from` to `to`.
     *
     * Emits a {TransferSingle} event.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - `from` must have a balance of tokens of type `id` of at least `value` amount.
     * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
     * acceptance magic value.
     */
    function _safeTransferFrom(address from, address to, uint256 id, uint256 value, bytes memory data) internal {
        if (to == address(0)) {
            revert ERC1155InvalidReceiver(address(0));
        }
        if (from == address(0)) {
            revert ERC1155InvalidSender(address(0));
        }
        (uint256[] memory ids, uint256[] memory values) = _asSingletonArrays(id, value);
        _updateWithAcceptanceCheck(from, to, ids, values, data);
    }

    /**
     * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_safeTransferFrom}.
     *
     * Emits a {TransferBatch} event.
     *
     * Requirements:
     *
     * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
     * acceptance magic value.
     * - `ids` and `values` must have the same length.
     */
    function _safeBatchTransferFrom(
        address from,
        address to,
        uint256[] memory ids,
        uint256[] memory values,
        bytes memory data
    ) internal {
        if (to == address(0)) {
            revert ERC1155InvalidReceiver(address(0));
        }
        if (from == address(0)) {
            revert ERC1155InvalidSender(address(0));
        }
        _updateWithAcceptanceCheck(from, to, ids, values, data);
    }

    /**
     * @dev Sets a new URI for all token types, by relying on the token type ID
     * substitution mechanism
     * https://eips.ethereum.org/EIPS/eip-1155#metadata[defined in the ERC].
     *
     * By this mechanism, any occurrence of the `\{id\}` substring in either the
     * URI or any of the values in the JSON file at said URI will be replaced by
     * clients with the token type ID.
     *
     * For example, the `https://token-cdn-domain/\{id\}.json` URI would be
     * interpreted by clients as
     * `https://token-cdn-domain/000000000000000000000000000000000000000000000000000000000004cce0.json`
     * for token type ID 0x4cce0.
     *
     * See {uri}.
     *
     * Because these URIs cannot be meaningfully represented by the {URI} event,
     * this function emits no events.
     */
    function _setURI(string memory newuri) internal virtual {
        ERC1155Storage storage $ = _getERC1155Storage();
        $._uri = newuri;
    }

    /**
     * @dev Creates a `value` amount of tokens of type `id`, and assigns them to `to`.
     *
     * Emits a {TransferSingle} event.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
     * acceptance magic value.
     */
    function _mint(address to, uint256 id, uint256 value, bytes memory data) internal {
        if (to == address(0)) {
            revert ERC1155InvalidReceiver(address(0));
        }
        (uint256[] memory ids, uint256[] memory values) = _asSingletonArrays(id, value);
        _updateWithAcceptanceCheck(address(0), to, ids, values, data);
    }

    /**
     * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_mint}.
     *
     * Emits a {TransferBatch} event.
     *
     * Requirements:
     *
     * - `ids` and `values` must have the same length.
     * - `to` cannot be the zero address.
     * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
     * acceptance magic value.
     */
    function _mintBatch(address to, uint256[] memory ids, uint256[] memory values, bytes memory data) internal {
        if (to == address(0)) {
            revert ERC1155InvalidReceiver(address(0));
        }
        _updateWithAcceptanceCheck(address(0), to, ids, values, data);
    }

    /**
     * @dev Destroys a `value` amount of tokens of type `id` from `from`
     *
     * Emits a {TransferSingle} event.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `from` must have at least `value` amount of tokens of type `id`.
     */
    function _burn(address from, uint256 id, uint256 value) internal {
        if (from == address(0)) {
            revert ERC1155InvalidSender(address(0));
        }
        (uint256[] memory ids, uint256[] memory values) = _asSingletonArrays(id, value);
        _updateWithAcceptanceCheck(from, address(0), ids, values, "");
    }

    /**
     * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_burn}.
     *
     * Emits a {TransferBatch} event.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `from` must have at least `value` amount of tokens of type `id`.
     * - `ids` and `values` must have the same length.
     */
    function _burnBatch(address from, uint256[] memory ids, uint256[] memory values) internal {
        if (from == address(0)) {
            revert ERC1155InvalidSender(address(0));
        }
        _updateWithAcceptanceCheck(from, address(0), ids, values, "");
    }

    /**
     * @dev Approve `operator` to operate on all of `owner` tokens
     *
     * Emits an {ApprovalForAll} event.
     *
     * Requirements:
     *
     * - `operator` cannot be the zero address.
     */
    function _setApprovalForAll(address owner, address operator, bool approved) internal virtual {
        ERC1155Storage storage $ = _getERC1155Storage();
        if (operator == address(0)) {
            revert ERC1155InvalidOperator(address(0));
        }
        $._operatorApprovals[owner][operator] = approved;
        emit ApprovalForAll(owner, operator, approved);
    }

    /**
     * @dev Creates an array in memory with only one value for each of the elements provided.
     */
    function _asSingletonArrays(
        uint256 element1,
        uint256 element2
    ) private pure returns (uint256[] memory array1, uint256[] memory array2) {
        assembly ("memory-safe") {
            // Load the free memory pointer
            array1 := mload(0x40)
            // Set array length to 1
            mstore(array1, 1)
            // Store the single element at the next word after the length (where content starts)
            mstore(add(array1, 0x20), element1)

            // Repeat for next array locating it right after the first array
            array2 := add(array1, 0x40)
            mstore(array2, 1)
            mstore(add(array2, 0x20), element2)

            // Update the free memory pointer by pointing after the second array
            mstore(0x40, add(array2, 0x40))
        }
    }
}

File 6 of 45 : ERC1155SupplyUpgradeable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC1155/extensions/ERC1155Supply.sol)

pragma solidity ^0.8.20;

import {ERC1155Upgradeable} from "../ERC1155Upgradeable.sol";
import {Arrays} from "@openzeppelin/contracts/utils/Arrays.sol";
import {Initializable} from "../../../proxy/utils/Initializable.sol";

/**
 * @dev Extension of ERC-1155 that adds tracking of total supply per id.
 *
 * Useful for scenarios where Fungible and Non-fungible tokens have to be
 * clearly identified. Note: While a totalSupply of 1 might mean the
 * corresponding is an NFT, there is no guarantees that no other token with the
 * same id are not going to be minted.
 *
 * NOTE: This contract implies a global limit of 2**256 - 1 to the number of tokens
 * that can be minted.
 *
 * CAUTION: This extension should not be added in an upgrade to an already deployed contract.
 */
abstract contract ERC1155SupplyUpgradeable is Initializable, ERC1155Upgradeable {
    using Arrays for uint256[];

    /// @custom:storage-location erc7201:openzeppelin.storage.ERC1155Supply
    struct ERC1155SupplyStorage {
        mapping(uint256 id => uint256) _totalSupply;
        uint256 _totalSupplyAll;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.ERC1155Supply")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant ERC1155SupplyStorageLocation = 0x4a593662ee04d27b6a00ebb31be7fe0c102c2ade82a7c5d764f2df05dc4e2800;

    function _getERC1155SupplyStorage() private pure returns (ERC1155SupplyStorage storage $) {
        assembly {
            $.slot := ERC1155SupplyStorageLocation
        }
    }

    function __ERC1155Supply_init() internal onlyInitializing {
    }

    function __ERC1155Supply_init_unchained() internal onlyInitializing {
    }
    /**
     * @dev Total value of tokens in with a given id.
     */
    function totalSupply(uint256 id) public view virtual returns (uint256) {
        ERC1155SupplyStorage storage $ = _getERC1155SupplyStorage();
        return $._totalSupply[id];
    }

    /**
     * @dev Total value of tokens.
     */
    function totalSupply() public view virtual returns (uint256) {
        ERC1155SupplyStorage storage $ = _getERC1155SupplyStorage();
        return $._totalSupplyAll;
    }

    /**
     * @dev Indicates whether any token exist with a given id, or not.
     */
    function exists(uint256 id) public view virtual returns (bool) {
        return totalSupply(id) > 0;
    }

    /**
     * @dev See {ERC1155-_update}.
     */
    function _update(
        address from,
        address to,
        uint256[] memory ids,
        uint256[] memory values
    ) internal virtual override {
        ERC1155SupplyStorage storage $ = _getERC1155SupplyStorage();
        super._update(from, to, ids, values);

        if (from == address(0)) {
            uint256 totalMintValue = 0;
            for (uint256 i = 0; i < ids.length; ++i) {
                uint256 value = values.unsafeMemoryAccess(i);
                // Overflow check required: The rest of the code assumes that totalSupply never overflows
                $._totalSupply[ids.unsafeMemoryAccess(i)] += value;
                totalMintValue += value;
            }
            // Overflow check required: The rest of the code assumes that totalSupplyAll never overflows
            $._totalSupplyAll += totalMintValue;
        }

        if (to == address(0)) {
            uint256 totalBurnValue = 0;
            for (uint256 i = 0; i < ids.length; ++i) {
                uint256 value = values.unsafeMemoryAccess(i);

                unchecked {
                    // Overflow not possible: values[i] <= balanceOf(from, ids[i]) <= totalSupply(ids[i])
                    $._totalSupply[ids.unsafeMemoryAccess(i)] -= value;
                    // Overflow not possible: sum_i(values[i]) <= sum_i(totalSupply(ids[i])) <= totalSupplyAll
                    totalBurnValue += value;
                }
            }
            unchecked {
                // Overflow not possible: totalBurnValue = sum_i(values[i]) <= sum_i(totalSupply(ids[i])) <= totalSupplyAll
                $._totalSupplyAll -= totalBurnValue;
            }
        }
    }
}

File 7 of 45 : ContextUpgradeable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract ContextUpgradeable is Initializable {
    function __Context_init() internal onlyInitializing {
    }

    function __Context_init_unchained() internal onlyInitializing {
    }
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

File 8 of 45 : ERC165Upgradeable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/ERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "@openzeppelin/contracts/utils/introspection/IERC165.sol";
import {Initializable} from "../../proxy/utils/Initializable.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 */
abstract contract ERC165Upgradeable is Initializable, IERC165 {
    function __ERC165_init() internal onlyInitializing {
    }

    function __ERC165_init_unchained() internal onlyInitializing {
    }
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}

File 9 of 45 : IAccessControlEnumerable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (access/extensions/IAccessControlEnumerable.sol)

pragma solidity ^0.8.20;

import {IAccessControl} from "../IAccessControl.sol";

/**
 * @dev External interface of AccessControlEnumerable declared to support ERC-165 detection.
 */
interface IAccessControlEnumerable is IAccessControl {
    /**
     * @dev Returns one of the accounts that have `role`. `index` must be a
     * value between 0 and {getRoleMemberCount}, non-inclusive.
     *
     * Role bearers are not sorted in any particular way, and their ordering may
     * change at any point.
     *
     * WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure
     * you perform all queries on the same block. See the following
     * https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post]
     * for more information.
     */
    function getRoleMember(bytes32 role, uint256 index) external view returns (address);

    /**
     * @dev Returns the number of accounts that have `role`. Can be used
     * together with {getRoleMember} to enumerate all bearers of a role.
     */
    function getRoleMemberCount(bytes32 role) external view returns (uint256);
}

File 10 of 45 : IAccessControl.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (access/IAccessControl.sol)

pragma solidity ^0.8.20;

/**
 * @dev External interface of AccessControl declared to support ERC-165 detection.
 */
interface IAccessControl {
    /**
     * @dev The `account` is missing a role.
     */
    error AccessControlUnauthorizedAccount(address account, bytes32 neededRole);

    /**
     * @dev The caller of a function is not the expected one.
     *
     * NOTE: Don't confuse with {AccessControlUnauthorizedAccount}.
     */
    error AccessControlBadConfirmation();

    /**
     * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
     *
     * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
     * {RoleAdminChanged} not being emitted signaling this.
     */
    event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);

    /**
     * @dev Emitted when `account` is granted `role`.
     *
     * `sender` is the account that originated the contract call. This account bears the admin role (for the granted role).
     * Expected in cases where the role was granted using the internal {AccessControl-_grantRole}.
     */
    event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Emitted when `account` is revoked `role`.
     *
     * `sender` is the account that originated the contract call:
     *   - if using `revokeRole`, it is the admin role bearer
     *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
     */
    event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) external view returns (bool);

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {AccessControl-_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) external view returns (bytes32);

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function grantRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function revokeRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been granted `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `callerConfirmation`.
     */
    function renounceRole(bytes32 role, address callerConfirmation) external;
}

File 11 of 45 : draft-IERC6093.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;

/**
 * @dev Standard ERC-20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC-721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC-1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}

File 12 of 45 : IERC1155MetadataURI.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC1155/extensions/IERC1155MetadataURI.sol)

pragma solidity ^0.8.20;

import {IERC1155} from "../IERC1155.sol";

/**
 * @dev Interface of the optional ERC1155MetadataExtension interface, as defined
 * in the https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[ERC].
 */
interface IERC1155MetadataURI is IERC1155 {
    /**
     * @dev Returns the URI for token type `id`.
     *
     * If the `\{id\}` substring is present in the URI, it must be replaced by
     * clients with the actual token type ID.
     */
    function uri(uint256 id) external view returns (string memory);
}

File 13 of 45 : IERC1155.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC1155/IERC1155.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../../utils/introspection/IERC165.sol";

/**
 * @dev Required interface of an ERC-1155 compliant contract, as defined in the
 * https://eips.ethereum.org/EIPS/eip-1155[ERC].
 */
interface IERC1155 is IERC165 {
    /**
     * @dev Emitted when `value` amount of tokens of type `id` are transferred from `from` to `to` by `operator`.
     */
    event TransferSingle(address indexed operator, address indexed from, address indexed to, uint256 id, uint256 value);

    /**
     * @dev Equivalent to multiple {TransferSingle} events, where `operator`, `from` and `to` are the same for all
     * transfers.
     */
    event TransferBatch(
        address indexed operator,
        address indexed from,
        address indexed to,
        uint256[] ids,
        uint256[] values
    );

    /**
     * @dev Emitted when `account` grants or revokes permission to `operator` to transfer their tokens, according to
     * `approved`.
     */
    event ApprovalForAll(address indexed account, address indexed operator, bool approved);

    /**
     * @dev Emitted when the URI for token type `id` changes to `value`, if it is a non-programmatic URI.
     *
     * If an {URI} event was emitted for `id`, the standard
     * https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[guarantees] that `value` will equal the value
     * returned by {IERC1155MetadataURI-uri}.
     */
    event URI(string value, uint256 indexed id);

    /**
     * @dev Returns the value of tokens of token type `id` owned by `account`.
     */
    function balanceOf(address account, uint256 id) external view returns (uint256);

    /**
     * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {balanceOf}.
     *
     * Requirements:
     *
     * - `accounts` and `ids` must have the same length.
     */
    function balanceOfBatch(
        address[] calldata accounts,
        uint256[] calldata ids
    ) external view returns (uint256[] memory);

    /**
     * @dev Grants or revokes permission to `operator` to transfer the caller's tokens, according to `approved`,
     *
     * Emits an {ApprovalForAll} event.
     *
     * Requirements:
     *
     * - `operator` cannot be the zero address.
     */
    function setApprovalForAll(address operator, bool approved) external;

    /**
     * @dev Returns true if `operator` is approved to transfer ``account``'s tokens.
     *
     * See {setApprovalForAll}.
     */
    function isApprovedForAll(address account, address operator) external view returns (bool);

    /**
     * @dev Transfers a `value` amount of tokens of type `id` from `from` to `to`.
     *
     * WARNING: This function can potentially allow a reentrancy attack when transferring tokens
     * to an untrusted contract, when invoking {onERC1155Received} on the receiver.
     * Ensure to follow the checks-effects-interactions pattern and consider employing
     * reentrancy guards when interacting with untrusted contracts.
     *
     * Emits a {TransferSingle} event.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - If the caller is not `from`, it must have been approved to spend ``from``'s tokens via {setApprovalForAll}.
     * - `from` must have a balance of tokens of type `id` of at least `value` amount.
     * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
     * acceptance magic value.
     */
    function safeTransferFrom(address from, address to, uint256 id, uint256 value, bytes calldata data) external;

    /**
     * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {safeTransferFrom}.
     *
     * WARNING: This function can potentially allow a reentrancy attack when transferring tokens
     * to an untrusted contract, when invoking {onERC1155BatchReceived} on the receiver.
     * Ensure to follow the checks-effects-interactions pattern and consider employing
     * reentrancy guards when interacting with untrusted contracts.
     *
     * Emits either a {TransferSingle} or a {TransferBatch} event, depending on the length of the array arguments.
     *
     * Requirements:
     *
     * - `ids` and `values` must have the same length.
     * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
     * acceptance magic value.
     */
    function safeBatchTransferFrom(
        address from,
        address to,
        uint256[] calldata ids,
        uint256[] calldata values,
        bytes calldata data
    ) external;
}

File 14 of 45 : IERC1155Receiver.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC1155/IERC1155Receiver.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../../utils/introspection/IERC165.sol";

/**
 * @dev Interface that must be implemented by smart contracts in order to receive
 * ERC-1155 token transfers.
 */
interface IERC1155Receiver is IERC165 {
    /**
     * @dev Handles the receipt of a single ERC-1155 token type. This function is
     * called at the end of a `safeTransferFrom` after the balance has been updated.
     *
     * NOTE: To accept the transfer, this must return
     * `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))`
     * (i.e. 0xf23a6e61, or its own function selector).
     *
     * @param operator The address which initiated the transfer (i.e. msg.sender)
     * @param from The address which previously owned the token
     * @param id The ID of the token being transferred
     * @param value The amount of tokens being transferred
     * @param data Additional data with no specified format
     * @return `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` if transfer is allowed
     */
    function onERC1155Received(
        address operator,
        address from,
        uint256 id,
        uint256 value,
        bytes calldata data
    ) external returns (bytes4);

    /**
     * @dev Handles the receipt of a multiple ERC-1155 token types. This function
     * is called at the end of a `safeBatchTransferFrom` after the balances have
     * been updated.
     *
     * NOTE: To accept the transfer(s), this must return
     * `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))`
     * (i.e. 0xbc197c81, or its own function selector).
     *
     * @param operator The address which initiated the batch transfer (i.e. msg.sender)
     * @param from The address which previously owned the token
     * @param ids An array containing ids of each token being transferred (order and length must match values array)
     * @param values An array containing amounts of each token being transferred (order and length must match ids array)
     * @param data Additional data with no specified format
     * @return `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` if transfer is allowed
     */
    function onERC1155BatchReceived(
        address operator,
        address from,
        uint256[] calldata ids,
        uint256[] calldata values,
        bytes calldata data
    ) external returns (bytes4);
}

File 15 of 45 : ERC1155Utils.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC1155/utils/ERC1155Utils.sol)

pragma solidity ^0.8.20;

import {IERC1155Receiver} from "../IERC1155Receiver.sol";
import {IERC1155Errors} from "../../../interfaces/draft-IERC6093.sol";

/**
 * @dev Library that provide common ERC-1155 utility functions.
 *
 * See https://eips.ethereum.org/EIPS/eip-1155[ERC-1155].
 *
 * _Available since v5.1._
 */
library ERC1155Utils {
    /**
     * @dev Performs an acceptance check for the provided `operator` by calling {IERC1155-onERC1155Received}
     * on the `to` address. The `operator` is generally the address that initiated the token transfer (i.e. `msg.sender`).
     *
     * The acceptance call is not executed and treated as a no-op if the target address doesn't contain code (i.e. an EOA).
     * Otherwise, the recipient must implement {IERC1155Receiver-onERC1155Received} and return the acceptance magic value to accept
     * the transfer.
     */
    function checkOnERC1155Received(
        address operator,
        address from,
        address to,
        uint256 id,
        uint256 value,
        bytes memory data
    ) internal {
        if (to.code.length > 0) {
            try IERC1155Receiver(to).onERC1155Received(operator, from, id, value, data) returns (bytes4 response) {
                if (response != IERC1155Receiver.onERC1155Received.selector) {
                    // Tokens rejected
                    revert IERC1155Errors.ERC1155InvalidReceiver(to);
                }
            } catch (bytes memory reason) {
                if (reason.length == 0) {
                    // non-IERC1155Receiver implementer
                    revert IERC1155Errors.ERC1155InvalidReceiver(to);
                } else {
                    assembly ("memory-safe") {
                        revert(add(32, reason), mload(reason))
                    }
                }
            }
        }
    }

    /**
     * @dev Performs a batch acceptance check for the provided `operator` by calling {IERC1155-onERC1155BatchReceived}
     * on the `to` address. The `operator` is generally the address that initiated the token transfer (i.e. `msg.sender`).
     *
     * The acceptance call is not executed and treated as a no-op if the target address doesn't contain code (i.e. an EOA).
     * Otherwise, the recipient must implement {IERC1155Receiver-onERC1155Received} and return the acceptance magic value to accept
     * the transfer.
     */
    function checkOnERC1155BatchReceived(
        address operator,
        address from,
        address to,
        uint256[] memory ids,
        uint256[] memory values,
        bytes memory data
    ) internal {
        if (to.code.length > 0) {
            try IERC1155Receiver(to).onERC1155BatchReceived(operator, from, ids, values, data) returns (
                bytes4 response
            ) {
                if (response != IERC1155Receiver.onERC1155BatchReceived.selector) {
                    // Tokens rejected
                    revert IERC1155Errors.ERC1155InvalidReceiver(to);
                }
            } catch (bytes memory reason) {
                if (reason.length == 0) {
                    // non-IERC1155Receiver implementer
                    revert IERC1155Errors.ERC1155InvalidReceiver(to);
                } else {
                    assembly ("memory-safe") {
                        revert(add(32, reason), mload(reason))
                    }
                }
            }
        }
    }
}

File 16 of 45 : Address.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Address.sol)

pragma solidity ^0.8.20;

import {Errors} from "./Errors.sol";

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert Errors.InsufficientBalance(address(this).balance, amount);
        }

        (bool success, ) = recipient.call{value: amount}("");
        if (!success) {
            revert Errors.FailedCall();
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {Errors.FailedCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert Errors.InsufficientBalance(address(this).balance, value);
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case
     * of an unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {Errors.FailedCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            assembly ("memory-safe") {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert Errors.FailedCall();
        }
    }
}

File 17 of 45 : Arrays.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Arrays.sol)
// This file was procedurally generated from scripts/generate/templates/Arrays.js.

pragma solidity ^0.8.20;

import {Comparators} from "./Comparators.sol";
import {SlotDerivation} from "./SlotDerivation.sol";
import {StorageSlot} from "./StorageSlot.sol";
import {Math} from "./math/Math.sol";

/**
 * @dev Collection of functions related to array types.
 */
library Arrays {
    using SlotDerivation for bytes32;
    using StorageSlot for bytes32;

    /**
     * @dev Sort an array of uint256 (in memory) following the provided comparator function.
     *
     * This function does the sorting "in place", meaning that it overrides the input. The object is returned for
     * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
     *
     * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
     * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
     * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
     * consume more gas than is available in a block, leading to potential DoS.
     *
     * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
     */
    function sort(
        uint256[] memory array,
        function(uint256, uint256) pure returns (bool) comp
    ) internal pure returns (uint256[] memory) {
        _quickSort(_begin(array), _end(array), comp);
        return array;
    }

    /**
     * @dev Variant of {sort} that sorts an array of uint256 in increasing order.
     */
    function sort(uint256[] memory array) internal pure returns (uint256[] memory) {
        sort(array, Comparators.lt);
        return array;
    }

    /**
     * @dev Sort an array of address (in memory) following the provided comparator function.
     *
     * This function does the sorting "in place", meaning that it overrides the input. The object is returned for
     * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
     *
     * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
     * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
     * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
     * consume more gas than is available in a block, leading to potential DoS.
     *
     * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
     */
    function sort(
        address[] memory array,
        function(address, address) pure returns (bool) comp
    ) internal pure returns (address[] memory) {
        sort(_castToUint256Array(array), _castToUint256Comp(comp));
        return array;
    }

    /**
     * @dev Variant of {sort} that sorts an array of address in increasing order.
     */
    function sort(address[] memory array) internal pure returns (address[] memory) {
        sort(_castToUint256Array(array), Comparators.lt);
        return array;
    }

    /**
     * @dev Sort an array of bytes32 (in memory) following the provided comparator function.
     *
     * This function does the sorting "in place", meaning that it overrides the input. The object is returned for
     * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
     *
     * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
     * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
     * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
     * consume more gas than is available in a block, leading to potential DoS.
     *
     * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
     */
    function sort(
        bytes32[] memory array,
        function(bytes32, bytes32) pure returns (bool) comp
    ) internal pure returns (bytes32[] memory) {
        sort(_castToUint256Array(array), _castToUint256Comp(comp));
        return array;
    }

    /**
     * @dev Variant of {sort} that sorts an array of bytes32 in increasing order.
     */
    function sort(bytes32[] memory array) internal pure returns (bytes32[] memory) {
        sort(_castToUint256Array(array), Comparators.lt);
        return array;
    }

    /**
     * @dev Performs a quick sort of a segment of memory. The segment sorted starts at `begin` (inclusive), and stops
     * at end (exclusive). Sorting follows the `comp` comparator.
     *
     * Invariant: `begin <= end`. This is the case when initially called by {sort} and is preserved in subcalls.
     *
     * IMPORTANT: Memory locations between `begin` and `end` are not validated/zeroed. This function should
     * be used only if the limits are within a memory array.
     */
    function _quickSort(uint256 begin, uint256 end, function(uint256, uint256) pure returns (bool) comp) private pure {
        unchecked {
            if (end - begin < 0x40) return;

            // Use first element as pivot
            uint256 pivot = _mload(begin);
            // Position where the pivot should be at the end of the loop
            uint256 pos = begin;

            for (uint256 it = begin + 0x20; it < end; it += 0x20) {
                if (comp(_mload(it), pivot)) {
                    // If the value stored at the iterator's position comes before the pivot, we increment the
                    // position of the pivot and move the value there.
                    pos += 0x20;
                    _swap(pos, it);
                }
            }

            _swap(begin, pos); // Swap pivot into place
            _quickSort(begin, pos, comp); // Sort the left side of the pivot
            _quickSort(pos + 0x20, end, comp); // Sort the right side of the pivot
        }
    }

    /**
     * @dev Pointer to the memory location of the first element of `array`.
     */
    function _begin(uint256[] memory array) private pure returns (uint256 ptr) {
        assembly ("memory-safe") {
            ptr := add(array, 0x20)
        }
    }

    /**
     * @dev Pointer to the memory location of the first memory word (32bytes) after `array`. This is the memory word
     * that comes just after the last element of the array.
     */
    function _end(uint256[] memory array) private pure returns (uint256 ptr) {
        unchecked {
            return _begin(array) + array.length * 0x20;
        }
    }

    /**
     * @dev Load memory word (as a uint256) at location `ptr`.
     */
    function _mload(uint256 ptr) private pure returns (uint256 value) {
        assembly {
            value := mload(ptr)
        }
    }

    /**
     * @dev Swaps the elements memory location `ptr1` and `ptr2`.
     */
    function _swap(uint256 ptr1, uint256 ptr2) private pure {
        assembly {
            let value1 := mload(ptr1)
            let value2 := mload(ptr2)
            mstore(ptr1, value2)
            mstore(ptr2, value1)
        }
    }

    /// @dev Helper: low level cast address memory array to uint256 memory array
    function _castToUint256Array(address[] memory input) private pure returns (uint256[] memory output) {
        assembly {
            output := input
        }
    }

    /// @dev Helper: low level cast bytes32 memory array to uint256 memory array
    function _castToUint256Array(bytes32[] memory input) private pure returns (uint256[] memory output) {
        assembly {
            output := input
        }
    }

    /// @dev Helper: low level cast address comp function to uint256 comp function
    function _castToUint256Comp(
        function(address, address) pure returns (bool) input
    ) private pure returns (function(uint256, uint256) pure returns (bool) output) {
        assembly {
            output := input
        }
    }

    /// @dev Helper: low level cast bytes32 comp function to uint256 comp function
    function _castToUint256Comp(
        function(bytes32, bytes32) pure returns (bool) input
    ) private pure returns (function(uint256, uint256) pure returns (bool) output) {
        assembly {
            output := input
        }
    }

    /**
     * @dev Searches a sorted `array` and returns the first index that contains
     * a value greater or equal to `element`. If no such index exists (i.e. all
     * values in the array are strictly less than `element`), the array length is
     * returned. Time complexity O(log n).
     *
     * NOTE: The `array` is expected to be sorted in ascending order, and to
     * contain no repeated elements.
     *
     * IMPORTANT: Deprecated. This implementation behaves as {lowerBound} but lacks
     * support for repeated elements in the array. The {lowerBound} function should
     * be used instead.
     */
    function findUpperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeAccess(array, mid).value > element) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }

        // At this point `low` is the exclusive upper bound. We will return the inclusive upper bound.
        if (low > 0 && unsafeAccess(array, low - 1).value == element) {
            return low - 1;
        } else {
            return low;
        }
    }

    /**
     * @dev Searches an `array` sorted in ascending order and returns the first
     * index that contains a value greater or equal than `element`. If no such index
     * exists (i.e. all values in the array are strictly less than `element`), the array
     * length is returned. Time complexity O(log n).
     *
     * See C++'s https://en.cppreference.com/w/cpp/algorithm/lower_bound[lower_bound].
     */
    function lowerBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeAccess(array, mid).value < element) {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            } else {
                high = mid;
            }
        }

        return low;
    }

    /**
     * @dev Searches an `array` sorted in ascending order and returns the first
     * index that contains a value strictly greater than `element`. If no such index
     * exists (i.e. all values in the array are strictly less than `element`), the array
     * length is returned. Time complexity O(log n).
     *
     * See C++'s https://en.cppreference.com/w/cpp/algorithm/upper_bound[upper_bound].
     */
    function upperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeAccess(array, mid).value > element) {
                high = mid;
            } else {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            }
        }

        return low;
    }

    /**
     * @dev Same as {lowerBound}, but with an array in memory.
     */
    function lowerBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeMemoryAccess(array, mid) < element) {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            } else {
                high = mid;
            }
        }

        return low;
    }

    /**
     * @dev Same as {upperBound}, but with an array in memory.
     */
    function upperBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeMemoryAccess(array, mid) > element) {
                high = mid;
            } else {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            }
        }

        return low;
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(address[] storage arr, uint256 pos) internal pure returns (StorageSlot.AddressSlot storage) {
        bytes32 slot;
        assembly ("memory-safe") {
            slot := arr.slot
        }
        return slot.deriveArray().offset(pos).getAddressSlot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(bytes32[] storage arr, uint256 pos) internal pure returns (StorageSlot.Bytes32Slot storage) {
        bytes32 slot;
        assembly ("memory-safe") {
            slot := arr.slot
        }
        return slot.deriveArray().offset(pos).getBytes32Slot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(uint256[] storage arr, uint256 pos) internal pure returns (StorageSlot.Uint256Slot storage) {
        bytes32 slot;
        assembly ("memory-safe") {
            slot := arr.slot
        }
        return slot.deriveArray().offset(pos).getUint256Slot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeMemoryAccess(address[] memory arr, uint256 pos) internal pure returns (address res) {
        assembly {
            res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
        }
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeMemoryAccess(bytes32[] memory arr, uint256 pos) internal pure returns (bytes32 res) {
        assembly {
            res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
        }
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeMemoryAccess(uint256[] memory arr, uint256 pos) internal pure returns (uint256 res) {
        assembly {
            res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
        }
    }

    /**
     * @dev Helper to set the length of an dynamic array. Directly writing to `.length` is forbidden.
     *
     * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
     */
    function unsafeSetLength(address[] storage array, uint256 len) internal {
        assembly ("memory-safe") {
            sstore(array.slot, len)
        }
    }

    /**
     * @dev Helper to set the length of an dynamic array. Directly writing to `.length` is forbidden.
     *
     * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
     */
    function unsafeSetLength(bytes32[] storage array, uint256 len) internal {
        assembly ("memory-safe") {
            sstore(array.slot, len)
        }
    }

    /**
     * @dev Helper to set the length of an dynamic array. Directly writing to `.length` is forbidden.
     *
     * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
     */
    function unsafeSetLength(uint256[] storage array, uint256 len) internal {
        assembly ("memory-safe") {
            sstore(array.slot, len)
        }
    }
}

File 18 of 45 : Comparators.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Comparators.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides a set of functions to compare values.
 *
 * _Available since v5.1._
 */
library Comparators {
    function lt(uint256 a, uint256 b) internal pure returns (bool) {
        return a < b;
    }

    function gt(uint256 a, uint256 b) internal pure returns (bool) {
        return a > b;
    }
}

File 19 of 45 : Errors.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of common custom errors used in multiple contracts
 *
 * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
 * It is recommended to avoid relying on the error API for critical functionality.
 *
 * _Available since v5.1._
 */
library Errors {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error InsufficientBalance(uint256 balance, uint256 needed);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedCall();

    /**
     * @dev The deployment failed.
     */
    error FailedDeployment();

    /**
     * @dev A necessary precompile is missing.
     */
    error MissingPrecompile(address);
}

File 20 of 45 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[ERC].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

File 21 of 45 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
            // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2²⁵⁶ + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= prod1) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 exp;
        unchecked {
            exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
            value >>= exp;
            result += exp;

            exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
            value >>= exp;
            result += exp;

            exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
            value >>= exp;
            result += exp;

            exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
            value >>= exp;
            result += exp;

            exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
            value >>= exp;
            result += exp;

            exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
            value >>= exp;
            result += exp;

            exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
            value >>= exp;
            result += exp;

            result += SafeCast.toUint(value > 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 isGt;
        unchecked {
            isGt = SafeCast.toUint(value > (1 << 128) - 1);
            value >>= isGt * 128;
            result += isGt * 16;

            isGt = SafeCast.toUint(value > (1 << 64) - 1);
            value >>= isGt * 64;
            result += isGt * 8;

            isGt = SafeCast.toUint(value > (1 << 32) - 1);
            value >>= isGt * 32;
            result += isGt * 4;

            isGt = SafeCast.toUint(value > (1 << 16) - 1);
            value >>= isGt * 16;
            result += isGt * 2;

            result += SafeCast.toUint(value > (1 << 8) - 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 22 of 45 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

File 23 of 45 : Panic.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

File 24 of 45 : SlotDerivation.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/SlotDerivation.sol)
// This file was procedurally generated from scripts/generate/templates/SlotDerivation.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for computing storage (and transient storage) locations from namespaces and deriving slots
 * corresponding to standard patterns. The derivation method for array and mapping matches the storage layout used by
 * the solidity language / compiler.
 *
 * See https://docs.soliditylang.org/en/v0.8.20/internals/layout_in_storage.html#mappings-and-dynamic-arrays[Solidity docs for mappings and dynamic arrays.].
 *
 * Example usage:
 * ```solidity
 * contract Example {
 *     // Add the library methods
 *     using StorageSlot for bytes32;
 *     using SlotDerivation for bytes32;
 *
 *     // Declare a namespace
 *     string private constant _NAMESPACE = "<namespace>" // eg. OpenZeppelin.Slot
 *
 *     function setValueInNamespace(uint256 key, address newValue) internal {
 *         _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value = newValue;
 *     }
 *
 *     function getValueInNamespace(uint256 key) internal view returns (address) {
 *         return _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value;
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {StorageSlot}.
 *
 * NOTE: This library provides a way to manipulate storage locations in a non-standard way. Tooling for checking
 * upgrade safety will ignore the slots accessed through this library.
 *
 * _Available since v5.1._
 */
library SlotDerivation {
    /**
     * @dev Derive an ERC-7201 slot from a string (namespace).
     */
    function erc7201Slot(string memory namespace) internal pure returns (bytes32 slot) {
        assembly ("memory-safe") {
            mstore(0x00, sub(keccak256(add(namespace, 0x20), mload(namespace)), 1))
            slot := and(keccak256(0x00, 0x20), not(0xff))
        }
    }

    /**
     * @dev Add an offset to a slot to get the n-th element of a structure or an array.
     */
    function offset(bytes32 slot, uint256 pos) internal pure returns (bytes32 result) {
        unchecked {
            return bytes32(uint256(slot) + pos);
        }
    }

    /**
     * @dev Derive the location of the first element in an array from the slot where the length is stored.
     */
    function deriveArray(bytes32 slot) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, slot)
            result := keccak256(0x00, 0x20)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, address key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, and(key, shr(96, not(0))))
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, bool key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, iszero(iszero(key)))
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, bytes32 key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, key)
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, uint256 key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, key)
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, int256 key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, key)
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, string memory key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            let length := mload(key)
            let begin := add(key, 0x20)
            let end := add(begin, length)
            let cache := mload(end)
            mstore(end, slot)
            result := keccak256(begin, add(length, 0x20))
            mstore(end, cache)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, bytes memory key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            let length := mload(key)
            let begin := add(key, 0x20)
            let end := add(begin, length)
            let cache := mload(end)
            mstore(end, slot)
            result := keccak256(begin, add(length, 0x20))
            mstore(end, cache)
        }
    }
}

File 25 of 45 : StorageSlot.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC-1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(newImplementation.code.length > 0);
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {SlotDerivation}.
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct Int256Slot {
        int256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Int256Slot` with member `value` located at `slot`.
     */
    function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns a `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }
}

File 26 of 45 : EnumerableSet.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/structs/EnumerableSet.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for managing
 * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
 * types.
 *
 * Sets have the following properties:
 *
 * - Elements are added, removed, and checked for existence in constant time
 * (O(1)).
 * - Elements are enumerated in O(n). No guarantees are made on the ordering.
 *
 * ```solidity
 * contract Example {
 *     // Add the library methods
 *     using EnumerableSet for EnumerableSet.AddressSet;
 *
 *     // Declare a set state variable
 *     EnumerableSet.AddressSet private mySet;
 * }
 * ```
 *
 * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
 * and `uint256` (`UintSet`) are supported.
 *
 * [WARNING]
 * ====
 * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
 * unusable.
 * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
 *
 * In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
 * array of EnumerableSet.
 * ====
 */
library EnumerableSet {
    // To implement this library for multiple types with as little code
    // repetition as possible, we write it in terms of a generic Set type with
    // bytes32 values.
    // The Set implementation uses private functions, and user-facing
    // implementations (such as AddressSet) are just wrappers around the
    // underlying Set.
    // This means that we can only create new EnumerableSets for types that fit
    // in bytes32.

    struct Set {
        // Storage of set values
        bytes32[] _values;
        // Position is the index of the value in the `values` array plus 1.
        // Position 0 is used to mean a value is not in the set.
        mapping(bytes32 value => uint256) _positions;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function _add(Set storage set, bytes32 value) private returns (bool) {
        if (!_contains(set, value)) {
            set._values.push(value);
            // The value is stored at length-1, but we add 1 to all indexes
            // and use 0 as a sentinel value
            set._positions[value] = set._values.length;
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function _remove(Set storage set, bytes32 value) private returns (bool) {
        // We cache the value's position to prevent multiple reads from the same storage slot
        uint256 position = set._positions[value];

        if (position != 0) {
            // Equivalent to contains(set, value)
            // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
            // the array, and then remove the last element (sometimes called as 'swap and pop').
            // This modifies the order of the array, as noted in {at}.

            uint256 valueIndex = position - 1;
            uint256 lastIndex = set._values.length - 1;

            if (valueIndex != lastIndex) {
                bytes32 lastValue = set._values[lastIndex];

                // Move the lastValue to the index where the value to delete is
                set._values[valueIndex] = lastValue;
                // Update the tracked position of the lastValue (that was just moved)
                set._positions[lastValue] = position;
            }

            // Delete the slot where the moved value was stored
            set._values.pop();

            // Delete the tracked position for the deleted slot
            delete set._positions[value];

            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function _contains(Set storage set, bytes32 value) private view returns (bool) {
        return set._positions[value] != 0;
    }

    /**
     * @dev Returns the number of values on the set. O(1).
     */
    function _length(Set storage set) private view returns (uint256) {
        return set._values.length;
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function _at(Set storage set, uint256 index) private view returns (bytes32) {
        return set._values[index];
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function _values(Set storage set) private view returns (bytes32[] memory) {
        return set._values;
    }

    // Bytes32Set

    struct Bytes32Set {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _add(set._inner, value);
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _remove(set._inner, value);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
        return _contains(set._inner, value);
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(Bytes32Set storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
        return _at(set._inner, index);
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
        bytes32[] memory store = _values(set._inner);
        bytes32[] memory result;

        assembly ("memory-safe") {
            result := store
        }

        return result;
    }

    // AddressSet

    struct AddressSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(AddressSet storage set, address value) internal returns (bool) {
        return _add(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(AddressSet storage set, address value) internal returns (bool) {
        return _remove(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(AddressSet storage set, address value) internal view returns (bool) {
        return _contains(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(AddressSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(AddressSet storage set, uint256 index) internal view returns (address) {
        return address(uint160(uint256(_at(set._inner, index))));
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(AddressSet storage set) internal view returns (address[] memory) {
        bytes32[] memory store = _values(set._inner);
        address[] memory result;

        assembly ("memory-safe") {
            result := store
        }

        return result;
    }

    // UintSet

    struct UintSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(UintSet storage set, uint256 value) internal returns (bool) {
        return _add(set._inner, bytes32(value));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(UintSet storage set, uint256 value) internal returns (bool) {
        return _remove(set._inner, bytes32(value));
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(UintSet storage set, uint256 value) internal view returns (bool) {
        return _contains(set._inner, bytes32(value));
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(UintSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(UintSet storage set, uint256 index) internal view returns (uint256) {
        return uint256(_at(set._inner, index));
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(UintSet storage set) internal view returns (uint256[] memory) {
        bytes32[] memory store = _values(set._inner);
        uint256[] memory result;

        assembly ("memory-safe") {
            result := store
        }

        return result;
    }
}

File 27 of 45 : FixedPointMathLib.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Arithmetic library with operations for fixed-point numbers.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/FixedPointMathLib.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol)
library FixedPointMathLib {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       CUSTOM ERRORS                        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The operation failed, as the output exceeds the maximum value of uint256.
    error ExpOverflow();

    /// @dev The operation failed, as the output exceeds the maximum value of uint256.
    error FactorialOverflow();

    /// @dev The operation failed, due to an overflow.
    error RPowOverflow();

    /// @dev The mantissa is too big to fit.
    error MantissaOverflow();

    /// @dev The operation failed, due to an multiplication overflow.
    error MulWadFailed();

    /// @dev The operation failed, due to an multiplication overflow.
    error SMulWadFailed();

    /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
    error DivWadFailed();

    /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
    error SDivWadFailed();

    /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
    error MulDivFailed();

    /// @dev The division failed, as the denominator is zero.
    error DivFailed();

    /// @dev The full precision multiply-divide operation failed, either due
    /// to the result being larger than 256 bits, or a division by a zero.
    error FullMulDivFailed();

    /// @dev The output is undefined, as the input is less-than-or-equal to zero.
    error LnWadUndefined();

    /// @dev The input outside the acceptable domain.
    error OutOfDomain();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         CONSTANTS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The scalar of ETH and most ERC20s.
    uint256 internal constant WAD = 1e18;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*              SIMPLIFIED FIXED POINT OPERATIONS             */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Equivalent to `(x * y) / WAD` rounded down.
    function mulWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
            if gt(x, div(not(0), y)) {
                if y {
                    mstore(0x00, 0xbac65e5b) // `MulWadFailed()`.
                    revert(0x1c, 0x04)
                }
            }
            z := div(mul(x, y), WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded down.
    function sMulWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require((x == 0 || z / x == y) && !(x == -1 && y == type(int256).min))`.
            if iszero(gt(or(iszero(x), eq(sdiv(z, x), y)), lt(not(x), eq(y, shl(255, 1))))) {
                mstore(0x00, 0xedcd4dd4) // `SMulWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := sdiv(z, WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks.
    function rawMulWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := div(mul(x, y), WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks.
    function rawSMulWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := sdiv(mul(x, y), WAD)
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded up.
    function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
            if iszero(eq(div(z, y), x)) {
                if y {
                    mstore(0x00, 0xbac65e5b) // `MulWadFailed()`.
                    revert(0x1c, 0x04)
                }
            }
            z := add(iszero(iszero(mod(z, WAD))), div(z, WAD))
        }
    }

    /// @dev Equivalent to `(x * y) / WAD` rounded up, but without overflow checks.
    function rawMulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(iszero(iszero(mod(mul(x, y), WAD))), div(mul(x, y), WAD))
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down.
    function divWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y != 0 && x <= type(uint256).max / WAD)`.
            if iszero(mul(y, lt(x, add(1, div(not(0), WAD))))) {
                mstore(0x00, 0x7c5f487d) // `DivWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := div(mul(x, WAD), y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down.
    function sDivWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, WAD)
            // Equivalent to `require(y != 0 && ((x * WAD) / WAD == x))`.
            if iszero(mul(y, eq(sdiv(z, WAD), x))) {
                mstore(0x00, 0x5c43740d) // `SDivWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := sdiv(z, y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks.
    function rawDivWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := div(mul(x, WAD), y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks.
    function rawSDivWad(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := sdiv(mul(x, WAD), y)
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded up.
    function divWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to `require(y != 0 && x <= type(uint256).max / WAD)`.
            if iszero(mul(y, lt(x, add(1, div(not(0), WAD))))) {
                mstore(0x00, 0x7c5f487d) // `DivWadFailed()`.
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y))
        }
    }

    /// @dev Equivalent to `(x * WAD) / y` rounded up, but without overflow and divide by zero checks.
    function rawDivWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y))
        }
    }

    /// @dev Equivalent to `x` to the power of `y`.
    /// because `x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)`.
    /// Note: This function is an approximation.
    function powWad(int256 x, int256 y) internal pure returns (int256) {
        // Using `ln(x)` means `x` must be greater than 0.
        return expWad((lnWad(x) * y) / int256(WAD));
    }

    /// @dev Returns `exp(x)`, denominated in `WAD`.
    /// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln
    /// Note: This function is an approximation. Monotonically increasing.
    function expWad(int256 x) internal pure returns (int256 r) {
        unchecked {
            // When the result is less than 0.5 we return zero.
            // This happens when `x <= (log(1e-18) * 1e18) ~ -4.15e19`.
            if (x <= -41446531673892822313) return r;

            /// @solidity memory-safe-assembly
            assembly {
                // When the result is greater than `(2**255 - 1) / 1e18` we can not represent it as
                // an int. This happens when `x >= floor(log((2**255 - 1) / 1e18) * 1e18) ≈ 135`.
                if iszero(slt(x, 135305999368893231589)) {
                    mstore(0x00, 0xa37bfec9) // `ExpOverflow()`.
                    revert(0x1c, 0x04)
                }
            }

            // `x` is now in the range `(-42, 136) * 1e18`. Convert to `(-42, 136) * 2**96`
            // for more intermediate precision and a binary basis. This base conversion
            // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
            x = (x << 78) / 5 ** 18;

            // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
            // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
            // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
            int256 k = ((x << 96) / 54916777467707473351141471128 + 2 ** 95) >> 96;
            x = x - k * 54916777467707473351141471128;

            // `k` is in the range `[-61, 195]`.

            // Evaluate using a (6, 7)-term rational approximation.
            // `p` is made monic, we'll multiply by a scale factor later.
            int256 y = x + 1346386616545796478920950773328;
            y = ((y * x) >> 96) + 57155421227552351082224309758442;
            int256 p = y + x - 94201549194550492254356042504812;
            p = ((p * y) >> 96) + 28719021644029726153956944680412240;
            p = p * x + (4385272521454847904659076985693276 << 96);

            // We leave `p` in `2**192` basis so we don't need to scale it back up for the division.
            int256 q = x - 2855989394907223263936484059900;
            q = ((q * x) >> 96) + 50020603652535783019961831881945;
            q = ((q * x) >> 96) - 533845033583426703283633433725380;
            q = ((q * x) >> 96) + 3604857256930695427073651918091429;
            q = ((q * x) >> 96) - 14423608567350463180887372962807573;
            q = ((q * x) >> 96) + 26449188498355588339934803723976023;

            /// @solidity memory-safe-assembly
            assembly {
                // Div in assembly because solidity adds a zero check despite the unchecked.
                // The q polynomial won't have zeros in the domain as all its roots are complex.
                // No scaling is necessary because p is already `2**96` too large.
                r := sdiv(p, q)
            }

            // r should be in the range `(0.09, 0.25) * 2**96`.

            // We now need to multiply r by:
            // - The scale factor `s ≈ 6.031367120`.
            // - The `2**k` factor from the range reduction.
            // - The `1e18 / 2**96` factor for base conversion.
            // We do this all at once, with an intermediate result in `2**213`
            // basis, so the final right shift is always by a positive amount.
            r = int256(
                (uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k)
            );
        }
    }

    /// @dev Returns `ln(x)`, denominated in `WAD`.
    /// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln
    /// Note: This function is an approximation. Monotonically increasing.
    function lnWad(int256 x) internal pure returns (int256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            // We want to convert `x` from `10**18` fixed point to `2**96` fixed point.
            // We do this by multiplying by `2**96 / 10**18`. But since
            // `ln(x * C) = ln(x) + ln(C)`, we can simply do nothing here
            // and add `ln(2**96 / 10**18)` at the end.

            // Compute `k = log2(x) - 96`, `r = 159 - k = 255 - log2(x) = 255 ^ log2(x)`.
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // We place the check here for more optimal stack operations.
            if iszero(sgt(x, 0)) {
                mstore(0x00, 0x1615e638) // `LnWadUndefined()`.
                revert(0x1c, 0x04)
            }
            // forgefmt: disable-next-item
            r := xor(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
                0xf8f9f9faf9fdfafbf9fdfcfdfafbfcfef9fafdfafcfcfbfefafafcfbffffffff))

            // Reduce range of x to (1, 2) * 2**96
            // ln(2^k * x) = k * ln(2) + ln(x)
            x := shr(159, shl(r, x))

            // Evaluate using a (8, 8)-term rational approximation.
            // `p` is made monic, we will multiply by a scale factor later.
            // forgefmt: disable-next-item
            let p := sub( // This heavily nested expression is to avoid stack-too-deep for via-ir.
                sar(96, mul(add(43456485725739037958740375743393,
                sar(96, mul(add(24828157081833163892658089445524,
                sar(96, mul(add(3273285459638523848632254066296,
                    x), x))), x))), x)), 11111509109440967052023855526967)
            p := sub(sar(96, mul(p, x)), 45023709667254063763336534515857)
            p := sub(sar(96, mul(p, x)), 14706773417378608786704636184526)
            p := sub(mul(p, x), shl(96, 795164235651350426258249787498))
            // We leave `p` in `2**192` basis so we don't need to scale it back up for the division.

            // `q` is monic by convention.
            let q := add(5573035233440673466300451813936, x)
            q := add(71694874799317883764090561454958, sar(96, mul(x, q)))
            q := add(283447036172924575727196451306956, sar(96, mul(x, q)))
            q := add(401686690394027663651624208769553, sar(96, mul(x, q)))
            q := add(204048457590392012362485061816622, sar(96, mul(x, q)))
            q := add(31853899698501571402653359427138, sar(96, mul(x, q)))
            q := add(909429971244387300277376558375, sar(96, mul(x, q)))

            // `p / q` is in the range `(0, 0.125) * 2**96`.

            // Finalization, we need to:
            // - Multiply by the scale factor `s = 5.549…`.
            // - Add `ln(2**96 / 10**18)`.
            // - Add `k * ln(2)`.
            // - Multiply by `10**18 / 2**96 = 5**18 >> 78`.

            // The q polynomial is known not to have zeros in the domain.
            // No scaling required because p is already `2**96` too large.
            p := sdiv(p, q)
            // Multiply by the scaling factor: `s * 5**18 * 2**96`, base is now `5**18 * 2**192`.
            p := mul(1677202110996718588342820967067443963516166, p)
            // Add `ln(2) * k * 5**18 * 2**192`.
            // forgefmt: disable-next-item
            p := add(mul(16597577552685614221487285958193947469193820559219878177908093499208371, sub(159, r)), p)
            // Add `ln(2**96 / 10**18) * 5**18 * 2**192`.
            p := add(600920179829731861736702779321621459595472258049074101567377883020018308, p)
            // Base conversion: mul `2**18 / 2**192`.
            r := sar(174, p)
        }
    }

    /// @dev Returns `W_0(x)`, denominated in `WAD`.
    /// See: https://en.wikipedia.org/wiki/Lambert_W_function
    /// a.k.a. Product log function. This is an approximation of the principal branch.
    /// Note: This function is an approximation. Monotonically increasing.
    function lambertW0Wad(int256 x) internal pure returns (int256 w) {
        // forgefmt: disable-next-item
        unchecked {
            if ((w = x) <= -367879441171442322) revert OutOfDomain(); // `x` less than `-1/e`.
            (int256 wad, int256 p) = (int256(WAD), x);
            uint256 c; // Whether we need to avoid catastrophic cancellation.
            uint256 i = 4; // Number of iterations.
            if (w <= 0x1ffffffffffff) {
                if (-0x4000000000000 <= w) {
                    i = 1; // Inputs near zero only take one step to converge.
                } else if (w <= -0x3ffffffffffffff) {
                    i = 32; // Inputs near `-1/e` take very long to converge.
                }
            } else if (uint256(w >> 63) == uint256(0)) {
                /// @solidity memory-safe-assembly
                assembly {
                    // Inline log2 for more performance, since the range is small.
                    let v := shr(49, w)
                    let l := shl(3, lt(0xff, v))
                    l := add(or(l, byte(and(0x1f, shr(shr(l, v), 0x8421084210842108cc6318c6db6d54be)),
                        0x0706060506020504060203020504030106050205030304010505030400000000)), 49)
                    w := sdiv(shl(l, 7), byte(sub(l, 31), 0x0303030303030303040506080c13))
                    c := gt(l, 60)
                    i := add(2, add(gt(l, 53), c))
                }
            } else {
                int256 ll = lnWad(w = lnWad(w));
                /// @solidity memory-safe-assembly
                assembly {
                    // `w = ln(x) - ln(ln(x)) + b * ln(ln(x)) / ln(x)`.
                    w := add(sdiv(mul(ll, 1023715080943847266), w), sub(w, ll))
                    i := add(3, iszero(shr(68, x)))
                    c := iszero(shr(143, x))
                }
                if (c == uint256(0)) {
                    do { // If `x` is big, use Newton's so that intermediate values won't overflow.
                        int256 e = expWad(w);
                        /// @solidity memory-safe-assembly
                        assembly {
                            let t := mul(w, div(e, wad))
                            w := sub(w, sdiv(sub(t, x), div(add(e, t), wad)))
                        }
                        if (p <= w) break;
                        p = w;
                    } while (--i != uint256(0));
                    /// @solidity memory-safe-assembly
                    assembly {
                        w := sub(w, sgt(w, 2))
                    }
                    return w;
                }
            }
            do { // Otherwise, use Halley's for faster convergence.
                int256 e = expWad(w);
                /// @solidity memory-safe-assembly
                assembly {
                    let t := add(w, wad)
                    let s := sub(mul(w, e), mul(x, wad))
                    w := sub(w, sdiv(mul(s, wad), sub(mul(e, t), sdiv(mul(add(t, wad), s), add(t, t)))))
                }
                if (p <= w) break;
                p = w;
            } while (--i != c);
            /// @solidity memory-safe-assembly
            assembly {
                w := sub(w, sgt(w, 2))
            }
            // For certain ranges of `x`, we'll use the quadratic-rate recursive formula of
            // R. Iacono and J.P. Boyd for the last iteration, to avoid catastrophic cancellation.
            if (c == uint256(0)) return w;
            int256 t = w | 1;
            /// @solidity memory-safe-assembly
            assembly {
                x := sdiv(mul(x, wad), t)
            }
            x = (t * (wad + lnWad(x)));
            /// @solidity memory-safe-assembly
            assembly {
                w := sdiv(x, add(wad, t))
            }
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                  GENERAL NUMBER UTILITIES                  */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Calculates `floor(x * y / d)` with full precision.
    /// Throws if result overflows a uint256 or when `d` is zero.
    /// Credit to Remco Bloemen under MIT license: https://2π.com/21/muldiv
    function fullMulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 result) {
        /// @solidity memory-safe-assembly
        assembly {
            // 512-bit multiply `[p1 p0] = x * y`.
            // Compute the product mod `2**256` and mod `2**256 - 1`
            // then use the Chinese Remainder Theorem to reconstruct
            // the 512 bit result. The result is stored in two 256
            // variables such that `product = p1 * 2**256 + p0`.

            // Temporarily use `result` as `p0` to save gas.
            result := mul(x, y) // Lower 256 bits of `x * y`.
            for {} 1 {} {
                // If overflows.
                if iszero(mul(or(iszero(x), eq(div(result, x), y)), d)) {
                    let mm := mulmod(x, y, not(0))
                    let p1 := sub(mm, add(result, lt(mm, result))) // Upper 256 bits of `x * y`.

                    /*------------------- 512 by 256 division --------------------*/

                    // Make division exact by subtracting the remainder from `[p1 p0]`.
                    let r := mulmod(x, y, d) // Compute remainder using mulmod.
                    let t := and(d, sub(0, d)) // The least significant bit of `d`. `t >= 1`.
                    // Make sure the result is less than `2**256`. Also prevents `d == 0`.
                    // Placing the check here seems to give more optimal stack operations.
                    if iszero(gt(d, p1)) {
                        mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
                        revert(0x1c, 0x04)
                    }
                    d := div(d, t) // Divide `d` by `t`, which is a power of two.
                    // Invert `d mod 2**256`
                    // Now that `d` is an odd number, it has an inverse
                    // modulo `2**256` such that `d * inv = 1 mod 2**256`.
                    // Compute the inverse by starting with a seed that is correct
                    // correct for four bits. That is, `d * inv = 1 mod 2**4`.
                    let inv := xor(2, mul(3, d))
                    // Now use Newton-Raphson iteration to improve the precision.
                    // Thanks to Hensel's lifting lemma, this also works in modular
                    // arithmetic, doubling the correct bits in each step.
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**8
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**16
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**32
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**64
                    inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**128
                    result :=
                        mul(
                            // Divide [p1 p0] by the factors of two.
                            // Shift in bits from `p1` into `p0`. For this we need
                            // to flip `t` such that it is `2**256 / t`.
                            or(
                                mul(sub(p1, gt(r, result)), add(div(sub(0, t), t), 1)),
                                div(sub(result, r), t)
                            ),
                            mul(sub(2, mul(d, inv)), inv) // inverse mod 2**256
                        )
                    break
                }
                result := div(result, d)
                break
            }
        }
    }

    /// @dev Calculates `floor(x * y / d)` with full precision.
    /// Behavior is undefined if `d` is zero or the final result cannot fit in 256 bits.
    /// Performs the full 512 bit calculation regardless.
    function fullMulDivUnchecked(uint256 x, uint256 y, uint256 d)
        internal
        pure
        returns (uint256 result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            result := mul(x, y)
            let mm := mulmod(x, y, not(0))
            let p1 := sub(mm, add(result, lt(mm, result)))
            let t := and(d, sub(0, d))
            let r := mulmod(x, y, d)
            d := div(d, t)
            let inv := xor(2, mul(3, d))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            inv := mul(inv, sub(2, mul(d, inv)))
            result :=
                mul(
                    or(mul(sub(p1, gt(r, result)), add(div(sub(0, t), t), 1)), div(sub(result, r), t)),
                    mul(sub(2, mul(d, inv)), inv)
                )
        }
    }

    /// @dev Calculates `floor(x * y / d)` with full precision, rounded up.
    /// Throws if result overflows a uint256 or when `d` is zero.
    /// Credit to Uniswap-v3-core under MIT license:
    /// https://github.com/Uniswap/v3-core/blob/main/contracts/libraries/FullMath.sol
    function fullMulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 result) {
        result = fullMulDiv(x, y, d);
        /// @solidity memory-safe-assembly
        assembly {
            if mulmod(x, y, d) {
                result := add(result, 1)
                if iszero(result) {
                    mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
                    revert(0x1c, 0x04)
                }
            }
        }
    }

    /// @dev Returns `floor(x * y / d)`.
    /// Reverts if `x * y` overflows, or `d` is zero.
    function mulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require(d != 0 && (y == 0 || x <= type(uint256).max / y))`.
            if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
                mstore(0x00, 0xad251c27) // `MulDivFailed()`.
                revert(0x1c, 0x04)
            }
            z := div(z, d)
        }
    }

    /// @dev Returns `ceil(x * y / d)`.
    /// Reverts if `x * y` overflows, or `d` is zero.
    function mulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(x, y)
            // Equivalent to `require(d != 0 && (y == 0 || x <= type(uint256).max / y))`.
            if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
                mstore(0x00, 0xad251c27) // `MulDivFailed()`.
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(z, d))), div(z, d))
        }
    }

    /// @dev Returns `ceil(x / d)`.
    /// Reverts if `d` is zero.
    function divUp(uint256 x, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(d) {
                mstore(0x00, 0x65244e4e) // `DivFailed()`.
                revert(0x1c, 0x04)
            }
            z := add(iszero(iszero(mod(x, d))), div(x, d))
        }
    }

    /// @dev Returns `max(0, x - y)`.
    function zeroFloorSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(gt(x, y), sub(x, y))
        }
    }

    /// @dev Returns `condition ? x : y`, without branching.
    function ternary(bool condition, uint256 x, uint256 y) internal pure returns (uint256 result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := xor(x, mul(xor(x, y), iszero(condition)))
        }
    }

    /// @dev Exponentiate `x` to `y` by squaring, denominated in base `b`.
    /// Reverts if the computation overflows.
    function rpow(uint256 x, uint256 y, uint256 b) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mul(b, iszero(y)) // `0 ** 0 = 1`. Otherwise, `0 ** n = 0`.
            if x {
                z := xor(b, mul(xor(b, x), and(y, 1))) // `z = isEven(y) ? scale : x`
                let half := shr(1, b) // Divide `b` by 2.
                // Divide `y` by 2 every iteration.
                for { y := shr(1, y) } y { y := shr(1, y) } {
                    let xx := mul(x, x) // Store x squared.
                    let xxRound := add(xx, half) // Round to the nearest number.
                    // Revert if `xx + half` overflowed, or if `x ** 2` overflows.
                    if or(lt(xxRound, xx), shr(128, x)) {
                        mstore(0x00, 0x49f7642b) // `RPowOverflow()`.
                        revert(0x1c, 0x04)
                    }
                    x := div(xxRound, b) // Set `x` to scaled `xxRound`.
                    // If `y` is odd:
                    if and(y, 1) {
                        let zx := mul(z, x) // Compute `z * x`.
                        let zxRound := add(zx, half) // Round to the nearest number.
                        // If `z * x` overflowed or `zx + half` overflowed:
                        if or(xor(div(zx, x), z), lt(zxRound, zx)) {
                            // Revert if `x` is non-zero.
                            if x {
                                mstore(0x00, 0x49f7642b) // `RPowOverflow()`.
                                revert(0x1c, 0x04)
                            }
                        }
                        z := div(zxRound, b) // Return properly scaled `zxRound`.
                    }
                }
            }
        }
    }

    /// @dev Returns the square root of `x`, rounded down.
    function sqrt(uint256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // `floor(sqrt(2**15)) = 181`. `sqrt(2**15) - 181 = 2.84`.
            z := 181 // The "correct" value is 1, but this saves a multiplication later.

            // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
            // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.

            // Let `y = x / 2**r`. We check `y >= 2**(k + 8)`
            // but shift right by `k` bits to ensure that if `x >= 256`, then `y >= 256`.
            let r := shl(7, lt(0xffffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffffff, shr(r, x))))
            z := shl(shr(1, r), z)

            // Goal was to get `z*z*y` within a small factor of `x`. More iterations could
            // get y in a tighter range. Currently, we will have y in `[256, 256*(2**16))`.
            // We ensured `y >= 256` so that the relative difference between `y` and `y+1` is small.
            // That's not possible if `x < 256` but we can just verify those cases exhaustively.

            // Now, `z*z*y <= x < z*z*(y+1)`, and `y <= 2**(16+8)`, and either `y >= 256`, or `x < 256`.
            // Correctness can be checked exhaustively for `x < 256`, so we assume `y >= 256`.
            // Then `z*sqrt(y)` is within `sqrt(257)/sqrt(256)` of `sqrt(x)`, or about 20bps.

            // For `s` in the range `[1/256, 256]`, the estimate `f(s) = (181/1024) * (s+1)`
            // is in the range `(1/2.84 * sqrt(s), 2.84 * sqrt(s))`,
            // with largest error when `s = 1` and when `s = 256` or `1/256`.

            // Since `y` is in `[256, 256*(2**16))`, let `a = y/65536`, so that `a` is in `[1/256, 256)`.
            // Then we can estimate `sqrt(y)` using
            // `sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2**18`.

            // There is no overflow risk here since `y < 2**136` after the first branch above.
            z := shr(18, mul(z, add(shr(r, x), 65536))) // A `mul()` is saved from starting `z` at 181.

            // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))

            // If `x+1` is a perfect square, the Babylonian method cycles between
            // `floor(sqrt(x))` and `ceil(sqrt(x))`. This statement ensures we return floor.
            // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
            z := sub(z, lt(div(x, z), z))
        }
    }

    /// @dev Returns the cube root of `x`, rounded down.
    /// Credit to bout3fiddy and pcaversaccio under AGPLv3 license:
    /// https://github.com/pcaversaccio/snekmate/blob/main/src/utils/Math.vy
    /// Formally verified by xuwinnie:
    /// https://github.com/vectorized/solady/blob/main/audits/xuwinnie-solady-cbrt-proof.pdf
    function cbrt(uint256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            let r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // Makeshift lookup table to nudge the approximate log2 result.
            z := div(shl(div(r, 3), shl(lt(0xf, shr(r, x)), 0xf)), xor(7, mod(r, 3)))
            // Newton-Raphson's.
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            z := div(add(add(div(x, mul(z, z)), z), z), 3)
            // Round down.
            z := sub(z, lt(div(x, mul(z, z)), z))
        }
    }

    /// @dev Returns the square root of `x`, denominated in `WAD`, rounded down.
    function sqrtWad(uint256 x) internal pure returns (uint256 z) {
        unchecked {
            if (x <= type(uint256).max / 10 ** 18) return sqrt(x * 10 ** 18);
            z = (1 + sqrt(x)) * 10 ** 9;
            z = (fullMulDivUnchecked(x, 10 ** 18, z) + z) >> 1;
        }
        /// @solidity memory-safe-assembly
        assembly {
            z := sub(z, gt(999999999999999999, sub(mulmod(z, z, x), 1))) // Round down.
        }
    }

    /// @dev Returns the cube root of `x`, denominated in `WAD`, rounded down.
    /// Formally verified by xuwinnie:
    /// https://github.com/vectorized/solady/blob/main/audits/xuwinnie-solady-cbrt-proof.pdf
    function cbrtWad(uint256 x) internal pure returns (uint256 z) {
        unchecked {
            if (x <= type(uint256).max / 10 ** 36) return cbrt(x * 10 ** 36);
            z = (1 + cbrt(x)) * 10 ** 12;
            z = (fullMulDivUnchecked(x, 10 ** 36, z * z) + z + z) / 3;
        }
        /// @solidity memory-safe-assembly
        assembly {
            let p := x
            for {} 1 {} {
                if iszero(shr(229, p)) {
                    if iszero(shr(199, p)) {
                        p := mul(p, 100000000000000000) // 10 ** 17.
                        break
                    }
                    p := mul(p, 100000000) // 10 ** 8.
                    break
                }
                if iszero(shr(249, p)) { p := mul(p, 100) }
                break
            }
            let t := mulmod(mul(z, z), z, p)
            z := sub(z, gt(lt(t, shr(1, p)), iszero(t))) // Round down.
        }
    }

    /// @dev Returns the factorial of `x`.
    function factorial(uint256 x) internal pure returns (uint256 result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := 1
            if iszero(lt(x, 58)) {
                mstore(0x00, 0xaba0f2a2) // `FactorialOverflow()`.
                revert(0x1c, 0x04)
            }
            for {} x { x := sub(x, 1) } { result := mul(result, x) }
        }
    }

    /// @dev Returns the log2 of `x`.
    /// Equivalent to computing the index of the most significant bit (MSB) of `x`.
    /// Returns 0 if `x` is zero.
    function log2(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // forgefmt: disable-next-item
            r := or(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
                0x0706060506020504060203020504030106050205030304010505030400000000))
        }
    }

    /// @dev Returns the log2 of `x`, rounded up.
    /// Returns 0 if `x` is zero.
    function log2Up(uint256 x) internal pure returns (uint256 r) {
        r = log2(x);
        /// @solidity memory-safe-assembly
        assembly {
            r := add(r, lt(shl(r, 1), x))
        }
    }

    /// @dev Returns the log10 of `x`.
    /// Returns 0 if `x` is zero.
    function log10(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(lt(x, 100000000000000000000000000000000000000)) {
                x := div(x, 100000000000000000000000000000000000000)
                r := 38
            }
            if iszero(lt(x, 100000000000000000000)) {
                x := div(x, 100000000000000000000)
                r := add(r, 20)
            }
            if iszero(lt(x, 10000000000)) {
                x := div(x, 10000000000)
                r := add(r, 10)
            }
            if iszero(lt(x, 100000)) {
                x := div(x, 100000)
                r := add(r, 5)
            }
            r := add(r, add(gt(x, 9), add(gt(x, 99), add(gt(x, 999), gt(x, 9999)))))
        }
    }

    /// @dev Returns the log10 of `x`, rounded up.
    /// Returns 0 if `x` is zero.
    function log10Up(uint256 x) internal pure returns (uint256 r) {
        r = log10(x);
        /// @solidity memory-safe-assembly
        assembly {
            r := add(r, lt(exp(10, r), x))
        }
    }

    /// @dev Returns the log256 of `x`.
    /// Returns 0 if `x` is zero.
    function log256(uint256 x) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(shr(3, r), lt(0xff, shr(r, x)))
        }
    }

    /// @dev Returns the log256 of `x`, rounded up.
    /// Returns 0 if `x` is zero.
    function log256Up(uint256 x) internal pure returns (uint256 r) {
        r = log256(x);
        /// @solidity memory-safe-assembly
        assembly {
            r := add(r, lt(shl(shl(3, r), 1), x))
        }
    }

    /// @dev Returns the scientific notation format `mantissa * 10 ** exponent` of `x`.
    /// Useful for compressing prices (e.g. using 25 bit mantissa and 7 bit exponent).
    function sci(uint256 x) internal pure returns (uint256 mantissa, uint256 exponent) {
        /// @solidity memory-safe-assembly
        assembly {
            mantissa := x
            if mantissa {
                if iszero(mod(mantissa, 1000000000000000000000000000000000)) {
                    mantissa := div(mantissa, 1000000000000000000000000000000000)
                    exponent := 33
                }
                if iszero(mod(mantissa, 10000000000000000000)) {
                    mantissa := div(mantissa, 10000000000000000000)
                    exponent := add(exponent, 19)
                }
                if iszero(mod(mantissa, 1000000000000)) {
                    mantissa := div(mantissa, 1000000000000)
                    exponent := add(exponent, 12)
                }
                if iszero(mod(mantissa, 1000000)) {
                    mantissa := div(mantissa, 1000000)
                    exponent := add(exponent, 6)
                }
                if iszero(mod(mantissa, 10000)) {
                    mantissa := div(mantissa, 10000)
                    exponent := add(exponent, 4)
                }
                if iszero(mod(mantissa, 100)) {
                    mantissa := div(mantissa, 100)
                    exponent := add(exponent, 2)
                }
                if iszero(mod(mantissa, 10)) {
                    mantissa := div(mantissa, 10)
                    exponent := add(exponent, 1)
                }
            }
        }
    }

    /// @dev Convenience function for packing `x` into a smaller number using `sci`.
    /// The `mantissa` will be in bits [7..255] (the upper 249 bits).
    /// The `exponent` will be in bits [0..6] (the lower 7 bits).
    /// Use `SafeCastLib` to safely ensure that the `packed` number is small
    /// enough to fit in the desired unsigned integer type:
    /// ```
    ///     uint32 packed = SafeCastLib.toUint32(FixedPointMathLib.packSci(777 ether));
    /// ```
    function packSci(uint256 x) internal pure returns (uint256 packed) {
        (x, packed) = sci(x); // Reuse for `mantissa` and `exponent`.
        /// @solidity memory-safe-assembly
        assembly {
            if shr(249, x) {
                mstore(0x00, 0xce30380c) // `MantissaOverflow()`.
                revert(0x1c, 0x04)
            }
            packed := or(shl(7, x), packed)
        }
    }

    /// @dev Convenience function for unpacking a packed number from `packSci`.
    function unpackSci(uint256 packed) internal pure returns (uint256 unpacked) {
        unchecked {
            unpacked = (packed >> 7) * 10 ** (packed & 0x7f);
        }
    }

    /// @dev Returns the average of `x` and `y`. Rounds towards zero.
    function avg(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = (x & y) + ((x ^ y) >> 1);
        }
    }

    /// @dev Returns the average of `x` and `y`. Rounds towards negative infinity.
    function avg(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = (x >> 1) + (y >> 1) + (x & y & 1);
        }
    }

    /// @dev Returns the absolute value of `x`.
    function abs(int256 x) internal pure returns (uint256 z) {
        unchecked {
            z = (uint256(x) + uint256(x >> 255)) ^ uint256(x >> 255);
        }
    }

    /// @dev Returns the absolute distance between `x` and `y`.
    function dist(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(xor(sub(0, gt(x, y)), sub(y, x)), gt(x, y))
        }
    }

    /// @dev Returns the absolute distance between `x` and `y`.
    function dist(int256 x, int256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := add(xor(sub(0, sgt(x, y)), sub(y, x)), sgt(x, y))
        }
    }

    /// @dev Returns the minimum of `x` and `y`.
    function min(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), lt(y, x)))
        }
    }

    /// @dev Returns the minimum of `x` and `y`.
    function min(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), slt(y, x)))
        }
    }

    /// @dev Returns the maximum of `x` and `y`.
    function max(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), gt(y, x)))
        }
    }

    /// @dev Returns the maximum of `x` and `y`.
    function max(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, y), sgt(y, x)))
        }
    }

    /// @dev Returns `x`, bounded to `minValue` and `maxValue`.
    function clamp(uint256 x, uint256 minValue, uint256 maxValue)
        internal
        pure
        returns (uint256 z)
    {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, minValue), gt(minValue, x)))
            z := xor(z, mul(xor(z, maxValue), lt(maxValue, z)))
        }
    }

    /// @dev Returns `x`, bounded to `minValue` and `maxValue`.
    function clamp(int256 x, int256 minValue, int256 maxValue) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := xor(x, mul(xor(x, minValue), sgt(minValue, x)))
            z := xor(z, mul(xor(z, maxValue), slt(maxValue, z)))
        }
    }

    /// @dev Returns greatest common divisor of `x` and `y`.
    function gcd(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            for { z := x } y {} {
                let t := y
                y := mod(z, y)
                z := t
            }
        }
    }

    /// @dev Returns `a + (b - a) * (t - begin) / (end - begin)`,
    /// with `t` clamped between `begin` and `end` (inclusive).
    /// Agnostic to the order of (`a`, `b`) and (`end`, `begin`).
    /// If `begins == end`, returns `t <= begin ? a : b`.
    function lerp(uint256 a, uint256 b, uint256 t, uint256 begin, uint256 end)
        internal
        pure
        returns (uint256)
    {
        if (begin > end) (t, begin, end) = (~t, ~begin, ~end);
        if (t <= begin) return a;
        if (t >= end) return b;
        unchecked {
            if (b >= a) return a + fullMulDiv(b - a, t - begin, end - begin);
            return a - fullMulDiv(a - b, t - begin, end - begin);
        }
    }

    /// @dev Returns `a + (b - a) * (t - begin) / (end - begin)`.
    /// with `t` clamped between `begin` and `end` (inclusive).
    /// Agnostic to the order of (`a`, `b`) and (`end`, `begin`).
    /// If `begins == end`, returns `t <= begin ? a : b`.
    function lerp(int256 a, int256 b, int256 t, int256 begin, int256 end)
        internal
        pure
        returns (int256)
    {
        if (begin > end) (t, begin, end) = (~t, ~begin, ~end);
        if (t <= begin) return a;
        if (t >= end) return b;
        // forgefmt: disable-next-item
        unchecked {
            if (b >= a) return int256(uint256(a) + fullMulDiv(uint256(b - a),
                uint256(t - begin), uint256(end - begin)));
            return int256(uint256(a) - fullMulDiv(uint256(a - b),
                uint256(t - begin), uint256(end - begin)));
        }
    }

    /// @dev Returns if `x` is an even number. Some people may need this.
    function isEven(uint256 x) internal pure returns (bool) {
        return x & uint256(1) == uint256(0);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   RAW NUMBER OPERATIONS                    */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns `x + y`, without checking for overflow.
    function rawAdd(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = x + y;
        }
    }

    /// @dev Returns `x + y`, without checking for overflow.
    function rawAdd(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = x + y;
        }
    }

    /// @dev Returns `x - y`, without checking for underflow.
    function rawSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = x - y;
        }
    }

    /// @dev Returns `x - y`, without checking for underflow.
    function rawSub(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = x - y;
        }
    }

    /// @dev Returns `x * y`, without checking for overflow.
    function rawMul(uint256 x, uint256 y) internal pure returns (uint256 z) {
        unchecked {
            z = x * y;
        }
    }

    /// @dev Returns `x * y`, without checking for overflow.
    function rawMul(int256 x, int256 y) internal pure returns (int256 z) {
        unchecked {
            z = x * y;
        }
    }

    /// @dev Returns `x / y`, returning 0 if `y` is zero.
    function rawDiv(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := div(x, y)
        }
    }

    /// @dev Returns `x / y`, returning 0 if `y` is zero.
    function rawSDiv(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := sdiv(x, y)
        }
    }

    /// @dev Returns `x % y`, returning 0 if `y` is zero.
    function rawMod(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mod(x, y)
        }
    }

    /// @dev Returns `x % y`, returning 0 if `y` is zero.
    function rawSMod(int256 x, int256 y) internal pure returns (int256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := smod(x, y)
        }
    }

    /// @dev Returns `(x + y) % d`, return 0 if `d` if zero.
    function rawAddMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := addmod(x, y, d)
        }
    }

    /// @dev Returns `(x * y) % d`, return 0 if `d` if zero.
    function rawMulMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            z := mulmod(x, y, d)
        }
    }
}

File 28 of 45 : ERC20.sol
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;

/// @notice Modern and gas efficient ERC20 + EIP-2612 implementation.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC20.sol)
/// @author Modified from Uniswap (https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/UniswapV2ERC20.sol)
/// @dev Do not manually set balances without updating totalSupply, as the sum of all user balances must not exceed it.
abstract contract ERC20 {
    /*//////////////////////////////////////////////////////////////
                                 EVENTS
    //////////////////////////////////////////////////////////////*/

    event Transfer(address indexed from, address indexed to, uint256 amount);

    event Approval(address indexed owner, address indexed spender, uint256 amount);

    /*//////////////////////////////////////////////////////////////
                            METADATA STORAGE
    //////////////////////////////////////////////////////////////*/

    string public name;

    string public symbol;

    uint8 public immutable decimals;

    /*//////////////////////////////////////////////////////////////
                              ERC20 STORAGE
    //////////////////////////////////////////////////////////////*/

    uint256 public totalSupply;

    mapping(address => uint256) public balanceOf;

    mapping(address => mapping(address => uint256)) public allowance;

    /*//////////////////////////////////////////////////////////////
                            EIP-2612 STORAGE
    //////////////////////////////////////////////////////////////*/

    uint256 internal immutable INITIAL_CHAIN_ID;

    bytes32 internal immutable INITIAL_DOMAIN_SEPARATOR;

    mapping(address => uint256) public nonces;

    /*//////////////////////////////////////////////////////////////
                               CONSTRUCTOR
    //////////////////////////////////////////////////////////////*/

    constructor(
        string memory _name,
        string memory _symbol,
        uint8 _decimals
    ) {
        name = _name;
        symbol = _symbol;
        decimals = _decimals;

        INITIAL_CHAIN_ID = block.chainid;
        INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator();
    }

    /*//////////////////////////////////////////////////////////////
                               ERC20 LOGIC
    //////////////////////////////////////////////////////////////*/

    function approve(address spender, uint256 amount) public virtual returns (bool) {
        allowance[msg.sender][spender] = amount;

        emit Approval(msg.sender, spender, amount);

        return true;
    }

    function transfer(address to, uint256 amount) public virtual returns (bool) {
        balanceOf[msg.sender] -= amount;

        // Cannot overflow because the sum of all user
        // balances can't exceed the max uint256 value.
        unchecked {
            balanceOf[to] += amount;
        }

        emit Transfer(msg.sender, to, amount);

        return true;
    }

    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) public virtual returns (bool) {
        uint256 allowed = allowance[from][msg.sender]; // Saves gas for limited approvals.

        if (allowed != type(uint256).max) allowance[from][msg.sender] = allowed - amount;

        balanceOf[from] -= amount;

        // Cannot overflow because the sum of all user
        // balances can't exceed the max uint256 value.
        unchecked {
            balanceOf[to] += amount;
        }

        emit Transfer(from, to, amount);

        return true;
    }

    /*//////////////////////////////////////////////////////////////
                             EIP-2612 LOGIC
    //////////////////////////////////////////////////////////////*/

    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual {
        require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED");

        // Unchecked because the only math done is incrementing
        // the owner's nonce which cannot realistically overflow.
        unchecked {
            address recoveredAddress = ecrecover(
                keccak256(
                    abi.encodePacked(
                        "\x19\x01",
                        DOMAIN_SEPARATOR(),
                        keccak256(
                            abi.encode(
                                keccak256(
                                    "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"
                                ),
                                owner,
                                spender,
                                value,
                                nonces[owner]++,
                                deadline
                            )
                        )
                    )
                ),
                v,
                r,
                s
            );

            require(recoveredAddress != address(0) && recoveredAddress == owner, "INVALID_SIGNER");

            allowance[recoveredAddress][spender] = value;
        }

        emit Approval(owner, spender, value);
    }

    function DOMAIN_SEPARATOR() public view virtual returns (bytes32) {
        return block.chainid == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator();
    }

    function computeDomainSeparator() internal view virtual returns (bytes32) {
        return
            keccak256(
                abi.encode(
                    keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"),
                    keccak256(bytes(name)),
                    keccak256("1"),
                    block.chainid,
                    address(this)
                )
            );
    }

    /*//////////////////////////////////////////////////////////////
                        INTERNAL MINT/BURN LOGIC
    //////////////////////////////////////////////////////////////*/

    function _mint(address to, uint256 amount) internal virtual {
        totalSupply += amount;

        // Cannot overflow because the sum of all user
        // balances can't exceed the max uint256 value.
        unchecked {
            balanceOf[to] += amount;
        }

        emit Transfer(address(0), to, amount);
    }

    function _burn(address from, uint256 amount) internal virtual {
        balanceOf[from] -= amount;

        // Cannot underflow because a user's balance
        // will never be larger than the total supply.
        unchecked {
            totalSupply -= amount;
        }

        emit Transfer(from, address(0), amount);
    }
}

File 29 of 45 : SafeTransferLib.sol
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;

import {ERC20} from "../tokens/ERC20.sol";

/// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol)
/// @dev Use with caution! Some functions in this library knowingly create dirty bits at the destination of the free memory pointer.
library SafeTransferLib {
    /*//////////////////////////////////////////////////////////////
                             ETH OPERATIONS
    //////////////////////////////////////////////////////////////*/

    function safeTransferETH(address to, uint256 amount) internal {
        bool success;

        /// @solidity memory-safe-assembly
        assembly {
            // Transfer the ETH and store if it succeeded or not.
            success := call(gas(), to, amount, 0, 0, 0, 0)
        }

        require(success, "ETH_TRANSFER_FAILED");
    }

    /*//////////////////////////////////////////////////////////////
                            ERC20 OPERATIONS
    //////////////////////////////////////////////////////////////*/

    function safeTransferFrom(
        ERC20 token,
        address from,
        address to,
        uint256 amount
    ) internal {
        bool success;

        /// @solidity memory-safe-assembly
        assembly {
            // Get a pointer to some free memory.
            let freeMemoryPointer := mload(0x40)

            // Write the abi-encoded calldata into memory, beginning with the function selector.
            mstore(freeMemoryPointer, 0x23b872dd00000000000000000000000000000000000000000000000000000000)
            mstore(add(freeMemoryPointer, 4), and(from, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "from" argument.
            mstore(add(freeMemoryPointer, 36), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument.
            mstore(add(freeMemoryPointer, 68), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type.

            // We use 100 because the length of our calldata totals up like so: 4 + 32 * 3.
            // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
            success := call(gas(), token, 0, freeMemoryPointer, 100, 0, 32)

            // Set success to whether the call reverted, if not we check it either
            // returned exactly 1 (can't just be non-zero data), or had no return data and token has code.
            if and(iszero(and(eq(mload(0), 1), gt(returndatasize(), 31))), success) {
                success := iszero(or(iszero(extcodesize(token)), returndatasize())) 
            }
        }

        require(success, "TRANSFER_FROM_FAILED");
    }

    function safeTransfer(
        ERC20 token,
        address to,
        uint256 amount
    ) internal {
        bool success;

        /// @solidity memory-safe-assembly
        assembly {
            // Get a pointer to some free memory.
            let freeMemoryPointer := mload(0x40)

            // Write the abi-encoded calldata into memory, beginning with the function selector.
            mstore(freeMemoryPointer, 0xa9059cbb00000000000000000000000000000000000000000000000000000000)
            mstore(add(freeMemoryPointer, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument.
            mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type.

            // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2.
            // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
            success := call(gas(), token, 0, freeMemoryPointer, 68, 0, 32)

            // Set success to whether the call reverted, if not we check it either
            // returned exactly 1 (can't just be non-zero data), or had no return data and token has code.
            if and(iszero(and(eq(mload(0), 1), gt(returndatasize(), 31))), success) {
                success := iszero(or(iszero(extcodesize(token)), returndatasize())) 
            }
        }

        require(success, "TRANSFER_FAILED");
    }

    function safeApprove(
        ERC20 token,
        address to,
        uint256 amount
    ) internal {
        bool success;

        /// @solidity memory-safe-assembly
        assembly {
            // Get a pointer to some free memory.
            let freeMemoryPointer := mload(0x40)

            // Write the abi-encoded calldata into memory, beginning with the function selector.
            mstore(freeMemoryPointer, 0x095ea7b300000000000000000000000000000000000000000000000000000000)
            mstore(add(freeMemoryPointer, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument.
            mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type.

            // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2.
            // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
            success := call(gas(), token, 0, freeMemoryPointer, 68, 0, 32)

            // Set success to whether the call reverted, if not we check it either
            // returned exactly 1 (can't just be non-zero data), or had no return data and token has code.
            if and(iszero(and(eq(mload(0), 1), gt(returndatasize(), 31))), success) {
                success := iszero(or(iszero(extcodesize(token)), returndatasize())) 
            }
        }

        require(success, "APPROVE_FAILED");
    }
}

File 30 of 45 : PausableCheck.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import {LibPausable} from "src/libraries/LibPausable.sol";

/**
 * @title PausableCheck
 * @dev Abstract contract that provides a modifier to check if the function is paused.
 */
abstract contract PausableCheck {
    /**
     * @dev Modifier to make a function callable only if it is not paused.
     */
    modifier notPaused() {
        LibPausable._checkNotPaused();
        _;
    }
}

File 31 of 45 : RoleCheck.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import {Address} from "@openzeppelin/contracts/utils/Address.sol";
import {AccessFacet} from "src/facets/AccessFacet.sol";

/**
 * @title RoleCheck
 * @dev Abstract contract that provides a modifier to check if the caller has a specific role.
 */
abstract contract RoleCheck {
    using Address for address;

    /**
     * @dev Modifier to make a function callable only by accounts with a specific role.
     * @param role The role identifier.
     */
    modifier onlyRole(bytes32 role) {
        address(this).functionDelegateCall(abi.encodeWithSelector(AccessFacet.checkRole.selector, role));
        _;
    }
}

File 32 of 45 : AccessFacet.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import {AccessControlEnumerableUpgradeable} from
    "@openzeppelin-upgradeable/contracts/access/extensions/AccessControlEnumerableUpgradeable.sol";
import {
    AccessControlUpgradeable,
    IAccessControl
} from "@openzeppelin-upgradeable/contracts/access/AccessControlUpgradeable.sol";

import {IAccessFacet} from "src/interfaces/IAccessFacet.sol";

import {LibOwner} from "src/libraries/LibOwner.sol";
import {LibRoles} from "src/libraries/LibRoles.sol";
import {LibEvents} from "src/libraries/LibEvents.sol";
import {LibPausable} from "src/libraries/LibPausable.sol";

/**
 * @title AccessFacet
 * @dev Contract that provides role-based access control and pausing functionality.
 */
contract AccessFacet is AccessControlEnumerableUpgradeable, IAccessFacet {
    /// @inheritdoc IAccessControl
    function grantRole(bytes32 role, address account) public override(AccessControlUpgradeable, IAccessControl) {
        LibOwner.onlyOwner();
        _grantRole(role, account);
    }

    /// @inheritdoc IAccessControl
    function revokeRole(bytes32 role, address account) public override(AccessControlUpgradeable, IAccessControl) {
        LibOwner.onlyOwner();
        _revokeRole(role, account);
    }

    /// @inheritdoc IAccessFacet
    function checkRole(bytes32 role) external view {
        _checkRole(role);
    }

    /// @inheritdoc IAccessFacet
    function setPaused(bytes4 selector, bool paused) external {
        if (paused) {
            _checkRole(LibRoles.PAUSER, msg.sender);
        } else {
            _checkRole(LibRoles.UNPAUSER, msg.sender);
        }
        LibPausable.PausableStorage storage s = LibPausable._getPausableStorage();
        s.selectorToPaused[selector] = paused;
        emit LibEvents.PausedChange(selector, paused);
    }

    /// @inheritdoc IAccessFacet
    function selectorToPaused(bytes4 selector) external view returns (bool) {
        return LibPausable._getPausableStorage().selectorToPaused[selector];
    }
}

File 33 of 45 : IAccessFacet.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import {IAccessControlEnumerable} from "@openzeppelin/contracts/access/extensions/IAccessControlEnumerable.sol";

interface IAccessFacet is IAccessControlEnumerable {
    /**
     * @dev Checks if the caller has a specific role.
     * @param role The role identifier.
     */
    function checkRole(bytes32 role) external view;

    /**
     * @dev Sets the paused state for a specific function selector.
     * @param selector The function selector.
     * @param paused The paused state.
     */
    function setPaused(bytes4 selector, bool paused) external;

    /**
     * @dev Gets the paused state for a specific function selector.
     * @param selector The function selector.
     * @return paused The paused state.
     */
    function selectorToPaused(bytes4 selector) external view returns (bool);
}

File 34 of 45 : IFundsFacet.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import {IERC1155} from "@openzeppelin/contracts/token/ERC1155/IERC1155.sol";
import {IERC1155MetadataURI} from "@openzeppelin/contracts/token/ERC1155/extensions/IERC1155MetadataURI.sol";
import {Reward} from "./IStrategyBase.sol";
import {SwapArgs} from "./ISwapper.sol";

struct StrategyArgs {
    uint256 index;
    uint256 amount;
}

interface IFundsFacet is IERC1155, IERC1155MetadataURI {
    /**
     * @dev Returns the total supply of tokens.
     * @return The total supply of tokens.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the total supply of tokens for a given ID.
     * @param id The token ID.
     * @return The total supply of tokens for the given ID.
     */
    function totalSupply(uint256 id) external view returns (uint256);

    /**
     * @dev Returns the last total assets value.
     * @return The last total assets value.
     */
    function lastTotalAssets() external view returns (uint256);

    /**
     * @dev Returns the timestamp of the last total assets update.
     * @return The timestamp of the last total assets update.
     */
    function lastTotalAssetsTimestamp() external view returns (uint64);

    /**
     * @dev Returns the interval for updating the last total assets.
     * @return The interval for updating the last total assets.
     */
    function lastTotalAssetsUpdateInterval() external view returns (uint64);

    /**
     * @dev Sets the interval for updating the last total assets.
     * @dev Callable by FUNDS_OPERATOR.
     * @param interval The new interval.
     */
    function setLastTotalAssetsUpdateInterval(uint64 interval) external;

    /**
     * @dev Returns the underlying balance of the contract.
     * @return The underlying balance.
     */
    function underlyingBalance() external view returns (uint256);

    /**
     * @dev Returns the address of the underlying asset.
     * @return The address of the underlying asset.
     */
    function underlyingAsset() external view returns (address);

    /**
     * @dev Returns the address of the yield extractor.
     * @return The address of the yield extractor.
     */
    function yieldExtractor() external view returns (address);

    /**
     * @dev Returns the address of the swapper.
     * @return The address of the swapper.
     */
    function swapper() external view returns (address);

    /**
     * @dev Returns the total assets managed by the contract.
     * @return assets The total assets managed by the contract.
     */
    function totalAssets() external view returns (uint256 assets);

    /**
     * @dev Returns the assets managed by a specific strategy.
     * @param index The index of the strategy.
     * @return The assets managed by the strategy.
     */
    function strategyAssets(uint256 index) external view returns (uint256);

    /**
     * @dev Returns the rewards for a specific strategy.
     * @param index The index of the strategy.
     * @return rewards The rewards for the strategy.
     */
    function strategyRewards(uint256 index) external view returns (Reward[] memory rewards);

    /**
     * @dev Deposits assets into the contract.
     * @param assets The amount of assets to deposit.
     * @param projectId The project ID.
     * @param receiver The address of the receiver.
     * @return shares The amount of shares minted.
     */
    function deposit(uint256 assets, uint256 projectId, address receiver) external returns (uint256 shares);

    /**
     * @dev Redeems shares from the contract.
     * @param shares The amount of shares to redeem.
     * @param projectId The project ID.
     * @param receiver The address of the receiver.
     * @return assets The amount of assets redeemed.
     */
    function redeem(uint256 shares, uint256 projectId, address receiver) external returns (uint256 assets);

    /**
     * @dev Migrates a position from one project to another.
     * @param fromProjectId The ID of the project to migrate from.
     * @param toProjectId The ID of the project to migrate to.
     * @param amount The amount to migrate.
     */
    function migratePosition(uint256 fromProjectId, uint256 toProjectId, uint256 amount) external;

    /**
     * @dev Deposits assets into a strategy.
     * @dev Callable by FUNDS_OPERATOR.
     * @param strategyArgs The strategy arguments.
     */
    function managedDeposit(StrategyArgs calldata strategyArgs) external;

    /**
     * @dev Withdraws assets from a strategy.
     * @dev Callable by FUNDS_OPERATOR.
     * @param strategyArgs The strategy arguments.
     */
    function managedWithdraw(StrategyArgs calldata strategyArgs) external;

    /**
     * @dev Reallocates assets between strategies.
     * @dev Callable by FUNDS_OPERATOR.
     * @param withdrawals The strategy arguments for withdrawals.
     * @param deposits The strategy arguments for deposits.
     */
    function reallocate(StrategyArgs[] calldata withdrawals, StrategyArgs[] calldata deposits) external;

    /**
     * @dev Compounds rewards by swapping them for the underlying asset.
     * @dev Callable by FUNDS_OPERATOR.
     * @param swapArgs The swap arguments.
     * @return compounded The amount compounded.
     */
    function swapRewards(SwapArgs[] memory swapArgs) external returns (uint256 compounded);

    /**
     * @dev Accrues fees.
     * @dev Callable by FUNDS_OPERATOR.
     */
    function accrueFee() external;

    /**
     * @dev Claims rewards from a strategy.
     * @dev Callable by FUNDS_OPERATOR.
     * @param index The index of the strategy.
     */
    function claimStrategyRewards(uint256 index) external;
}

File 35 of 45 : IManagementFacet.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

struct StrategyData {
    // the address of the strategy adapter
    address adapter;
    // the name of the strategy
    bytes32 name;
    // for instance Morpho requires bytes32 market id
    // aave3 aToken address
    bytes supplement;
}

interface IManagementFacet {
    /**
     * @dev Returns the list of strategies.
     * @return The list of strategies.
     */
    function getStrategies() external view returns (StrategyData[] memory);

    /**
     * @dev Returns the list of active strategies used for investment.
     * @return The list of active strategies.
     */
    function getActiveStrategies() external view returns (StrategyData[] memory);

    /**
     * @dev Returns the deposit queue.
     * @return The deposit queue.
     */
    function getDepositQueue() external view returns (uint256[] memory);

    /**
     * @dev Returns the withdraw queue.
     * @return The withdraw queue.
     */
    function getWithdrawQueue() external view returns (uint256[] memory);

    /**
     * @dev Updates the deposit queue.
     * @dev Callable by QUEUES_OPERATOR.
     * @param depositQueue_ The new deposit queue.
     */
    function updateDepositQueue(uint256[] calldata depositQueue_) external;

    /**
     * @dev Updates the withdraw queue.
     * @dev Callable by QUEUES_OPERATOR.
     * @param withdrawQueue_ The new withdraw queue.
     */
    function updateWithdrawQueue(uint256[] calldata withdrawQueue_) external;

    /**
     * @dev Adds a new strategy.
     * @dev Callable by STRATEGY_AUTHORITY.
     * @param strategy The strategy data.
     */
    function addStrategy(StrategyData calldata strategy) external;

    /**
     * @dev Removes a strategy.
     * @dev Callable by STRATEGY_AUTHORITY.
     * @param index The index of the strategy to remove.
     */
    function removeStrategy(uint256 index) external;

    /**
     * @dev Activate strategy for active investing.
     * @dev Callable by QUEUES_OPERATOR.
     * @param index The index of registered strategy.
     * @param depositQueue_ The new deposit queue.
     * @param withdrawQueue_ The new withdraw queue.
     */
    function activateStrategy(uint256 index, uint256[] calldata depositQueue_, uint256[] calldata withdrawQueue_)
        external;

    /**
     * @dev Deactivate strategy, stop investing in it.
     * @dev Callable by QUEUES_OPERATOR.
     * @param index The index of active strategy.
     * @param depositQueue_ The new deposit queue.
     * @param withdrawQueue_ The new withdraw queue.
     */
    function deactivateStrategy(uint256 index, uint256[] calldata depositQueue_, uint256[] calldata withdrawQueue_)
        external;

    /**
     * @dev Function to approve spending of underlying asset by the strategy.
     * @dev Callable by STRATEGY_AUTHORITY.
     * @param index The index of the strategy.
     * @param amount The amount to approve.
     */
    function approveStrategy(uint256 index, uint256 amount) external;
}

File 36 of 45 : IStrategyBase.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

struct Reward {
    address token;
    uint256 amount;
}

interface IStrategyBase {
    /**
     * @dev Returns the address of the protocol.
     * @return The address of the protocol.
     */
    function protocol() external returns (address);

    /**
     * @dev Deposits the specified amount into the strategy.
     * @param amount The amount to deposit.
     * @param supplement Additional data required for the deposit.
     */
    function deposit(uint256 amount, bytes calldata supplement) external;

    /**
     * @dev Withdraws the specified amount from the strategy.
     * @param amount The amount to withdraw.
     * @param supplement Additional data required for the withdrawal.
     * @return withdrawn The actual amount withdrawn.
     */
    function withdraw(uint256 amount, bytes calldata supplement) external returns (uint256 withdrawn);

    /**
     * @dev Withdraws all funds from strategy.
     * @param supplement Additional data required for the withdrawal.
     * @return withdrawn The actual amount withdrawn.
     */
    function withdrawAll(bytes calldata supplement) external returns (uint256 withdrawn);

    /**
     * @dev Returns the asset balance of the strategy for the specified vault.
     * @param yelayLiteVault The address of the vault.
     * @param supplement Additional data required for the balance calculation.
     * @return The asset balance of the strategy.
     */
    function assetBalance(address yelayLiteVault, bytes calldata supplement) external view returns (uint256);

    /**
     * @dev Called when the strategy is added.
     * @param supplement Additional data required for the addition.
     */
    function onAdd(bytes calldata supplement) external;

    /**
     * @dev Called when the strategy is removed.
     * @param supplement Additional data required for the removal.
     */
    function onRemove(bytes calldata supplement) external;

    /**
     * @dev Returns the rewards available for the specified vault.
     * @param yelayLiteVault The address of the vault.
     * @param supplement Additional data required for the rewards calculation.
     * @return rewards The rewards available for the vault.
     */
    function viewRewards(address yelayLiteVault, bytes calldata supplement)
        external
        view
        returns (Reward[] memory rewards);

    /**
     * @dev Claims the rewards for the strategy.
     * @param supplement Additional data required for claiming the rewards.
     */
    function claimRewards(bytes calldata supplement) external;
}

File 37 of 45 : ISwapper.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

struct SwapArgs {
    address tokenIn;
    address swapTarget;
    bytes swapCallData;
}

struct ExchangeArgs {
    address exchange;
    bool allowed;
}

interface ISwapper {
    /**
     * @notice Swaps tokens according to the provided swap arguments.
     * @param swapArgs The swap arguments.
     * @param tokenOut The token to be received.
     * @return tokenOutAmount The amount of tokenOut received.
     */
    function swap(SwapArgs[] memory swapArgs, address tokenOut) external returns (uint256 tokenOutAmount);

    /**
     * @notice Updates the exchange allowlist.
     * @param exchangeArgs The exchange arguments.
     */
    function updateExchangeAllowlist(ExchangeArgs[] calldata exchangeArgs) external;
}

File 38 of 45 : LibClients.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

struct ClientData {
    uint128 minProjectId;
    uint128 maxProjectId;
    bytes32 clientName;
}

library LibClients {
    /**
     * @custom:storage-location erc7201:yelay-vault.storage.ClientsFacet
     * @custom:member lastProjectId The last project ID.
     * @custom:member ownerToClientData Mapping from owner address to client data.
     * @custom:member isClientNameTaken Mapping from client name to a boolean indicating if the name is taken.
     * @custom:member projectIdToClientName Mapping from project ID to client name.
     * @custom:member projectIdActive Mapping from project ID to a boolean indicating if the project is active.
     */
    struct ClientsStorage {
        uint256 lastProjectId;
        mapping(address => ClientData) ownerToClientData;
        mapping(bytes32 => bool) isClientNameTaken;
        mapping(uint256 => bytes32) projectIdToClientName;
        mapping(uint256 => bool) projectIdActive;
    }

    // keccak256(abi.encode(uint256(keccak256("yelay-vault.storage.ClientsFacet")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant ClientsStorageLocation = 0x78b8360ea116a1ac1aaf7d99dc2a2fa96091e5ce27ad9c46aa3a48ffec134800;

    function _getClientsStorage() internal pure returns (ClientsStorage storage $) {
        assembly {
            $.slot := ClientsStorageLocation
        }
    }

    /**
     * @dev Checks if a project is active.
     * @param projectId The ID of the project.
     * @return True if the project is active, false otherwise.
     */
    function _isProjectActive(uint256 projectId) internal view returns (bool) {
        ClientsStorage storage clientStorage = _getClientsStorage();
        return clientStorage.projectIdActive[projectId];
    }

    /**
     * @dev Checks if two project IDs belong to the same client.
     * @param projectId1 The first project ID.
     * @param projectId2 The second project ID.
     * @return True if both project IDs belong to the same client, false otherwise.
     */
    function _sameClient(uint256 projectId1, uint256 projectId2) internal view returns (bool) {
        ClientsStorage storage clientStorage = _getClientsStorage();
        return clientStorage.projectIdToClientName[projectId1] == clientStorage.projectIdToClientName[projectId2];
    }
}

File 39 of 45 : LibErrors.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

library LibErrors {
    // ===================== OwnerFacet ================================
    /**
     * @dev The caller account is not authorized to perform an operation.
     * @param account The address of the unauthorized account.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The function selector is invalid.
     * @param selector The invalid function selector.
     */
    error InvalidSelector(bytes4 selector);

    // ===================== ClientsFacet ================================
    /**
     * @dev The owner address is already used by some client.
     */
    error ClientOwnerReserved();

    /**
     * @dev The caller is not the client owner.
     */
    error NotClientOwner();

    /**
     * @dev The project ID is out of bounds.
     */
    error OutOfBoundProjectId();

    /**
     * @dev The project is already active.
     */
    error ProjectActive();

    /**
     * @dev The client name is empty.
     */
    error ClientNameEmpty();

    /**
     * @dev The client name is empty.
     */
    error ReservedProjectsIsZero();

    /**
     * @dev The client name is already taken.
     */
    error ClientNameTaken();

    // ===================== FundsFacet ================================
    /**
     * @dev The project is inactive.
     */
    error ProjectInactive();

    /**
     * @dev The function can only be called in a view context.
     */
    error OnlyView();

    /**
     * @dev Compounding the underlying asset is forbidden.
     */
    error CompoundUnderlyingForbidden();

    /**
     * @dev Position migration is forbidden.
     */
    error PositionMigrationForbidden();

    /**
     * @dev There is not enough underlying assets in YelayLiteVault to cover redeem.
     */
    error NotEnoughInternalFunds();

    /**
     * @dev Redeem doesn't pass minimum asset amount
     */
    error MinRedeem();

    // ===================== SwapWrapper ================================
    /**
     * @dev The token is not WETH.
     */
    error NotWeth();

    /**
     * @dev No ETH available.
     */
    error NoEth();

    // ===================== ManagementFacet ================================
    /**
     * @dev The assets were not withdrawn from strategy.
     */
    error StrategyNotEmpty();

    /**
     * @dev The strategy is already registered.
     */
    error StrategyRegistered();

    /**
     * @dev The strategy is already active.
     */
    error StrategyActive();

    // ===================== LibPausable ================================
    /**
     * @dev The function is paused.
     * @param selector The function selector that is paused.
     */
    error Paused(bytes4 selector);

    // ===================== Swapper ================================

    /**
     * @notice Used when trying to do a swap via an exchange that is not allowed to execute a swap.
     * @param exchange Exchange used.
     */
    error ExchangeNotAllowed(address exchange);

    /**
     * @notice Used when there is nothing to swap.
     * @param tokenIn The token that was intended to be swapped.
     */
    error NothingToSwap(address tokenIn);

    /**
     * @notice Used when nothing was swapped.
     * @param tokenOut The token that was intended to be received.
     */
    error NothingSwapped(address tokenOut);
}

File 40 of 45 : LibEvents.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

library LibEvents {
    // FundsFacet
    /**
     * @dev Emitted when assets are deposited.
     * @param projectId The ID of the project.
     * @param sender The address of the sender.
     * @param receiver The address of the receiver.
     * @param assets The amount of assets deposited.
     * @param shares The amount of shares minted.
     */
    event Deposit(
        uint256 indexed projectId, address indexed sender, address indexed receiver, uint256 assets, uint256 shares
    );

    /**
     * @dev Emitted when assets are redeemed.
     * @param projectId The ID of the project.
     * @param sender The address of the sender.
     * @param receiver The address of the receiver.
     * @param assets The amount of assets redeemed.
     * @param shares The amount of shares burned.
     */
    event Redeem(
        uint256 indexed projectId, address indexed sender, address indexed receiver, uint256 assets, uint256 shares
    );

    /**
     * @dev Emitted when assets are deposited into a strategy.
     * @param strategy The name of the strategy.
     * @param amount The amount of assets deposited.
     */
    event ManagedDeposit(bytes32 indexed strategy, uint256 amount);

    /**
     * @dev Emitted when assets are withdrawn from a strategy.
     * @param strategy The name of the strategy.
     * @param amount The amount of assets withdrawn.
     */
    event ManagedWithdraw(bytes32 indexed strategy, uint256 amount);

    /**
     * @dev Emitted when interest is accrued.
     * @param newTotalAssets The new total assets value.
     * @param interest The amount of interest accrued.
     * @param feeShares The amount of fee shares minted.
     */
    event AccrueInterest(uint256 newTotalAssets, uint256 interest, uint256 feeShares);

    /**
     * @dev Emitted when the last total assets value is updated.
     * @param lastTotalAssets The updated last total assets value.
     */
    event UpdateLastTotalAssets(uint256 lastTotalAssets);

    /**
     * @dev Emitted when assets are compounded.
     * @param amount The amount of assets compounded.
     */
    event Compounded(uint256 amount);

    /**
     * @dev Emitted when a position is migrated.
     * @param account The address of the account.
     * @param fromProjectId The ID of the project from which the position is migrated.
     * @param toProjectId The ID of the project to which the position is migrated.
     * @param shares The amount of shares migrated.
     */
    event PositionMigrated(
        address indexed account, uint256 indexed fromProjectId, uint256 indexed toProjectId, uint256 shares
    );

    /**
     * @dev Emitted when lastTotalAssetsUpdateInterval is updated.
     * @param newInterval The new interval for updating lastTotalAssets.
     */
    event UpdateLastTotalAssetsUpdateInterval(uint256 newInterval);

    // ManagementFacet
    /**
     * @dev Emitted when the deposit queue is updated.
     */
    event UpdateDepositQueue();

    /**
     * @dev Emitted when the withdraw queue is updated.
     */
    event UpdateWithdrawQueue();

    /**
     * @dev Emitted when a strategy is added.
     * @param strategy The address of the strategy.
     * @param supplement Additional data for the strategy.
     */
    event AddStrategy(address indexed strategy, bytes supplement);

    /**
     * @dev Emitted when a strategy is removed.
     * @param strategy The address of the strategy.
     * @param supplement Additional data for the strategy.
     */
    event RemoveStrategy(address indexed strategy, bytes supplement);

    /**
     * @dev Emitted when a strategy is activate.
     * @param strategy The address of the strategy.
     * @param supplement Additional data for the strategy.
     */
    event ActivateStrategy(address indexed strategy, bytes supplement);

    /**
     * @dev Emitted when a strategy is deactivated.
     * @param strategy The address of the strategy.
     * @param supplement Additional data for the strategy.
     */
    event DeactivateStrategy(address indexed strategy, bytes supplement);

    // ClientsFacet
    /**
     * @dev Emitted when new project IDs are assigned to a client.
     * @param owner The address of the client owner.
     * @param minProjectId The minimum project ID.
     * @param maxProjectId The maximum project ID.
     */
    event NewProjectIds(address indexed owner, uint256 minProjectId, uint256 maxProjectId);

    /**
     * @dev Emitted when project ownership is transferred.
     * @param clientName The name of the client.
     * @param oldOwner The address of the old owner.
     * @param newOwner The address of the new owner.
     */
    event ClientOwnershipTransfer(bytes32 indexed clientName, address indexed oldOwner, address indexed newOwner);

    /**
     * @dev Emitted when a project is activated.
     * @param project The ID of the activated project.
     */
    event ProjectActivated(uint256 indexed project);

    // OwnerFacet
    /**
     * @dev Emitted when the ownership transfer process is started.
     * @param previousOwner The address of the previous owner.
     * @param newOwner The address of the new owner.
     */
    event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Emitted when the ownership transfer process is completed.
     * @param previousOwner The address of the previous owner.
     * @param newOwner The address of the new owner.
     */
    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Emitted when a function selector is mapped to a facet.
     * @param selector The function selector.
     * @param facet The address of the facet.
     */
    event SelectorToFacetSet(bytes4 indexed selector, address indexed facet);

    // AccessFacet
    /**
     * @dev Emitted when a method is paused or unpaused.
     * @param selector The function selector.
     * @param paused The paused state.
     */
    event PausedChange(bytes4 selector, bool paused);

    // Swapper
    /**
     * @notice Emitted when the exchange allowlist is updated.
     * @param exchange Exchange that was updated.
     * @param isAllowed Whether the exchange is allowed to be used in a swap or not after the update.
     */
    event ExchangeAllowlistUpdated(address indexed exchange, bool isAllowed);
}

File 41 of 45 : LibFunds.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import {ERC20} from "@solmate/utils/SafeTransferLib.sol";

library LibFunds {
    /**
     * @custom:storage-location erc7201:yelay-vault.storage.FundsFacet
     * @custom:member underlyingBalance The balance of the underlying asset held by the vault excluding assets in strategies.
     * @custom:member lastTotalAssetsUpdateInterval The interval for updating the last total assets on deposit.
     * @custom:member lastTotalAssets The last total assets value for yield calculation.
     * @custom:member lastTotalAssetsTimestamp The timestamp of the last total assets update.
     * @custom:member underlyingAsset The underlying asset.
     * @custom:member yieldExtractor The address of the yield extractor.
     */
    struct FundsStorage {
        uint192 underlyingBalance;
        uint64 lastTotalAssetsUpdateInterval;
        uint192 lastTotalAssets;
        uint64 lastTotalAssetsTimestamp;
        ERC20 underlyingAsset;
        address yieldExtractor;
    }

    // keccak256(abi.encode(uint256(keccak256("yelay-vault.storage.FundsFacet")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant FundsStorageLocation = 0xe9f6622f42b3306a25789276a3506ebaae4fda2335fb5bfa8bfd419c0dde8100;

    function _getFundsStorage() internal pure returns (FundsStorage storage $) {
        assembly {
            $.slot := FundsStorageLocation
        }
    }

    /// @custom:storage-location erc7201:openzeppelin.storage.ERC1155
    struct ERC1155Storage {
        mapping(uint256 id => mapping(address account => uint256)) _balances;
        mapping(address account => mapping(address operator => bool)) _operatorApprovals;
        // Used as the URI for all token types by relying on ID substitution, e.g. https://token-cdn-domain/{id}.json
        string _uri;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.ERC1155")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant ERC1155StorageLocation = 0x88be536d5240c274a3b1d3a1be54482fd9caa294f08c62a7cde569f49a3c4500;

    function _getERC1155Storage() internal pure returns (ERC1155Storage storage $) {
        assembly {
            $.slot := ERC1155StorageLocation
        }
    }
}

File 42 of 45 : LibManagement.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import {ERC20} from "@solmate/utils/SafeTransferLib.sol";
import {StrategyData} from "src/interfaces/IManagementFacet.sol";
import {IStrategyBase} from "src/interfaces/IStrategyBase.sol";

library LibManagement {
    /**
     * @custom:storage-location erc7201:yelay-vault.storage.ManagementFacet
     * @custom:member strategies The list of strategies.
     * @custom:member depositQueue The indexes of strategies for deposit queue.
     * @custom:member withdrawQueue The indexes of strategies for withdraw queue.
     */
    struct ManagementStorage {
        // list of all strategies which can be used by the vault => defined by STRATEGY_AUTHORITY
        StrategyData[] strategies;
        mapping(bytes32 => bool) strategyRegistered;
        // list of strategies which currently used for investments => defined by QUEUES_OPERATOR
        StrategyData[] activeStrategies;
        mapping(bytes32 => bool) strategyIsActive;
        // indexes of strategies form activeStrategies list - not obligatory containing all indexes
        uint256[] depositQueue;
        uint256[] withdrawQueue;
    }

    // keccak256(abi.encode(uint256(keccak256("yelay-vault.storage.ManagementFacet")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant ManagementStorageLocation =
        0xe63bd6ac2e2e77423b5d37c9b15c55e67bb68fc23e21066ec76e46b260bfb100;

    function _getManagementStorage() internal pure returns (ManagementStorage storage $) {
        assembly {
            $.slot := ManagementStorageLocation
        }
    }

    /**
     * @dev Returns the asset balance of a strategy at the given index.
     * @param index The index of the strategy.
     * @return The asset balance of the strategy.
     */
    function _strategyAssets(uint256 index) internal view returns (uint256) {
        LibManagement.ManagementStorage storage sM = _getManagementStorage();
        return IStrategyBase(sM.activeStrategies[index].adapter).assetBalance(
            address(this), sM.activeStrategies[index].supplement
        );
    }
}

File 43 of 45 : LibOwner.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import {LibErrors} from "src/libraries/LibErrors.sol";

library LibOwner {
    /**
     * @custom:storage-location erc7201:yelay-vault.storage.OwnerFacet
     * @custom:member owner The owner of the contract.
     * @custom:member pendingOwner The address pending to become the owner.
     * @custom:member selectorToFacet Mapping from selector to facet address.
     */
    struct OwnerStorage {
        address owner;
        address pendingOwner;
        mapping(bytes4 => address) selectorToFacet;
    }

    // keccak256(abi.encode(uint256(keccak256("yelay-vault.storage.OwnerFacet")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant OWNER_STORAGE_LOCATION = 0x52b130868e76fc87849159cef46eb9bb0156aa8877197d318e4437829044d000;

    function _getOwnerStorage() internal pure returns (OwnerStorage storage $) {
        assembly {
            $.slot := OWNER_STORAGE_LOCATION
        }
    }

    /**
     * @dev Reverts if the caller is not the owner.
     */
    function onlyOwner() internal view {
        OwnerStorage storage s = _getOwnerStorage();
        require(s.owner == msg.sender, LibErrors.OwnableUnauthorizedAccount(msg.sender));
    }
}

File 44 of 45 : LibPausable.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import {LibErrors} from "src/libraries/LibErrors.sol";

library LibPausable {
    /**
     * @custom:storage-location erc7201:yelay-vault.storage.Pausable
     * @custom:member selectorToPaused Mapping from selector to a boolean indicating if the method is paused.
     */
    struct PausableStorage {
        mapping(bytes4 => bool) selectorToPaused;
    }

    // keccak256(abi.encode(uint256(keccak256("yelay-vault.storage.Pausable")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant PAUSABLE_STORAGE_LOCATION =
        0x63245fb7e3e0d2c2a6b753106e72e074a7694d950994c2caa5065a7b16bdb600;

    function _getPausableStorage() internal pure returns (PausableStorage storage $) {
        assembly {
            $.slot := PAUSABLE_STORAGE_LOCATION
        }
    }

    /**
     * @dev checks that called method is not paused
     */
    function _checkNotPaused() internal view {
        if (_getPausableStorage().selectorToPaused[msg.sig]) revert LibErrors.Paused(msg.sig);
    }
}

File 45 of 45 : LibRoles.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

library LibRoles {
    // 0xbf935b513649871c60054e0279e4e5798d3dfd05785c3c3c5b311fb39ec270fe
    bytes32 constant STRATEGY_AUTHORITY = keccak256("STRATEGY_AUTHORITY");

    // 0xffd2865c3eadba5ddbf1543e65a692d7001b37f737db7363a54642156548df64
    bytes32 constant FUNDS_OPERATOR = keccak256("FUNDS_OPERATOR");

    //0xb95e9900cc6e2c54ae5b00d8f86008697b24bf67652a40653ea0c09c6fc4a856
    bytes32 constant QUEUES_OPERATOR = keccak256("QUEUES_OPERATOR");

    //0x539440820030c4994db4e31b6b800deafd503688728f932addfe7a410515c14c
    bytes32 constant PAUSER = keccak256("PAUSER");

    //0x82b32d9ab5100db08aeb9a0e08b422d14851ec118736590462bf9c085a6e9448
    bytes32 constant UNPAUSER = keccak256("UNPAUSER");
}

Settings
{
  "evmVersion": "cancun",
  "optimizer": {
    "enabled": true,
    "runs": 10000
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "libraries": {}
}

Contract Security Audit

Contract ABI

[{"inputs":[{"internalType":"contract ISwapper","name":"swapper_","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"target","type":"address"}],"name":"AddressEmptyCode","type":"error"},{"inputs":[],"name":"CompoundUnderlyingForbidden","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ERC1155InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC1155InvalidApprover","type":"error"},{"inputs":[{"internalType":"uint256","name":"idsLength","type":"uint256"},{"internalType":"uint256","name":"valuesLength","type":"uint256"}],"name":"ERC1155InvalidArrayLength","type":"error"},{"inputs":[{"internalType":"address","name":"operator","type":"address"}],"name":"ERC1155InvalidOperator","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC1155InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC1155InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"address","name":"owner","type":"address"}],"name":"ERC1155MissingApprovalForAll","type":"error"},{"inputs":[],"name":"FailedCall","type":"error"},{"inputs":[],"name":"InvalidInitialization","type":"error"},{"inputs":[],"name":"MinRedeem","type":"error"},{"inputs":[],"name":"NotEnoughInternalFunds","type":"error"},{"inputs":[],"name":"NotInitializing","type":"error"},{"inputs":[],"name":"OnlyView","type":"error"},{"inputs":[{"internalType":"bytes4","name":"selector","type":"bytes4"}],"name":"Paused","type":"error"},{"inputs":[],"name":"PositionMigrationForbidden","type":"error"},{"inputs":[],"name":"ProjectInactive","type":"error"},{"inputs":[{"internalType":"uint8","name":"bits","type":"uint8"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"SafeCastOverflowedUintDowncast","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"newTotalAssets","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"interest","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"feeShares","type":"uint256"}],"name":"AccrueInterest","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":false,"internalType":"bool","name":"approved","type":"bool"}],"name":"ApprovalForAll","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Compounded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"projectId","type":"uint256"},{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":true,"internalType":"address","name":"receiver","type":"address"},{"indexed":false,"internalType":"uint256","name":"assets","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"shares","type":"uint256"}],"name":"Deposit","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint64","name":"version","type":"uint64"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"strategy","type":"bytes32"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"ManagedDeposit","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"strategy","type":"bytes32"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"ManagedWithdraw","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"uint256","name":"fromProjectId","type":"uint256"},{"indexed":true,"internalType":"uint256","name":"toProjectId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"shares","type":"uint256"}],"name":"PositionMigrated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"projectId","type":"uint256"},{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":true,"internalType":"address","name":"receiver","type":"address"},{"indexed":false,"internalType":"uint256","name":"assets","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"shares","type":"uint256"}],"name":"Redeem","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256[]","name":"ids","type":"uint256[]"},{"indexed":false,"internalType":"uint256[]","name":"values","type":"uint256[]"}],"name":"TransferBatch","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"id","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"TransferSingle","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"string","name":"value","type":"string"},{"indexed":true,"internalType":"uint256","name":"id","type":"uint256"}],"name":"URI","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"lastTotalAssets","type":"uint256"}],"name":"UpdateLastTotalAssets","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"newInterval","type":"uint256"}],"name":"UpdateLastTotalAssetsUpdateInterval","type":"event"},{"inputs":[],"name":"accrueFee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"accounts","type":"address[]"},{"internalType":"uint256[]","name":"ids","type":"uint256[]"}],"name":"balanceOfBatch","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"index","type":"uint256"}],"name":"claimStrategyRewards","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"assets","type":"uint256"},{"internalType":"uint256","name":"projectId","type":"uint256"},{"internalType":"address","name":"receiver","type":"address"}],"name":"deposit","outputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"id","type":"uint256"}],"name":"exists","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"address","name":"operator","type":"address"}],"name":"isApprovedForAll","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lastTotalAssets","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lastTotalAssetsTimestamp","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lastTotalAssetsUpdateInterval","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint256","name":"index","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"}],"internalType":"struct StrategyArgs","name":"strategyArgs","type":"tuple"}],"name":"managedDeposit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"uint256","name":"index","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"}],"internalType":"struct StrategyArgs","name":"strategyArgs","type":"tuple"}],"name":"managedWithdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"fromProjectId","type":"uint256"},{"internalType":"uint256","name":"toProjectId","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"migratePosition","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"uint256","name":"index","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"}],"internalType":"struct StrategyArgs[]","name":"withdrawals","type":"tuple[]"},{"components":[{"internalType":"uint256","name":"index","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"}],"internalType":"struct StrategyArgs[]","name":"deposits","type":"tuple[]"}],"name":"reallocate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"shares","type":"uint256"},{"internalType":"uint256","name":"projectId","type":"uint256"},{"internalType":"address","name":"receiver","type":"address"}],"name":"redeem","outputs":[{"internalType":"uint256","name":"assets","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256[]","name":"ids","type":"uint256[]"},{"internalType":"uint256[]","name":"values","type":"uint256[]"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeBatchTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"bool","name":"approved","type":"bool"}],"name":"setApprovalForAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint64","name":"interval","type":"uint64"}],"name":"setLastTotalAssetsUpdateInterval","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"index","type":"uint256"}],"name":"strategyAssets","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"index","type":"uint256"}],"name":"strategyRewards","outputs":[{"components":[{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"internalType":"struct Reward[]","name":"rewards","type":"tuple[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"tokenIn","type":"address"},{"internalType":"address","name":"swapTarget","type":"address"},{"internalType":"bytes","name":"swapCallData","type":"bytes"}],"internalType":"struct SwapArgs[]","name":"swapArgs","type":"tuple[]"}],"name":"swapRewards","outputs":[{"internalType":"uint256","name":"compounded","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"swapper","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalAssets","outputs":[{"internalType":"uint256","name":"assets","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"id","type":"uint256"}],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"underlyingAsset","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"underlyingBalance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"uri","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"yieldExtractor","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"}]

60a0604052348015600e575f5ffd5b50604051614408380380614408833981016040819052602b91603b565b6001600160a01b03166080526066565b5f60208284031215604a575f5ffd5b81516001600160a01b0381168114605f575f5ffd5b9392505050565b60805161437c61008c5f395f81816102b101528181611b870152611c16015261437c5ff3fe608060405234801561000f575f5ffd5b50600436106101db575f3560e01c806369aba22f11610109578063bd85b0391161009e578063e985e9c51161006e578063e985e9c514610544578063eaa17e6e1461059e578063f0a83798146105b1578063f242432a146105d1575f5ffd5b8063bd85b039146104f8578063bfd4e2e21461050b578063d1411ae91461051e578063dc934b6a14610531575f5ffd5b8063abba4332116100d9578063abba43321461042e578063b20ef94614610490578063b26cc394146104dd578063b2db983a146104e5575f5ffd5b806369aba22f146103c55780637158da7c146103d85780638dbdbe6d14610408578063a22cb4651461041b575f5ffd5b80632b3297f91161017f5780634e1273f41161014f5780634e1273f4146103105780634f558e7914610330578063568efc071461034357806359356c5c14610384575f5ffd5b80632b3297f9146102af5780632eb2c2d6146102d55780633f1b327f146102ea5780634871291b146102fd575f5ffd5b8063049104e5116101ba578063049104e5146102305780630e89341c146102435780630f306b3a1461026357806318160ddd146102a7575f5ffd5b8062fdd58e146101df57806301e1d1141461020557806301ffc9a71461020d575b5f5ffd5b6101f26101ed36600461369c565b6105e4565b6040519081526020015b60405180910390f35b6101f261062c565b61022061021b3660046136f3565b6106bc565b60405190151581526020016101fc565b6101f261023e36600461370e565b61079e565b610256610251366004613744565b610d82565b6040516101fc9190613789565b7fe9f6622f42b3306a25789276a3506ebaae4fda2335fb5bfa8bfd419c0dde8103546001600160a01b03165b6040516001600160a01b0390911681526020016101fc565b6101f2610e57565b7f000000000000000000000000000000000000000000000000000000000000000061028f565b6102e86102e336600461393e565b610e85565b005b6102e86102f83660046139f1565b610f47565b6102e861030b366004613a1a565b6110a1565b61032361031e366004613a41565b6111f2565b6040516101fc9190613b40565b61022061033e366004613744565b6112d6565b7fe9f6622f42b3306a25789276a3506ebaae4fda2335fb5bfa8bfd419c0dde81015477ffffffffffffffffffffffffffffffffffffffffffffffff166101f2565b7fe9f6622f42b3306a25789276a3506ebaae4fda2335fb5bfa8bfd419c0dde81005477ffffffffffffffffffffffffffffffffffffffffffffffff166101f2565b6102e86103d3366004613744565b6112e8565b7fe9f6622f42b3306a25789276a3506ebaae4fda2335fb5bfa8bfd419c0dde8102546001600160a01b031661028f565b6101f261041636600461370e565b611465565b6102e8610429366004613b52565b6118a6565b7fe9f6622f42b3306a25789276a3506ebaae4fda2335fb5bfa8bfd419c0dde8100547801000000000000000000000000000000000000000000000000900467ffffffffffffffff165b60405167ffffffffffffffff90911681526020016101fc565b7fe9f6622f42b3306a25789276a3506ebaae4fda2335fb5bfa8bfd419c0dde8101547801000000000000000000000000000000000000000000000000900467ffffffffffffffff16610477565b6102e86118b5565b6101f26104f3366004613744565b611908565b6101f2610506366004613744565b611912565b6102e8610519366004613b8d565b611944565b6101f261052c366004613ba6565b6119d9565b6102e861053f366004613cfe565b611d4c565b610220610552366004613d6a565b6001600160a01b039182165f9081527f88be536d5240c274a3b1d3a1be54482fd9caa294f08c62a7cde569f49a3c45016020908152604080832093909416825291909152205460ff1690565b6102e86105ac366004613b8d565b611e49565b6105c46105bf366004613744565b611ede565b6040516101fc9190613d96565b6102e86105df366004613ded565b61201c565b5f8181527f88be536d5240c274a3b1d3a1be54482fd9caa294f08c62a7cde569f49a3c4500602090815260408083206001600160a01b03861684529091529020545b92915050565b7fe9f6622f42b3306a25789276a3506ebaae4fda2335fb5bfa8bfd419c0dde8100805477ffffffffffffffffffffffffffffffffffffffffffffffff16907fe63bd6ac2e2e77423b5d37c9b15c55e67bb68fc23e21066ec76e46b260bfb1005f5b60028201548110156106b6576106a2816120d1565b6106ac9085613e72565b935060010161068d565b50505090565b5f7fffffffff0000000000000000000000000000000000000000000000000000000082167fd9b67a2600000000000000000000000000000000000000000000000000000000148061074e57507fffffffff0000000000000000000000000000000000000000000000000000000082167f0e89341c00000000000000000000000000000000000000000000000000000000145b8061062657507f01ffc9a7000000000000000000000000000000000000000000000000000000007fffffffff00000000000000000000000000000000000000000000000000000000831614610626565b5f6107a76121cd565b7fe9f6622f42b3306a25789276a3506ebaae4fda2335fb5bfa8bfd419c0dde81007fe63bd6ac2e2e77423b5d37c9b15c55e67bb68fc23e21066ec76e46b260bfb1005f6107f383612281565b905061080787610801610e57565b83612364565b9350600a8411610843576040517f95f0d97300000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6108588385830386841102612381565b612381565b5f5f5b6005840154811015610b6b575f6108728388613e85565b9050600a81116108825750610b6b565b5f8560020186600501848154811061089c5761089c613e98565b905f5260205f200154815481106108b5576108b5613e98565b905f5260205f2090600302015f015f9054906101000a90046001600160a01b03166001600160a01b0316637497823130886002018960050187815481106108fe576108fe613e98565b905f5260205f2001548154811061091757610917613e98565b905f5260205f2090600302016002016040518363ffffffff1660e01b8152600401610943929190613fe5565b602060405180830381865afa15801561095e573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906109829190614006565b9050805f03610992575050610b63565b5f82821183831802821890505f5f886002018960050187815481106109b9576109b9613e98565b905f5260205f200154815481106109d2576109d2613e98565b5f91825260209091206003909102015460058a0180546001600160a01b03909216917f030ba25d0000000000000000000000000000000000000000000000000000000091869160028e0191908b908110610a2e57610a2e613e98565b905f5260205f20015481548110610a4757610a47613e98565b905f5260205f209060030201600201604051602401610a6792919061401d565b60408051601f198184030181529181526020820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167fffffffff00000000000000000000000000000000000000000000000000000000909416939093179092529051610ad29190614035565b5f60405180830381855af49150503d805f8114610b0a576040519150601f19603f3d011682016040523d82523d5f602084013e610b0f565b606091505b50915091508115610b5d57610b3681806020019051810190610b319190614006565b61240c565b610b5a9077ffffffffffffffffffffffffffffffffffffffffffffffff1688613e72565b96505b50505050505b60010161085b565b50610b758161240c565b845485905f90610ba090849077ffffffffffffffffffffffffffffffffffffffffffffffff1661404b565b92506101000a81548177ffffffffffffffffffffffffffffffffffffffffffffffff021916908377ffffffffffffffffffffffffffffffffffffffffffffffff1602179055505f610bfa828761237890919063ffffffff16565b90505f600a8211610c1457610c0f8288613e85565b610c16565b865b86549091508190610c4390600a9077ffffffffffffffffffffffffffffffffffffffffffffffff16613e72565b1015610c7b576040517f211bdcce00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b855477ffffffffffffffffffffffffffffffffffffffffffffffff1681811182821802189050610caa8161240c565b865487905f90610cd590849077ffffffffffffffffffffffffffffffffffffffffffffffff1661407b565b825477ffffffffffffffffffffffffffffffffffffffffffffffff9182166101009390930a9283029190920219909116179055506002860154610d22906001600160a01b0316898361246d565b610d2d338a8c612537565b60408051828152602081018c90526001600160a01b038a169133918c917f9908c9a9b44e8e318fc2d72841d07742290c2e6604a6c8931a6234855adc56e6910160405180910390a45050505050509392505050565b7f88be536d5240c274a3b1d3a1be54482fd9caa294f08c62a7cde569f49a3c450280546060917f88be536d5240c274a3b1d3a1be54482fd9caa294f08c62a7cde569f49a3c450091610dd390613ec5565b80601f0160208091040260200160405190810160405280929190818152602001828054610dff90613ec5565b8015610e4a5780601f10610e2157610100808354040283529160200191610e4a565b820191905f5260205f20905b815481529060010190602001808311610e2d57829003601f168201915b5050505050915050919050565b5f610e807f4a593662ee04d27b6a00ebb31be7fe0c102c2ade82a7c5d764f2df05dc4e28015490565b905090565b336001600160a01b0386168114801590610ee357506001600160a01b038087165f9081527f88be536d5240c274a3b1d3a1be54482fd9caa294f08c62a7cde569f49a3c4501602090815260408083209385168352929052205460ff16155b15610f32576040517fe237d9220000000000000000000000000000000000000000000000000000000081526001600160a01b038083166004830152871660248201526044015b60405180910390fd5b610f3f86868686866125be565b505050505050565b610f4f6121cd565b5f8381527f78b8360ea116a1ac1aaf7d99dc2a2fa96091e5ce27ad9c46aa3a48ffec134804602052604090205460ff168015610fb757505f8281527f78b8360ea116a1ac1aaf7d99dc2a2fa96091e5ce27ad9c46aa3a48ffec134804602052604090205460ff165b8015610ff457505f8281527f78b8360ea116a1ac1aaf7d99dc2a2fa96091e5ce27ad9c46aa3a48ffec134803602052604080822054858352912054145b61102a576040517f0fbdd02d00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b61103261264f565b61103d338483612537565b61105733838360405180602001604052805f8152506126bd565b8183336001600160a01b03167f1c3707e390084802997888377bce9ece70450f80608361497f32dc5c0b4d938f8460405161109491815260200190565b60405180910390a4505050565b6110a96121cd565b7fffd2865c3eadba5ddbf1543e65a692d7001b37f737db7363a54642156548df6461114e63c5b9519060e01b826040516024016110e891815260200190565b60408051601f198184030181529190526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167fffffffff00000000000000000000000000000000000000000000000000000000909316929092179091523090612731565b507fe9f6622f42b3306a25789276a3506ebaae4fda2335fb5bfa8bfd419c0dde8100805467ffffffffffffffff84167801000000000000000000000000000000000000000000000000810277ffffffffffffffffffffffffffffffffffffffffffffffff90921691909117825560408051918252517fbbf11bdea7e9c99165e248900feb5c850963bf2e765abccb86cbf85c6be139fb9181900360200190a1505050565b6060815183511461123c57815183516040517f5b05999100000000000000000000000000000000000000000000000000000000815260048101929092526024820152604401610f29565b5f835167ffffffffffffffff8111156112575761125761379b565b604051908082528060200260200182016040528015611280578160200160208202803683370190505b5090505f5b84518110156112ce576020808202860101516112a9906020808402870101516105e4565b8282815181106112bb576112bb613e98565b6020908102919091010152600101611285565b509392505050565b5f5f6112e183611912565b1192915050565b6112f06121cd565b7fffd2865c3eadba5ddbf1543e65a692d7001b37f737db7363a54642156548df6461132f63c5b9519060e01b826040516024016110e891815260200190565b507fe63bd6ac2e2e77423b5d37c9b15c55e67bb68fc23e21066ec76e46b260bfb10280547fe63bd6ac2e2e77423b5d37c9b15c55e67bb68fc23e21066ec76e46b260bfb1009161145f917fe190febc000000000000000000000000000000000000000000000000000000009190869081106113ac576113ac613e98565b905f5260205f2090600302016002016040516024016113cb91906140ab565b60408051601f198184030181529190526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167fffffffff00000000000000000000000000000000000000000000000000000000909316929092179091526002830180548690811061144057611440613e98565b5f9182526020909120600390910201546001600160a01b031690612731565b50505050565b5f61146e6121cd565b5f8381527f78b8360ea116a1ac1aaf7d99dc2a2fa96091e5ce27ad9c46aa3a48ffec134804602052604090205460ff166114d4576040517f03834b2200000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b7fe9f6622f42b3306a25789276a3506ebaae4fda2335fb5bfa8bfd419c0dde810080547fe9f6622f42b3306a25789276a3506ebaae4fda2335fb5bfa8bfd419c0dde8101545f9142916115559167ffffffffffffffff78010000000000000000000000000000000000000000000000009182900481169291909104166140bd565b67ffffffffffffffff1610156115a85761156e82612281565b9050611579426127a3565b8260010160186101000a81548167ffffffffffffffff021916908367ffffffffffffffff1602179055506115c9565b50600181015477ffffffffffffffffffffffffffffffffffffffffffffffff165b7fe63bd6ac2e2e77423b5d37c9b15c55e67bb68fc23e21066ec76e46b260bfb1006115fc876115f6610e57565b846127f2565b6002840154909450611619906001600160a01b031633308a612811565b61163385878660405180602001604052805f8152506126bd565b5f5f5b60048301548110156117c4578260020183600401828154811061165b5761165b613e98565b905f5260205f2001548154811061167457611674613e98565b5f9182526020909120600390910201546004840180546001600160a01b03909216917f5d30351900000000000000000000000000000000000000000000000000000000918c91600288019190869081106116d0576116d0613e98565b905f5260205f200154815481106116e9576116e9613e98565b905f5260205f20906003020160020160405160240161170992919061401d565b60408051601f198184030181529181526020820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167fffffffff000000000000000000000000000000000000000000000000000000009094169390931790925290516117749190614035565b5f60405180830381855af49150503d805f81146117ac576040519150601f19603f3d011682016040523d82523d5f602084013e6117b1565b606091505b505080925050816117c457600101611636565b5080611845576117d38861240c565b845485905f906117fe90849077ffffffffffffffffffffffffffffffffffffffffffffffff1661404b565b92506101000a81548177ffffffffffffffffffffffffffffffffffffffffffffffff021916908377ffffffffffffffffffffffffffffffffffffffffffffffff1602179055505b611853846108538a86613e72565b60408051898152602081018790526001600160a01b0388169133918a917feb65d0f36862bbd8763c5e2c983c9d753267d223eee35a224d8d0a9d7ef433a2910160405180910390a4505050509392505050565b6118b13383836128ea565b5050565b6118bd6121cd565b7fffd2865c3eadba5ddbf1543e65a692d7001b37f737db7363a54642156548df646118fc63c5b9519060e01b826040516024016110e891815260200190565b5061190561264f565b50565b5f610626826120d1565b5f8181527f4a593662ee04d27b6a00ebb31be7fe0c102c2ade82a7c5d764f2df05dc4e28006020526040812054610626565b7fffd2865c3eadba5ddbf1543e65a692d7001b37f737db7363a54642156548df6461198363c5b9519060e01b826040516024016110e891815260200190565b5061198c6121cd565b7fe63bd6ac2e2e77423b5d37c9b15c55e67bb68fc23e21066ec76e46b260bfb1007fe9f6622f42b3306a25789276a3506ebaae4fda2335fb5bfa8bfd419c0dde810061145f8282866129da565b5f6119e26121cd565b7fffd2865c3eadba5ddbf1543e65a692d7001b37f737db7363a54642156548df64611a2163c5b9519060e01b826040516024016110e891815260200190565b507fe9f6622f42b3306a25789276a3506ebaae4fda2335fb5bfa8bfd419c0dde8102547fe9f6622f42b3306a25789276a3506ebaae4fda2335fb5bfa8bfd419c0dde8100906001600160a01b03165f5b8551811015611be557816001600160a01b0316868281518110611a9657611a96613e98565b60200260200101515f01516001600160a01b031603611ae1576040517feeae5c5a00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f868281518110611af457611af4613e98565b6020908102919091010151516040517f70a082310000000000000000000000000000000000000000000000000000000081523060048201526001600160a01b03909116906370a0823190602401602060405180830381865afa158015611b5c573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611b809190614006565b9050611bdc7f000000000000000000000000000000000000000000000000000000000000000082898581518110611bb957611bb9613e98565b60200260200101515f01516001600160a01b031661246d9092919063ffffffff16565b50600101611a71565b506040517f8961ca5b0000000000000000000000000000000000000000000000000000000081526001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001690638961ca5b90611c4d90889085906004016140dd565b6020604051808303815f875af1158015611c69573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611c8d9190614006565b9350611c988461240c565b825483905f90611cc390849077ffffffffffffffffffffffffffffffffffffffffffffffff1661404b565b92506101000a81548177ffffffffffffffffffffffffffffffffffffffffffffffff021916908377ffffffffffffffffffffffffffffffffffffffffffffffff160217905550611d1161264f565b6040518481527f1bde7e40e8ac464576be5ac741e0607beccbb0fadf8e08fd6332d7ff64bff9de9060200160405180910390a1505050919050565b7fffd2865c3eadba5ddbf1543e65a692d7001b37f737db7363a54642156548df64611d8b63c5b9519060e01b826040516024016110e891815260200190565b50611d946121cd565b7fe63bd6ac2e2e77423b5d37c9b15c55e67bb68fc23e21066ec76e46b260bfb1007fe9f6622f42b3306a25789276a3506ebaae4fda2335fb5bfa8bfd419c0dde81005f5b86811015611e0a57611e0283838a8a85818110611df757611df7613e98565b9050604002016129da565b600101611dd8565b505f5b84811015611e3f57611e378383888885818110611e2c57611e2c613e98565b905060400201612c9d565b600101611e0d565b5050505050505050565b7fffd2865c3eadba5ddbf1543e65a692d7001b37f737db7363a54642156548df64611e8863c5b9519060e01b826040516024016110e891815260200190565b50611e916121cd565b7fe63bd6ac2e2e77423b5d37c9b15c55e67bb68fc23e21066ec76e46b260bfb1007fe9f6622f42b3306a25789276a3506ebaae4fda2335fb5bfa8bfd419c0dde810061145f828286612c9d565b60603215611f18576040517f64bb56b400000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b7fe63bd6ac2e2e77423b5d37c9b15c55e67bb68fc23e21066ec76e46b260bfb10280547fe63bd6ac2e2e77423b5d37c9b15c55e67bb68fc23e21066ec76e46b260bfb100919084908110611f6e57611f6e613e98565b5f9182526020909120600390910201546002820180546001600160a01b039092169163185eb7b591309187908110611fa857611fa8613e98565b905f5260205f2090600302016002016040518363ffffffff1660e01b8152600401611fd4929190613fe5565b5f60405180830381865afa158015611fee573d5f5f3e3d5ffd5b505050506040513d5f823e601f3d908101601f19168201604052612015919081019061419f565b9392505050565b336001600160a01b038616811480159061207a57506001600160a01b038087165f9081527f88be536d5240c274a3b1d3a1be54482fd9caa294f08c62a7cde569f49a3c4501602090815260408083209385168352929052205460ff16155b156120c4576040517fe237d9220000000000000000000000000000000000000000000000000000000081526001600160a01b03808316600483015287166024820152604401610f29565b610f3f8686868686612e44565b7fe63bd6ac2e2e77423b5d37c9b15c55e67bb68fc23e21066ec76e46b260bfb10280545f917fe63bd6ac2e2e77423b5d37c9b15c55e67bb68fc23e21066ec76e46b260bfb100918490811061212857612128613e98565b5f9182526020909120600390910201546002820180546001600160a01b039092169163749782319130918790811061216257612162613e98565b905f5260205f2090600302016002016040518363ffffffff1660e01b815260040161218e929190613fe5565b602060405180830381865afa1580156121a9573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906120159190614006565b7f63245fb7e3e0d2c2a6b753106e72e074a7694d950994c2caa5065a7b16bdb6005f80357fffffffff00000000000000000000000000000000000000000000000000000000168152602091909152604090205460ff161561227f576040517fa5ced19b0000000000000000000000000000000000000000000000000000000081527fffffffff000000000000000000000000000000000000000000000000000000005f35166004820152602401610f29565b565b5f61228a61062c565b600183015490915077ffffffffffffffffffffffffffffffffffffffffffffffff1680821190820302801561235e575f6122ea826122c6610e57565b600187015477ffffffffffffffffffffffffffffffffffffffffffffffff166127f2565b9050801561231b57600384015460408051602081019091525f80825261231b926001600160a01b03169184906126bd565b60408051848152602081018490529081018290527f875352fb3fadeb8c0be7cbbe8ff761b308fa7033470cd0287f02f3436fd76cb99060600160405180910390a1505b50919050565b5f612370848385612f03565b949350505050565b80821191030290565b61238a8161240c565b6001830180547fffffffffffffffff0000000000000000000000000000000000000000000000001677ffffffffffffffffffffffffffffffffffffffffffffffff929092169190911790556040518181527f15c027cc4fd826d986cad358803439f7326d3aa4ed969ff90dbee4bc150f68e99060200160405180910390a15050565b5f77ffffffffffffffffffffffffffffffffffffffffffffffff821115612469576040517f6dfcc65000000000000000000000000000000000000000000000000000000000815260c0600482015260248101839052604401610f29565b5090565b5f6040517fa9059cbb0000000000000000000000000000000000000000000000000000000081526001600160a01b038416600482015282602482015260205f6044835f895af191505080601f3d1160015f5114161516156124d05750823b153d17155b8061145f576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600f60248201527f5452414e534645525f4641494c454400000000000000000000000000000000006044820152606401610f29565b6001600160a01b038316612579576040517f01a835140000000000000000000000000000000000000000000000000000000081525f6004820152602401610f29565b604080516001808252602082018590528183019081526060820184905260a082019092525f608082018181529192916125b791879185908590612f28565b5050505050565b6001600160a01b038416612600576040517f57f447ce0000000000000000000000000000000000000000000000000000000081525f6004820152602401610f29565b6001600160a01b038516612642576040517f01a835140000000000000000000000000000000000000000000000000000000081525f6004820152602401610f29565b6125b78585858585612f28565b7fe9f6622f42b3306a25789276a3506ebaae4fda2335fb5bfa8bfd419c0dde81005f61267a82612281565b90506126868282612381565b61268f426127a3565b8260010160186101000a81548167ffffffffffffffff021916908367ffffffffffffffff1602179055505050565b6001600160a01b0384166126ff576040517f57f447ce0000000000000000000000000000000000000000000000000000000081525f6004820152602401610f29565b60408051600180825260208201869052818301908152606082018590526080820190925290610f3f5f87848487612f28565b60605f5f846001600160a01b03168460405161274d9190614035565b5f60405180830381855af49150503d805f8114612785576040519150601f19603f3d011682016040523d82523d5f602084013e61278a565b606091505b509150915061279a858383612f7b565b95945050505050565b5f67ffffffffffffffff82111561246957604080517f6dfcc650000000000000000000000000000000000000000000000000000000008152600481019190915260248101839052604401610f29565b5f821561280957612804848484612f03565b612370565b509192915050565b5f6040517f23b872dd0000000000000000000000000000000000000000000000000000000081526001600160a01b03851660048201526001600160a01b038416602482015282604482015260205f6064835f8a5af191505080601f3d1160015f5114161516156128835750833b153d17155b806125b7576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601460248201527f5452414e534645525f46524f4d5f4641494c45440000000000000000000000006044820152606401610f29565b7f88be536d5240c274a3b1d3a1be54482fd9caa294f08c62a7cde569f49a3c45006001600160a01b03831661294d576040517fced3e1000000000000000000000000000000000000000000000000000000000081525f6004820152602401610f29565b6001600160a01b038481165f81815260018401602090815260408083209488168084529482529182902080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff001687151590811790915591519182527f17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c31910160405180910390a350505050565b5f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff826020013514612ac9576002840180547f030ba25d00000000000000000000000000000000000000000000000000000000916020850135918535908110612a4557612a45613e98565b905f5260205f209060030201600201604051602401612a6592919061401d565b60408051601f198184030181529190526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167fffffffff0000000000000000000000000000000000000000000000000000000090931692909217909152612b82565b6002840180547fea827cef0000000000000000000000000000000000000000000000000000000091908435908110612b0357612b03613e98565b905f5260205f209060030201600201604051602401612b2291906140ab565b60408051601f198184030181529190526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167fffffffff00000000000000000000000000000000000000000000000000000000909316929092179091525b90505f612ba18286600201855f01358154811061144057611440613e98565b90505f81806020019051810190612bb89190614006565b9050612bc38161240c565b855486905f90612bee90849077ffffffffffffffffffffffffffffffffffffffffffffffff1661404b565b92506101000a81548177ffffffffffffffffffffffffffffffffffffffffffffffff021916908377ffffffffffffffffffffffffffffffffffffffffffffffff16021790555085600201845f013581548110612c4c57612c4c613e98565b905f5260205f209060030201600101547f023acac20b6625d67b9e59a97f1ebde89eb900b71ce3fbe33be445ed8d44809282604051612c8d91815260200190565b60405180910390a2505050505050565b612d5b635d30351960e01b826020013585600201845f013581548110612cc557612cc5613e98565b905f5260205f209060030201600201604051602401612ce592919061401d565b60408051601f198184030181529190526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167fffffffff0000000000000000000000000000000000000000000000000000000090931692909217909152600285018054843590811061144057611440613e98565b50612d69816020013561240c565b825483905f90612d9490849077ffffffffffffffffffffffffffffffffffffffffffffffff1661407b565b92506101000a81548177ffffffffffffffffffffffffffffffffffffffffffffffff021916908377ffffffffffffffffffffffffffffffffffffffffffffffff16021790555082600201815f013581548110612df257612df2613e98565b905f5260205f209060030201600101547fab1ec9c25a8a3c3e2150326d211598abc8b940a4264dfe9479566a02101b95f58260200135604051612e3791815260200190565b60405180910390a2505050565b6001600160a01b038416612e86576040517f57f447ce0000000000000000000000000000000000000000000000000000000081525f6004820152602401610f29565b6001600160a01b038516612ec8576040517f01a835140000000000000000000000000000000000000000000000000000000081525f6004820152602401610f29565b60408051600180825260208201869052818301908152606082018590526080820190925290612efa8787848487612f28565b50505050505050565b82820283158482048414178202612f215763ad251c275f526004601cfd5b0492915050565b612f3485858585612ff0565b6001600160a01b038416156125b75782513390600103612f6d5760208481015190840151612f668389898585896130fb565b5050610f3f565b610f3f818787878787613298565b606082612f9057612f8b826133e2565b612015565b8151158015612fa757506001600160a01b0384163b155b15612fe9576040517f9996b3150000000000000000000000000000000000000000000000000000000081526001600160a01b0385166004820152602401610f29565b5080612015565b7f4a593662ee04d27b6a00ebb31be7fe0c102c2ade82a7c5d764f2df05dc4e280061301d85858585613424565b6001600160a01b03851661309b575f805b84518110156130805760208181028581018201519087018201515f9081529185905260408220805491928392613065908490613e72565b9091555061307590508184613e72565b92505060010161302e565b5080826001015f8282546130949190613e72565b9091555050505b6001600160a01b0384166125b7575f805b84518110156130e75760208181028581018201519087018201515f9081529185905260409091208054829003905591909101906001016130ac565b506001820180549190910390555050505050565b6001600160a01b0384163b15610f3f576040517ff23a6e610000000000000000000000000000000000000000000000000000000081526001600160a01b0385169063f23a6e6190613158908990899088908890889060040161425e565b6020604051808303815f875af1925050508015613192575060408051601f3d908101601f1916820190925261318f918101906142a5565b60015b613212573d8080156131bf576040519150601f19603f3d011682016040523d82523d5f602084013e6131c4565b606091505b5080515f0361320a576040517f57f447ce0000000000000000000000000000000000000000000000000000000081526001600160a01b0386166004820152602401610f29565b805181602001fd5b7fffffffff0000000000000000000000000000000000000000000000000000000081167ff23a6e610000000000000000000000000000000000000000000000000000000014612efa576040517f57f447ce0000000000000000000000000000000000000000000000000000000081526001600160a01b0386166004820152602401610f29565b6001600160a01b0384163b15610f3f576040517fbc197c810000000000000000000000000000000000000000000000000000000081526001600160a01b0385169063bc197c81906132f590899089908890889088906004016142c0565b6020604051808303815f875af192505050801561332f575060408051601f3d908101601f1916820190925261332c918101906142a5565b60015b61335c573d8080156131bf576040519150601f19603f3d011682016040523d82523d5f602084013e6131c4565b7fffffffff0000000000000000000000000000000000000000000000000000000081167fbc197c810000000000000000000000000000000000000000000000000000000014612efa576040517f57f447ce0000000000000000000000000000000000000000000000000000000081526001600160a01b0386166004820152602401610f29565b8051156133f25780518082602001fd5b6040517fd6bda27500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b805182517f88be536d5240c274a3b1d3a1be54482fd9caa294f08c62a7cde569f49a3c4500911461348e57825182516040517f5b05999100000000000000000000000000000000000000000000000000000000815260048101929092526024820152604401610f29565b335f5b84518110156135a9576020818102868101820151908601909101516001600160a01b0389161561355b575f828152602086815260408083206001600160a01b038d16845290915290205481811015613535576040517f03dee4c50000000000000000000000000000000000000000000000000000000081526001600160a01b038b166004820152602481018290526044810183905260648101849052608401610f29565b5f838152602087815260408083206001600160a01b038e16845290915290209082900390555b6001600160a01b0388161561359f575f828152602086815260408083206001600160a01b038c16845290915281208054839290613599908490613e72565b90915550505b5050600101613491565b5083516001036136295760208401515f906020850151909150866001600160a01b0316886001600160a01b0316846001600160a01b03167fc3d58168c5ae7397731d063d5bbf3d657854427343f4c083240f7aacaa2d0f62858560405161361a929190918252602082015260400190565b60405180910390a45050610f3f565b846001600160a01b0316866001600160a01b0316826001600160a01b03167f4a39dc06d4c0dbc64b70af90fd698a233a518aa5d07e595d983b8c0526c8f7fb8787604051613678929190614322565b60405180910390a4505050505050565b6001600160a01b0381168114611905575f5ffd5b5f5f604083850312156136ad575f5ffd5b82356136b881613688565b946020939093013593505050565b7fffffffff0000000000000000000000000000000000000000000000000000000081168114611905575f5ffd5b5f60208284031215613703575f5ffd5b8135612015816136c6565b5f5f5f60608486031215613720575f5ffd5b8335925060208401359150604084013561373981613688565b809150509250925092565b5f60208284031215613754575f5ffd5b5035919050565b5f81518084528060208401602086015e5f602082860101526020601f19601f83011685010191505092915050565b602081525f612015602083018461375b565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b6040516060810167ffffffffffffffff811182821017156137eb576137eb61379b565b60405290565b6040805190810167ffffffffffffffff811182821017156137eb576137eb61379b565b604051601f8201601f1916810167ffffffffffffffff8111828210171561383d5761383d61379b565b604052919050565b5f67ffffffffffffffff82111561385e5761385e61379b565b5060051b60200190565b5f82601f830112613877575f5ffd5b813561388a61388582613845565b613814565b8082825260208201915060208360051b8601019250858311156138ab575f5ffd5b602085015b838110156138c85780358352602092830192016138b0565b5095945050505050565b5f82601f8301126138e1575f5ffd5b813567ffffffffffffffff8111156138fb576138fb61379b565b61390e6020601f19601f84011601613814565b818152846020838601011115613922575f5ffd5b816020850160208301375f918101602001919091529392505050565b5f5f5f5f5f60a08688031215613952575f5ffd5b853561395d81613688565b9450602086013561396d81613688565b9350604086013567ffffffffffffffff811115613988575f5ffd5b61399488828901613868565b935050606086013567ffffffffffffffff8111156139b0575f5ffd5b6139bc88828901613868565b925050608086013567ffffffffffffffff8111156139d8575f5ffd5b6139e4888289016138d2565b9150509295509295909350565b5f5f5f60608486031215613a03575f5ffd5b505081359360208301359350604090920135919050565b5f60208284031215613a2a575f5ffd5b813567ffffffffffffffff81168114612015575f5ffd5b5f5f60408385031215613a52575f5ffd5b823567ffffffffffffffff811115613a68575f5ffd5b8301601f81018513613a78575f5ffd5b8035613a8661388582613845565b8082825260208201915060208360051b850101925087831115613aa7575f5ffd5b6020840193505b82841015613ad2578335613ac181613688565b825260209384019390910190613aae565b9450505050602083013567ffffffffffffffff811115613af0575f5ffd5b613afc85828601613868565b9150509250929050565b5f8151808452602084019350602083015f5b82811015613b36578151865260209586019590910190600101613b18565b5093949350505050565b602081525f6120156020830184613b06565b5f5f60408385031215613b63575f5ffd5b8235613b6e81613688565b915060208301358015158114613b82575f5ffd5b809150509250929050565b5f6040828403128015613b9e575f5ffd5b509092915050565b5f60208284031215613bb6575f5ffd5b813567ffffffffffffffff811115613bcc575f5ffd5b8201601f81018413613bdc575f5ffd5b8035613bea61388582613845565b8082825260208201915060208360051b850101925086831115613c0b575f5ffd5b602084015b83811015613cab57803567ffffffffffffffff811115613c2e575f5ffd5b85016060818a03601f19011215613c43575f5ffd5b613c4b6137c8565b6020820135613c5981613688565b81526040820135613c6981613688565b6020820152606082013567ffffffffffffffff811115613c87575f5ffd5b613c968b6020838601016138d2565b60408301525084525060209283019201613c10565b509695505050505050565b5f5f83601f840112613cc6575f5ffd5b50813567ffffffffffffffff811115613cdd575f5ffd5b6020830191508360208260061b8501011115613cf7575f5ffd5b9250929050565b5f5f5f5f60408587031215613d11575f5ffd5b843567ffffffffffffffff811115613d27575f5ffd5b613d3387828801613cb6565b909550935050602085013567ffffffffffffffff811115613d52575f5ffd5b613d5e87828801613cb6565b95989497509550505050565b5f5f60408385031215613d7b575f5ffd5b8235613d8681613688565b91506020830135613b8281613688565b602080825282518282018190525f918401906040840190835b81811015613de257835180516001600160a01b031684526020908101518185015290930192604090920191600101613daf565b509095945050505050565b5f5f5f5f5f60a08688031215613e01575f5ffd5b8535613e0c81613688565b94506020860135613e1c81613688565b93506040860135925060608601359150608086013567ffffffffffffffff8111156139d8575f5ffd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b8082018082111561062657610626613e45565b8181038181111561062657610626613e45565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603260045260245ffd5b600181811c90821680613ed957607f821691505b60208210810361235e577f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b80545f90600181811c90821680613f2857607f821691505b602082108103613f5f577f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b81865260208601818015613f7a5760018114613fae57613fda565b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff008516825283151560051b82019550613fda565b5f878152602090205f5b85811015613fd457815484820152600190910190602001613fb8565b83019650505b505050505092915050565b6001600160a01b0383168152604060208201525f6123706040830184613f10565b5f60208284031215614016575f5ffd5b5051919050565b828152604060208201525f6123706040830184613f10565b5f82518060208501845e5f920191825250919050565b77ffffffffffffffffffffffffffffffffffffffffffffffff818116838216019081111561062657610626613e45565b77ffffffffffffffffffffffffffffffffffffffffffffffff828116828216039081111561062657610626613e45565b602081525f6120156020830184613f10565b67ffffffffffffffff818116838216019081111561062657610626613e45565b5f604082016040835280855180835260608501915060608160051b8601019250602087015f5b82811015614185577fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffa087860301845281516001600160a01b0381511686526001600160a01b036020820151166020870152604081015190506060604087015261416f606087018261375b565b9550506020938401939190910190600101614103565b5050506001600160a01b0385166020850152509050612015565b5f602082840312156141af575f5ffd5b815167ffffffffffffffff8111156141c5575f5ffd5b8201601f810184136141d5575f5ffd5b80516141e361388582613845565b8082825260208201915060208360061b850101925086831115614204575f5ffd5b6020840193505b828410156142545760408488031215614222575f5ffd5b61422a6137f1565b845161423581613688565b815260208581015181830152908352604090940193919091019061420b565b9695505050505050565b6001600160a01b03861681526001600160a01b038516602082015283604082015282606082015260a060808201525f61429a60a083018461375b565b979650505050505050565b5f602082840312156142b5575f5ffd5b8151612015816136c6565b6001600160a01b03861681526001600160a01b038516602082015260a060408201525f6142f060a0830186613b06565b82810360608401526143028186613b06565b90508281036080840152614316818561375b565b98975050505050505050565b604081525f6143346040830185613b06565b828103602084015261279a8185613b0656fea2646970667358221220a78adbfad469c72c8e08e88ea93e1522c9e2a70cf0e919847c5353babc56ea0464736f6c634300081c0033000000000000000000000000eac44dc9bb6e6cef3f832ff5ee32455e5e9082bb

Deployed Bytecode

0x608060405234801561000f575f5ffd5b50600436106101db575f3560e01c806369aba22f11610109578063bd85b0391161009e578063e985e9c51161006e578063e985e9c514610544578063eaa17e6e1461059e578063f0a83798146105b1578063f242432a146105d1575f5ffd5b8063bd85b039146104f8578063bfd4e2e21461050b578063d1411ae91461051e578063dc934b6a14610531575f5ffd5b8063abba4332116100d9578063abba43321461042e578063b20ef94614610490578063b26cc394146104dd578063b2db983a146104e5575f5ffd5b806369aba22f146103c55780637158da7c146103d85780638dbdbe6d14610408578063a22cb4651461041b575f5ffd5b80632b3297f91161017f5780634e1273f41161014f5780634e1273f4146103105780634f558e7914610330578063568efc071461034357806359356c5c14610384575f5ffd5b80632b3297f9146102af5780632eb2c2d6146102d55780633f1b327f146102ea5780634871291b146102fd575f5ffd5b8063049104e5116101ba578063049104e5146102305780630e89341c146102435780630f306b3a1461026357806318160ddd146102a7575f5ffd5b8062fdd58e146101df57806301e1d1141461020557806301ffc9a71461020d575b5f5ffd5b6101f26101ed36600461369c565b6105e4565b6040519081526020015b60405180910390f35b6101f261062c565b61022061021b3660046136f3565b6106bc565b60405190151581526020016101fc565b6101f261023e36600461370e565b61079e565b610256610251366004613744565b610d82565b6040516101fc9190613789565b7fe9f6622f42b3306a25789276a3506ebaae4fda2335fb5bfa8bfd419c0dde8103546001600160a01b03165b6040516001600160a01b0390911681526020016101fc565b6101f2610e57565b7f000000000000000000000000eac44dc9bb6e6cef3f832ff5ee32455e5e9082bb61028f565b6102e86102e336600461393e565b610e85565b005b6102e86102f83660046139f1565b610f47565b6102e861030b366004613a1a565b6110a1565b61032361031e366004613a41565b6111f2565b6040516101fc9190613b40565b61022061033e366004613744565b6112d6565b7fe9f6622f42b3306a25789276a3506ebaae4fda2335fb5bfa8bfd419c0dde81015477ffffffffffffffffffffffffffffffffffffffffffffffff166101f2565b7fe9f6622f42b3306a25789276a3506ebaae4fda2335fb5bfa8bfd419c0dde81005477ffffffffffffffffffffffffffffffffffffffffffffffff166101f2565b6102e86103d3366004613744565b6112e8565b7fe9f6622f42b3306a25789276a3506ebaae4fda2335fb5bfa8bfd419c0dde8102546001600160a01b031661028f565b6101f261041636600461370e565b611465565b6102e8610429366004613b52565b6118a6565b7fe9f6622f42b3306a25789276a3506ebaae4fda2335fb5bfa8bfd419c0dde8100547801000000000000000000000000000000000000000000000000900467ffffffffffffffff165b60405167ffffffffffffffff90911681526020016101fc565b7fe9f6622f42b3306a25789276a3506ebaae4fda2335fb5bfa8bfd419c0dde8101547801000000000000000000000000000000000000000000000000900467ffffffffffffffff16610477565b6102e86118b5565b6101f26104f3366004613744565b611908565b6101f2610506366004613744565b611912565b6102e8610519366004613b8d565b611944565b6101f261052c366004613ba6565b6119d9565b6102e861053f366004613cfe565b611d4c565b610220610552366004613d6a565b6001600160a01b039182165f9081527f88be536d5240c274a3b1d3a1be54482fd9caa294f08c62a7cde569f49a3c45016020908152604080832093909416825291909152205460ff1690565b6102e86105ac366004613b8d565b611e49565b6105c46105bf366004613744565b611ede565b6040516101fc9190613d96565b6102e86105df366004613ded565b61201c565b5f8181527f88be536d5240c274a3b1d3a1be54482fd9caa294f08c62a7cde569f49a3c4500602090815260408083206001600160a01b03861684529091529020545b92915050565b7fe9f6622f42b3306a25789276a3506ebaae4fda2335fb5bfa8bfd419c0dde8100805477ffffffffffffffffffffffffffffffffffffffffffffffff16907fe63bd6ac2e2e77423b5d37c9b15c55e67bb68fc23e21066ec76e46b260bfb1005f5b60028201548110156106b6576106a2816120d1565b6106ac9085613e72565b935060010161068d565b50505090565b5f7fffffffff0000000000000000000000000000000000000000000000000000000082167fd9b67a2600000000000000000000000000000000000000000000000000000000148061074e57507fffffffff0000000000000000000000000000000000000000000000000000000082167f0e89341c00000000000000000000000000000000000000000000000000000000145b8061062657507f01ffc9a7000000000000000000000000000000000000000000000000000000007fffffffff00000000000000000000000000000000000000000000000000000000831614610626565b5f6107a76121cd565b7fe9f6622f42b3306a25789276a3506ebaae4fda2335fb5bfa8bfd419c0dde81007fe63bd6ac2e2e77423b5d37c9b15c55e67bb68fc23e21066ec76e46b260bfb1005f6107f383612281565b905061080787610801610e57565b83612364565b9350600a8411610843576040517f95f0d97300000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6108588385830386841102612381565b612381565b5f5f5b6005840154811015610b6b575f6108728388613e85565b9050600a81116108825750610b6b565b5f8560020186600501848154811061089c5761089c613e98565b905f5260205f200154815481106108b5576108b5613e98565b905f5260205f2090600302015f015f9054906101000a90046001600160a01b03166001600160a01b0316637497823130886002018960050187815481106108fe576108fe613e98565b905f5260205f2001548154811061091757610917613e98565b905f5260205f2090600302016002016040518363ffffffff1660e01b8152600401610943929190613fe5565b602060405180830381865afa15801561095e573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906109829190614006565b9050805f03610992575050610b63565b5f82821183831802821890505f5f886002018960050187815481106109b9576109b9613e98565b905f5260205f200154815481106109d2576109d2613e98565b5f91825260209091206003909102015460058a0180546001600160a01b03909216917f030ba25d0000000000000000000000000000000000000000000000000000000091869160028e0191908b908110610a2e57610a2e613e98565b905f5260205f20015481548110610a4757610a47613e98565b905f5260205f209060030201600201604051602401610a6792919061401d565b60408051601f198184030181529181526020820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167fffffffff00000000000000000000000000000000000000000000000000000000909416939093179092529051610ad29190614035565b5f60405180830381855af49150503d805f8114610b0a576040519150601f19603f3d011682016040523d82523d5f602084013e610b0f565b606091505b50915091508115610b5d57610b3681806020019051810190610b319190614006565b61240c565b610b5a9077ffffffffffffffffffffffffffffffffffffffffffffffff1688613e72565b96505b50505050505b60010161085b565b50610b758161240c565b845485905f90610ba090849077ffffffffffffffffffffffffffffffffffffffffffffffff1661404b565b92506101000a81548177ffffffffffffffffffffffffffffffffffffffffffffffff021916908377ffffffffffffffffffffffffffffffffffffffffffffffff1602179055505f610bfa828761237890919063ffffffff16565b90505f600a8211610c1457610c0f8288613e85565b610c16565b865b86549091508190610c4390600a9077ffffffffffffffffffffffffffffffffffffffffffffffff16613e72565b1015610c7b576040517f211bdcce00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b855477ffffffffffffffffffffffffffffffffffffffffffffffff1681811182821802189050610caa8161240c565b865487905f90610cd590849077ffffffffffffffffffffffffffffffffffffffffffffffff1661407b565b825477ffffffffffffffffffffffffffffffffffffffffffffffff9182166101009390930a9283029190920219909116179055506002860154610d22906001600160a01b0316898361246d565b610d2d338a8c612537565b60408051828152602081018c90526001600160a01b038a169133918c917f9908c9a9b44e8e318fc2d72841d07742290c2e6604a6c8931a6234855adc56e6910160405180910390a45050505050509392505050565b7f88be536d5240c274a3b1d3a1be54482fd9caa294f08c62a7cde569f49a3c450280546060917f88be536d5240c274a3b1d3a1be54482fd9caa294f08c62a7cde569f49a3c450091610dd390613ec5565b80601f0160208091040260200160405190810160405280929190818152602001828054610dff90613ec5565b8015610e4a5780601f10610e2157610100808354040283529160200191610e4a565b820191905f5260205f20905b815481529060010190602001808311610e2d57829003601f168201915b5050505050915050919050565b5f610e807f4a593662ee04d27b6a00ebb31be7fe0c102c2ade82a7c5d764f2df05dc4e28015490565b905090565b336001600160a01b0386168114801590610ee357506001600160a01b038087165f9081527f88be536d5240c274a3b1d3a1be54482fd9caa294f08c62a7cde569f49a3c4501602090815260408083209385168352929052205460ff16155b15610f32576040517fe237d9220000000000000000000000000000000000000000000000000000000081526001600160a01b038083166004830152871660248201526044015b60405180910390fd5b610f3f86868686866125be565b505050505050565b610f4f6121cd565b5f8381527f78b8360ea116a1ac1aaf7d99dc2a2fa96091e5ce27ad9c46aa3a48ffec134804602052604090205460ff168015610fb757505f8281527f78b8360ea116a1ac1aaf7d99dc2a2fa96091e5ce27ad9c46aa3a48ffec134804602052604090205460ff165b8015610ff457505f8281527f78b8360ea116a1ac1aaf7d99dc2a2fa96091e5ce27ad9c46aa3a48ffec134803602052604080822054858352912054145b61102a576040517f0fbdd02d00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b61103261264f565b61103d338483612537565b61105733838360405180602001604052805f8152506126bd565b8183336001600160a01b03167f1c3707e390084802997888377bce9ece70450f80608361497f32dc5c0b4d938f8460405161109491815260200190565b60405180910390a4505050565b6110a96121cd565b7fffd2865c3eadba5ddbf1543e65a692d7001b37f737db7363a54642156548df6461114e63c5b9519060e01b826040516024016110e891815260200190565b60408051601f198184030181529190526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167fffffffff00000000000000000000000000000000000000000000000000000000909316929092179091523090612731565b507fe9f6622f42b3306a25789276a3506ebaae4fda2335fb5bfa8bfd419c0dde8100805467ffffffffffffffff84167801000000000000000000000000000000000000000000000000810277ffffffffffffffffffffffffffffffffffffffffffffffff90921691909117825560408051918252517fbbf11bdea7e9c99165e248900feb5c850963bf2e765abccb86cbf85c6be139fb9181900360200190a1505050565b6060815183511461123c57815183516040517f5b05999100000000000000000000000000000000000000000000000000000000815260048101929092526024820152604401610f29565b5f835167ffffffffffffffff8111156112575761125761379b565b604051908082528060200260200182016040528015611280578160200160208202803683370190505b5090505f5b84518110156112ce576020808202860101516112a9906020808402870101516105e4565b8282815181106112bb576112bb613e98565b6020908102919091010152600101611285565b509392505050565b5f5f6112e183611912565b1192915050565b6112f06121cd565b7fffd2865c3eadba5ddbf1543e65a692d7001b37f737db7363a54642156548df6461132f63c5b9519060e01b826040516024016110e891815260200190565b507fe63bd6ac2e2e77423b5d37c9b15c55e67bb68fc23e21066ec76e46b260bfb10280547fe63bd6ac2e2e77423b5d37c9b15c55e67bb68fc23e21066ec76e46b260bfb1009161145f917fe190febc000000000000000000000000000000000000000000000000000000009190869081106113ac576113ac613e98565b905f5260205f2090600302016002016040516024016113cb91906140ab565b60408051601f198184030181529190526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167fffffffff00000000000000000000000000000000000000000000000000000000909316929092179091526002830180548690811061144057611440613e98565b5f9182526020909120600390910201546001600160a01b031690612731565b50505050565b5f61146e6121cd565b5f8381527f78b8360ea116a1ac1aaf7d99dc2a2fa96091e5ce27ad9c46aa3a48ffec134804602052604090205460ff166114d4576040517f03834b2200000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b7fe9f6622f42b3306a25789276a3506ebaae4fda2335fb5bfa8bfd419c0dde810080547fe9f6622f42b3306a25789276a3506ebaae4fda2335fb5bfa8bfd419c0dde8101545f9142916115559167ffffffffffffffff78010000000000000000000000000000000000000000000000009182900481169291909104166140bd565b67ffffffffffffffff1610156115a85761156e82612281565b9050611579426127a3565b8260010160186101000a81548167ffffffffffffffff021916908367ffffffffffffffff1602179055506115c9565b50600181015477ffffffffffffffffffffffffffffffffffffffffffffffff165b7fe63bd6ac2e2e77423b5d37c9b15c55e67bb68fc23e21066ec76e46b260bfb1006115fc876115f6610e57565b846127f2565b6002840154909450611619906001600160a01b031633308a612811565b61163385878660405180602001604052805f8152506126bd565b5f5f5b60048301548110156117c4578260020183600401828154811061165b5761165b613e98565b905f5260205f2001548154811061167457611674613e98565b5f9182526020909120600390910201546004840180546001600160a01b03909216917f5d30351900000000000000000000000000000000000000000000000000000000918c91600288019190869081106116d0576116d0613e98565b905f5260205f200154815481106116e9576116e9613e98565b905f5260205f20906003020160020160405160240161170992919061401d565b60408051601f198184030181529181526020820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167fffffffff000000000000000000000000000000000000000000000000000000009094169390931790925290516117749190614035565b5f60405180830381855af49150503d805f81146117ac576040519150601f19603f3d011682016040523d82523d5f602084013e6117b1565b606091505b505080925050816117c457600101611636565b5080611845576117d38861240c565b845485905f906117fe90849077ffffffffffffffffffffffffffffffffffffffffffffffff1661404b565b92506101000a81548177ffffffffffffffffffffffffffffffffffffffffffffffff021916908377ffffffffffffffffffffffffffffffffffffffffffffffff1602179055505b611853846108538a86613e72565b60408051898152602081018790526001600160a01b0388169133918a917feb65d0f36862bbd8763c5e2c983c9d753267d223eee35a224d8d0a9d7ef433a2910160405180910390a4505050509392505050565b6118b13383836128ea565b5050565b6118bd6121cd565b7fffd2865c3eadba5ddbf1543e65a692d7001b37f737db7363a54642156548df646118fc63c5b9519060e01b826040516024016110e891815260200190565b5061190561264f565b50565b5f610626826120d1565b5f8181527f4a593662ee04d27b6a00ebb31be7fe0c102c2ade82a7c5d764f2df05dc4e28006020526040812054610626565b7fffd2865c3eadba5ddbf1543e65a692d7001b37f737db7363a54642156548df6461198363c5b9519060e01b826040516024016110e891815260200190565b5061198c6121cd565b7fe63bd6ac2e2e77423b5d37c9b15c55e67bb68fc23e21066ec76e46b260bfb1007fe9f6622f42b3306a25789276a3506ebaae4fda2335fb5bfa8bfd419c0dde810061145f8282866129da565b5f6119e26121cd565b7fffd2865c3eadba5ddbf1543e65a692d7001b37f737db7363a54642156548df64611a2163c5b9519060e01b826040516024016110e891815260200190565b507fe9f6622f42b3306a25789276a3506ebaae4fda2335fb5bfa8bfd419c0dde8102547fe9f6622f42b3306a25789276a3506ebaae4fda2335fb5bfa8bfd419c0dde8100906001600160a01b03165f5b8551811015611be557816001600160a01b0316868281518110611a9657611a96613e98565b60200260200101515f01516001600160a01b031603611ae1576040517feeae5c5a00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f868281518110611af457611af4613e98565b6020908102919091010151516040517f70a082310000000000000000000000000000000000000000000000000000000081523060048201526001600160a01b03909116906370a0823190602401602060405180830381865afa158015611b5c573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611b809190614006565b9050611bdc7f000000000000000000000000eac44dc9bb6e6cef3f832ff5ee32455e5e9082bb82898581518110611bb957611bb9613e98565b60200260200101515f01516001600160a01b031661246d9092919063ffffffff16565b50600101611a71565b506040517f8961ca5b0000000000000000000000000000000000000000000000000000000081526001600160a01b037f000000000000000000000000eac44dc9bb6e6cef3f832ff5ee32455e5e9082bb1690638961ca5b90611c4d90889085906004016140dd565b6020604051808303815f875af1158015611c69573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611c8d9190614006565b9350611c988461240c565b825483905f90611cc390849077ffffffffffffffffffffffffffffffffffffffffffffffff1661404b565b92506101000a81548177ffffffffffffffffffffffffffffffffffffffffffffffff021916908377ffffffffffffffffffffffffffffffffffffffffffffffff160217905550611d1161264f565b6040518481527f1bde7e40e8ac464576be5ac741e0607beccbb0fadf8e08fd6332d7ff64bff9de9060200160405180910390a1505050919050565b7fffd2865c3eadba5ddbf1543e65a692d7001b37f737db7363a54642156548df64611d8b63c5b9519060e01b826040516024016110e891815260200190565b50611d946121cd565b7fe63bd6ac2e2e77423b5d37c9b15c55e67bb68fc23e21066ec76e46b260bfb1007fe9f6622f42b3306a25789276a3506ebaae4fda2335fb5bfa8bfd419c0dde81005f5b86811015611e0a57611e0283838a8a85818110611df757611df7613e98565b9050604002016129da565b600101611dd8565b505f5b84811015611e3f57611e378383888885818110611e2c57611e2c613e98565b905060400201612c9d565b600101611e0d565b5050505050505050565b7fffd2865c3eadba5ddbf1543e65a692d7001b37f737db7363a54642156548df64611e8863c5b9519060e01b826040516024016110e891815260200190565b50611e916121cd565b7fe63bd6ac2e2e77423b5d37c9b15c55e67bb68fc23e21066ec76e46b260bfb1007fe9f6622f42b3306a25789276a3506ebaae4fda2335fb5bfa8bfd419c0dde810061145f828286612c9d565b60603215611f18576040517f64bb56b400000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b7fe63bd6ac2e2e77423b5d37c9b15c55e67bb68fc23e21066ec76e46b260bfb10280547fe63bd6ac2e2e77423b5d37c9b15c55e67bb68fc23e21066ec76e46b260bfb100919084908110611f6e57611f6e613e98565b5f9182526020909120600390910201546002820180546001600160a01b039092169163185eb7b591309187908110611fa857611fa8613e98565b905f5260205f2090600302016002016040518363ffffffff1660e01b8152600401611fd4929190613fe5565b5f60405180830381865afa158015611fee573d5f5f3e3d5ffd5b505050506040513d5f823e601f3d908101601f19168201604052612015919081019061419f565b9392505050565b336001600160a01b038616811480159061207a57506001600160a01b038087165f9081527f88be536d5240c274a3b1d3a1be54482fd9caa294f08c62a7cde569f49a3c4501602090815260408083209385168352929052205460ff16155b156120c4576040517fe237d9220000000000000000000000000000000000000000000000000000000081526001600160a01b03808316600483015287166024820152604401610f29565b610f3f8686868686612e44565b7fe63bd6ac2e2e77423b5d37c9b15c55e67bb68fc23e21066ec76e46b260bfb10280545f917fe63bd6ac2e2e77423b5d37c9b15c55e67bb68fc23e21066ec76e46b260bfb100918490811061212857612128613e98565b5f9182526020909120600390910201546002820180546001600160a01b039092169163749782319130918790811061216257612162613e98565b905f5260205f2090600302016002016040518363ffffffff1660e01b815260040161218e929190613fe5565b602060405180830381865afa1580156121a9573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906120159190614006565b7f63245fb7e3e0d2c2a6b753106e72e074a7694d950994c2caa5065a7b16bdb6005f80357fffffffff00000000000000000000000000000000000000000000000000000000168152602091909152604090205460ff161561227f576040517fa5ced19b0000000000000000000000000000000000000000000000000000000081527fffffffff000000000000000000000000000000000000000000000000000000005f35166004820152602401610f29565b565b5f61228a61062c565b600183015490915077ffffffffffffffffffffffffffffffffffffffffffffffff1680821190820302801561235e575f6122ea826122c6610e57565b600187015477ffffffffffffffffffffffffffffffffffffffffffffffff166127f2565b9050801561231b57600384015460408051602081019091525f80825261231b926001600160a01b03169184906126bd565b60408051848152602081018490529081018290527f875352fb3fadeb8c0be7cbbe8ff761b308fa7033470cd0287f02f3436fd76cb99060600160405180910390a1505b50919050565b5f612370848385612f03565b949350505050565b80821191030290565b61238a8161240c565b6001830180547fffffffffffffffff0000000000000000000000000000000000000000000000001677ffffffffffffffffffffffffffffffffffffffffffffffff929092169190911790556040518181527f15c027cc4fd826d986cad358803439f7326d3aa4ed969ff90dbee4bc150f68e99060200160405180910390a15050565b5f77ffffffffffffffffffffffffffffffffffffffffffffffff821115612469576040517f6dfcc65000000000000000000000000000000000000000000000000000000000815260c0600482015260248101839052604401610f29565b5090565b5f6040517fa9059cbb0000000000000000000000000000000000000000000000000000000081526001600160a01b038416600482015282602482015260205f6044835f895af191505080601f3d1160015f5114161516156124d05750823b153d17155b8061145f576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600f60248201527f5452414e534645525f4641494c454400000000000000000000000000000000006044820152606401610f29565b6001600160a01b038316612579576040517f01a835140000000000000000000000000000000000000000000000000000000081525f6004820152602401610f29565b604080516001808252602082018590528183019081526060820184905260a082019092525f608082018181529192916125b791879185908590612f28565b5050505050565b6001600160a01b038416612600576040517f57f447ce0000000000000000000000000000000000000000000000000000000081525f6004820152602401610f29565b6001600160a01b038516612642576040517f01a835140000000000000000000000000000000000000000000000000000000081525f6004820152602401610f29565b6125b78585858585612f28565b7fe9f6622f42b3306a25789276a3506ebaae4fda2335fb5bfa8bfd419c0dde81005f61267a82612281565b90506126868282612381565b61268f426127a3565b8260010160186101000a81548167ffffffffffffffff021916908367ffffffffffffffff1602179055505050565b6001600160a01b0384166126ff576040517f57f447ce0000000000000000000000000000000000000000000000000000000081525f6004820152602401610f29565b60408051600180825260208201869052818301908152606082018590526080820190925290610f3f5f87848487612f28565b60605f5f846001600160a01b03168460405161274d9190614035565b5f60405180830381855af49150503d805f8114612785576040519150601f19603f3d011682016040523d82523d5f602084013e61278a565b606091505b509150915061279a858383612f7b565b95945050505050565b5f67ffffffffffffffff82111561246957604080517f6dfcc650000000000000000000000000000000000000000000000000000000008152600481019190915260248101839052604401610f29565b5f821561280957612804848484612f03565b612370565b509192915050565b5f6040517f23b872dd0000000000000000000000000000000000000000000000000000000081526001600160a01b03851660048201526001600160a01b038416602482015282604482015260205f6064835f8a5af191505080601f3d1160015f5114161516156128835750833b153d17155b806125b7576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601460248201527f5452414e534645525f46524f4d5f4641494c45440000000000000000000000006044820152606401610f29565b7f88be536d5240c274a3b1d3a1be54482fd9caa294f08c62a7cde569f49a3c45006001600160a01b03831661294d576040517fced3e1000000000000000000000000000000000000000000000000000000000081525f6004820152602401610f29565b6001600160a01b038481165f81815260018401602090815260408083209488168084529482529182902080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff001687151590811790915591519182527f17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c31910160405180910390a350505050565b5f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff826020013514612ac9576002840180547f030ba25d00000000000000000000000000000000000000000000000000000000916020850135918535908110612a4557612a45613e98565b905f5260205f209060030201600201604051602401612a6592919061401d565b60408051601f198184030181529190526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167fffffffff0000000000000000000000000000000000000000000000000000000090931692909217909152612b82565b6002840180547fea827cef0000000000000000000000000000000000000000000000000000000091908435908110612b0357612b03613e98565b905f5260205f209060030201600201604051602401612b2291906140ab565b60408051601f198184030181529190526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167fffffffff00000000000000000000000000000000000000000000000000000000909316929092179091525b90505f612ba18286600201855f01358154811061144057611440613e98565b90505f81806020019051810190612bb89190614006565b9050612bc38161240c565b855486905f90612bee90849077ffffffffffffffffffffffffffffffffffffffffffffffff1661404b565b92506101000a81548177ffffffffffffffffffffffffffffffffffffffffffffffff021916908377ffffffffffffffffffffffffffffffffffffffffffffffff16021790555085600201845f013581548110612c4c57612c4c613e98565b905f5260205f209060030201600101547f023acac20b6625d67b9e59a97f1ebde89eb900b71ce3fbe33be445ed8d44809282604051612c8d91815260200190565b60405180910390a2505050505050565b612d5b635d30351960e01b826020013585600201845f013581548110612cc557612cc5613e98565b905f5260205f209060030201600201604051602401612ce592919061401d565b60408051601f198184030181529190526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167fffffffff0000000000000000000000000000000000000000000000000000000090931692909217909152600285018054843590811061144057611440613e98565b50612d69816020013561240c565b825483905f90612d9490849077ffffffffffffffffffffffffffffffffffffffffffffffff1661407b565b92506101000a81548177ffffffffffffffffffffffffffffffffffffffffffffffff021916908377ffffffffffffffffffffffffffffffffffffffffffffffff16021790555082600201815f013581548110612df257612df2613e98565b905f5260205f209060030201600101547fab1ec9c25a8a3c3e2150326d211598abc8b940a4264dfe9479566a02101b95f58260200135604051612e3791815260200190565b60405180910390a2505050565b6001600160a01b038416612e86576040517f57f447ce0000000000000000000000000000000000000000000000000000000081525f6004820152602401610f29565b6001600160a01b038516612ec8576040517f01a835140000000000000000000000000000000000000000000000000000000081525f6004820152602401610f29565b60408051600180825260208201869052818301908152606082018590526080820190925290612efa8787848487612f28565b50505050505050565b82820283158482048414178202612f215763ad251c275f526004601cfd5b0492915050565b612f3485858585612ff0565b6001600160a01b038416156125b75782513390600103612f6d5760208481015190840151612f668389898585896130fb565b5050610f3f565b610f3f818787878787613298565b606082612f9057612f8b826133e2565b612015565b8151158015612fa757506001600160a01b0384163b155b15612fe9576040517f9996b3150000000000000000000000000000000000000000000000000000000081526001600160a01b0385166004820152602401610f29565b5080612015565b7f4a593662ee04d27b6a00ebb31be7fe0c102c2ade82a7c5d764f2df05dc4e280061301d85858585613424565b6001600160a01b03851661309b575f805b84518110156130805760208181028581018201519087018201515f9081529185905260408220805491928392613065908490613e72565b9091555061307590508184613e72565b92505060010161302e565b5080826001015f8282546130949190613e72565b9091555050505b6001600160a01b0384166125b7575f805b84518110156130e75760208181028581018201519087018201515f9081529185905260409091208054829003905591909101906001016130ac565b506001820180549190910390555050505050565b6001600160a01b0384163b15610f3f576040517ff23a6e610000000000000000000000000000000000000000000000000000000081526001600160a01b0385169063f23a6e6190613158908990899088908890889060040161425e565b6020604051808303815f875af1925050508015613192575060408051601f3d908101601f1916820190925261318f918101906142a5565b60015b613212573d8080156131bf576040519150601f19603f3d011682016040523d82523d5f602084013e6131c4565b606091505b5080515f0361320a576040517f57f447ce0000000000000000000000000000000000000000000000000000000081526001600160a01b0386166004820152602401610f29565b805181602001fd5b7fffffffff0000000000000000000000000000000000000000000000000000000081167ff23a6e610000000000000000000000000000000000000000000000000000000014612efa576040517f57f447ce0000000000000000000000000000000000000000000000000000000081526001600160a01b0386166004820152602401610f29565b6001600160a01b0384163b15610f3f576040517fbc197c810000000000000000000000000000000000000000000000000000000081526001600160a01b0385169063bc197c81906132f590899089908890889088906004016142c0565b6020604051808303815f875af192505050801561332f575060408051601f3d908101601f1916820190925261332c918101906142a5565b60015b61335c573d8080156131bf576040519150601f19603f3d011682016040523d82523d5f602084013e6131c4565b7fffffffff0000000000000000000000000000000000000000000000000000000081167fbc197c810000000000000000000000000000000000000000000000000000000014612efa576040517f57f447ce0000000000000000000000000000000000000000000000000000000081526001600160a01b0386166004820152602401610f29565b8051156133f25780518082602001fd5b6040517fd6bda27500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b805182517f88be536d5240c274a3b1d3a1be54482fd9caa294f08c62a7cde569f49a3c4500911461348e57825182516040517f5b05999100000000000000000000000000000000000000000000000000000000815260048101929092526024820152604401610f29565b335f5b84518110156135a9576020818102868101820151908601909101516001600160a01b0389161561355b575f828152602086815260408083206001600160a01b038d16845290915290205481811015613535576040517f03dee4c50000000000000000000000000000000000000000000000000000000081526001600160a01b038b166004820152602481018290526044810183905260648101849052608401610f29565b5f838152602087815260408083206001600160a01b038e16845290915290209082900390555b6001600160a01b0388161561359f575f828152602086815260408083206001600160a01b038c16845290915281208054839290613599908490613e72565b90915550505b5050600101613491565b5083516001036136295760208401515f906020850151909150866001600160a01b0316886001600160a01b0316846001600160a01b03167fc3d58168c5ae7397731d063d5bbf3d657854427343f4c083240f7aacaa2d0f62858560405161361a929190918252602082015260400190565b60405180910390a45050610f3f565b846001600160a01b0316866001600160a01b0316826001600160a01b03167f4a39dc06d4c0dbc64b70af90fd698a233a518aa5d07e595d983b8c0526c8f7fb8787604051613678929190614322565b60405180910390a4505050505050565b6001600160a01b0381168114611905575f5ffd5b5f5f604083850312156136ad575f5ffd5b82356136b881613688565b946020939093013593505050565b7fffffffff0000000000000000000000000000000000000000000000000000000081168114611905575f5ffd5b5f60208284031215613703575f5ffd5b8135612015816136c6565b5f5f5f60608486031215613720575f5ffd5b8335925060208401359150604084013561373981613688565b809150509250925092565b5f60208284031215613754575f5ffd5b5035919050565b5f81518084528060208401602086015e5f602082860101526020601f19601f83011685010191505092915050565b602081525f612015602083018461375b565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b6040516060810167ffffffffffffffff811182821017156137eb576137eb61379b565b60405290565b6040805190810167ffffffffffffffff811182821017156137eb576137eb61379b565b604051601f8201601f1916810167ffffffffffffffff8111828210171561383d5761383d61379b565b604052919050565b5f67ffffffffffffffff82111561385e5761385e61379b565b5060051b60200190565b5f82601f830112613877575f5ffd5b813561388a61388582613845565b613814565b8082825260208201915060208360051b8601019250858311156138ab575f5ffd5b602085015b838110156138c85780358352602092830192016138b0565b5095945050505050565b5f82601f8301126138e1575f5ffd5b813567ffffffffffffffff8111156138fb576138fb61379b565b61390e6020601f19601f84011601613814565b818152846020838601011115613922575f5ffd5b816020850160208301375f918101602001919091529392505050565b5f5f5f5f5f60a08688031215613952575f5ffd5b853561395d81613688565b9450602086013561396d81613688565b9350604086013567ffffffffffffffff811115613988575f5ffd5b61399488828901613868565b935050606086013567ffffffffffffffff8111156139b0575f5ffd5b6139bc88828901613868565b925050608086013567ffffffffffffffff8111156139d8575f5ffd5b6139e4888289016138d2565b9150509295509295909350565b5f5f5f60608486031215613a03575f5ffd5b505081359360208301359350604090920135919050565b5f60208284031215613a2a575f5ffd5b813567ffffffffffffffff81168114612015575f5ffd5b5f5f60408385031215613a52575f5ffd5b823567ffffffffffffffff811115613a68575f5ffd5b8301601f81018513613a78575f5ffd5b8035613a8661388582613845565b8082825260208201915060208360051b850101925087831115613aa7575f5ffd5b6020840193505b82841015613ad2578335613ac181613688565b825260209384019390910190613aae565b9450505050602083013567ffffffffffffffff811115613af0575f5ffd5b613afc85828601613868565b9150509250929050565b5f8151808452602084019350602083015f5b82811015613b36578151865260209586019590910190600101613b18565b5093949350505050565b602081525f6120156020830184613b06565b5f5f60408385031215613b63575f5ffd5b8235613b6e81613688565b915060208301358015158114613b82575f5ffd5b809150509250929050565b5f6040828403128015613b9e575f5ffd5b509092915050565b5f60208284031215613bb6575f5ffd5b813567ffffffffffffffff811115613bcc575f5ffd5b8201601f81018413613bdc575f5ffd5b8035613bea61388582613845565b8082825260208201915060208360051b850101925086831115613c0b575f5ffd5b602084015b83811015613cab57803567ffffffffffffffff811115613c2e575f5ffd5b85016060818a03601f19011215613c43575f5ffd5b613c4b6137c8565b6020820135613c5981613688565b81526040820135613c6981613688565b6020820152606082013567ffffffffffffffff811115613c87575f5ffd5b613c968b6020838601016138d2565b60408301525084525060209283019201613c10565b509695505050505050565b5f5f83601f840112613cc6575f5ffd5b50813567ffffffffffffffff811115613cdd575f5ffd5b6020830191508360208260061b8501011115613cf7575f5ffd5b9250929050565b5f5f5f5f60408587031215613d11575f5ffd5b843567ffffffffffffffff811115613d27575f5ffd5b613d3387828801613cb6565b909550935050602085013567ffffffffffffffff811115613d52575f5ffd5b613d5e87828801613cb6565b95989497509550505050565b5f5f60408385031215613d7b575f5ffd5b8235613d8681613688565b91506020830135613b8281613688565b602080825282518282018190525f918401906040840190835b81811015613de257835180516001600160a01b031684526020908101518185015290930192604090920191600101613daf565b509095945050505050565b5f5f5f5f5f60a08688031215613e01575f5ffd5b8535613e0c81613688565b94506020860135613e1c81613688565b93506040860135925060608601359150608086013567ffffffffffffffff8111156139d8575f5ffd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b8082018082111561062657610626613e45565b8181038181111561062657610626613e45565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603260045260245ffd5b600181811c90821680613ed957607f821691505b60208210810361235e577f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b80545f90600181811c90821680613f2857607f821691505b602082108103613f5f577f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b81865260208601818015613f7a5760018114613fae57613fda565b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff008516825283151560051b82019550613fda565b5f878152602090205f5b85811015613fd457815484820152600190910190602001613fb8565b83019650505b505050505092915050565b6001600160a01b0383168152604060208201525f6123706040830184613f10565b5f60208284031215614016575f5ffd5b5051919050565b828152604060208201525f6123706040830184613f10565b5f82518060208501845e5f920191825250919050565b77ffffffffffffffffffffffffffffffffffffffffffffffff818116838216019081111561062657610626613e45565b77ffffffffffffffffffffffffffffffffffffffffffffffff828116828216039081111561062657610626613e45565b602081525f6120156020830184613f10565b67ffffffffffffffff818116838216019081111561062657610626613e45565b5f604082016040835280855180835260608501915060608160051b8601019250602087015f5b82811015614185577fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffa087860301845281516001600160a01b0381511686526001600160a01b036020820151166020870152604081015190506060604087015261416f606087018261375b565b9550506020938401939190910190600101614103565b5050506001600160a01b0385166020850152509050612015565b5f602082840312156141af575f5ffd5b815167ffffffffffffffff8111156141c5575f5ffd5b8201601f810184136141d5575f5ffd5b80516141e361388582613845565b8082825260208201915060208360061b850101925086831115614204575f5ffd5b6020840193505b828410156142545760408488031215614222575f5ffd5b61422a6137f1565b845161423581613688565b815260208581015181830152908352604090940193919091019061420b565b9695505050505050565b6001600160a01b03861681526001600160a01b038516602082015283604082015282606082015260a060808201525f61429a60a083018461375b565b979650505050505050565b5f602082840312156142b5575f5ffd5b8151612015816136c6565b6001600160a01b03861681526001600160a01b038516602082015260a060408201525f6142f060a0830186613b06565b82810360608401526143028186613b06565b90508281036080840152614316818561375b565b98975050505050505050565b604081525f6143346040830185613b06565b828103602084015261279a8185613b0656fea2646970667358221220a78adbfad469c72c8e08e88ea93e1522c9e2a70cf0e919847c5353babc56ea0464736f6c634300081c0033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

000000000000000000000000eac44dc9bb6e6cef3f832ff5ee32455e5e9082bb

-----Decoded View---------------
Arg [0] : swapper_ (address): 0xeac44dC9bB6E6CEf3F832FF5ee32455e5E9082BB

-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 000000000000000000000000eac44dc9bb6e6cef3f832ff5ee32455e5e9082bb


Block Transaction Gas Used Reward
view all blocks produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.