Overview
S Balance
0 S
S Value
-More Info
Private Name Tags
ContractCreator
Latest 1 internal transaction
Parent Transaction Hash | Block | From | To | |||
---|---|---|---|---|---|---|
393232 | 6 days ago | Contract Creation | 0 S |
Loading...
Loading
Contract Source Code Verified (Exact Match)
Contract Name:
StablePool
Compiler Version
v0.8.26+commit.8a97fa7a
Optimization Enabled:
Yes with 9999 runs
Other Settings:
cancun EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; import { SafeCast } from "@openzeppelin/contracts/utils/math/SafeCast.sol"; import { ISwapFeePercentageBounds } from "@balancer-labs/v3-interfaces/contracts/vault/ISwapFeePercentageBounds.sol"; import { IUnbalancedLiquidityInvariantRatioBounds } from "@balancer-labs/v3-interfaces/contracts/vault/IUnbalancedLiquidityInvariantRatioBounds.sol"; import { IBasePool } from "@balancer-labs/v3-interfaces/contracts/vault/IBasePool.sol"; import { IVault } from "@balancer-labs/v3-interfaces/contracts/vault/IVault.sol"; import { IStablePool, StablePoolDynamicData, StablePoolImmutableData, AmplificationState } from "@balancer-labs/v3-interfaces/contracts/pool-stable/IStablePool.sol"; import "@balancer-labs/v3-interfaces/contracts/vault/VaultTypes.sol"; import { BasePoolAuthentication } from "@balancer-labs/v3-pool-utils/contracts/BasePoolAuthentication.sol"; import { BalancerPoolToken } from "@balancer-labs/v3-vault/contracts/BalancerPoolToken.sol"; import { FixedPoint } from "@balancer-labs/v3-solidity-utils/contracts/math/FixedPoint.sol"; import { StableMath } from "@balancer-labs/v3-solidity-utils/contracts/math/StableMath.sol"; import { Version } from "@balancer-labs/v3-solidity-utils/contracts/helpers/Version.sol"; import { PoolInfo } from "@balancer-labs/v3-pool-utils/contracts/PoolInfo.sol"; /** * @notice Standard Balancer Stable Pool. * @dev Stable Pools are designed for assets that are either expected to consistently swap at near parity, * or at a known exchange rate. Stable Pools use `StableMath` (based on StableSwap, popularized by Curve), * which allows for swaps of significant size before encountering substantial price impact, vastly * increasing capital efficiency for like-kind and correlated-kind swaps. * * The `amplificationParameter` determines the "flatness" of the price curve. Higher values "flatten" the * curve, meaning there is a larger range of balances over which tokens will trade near parity, with very low * slippage. Generally, the `amplificationParameter` can be higher for tokens with lower volatility, and pools * with higher liquidity. Lower values more closely approximate the "weighted" math curve, handling greater * volatility at the cost of higher slippage. This parameter can be changed through permissioned calls * (see below for details). * * The swap fee percentage is bounded by minimum and maximum values (same as were used in v2). */ contract StablePool is IStablePool, BalancerPoolToken, BasePoolAuthentication, PoolInfo, Version { using FixedPoint for uint256; using SafeCast for *; // This contract uses timestamps to slowly update its Amplification parameter over time. These changes must occur // over a minimum time period much larger than the block time, making timestamp manipulation a non-issue. // solhint-disable not-rely-on-time // Amplification factor changes must happen over a minimum period of one day, and can at most divide or multiple the // current value by 2 every day. // WARNING: this only limits *a single* amplification change to have a maximum rate of change of twice the original // value daily. It is possible to perform multiple amplification changes in sequence to increase this value more // rapidly: for example, by doubling the value every day it can increase by a factor of 8 over three days (2^3). uint256 private constant _MIN_UPDATE_TIME = 1 days; uint256 private constant _MAX_AMP_UPDATE_DAILY_RATE = 2; // Fees are 18-decimal, floating point values, which will be stored in the Vault using 24 bits. // This means they have 0.00001% resolution (i.e., any non-zero bits < 1e11 will cause precision loss). // Minimum values help make the math well-behaved (i.e., the swap fee should overwhelm any rounding error). // Maximum values protect users by preventing permissioned actors from setting excessively high swap fees. uint256 private constant _MIN_SWAP_FEE_PERCENTAGE = 1e12; // 0.0001% uint256 private constant _MAX_SWAP_FEE_PERCENTAGE = 10e16; // 10% /// @notice Store amplification state. AmplificationState private _amplificationState; /** * @notice An amplification update has started. * @param startValue Starting value of the amplification parameter * @param endValue Ending value of the amplification parameter * @param startTime Timestamp when the update starts * @param endTime Timestamp when the update is complete */ event AmpUpdateStarted(uint256 startValue, uint256 endValue, uint256 startTime, uint256 endTime); /** * @notice An amplification update has been stopped. * @param currentValue The value at which it stopped */ event AmpUpdateStopped(uint256 currentValue); /// @notice The amplification factor is below the minimum of the range (1 - 5000). error AmplificationFactorTooLow(); /// @notice The amplification factor is above the maximum of the range (1 - 5000). error AmplificationFactorTooHigh(); /// @notice The amplification change duration is too short. error AmpUpdateDurationTooShort(); /// @notice The amplification change rate is too fast. error AmpUpdateRateTooFast(); /// @notice Amplification update operations must be done one at a time. error AmpUpdateAlreadyStarted(); /// @notice Cannot stop an amplification update before it starts. error AmpUpdateNotStarted(); /** * @notice Parameters used to deploy a new Stable Pool. * @param name ERC20 token name * @param symbol ERC20 token symbol * @param amplificationParameter Controls the "flatness" of the invariant curve. higher values = lower slippage, * and assumes prices are near parity. lower values = closer to the constant product curve (e.g., more like a * weighted pool). This has higher slippage, and accommodates greater price volatility * @param version The stable pool version */ struct NewPoolParams { string name; string symbol; uint256 amplificationParameter; string version; } constructor( NewPoolParams memory params, IVault vault ) BalancerPoolToken(vault, params.name, params.symbol) BasePoolAuthentication(vault, msg.sender) PoolInfo(vault) Version(params.version) { if (params.amplificationParameter < StableMath.MIN_AMP) { revert AmplificationFactorTooLow(); } if (params.amplificationParameter > StableMath.MAX_AMP) { revert AmplificationFactorTooHigh(); } uint256 initialAmp = params.amplificationParameter * StableMath.AMP_PRECISION; _stopAmplification(initialAmp); } /// @inheritdoc IBasePool function computeInvariant(uint256[] memory balancesLiveScaled18, Rounding rounding) public view returns (uint256) { (uint256 currentAmp, ) = _getAmplificationParameter(); uint256 invariant = StableMath.computeInvariant(currentAmp, balancesLiveScaled18); if (invariant > 0) { invariant = rounding == Rounding.ROUND_DOWN ? invariant : invariant + 1; } return invariant; } /// @inheritdoc IBasePool function computeBalance( uint256[] memory balancesLiveScaled18, uint256 tokenInIndex, uint256 invariantRatio ) external view returns (uint256 newBalance) { (uint256 currentAmp, ) = _getAmplificationParameter(); return StableMath.computeBalance( currentAmp, balancesLiveScaled18, computeInvariant(balancesLiveScaled18, Rounding.ROUND_UP).mulUp(invariantRatio), tokenInIndex ); } /// @inheritdoc IBasePool function onSwap(PoolSwapParams memory request) public view virtual onlyVault returns (uint256) { uint256 invariant = computeInvariant(request.balancesScaled18, Rounding.ROUND_DOWN); (uint256 currentAmp, ) = _getAmplificationParameter(); if (request.kind == SwapKind.EXACT_IN) { uint256 amountOutScaled18 = StableMath.computeOutGivenExactIn( currentAmp, request.balancesScaled18, request.indexIn, request.indexOut, request.amountGivenScaled18, invariant ); return amountOutScaled18; } else { uint256 amountInScaled18 = StableMath.computeInGivenExactOut( currentAmp, request.balancesScaled18, request.indexIn, request.indexOut, request.amountGivenScaled18, invariant ); return amountInScaled18; } } /// @inheritdoc IStablePool function startAmplificationParameterUpdate(uint256 rawEndValue, uint256 endTime) external authenticate { if (rawEndValue < StableMath.MIN_AMP) { revert AmplificationFactorTooLow(); } if (rawEndValue > StableMath.MAX_AMP) { revert AmplificationFactorTooHigh(); } uint256 duration = endTime - block.timestamp; if (duration < _MIN_UPDATE_TIME) { revert AmpUpdateDurationTooShort(); } (uint256 currentValue, bool isUpdating) = _getAmplificationParameter(); if (isUpdating) { revert AmpUpdateAlreadyStarted(); } uint256 endValue = rawEndValue * StableMath.AMP_PRECISION; // daily rate = (endValue / currentValue) / duration * 1 day // We perform all multiplications first to not reduce precision, and round the division up as we want to avoid // large rates. Note that these are regular integer multiplications and divisions, not fixed point. uint256 dailyRate = endValue > currentValue ? (endValue * 1 days).divUpRaw(currentValue * duration) : (currentValue * 1 days).divUpRaw(endValue * duration); if (dailyRate > _MAX_AMP_UPDATE_DAILY_RATE) { revert AmpUpdateRateTooFast(); } // Values are 18 decimal floating point, which fits in 64 bits. Timestamps are 32 bits. uint64 currentValueUint64 = currentValue.toUint64(); uint64 endValueUint64 = endValue.toUint64(); uint32 startTimeUint32 = block.timestamp.toUint32(); uint32 endTimeUint32 = endTime.toUint32(); _amplificationState.startValue = currentValueUint64; _amplificationState.endValue = endValueUint64; _amplificationState.startTime = startTimeUint32; _amplificationState.endTime = endTimeUint32; emit AmpUpdateStarted(currentValueUint64, endValueUint64, startTimeUint32, endTimeUint32); _vault.emitAuxiliaryEvent( "AmpUpdateStarted", abi.encode(currentValueUint64, endValueUint64, startTimeUint32, endTimeUint32) ); } /// @inheritdoc IStablePool function stopAmplificationParameterUpdate() external authenticate { (uint256 currentValue, bool isUpdating) = _getAmplificationParameter(); if (isUpdating == false) { revert AmpUpdateNotStarted(); } _stopAmplification(currentValue); _vault.emitAuxiliaryEvent("AmpUpdateStopped", abi.encode(currentValue)); } /// @inheritdoc IStablePool function getAmplificationParameter() external view returns (uint256 value, bool isUpdating, uint256 precision) { (value, isUpdating) = _getAmplificationParameter(); precision = StableMath.AMP_PRECISION; } /// @inheritdoc IStablePool function getAmplificationState() external view returns (AmplificationState memory amplificationState, uint256 precision) { amplificationState = _amplificationState; precision = StableMath.AMP_PRECISION; } function _getAmplificationParameter() internal view returns (uint256 value, bool isUpdating) { AmplificationState memory state = _amplificationState; (uint256 startValue, uint256 endValue, uint256 startTime, uint256 endTime) = ( state.startValue, state.endValue, state.startTime, state.endTime ); // Note that block.timestamp >= startTime, since startTime is set to the current time when an update starts if (block.timestamp < endTime) { isUpdating = true; // We can skip checked arithmetic as: // - block.timestamp is always larger or equal to startTime // - endTime is always larger than startTime // - the value delta is bounded by the largest amplification parameter, which never causes the // multiplication to overflow. // This also means that the following computation will never revert nor yield invalid results. unchecked { if (endValue > startValue) { value = startValue + ((endValue - startValue) * (block.timestamp - startTime)) / (endTime - startTime); } else { value = startValue - ((startValue - endValue) * (block.timestamp - startTime)) / (endTime - startTime); } } } else { isUpdating = false; value = endValue; } } function _stopAmplification(uint256 value) internal { uint64 currentValueUint64 = value.toUint64(); _amplificationState.startValue = currentValueUint64; _amplificationState.endValue = currentValueUint64; uint32 currentTime = block.timestamp.toUint32(); _amplificationState.startTime = currentTime; _amplificationState.endTime = currentTime; emit AmpUpdateStopped(currentValueUint64); } /// @inheritdoc ISwapFeePercentageBounds function getMinimumSwapFeePercentage() external pure returns (uint256) { return _MIN_SWAP_FEE_PERCENTAGE; } /// @inheritdoc ISwapFeePercentageBounds function getMaximumSwapFeePercentage() external pure returns (uint256) { return _MAX_SWAP_FEE_PERCENTAGE; } /// @inheritdoc IUnbalancedLiquidityInvariantRatioBounds function getMinimumInvariantRatio() external pure returns (uint256) { return StableMath.MIN_INVARIANT_RATIO; } /// @inheritdoc IUnbalancedLiquidityInvariantRatioBounds function getMaximumInvariantRatio() external pure returns (uint256) { return StableMath.MAX_INVARIANT_RATIO; } /// @inheritdoc IStablePool function getStablePoolDynamicData() external view returns (StablePoolDynamicData memory data) { data.balancesLiveScaled18 = _vault.getCurrentLiveBalances(address(this)); (, data.tokenRates) = _vault.getPoolTokenRates(address(this)); data.staticSwapFeePercentage = _vault.getStaticSwapFeePercentage((address(this))); data.totalSupply = totalSupply(); data.bptRate = getRate(); (data.amplificationParameter, data.isAmpUpdating) = _getAmplificationParameter(); AmplificationState memory state = _amplificationState; data.startValue = state.startValue; data.endValue = state.endValue; data.startTime = state.startTime; data.endTime = state.endTime; PoolConfig memory poolConfig = _vault.getPoolConfig(address(this)); data.isPoolInitialized = poolConfig.isPoolInitialized; data.isPoolPaused = poolConfig.isPoolPaused; data.isPoolInRecoveryMode = poolConfig.isPoolInRecoveryMode; } /// @inheritdoc IStablePool function getStablePoolImmutableData() external view returns (StablePoolImmutableData memory data) { data.tokens = _vault.getPoolTokens(address(this)); (data.decimalScalingFactors, ) = _vault.getPoolTokenRates(address(this)); data.amplificationParameterPrecision = StableMath.AMP_PRECISION; } }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import { IBasePool } from "../vault/IBasePool.sol"; /** * @notice Full state of any ongoing or scheduled amplification parameter update. * @dev If there is an ongoing or scheduled update, `startTime` and/or `endTime` will be in the future. * On initialization, startTime == endTime, and both startValue and endValue will reflect the initial amp setting. * Balancer timestamps are 32 bits. * * @return startValue The amplification parameter at the start of the update * @return endValue The final value of the amplification parameter * @return startTime The timestamp when the update begins * @return endTime The timestamp when the update ends */ struct AmplificationState { uint64 startValue; uint64 endValue; uint32 startTime; uint32 endTime; } /** * @notice Stable Pool data that cannot change after deployment. * @param tokens Pool tokens, sorted in token registration order * @param decimalScalingFactors Conversion factor used to adjust for token decimals for uniform precision in * calculations. FP(1) for 18-decimal tokens * @param amplificationParameterPrecision Scaling factor used to increase the precision of calculations involving the * `amplificationParameter`. (See StableMath `MIN_AMP`, `MAX_AMP`, `AMP_PRECISION`) */ struct StablePoolImmutableData { IERC20[] tokens; uint256[] decimalScalingFactors; uint256 amplificationParameterPrecision; } /** * @notice Snapshot of current Stable Pool data that can change. * @dev Note that live balances will not necessarily be accurate if the pool is in Recovery Mode. Withdrawals * in Recovery Mode do not make external calls (including those necessary for updating live balances), so if * there are withdrawals, raw and live balances will be out of sync until Recovery Mode is disabled. * * @param balancesLiveScaled18 Token balances after paying yield fees, applying decimal scaling and rates * @param tokenRates 18-decimal FP values for rate tokens (e.g., yield-bearing), or FP(1) for standard tokens * @param staticSwapFeePercentage 18-decimal FP value of the static swap fee percentage * @param totalSupply The current total supply of the pool tokens (BPT) * @param bptRate The current rate of a pool token (BPT) = invariant / totalSupply * @param amplificationParameter Controls the "flatness" of the invariant curve. higher values = lower slippage, * and assumes prices are near parity. lower values = closer to the constant product curve (e.g., more like a * weighted pool). This has higher slippage, and accommodates greater price volatility. Note that this is the raw * amp value, not multiplied by `StableMath.AMP_PRECISION` * @param startValue The amplification parameter at the start of an update * @param endValue The final value of the amplification parameter * @param startTime The timestamp when the update begins * @param endTime The timestamp when the update ends * @param isAmpUpdating True if an amplification parameter update is in progress * @param isPoolInitialized If false, the pool has not been seeded with initial liquidity, so operations will revert * @param isPoolPaused If true, the pool is paused, and all non-recovery-mode state-changing operations will revert * @param isPoolInRecoveryMode If true, Recovery Mode withdrawals are enabled, and live balances may be inaccurate */ struct StablePoolDynamicData { uint256[] balancesLiveScaled18; uint256[] tokenRates; uint256 staticSwapFeePercentage; uint256 totalSupply; uint256 bptRate; uint256 amplificationParameter; uint256 startValue; uint256 endValue; uint32 startTime; uint32 endTime; bool isAmpUpdating; bool isPoolInitialized; bool isPoolPaused; bool isPoolInRecoveryMode; } /// @notice Full Stable Pool interface. interface IStablePool is IBasePool { /** * @notice Begins changing the amplification parameter to `rawEndValue` over time. * @dev The value will change linearly until `endTime` is reached, when it will equal `rawEndValue`. * NOTE: Internally, the amplification parameter is represented using higher precision. The values returned by * `getAmplificationParameter` have to be corrected to account for this when comparing to `rawEndValue`. * * @param rawEndValue The desired ending value of the amplification parameter * @param endTime The timestamp when the amplification parameter update is complete */ function startAmplificationParameterUpdate(uint256 rawEndValue, uint256 endTime) external; /// @dev Stops the amplification parameter change process, keeping the current value. function stopAmplificationParameterUpdate() external; /** * @notice Get all the amplification parameters. * @return value Current amplification parameter value (could be in the middle of an update) * @return isUpdating True if an amplification parameter update is in progress * @return precision The raw value is multiplied by this number for greater precision during updates */ function getAmplificationParameter() external view returns (uint256 value, bool isUpdating, uint256 precision); /** * @notice Get the full state of any ongoing or scheduled amplification parameter update. * @dev Starting and ending values are returned in their full precision state. * @return amplificationState Struct containing the update data * @return precision The raw parameter value is multiplied by this number for greater precision during updates */ function getAmplificationState() external view returns (AmplificationState memory amplificationState, uint256 precision); /** * @notice Get dynamic pool data relevant to swap/add/remove calculations. * @return data A struct containing all dynamic stable pool parameters */ function getStablePoolDynamicData() external view returns (StablePoolDynamicData memory data); /** * @notice Get immutable pool data relevant to swap/add/remove calculations. * @return data A struct containing all immutable stable pool parameters */ function getStablePoolImmutableData() external view returns (StablePoolImmutableData memory data); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import { TokenInfo } from "../vault/VaultTypes.sol"; /** * @notice Convenience interface for pools, to get easy access to information stored in the Vault. * Intended mostly for off-chain requests; pools do not need to implement this to work properly. */ interface IPoolInfo { /** * @notice Gets the tokens registered in the pool. * @return tokens List of tokens in the pool, sorted in registration order */ function getTokens() external view returns (IERC20[] memory tokens); /** * @notice Gets the raw data for the pool: tokens, token info, raw balances, and last live balances. * @return tokens Pool tokens, sorted in token registration order * @return tokenInfo Token info structs (type, rate provider, yield flag), sorted in token registration order * @return balancesRaw Current native decimal balances of the pool tokens, sorted in token registration order * @return lastBalancesLiveScaled18 Last saved live balances, sorted in token registration order */ function getTokenInfo() external view returns ( IERC20[] memory tokens, TokenInfo[] memory tokenInfo, uint256[] memory balancesRaw, uint256[] memory lastBalancesLiveScaled18 ); /** * @notice Gets the current live balances of the pool as fixed point, 18-decimal numbers. * @dev Note that live balances will not necessarily be accurate if the pool is in Recovery Mode. * Withdrawals in Recovery Mode do not make external calls (including those necessary for updating live balances), * so if there are withdrawals, raw and live balances will be out of sync until Recovery Mode is disabled. * * @return balancesLiveScaled18 Token balances after paying yield fees, applying decimal scaling and rates */ function getCurrentLiveBalances() external view returns (uint256[] memory balancesLiveScaled18); /** * @notice Fetches the static swap fee percentage for the pool. * @return staticSwapFeePercentage 18-decimal FP value of the static swap fee percentage */ function getStaticSwapFeePercentage() external view returns (uint256 staticSwapFeePercentage); /** * @notice Gets the aggregate swap and yield fee percentages for a pool. * @dev These are determined by the current protocol and pool creator fees, set in the `ProtocolFeeController`. * @return aggregateSwapFeePercentage The aggregate percentage fee applied to swaps * @return aggregateYieldFeePercentage The aggregate percentage fee applied to yield */ function getAggregateFeePercentages() external view returns (uint256 aggregateSwapFeePercentage, uint256 aggregateYieldFeePercentage); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; /// @notice Simple interface for permissioned calling of external functions. interface IAuthentication { /// @notice The sender does not have permission to call a function. error SenderNotAllowed(); /** * @notice Returns the action identifier associated with the external function described by `selector`. * @param selector The 4-byte selector of the permissioned function * @return actionId The computed actionId */ function getActionId(bytes4 selector) external view returns (bytes32 actionId); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; /// @notice General interface for token exchange rates. interface IRateProvider { /** * @notice An 18 decimal fixed point number representing the exchange rate of one token to another related token. * @dev The meaning of this rate depends on the context. Note that there may be an error associated with a token * rate, and the caller might require a certain rounding direction to ensure correctness. This (legacy) interface * does not take a rounding direction or return an error, so great care must be taken when interpreting and using * rates in downstream computations. * * @return rate The current token rate */ function getRate() external view returns (uint256 rate); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; /// @notice Simple interface to retrieve the version of a deployed contract. interface IVersion { /** * @notice Return arbitrary text representing the version of a contract. * @dev For standard Balancer contracts, returns a JSON representation of the contract version containing name, * version number and task ID. See real examples in the deployment repo; local tests just use plain text strings. * * @return version The version string corresponding to the current deployed contract */ function version() external view returns (string memory); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; /// @notice Interface to the Vault's permission system. interface IAuthorizer { /** * @notice Returns true if `account` can perform the action described by `actionId` in the contract `where`. * @param actionId Identifier for the action to be performed * @param account Account trying to perform the action * @param where Target contract for the action * @return success True if the action is permitted */ function canPerform(bytes32 actionId, address account, address where) external view returns (bool success); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; import { IUnbalancedLiquidityInvariantRatioBounds } from "./IUnbalancedLiquidityInvariantRatioBounds.sol"; import { ISwapFeePercentageBounds } from "./ISwapFeePercentageBounds.sol"; import { PoolSwapParams, Rounding, SwapKind } from "./VaultTypes.sol"; /** * @notice Base interface for a Balancer Pool. * @dev All pool types should implement this interface. Note that it also requires implementation of: * - `ISwapFeePercentageBounds` to specify the minimum and maximum swap fee percentages. * - `IUnbalancedLiquidityInvariantRatioBounds` to specify how much the invariant can change during an unbalanced * liquidity operation. */ interface IBasePool is ISwapFeePercentageBounds, IUnbalancedLiquidityInvariantRatioBounds { /*************************************************************************** Invariant ***************************************************************************/ /** * @notice Computes the pool's invariant. * @dev This function computes the invariant based on current balances (and potentially other pool state). * The rounding direction must be respected for the Vault to round in the pool's favor when calling this function. * If the invariant computation involves no precision loss (e.g. simple sum of balances), the same result can be * returned for both rounding directions. * * You can think of the invariant as a measure of the "value" of the pool, which is related to the total liquidity * (i.e., the "BPT rate" is `invariant` / `totalSupply`). Two critical properties must hold: * * 1) The invariant should not change due to a swap. In practice, it can *increase* due to swap fees, which * effectively add liquidity after the swap - but it should never decrease. * * 2) The invariant must be "linear"; i.e., increasing the balances proportionally must increase the invariant in * the same proportion: inv(a * n, b * n, c * n) = inv(a, b, c) * n * * Property #1 is required to prevent "round trip" paths that drain value from the pool (and all LP shareholders). * Intuitively, an accurate pricing algorithm ensures the user gets an equal value of token out given token in, so * the total value should not change. * * Property #2 is essential for the "fungibility" of LP shares. If it did not hold, then different users depositing * the same total value would get a different number of LP shares. In that case, LP shares would not be * interchangeable, as they must be in a fair DEX. * * @param balancesLiveScaled18 Token balances after paying yield fees, applying decimal scaling and rates * @param rounding Rounding direction to consider when computing the invariant * @return invariant The calculated invariant of the pool, represented as a uint256 */ function computeInvariant( uint256[] memory balancesLiveScaled18, Rounding rounding ) external view returns (uint256 invariant); /** * @notice Computes a new token balance, given the invariant growth ratio and all other balances. * @dev Similar to V2's `_getTokenBalanceGivenInvariantAndAllOtherBalances` in StableMath. * The pool must round up for the Vault to round in the protocol's favor when calling this function. * * @param balancesLiveScaled18 Token balances after paying yield fees, applying decimal scaling and rates * @param tokenInIndex The index of the token we're computing the balance for, sorted in token registration order * @param invariantRatio The ratio of the new invariant (after an operation) to the old * @return newBalance The new balance of the selected token, after the operation */ function computeBalance( uint256[] memory balancesLiveScaled18, uint256 tokenInIndex, uint256 invariantRatio ) external view returns (uint256 newBalance); /*************************************************************************** Swaps ***************************************************************************/ /** * @notice Execute a swap in the pool. * @param params Swap parameters (see above for struct definition) * @return amountCalculatedScaled18 Calculated amount for the swap operation */ function onSwap(PoolSwapParams calldata params) external returns (uint256 amountCalculatedScaled18); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; // Explicitly import VaultTypes structs because we expect this interface to be heavily used by external developers. // Internally, when this list gets too long, we usually just do a simple import to keep things tidy. import { TokenConfig, LiquidityManagement, PoolSwapParams, AfterSwapParams, HookFlags, AddLiquidityKind, RemoveLiquidityKind, SwapKind } from "./VaultTypes.sol"; /** * @notice Interface for pool hooks. * @dev Hooks are functions invoked by the Vault at specific points in the flow of each operation. This guarantees that * they are called in the correct order, and with the correct arguments. To maintain this security, these functions * should only be called by the Vault. The recommended way to do this is to derive the hook contract from `BaseHooks`, * then use the `onlyVault` modifier from `VaultGuard`. (See the examples in /pool-hooks.) */ interface IHooks { /*************************************************************************** Register ***************************************************************************/ /** * @notice Hook executed when a pool is registered with a non-zero hooks contract. * @dev Returns true if registration was successful, and false to revert the pool registration. * Make sure this function is properly implemented (e.g. check the factory, and check that the * given pool is from the factory). The Vault address will be msg.sender. * * @param factory Address of the pool factory (contract deploying the pool) * @param pool Address of the pool * @param tokenConfig An array of descriptors for the tokens the pool will manage * @param liquidityManagement Liquidity management flags indicating which functions are enabled * @return success True if the hook allowed the registration, false otherwise */ function onRegister( address factory, address pool, TokenConfig[] memory tokenConfig, LiquidityManagement calldata liquidityManagement ) external returns (bool success); /** * @notice Return the set of hooks implemented by the contract. * @dev The Vault will only call hooks the pool says it supports, and of course only if a hooks contract is defined * (i.e., the `poolHooksContract` in `PoolRegistrationParams` is non-zero). * `onRegister` is the only "mandatory" hook. * * @return hookFlags Flags indicating which hooks the contract supports */ function getHookFlags() external view returns (HookFlags memory hookFlags); /*************************************************************************** Initialize ***************************************************************************/ /** * @notice Hook executed before pool initialization. * @dev Called if the `shouldCallBeforeInitialize` flag is set in the configuration. Hook contracts should use * the `onlyVault` modifier to guarantee this is only called by the Vault. * * @param exactAmountsIn Exact amounts of input tokens * @param userData Optional, arbitrary data sent with the encoded request * @return success True if the pool wishes to proceed with initialization */ function onBeforeInitialize(uint256[] memory exactAmountsIn, bytes memory userData) external returns (bool success); /** * @notice Hook to be executed after pool initialization. * @dev Called if the `shouldCallAfterInitialize` flag is set in the configuration. Hook contracts should use * the `onlyVault` modifier to guarantee this is only called by the Vault. * * @param exactAmountsIn Exact amounts of input tokens * @param bptAmountOut Amount of pool tokens minted during initialization * @param userData Optional, arbitrary data sent with the encoded request * @return success True if the pool accepts the initialization results */ function onAfterInitialize( uint256[] memory exactAmountsIn, uint256 bptAmountOut, bytes memory userData ) external returns (bool success); /*************************************************************************** Add Liquidity ***************************************************************************/ /** * @notice Hook to be executed before adding liquidity. * @dev Called if the `shouldCallBeforeAddLiquidity` flag is set in the configuration. Hook contracts should use * the `onlyVault` modifier to guarantee this is only called by the Vault. * * @param router The address (usually a router contract) that initiated an add liquidity operation on the Vault * @param pool Pool address, used to fetch pool information from the Vault (pool config, tokens, etc.) * @param kind The add liquidity operation type (e.g., proportional, custom) * @param maxAmountsInScaled18 Maximum amounts of input tokens * @param minBptAmountOut Minimum amount of output pool tokens * @param balancesScaled18 Current pool balances, sorted in token registration order * @param userData Optional, arbitrary data sent with the encoded request * @return success True if the pool wishes to proceed with settlement */ function onBeforeAddLiquidity( address router, address pool, AddLiquidityKind kind, uint256[] memory maxAmountsInScaled18, uint256 minBptAmountOut, uint256[] memory balancesScaled18, bytes memory userData ) external returns (bool success); /** * @notice Hook to be executed after adding liquidity. * @dev Called if the `shouldCallAfterAddLiquidity` flag is set in the configuration. The Vault will ignore * `hookAdjustedAmountsInRaw` unless `enableHookAdjustedAmounts` is true. Hook contracts should use the * `onlyVault` modifier to guarantee this is only called by the Vault. * * @param router The address (usually a router contract) that initiated an add liquidity operation on the Vault * @param pool Pool address, used to fetch pool information from the Vault (pool config, tokens, etc.) * @param kind The add liquidity operation type (e.g., proportional, custom) * @param amountsInScaled18 Actual amounts of tokens added, sorted in token registration order * @param amountsInRaw Actual amounts of tokens added, sorted in token registration order * @param bptAmountOut Amount of pool tokens minted * @param balancesScaled18 Current pool balances, sorted in token registration order * @param userData Additional (optional) data provided by the user * @return success True if the pool wishes to proceed with settlement * @return hookAdjustedAmountsInRaw New amountsInRaw, potentially modified by the hook */ function onAfterAddLiquidity( address router, address pool, AddLiquidityKind kind, uint256[] memory amountsInScaled18, uint256[] memory amountsInRaw, uint256 bptAmountOut, uint256[] memory balancesScaled18, bytes memory userData ) external returns (bool success, uint256[] memory hookAdjustedAmountsInRaw); /*************************************************************************** Remove Liquidity ***************************************************************************/ /** * @notice Hook to be executed before removing liquidity. * @dev Called if the `shouldCallBeforeRemoveLiquidity` flag is set in the configuration. Hook contracts should use * the `onlyVault` modifier to guarantee this is only called by the Vault. * * @param router The address (usually a router contract) that initiated a remove liquidity operation on the Vault * @param pool Pool address, used to fetch pool information from the Vault (pool config, tokens, etc.) * @param kind The type of remove liquidity operation (e.g., proportional, custom) * @param maxBptAmountIn Maximum amount of input pool tokens * @param minAmountsOutScaled18 Minimum output amounts, sorted in token registration order * @param balancesScaled18 Current pool balances, sorted in token registration order * @param userData Optional, arbitrary data sent with the encoded request * @return success True if the pool wishes to proceed with settlement */ function onBeforeRemoveLiquidity( address router, address pool, RemoveLiquidityKind kind, uint256 maxBptAmountIn, uint256[] memory minAmountsOutScaled18, uint256[] memory balancesScaled18, bytes memory userData ) external returns (bool success); /** * @notice Hook to be executed after removing liquidity. * @dev Called if the `shouldCallAfterRemoveLiquidity` flag is set in the configuration. The Vault will ignore * `hookAdjustedAmountsOutRaw` unless `enableHookAdjustedAmounts` is true. Hook contracts should use the * `onlyVault` modifier to guarantee this is only called by the Vault. * * @param router The address (usually a router contract) that initiated a remove liquidity operation on the Vault * @param pool Pool address, used to fetch pool information from the Vault (pool config, tokens, etc.) * @param kind The type of remove liquidity operation (e.g., proportional, custom) * @param bptAmountIn Amount of pool tokens to burn * @param amountsOutScaled18 Scaled amount of tokens to receive, sorted in token registration order * @param amountsOutRaw Actual amount of tokens to receive, sorted in token registration order * @param balancesScaled18 Current pool balances, sorted in token registration order * @param userData Additional (optional) data provided by the user * @return success True if the pool wishes to proceed with settlement * @return hookAdjustedAmountsOutRaw New amountsOutRaw, potentially modified by the hook */ function onAfterRemoveLiquidity( address router, address pool, RemoveLiquidityKind kind, uint256 bptAmountIn, uint256[] memory amountsOutScaled18, uint256[] memory amountsOutRaw, uint256[] memory balancesScaled18, bytes memory userData ) external returns (bool success, uint256[] memory hookAdjustedAmountsOutRaw); /*************************************************************************** Swap ***************************************************************************/ /** * @notice Called before a swap to give the Pool an opportunity to perform actions. * @dev Called if the `shouldCallBeforeSwap` flag is set in the configuration. Hook contracts should use the * `onlyVault` modifier to guarantee this is only called by the Vault. * * @param params Swap parameters (see PoolSwapParams for struct definition) * @param pool Pool address, used to get pool information from the Vault (poolData, token config, etc.) * @return success True if the pool wishes to proceed with settlement */ function onBeforeSwap(PoolSwapParams calldata params, address pool) external returns (bool success); /** * @notice Called after a swap to perform further actions once the balances have been updated by the swap. * @dev Called if the `shouldCallAfterSwap` flag is set in the configuration. The Vault will ignore * `hookAdjustedAmountCalculatedRaw` unless `enableHookAdjustedAmounts` is true. Hook contracts should * use the `onlyVault` modifier to guarantee this is only called by the Vault. * * @param params Swap parameters (see above for struct definition) * @return success True if the pool wishes to proceed with settlement * @return hookAdjustedAmountCalculatedRaw New amount calculated, potentially modified by the hook */ function onAfterSwap( AfterSwapParams calldata params ) external returns (bool success, uint256 hookAdjustedAmountCalculatedRaw); /** * @notice Called after `onBeforeSwap` and before the main swap operation, if the pool has dynamic fees. * @dev Called if the `shouldCallComputeDynamicSwapFee` flag is set in the configuration. Hook contracts should use * the `onlyVault` modifier to guarantee this is only called by the Vault. * * @param params Swap parameters (see PoolSwapParams for struct definition) * @param pool Pool address, used to get pool information from the Vault (poolData, token config, etc.) * @param staticSwapFeePercentage 18-decimal FP value of the static swap fee percentage, for reference * @return success True if the pool wishes to proceed with settlement * @return dynamicSwapFeePercentage Value of the swap fee percentage, as an 18-decimal FP value */ function onComputeDynamicSwapFeePercentage( PoolSwapParams calldata params, address pool, uint256 staticSwapFeePercentage ) external view returns (bool success, uint256 dynamicSwapFeePercentage); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import { IVault } from "./IVault.sol"; /// @notice Contract that handles protocol and pool creator fees for the Vault. interface IProtocolFeeController { /** * @notice Emitted when the protocol swap fee percentage is updated. * @param swapFeePercentage The updated protocol swap fee percentage */ event GlobalProtocolSwapFeePercentageChanged(uint256 swapFeePercentage); /** * @notice Emitted when the protocol yield fee percentage is updated. * @param yieldFeePercentage The updated protocol yield fee percentage */ event GlobalProtocolYieldFeePercentageChanged(uint256 yieldFeePercentage); /** * @notice Emitted when the protocol swap fee percentage is updated for a specific pool. * @param pool The pool whose protocol swap fee will be changed * @param swapFeePercentage The updated protocol swap fee percentage */ event ProtocolSwapFeePercentageChanged(address indexed pool, uint256 swapFeePercentage); /** * @notice Emitted when the protocol yield fee percentage is updated for a specific pool. * @param pool The pool whose protocol yield fee will be changed * @param yieldFeePercentage The updated protocol yield fee percentage */ event ProtocolYieldFeePercentageChanged(address indexed pool, uint256 yieldFeePercentage); /** * @notice Emitted when the pool creator swap fee percentage of a pool is updated. * @param pool The pool whose pool creator swap fee will be changed * @param poolCreatorSwapFeePercentage The new pool creator swap fee percentage for the pool */ event PoolCreatorSwapFeePercentageChanged(address indexed pool, uint256 poolCreatorSwapFeePercentage); /** * @notice Emitted when the pool creator yield fee percentage of a pool is updated. * @param pool The pool whose pool creator yield fee will be changed * @param poolCreatorYieldFeePercentage The new pool creator yield fee percentage for the pool */ event PoolCreatorYieldFeePercentageChanged(address indexed pool, uint256 poolCreatorYieldFeePercentage); /** * @notice Logs the collection of protocol swap fees in a specific token and amount. * @dev Note that since charging protocol fees (i.e., distributing tokens between pool and fee balances) occurs * in the Vault, but fee collection happens in the ProtocolFeeController, the swap fees reported here may encompass * multiple operations. * * @param pool The pool on which the swap fee was charged * @param token The token in which the swap fee was charged * @param amount The amount of the token collected in fees */ event ProtocolSwapFeeCollected(address indexed pool, IERC20 indexed token, uint256 amount); /** * @notice Logs the collection of protocol yield fees in a specific token and amount. * @dev Note that since charging protocol fees (i.e., distributing tokens between pool and fee balances) occurs * in the Vault, but fee collection happens in the ProtocolFeeController, the yield fees reported here may encompass * multiple operations. * * @param pool The pool on which the yield fee was charged * @param token The token in which the yield fee was charged * @param amount The amount of the token collected in fees */ event ProtocolYieldFeeCollected(address indexed pool, IERC20 indexed token, uint256 amount); /** * @notice Logs the withdrawal of protocol fees in a specific token and amount. * @param pool The pool from which protocol fees are being withdrawn * @param token The token being withdrawn * @param recipient The recipient of the funds * @param amount The amount of the fee token that was withdrawn */ event ProtocolFeesWithdrawn(address indexed pool, IERC20 indexed token, address indexed recipient, uint256 amount); /** * @notice Logs the withdrawal of pool creator fees in a specific token and amount. * @param pool The pool from which pool creator fees are being withdrawn * @param token The token being withdrawn * @param recipient The recipient of the funds (the pool creator if permissionless, or another account) * @param amount The amount of the fee token that was withdrawn */ event PoolCreatorFeesWithdrawn( address indexed pool, IERC20 indexed token, address indexed recipient, uint256 amount ); /** * @notice Error raised when the protocol swap fee percentage exceeds the maximum allowed value. * @dev Note that this is checked for both the global and pool-specific protocol swap fee percentages. */ error ProtocolSwapFeePercentageTooHigh(); /** * @notice Error raised when the protocol yield fee percentage exceeds the maximum allowed value. * @dev Note that this is checked for both the global and pool-specific protocol yield fee percentages. */ error ProtocolYieldFeePercentageTooHigh(); /** * @notice Error raised if there is no pool creator on a withdrawal attempt from the given pool. * @param pool The pool with no creator */ error PoolCreatorNotRegistered(address pool); /** * @notice Error raised if the wrong account attempts to withdraw pool creator fees. * @param caller The account attempting to withdraw pool creator fees * @param pool The pool the caller tried to withdraw from */ error CallerIsNotPoolCreator(address caller, address pool); /// @notice Error raised when the pool creator swap or yield fee percentage exceeds the maximum allowed value. error PoolCreatorFeePercentageTooHigh(); /** * @notice Get the address of the main Vault contract. * @return vault The Vault address */ function vault() external view returns (IVault); /** * @notice Collects aggregate fees from the Vault for a given pool. * @param pool The pool with aggregate fees */ function collectAggregateFees(address pool) external; /** * @notice Getter for the current global protocol swap fee. * @return protocolSwapFeePercentage The global protocol swap fee percentage */ function getGlobalProtocolSwapFeePercentage() external view returns (uint256 protocolSwapFeePercentage); /** * @notice Getter for the current global protocol yield fee. * @return protocolYieldFeePercentage The global protocol yield fee percentage */ function getGlobalProtocolYieldFeePercentage() external view returns (uint256 protocolYieldFeePercentage); /** * @notice Getter for the current protocol swap fee for a given pool. * @param pool The address of the pool * @return protocolSwapFeePercentage The global protocol swap fee percentage * @return isOverride True if the protocol fee has been overridden */ function getPoolProtocolSwapFeeInfo( address pool ) external view returns (uint256 protocolSwapFeePercentage, bool isOverride); /** * @notice Getter for the current protocol yield fee for a given pool. * @param pool The address of the pool * @return protocolYieldFeePercentage The global protocol yield fee percentage * @return isOverride True if the protocol fee has been overridden */ function getPoolProtocolYieldFeeInfo( address pool ) external view returns (uint256 protocolYieldFeePercentage, bool isOverride); /** * @notice Returns the amount of each pool token allocated to the protocol for withdrawal. * @dev Includes both swap and yield fees. * @param pool The address of the pool on which fees were collected * @return feeAmounts The total amounts of each token available for withdrawal, sorted in token registration order */ function getProtocolFeeAmounts(address pool) external view returns (uint256[] memory feeAmounts); /** * @notice Returns the amount of each pool token allocated to the pool creator for withdrawal. * @dev Includes both swap and yield fees. * @param pool The address of the pool on which fees were collected * @return feeAmounts The total amounts of each token available for withdrawal, sorted in token registration order */ function getPoolCreatorFeeAmounts(address pool) external view returns (uint256[] memory feeAmounts); /** * @notice Returns a calculated aggregate percentage from protocol and pool creator fee percentages. * @dev Not tied to any particular pool; this just performs the low-level "additive fee" calculation. Note that * pool creator fees are calculated based on creatorAndLpFees, and not in totalFees. Since aggregate fees are * stored in the Vault with 24-bit precision, this will truncate any values that require greater precision. * It is expected that pool creators will negotiate with the DAO and agree on reasonable values for these fee * components, but the truncation ensures it will not revert for any valid set of fee percentages. * * See example below: * * tokenOutAmount = 10000; poolSwapFeePct = 10%; protocolFeePct = 40%; creatorFeePct = 60% * totalFees = tokenOutAmount * poolSwapFeePct = 10000 * 10% = 1000 * protocolFees = totalFees * protocolFeePct = 1000 * 40% = 400 * creatorAndLpFees = totalFees - protocolFees = 1000 - 400 = 600 * creatorFees = creatorAndLpFees * creatorFeePct = 600 * 60% = 360 * lpFees (will stay in the pool) = creatorAndLpFees - creatorFees = 600 - 360 = 240 * * @param protocolFeePercentage The protocol portion of the aggregate fee percentage * @param poolCreatorFeePercentage The pool creator portion of the aggregate fee percentage * @return aggregateFeePercentage The computed aggregate percentage */ function computeAggregateFeePercentage( uint256 protocolFeePercentage, uint256 poolCreatorFeePercentage ) external pure returns (uint256 aggregateFeePercentage); /** * @notice Override the protocol swap fee percentage for a specific pool. * @dev This is a permissionless call, and will set the pool's fee to the current global fee, if it is different * from the current value, and the fee is not controlled by governance (i.e., has never been overridden). * * @param pool The pool for which we are setting the protocol swap fee */ function updateProtocolSwapFeePercentage(address pool) external; /** * @notice Override the protocol yield fee percentage for a specific pool. * @dev This is a permissionless call, and will set the pool's fee to the current global fee, if it is different * from the current value, and the fee is not controlled by governance (i.e., has never been overridden). * * @param pool The pool for which we are setting the protocol yield fee */ function updateProtocolYieldFeePercentage(address pool) external; /*************************************************************************** Permissioned Functions ***************************************************************************/ /** * @notice Add pool-specific entries to the protocol swap and yield percentages. * @dev This must be called from the Vault during pool registration. It will initialize the pool to the global * protocol fee percentage values (or 0, if the `protocolFeeExempt` flags is set), and return the initial aggregate * fee percentages, based on an initial pool creator fee of 0. * * @param pool The address of the pool being registered * @param poolCreator The address of the pool creator (or 0 if there won't be a pool creator fee) * @param protocolFeeExempt If true, the pool is initially exempt from protocol fees * @return aggregateSwapFeePercentage The initial aggregate swap fee percentage * @return aggregateYieldFeePercentage The initial aggregate yield fee percentage */ function registerPool( address pool, address poolCreator, bool protocolFeeExempt ) external returns (uint256 aggregateSwapFeePercentage, uint256 aggregateYieldFeePercentage); /** * @notice Set the global protocol swap fee percentage, used by standard pools. * @param newProtocolSwapFeePercentage The new protocol swap fee percentage */ function setGlobalProtocolSwapFeePercentage(uint256 newProtocolSwapFeePercentage) external; /** * @notice Set the global protocol yield fee percentage, used by standard pools. * @param newProtocolYieldFeePercentage The new protocol yield fee percentage */ function setGlobalProtocolYieldFeePercentage(uint256 newProtocolYieldFeePercentage) external; /** * @notice Override the protocol swap fee percentage for a specific pool. * @param pool The address of the pool for which we are setting the protocol swap fee * @param newProtocolSwapFeePercentage The new protocol swap fee percentage for the pool */ function setProtocolSwapFeePercentage(address pool, uint256 newProtocolSwapFeePercentage) external; /** * @notice Override the protocol yield fee percentage for a specific pool. * @param pool The address of the pool for which we are setting the protocol yield fee * @param newProtocolYieldFeePercentage The new protocol yield fee percentage for the pool */ function setProtocolYieldFeePercentage(address pool, uint256 newProtocolYieldFeePercentage) external; /** * @notice Assigns a new pool creator swap fee percentage to the specified pool. * @dev Fees are divided between the protocol, pool creator, and LPs. The pool creator percentage is applied to * the "net" amount after protocol fees, and divides the remainder between the pool creator and LPs. If the * pool creator fee is near 100%, almost none of the fee amount remains in the pool for LPs. * * @param pool The address of the pool for which the pool creator fee will be changed * @param poolCreatorSwapFeePercentage The new pool creator swap fee percentage to apply to the pool */ function setPoolCreatorSwapFeePercentage(address pool, uint256 poolCreatorSwapFeePercentage) external; /** * @notice Assigns a new pool creator yield fee percentage to the specified pool. * @dev Fees are divided between the protocol, pool creator, and LPs. The pool creator percentage is applied to * the "net" amount after protocol fees, and divides the remainder between the pool creator and LPs. If the * pool creator fee is near 100%, almost none of the fee amount remains in the pool for LPs. * * @param pool The address of the pool for which the pool creator fee will be changed * @param poolCreatorYieldFeePercentage The new pool creator yield fee percentage to apply to the pool */ function setPoolCreatorYieldFeePercentage(address pool, uint256 poolCreatorYieldFeePercentage) external; /** * @notice Withdraw collected protocol fees for a given pool (all tokens). This is a permissioned function. * @dev Sends swap and yield protocol fees to the recipient. * @param pool The pool on which fees were collected * @param recipient Address to send the tokens */ function withdrawProtocolFees(address pool, address recipient) external; /** * @notice Withdraw collected protocol fees for a given pool and a given token. This is a permissioned function. * @dev Sends swap and yield protocol fees to the recipient. * @param pool The pool on which fees were collected * @param recipient Address to send the tokens * @param token Token to withdraw */ function withdrawProtocolFeesForToken(address pool, address recipient, IERC20 token) external; /** * @notice Withdraw collected pool creator fees for a given pool. This is a permissioned function. * @dev Sends swap and yield pool creator fees to the recipient. * @param pool The pool on which fees were collected * @param recipient Address to send the tokens */ function withdrawPoolCreatorFees(address pool, address recipient) external; /** * @notice Withdraw collected pool creator fees for a given pool. * @dev Sends swap and yield pool creator fees to the registered poolCreator. Since this is a known and immutable * value, this function is permissionless. * * @param pool The pool on which fees were collected */ function withdrawPoolCreatorFees(address pool) external; }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; /** * @notice Return the minimum/maximum swap fee percentages for a pool. * @dev The Vault does not enforce bounds on swap fee percentages; `IBasePool` implements this interface to ensure * that new pool developers think about and set these bounds according to their specific pool type. * * A minimum swap fee might be necessary to ensure mathematical soundness (e.g., Weighted Pools, which use the power * function in the invariant). A maximum swap fee is general protection for users. With no limits at the Vault level, * a pool could specify a near 100% swap fee, effectively disabling trading. Though there are some use cases, such as * LVR/MEV strategies, where a very high fee makes sense. * * Note that the Vault does ensure that dynamic and aggregate fees are less than 100% to prevent attempting to allocate * more fees than were collected by the operation. The true `MAX_FEE_PERCENTAGE` is defined in VaultTypes.sol, and is * the highest value below 100% that satisfies the precision requirements. */ interface ISwapFeePercentageBounds { /// @return minimumSwapFeePercentage The minimum swap fee percentage for a pool function getMinimumSwapFeePercentage() external view returns (uint256 minimumSwapFeePercentage); /// @return maximumSwapFeePercentage The maximum swap fee percentage for a pool function getMaximumSwapFeePercentage() external view returns (uint256 maximumSwapFeePercentage); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; /** * @notice Return the minimum/maximum invariant ratios allowed during an unbalanced liquidity operation. * @dev The Vault does not enforce any "baseline" bounds on invariant ratios, since such bounds are highly specific * and dependent on the math of each pool type. Instead, the Vault reads invariant ratio bounds from the pools. * `IBasePool` implements this interface to ensure that new pool developers think about and set these bounds according * to their pool type's math. * * For instance, Balancer Weighted Pool math involves exponentiation (the `pow` function), which uses natural * logarithms and a discrete Taylor series expansion to compute x^y values for the 18-decimal floating point numbers * used in all Vault computations. See `LogExpMath` and `WeightedMath` for a derivation of the bounds for these pools. */ interface IUnbalancedLiquidityInvariantRatioBounds { /// @return minimumInvariantRatio The minimum invariant ratio for a pool during unbalanced remove liquidity function getMinimumInvariantRatio() external view returns (uint256 minimumInvariantRatio); /// @return maximumInvariantRatio The maximum invariant ratio for a pool during unbalanced add liquidity function getMaximumInvariantRatio() external view returns (uint256 maximumInvariantRatio); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; import { IAuthentication } from "../solidity-utils/helpers/IAuthentication.sol"; import { IVaultExtension } from "./IVaultExtension.sol"; import { IVaultErrors } from "./IVaultErrors.sol"; import { IVaultEvents } from "./IVaultEvents.sol"; import { IVaultAdmin } from "./IVaultAdmin.sol"; import { IVaultMain } from "./IVaultMain.sol"; /// @notice Composite interface for all Vault operations: swap, add/remove liquidity, and associated queries. interface IVault is IVaultMain, IVaultExtension, IVaultAdmin, IVaultErrors, IVaultEvents, IAuthentication { /// @return vault The main Vault address. function vault() external view override(IVaultAdmin, IVaultExtension) returns (IVault); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; import { IERC4626 } from "@openzeppelin/contracts/interfaces/IERC4626.sol"; import { IProtocolFeeController } from "./IProtocolFeeController.sol"; import { IAuthorizer } from "./IAuthorizer.sol"; import { IVault } from "./IVault.sol"; /** * @notice Interface for functions defined on the `VaultAdmin` contract. * @dev `VaultAdmin` is the Proxy extension of `VaultExtension`, and handles the least critical operations, * as two delegate calls add gas to each call. Most of the permissioned calls are here. */ interface IVaultAdmin { /******************************************************************************* Constants and immutables *******************************************************************************/ /** * @notice Returns the main Vault address. * @dev The main Vault contains the entrypoint and main liquidity operation implementations. * @return vault The address of the main Vault */ function vault() external view returns (IVault); /** * @notice Returns the Vault's pause window end time. * @dev This value is immutable, and represents the timestamp after which the Vault can no longer be paused * by governance. Balancer timestamps are 32 bits. * * @return pauseWindowEndTime The timestamp when the Vault's pause window ends */ function getPauseWindowEndTime() external view returns (uint32 pauseWindowEndTime); /** * @notice Returns the Vault's buffer period duration. * @dev This value is immutable. It represents the period during which, if paused, the Vault will remain paused. * This ensures there is time available to address whatever issue caused the Vault to be paused. Balancer * timestamps are 32 bits. * * @return bufferPeriodDuration The length of the buffer period in seconds */ function getBufferPeriodDuration() external view returns (uint32 bufferPeriodDuration); /** * @notice Returns the Vault's buffer period end time. * @dev This value is immutable. If already paused, the Vault can be unpaused until this timestamp. Balancer * timestamps are 32 bits. * * @return bufferPeriodEndTime The timestamp after which the Vault remains permanently unpaused */ function getBufferPeriodEndTime() external view returns (uint32 bufferPeriodEndTime); /** * @notice Get the minimum number of tokens in a pool. * @dev We expect the vast majority of pools to be 2-token. * @return minTokens The minimum token count of a pool */ function getMinimumPoolTokens() external pure returns (uint256 minTokens); /** * @notice Get the maximum number of tokens in a pool. * @return maxTokens The maximum token count of a pool */ function getMaximumPoolTokens() external pure returns (uint256 maxTokens); /** * @notice Get the minimum total supply of pool tokens (BPT) for an initialized pool. * @dev This prevents pools from being completely drained. When the pool is initialized, this minimum amount of BPT * is minted to the zero address. This is an 18-decimal floating point number; BPT are always 18 decimals. * * @return poolMinimumTotalSupply The minimum total supply a pool can have after initialization */ function getPoolMinimumTotalSupply() external pure returns (uint256 poolMinimumTotalSupply); /** * @notice Get the minimum total supply of an ERC4626 wrapped token buffer in the Vault. * @dev This prevents buffers from being completely drained. When the buffer is initialized, this minimum number * of shares is added to the shares resulting from the initial deposit. Buffer total supply accounting is internal * to the Vault, as buffers are not tokenized. * * @return bufferMinimumTotalSupply The minimum total supply a buffer can have after initialization */ function getBufferMinimumTotalSupply() external pure returns (uint256 bufferMinimumTotalSupply); /** * @notice Get the minimum trade amount in a pool operation. * @dev This limit is applied to the 18-decimal "upscaled" amount in any operation (swap, add/remove liquidity). * @return minimumTradeAmount The minimum trade amount as an 18-decimal floating point number */ function getMinimumTradeAmount() external view returns (uint256 minimumTradeAmount); /** * @notice Get the minimum wrap amount in a buffer operation. * @dev This limit is applied to the wrap operation amount, in native underlying token decimals. * @return minimumWrapAmount The minimum wrap amount in native underlying token decimals */ function getMinimumWrapAmount() external view returns (uint256 minimumWrapAmount); /******************************************************************************* Vault Pausing *******************************************************************************/ /** * @notice Indicates whether the Vault is paused. * @dev If the Vault is paused, all non-Recovery Mode state-changing operations on pools will revert. Note that * ERC4626 buffers and the Vault have separate and independent pausing mechanisms. Pausing the Vault does not * also pause buffers (though we anticipate they would likely be paused and unpaused together). Call * `areBuffersPaused` to check the pause state of the buffers. * * @return vaultPaused True if the Vault is paused */ function isVaultPaused() external view returns (bool vaultPaused); /** * @notice Returns the paused status, and end times of the Vault's pause window and buffer period. * @dev Balancer timestamps are 32 bits. * @return vaultPaused True if the Vault is paused * @return vaultPauseWindowEndTime The timestamp of the end of the Vault's pause window * @return vaultBufferPeriodEndTime The timestamp of the end of the Vault's buffer period */ function getVaultPausedState() external view returns (bool vaultPaused, uint32 vaultPauseWindowEndTime, uint32 vaultBufferPeriodEndTime); /** * @notice Pause the Vault: an emergency action which disables all operational state-changing functions on pools. * @dev This is a permissioned function that will only work during the Pause Window set during deployment. * Note that ERC4626 buffer operations have an independent pause mechanism, which is not affected by pausing * the Vault. Custom routers could still wrap/unwrap using buffers while the Vault is paused, unless buffers * are also paused (with `pauseVaultBuffers`). */ function pauseVault() external; /** * @notice Reverse a `pause` operation, and restore Vault pool operations to normal functionality. * @dev This is a permissioned function that will only work on a paused Vault within the Buffer Period set during * deployment. Note that the Vault will automatically unpause after the Buffer Period expires. As noted above, * ERC4626 buffers and Vault operations on pools are independent. Unpausing the Vault does not reverse * `pauseVaultBuffers`. If buffers were also paused, they will remain in that state until explicitly unpaused. */ function unpauseVault() external; /******************************************************************************* Pool Pausing *******************************************************************************/ /** * @notice Pause the Pool: an emergency action which disables all pool functions. * @dev This is a permissioned function that will only work during the Pause Window set during pool factory * deployment. * * @param pool The pool being paused */ function pausePool(address pool) external; /** * @notice Reverse a `pause` operation, and restore the Pool to normal functionality. * @dev This is a permissioned function that will only work on a paused Pool within the Buffer Period set during * deployment. Note that the Pool will automatically unpause after the Buffer Period expires. * * @param pool The pool being unpaused */ function unpausePool(address pool) external; /******************************************************************************* Fees *******************************************************************************/ /** * @notice Assigns a new static swap fee percentage to the specified pool. * @dev This is a permissioned function, disabled if the pool is paused. The swap fee percentage must be within * the bounds specified by the pool's implementation of `ISwapFeePercentageBounds`. * Emits the SwapFeePercentageChanged event. * * @param pool The address of the pool for which the static swap fee will be changed * @param swapFeePercentage The new swap fee percentage to apply to the pool */ function setStaticSwapFeePercentage(address pool, uint256 swapFeePercentage) external; /** * @notice Collects accumulated aggregate swap and yield fees for the specified pool. * @dev Fees are sent to the ProtocolFeeController address. * @param pool The pool on which all aggregate fees should be collected * @return swapFeeAmounts An array with the total swap fees collected, sorted in token registration order * @return yieldFeeAmounts An array with the total yield fees collected, sorted in token registration order */ function collectAggregateFees( address pool ) external returns (uint256[] memory swapFeeAmounts, uint256[] memory yieldFeeAmounts); /** * @notice Update an aggregate swap fee percentage. * @dev Can only be called by the current protocol fee controller. Called when governance overrides a protocol fee * for a specific pool, or to permissionlessly update a pool to a changed global protocol fee value (if the pool's * fee has not previously been set by governance). Ensures the aggregate percentage <= FixedPoint.ONE, and also * that the final value does not lose precision when stored in 24 bits (see `FEE_BITLENGTH` in VaultTypes.sol). * Emits an `AggregateSwapFeePercentageChanged` event. * * @param pool The pool whose swap fee percentage will be updated * @param newAggregateSwapFeePercentage The new aggregate swap fee percentage */ function updateAggregateSwapFeePercentage(address pool, uint256 newAggregateSwapFeePercentage) external; /** * @notice Update an aggregate yield fee percentage. * @dev Can only be called by the current protocol fee controller. Called when governance overrides a protocol fee * for a specific pool, or to permissionlessly update a pool to a changed global protocol fee value (if the pool's * fee has not previously been set by governance). Ensures the aggregate percentage <= FixedPoint.ONE, and also * that the final value does not lose precision when stored in 24 bits (see `FEE_BITLENGTH` in VaultTypes.sol). * Emits an `AggregateYieldFeePercentageChanged` event. * * @param pool The pool whose yield fee percentage will be updated * @param newAggregateYieldFeePercentage The new aggregate yield fee percentage */ function updateAggregateYieldFeePercentage(address pool, uint256 newAggregateYieldFeePercentage) external; /** * @notice Sets a new Protocol Fee Controller for the Vault. * @dev This is a permissioned call. Emits a `ProtocolFeeControllerChanged` event. * @param newProtocolFeeController The address of the new Protocol Fee Controller */ function setProtocolFeeController(IProtocolFeeController newProtocolFeeController) external; /******************************************************************************* Recovery Mode *******************************************************************************/ /** * @notice Enable recovery mode for a pool. * @dev This is a permissioned function. It enables a safe proportional withdrawal, with no external calls. * Since there are no external calls, ensuring that entering Recovery Mode cannot fail, we cannot compute and so * must forfeit any yield fees between the last operation and enabling Recovery Mode. For the same reason, live * balances cannot be updated while in Recovery Mode, as doing so might cause withdrawals to fail. * * @param pool The address of the pool */ function enableRecoveryMode(address pool) external; /** * @notice Disable recovery mode for a pool. * @dev This is a permissioned function. It re-syncs live balances (which could not be updated during * Recovery Mode), forfeiting any yield fees that accrued while enabled. It makes external calls, and could * potentially fail if there is an issue with any associated Rate Providers. * * @param pool The address of the pool */ function disableRecoveryMode(address pool) external; /******************************************************************************* Query Functionality *******************************************************************************/ /** * @notice Disables query functionality on the Vault. Can only be called by governance. * @dev The query functions rely on a specific EVM feature to detect static calls. Query operations are exempt from * settlement constraints, so it's critical that no state changes can occur. We retain the ability to disable * queries in the unlikely event that EVM changes violate its assumptions (perhaps on an L2). * This function can be acted upon as an emergency measure in ambiguous contexts where it's not 100% clear whether * disabling queries is completely necessary; queries can still be re-enabled after this call. */ function disableQuery() external; /** * @notice Disables query functionality permanently on the Vault. Can only be called by governance. * @dev Shall only be used when there is no doubt that queries pose a fundamental threat to the system. */ function disableQueryPermanently() external; /** * @notice Enables query functionality on the Vault. Can only be called by governance. * @dev Only works if queries are not permanently disabled. */ function enableQuery() external; /******************************************************************************* ERC4626 Buffers *******************************************************************************/ /** * @notice Indicates whether the Vault buffers are paused. * @dev When buffers are paused, all buffer operations (i.e., calls on the Router with `isBuffer` true) * will revert. Pausing buffers is reversible. Note that ERC4626 buffers and the Vault have separate and * independent pausing mechanisms. Pausing the Vault does not also pause buffers (though we anticipate they * would likely be paused and unpaused together). Call `isVaultPaused` to check the pause state of the Vault. * * @return buffersPaused True if the Vault buffers are paused */ function areBuffersPaused() external view returns (bool buffersPaused); /** * @notice Pauses native vault buffers globally. * @dev When buffers are paused, it's not possible to add liquidity or wrap/unwrap tokens using the Vault's * `erc4626BufferWrapOrUnwrap` primitive. However, it's still possible to remove liquidity. Currently it's not * possible to pause vault buffers individually. * * This is a permissioned call, and is reversible (see `unpauseVaultBuffers`). Note that the Vault has a separate * and independent pausing mechanism. It is possible to pause the Vault (i.e. pool operations), without affecting * buffers, and vice versa. */ function pauseVaultBuffers() external; /** * @notice Unpauses native vault buffers globally. * @dev When buffers are paused, it's not possible to add liquidity or wrap/unwrap tokens using the Vault's * `erc4626BufferWrapOrUnwrap` primitive. However, it's still possible to remove liquidity. As noted above, * ERC4626 buffers and Vault operations on pools are independent. Unpausing buffers does not reverse `pauseVault`. * If the Vault was also paused, it will remain in that state until explicitly unpaused. * * This is a permissioned call. */ function unpauseVaultBuffers() external; /** * @notice Initializes buffer for the given wrapped token. * @param wrappedToken Address of the wrapped token that implements IERC4626 * @param amountUnderlyingRaw Amount of underlying tokens that will be deposited into the buffer * @param amountWrappedRaw Amount of wrapped tokens that will be deposited into the buffer * @param minIssuedShares Minimum amount of shares to receive from the buffer, expressed in underlying token * native decimals * @param sharesOwner Address that will own the deposited liquidity. Only this address will be able to remove * liquidity from the buffer * @return issuedShares the amount of tokens sharesOwner has in the buffer, expressed in underlying token amounts. * (it is the BPT of an internal ERC4626 buffer). It is expressed in underlying token native decimals. */ function initializeBuffer( IERC4626 wrappedToken, uint256 amountUnderlyingRaw, uint256 amountWrappedRaw, uint256 minIssuedShares, address sharesOwner ) external returns (uint256 issuedShares); /** * @notice Adds liquidity to an internal ERC4626 buffer in the Vault, proportionally. * @dev The buffer needs to be initialized beforehand. * @param wrappedToken Address of the wrapped token that implements IERC4626 * @param maxAmountUnderlyingInRaw Maximum amount of underlying tokens to add to the buffer. It is expressed in * underlying token native decimals * @param maxAmountWrappedInRaw Maximum amount of wrapped tokens to add to the buffer. It is expressed in wrapped * token native decimals * @param exactSharesToIssue The value in underlying tokens that `sharesOwner` wants to add to the buffer, * in underlying token decimals * @param sharesOwner Address that will own the deposited liquidity. Only this address will be able to remove * liquidity from the buffer * @return amountUnderlyingRaw Amount of underlying tokens deposited into the buffer * @return amountWrappedRaw Amount of wrapped tokens deposited into the buffer */ function addLiquidityToBuffer( IERC4626 wrappedToken, uint256 maxAmountUnderlyingInRaw, uint256 maxAmountWrappedInRaw, uint256 exactSharesToIssue, address sharesOwner ) external returns (uint256 amountUnderlyingRaw, uint256 amountWrappedRaw); /** * @notice Removes liquidity from an internal ERC4626 buffer in the Vault. * @dev Only proportional exits are supported, and the sender has to be the owner of the shares. * This function unlocks the Vault just for this operation; it does not work with a Router as an entrypoint. * * Pre-conditions: * - The buffer needs to be initialized. * - sharesOwner is the original msg.sender, it needs to be checked in the Router. That's why * this call is authenticated; only routers approved by the DAO can remove the liquidity of a buffer. * - The buffer needs to have some liquidity and have its asset registered in `_bufferAssets` storage. * * @param wrappedToken Address of the wrapped token that implements IERC4626 * @param sharesToRemove Amount of shares to remove from the buffer. Cannot be greater than sharesOwner's * total shares. It is expressed in underlying token native decimals * @param minAmountUnderlyingOutRaw Minimum amount of underlying tokens to receive from the buffer. It is expressed * in underlying token native decimals * @param minAmountWrappedOutRaw Minimum amount of wrapped tokens to receive from the buffer. It is expressed in * wrapped token native decimals * @return removedUnderlyingBalanceRaw Amount of underlying tokens returned to the user * @return removedWrappedBalanceRaw Amount of wrapped tokens returned to the user */ function removeLiquidityFromBuffer( IERC4626 wrappedToken, uint256 sharesToRemove, uint256 minAmountUnderlyingOutRaw, uint256 minAmountWrappedOutRaw ) external returns (uint256 removedUnderlyingBalanceRaw, uint256 removedWrappedBalanceRaw); /** * @notice Returns the asset registered for a given wrapped token. * @dev The asset can never change after buffer initialization. * @param wrappedToken Address of the wrapped token that implements IERC4626 * @return underlyingToken Address of the underlying token registered for the wrapper; `address(0)` if the buffer * has not been initialized. */ function getBufferAsset(IERC4626 wrappedToken) external view returns (address underlyingToken); /** * @notice Returns the shares (internal buffer BPT) of a liquidity owner: a user that deposited assets * in the buffer. * * @param wrappedToken Address of the wrapped token that implements IERC4626 * @param liquidityOwner Address of the user that owns liquidity in the wrapped token's buffer * @return ownerShares Amount of shares allocated to the liquidity owner, in native underlying token decimals */ function getBufferOwnerShares( IERC4626 wrappedToken, address liquidityOwner ) external view returns (uint256 ownerShares); /** * @notice Returns the supply shares (internal buffer BPT) of the ERC4626 buffer. * @param wrappedToken Address of the wrapped token that implements IERC4626 * @return bufferShares Amount of supply shares of the buffer, in native underlying token decimals */ function getBufferTotalShares(IERC4626 wrappedToken) external view returns (uint256 bufferShares); /** * @notice Returns the amount of underlying and wrapped tokens deposited in the internal buffer of the Vault. * @dev All values are in native token decimals of the wrapped or underlying tokens. * @param wrappedToken Address of the wrapped token that implements IERC4626 * @return underlyingBalanceRaw Amount of underlying tokens deposited into the buffer, in native token decimals * @return wrappedBalanceRaw Amount of wrapped tokens deposited into the buffer, in native token decimals */ function getBufferBalance( IERC4626 wrappedToken ) external view returns (uint256 underlyingBalanceRaw, uint256 wrappedBalanceRaw); /******************************************************************************* Authentication *******************************************************************************/ /** * @notice Sets a new Authorizer for the Vault. * @dev This is a permissioned call. Emits an `AuthorizerChanged` event. * @param newAuthorizer The address of the new authorizer */ function setAuthorizer(IAuthorizer newAuthorizer) external; }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; import { IERC4626 } from "@openzeppelin/contracts/interfaces/IERC4626.sol"; import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; /// @notice Errors are declared inside an interface (namespace) to improve DX with Typechain. interface IVaultErrors { /******************************************************************************* Registration and Initialization *******************************************************************************/ /** * @notice A pool has already been registered. `registerPool` may only be called once. * @param pool The already registered pool */ error PoolAlreadyRegistered(address pool); /** * @notice A pool has already been initialized. `initialize` may only be called once. * @param pool The already initialized pool */ error PoolAlreadyInitialized(address pool); /** * @notice A pool has not been registered. * @param pool The unregistered pool */ error PoolNotRegistered(address pool); /** * @notice A referenced pool has not been initialized. * @param pool The uninitialized pool */ error PoolNotInitialized(address pool); /** * @notice A hook contract rejected a pool on registration. * @param poolHooksContract Address of the hook contract that rejected the pool registration * @param pool Address of the rejected pool * @param poolFactory Address of the pool factory */ error HookRegistrationFailed(address poolHooksContract, address pool, address poolFactory); /** * @notice A token was already registered (i.e., it is a duplicate in the pool). * @param token The duplicate token */ error TokenAlreadyRegistered(IERC20 token); /// @notice The token count is below the minimum allowed. error MinTokens(); /// @notice The token count is above the maximum allowed. error MaxTokens(); /// @notice Invalid tokens (e.g., zero) cannot be registered. error InvalidToken(); /// @notice The token type given in a TokenConfig during pool registration is invalid. error InvalidTokenType(); /// @notice The data in a TokenConfig struct is inconsistent or unsupported. error InvalidTokenConfiguration(); /// @notice Tokens with more than 18 decimals are not supported. error InvalidTokenDecimals(); /** * @notice The token list passed into an operation does not match the pool tokens in the pool. * @param pool Address of the pool * @param expectedToken The correct token at a given index in the pool * @param actualToken The actual token found at that index */ error TokensMismatch(address pool, address expectedToken, address actualToken); /******************************************************************************* Transient Accounting *******************************************************************************/ /// @notice A transient accounting operation completed with outstanding token deltas. error BalanceNotSettled(); /// @notice A user called a Vault function (swap, add/remove liquidity) outside the lock context. error VaultIsNotUnlocked(); /// @notice The pool has returned false to the beforeSwap hook, indicating the transaction should revert. error DynamicSwapFeeHookFailed(); /// @notice The pool has returned false to the beforeSwap hook, indicating the transaction should revert. error BeforeSwapHookFailed(); /// @notice The pool has returned false to the afterSwap hook, indicating the transaction should revert. error AfterSwapHookFailed(); /// @notice The pool has returned false to the beforeInitialize hook, indicating the transaction should revert. error BeforeInitializeHookFailed(); /// @notice The pool has returned false to the afterInitialize hook, indicating the transaction should revert. error AfterInitializeHookFailed(); /// @notice The pool has returned false to the beforeAddLiquidity hook, indicating the transaction should revert. error BeforeAddLiquidityHookFailed(); /// @notice The pool has returned false to the afterAddLiquidity hook, indicating the transaction should revert. error AfterAddLiquidityHookFailed(); /// @notice The pool has returned false to the beforeRemoveLiquidity hook, indicating the transaction should revert. error BeforeRemoveLiquidityHookFailed(); /// @notice The pool has returned false to the afterRemoveLiquidity hook, indicating the transaction should revert. error AfterRemoveLiquidityHookFailed(); /// @notice An unauthorized Router tried to call a permissioned function (i.e., using the Vault's token allowance). error RouterNotTrusted(); /******************************************************************************* Swaps *******************************************************************************/ /// @notice The user tried to swap zero tokens. error AmountGivenZero(); /// @notice The user attempted to swap a token for itself. error CannotSwapSameToken(); /** * @notice The user attempted to operate with a token that is not in the pool. * @param token The unregistered token */ error TokenNotRegistered(IERC20 token); /** * @notice An amount in or out has exceeded the limit specified in the swap request. * @param amount The total amount in or out * @param limit The amount of the limit that has been exceeded */ error SwapLimit(uint256 amount, uint256 limit); /** * @notice A hook adjusted amount in or out has exceeded the limit specified in the swap request. * @param amount The total amount in or out * @param limit The amount of the limit that has been exceeded */ error HookAdjustedSwapLimit(uint256 amount, uint256 limit); /// @notice The amount given or calculated for an operation is below the minimum limit. error TradeAmountTooSmall(); /******************************************************************************* Add Liquidity *******************************************************************************/ /// @notice Add liquidity kind not supported. error InvalidAddLiquidityKind(); /** * @notice A required amountIn exceeds the maximum limit specified for the operation. * @param tokenIn The incoming token * @param amountIn The total token amount in * @param maxAmountIn The amount of the limit that has been exceeded */ error AmountInAboveMax(IERC20 tokenIn, uint256 amountIn, uint256 maxAmountIn); /** * @notice A hook adjusted amountIn exceeds the maximum limit specified for the operation. * @param tokenIn The incoming token * @param amountIn The total token amount in * @param maxAmountIn The amount of the limit that has been exceeded */ error HookAdjustedAmountInAboveMax(IERC20 tokenIn, uint256 amountIn, uint256 maxAmountIn); /** * @notice The BPT amount received from adding liquidity is below the minimum specified for the operation. * @param amountOut The total BPT amount out * @param minAmountOut The amount of the limit that has been exceeded */ error BptAmountOutBelowMin(uint256 amountOut, uint256 minAmountOut); /// @notice Pool does not support adding liquidity with a customized input. error DoesNotSupportAddLiquidityCustom(); /// @notice Pool does not support adding liquidity through donation. error DoesNotSupportDonation(); /******************************************************************************* Remove Liquidity *******************************************************************************/ /// @notice Remove liquidity kind not supported. error InvalidRemoveLiquidityKind(); /** * @notice The actual amount out is below the minimum limit specified for the operation. * @param tokenOut The outgoing token * @param amountOut The total BPT amount out * @param minAmountOut The amount of the limit that has been exceeded */ error AmountOutBelowMin(IERC20 tokenOut, uint256 amountOut, uint256 minAmountOut); /** * @notice The hook adjusted amount out is below the minimum limit specified for the operation. * @param tokenOut The outgoing token * @param amountOut The total BPT amount out * @param minAmountOut The amount of the limit that has been exceeded */ error HookAdjustedAmountOutBelowMin(IERC20 tokenOut, uint256 amountOut, uint256 minAmountOut); /** * @notice The required BPT amount in exceeds the maximum limit specified for the operation. * @param amountIn The total BPT amount in * @param maxAmountIn The amount of the limit that has been exceeded */ error BptAmountInAboveMax(uint256 amountIn, uint256 maxAmountIn); /// @notice Pool does not support removing liquidity with a customized input. error DoesNotSupportRemoveLiquidityCustom(); /******************************************************************************* Fees *******************************************************************************/ /** * @notice Error raised when there is an overflow in the fee calculation. * @dev This occurs when the sum of the parts (aggregate swap or yield fee) is greater than the whole * (total swap or yield fee). Also validated when the protocol fee controller updates aggregate fee * percentages in the Vault. */ error ProtocolFeesExceedTotalCollected(); /** * @notice Error raised when the swap fee percentage is less than the minimum allowed value. * @dev The Vault itself does not impose a universal minimum. Rather, it validates against the * range specified by the `ISwapFeePercentageBounds` interface. and reverts with this error * if it is below the minimum value returned by the pool. * * Pools with dynamic fees do not check these limits. */ error SwapFeePercentageTooLow(); /** * @notice Error raised when the swap fee percentage is greater than the maximum allowed value. * @dev The Vault itself does not impose a universal minimum. Rather, it validates against the * range specified by the `ISwapFeePercentageBounds` interface. and reverts with this error * if it is above the maximum value returned by the pool. * * Pools with dynamic fees do not check these limits. */ error SwapFeePercentageTooHigh(); /** * @notice Primary fee percentages result in an aggregate fee that cannot be stored with the required precision. * @dev Primary fee percentages are 18-decimal values, stored here in 64 bits, and calculated with full 256-bit * precision. However, the resulting aggregate fees are stored in the Vault with 24-bit precision, which * corresponds to 0.00001% resolution (i.e., a fee can be 1%, 1.00001%, 1.00002%, but not 1.000005%). * Disallow setting fees such that there would be precision loss in the Vault, leading to a discrepancy between * the aggregate fee calculated here and that stored in the Vault. */ error FeePrecisionTooHigh(); /// @notice A given percentage is above the maximum (usually a value close to FixedPoint.ONE, or 1e18 wei). error PercentageAboveMax(); /******************************************************************************* Queries *******************************************************************************/ /// @notice A user tried to execute a query operation when they were disabled. error QueriesDisabled(); /// @notice An admin tried to re-enable queries, but they were disabled permanently. error QueriesDisabledPermanently(); /******************************************************************************* Recovery Mode *******************************************************************************/ /** * @notice Cannot enable recovery mode when already enabled. * @param pool The pool */ error PoolInRecoveryMode(address pool); /** * @notice Cannot disable recovery mode when not enabled. * @param pool The pool */ error PoolNotInRecoveryMode(address pool); /******************************************************************************* Authentication *******************************************************************************/ /** * @notice Error indicating the sender is not the Vault (e.g., someone is trying to call a permissioned function). * @param sender The account attempting to call a permissioned function */ error SenderIsNotVault(address sender); /******************************************************************************* Pausing *******************************************************************************/ /// @notice The caller specified a pause window period longer than the maximum. error VaultPauseWindowDurationTooLarge(); /// @notice The caller specified a buffer period longer than the maximum. error PauseBufferPeriodDurationTooLarge(); /// @notice A user tried to perform an operation while the Vault was paused. error VaultPaused(); /// @notice Governance tried to unpause the Vault when it was not paused. error VaultNotPaused(); /// @notice Governance tried to pause the Vault after the pause period expired. error VaultPauseWindowExpired(); /** * @notice A user tried to perform an operation involving a paused Pool. * @param pool The paused pool */ error PoolPaused(address pool); /** * @notice Governance tried to unpause the Pool when it was not paused. * @param pool The unpaused pool */ error PoolNotPaused(address pool); /** * @notice Governance tried to pause a Pool after the pause period expired. * @param pool The pool */ error PoolPauseWindowExpired(address pool); /******************************************************************************* ERC4626 token buffers *******************************************************************************/ /** * @notice The buffer for the given wrapped token was already initialized. * @param wrappedToken The wrapped token corresponding to the buffer */ error BufferAlreadyInitialized(IERC4626 wrappedToken); /** * @notice The buffer for the given wrapped token was not initialized. * @param wrappedToken The wrapped token corresponding to the buffer */ error BufferNotInitialized(IERC4626 wrappedToken); /// @notice The user is trying to remove more than their allocated shares from the buffer. error NotEnoughBufferShares(); /** * @notice The wrapped token asset does not match the underlying token. * @dev This should never happen, but a malicious wrapper contract might not return the correct address. * Legitimate wrapper contracts should make the asset a constant or immutable value. * * @param wrappedToken The wrapped token corresponding to the buffer * @param underlyingToken The underlying token returned by `asset` */ error WrongUnderlyingToken(IERC4626 wrappedToken, address underlyingToken); /** * @notice A wrapped token reported the zero address as its underlying token asset. * @dev This should never happen, but a malicious wrapper contract might do this (e.g., in an attempt to * re-initialize the buffer). * * @param wrappedToken The wrapped token corresponding to the buffer */ error InvalidUnderlyingToken(IERC4626 wrappedToken); /** * @notice The amount given to wrap/unwrap was too small, which can introduce rounding issues. * @param wrappedToken The wrapped token corresponding to the buffer */ error WrapAmountTooSmall(IERC4626 wrappedToken); /// @notice Buffer operation attempted while vault buffers are paused. error VaultBuffersArePaused(); /// @notice Buffer shares were minted to the zero address. error BufferSharesInvalidReceiver(); /// @notice Buffer shares were burned from the zero address. error BufferSharesInvalidOwner(); /** * @notice The total supply of a buffer can't be lower than the absolute minimum. * @param totalSupply The total supply value that was below the minimum */ error BufferTotalSupplyTooLow(uint256 totalSupply); /// @dev A wrap/unwrap operation consumed more or returned less underlying tokens than it should. error NotEnoughUnderlying(IERC4626 wrappedToken, uint256 expectedUnderlyingAmount, uint256 actualUnderlyingAmount); /// @dev A wrap/unwrap operation consumed more or returned less wrapped tokens than it should. error NotEnoughWrapped(IERC4626 wrappedToken, uint256 expectedWrappedAmount, uint256 actualWrappedAmount); /// @dev Shares issued during initialization are below the requested amount. error IssuedSharesBelowMin(uint256 issuedShares, uint256 minIssuedShares); /******************************************************************************* Miscellaneous *******************************************************************************/ /// @notice Pool does not support adding / removing liquidity with an unbalanced input. error DoesNotSupportUnbalancedLiquidity(); /// @notice The contract should not receive ETH. error CannotReceiveEth(); /** * @notice The `VaultExtension` contract was called by an account directly. * @dev It can only be called by the Vault via delegatecall. */ error NotVaultDelegateCall(); /// @notice The `VaultExtension` contract was configured with an incorrect Vault address. error WrongVaultExtensionDeployment(); /// @notice The `ProtocolFeeController` contract was configured with an incorrect Vault address. error WrongProtocolFeeControllerDeployment(); /// @notice The `VaultAdmin` contract was configured with an incorrect Vault address. error WrongVaultAdminDeployment(); /// @notice Quote reverted with a reserved error code. error QuoteResultSpoofed(); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; import { IERC4626 } from "@openzeppelin/contracts/interfaces/IERC4626.sol"; import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import { IProtocolFeeController } from "./IProtocolFeeController.sol"; import { IAuthorizer } from "./IAuthorizer.sol"; import { IHooks } from "./IHooks.sol"; import "./VaultTypes.sol"; /// @dev Events are declared inside an interface (namespace) to improve DX with Typechain. interface IVaultEvents { /** * @notice A Pool was registered by calling `registerPool`. * @param pool The pool being registered * @param factory The factory creating the pool * @param tokenConfig An array of descriptors for the tokens the pool will manage * @param swapFeePercentage The static swap fee of the pool * @param pauseWindowEndTime The pool's pause window end time * @param roleAccounts Addresses the Vault will allow to change certain pool settings * @param hooksConfig Flags indicating which hooks the pool supports and address of hooks contract * @param liquidityManagement Supported liquidity management hook flags */ event PoolRegistered( address indexed pool, address indexed factory, TokenConfig[] tokenConfig, uint256 swapFeePercentage, uint32 pauseWindowEndTime, PoolRoleAccounts roleAccounts, HooksConfig hooksConfig, LiquidityManagement liquidityManagement ); /** * @notice A Pool was initialized by calling `initialize`. * @param pool The pool being initialized */ event PoolInitialized(address indexed pool); /** * @notice A swap has occurred. * @param pool The pool with the tokens being swapped * @param tokenIn The token entering the Vault (balance increases) * @param tokenOut The token leaving the Vault (balance decreases) * @param amountIn Number of tokenIn tokens * @param amountOut Number of tokenOut tokens * @param swapFeePercentage Swap fee percentage applied (can differ if dynamic) * @param swapFeeAmount Swap fee amount paid */ event Swap( address indexed pool, IERC20 indexed tokenIn, IERC20 indexed tokenOut, uint256 amountIn, uint256 amountOut, uint256 swapFeePercentage, uint256 swapFeeAmount ); /** * @notice A wrap operation has occurred. * @param wrappedToken The wrapped token address * @param depositedUnderlying Number of underlying tokens deposited * @param mintedShares Number of shares (wrapped tokens) minted * @param bufferBalances The final buffer balances, packed in 128-bit words (underlying, wrapped) */ event Wrap( IERC4626 indexed wrappedToken, uint256 depositedUnderlying, uint256 mintedShares, bytes32 bufferBalances ); /** * @notice An unwrap operation has occurred. * @param wrappedToken The wrapped token address * @param burnedShares Number of shares (wrapped tokens) burned * @param withdrawnUnderlying Number of underlying tokens withdrawn * @param bufferBalances The final buffer balances, packed in 128-bit words (underlying, wrapped) */ event Unwrap( IERC4626 indexed wrappedToken, uint256 burnedShares, uint256 withdrawnUnderlying, bytes32 bufferBalances ); /** * @notice Liquidity has been added to a pool (including initialization). * @param pool The pool with liquidity added * @param liquidityProvider The user performing the operation * @param kind The add liquidity operation type (e.g., proportional, custom) * @param totalSupply The total supply of the pool after the operation * @param amountsAddedRaw The amount of each token that was added, sorted in token registration order * @param swapFeeAmountsRaw The total swap fees charged, sorted in token registration order */ event LiquidityAdded( address indexed pool, address indexed liquidityProvider, AddLiquidityKind indexed kind, uint256 totalSupply, uint256[] amountsAddedRaw, uint256[] swapFeeAmountsRaw ); /** * @notice Liquidity has been removed from a pool. * @param pool The pool with liquidity removed * @param liquidityProvider The user performing the operation * @param kind The remove liquidity operation type (e.g., proportional, custom) * @param totalSupply The total supply of the pool after the operation * @param amountsRemovedRaw The amount of each token that was removed, sorted in token registration order * @param swapFeeAmountsRaw The total swap fees charged, sorted in token registration order */ event LiquidityRemoved( address indexed pool, address indexed liquidityProvider, RemoveLiquidityKind indexed kind, uint256 totalSupply, uint256[] amountsRemovedRaw, uint256[] swapFeeAmountsRaw ); /** * @notice The Vault's pause status has changed. * @param paused True if the Vault was paused */ event VaultPausedStateChanged(bool paused); /// @notice `disableQuery` has been called on the Vault, disabling query functionality. event VaultQueriesDisabled(); /// @notice `enableQuery` has been called on the Vault, enabling query functionality. event VaultQueriesEnabled(); /** * @notice A Pool's pause status has changed. * @param pool The pool that was just paused or unpaused * @param paused True if the pool was paused */ event PoolPausedStateChanged(address indexed pool, bool paused); /** * @notice Emitted when the swap fee percentage of a pool is updated. * @param swapFeePercentage The new swap fee percentage for the pool */ event SwapFeePercentageChanged(address indexed pool, uint256 swapFeePercentage); /** * @notice Recovery mode has been enabled or disabled for a pool. * @param pool The pool * @param recoveryMode True if recovery mode was enabled */ event PoolRecoveryModeStateChanged(address indexed pool, bool recoveryMode); /** * @notice A protocol or pool creator fee has changed, causing an update to the aggregate swap fee. * @dev The `ProtocolFeeController` will emit an event with the underlying change. * @param pool The pool whose aggregate swap fee percentage changed * @param aggregateSwapFeePercentage The new aggregate swap fee percentage */ event AggregateSwapFeePercentageChanged(address indexed pool, uint256 aggregateSwapFeePercentage); /** * @notice A protocol or pool creator fee has changed, causing an update to the aggregate yield fee. * @dev The `ProtocolFeeController` will emit an event with the underlying change. * @param pool The pool whose aggregate yield fee percentage changed * @param aggregateYieldFeePercentage The new aggregate yield fee percentage */ event AggregateYieldFeePercentageChanged(address indexed pool, uint256 aggregateYieldFeePercentage); /** * @notice A new authorizer is set by `setAuthorizer`. * @param newAuthorizer The address of the new authorizer */ event AuthorizerChanged(IAuthorizer indexed newAuthorizer); /** * @notice A new protocol fee controller is set by `setProtocolFeeController`. * @param newProtocolFeeController The address of the new protocol fee controller */ event ProtocolFeeControllerChanged(IProtocolFeeController indexed newProtocolFeeController); /** * @notice Liquidity was added to an ERC4626 buffer corresponding to the given wrapped token. * @dev The underlying token can be derived from the wrapped token, so it's not included here. * * @param wrappedToken The wrapped token that identifies the buffer * @param amountUnderlying The amount of the underlying token that was deposited * @param amountWrapped The amount of the wrapped token that was deposited * @param bufferBalances The final buffer balances, packed in 128-bit words (underlying, wrapped) */ event LiquidityAddedToBuffer( IERC4626 indexed wrappedToken, uint256 amountUnderlying, uint256 amountWrapped, bytes32 bufferBalances ); /** * @notice Buffer shares were minted for an ERC4626 buffer corresponding to a given wrapped token. * @dev The shares are not tokenized like pool BPT, but accounted for in the Vault. `getBufferOwnerShares` * retrieves the current total shares for a given buffer and address, and `getBufferTotalShares` returns the * "totalSupply" of a buffer. * * @param wrappedToken The wrapped token that identifies the buffer * @param to The owner of the minted shares * @param issuedShares The amount of "internal BPT" shares created */ event BufferSharesMinted(IERC4626 indexed wrappedToken, address indexed to, uint256 issuedShares); /** * @notice Buffer shares were burned for an ERC4626 buffer corresponding to a given wrapped token. * @dev The shares are not tokenized like pool BPT, but accounted for in the Vault. `getBufferOwnerShares` * retrieves the current total shares for a given buffer and address, and `getBufferTotalShares` returns the * "totalSupply" of a buffer. * * @param wrappedToken The wrapped token that identifies the buffer * @param from The owner of the burned shares * @param burnedShares The amount of "internal BPT" shares burned */ event BufferSharesBurned(IERC4626 indexed wrappedToken, address indexed from, uint256 burnedShares); /** * @notice Liquidity was removed from an ERC4626 buffer. * @dev The underlying token can be derived from the wrapped token, so it's not included here. * @param wrappedToken The wrapped token that identifies the buffer * @param amountUnderlying The amount of the underlying token that was withdrawn * @param amountWrapped The amount of the wrapped token that was withdrawn * @param bufferBalances The final buffer balances, packed in 128-bit words (underlying, wrapped) */ event LiquidityRemovedFromBuffer( IERC4626 indexed wrappedToken, uint256 amountUnderlying, uint256 amountWrapped, bytes32 bufferBalances ); /** * @notice The Vault buffers pause status has changed. * @dev If buffers all paused, all buffer operations (i.e., all calls through the Router with `isBuffer` * set to true) will revert. * * @param paused True if the Vault buffers were paused */ event VaultBuffersPausedStateChanged(bool paused); /** * @notice Pools can use this event to emit event data from the Vault. * @param pool Pool address * @param eventKey Event key * @param eventData Encoded event data */ event VaultAuxiliary(address indexed pool, bytes32 indexed eventKey, bytes eventData); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; import { IERC4626 } from "@openzeppelin/contracts/interfaces/IERC4626.sol"; import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import { IAuthorizer } from "./IAuthorizer.sol"; import { IProtocolFeeController } from "./IProtocolFeeController.sol"; import { IVault } from "./IVault.sol"; import { IHooks } from "./IHooks.sol"; import "./VaultTypes.sol"; /** * @notice Interface for functions defined on the `VaultExtension` contract. * @dev `VaultExtension` handles less critical or frequently used functions, since delegate calls through * the Vault are more expensive than direct calls. The main Vault contains the core code for swaps and * liquidity operations. */ interface IVaultExtension { /******************************************************************************* Constants and immutables *******************************************************************************/ /** * @notice Returns the main Vault address. * @dev The main Vault contains the entrypoint and main liquidity operation implementations. * @return vault The address of the main Vault */ function vault() external view returns (IVault); /** * @notice Returns the VaultAdmin contract address. * @dev The VaultAdmin contract mostly implements permissioned functions. * @return vaultAdmin The address of the Vault admin */ function getVaultAdmin() external view returns (address vaultAdmin); /******************************************************************************* Transient Accounting *******************************************************************************/ /** * @notice Returns whether the Vault is unlocked (i.e., executing an operation). * @dev The Vault must be unlocked to perform state-changing liquidity operations. * @return unlocked True if the Vault is unlocked, false otherwise */ function isUnlocked() external view returns (bool unlocked); /** * @notice Returns the count of non-zero deltas. * @return nonzeroDeltaCount The current value of `_nonzeroDeltaCount` */ function getNonzeroDeltaCount() external view returns (uint256 nonzeroDeltaCount); /** * @notice Retrieves the token delta for a specific token. * @dev This function allows reading the value from the `_tokenDeltas` mapping. * @param token The token for which the delta is being fetched * @return tokenDelta The delta of the specified token */ function getTokenDelta(IERC20 token) external view returns (int256 tokenDelta); /** * @notice Retrieves the reserve (i.e., total Vault balance) of a given token. * @param token The token for which to retrieve the reserve * @return reserveAmount The amount of reserves for the given token */ function getReservesOf(IERC20 token) external view returns (uint256 reserveAmount); /** * @notice This flag is used to detect and tax "round-trip" interactions (adding and removing liquidity in the * same pool). * @dev Taxing remove liquidity proportional whenever liquidity was added in the same `unlock` call adds an extra * layer of security, discouraging operations that try to undo others for profit. Remove liquidity proportional * is the only standard way to exit a position without fees, and this flag is used to enable fees in that case. * It also discourages indirect swaps via unbalanced add and remove proportional, as they are expected to be worse * than a simple swap for every pool type. * * @param pool Address of the pool to check * @return liquidityAdded True if liquidity has been added to this pool in the current transaction * Note that there is no `sessionId` argument; it always returns the value for the current (i.e., latest) session. */ function getAddLiquidityCalledFlag(address pool) external view returns (bool liquidityAdded); /******************************************************************************* Pool Registration *******************************************************************************/ /** * @notice Registers a pool, associating it with its factory and the tokens it manages. * @dev A pool can opt-out of pausing by providing a zero value for the pause window, or allow pausing indefinitely * by providing a large value. (Pool pause windows are not limited by the Vault maximums.) The vault defines an * additional buffer period during which a paused pool will stay paused. After the buffer period passes, a paused * pool will automatically unpause. Balancer timestamps are 32 bits. * * A pool can opt out of Balancer governance pausing by providing a custom `pauseManager`. This might be a * multi-sig contract or an arbitrary smart contract with its own access controls, that forwards calls to * the Vault. * * If the zero address is provided for the `pauseManager`, permissions for pausing the pool will default to the * authorizer. * * @param pool The address of the pool being registered * @param tokenConfig An array of descriptors for the tokens the pool will manage * @param swapFeePercentage The initial static swap fee percentage of the pool * @param pauseWindowEndTime The timestamp after which it is no longer possible to pause the pool * @param protocolFeeExempt If true, the pool's initial aggregate fees will be set to 0 * @param roleAccounts Addresses the Vault will allow to change certain pool settings * @param poolHooksContract Contract that implements the hooks for the pool * @param liquidityManagement Liquidity management flags with implemented methods */ function registerPool( address pool, TokenConfig[] memory tokenConfig, uint256 swapFeePercentage, uint32 pauseWindowEndTime, bool protocolFeeExempt, PoolRoleAccounts calldata roleAccounts, address poolHooksContract, LiquidityManagement calldata liquidityManagement ) external; /** * @notice Checks whether a pool is registered. * @param pool Address of the pool to check * @return registered True if the pool is registered, false otherwise */ function isPoolRegistered(address pool) external view returns (bool registered); /** * @notice Initializes a registered pool by adding liquidity; mints BPT tokens for the first time in exchange. * @param pool Address of the pool to initialize * @param to Address that will receive the output BPT * @param tokens Tokens used to seed the pool (must match the registered tokens) * @param exactAmountsIn Exact amounts of input tokens * @param minBptAmountOut Minimum amount of output pool tokens * @param userData Additional (optional) data required for adding initial liquidity * @return bptAmountOut Output pool token amount */ function initialize( address pool, address to, IERC20[] memory tokens, uint256[] memory exactAmountsIn, uint256 minBptAmountOut, bytes memory userData ) external returns (uint256 bptAmountOut); /******************************************************************************* Pool Information *******************************************************************************/ /** * @notice Checks whether a pool is initialized. * @dev An initialized pool can be considered registered as well. * @param pool Address of the pool to check * @return initialized True if the pool is initialized, false otherwise */ function isPoolInitialized(address pool) external view returns (bool initialized); /** * @notice Gets the tokens registered to a pool. * @param pool Address of the pool * @return tokens List of tokens in the pool */ function getPoolTokens(address pool) external view returns (IERC20[] memory tokens); /** * @notice Gets pool token rates. * @dev This function performs external calls if tokens are yield-bearing. All returned arrays are in token * registration order. * * @param pool Address of the pool * @return decimalScalingFactors Conversion factor used to adjust for token decimals for uniform precision in * calculations. FP(1) for 18-decimal tokens * @return tokenRates 18-decimal FP values for rate tokens (e.g., yield-bearing), or FP(1) for standard tokens */ function getPoolTokenRates( address pool ) external view returns (uint256[] memory decimalScalingFactors, uint256[] memory tokenRates); /** * @notice Returns comprehensive pool data for the given pool. * @dev This contains the pool configuration (flags), tokens and token types, rates, scaling factors, and balances. * @param pool The address of the pool * @return poolData The `PoolData` result */ function getPoolData(address pool) external view returns (PoolData memory poolData); /** * @notice Gets the raw data for a pool: tokens, raw balances, scaling factors. * @param pool Address of the pool * @return tokens The pool tokens, sorted in registration order * @return tokenInfo Token info structs (type, rate provider, yield flag), sorted in token registration order * @return balancesRaw Current native decimal balances of the pool tokens, sorted in token registration order * @return lastBalancesLiveScaled18 Last saved live balances, sorted in token registration order */ function getPoolTokenInfo( address pool ) external view returns ( IERC20[] memory tokens, TokenInfo[] memory tokenInfo, uint256[] memory balancesRaw, uint256[] memory lastBalancesLiveScaled18 ); /** * @notice Gets current live balances of a given pool (fixed-point, 18 decimals), corresponding to its tokens in * registration order. * * @param pool Address of the pool * @return balancesLiveScaled18 Token balances after paying yield fees, applying decimal scaling and rates */ function getCurrentLiveBalances(address pool) external view returns (uint256[] memory balancesLiveScaled18); /** * @notice Gets the configuration parameters of a pool. * @dev The `PoolConfig` contains liquidity management and other state flags, fee percentages, the pause window. * @param pool Address of the pool * @return poolConfig The pool configuration as a `PoolConfig` struct */ function getPoolConfig(address pool) external view returns (PoolConfig memory poolConfig); /** * @notice Gets the hooks configuration parameters of a pool. * @dev The `HooksConfig` contains flags indicating which pool hooks are implemented. * @param pool Address of the pool * @return hooksConfig The hooks configuration as a `HooksConfig` struct */ function getHooksConfig(address pool) external view returns (HooksConfig memory hooksConfig); /** * @notice The current rate of a pool token (BPT) = invariant / totalSupply. * @param pool Address of the pool * @return rate BPT rate */ function getBptRate(address pool) external view returns (uint256 rate); /******************************************************************************* Balancer Pool Tokens *******************************************************************************/ /** * @notice Gets the total supply of a given ERC20 token. * @param token The token address * @return tokenTotalSupply Total supply of the token */ function totalSupply(address token) external view returns (uint256 tokenTotalSupply); /** * @notice Gets the balance of an account for a given ERC20 token. * @param token Address of the token * @param account Address of the account * @return tokenBalance Token balance of the account */ function balanceOf(address token, address account) external view returns (uint256 tokenBalance); /** * @notice Gets the allowance of a spender for a given ERC20 token and owner. * @param token Address of the token * @param owner Address of the owner * @param spender Address of the spender * @return tokenAllowance Amount of tokens the spender is allowed to spend */ function allowance(address token, address owner, address spender) external view returns (uint256 tokenAllowance); /** * @notice Approves a spender to spend pool tokens on behalf of sender. * @dev Notice that the pool token address is not included in the params. This function is exclusively called by * the pool contract, so msg.sender is used as the token address. * * @param owner Address of the owner * @param spender Address of the spender * @param amount Amount of tokens to approve * @return success True if successful, false otherwise */ function approve(address owner, address spender, uint256 amount) external returns (bool success); /******************************************************************************* Pool Pausing *******************************************************************************/ /** * @notice Indicates whether a pool is paused. * @dev If a pool is paused, all non-Recovery Mode state-changing operations will revert. * @param pool The pool to be checked * @return poolPaused True if the pool is paused */ function isPoolPaused(address pool) external view returns (bool poolPaused); /** * @notice Returns the paused status, and end times of the Pool's pause window and buffer period. * @dev Note that even when set to a paused state, the pool will automatically unpause at the end of * the buffer period. Balancer timestamps are 32 bits. * * @param pool The pool whose data is requested * @return poolPaused True if the Pool is paused * @return poolPauseWindowEndTime The timestamp of the end of the Pool's pause window * @return poolBufferPeriodEndTime The timestamp after which the Pool unpauses itself (if paused) * @return pauseManager The pause manager, or the zero address */ function getPoolPausedState( address pool ) external view returns (bool poolPaused, uint32 poolPauseWindowEndTime, uint32 poolBufferPeriodEndTime, address pauseManager); /******************************************************************************* ERC4626 Buffers *******************************************************************************/ /** * @notice Checks if the wrapped token has an initialized buffer in the Vault. * @dev An initialized buffer should have an asset registered in the Vault. * @param wrappedToken Address of the wrapped token that implements IERC4626 * @return isBufferInitialized True if the ERC4626 buffer is initialized */ function isERC4626BufferInitialized(IERC4626 wrappedToken) external view returns (bool isBufferInitialized); /** * @notice Gets the registered asset for a given buffer. * @dev To avoid malicious wrappers (e.g., that might potentially change their asset after deployment), routers * should never call `wrapper.asset()` directly, at least without checking it against the asset registered with * the Vault on initialization. * * @param wrappedToken The wrapped token specifying the buffer * @return asset The underlying asset of the wrapped token */ function getERC4626BufferAsset(IERC4626 wrappedToken) external view returns (address asset); /******************************************************************************* Fees *******************************************************************************/ /** * @notice Returns the accumulated swap fees (including aggregate fees) in `token` collected by the pool. * @param pool The address of the pool for which aggregate fees have been collected * @param token The address of the token in which fees have been accumulated * @return swapFeeAmount The total amount of fees accumulated in the specified token */ function getAggregateSwapFeeAmount(address pool, IERC20 token) external view returns (uint256 swapFeeAmount); /** * @notice Returns the accumulated yield fees (including aggregate fees) in `token` collected by the pool. * @param pool The address of the pool for which aggregate fees have been collected * @param token The address of the token in which fees have been accumulated * @return yieldFeeAmount The total amount of fees accumulated in the specified token */ function getAggregateYieldFeeAmount(address pool, IERC20 token) external view returns (uint256 yieldFeeAmount); /** * @notice Fetches the static swap fee percentage for a given pool. * @param pool The address of the pool whose static swap fee percentage is being queried * @return swapFeePercentage The current static swap fee percentage for the specified pool */ function getStaticSwapFeePercentage(address pool) external view returns (uint256 swapFeePercentage); /** * @notice Fetches the role accounts for a given pool (pause manager, swap manager, pool creator) * @param pool The address of the pool whose roles are being queried * @return roleAccounts A struct containing the role accounts for the pool (or 0 if unassigned) */ function getPoolRoleAccounts(address pool) external view returns (PoolRoleAccounts memory roleAccounts); /** * @notice Query the current dynamic swap fee percentage of a pool, given a set of swap parameters. * @dev Reverts if the hook doesn't return the success flag set to `true`. * @param pool The pool * @param swapParams The swap parameters used to compute the fee * @return dynamicSwapFeePercentage The dynamic swap fee percentage */ function computeDynamicSwapFeePercentage( address pool, PoolSwapParams memory swapParams ) external view returns (uint256 dynamicSwapFeePercentage); /** * @notice Returns the Protocol Fee Controller address. * @return protocolFeeController Address of the ProtocolFeeController */ function getProtocolFeeController() external view returns (IProtocolFeeController protocolFeeController); /******************************************************************************* Recovery Mode *******************************************************************************/ /** * @notice Checks whether a pool is in Recovery Mode. * @dev Recovery Mode enables a safe proportional withdrawal path, with no external calls. * @param pool Address of the pool to check * @return inRecoveryMode True if the pool is in Recovery Mode, false otherwise */ function isPoolInRecoveryMode(address pool) external view returns (bool inRecoveryMode); /** * @notice Remove liquidity from a pool specifying exact pool tokens in, with proportional token amounts out. * The request is implemented by the Vault without any interaction with the pool, ensuring that * it works the same for all pools, and cannot be disabled by a new pool type. * * @param pool Address of the pool * @param from Address of user to burn pool tokens from * @param exactBptAmountIn Input pool token amount * @param minAmountsOut Minimum amounts of tokens to be received, sorted in token registration order * @return amountsOut Actual calculated amounts of output tokens, sorted in token registration order */ function removeLiquidityRecovery( address pool, address from, uint256 exactBptAmountIn, uint256[] memory minAmountsOut ) external returns (uint256[] memory amountsOut); /******************************************************************************* Queries *******************************************************************************/ /** * @notice Performs a callback on msg.sender with arguments provided in `data`. * @dev Used to query a set of operations on the Vault. Only off-chain eth_call are allowed, * anything else will revert. * * Allows querying any operation on the Vault that has the `onlyWhenUnlocked` modifier. * * Allows the external calling of a function via the Vault contract to * access Vault's functions guarded by `onlyWhenUnlocked`. * `transient` modifier ensuring balances changes within the Vault are settled. * * @param data Contains function signature and args to be passed to the msg.sender * @return result Resulting data from the call */ function quote(bytes calldata data) external returns (bytes memory result); /** * @notice Performs a callback on msg.sender with arguments provided in `data`. * @dev Used to query a set of operations on the Vault. Only off-chain eth_call are allowed, * anything else will revert. * * Allows querying any operation on the Vault that has the `onlyWhenUnlocked` modifier. * * Allows the external calling of a function via the Vault contract to * access Vault's functions guarded by `onlyWhenUnlocked`. * `transient` modifier ensuring balances changes within the Vault are settled. * * This call always reverts, returning the result in the revert reason. * * @param data Contains function signature and args to be passed to the msg.sender */ function quoteAndRevert(bytes calldata data) external; /** * @notice Returns true if queries are disabled on the Vault. * @dev If true, queries might either be disabled temporarily or permanently. * @return queryDisabled True if query functionality is reversibly disabled */ function isQueryDisabled() external view returns (bool queryDisabled); /** * @notice Returns true if queries are disabled permanently; false if they are enabled. * @dev This is a one-way switch. Once queries are disabled permanently, they can never be re-enabled. * @return queryDisabledPermanently True if query functionality is permanently disabled */ function isQueryDisabledPermanently() external view returns (bool queryDisabledPermanently); /** * @notice Pools can use this event to emit event data from the Vault. * @param eventKey Event key * @param eventData Encoded event data */ function emitAuxiliaryEvent(bytes32 eventKey, bytes calldata eventData) external; /******************************************************************************* Authentication *******************************************************************************/ /** * @notice Returns the Authorizer address. * @dev The authorizer holds the permissions granted by governance. It is set on Vault deployment, * and can be changed through a permissioned call. * * @return authorizer Address of the authorizer contract */ function getAuthorizer() external view returns (IAuthorizer authorizer); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "./VaultTypes.sol"; /** * @notice Interface for functions defined on the main Vault contract. * @dev These are generally "critical path" functions (swap, add/remove liquidity) that are in the main contract * for technical or performance reasons. */ interface IVaultMain { /******************************************************************************* Transient Accounting *******************************************************************************/ /** * @notice Creates a context for a sequence of operations (i.e., "unlocks" the Vault). * @dev Performs a callback on msg.sender with arguments provided in `data`. The Callback is `transient`, * meaning all balances for the caller have to be settled at the end. * * @param data Contains function signature and args to be passed to the msg.sender * @return result Resulting data from the call */ function unlock(bytes calldata data) external returns (bytes memory result); /** * @notice Settles deltas for a token; must be successful for the current lock to be released. * @dev Protects the caller against leftover dust in the Vault for the token being settled. The caller * should know in advance how many tokens were paid to the Vault, so it can provide it as a hint to discard any * excess in the Vault balance. * * If the given hint is equal to or higher than the difference in reserves, the difference in reserves is given as * credit to the caller. If it's higher, the caller sent fewer tokens than expected, so settlement would fail. * * If the given hint is lower than the difference in reserves, the hint is given as credit to the caller. * In this case, the excess would be absorbed by the Vault (and reflected correctly in the reserves), but would * not affect settlement. * * The credit supplied by the Vault can be calculated as `min(reserveDifference, amountHint)`, where the reserve * difference equals current balance of the token minus existing reserves of the token when the function is called. * * @param token Address of the token * @param amountHint Amount paid as reported by the caller * @return credit Credit received in return of the payment */ function settle(IERC20 token, uint256 amountHint) external returns (uint256 credit); /** * @notice Sends tokens to a recipient. * @dev There is no inverse operation for this function. Transfer funds to the Vault and call `settle` to cancel * debts. * * @param token Address of the token * @param to Recipient address * @param amount Amount of tokens to send */ function sendTo(IERC20 token, address to, uint256 amount) external; /*************************************************************************** Swaps ***************************************************************************/ /** * @notice Swaps tokens based on provided parameters. * @dev All parameters are given in raw token decimal encoding. * @param vaultSwapParams Parameters for the swap (see above for struct definition) * @return amountCalculatedRaw Calculated swap amount * @return amountInRaw Amount of input tokens for the swap * @return amountOutRaw Amount of output tokens from the swap */ function swap( VaultSwapParams memory vaultSwapParams ) external returns (uint256 amountCalculatedRaw, uint256 amountInRaw, uint256 amountOutRaw); /*************************************************************************** Add Liquidity ***************************************************************************/ /** * @notice Adds liquidity to a pool. * @dev Caution should be exercised when adding liquidity because the Vault has the capability * to transfer tokens from any user, given that it holds all allowances. * * @param params Parameters for the add liquidity (see above for struct definition) * @return amountsIn Actual amounts of input tokens * @return bptAmountOut Output pool token amount * @return returnData Arbitrary (optional) data with an encoded response from the pool */ function addLiquidity( AddLiquidityParams memory params ) external returns (uint256[] memory amountsIn, uint256 bptAmountOut, bytes memory returnData); /*************************************************************************** Remove Liquidity ***************************************************************************/ /** * @notice Removes liquidity from a pool. * @dev Trusted routers can burn pool tokens belonging to any user and require no prior approval from the user. * Untrusted routers require prior approval from the user. This is the only function allowed to call * _queryModeBalanceIncrease (and only in a query context). * * @param params Parameters for the remove liquidity (see above for struct definition) * @return bptAmountIn Actual amount of BPT burned * @return amountsOut Actual amounts of output tokens * @return returnData Arbitrary (optional) data with an encoded response from the pool */ function removeLiquidity( RemoveLiquidityParams memory params ) external returns (uint256 bptAmountIn, uint256[] memory amountsOut, bytes memory returnData); /******************************************************************************* Pool Information *******************************************************************************/ /** * @notice Gets the index of a token in a given pool. * @dev Reverts if the pool is not registered, or if the token does not belong to the pool. * @param pool Address of the pool * @param token Address of the token * @return tokenCount Number of tokens in the pool * @return index Index corresponding to the given token in the pool's token list */ function getPoolTokenCountAndIndexOfToken( address pool, IERC20 token ) external view returns (uint256 tokenCount, uint256 index); /******************************************************************************* Balancer Pool Tokens *******************************************************************************/ /** * @notice Transfers pool token from owner to a recipient. * @dev Notice that the pool token address is not included in the params. This function is exclusively called by * the pool contract, so msg.sender is used as the token address. * * @param owner Address of the owner * @param to Address of the recipient * @param amount Amount of tokens to transfer * @return success True if successful, false otherwise */ function transfer(address owner, address to, uint256 amount) external returns (bool); /** * @notice Transfers pool token from a sender to a recipient using an allowance. * @dev Notice that the pool token address is not included in the params. This function is exclusively called by * the pool contract, so msg.sender is used as the token address. * * @param spender Address allowed to perform the transfer * @param from Address of the sender * @param to Address of the recipient * @param amount Amount of tokens to transfer * @return success True if successful, false otherwise */ function transferFrom(address spender, address from, address to, uint256 amount) external returns (bool success); /******************************************************************************* ERC4626 Buffers *******************************************************************************/ /** * @notice Wraps/unwraps tokens based on the parameters provided. * @dev All parameters are given in raw token decimal encoding. It requires the buffer to be initialized, * and uses the internal wrapped token buffer when it has enough liquidity to avoid external calls. * * @param params Parameters for the wrap/unwrap operation (see struct definition) * @return amountCalculatedRaw Calculated swap amount * @return amountInRaw Amount of input tokens for the swap * @return amountOutRaw Amount of output tokens from the swap */ function erc4626BufferWrapOrUnwrap( BufferWrapOrUnwrapParams memory params ) external returns (uint256 amountCalculatedRaw, uint256 amountInRaw, uint256 amountOutRaw); /******************************************************************************* Miscellaneous *******************************************************************************/ /** * @notice Returns the VaultExtension contract address. * @dev Function is in the main Vault contract. The VaultExtension handles less critical or frequently used * functions, since delegate calls through the Vault are more expensive than direct calls. * * @return vaultExtension Address of the VaultExtension */ function getVaultExtension() external view returns (address vaultExtension); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import { IERC4626 } from "@openzeppelin/contracts/interfaces/IERC4626.sol"; import { IRateProvider } from "../solidity-utils/helpers/IRateProvider.sol"; /** * @notice Represents a pool's liquidity management configuration. * @param disableUnbalancedLiquidity If set, liquidity can only be added or removed proportionally * @param enableAddLiquidityCustom If set, the pool has implemented `onAddLiquidityCustom` * @param enableRemoveLiquidityCustom If set, the pool has implemented `onRemoveLiquidityCustom` * @param enableDonation If set, the pool will not revert if liquidity is added with AddLiquidityKind.DONATION */ struct LiquidityManagement { bool disableUnbalancedLiquidity; bool enableAddLiquidityCustom; bool enableRemoveLiquidityCustom; bool enableDonation; } // @notice Custom type to store the entire configuration of the pool. type PoolConfigBits is bytes32; /** * @notice Represents a pool's configuration (hooks configuration are separated in another struct). * @param liquidityManagement Flags related to adding/removing liquidity * @param staticSwapFeePercentage The pool's native swap fee * @param aggregateSwapFeePercentage The total swap fee charged, including protocol and pool creator components * @param aggregateYieldFeePercentage The total swap fee charged, including protocol and pool creator components * @param tokenDecimalDiffs Compressed storage of the token decimals of each pool token * @param pauseWindowEndTime Timestamp after which the pool cannot be paused * @param isPoolRegistered If true, the pool has been registered with the Vault * @param isPoolInitialized If true, the pool has been initialized with liquidity, and is available for trading * @param isPoolPaused If true, the pool has been paused (by governance or the pauseManager) * @param isPoolInRecoveryMode If true, the pool has been placed in recovery mode, enabling recovery mode withdrawals */ struct PoolConfig { LiquidityManagement liquidityManagement; uint256 staticSwapFeePercentage; uint256 aggregateSwapFeePercentage; uint256 aggregateYieldFeePercentage; uint40 tokenDecimalDiffs; uint32 pauseWindowEndTime; bool isPoolRegistered; bool isPoolInitialized; bool isPoolPaused; bool isPoolInRecoveryMode; } /** * @notice The flag portion of the `HooksConfig`. * @dev `enableHookAdjustedAmounts` must be true for all contracts that modify the `amountCalculated` * in after hooks. Otherwise, the Vault will ignore any "hookAdjusted" amounts. Setting any "shouldCall" * flags to true will cause the Vault to call the corresponding hook during operations. */ struct HookFlags { bool enableHookAdjustedAmounts; bool shouldCallBeforeInitialize; bool shouldCallAfterInitialize; bool shouldCallComputeDynamicSwapFee; bool shouldCallBeforeSwap; bool shouldCallAfterSwap; bool shouldCallBeforeAddLiquidity; bool shouldCallAfterAddLiquidity; bool shouldCallBeforeRemoveLiquidity; bool shouldCallAfterRemoveLiquidity; } /// @notice Represents a hook contract configuration for a pool (HookFlags + hooksContract address). struct HooksConfig { bool enableHookAdjustedAmounts; bool shouldCallBeforeInitialize; bool shouldCallAfterInitialize; bool shouldCallComputeDynamicSwapFee; bool shouldCallBeforeSwap; bool shouldCallAfterSwap; bool shouldCallBeforeAddLiquidity; bool shouldCallAfterAddLiquidity; bool shouldCallBeforeRemoveLiquidity; bool shouldCallAfterRemoveLiquidity; address hooksContract; } /** * @notice Represents temporary state used during a swap operation. * @param indexIn The zero-based index of tokenIn * @param indexOut The zero-based index of tokenOut * @param amountGivenScaled18 The amountGiven (i.e., tokenIn for ExactIn), adjusted for token decimals * @param swapFeePercentage The swap fee to be applied (might be static or dynamic) */ struct SwapState { uint256 indexIn; uint256 indexOut; uint256 amountGivenScaled18; uint256 swapFeePercentage; } /** * @notice Represents the Vault's configuration. * @param isQueryDisabled If set to true, disables query functionality of the Vault. Can be modified by governance * @param isVaultPaused If set to true, swaps and add/remove liquidity operations are halted * @param areBuffersPaused If set to true, the Vault wrap/unwrap primitives associated with buffers will be disabled */ struct VaultState { bool isQueryDisabled; bool isVaultPaused; bool areBuffersPaused; } /** * @notice Represents the accounts holding certain roles for a given pool. This is passed in on pool registration. * @param pauseManager Account empowered to pause/unpause the pool (note that governance can always pause a pool) * @param swapFeeManager Account empowered to set static swap fees for a pool (or 0 to delegate to governance) * @param poolCreator Account empowered to set the pool creator fee (or 0 if all fees go to the protocol and LPs) */ struct PoolRoleAccounts { address pauseManager; address swapFeeManager; address poolCreator; } /******************************************************************************* Tokens *******************************************************************************/ // Note that the following tokens are unsupported by the Vault. This list is not meant to be exhaustive, but covers // many common types of tokens that will not work with the Vault architecture. (See https://github.com/d-xo/weird-erc20 // for examples of token features that are problematic for many protocols.) // // * Rebasing tokens (e.g., aDAI). The Vault keeps track of token balances in its internal accounting; any token whose // balance changes asynchronously (i.e., outside a swap or liquidity operation), would get out-of-sync with this // internal accounting. This category would also include "airdrop" tokens, whose balances can change unexpectedly. // // * Double entrypoint (e.g., old Synthetix tokens, now fixed). These could likewise bypass internal accounting by // registering the token under one address, then accessing it through another. This is especially troublesome // in v3, with the introduction of ERC4626 buffers. // // * Fee on transfer (e.g., PAXG). The Vault issues credits and debits according to given and calculated token amounts, // and settlement assumes that the send/receive transfer functions transfer exactly the given number of tokens. // If this is not the case, transactions will not settle. Unlike with the other types, which are fundamentally // incompatible, it would be possible to design a Router to handle this - but we didn't try it. In any case, it's // not supported in the current Routers. // // * Tokens with more than 18 decimals (e.g., YAM-V2). The Vault handles token scaling: i.e., handling I/O for // amounts in native token decimals, but doing calculations with full 18-decimal precision. This requires reading // and storing the decimals for each token. Since virtually all tokens are 18 or fewer decimals, and we have limited // storage space, 18 was a reasonable maximum. Unlike the other types, this is enforceable by the Vault. Attempting // to register such tokens will revert with `InvalidTokenDecimals`. Of course, we must also be able to read the token // decimals, so the Vault only supports tokens that implement `IERC20Metadata.decimals`, and return a value less than // or equal to 18. // // * Token decimals are checked and stored only once, on registration. Valid tokens store their decimals as immutable // variables or constants. Malicious tokens that don't respect this basic property would not work anywhere in DeFi. // // These types of tokens are supported but discouraged, as they don't tend to play well with AMMs generally. // // * Very low-decimal tokens (e.g., GUSD). The Vault has been extensively tested with 6-decimal tokens (e.g., USDC), // but going much below that may lead to unanticipated effects due to precision loss, especially with smaller trade // values. // // * Revert on zero value approval/transfer. The Vault has been tested against these, but peripheral contracts, such // as hooks, might not have been designed with this in mind. // // * Other types from "weird-erc20," such as upgradeable, pausable, or tokens with blocklists. We have seen cases // where a token upgrade fails, "bricking" the token - and many operations on pools containing that token. Any // sort of "permissioned" token that can make transfers fail can cause operations on pools containing them to // revert. Even Recovery Mode cannot help then, as it does a proportional withdrawal of all tokens. If one of // them is bricked, the whole operation will revert. Since v3 does not have "internal balances" like v2, there // is no recourse. // // Of course, many tokens in common use have some of these "features" (especially centralized stable coins), so // we have to support them anyway. Working with common centralized tokens is a risk common to all of DeFi. /** * @notice Token types supported by the Vault. * @dev In general, pools may contain any combination of these tokens. * * STANDARD tokens (e.g., BAL, WETH) have no rate provider. * WITH_RATE tokens (e.g., wstETH) require a rate provider. These may be tokens like wstETH, which need to be wrapped * because the underlying stETH token is rebasing, and such tokens are unsupported by the Vault. They may also be * tokens like sEUR, which track an underlying asset, but are not yield-bearing. Finally, this encompasses * yield-bearing ERC4626 tokens, which can be used to facilitate swaps without requiring wrapping or unwrapping * in most cases. The `paysYieldFees` flag can be used to indicate whether a token is yield-bearing (e.g., waDAI), * not yield-bearing (e.g., sEUR), or yield-bearing but exempt from fees (e.g., in certain nested pools, where * yield fees are charged elsewhere). * * NB: STANDARD must always be the first enum element, so that newly initialized data structures default to Standard. */ enum TokenType { STANDARD, WITH_RATE } /** * @notice Encapsulate the data required for the Vault to support a token of the given type. * @dev For STANDARD tokens, the rate provider address must be 0, and paysYieldFees must be false. All WITH_RATE tokens * need a rate provider, and may or may not be yield-bearing. * * At registration time, it is useful to include the token address along with the token parameters in the structure * passed to `registerPool`, as the alternative would be parallel arrays, which would be error prone and require * validation checks. `TokenConfig` is only used for registration, and is never put into storage (see `TokenInfo`). * * @param token The token address * @param tokenType The token type (see the enum for supported types) * @param rateProvider The rate provider for a token (see further documentation above) * @param paysYieldFees Flag indicating whether yield fees should be charged on this token */ struct TokenConfig { IERC20 token; TokenType tokenType; IRateProvider rateProvider; bool paysYieldFees; } /** * @notice This data structure is stored in `_poolTokenInfo`, a nested mapping from pool -> (token -> TokenInfo). * @dev Since the token is already the key of the nested mapping, it would be redundant (and an extra SLOAD) to store * it again in the struct. When we construct PoolData, the tokens are separated into their own array. * * @param tokenType The token type (see the enum for supported types) * @param rateProvider The rate provider for a token (see further documentation above) * @param paysYieldFees Flag indicating whether yield fees should be charged on this token */ struct TokenInfo { TokenType tokenType; IRateProvider rateProvider; bool paysYieldFees; } /** * @notice Data structure used to represent the current pool state in memory * @param poolConfigBits Custom type to store the entire configuration of the pool. * @param tokens Pool tokens, sorted in token registration order * @param tokenInfo Configuration data for each token, sorted in token registration order * @param balancesRaw Token balances in native decimals * @param balancesLiveScaled18 Token balances after paying yield fees, applying decimal scaling and rates * @param tokenRates 18-decimal FP values for rate tokens (e.g., yield-bearing), or FP(1) for standard tokens * @param decimalScalingFactors Conversion factor used to adjust for token decimals for uniform precision in * calculations. It is 1e18 (FP 1) for 18-decimal tokens */ struct PoolData { PoolConfigBits poolConfigBits; IERC20[] tokens; TokenInfo[] tokenInfo; uint256[] balancesRaw; uint256[] balancesLiveScaled18; uint256[] tokenRates; uint256[] decimalScalingFactors; } enum Rounding { ROUND_UP, ROUND_DOWN } /******************************************************************************* Swaps *******************************************************************************/ enum SwapKind { EXACT_IN, EXACT_OUT } // There are two "SwapParams" structs defined below. `VaultSwapParams` corresponds to the external swap API defined // in the Router contracts, which uses explicit token addresses, the amount given and limit on the calculated amount // expressed in native token decimals, and optional user data passed in from the caller. // // `PoolSwapParams` passes some of this information through (kind, userData), but "translates" the parameters to fit // the internal swap API used by `IBasePool`. It scales amounts to full 18-decimal precision, adds the token balances, // converts the raw token addresses to indices, and adds the address of the Router originating the request. It does // not need the limit, since this is checked at the Router level. /** * @notice Data passed into primary Vault `swap` operations. * @param kind Type of swap (Exact In or Exact Out) * @param pool The pool with the tokens being swapped * @param tokenIn The token entering the Vault (balance increases) * @param tokenOut The token leaving the Vault (balance decreases) * @param amountGivenRaw Amount specified for tokenIn or tokenOut (depending on the type of swap) * @param limitRaw Minimum or maximum value of the calculated amount (depending on the type of swap) * @param userData Additional (optional) user data */ struct VaultSwapParams { SwapKind kind; address pool; IERC20 tokenIn; IERC20 tokenOut; uint256 amountGivenRaw; uint256 limitRaw; bytes userData; } /** * @notice Data for a swap operation, used by contracts implementing `IBasePool`. * @param kind Type of swap (exact in or exact out) * @param amountGivenScaled18 Amount given based on kind of the swap (e.g., tokenIn for EXACT_IN) * @param balancesScaled18 Current pool balances * @param indexIn Index of tokenIn * @param indexOut Index of tokenOut * @param router The address (usually a router contract) that initiated a swap operation on the Vault * @param userData Additional (optional) data required for the swap */ struct PoolSwapParams { SwapKind kind; uint256 amountGivenScaled18; uint256[] balancesScaled18; uint256 indexIn; uint256 indexOut; address router; bytes userData; } /** * @notice Data for the hook after a swap operation. * @param kind Type of swap (exact in or exact out) * @param tokenIn Token to be swapped from * @param tokenOut Token to be swapped to * @param amountInScaled18 Amount of tokenIn (entering the Vault) * @param amountOutScaled18 Amount of tokenOut (leaving the Vault) * @param tokenInBalanceScaled18 Updated (after swap) balance of tokenIn * @param tokenOutBalanceScaled18 Updated (after swap) balance of tokenOut * @param amountCalculatedScaled18 Token amount calculated by the swap * @param amountCalculatedRaw Token amount calculated by the swap * @param router The address (usually a router contract) that initiated a swap operation on the Vault * @param pool Pool address * @param userData Additional (optional) data required for the swap */ struct AfterSwapParams { SwapKind kind; IERC20 tokenIn; IERC20 tokenOut; uint256 amountInScaled18; uint256 amountOutScaled18; uint256 tokenInBalanceScaled18; uint256 tokenOutBalanceScaled18; uint256 amountCalculatedScaled18; uint256 amountCalculatedRaw; address router; address pool; bytes userData; } /******************************************************************************* Add liquidity *******************************************************************************/ enum AddLiquidityKind { PROPORTIONAL, UNBALANCED, SINGLE_TOKEN_EXACT_OUT, DONATION, CUSTOM } /** * @notice Data for an add liquidity operation. * @param pool Address of the pool * @param to Address of user to mint to * @param maxAmountsIn Maximum amounts of input tokens * @param minBptAmountOut Minimum amount of output pool tokens * @param kind Add liquidity kind * @param userData Optional user data */ struct AddLiquidityParams { address pool; address to; uint256[] maxAmountsIn; uint256 minBptAmountOut; AddLiquidityKind kind; bytes userData; } /******************************************************************************* Remove liquidity *******************************************************************************/ enum RemoveLiquidityKind { PROPORTIONAL, SINGLE_TOKEN_EXACT_IN, SINGLE_TOKEN_EXACT_OUT, CUSTOM } /** * @notice Data for an remove liquidity operation. * @param pool Address of the pool * @param from Address of user to burn from * @param maxBptAmountIn Maximum amount of input pool tokens * @param minAmountsOut Minimum amounts of output tokens * @param kind Remove liquidity kind * @param userData Optional user data */ struct RemoveLiquidityParams { address pool; address from; uint256 maxBptAmountIn; uint256[] minAmountsOut; RemoveLiquidityKind kind; bytes userData; } /******************************************************************************* Remove liquidity *******************************************************************************/ enum WrappingDirection { WRAP, UNWRAP } /** * @notice Data for a wrap/unwrap operation. * @param kind Type of swap (Exact In or Exact Out) * @param direction Direction of the wrapping operation (Wrap or Unwrap) * @param wrappedToken Wrapped token, compatible with interface ERC4626 * @param amountGivenRaw Amount specified for tokenIn or tokenOut (depends on the type of swap and wrapping direction) * @param limitRaw Minimum or maximum amount specified for the other token (depends on the type of swap and wrapping * direction) */ struct BufferWrapOrUnwrapParams { SwapKind kind; WrappingDirection direction; IERC4626 wrappedToken; uint256 amountGivenRaw; uint256 limitRaw; } // Protocol Fees are 24-bit values. We transform them by multiplying by 1e11, so that they can be set to any value // between 0% and 100% (step 0.00001%). Protocol and pool creator fees are set in the `ProtocolFeeController`, and // ensure both constituent and aggregate fees do not exceed this precision. uint256 constant FEE_BITLENGTH = 24; uint256 constant FEE_SCALING_FACTOR = 1e11; // Used to ensure the safety of fee-related math (e.g., pools or hooks don't set it greater than 100%). // This value should work for practical purposes and is well within the max precision requirements. uint256 constant MAX_FEE_PERCENTAGE = 99.9999e16; // 99.9999%
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; import { IVault } from "@balancer-labs/v3-interfaces/contracts/vault/IVault.sol"; import { Authentication } from "@balancer-labs/v3-solidity-utils/contracts/helpers/Authentication.sol"; /// @dev Base contract for performing access control on external functions within pools. abstract contract BasePoolAuthentication is Authentication { IVault private immutable _vault; /** * @dev Pools should use the pool factory as the disambiguator passed into the base Authentication contract. * Otherwise, permissions would conflict if different pools reused function names. */ constructor(IVault vault, address factory) Authentication(bytes32(uint256(uint160(factory)))) { _vault = vault; } // Access control is delegated to the Authorizer in the `_canPerform` functions. function _canPerform(bytes32 actionId, address user) internal view override returns (bool) { return _vault.getAuthorizer().canPerform(actionId, user, address(this)); } function _canPerform(bytes32 actionId, address account, address where) internal view returns (bool) { return _vault.getAuthorizer().canPerform(actionId, account, where); } }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import { TokenInfo, PoolConfig } from "@balancer-labs/v3-interfaces/contracts/vault/VaultTypes.sol"; import { IPoolInfo } from "@balancer-labs/v3-interfaces/contracts/pool-utils/IPoolInfo.sol"; import { IVault } from "@balancer-labs/v3-interfaces/contracts/vault/IVault.sol"; /** * @notice Standard implementation of the `IPoolInfo` interface. * @dev Balancer standard pools inherit from this optional interface to provide a standard off-chain interface for * commonly requested data. */ contract PoolInfo is IPoolInfo { IVault private immutable _vault; constructor(IVault vault) { _vault = vault; } /// @inheritdoc IPoolInfo function getTokens() external view returns (IERC20[] memory tokens) { return _vault.getPoolTokens(address(this)); } /// @inheritdoc IPoolInfo function getTokenInfo() external view returns ( IERC20[] memory tokens, TokenInfo[] memory tokenInfo, uint256[] memory balancesRaw, uint256[] memory lastBalancesLiveScaled18 ) { return _vault.getPoolTokenInfo(address(this)); } /// @inheritdoc IPoolInfo function getCurrentLiveBalances() external view returns (uint256[] memory balancesLiveScaled18) { return _vault.getCurrentLiveBalances(address(this)); } /// @inheritdoc IPoolInfo function getStaticSwapFeePercentage() external view returns (uint256) { return _vault.getStaticSwapFeePercentage((address(this))); } /// @inheritdoc IPoolInfo function getAggregateFeePercentages() external view returns (uint256 aggregateSwapFeePercentage, uint256 aggregateYieldFeePercentage) { PoolConfig memory poolConfig = _vault.getPoolConfig(address(this)); aggregateSwapFeePercentage = poolConfig.aggregateSwapFeePercentage; aggregateYieldFeePercentage = poolConfig.aggregateYieldFeePercentage; } }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; import { IAuthentication } from "@balancer-labs/v3-interfaces/contracts/solidity-utils/helpers/IAuthentication.sol"; /** * @notice Building block for performing access control on external functions. * @dev This contract is used via the `authenticate` modifier (or the `_authenticateCaller` function), which can be * applied to external functions to make them only callable by authorized accounts. * * Derived contracts must implement the `_canPerform` function, which holds the actual access control logic. */ abstract contract Authentication is IAuthentication { bytes32 private immutable _actionIdDisambiguator; /** * @dev The main purpose of the `actionIdDisambiguator` is to prevent accidental function selector collisions in * multi-contract systems. * * There are two main uses for it: * - if the contract is a singleton, any unique identifier can be used to make the associated action identifiers * unique. The contract's own address is a good option. * - if the contract belongs to a family that shares action identifiers for the same functions, an identifier * shared by the entire family (and no other contract) should be used instead. */ constructor(bytes32 actionIdDisambiguator) { _actionIdDisambiguator = actionIdDisambiguator; } /// @dev Reverts unless the caller is allowed to call this function. Should only be applied to external functions. modifier authenticate() { _authenticateCaller(); _; } /// @dev Reverts unless the caller is allowed to call the entry point function. function _authenticateCaller() internal view { bytes32 actionId = getActionId(msg.sig); if (!_canPerform(actionId, msg.sender)) { revert SenderNotAllowed(); } } /// @inheritdoc IAuthentication function getActionId(bytes4 selector) public view override returns (bytes32) { // Each external function is dynamically assigned an action identifier as the hash of the disambiguator and the // function selector. Disambiguation is necessary to avoid potential collisions in the function selectors of // multiple contracts. return keccak256(abi.encodePacked(_actionIdDisambiguator, selector)); } /** * @dev Derived contracts must implement this function to perform the actual access control logic. * @param actionId The action identifier associated with an external function * @param user The account performing the action * @return success True if the action is permitted */ function _canPerform(bytes32 actionId, address user) internal view virtual returns (bool); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; import { IVersion } from "@balancer-labs/v3-interfaces/contracts/solidity-utils/helpers/IVersion.sol"; /** * @notice Retrieves a contract's version from storage. * @dev The version is set at deployment time and cannot be changed. It would be immutable, but immutable strings * are not yet supported. * * Contracts like factories and pools should have versions. These typically take the form of JSON strings containing * detailed information about the deployment. For instance: * * `{name: 'ChildChainGaugeFactory', version: 2, deployment: '20230316-child-chain-gauge-factory-v2'}` */ contract Version is IVersion { string private _version; constructor(string memory version_) { _setVersion(version_); } /** * @notice Getter for the version. * @return version The stored contract version */ function version() external view returns (string memory) { return _version; } /// @dev Internal setter that allows this contract to be used in proxies. function _setVersion(string memory newVersion) internal { _version = newVersion; } }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; import { LogExpMath } from "./LogExpMath.sol"; /// @notice Support 18-decimal fixed point arithmetic. All Vault calculations use this for high and uniform precision. library FixedPoint { /// @notice Attempted division by zero. error ZeroDivision(); // solhint-disable no-inline-assembly // solhint-disable private-vars-leading-underscore uint256 internal constant ONE = 1e18; // 18 decimal places uint256 internal constant TWO = 2 * ONE; uint256 internal constant FOUR = 4 * ONE; uint256 internal constant MAX_POW_RELATIVE_ERROR = 10000; // 10^(-14) function mulDown(uint256 a, uint256 b) internal pure returns (uint256) { // Multiplication overflow protection is provided by Solidity 0.8.x. uint256 product = a * b; return product / ONE; } function mulUp(uint256 a, uint256 b) internal pure returns (uint256 result) { // Multiplication overflow protection is provided by Solidity 0.8.x. uint256 product = a * b; // Equivalent to: // result = product == 0 ? 0 : ((product - 1) / FixedPoint.ONE) + 1 assembly ("memory-safe") { result := mul(iszero(iszero(product)), add(div(sub(product, 1), ONE), 1)) } } function divDown(uint256 a, uint256 b) internal pure returns (uint256) { // Solidity 0.8 reverts with a Panic code (0x11) if the multiplication overflows. uint256 aInflated = a * ONE; // Solidity 0.8 reverts with a "Division by Zero" Panic code (0x12) if b is zero return aInflated / b; } function divUp(uint256 a, uint256 b) internal pure returns (uint256 result) { return mulDivUp(a, ONE, b); } /// @dev Return (a * b) / c, rounding up. function mulDivUp(uint256 a, uint256 b, uint256 c) internal pure returns (uint256 result) { // This check is required because Yul's `div` doesn't revert on c==0. if (c == 0) { revert ZeroDivision(); } // Multiple overflow protection is done by Solidity 0.8.x. uint256 product = a * b; // The traditional divUp formula is: // divUp(x, y) := (x + y - 1) / y // To avoid intermediate overflow in the addition, we distribute the division and get: // divUp(x, y) := (x - 1) / y + 1 // Note that this requires x != 0, if x == 0 then the result is zero // // Equivalent to: // result = a == 0 ? 0 : (a * b - 1) / c + 1 assembly ("memory-safe") { result := mul(iszero(iszero(product)), add(div(sub(product, 1), c), 1)) } } /** * @dev Version of divUp when the input is raw (i.e., already "inflated"). For instance, * invariant * invariant (36 decimals) vs. invariant.mulDown(invariant) (18 decimal FP). * This can occur in calculations with many successive multiplications and divisions, and * we want to minimize the number of operations by avoiding unnecessary scaling by ONE. */ function divUpRaw(uint256 a, uint256 b) internal pure returns (uint256 result) { // This check is required because Yul's `div` doesn't revert on b==0. if (b == 0) { revert ZeroDivision(); } // Equivalent to: // result = a == 0 ? 0 : 1 + (a - 1) / b assembly ("memory-safe") { result := mul(iszero(iszero(a)), add(1, div(sub(a, 1), b))) } } /** * @dev Returns x^y, assuming both are fixed point numbers, rounding down. The result is guaranteed to not be above * the true value (that is, the error function expected - actual is always positive). */ function powDown(uint256 x, uint256 y) internal pure returns (uint256) { // Optimize for when y equals 1.0, 2.0 or 4.0, as those are very simple to implement and occur often in 50/50 // and 80/20 Weighted Pools if (y == ONE) { return x; } else if (y == TWO) { return mulDown(x, x); } else if (y == FOUR) { uint256 square = mulDown(x, x); return mulDown(square, square); } else { uint256 raw = LogExpMath.pow(x, y); uint256 maxError = mulUp(raw, MAX_POW_RELATIVE_ERROR) + 1; if (raw < maxError) { return 0; } else { unchecked { return raw - maxError; } } } } /** * @dev Returns x^y, assuming both are fixed point numbers, rounding up. The result is guaranteed to not be below * the true value (that is, the error function expected - actual is always negative). */ function powUp(uint256 x, uint256 y) internal pure returns (uint256) { // Optimize for when y equals 1.0, 2.0 or 4.0, as those are very simple to implement and occur often in 50/50 // and 80/20 Weighted Pools if (y == ONE) { return x; } else if (y == TWO) { return mulUp(x, x); } else if (y == FOUR) { uint256 square = mulUp(x, x); return mulUp(square, square); } else { uint256 raw = LogExpMath.pow(x, y); uint256 maxError = mulUp(raw, MAX_POW_RELATIVE_ERROR) + 1; return raw + maxError; } } /** * @dev Returns the complement of a value (1 - x), capped to 0 if x is larger than 1. * * Useful when computing the complement for values with some level of relative error, as it strips this error and * prevents intermediate negative values. */ function complement(uint256 x) internal pure returns (uint256 result) { // Equivalent to: // result = (x < ONE) ? (ONE - x) : 0 assembly ("memory-safe") { result := mul(lt(x, ONE), sub(ONE, x)) } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.24; // solhint-disable /** * @dev Exponentiation and logarithm functions for 18 decimal fixed point numbers (both base and exponent/argument). * * Exponentiation and logarithm with arbitrary bases (x^y and log_x(y)) are implemented by conversion to natural * exponentiation and logarithm (where the base is Euler's number). * * All math operations are unchecked in order to save gas. * * @author Fernando Martinelli - @fernandomartinelli * @author Sergio Yuhjtman - @sergioyuhjtman * @author Daniel Fernandez - @dmf7z */ library LogExpMath { /// @notice This error is thrown when a base is not within an acceptable range. error BaseOutOfBounds(); /// @notice This error is thrown when a exponent is not within an acceptable range. error ExponentOutOfBounds(); /// @notice This error is thrown when the exponent * ln(base) is not within an acceptable range. error ProductOutOfBounds(); /// @notice This error is thrown when an exponent used in the exp function is not within an acceptable range. error InvalidExponent(); /// @notice This error is thrown when a variable or result is not within the acceptable bounds defined in the function. error OutOfBounds(); // All fixed point multiplications and divisions are inlined. This means we need to divide by ONE when multiplying // two numbers, and multiply by ONE when dividing them. // All arguments and return values are 18 decimal fixed point numbers. int256 constant ONE_18 = 1e18; // Internally, intermediate values are computed with higher precision as 20 decimal fixed point numbers, and in the // case of ln36, 36 decimals. int256 constant ONE_20 = 1e20; int256 constant ONE_36 = 1e36; // The domain of natural exponentiation is bound by the word size and number of decimals used. // // Because internally the result will be stored using 20 decimals, the largest possible result is // (2^255 - 1) / 10^20, which makes the largest exponent ln((2^255 - 1) / 10^20) = 130.700829182905140221. // The smallest possible result is 10^(-18), which makes largest negative argument // ln(10^(-18)) = -41.446531673892822312. // We use 130.0 and -41.0 to have some safety margin. int256 constant MAX_NATURAL_EXPONENT = 130e18; int256 constant MIN_NATURAL_EXPONENT = -41e18; // Bounds for ln_36's argument. Both ln(0.9) and ln(1.1) can be represented with 36 decimal places in a fixed point // 256 bit integer. int256 constant LN_36_LOWER_BOUND = ONE_18 - 1e17; int256 constant LN_36_UPPER_BOUND = ONE_18 + 1e17; uint256 constant MILD_EXPONENT_BOUND = 2 ** 254 / uint256(ONE_20); // 18 decimal constants int256 constant x0 = 128000000000000000000; // 2ˆ7 int256 constant a0 = 38877084059945950922200000000000000000000000000000000000; // eˆ(x0) (no decimals) int256 constant x1 = 64000000000000000000; // 2ˆ6 int256 constant a1 = 6235149080811616882910000000; // eˆ(x1) (no decimals) // 20 decimal constants int256 constant x2 = 3200000000000000000000; // 2ˆ5 int256 constant a2 = 7896296018268069516100000000000000; // eˆ(x2) int256 constant x3 = 1600000000000000000000; // 2ˆ4 int256 constant a3 = 888611052050787263676000000; // eˆ(x3) int256 constant x4 = 800000000000000000000; // 2ˆ3 int256 constant a4 = 298095798704172827474000; // eˆ(x4) int256 constant x5 = 400000000000000000000; // 2ˆ2 int256 constant a5 = 5459815003314423907810; // eˆ(x5) int256 constant x6 = 200000000000000000000; // 2ˆ1 int256 constant a6 = 738905609893065022723; // eˆ(x6) int256 constant x7 = 100000000000000000000; // 2ˆ0 int256 constant a7 = 271828182845904523536; // eˆ(x7) int256 constant x8 = 50000000000000000000; // 2ˆ-1 int256 constant a8 = 164872127070012814685; // eˆ(x8) int256 constant x9 = 25000000000000000000; // 2ˆ-2 int256 constant a9 = 128402541668774148407; // eˆ(x9) int256 constant x10 = 12500000000000000000; // 2ˆ-3 int256 constant a10 = 113314845306682631683; // eˆ(x10) int256 constant x11 = 6250000000000000000; // 2ˆ-4 int256 constant a11 = 106449445891785942956; // eˆ(x11) /** * @dev Exponentiation (x^y) with unsigned 18 decimal fixed point base and exponent. * * Reverts if ln(x) * y is smaller than `MIN_NATURAL_EXPONENT`, or larger than `MAX_NATURAL_EXPONENT`. */ function pow(uint256 x, uint256 y) internal pure returns (uint256) { if (y == 0) { // We solve the 0^0 indetermination by making it equal one. return uint256(ONE_18); } if (x == 0) { return 0; } // Instead of computing x^y directly, we instead rely on the properties of logarithms and exponentiation to // arrive at that result. In particular, exp(ln(x)) = x, and ln(x^y) = y * ln(x). This means // x^y = exp(y * ln(x)). // The ln function takes a signed value, so we need to make sure x fits in the signed 256 bit range. if (x >> 255 != 0) { revert BaseOutOfBounds(); } int256 x_int256 = int256(x); // We will compute y * ln(x) in a single step. Depending on the value of x, we can either use ln or ln_36. In // both cases, we leave the division by ONE_18 (due to fixed point multiplication) to the end. // This prevents y * ln(x) from overflowing, and at the same time guarantees y fits in the signed 256 bit range. if (y >= MILD_EXPONENT_BOUND) { revert ExponentOutOfBounds(); } int256 y_int256 = int256(y); int256 logx_times_y; unchecked { if (LN_36_LOWER_BOUND < x_int256 && x_int256 < LN_36_UPPER_BOUND) { int256 ln_36_x = _ln_36(x_int256); // ln_36_x has 36 decimal places, so multiplying by y_int256 isn't as straightforward, since we can't just // bring y_int256 to 36 decimal places, as it might overflow. Instead, we perform two 18 decimal // multiplications and add the results: one with the first 18 decimals of ln_36_x, and one with the // (downscaled) last 18 decimals. logx_times_y = ((ln_36_x / ONE_18) * y_int256 + ((ln_36_x % ONE_18) * y_int256) / ONE_18); } else { logx_times_y = _ln(x_int256) * y_int256; } logx_times_y /= ONE_18; } // Finally, we compute exp(y * ln(x)) to arrive at x^y if (!(MIN_NATURAL_EXPONENT <= logx_times_y && logx_times_y <= MAX_NATURAL_EXPONENT)) { revert ProductOutOfBounds(); } return uint256(exp(logx_times_y)); } /** * @dev Natural exponentiation (e^x) with signed 18 decimal fixed point exponent. * * Reverts if `x` is smaller than MIN_NATURAL_EXPONENT, or larger than `MAX_NATURAL_EXPONENT`. */ function exp(int256 x) internal pure returns (int256) { if (!(x >= MIN_NATURAL_EXPONENT && x <= MAX_NATURAL_EXPONENT)) { revert InvalidExponent(); } // We avoid using recursion here because zkSync doesn't support it. bool negativeExponent = false; if (x < 0) { // We only handle positive exponents: e^(-x) is computed as 1 / e^x. We can safely make x positive since it // fits in the signed 256 bit range (as it is larger than MIN_NATURAL_EXPONENT). In the negative // exponent case, compute e^x, then return 1 / result. unchecked { x = -x; } negativeExponent = true; } // First, we use the fact that e^(x+y) = e^x * e^y to decompose x into a sum of powers of two, which we call x_n, // where x_n == 2^(7 - n), and e^x_n = a_n has been precomputed. We choose the first x_n, x0, to equal 2^7 // because all larger powers are larger than MAX_NATURAL_EXPONENT, and therefore not present in the // decomposition. // At the end of this process we will have the product of all e^x_n = a_n that apply, and the remainder of this // decomposition, which will be lower than the smallest x_n. // exp(x) = k_0 * a_0 * k_1 * a_1 * ... + k_n * a_n * exp(remainder), where each k_n equals either 0 or 1. // We mutate x by subtracting x_n, making it the remainder of the decomposition. // The first two a_n (e^(2^7) and e^(2^6)) are too large if stored as 18 decimal numbers, and could cause // intermediate overflows. Instead we store them as plain integers, with 0 decimals. // Additionally, x0 + x1 is larger than MAX_NATURAL_EXPONENT, which means they will not both be present in the // decomposition. // For each x_n, we test if that term is present in the decomposition (if x is larger than it), and if so deduct // it and compute the accumulated product. int256 firstAN; unchecked { if (x >= x0) { x -= x0; firstAN = a0; } else if (x >= x1) { x -= x1; firstAN = a1; } else { firstAN = 1; // One with no decimal places } // We now transform x into a 20 decimal fixed point number, to have enhanced precision when computing the // smaller terms. x *= 100; } // `product` is the accumulated product of all a_n (except a0 and a1), which starts at 20 decimal fixed point // one. Recall that fixed point multiplication requires dividing by ONE_20. int256 product = ONE_20; unchecked { if (x >= x2) { x -= x2; product = (product * a2) / ONE_20; } if (x >= x3) { x -= x3; product = (product * a3) / ONE_20; } if (x >= x4) { x -= x4; product = (product * a4) / ONE_20; } if (x >= x5) { x -= x5; product = (product * a5) / ONE_20; } if (x >= x6) { x -= x6; product = (product * a6) / ONE_20; } if (x >= x7) { x -= x7; product = (product * a7) / ONE_20; } if (x >= x8) { x -= x8; product = (product * a8) / ONE_20; } if (x >= x9) { x -= x9; product = (product * a9) / ONE_20; } } // x10 and x11 are unnecessary here since we have high enough precision already. // Now we need to compute e^x, where x is small (in particular, it is smaller than x9). We use the Taylor series // expansion for e^x: 1 + x + (x^2 / 2!) + (x^3 / 3!) + ... + (x^n / n!). int256 seriesSum = ONE_20; // The initial one in the sum, with 20 decimal places. int256 term; // Each term in the sum, where the nth term is (x^n / n!). // The first term is simply x. term = x; unchecked { seriesSum += term; // Each term (x^n / n!) equals the previous one times x, divided by n. Since x is a fixed point number, // multiplying by it requires dividing by ONE_20, but dividing by the non-fixed point n values does not. term = ((term * x) / ONE_20) / 2; seriesSum += term; term = ((term * x) / ONE_20) / 3; seriesSum += term; term = ((term * x) / ONE_20) / 4; seriesSum += term; term = ((term * x) / ONE_20) / 5; seriesSum += term; term = ((term * x) / ONE_20) / 6; seriesSum += term; term = ((term * x) / ONE_20) / 7; seriesSum += term; term = ((term * x) / ONE_20) / 8; seriesSum += term; term = ((term * x) / ONE_20) / 9; seriesSum += term; term = ((term * x) / ONE_20) / 10; seriesSum += term; term = ((term * x) / ONE_20) / 11; seriesSum += term; term = ((term * x) / ONE_20) / 12; seriesSum += term; // 12 Taylor terms are sufficient for 18 decimal precision. // We now have the first a_n (with no decimals), and the product of all other a_n present, and the Taylor // approximation of the exponentiation of the remainder (both with 20 decimals). All that remains is to multiply // all three (one 20 decimal fixed point multiplication, dividing by ONE_20, and one integer multiplication), // and then drop two digits to return an 18 decimal value. int256 result = (((product * seriesSum) / ONE_20) * firstAN) / 100; // We avoid using recursion here because zkSync doesn't support it. return negativeExponent ? (ONE_18 * ONE_18) / result : result; } } /// @dev Logarithm (log(arg, base), with signed 18 decimal fixed point base and argument. function log(int256 arg, int256 base) internal pure returns (int256) { // This performs a simple base change: log(arg, base) = ln(arg) / ln(base). // Both logBase and logArg are computed as 36 decimal fixed point numbers, either by using ln_36, or by // upscaling. int256 logBase; unchecked { if (LN_36_LOWER_BOUND < base && base < LN_36_UPPER_BOUND) { logBase = _ln_36(base); } else { logBase = _ln(base) * ONE_18; } } int256 logArg; unchecked { if (LN_36_LOWER_BOUND < arg && arg < LN_36_UPPER_BOUND) { logArg = _ln_36(arg); } else { logArg = _ln(arg) * ONE_18; } // When dividing, we multiply by ONE_18 to arrive at a result with 18 decimal places return (logArg * ONE_18) / logBase; } } /// @dev Natural logarithm (ln(a)) with signed 18 decimal fixed point argument. function ln(int256 a) internal pure returns (int256) { // The real natural logarithm is not defined for negative numbers or zero. if (a <= 0) { revert OutOfBounds(); } if (LN_36_LOWER_BOUND < a && a < LN_36_UPPER_BOUND) { unchecked { return _ln_36(a) / ONE_18; } } else { return _ln(a); } } /// @dev Internal natural logarithm (ln(a)) with signed 18 decimal fixed point argument. function _ln(int256 a) private pure returns (int256) { // We avoid using recursion here because zkSync doesn't support it. bool negativeExponent = false; if (a < ONE_18) { // Since ln(a^k) = k * ln(a), we can compute ln(a) as ln(a) = ln((1/a)^(-1)) = - ln((1/a)). If a is less // than one, 1/a will be greater than one, so in this case we compute ln(1/a) and negate the final result. unchecked { a = (ONE_18 * ONE_18) / a; } negativeExponent = true; } // First, we use the fact that ln^(a * b) = ln(a) + ln(b) to decompose ln(a) into a sum of powers of two, which // we call x_n, where x_n == 2^(7 - n), which are the natural logarithm of precomputed quantities a_n (that is, // ln(a_n) = x_n). We choose the first x_n, x0, to equal 2^7 because the exponential of all larger powers cannot // be represented as 18 fixed point decimal numbers in 256 bits, and are therefore larger than a. // At the end of this process we will have the sum of all x_n = ln(a_n) that apply, and the remainder of this // decomposition, which will be lower than the smallest a_n. // ln(a) = k_0 * x_0 + k_1 * x_1 + ... + k_n * x_n + ln(remainder), where each k_n equals either 0 or 1. // We mutate a by subtracting a_n, making it the remainder of the decomposition. // For reasons related to how `exp` works, the first two a_n (e^(2^7) and e^(2^6)) are not stored as fixed point // numbers with 18 decimals, but instead as plain integers with 0 decimals, so we need to multiply them by // ONE_18 to convert them to fixed point. // For each a_n, we test if that term is present in the decomposition (if a is larger than it), and if so divide // by it and compute the accumulated sum. int256 sum = 0; unchecked { if (a >= a0 * ONE_18) { a /= a0; // Integer, not fixed point division sum += x0; } if (a >= a1 * ONE_18) { a /= a1; // Integer, not fixed point division sum += x1; } // All other a_n and x_n are stored as 20 digit fixed point numbers, so we convert the sum and a to this format. sum *= 100; a *= 100; // Because further a_n are 20 digit fixed point numbers, we multiply by ONE_20 when dividing by them. if (a >= a2) { a = (a * ONE_20) / a2; sum += x2; } if (a >= a3) { a = (a * ONE_20) / a3; sum += x3; } if (a >= a4) { a = (a * ONE_20) / a4; sum += x4; } if (a >= a5) { a = (a * ONE_20) / a5; sum += x5; } if (a >= a6) { a = (a * ONE_20) / a6; sum += x6; } if (a >= a7) { a = (a * ONE_20) / a7; sum += x7; } if (a >= a8) { a = (a * ONE_20) / a8; sum += x8; } if (a >= a9) { a = (a * ONE_20) / a9; sum += x9; } if (a >= a10) { a = (a * ONE_20) / a10; sum += x10; } if (a >= a11) { a = (a * ONE_20) / a11; sum += x11; } } // a is now a small number (smaller than a_11, which roughly equals 1.06). This means we can use a Taylor series // that converges rapidly for values of `a` close to one - the same one used in ln_36. // Let z = (a - 1) / (a + 1). // ln(a) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1)) // Recall that 20 digit fixed point division requires multiplying by ONE_20, and multiplication requires // division by ONE_20. unchecked { int256 z = ((a - ONE_20) * ONE_20) / (a + ONE_20); int256 z_squared = (z * z) / ONE_20; // num is the numerator of the series: the z^(2 * n + 1) term int256 num = z; // seriesSum holds the accumulated sum of each term in the series, starting with the initial z int256 seriesSum = num; // In each step, the numerator is multiplied by z^2 num = (num * z_squared) / ONE_20; seriesSum += num / 3; num = (num * z_squared) / ONE_20; seriesSum += num / 5; num = (num * z_squared) / ONE_20; seriesSum += num / 7; num = (num * z_squared) / ONE_20; seriesSum += num / 9; num = (num * z_squared) / ONE_20; seriesSum += num / 11; // 6 Taylor terms are sufficient for 36 decimal precision. // Finally, we multiply by 2 (non fixed point) to compute ln(remainder) seriesSum *= 2; // We now have the sum of all x_n present, and the Taylor approximation of the logarithm of the remainder (both // with 20 decimals). All that remains is to sum these two, and then drop two digits to return a 18 decimal // value. int256 result = (sum + seriesSum) / 100; // We avoid using recursion here because zkSync doesn't support it. return negativeExponent ? -result : result; } } /** * @dev Internal high precision (36 decimal places) natural logarithm (ln(x)) with signed 18 decimal fixed point argument, * for x close to one. * * Should only be used if x is between LN_36_LOWER_BOUND and LN_36_UPPER_BOUND. */ function _ln_36(int256 x) private pure returns (int256) { // Since ln(1) = 0, a value of x close to one will yield a very small result, which makes using 36 digits // worthwhile. // First, we transform x to a 36 digit fixed point value. unchecked { x *= ONE_18; // We will use the following Taylor expansion, which converges very rapidly. Let z = (x - 1) / (x + 1). // ln(x) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1)) // Recall that 36 digit fixed point division requires multiplying by ONE_36, and multiplication requires // division by ONE_36. int256 z = ((x - ONE_36) * ONE_36) / (x + ONE_36); int256 z_squared = (z * z) / ONE_36; // num is the numerator of the series: the z^(2 * n + 1) term int256 num = z; // seriesSum holds the accumulated sum of each term in the series, starting with the initial z int256 seriesSum = num; // In each step, the numerator is multiplied by z^2 num = (num * z_squared) / ONE_36; seriesSum += num / 3; num = (num * z_squared) / ONE_36; seriesSum += num / 5; num = (num * z_squared) / ONE_36; seriesSum += num / 7; num = (num * z_squared) / ONE_36; seriesSum += num / 9; num = (num * z_squared) / ONE_36; seriesSum += num / 11; num = (num * z_squared) / ONE_36; seriesSum += num / 13; num = (num * z_squared) / ONE_36; seriesSum += num / 15; // 8 Taylor terms are sufficient for 36 decimal precision. // All that remains is multiplying by 2 (non fixed point). return seriesSum * 2; } } }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; import { FixedPoint } from "./FixedPoint.sol"; /** * @notice Stable Pool math library based on Curve's `StableSwap`. * @dev See https://docs.curve.fi/references/whitepapers/stableswap/ * * For security reasons, to help ensure that for all possible "round trip" paths the caller always receives the same * or fewer tokens than supplied, we have used precise math (i.e., '*', '/' vs. FixedPoint) whenever possible, and * chosen the rounding direction to favor the protocol elsewhere. * * `computeInvariant` does not use the rounding direction from `IBasePool`, effectively always rounding down to match * the Curve implementation. */ library StableMath { using FixedPoint for uint256; // Some variables have non mixed case names (e.g. P_D) that relate to the mathematical derivations. // solhint-disable private-vars-leading-underscore, var-name-mixedcase /// @notice The iterations to calculate the invariant didn't converge. error StableInvariantDidNotConverge(); /// @notice The iterations to calculate the balance didn't converge. error StableComputeBalanceDidNotConverge(); // The max token count is limited by the math, and is less than the Vault's maximum. uint256 public constant MAX_STABLE_TOKENS = 5; uint256 internal constant MIN_AMP = 1; uint256 internal constant MAX_AMP = 5000; uint256 internal constant AMP_PRECISION = 1e3; // Invariant growth limit: non-proportional add cannot cause the invariant to increase by more than this ratio. uint256 internal constant MIN_INVARIANT_RATIO = 60e16; // 60% // Invariant shrink limit: non-proportional remove cannot cause the invariant to decrease by less than this ratio. uint256 internal constant MAX_INVARIANT_RATIO = 500e16; // 500% // Note on unchecked arithmetic: // This contract performs a large number of additions, subtractions, multiplications and divisions, often inside // loops. Since many of these operations are gas-sensitive (as they happen e.g. during a swap), it is important to // not make any unnecessary checks. We rely on a set of invariants to avoid having to use checked arithmetic, // including: // - the amplification parameter is bounded by MAX_AMP * AMP_PRECISION, which fits in 23 bits // // This means e.g. we can safely multiply a balance by the amplification parameter without worrying about overflow. // About swap fees on add and remove liquidity: // Any add or remove that is not perfectly balanced (e.g. all single token operations) is mathematically // equivalent to a perfectly balanced add or remove followed by a series of swaps. Since these swaps would charge // swap fees, it follows that unbalanced adds and removes should as well. // // On these operations, we split the token amounts in 'taxable' and 'non-taxable' portions, where the 'taxable' part // is the one to which swap fees are applied. // See: https://github.com/curvefi/curve-contract/blob/b0bbf77f8f93c9c5f4e415bce9cd71f0cdee960e/contracts/pool-templates/base/SwapTemplateBase.vy#L206 // solhint-disable-previous-line max-line-length /** * @notice Computes the invariant given the current balances. * @dev It uses the Newton-Raphson approximation. The amplification parameter is given by: A n^(n-1). * There is no closed-form solution, so the calculation is iterative and may revert. * * @param amplificationParameter The current amplification parameter * @param balances The current balances * @return invariant The calculated invariant of the pool */ function computeInvariant( uint256 amplificationParameter, uint256[] memory balances ) internal pure returns (uint256) { /********************************************************************************************** // invariant // // D = invariant D^(n+1) // // A = amplification coefficient A n^n S + D = A D n^n + ----------- // // S = sum of balances n^n P // // P = product of balances // // n = number of tokens // **********************************************************************************************/ uint256 sum = 0; // S in the Curve version uint256 numTokens = balances.length; for (uint256 i = 0; i < numTokens; ++i) { sum = sum + balances[i]; } if (sum == 0) { return 0; } uint256 prevInvariant; // Dprev in the Curve version uint256 invariant = sum; // D in the Curve version uint256 ampTimesTotal = amplificationParameter * numTokens; // Ann in the Curve version for (uint256 i = 0; i < 255; ++i) { uint256 D_P = invariant; for (uint256 j = 0; j < numTokens; ++j) { D_P = (D_P * invariant) / (balances[j] * numTokens); } prevInvariant = invariant; invariant = ((((ampTimesTotal * sum) / AMP_PRECISION) + (D_P * numTokens)) * invariant) / ((((ampTimesTotal - AMP_PRECISION) * invariant) / AMP_PRECISION) + ((numTokens + 1) * D_P)); unchecked { // We are explicitly checking the magnitudes here, so can use unchecked math. if (invariant > prevInvariant) { if (invariant - prevInvariant <= 1) { return invariant; } } else if (prevInvariant - invariant <= 1) { return invariant; } } } revert StableInvariantDidNotConverge(); } /** * @notice Computes the required `amountOut` of tokenOut, for `tokenAmountIn` of tokenIn. * @dev The calculation uses the Newton-Raphson approximation. The amplification parameter is given by: A n^(n-1). * @param amplificationParameter The current amplification factor * @param balances The current pool balances * @param tokenIndexIn The index of tokenIn * @param tokenIndexOut The index of tokenOut * @param tokenAmountIn The exact amount of tokenIn specified for the swap * @param invariant The current invariant * @return amountOut The calculated amount of tokenOut required for the swap */ function computeOutGivenExactIn( uint256 amplificationParameter, uint256[] memory balances, uint256 tokenIndexIn, uint256 tokenIndexOut, uint256 tokenAmountIn, uint256 invariant ) internal pure returns (uint256) { /************************************************************************************************************** // outGivenExactIn token x for y - polynomial equation to solve // // ay = amount out to calculate // // by = balance token out // // y = by - ay (finalBalanceOut) // // D = invariant D D^(n+1) // // A = amplification coefficient y^2 + ( S + ---------- - D) * y - ------------- = 0 // // n = number of tokens (A * n^n) A * n^2n * P // // S = sum of final balances but y // // P = product of final balances but y // **************************************************************************************************************/ balances[tokenIndexIn] += tokenAmountIn; // `computeBalance` rounds up. uint256 finalBalanceOut = computeBalance(amplificationParameter, balances, invariant, tokenIndexOut); // No need to use checked arithmetic since `tokenAmountIn` was actually added to the same balance right before // calling `computeBalance`, which doesn't alter the balances array. unchecked { balances[tokenIndexIn] -= tokenAmountIn; } // Amount out, so we round down overall. return balances[tokenIndexOut] - finalBalanceOut - 1; } /** * @notice Computes the required `amountIn` of tokenIn, for `tokenAmountOut` of tokenOut. * @dev The calculation uses the Newton-Raphson approximation. The amplification parameter is given by: A n^(n-1). * @param amplificationParameter The current amplification factor * @param balances The current pool balances * @param tokenIndexIn The index of tokenIn * @param tokenIndexOut The index of tokenOut * @param tokenAmountOut The exact amount of tokenOut specified for the swap * @param invariant The current invariant * @return amountIn The calculated amount of tokenIn required for the swap */ function computeInGivenExactOut( uint256 amplificationParameter, uint256[] memory balances, uint256 tokenIndexIn, uint256 tokenIndexOut, uint256 tokenAmountOut, uint256 invariant ) internal pure returns (uint256) { /************************************************************************************************************** // inGivenExactOut token x for y - polynomial equation to solve // // ax = amount in to calculate // // bx = balance token in // // x = bx + ax (finalBalanceIn) // // D = invariant D D^(n+1) // // A = amplification coefficient x^2 + ( S + ---------- - D) * x - ------------- = 0 // // n = number of tokens (A * n^n) A * n^2n * P // // S = sum of final balances but x // // P = product of final balances but x // **************************************************************************************************************/ balances[tokenIndexOut] -= tokenAmountOut; // `computeBalance` rounds up. uint256 finalBalanceIn = computeBalance(amplificationParameter, balances, invariant, tokenIndexIn); // No need to use checked arithmetic since `tokenAmountOut` was actually subtracted from the same balance right // before calling `computeBalance`, which doesn't alter the balances array. unchecked { balances[tokenIndexOut] += tokenAmountOut; } // Amount in, so we round up overall. return finalBalanceIn - balances[tokenIndexIn] + 1; } /** * @notice Calculate the balance of a given token (at tokenIndex), given all other balances and the invariant. * @dev Rounds result up overall. There is no closed-form solution, so the calculation is iterative and may revert. * @param amplificationParameter The current amplification factor * @param balances The current pool balances * @param invariant The current invariant * @param tokenIndex The index of the token balance we are calculating * @return tokenBalance The adjusted balance of the token at `tokenIn` that matches the given invariant */ function computeBalance( uint256 amplificationParameter, uint256[] memory balances, uint256 invariant, uint256 tokenIndex ) internal pure returns (uint256) { uint256 numTokens = balances.length; uint256 ampTimesTotal = amplificationParameter * numTokens; uint256 sum = balances[0]; uint256 P_D = balances[0] * numTokens; for (uint256 j = 1; j < numTokens; ++j) { P_D = (P_D * balances[j] * numTokens) / invariant; sum = sum + balances[j]; } sum = sum - balances[tokenIndex]; // Use divUpRaw with inv2, as it is a "raw" 36 decimal value. uint256 inv2 = invariant * invariant; // We remove the balance from c by multiplying it. uint256 c = (inv2 * AMP_PRECISION).divUpRaw(ampTimesTotal * P_D) * balances[tokenIndex]; uint256 b = sum + ((invariant * AMP_PRECISION) / ampTimesTotal); // We iterate to find the balance. uint256 prevTokenBalance = 0; // We multiply the first iteration outside the loop with the invariant to set the value of the // initial approximation. uint256 tokenBalance = (inv2 + c).divUpRaw(invariant + b); for (uint256 i = 0; i < 255; ++i) { prevTokenBalance = tokenBalance; // Use divUpRaw with tokenBalance, as it is a "raw" 36 decimal value. tokenBalance = ((tokenBalance * tokenBalance) + c).divUpRaw((tokenBalance * 2) + b - invariant); // We are explicitly checking the magnitudes here, so can use unchecked math. unchecked { if (tokenBalance > prevTokenBalance) { if (tokenBalance - prevTokenBalance <= 1) { return tokenBalance; } } else if (prevTokenBalance - tokenBalance <= 1) { return tokenBalance; } } } revert StableComputeBalanceDidNotConverge(); } }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; import { IERC20Metadata } from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; import { IERC20Permit } from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Permit.sol"; import { ERC165 } from "@openzeppelin/contracts/utils/introspection/ERC165.sol"; import { EIP712 } from "@openzeppelin/contracts/utils/cryptography/EIP712.sol"; import { ECDSA } from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol"; import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import { Nonces } from "@openzeppelin/contracts/utils/Nonces.sol"; import { IRateProvider } from "@balancer-labs/v3-interfaces/contracts/solidity-utils/helpers/IRateProvider.sol"; import { IVault } from "@balancer-labs/v3-interfaces/contracts/vault/IVault.sol"; import { VaultGuard } from "./VaultGuard.sol"; /** * @notice `BalancerPoolToken` is a fully ERC20-compatible token to be used as the base contract for Balancer Pools, * with all the data and implementation delegated to the ERC20Multitoken contract. * @dev Implementation of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[ERC-2612]. */ contract BalancerPoolToken is IERC20, IERC20Metadata, IERC20Permit, IRateProvider, EIP712, Nonces, ERC165, VaultGuard { bytes32 public constant PERMIT_TYPEHASH = keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"); /** * @notice Operation failed due to an expired permit signature. * @param deadline The permit deadline that expired */ error ERC2612ExpiredSignature(uint256 deadline); /** * @notice Operation failed due to a non-matching signature. * @param signer The address corresponding to the signature provider * @param owner The address of the owner (expected value of the signature provider) */ error ERC2612InvalidSigner(address signer, address owner); // EIP712 also defines _name. string private _bptName; string private _bptSymbol; constructor(IVault vault_, string memory bptName, string memory bptSymbol) EIP712(bptName, "1") VaultGuard(vault_) { _bptName = bptName; _bptSymbol = bptSymbol; } /// @inheritdoc IERC20Metadata function name() external view returns (string memory) { return _bptName; } /// @inheritdoc IERC20Metadata function symbol() external view returns (string memory) { return _bptSymbol; } /// @inheritdoc IERC20Metadata function decimals() external pure returns (uint8) { // Always 18 decimals for BPT. return 18; } /// @inheritdoc IERC20 function totalSupply() public view returns (uint256) { return _vault.totalSupply(address(this)); } function getVault() public view returns (IVault) { return _vault; } /// @inheritdoc IERC20 function balanceOf(address account) external view returns (uint256) { return _vault.balanceOf(address(this), account); } /// @inheritdoc IERC20 function transfer(address to, uint256 amount) external returns (bool) { // Vault will perform the transfer and call emitTransfer to emit the event from this contract. _vault.transfer(msg.sender, to, amount); return true; } /// @inheritdoc IERC20 function allowance(address owner, address spender) external view returns (uint256) { return _vault.allowance(address(this), owner, spender); } /// @inheritdoc IERC20 function approve(address spender, uint256 amount) external returns (bool) { // Vault will perform the approval and call emitApproval to emit the event from this contract. _vault.approve(msg.sender, spender, amount); return true; } /// @inheritdoc IERC20 function transferFrom(address from, address to, uint256 amount) external returns (bool) { // Vault will perform the transfer and call emitTransfer to emit the event from this contract. _vault.transferFrom(msg.sender, from, to, amount); return true; } /** * Accounting is centralized in the MultiToken contract, and the actual transfers and approvals are done there. * Operations can be initiated from either the token contract or the MultiToken. * * To maintain compliance with the ERC-20 standard, and conform to the expectations of off-chain processes, * the MultiToken calls `emitTransfer` and `emitApproval` during those operations, so that the event is emitted * only from the token contract. These events are NOT defined in the MultiToken contract. */ /// @dev Emit the Transfer event. This function can only be called by the MultiToken. function emitTransfer(address from, address to, uint256 amount) external onlyVault { emit Transfer(from, to, amount); } /// @dev Emit the Approval event. This function can only be called by the MultiToken. function emitApproval(address owner, address spender, uint256 amount) external onlyVault { emit Approval(owner, spender, amount); } // @inheritdoc IERC20Permit function permit( address owner, address spender, uint256 amount, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) public virtual { // solhint-disable-next-line not-rely-on-time if (block.timestamp > deadline) { revert ERC2612ExpiredSignature(deadline); } bytes32 structHash = keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, amount, _useNonce(owner), deadline)); bytes32 hash = _hashTypedDataV4(structHash); address signer = ECDSA.recover(hash, v, r, s); if (signer != owner) { revert ERC2612InvalidSigner(signer, owner); } _vault.approve(owner, spender, amount); } // @inheritdoc IERC20Permit function nonces(address owner) public view virtual override(IERC20Permit, Nonces) returns (uint256) { return super.nonces(owner); } /// @notice Increment the sender's nonce to revoke any currently granted (but not yet executed) `permit`. function incrementNonce() external { _useNonce(msg.sender); } // @inheritdoc IERC20Permit // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view virtual returns (bytes32) { return _domainSeparatorV4(); } /** * @notice Get the BPT rate, which is defined as: pool invariant/total supply. * @dev The VaultExtension contract defines a default implementation (`getBptRate`) to calculate the rate * of any given pool, which should be sufficient in nearly all cases. * * @return rate Rate of the pool's BPT */ function getRate() public view virtual returns (uint256) { return getVault().getBptRate(address(this)); } }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.24; import { IVaultErrors } from "@balancer-labs/v3-interfaces/contracts/vault/IVaultErrors.sol"; import { IVault } from "@balancer-labs/v3-interfaces/contracts/vault/IVault.sol"; /// @notice Contract that shares the modifier `onlyVault`. contract VaultGuard { IVault internal immutable _vault; constructor(IVault vault) { _vault = vault; } modifier onlyVault() { _ensureOnlyVault(); _; } function _ensureOnlyVault() private view { if (msg.sender != address(_vault)) { revert IVaultErrors.SenderIsNotVault(msg.sender); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC4626.sol) pragma solidity ^0.8.20; import {IERC20} from "../token/ERC20/IERC20.sol"; import {IERC20Metadata} from "../token/ERC20/extensions/IERC20Metadata.sol"; /** * @dev Interface of the ERC4626 "Tokenized Vault Standard", as defined in * https://eips.ethereum.org/EIPS/eip-4626[ERC-4626]. */ interface IERC4626 is IERC20, IERC20Metadata { event Deposit(address indexed sender, address indexed owner, uint256 assets, uint256 shares); event Withdraw( address indexed sender, address indexed receiver, address indexed owner, uint256 assets, uint256 shares ); /** * @dev Returns the address of the underlying token used for the Vault for accounting, depositing, and withdrawing. * * - MUST be an ERC-20 token contract. * - MUST NOT revert. */ function asset() external view returns (address assetTokenAddress); /** * @dev Returns the total amount of the underlying asset that is “managed” by Vault. * * - SHOULD include any compounding that occurs from yield. * - MUST be inclusive of any fees that are charged against assets in the Vault. * - MUST NOT revert. */ function totalAssets() external view returns (uint256 totalManagedAssets); /** * @dev Returns the amount of shares that the Vault would exchange for the amount of assets provided, in an ideal * scenario where all the conditions are met. * * - MUST NOT be inclusive of any fees that are charged against assets in the Vault. * - MUST NOT show any variations depending on the caller. * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange. * - MUST NOT revert. * * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and * from. */ function convertToShares(uint256 assets) external view returns (uint256 shares); /** * @dev Returns the amount of assets that the Vault would exchange for the amount of shares provided, in an ideal * scenario where all the conditions are met. * * - MUST NOT be inclusive of any fees that are charged against assets in the Vault. * - MUST NOT show any variations depending on the caller. * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange. * - MUST NOT revert. * * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and * from. */ function convertToAssets(uint256 shares) external view returns (uint256 assets); /** * @dev Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver, * through a deposit call. * * - MUST return a limited value if receiver is subject to some deposit limit. * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of assets that may be deposited. * - MUST NOT revert. */ function maxDeposit(address receiver) external view returns (uint256 maxAssets); /** * @dev Allows an on-chain or off-chain user to simulate the effects of their deposit at the current block, given * current on-chain conditions. * * - MUST return as close to and no more than the exact amount of Vault shares that would be minted in a deposit * call in the same transaction. I.e. deposit should return the same or more shares as previewDeposit if called * in the same transaction. * - MUST NOT account for deposit limits like those returned from maxDeposit and should always act as though the * deposit would be accepted, regardless if the user has enough tokens approved, etc. * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees. * - MUST NOT revert. * * NOTE: any unfavorable discrepancy between convertToShares and previewDeposit SHOULD be considered slippage in * share price or some other type of condition, meaning the depositor will lose assets by depositing. */ function previewDeposit(uint256 assets) external view returns (uint256 shares); /** * @dev Mints shares Vault shares to receiver by depositing exactly amount of underlying tokens. * * - MUST emit the Deposit event. * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the * deposit execution, and are accounted for during deposit. * - MUST revert if all of assets cannot be deposited (due to deposit limit being reached, slippage, the user not * approving enough underlying tokens to the Vault contract, etc). * * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token. */ function deposit(uint256 assets, address receiver) external returns (uint256 shares); /** * @dev Returns the maximum amount of the Vault shares that can be minted for the receiver, through a mint call. * - MUST return a limited value if receiver is subject to some mint limit. * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of shares that may be minted. * - MUST NOT revert. */ function maxMint(address receiver) external view returns (uint256 maxShares); /** * @dev Allows an on-chain or off-chain user to simulate the effects of their mint at the current block, given * current on-chain conditions. * * - MUST return as close to and no fewer than the exact amount of assets that would be deposited in a mint call * in the same transaction. I.e. mint should return the same or fewer assets as previewMint if called in the * same transaction. * - MUST NOT account for mint limits like those returned from maxMint and should always act as though the mint * would be accepted, regardless if the user has enough tokens approved, etc. * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees. * - MUST NOT revert. * * NOTE: any unfavorable discrepancy between convertToAssets and previewMint SHOULD be considered slippage in * share price or some other type of condition, meaning the depositor will lose assets by minting. */ function previewMint(uint256 shares) external view returns (uint256 assets); /** * @dev Mints exactly shares Vault shares to receiver by depositing amount of underlying tokens. * * - MUST emit the Deposit event. * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the mint * execution, and are accounted for during mint. * - MUST revert if all of shares cannot be minted (due to deposit limit being reached, slippage, the user not * approving enough underlying tokens to the Vault contract, etc). * * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token. */ function mint(uint256 shares, address receiver) external returns (uint256 assets); /** * @dev Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the * Vault, through a withdraw call. * * - MUST return a limited value if owner is subject to some withdrawal limit or timelock. * - MUST NOT revert. */ function maxWithdraw(address owner) external view returns (uint256 maxAssets); /** * @dev Allows an on-chain or off-chain user to simulate the effects of their withdrawal at the current block, * given current on-chain conditions. * * - MUST return as close to and no fewer than the exact amount of Vault shares that would be burned in a withdraw * call in the same transaction. I.e. withdraw should return the same or fewer shares as previewWithdraw if * called * in the same transaction. * - MUST NOT account for withdrawal limits like those returned from maxWithdraw and should always act as though * the withdrawal would be accepted, regardless if the user has enough shares, etc. * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees. * - MUST NOT revert. * * NOTE: any unfavorable discrepancy between convertToShares and previewWithdraw SHOULD be considered slippage in * share price or some other type of condition, meaning the depositor will lose assets by depositing. */ function previewWithdraw(uint256 assets) external view returns (uint256 shares); /** * @dev Burns shares from owner and sends exactly assets of underlying tokens to receiver. * * - MUST emit the Withdraw event. * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the * withdraw execution, and are accounted for during withdraw. * - MUST revert if all of assets cannot be withdrawn (due to withdrawal limit being reached, slippage, the owner * not having enough shares, etc). * * Note that some implementations will require pre-requesting to the Vault before a withdrawal may be performed. * Those methods should be performed separately. */ function withdraw(uint256 assets, address receiver, address owner) external returns (uint256 shares); /** * @dev Returns the maximum amount of Vault shares that can be redeemed from the owner balance in the Vault, * through a redeem call. * * - MUST return a limited value if owner is subject to some withdrawal limit or timelock. * - MUST return balanceOf(owner) if owner is not subject to any withdrawal limit or timelock. * - MUST NOT revert. */ function maxRedeem(address owner) external view returns (uint256 maxShares); /** * @dev Allows an on-chain or off-chain user to simulate the effects of their redeemption at the current block, * given current on-chain conditions. * * - MUST return as close to and no more than the exact amount of assets that would be withdrawn in a redeem call * in the same transaction. I.e. redeem should return the same or more assets as previewRedeem if called in the * same transaction. * - MUST NOT account for redemption limits like those returned from maxRedeem and should always act as though the * redemption would be accepted, regardless if the user has enough shares, etc. * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees. * - MUST NOT revert. * * NOTE: any unfavorable discrepancy between convertToAssets and previewRedeem SHOULD be considered slippage in * share price or some other type of condition, meaning the depositor will lose assets by redeeming. */ function previewRedeem(uint256 shares) external view returns (uint256 assets); /** * @dev Burns exactly shares from owner and sends assets of underlying tokens to receiver. * * - MUST emit the Withdraw event. * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the * redeem execution, and are accounted for during redeem. * - MUST revert if all of shares cannot be redeemed (due to withdrawal limit being reached, slippage, the owner * not having enough shares, etc). * * NOTE: some implementations will require pre-requesting to the Vault before a withdrawal may be performed. * Those methods should be performed separately. */ function redeem(uint256 shares, address receiver, address owner) external returns (uint256 assets); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol) pragma solidity ^0.8.20; interface IERC5267 { /** * @dev MAY be emitted to signal that the domain could have changed. */ event EIP712DomainChanged(); /** * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712 * signature. */ function eip712Domain() external view returns ( bytes1 fields, string memory name, string memory version, uint256 chainId, address verifyingContract, bytes32 salt, uint256[] memory extensions ); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.20; import {IERC20} from "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. * * ==== Security Considerations * * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be * considered as an intention to spend the allowance in any specific way. The second is that because permits have * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be * generally recommended is: * * ```solidity * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public { * try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {} * doThing(..., value); * } * * function doThing(..., uint256 value) public { * token.safeTransferFrom(msg.sender, address(this), value); * ... * } * ``` * * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also * {SafeERC20-safeTransferFrom}). * * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so * contracts should have entry points that don't rely on permit. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. * * CAUTION: See Security Considerations above. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.20; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS } /** * @dev The signature derives the `address(0)`. */ error ECDSAInvalidSignature(); /** * @dev The signature has an invalid length. */ error ECDSAInvalidSignatureLength(uint256 length); /** * @dev The signature has an S value that is in the upper half order. */ error ECDSAInvalidSignatureS(bytes32 s); /** * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not * return address(0) without also returning an error description. Errors are documented using an enum (error type) * and a bytes32 providing additional information about the error. * * If no error is returned, then the address can be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] */ function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length)); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures] */ function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) { unchecked { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); // We do not check for an overflow here since the shift operation results in 0 or 1. uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. */ function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. */ function tryRecover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address, RecoverError, bytes32) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS, s); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature, bytes32(0)); } return (signer, RecoverError.NoError, bytes32(0)); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s); _throwError(error, errorArg); return recovered; } /** * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided. */ function _throwError(RecoverError error, bytes32 errorArg) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert ECDSAInvalidSignature(); } else if (error == RecoverError.InvalidSignatureLength) { revert ECDSAInvalidSignatureLength(uint256(errorArg)); } else if (error == RecoverError.InvalidSignatureS) { revert ECDSAInvalidSignatureS(errorArg); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/EIP712.sol) pragma solidity ^0.8.20; import {MessageHashUtils} from "./MessageHashUtils.sol"; import {ShortStrings, ShortString} from "../ShortStrings.sol"; import {IERC5267} from "../../interfaces/IERC5267.sol"; /** * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data. * * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`. * * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA * ({_hashTypedDataV4}). * * The implementation of the domain separator was designed to be as efficient as possible while still properly updating * the chain id to protect against replay attacks on an eventual fork of the chain. * * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask]. * * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the * separator from the immutable values, which is cheaper than accessing a cached version in cold storage. * * @custom:oz-upgrades-unsafe-allow state-variable-immutable */ abstract contract EIP712 is IERC5267 { using ShortStrings for *; bytes32 private constant TYPE_HASH = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"); // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to // invalidate the cached domain separator if the chain id changes. bytes32 private immutable _cachedDomainSeparator; uint256 private immutable _cachedChainId; address private immutable _cachedThis; bytes32 private immutable _hashedName; bytes32 private immutable _hashedVersion; ShortString private immutable _name; ShortString private immutable _version; string private _nameFallback; string private _versionFallback; /** * @dev Initializes the domain separator and parameter caches. * * The meaning of `name` and `version` is specified in * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]: * * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol. * - `version`: the current major version of the signing domain. * * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart * contract upgrade]. */ constructor(string memory name, string memory version) { _name = name.toShortStringWithFallback(_nameFallback); _version = version.toShortStringWithFallback(_versionFallback); _hashedName = keccak256(bytes(name)); _hashedVersion = keccak256(bytes(version)); _cachedChainId = block.chainid; _cachedDomainSeparator = _buildDomainSeparator(); _cachedThis = address(this); } /** * @dev Returns the domain separator for the current chain. */ function _domainSeparatorV4() internal view returns (bytes32) { if (address(this) == _cachedThis && block.chainid == _cachedChainId) { return _cachedDomainSeparator; } else { return _buildDomainSeparator(); } } function _buildDomainSeparator() private view returns (bytes32) { return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this))); } /** * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this * function returns the hash of the fully encoded EIP712 message for this domain. * * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example: * * ```solidity * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode( * keccak256("Mail(address to,string contents)"), * mailTo, * keccak256(bytes(mailContents)) * ))); * address signer = ECDSA.recover(digest, signature); * ``` */ function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) { return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash); } /** * @dev See {IERC-5267}. */ function eip712Domain() public view virtual returns ( bytes1 fields, string memory name, string memory version, uint256 chainId, address verifyingContract, bytes32 salt, uint256[] memory extensions ) { return ( hex"0f", // 01111 _EIP712Name(), _EIP712Version(), block.chainid, address(this), bytes32(0), new uint256[](0) ); } /** * @dev The name parameter for the EIP712 domain. * * NOTE: By default this function reads _name which is an immutable value. * It only reads from storage if necessary (in case the value is too large to fit in a ShortString). */ // solhint-disable-next-line func-name-mixedcase function _EIP712Name() internal view returns (string memory) { return _name.toStringWithFallback(_nameFallback); } /** * @dev The version parameter for the EIP712 domain. * * NOTE: By default this function reads _version which is an immutable value. * It only reads from storage if necessary (in case the value is too large to fit in a ShortString). */ // solhint-disable-next-line func-name-mixedcase function _EIP712Version() internal view returns (string memory) { return _version.toStringWithFallback(_versionFallback); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol) pragma solidity ^0.8.20; import {Strings} from "../Strings.sol"; /** * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing. * * The library provides methods for generating a hash of a message that conforms to the * https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712] * specifications. */ library MessageHashUtils { /** * @dev Returns the keccak256 digest of an EIP-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing a bytes32 `messageHash` with * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with * keccak256, although any bytes32 value can be safely used because the final digest will * be re-hashed. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) { /// @solidity memory-safe-assembly assembly { mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20) } } /** * @dev Returns the keccak256 digest of an EIP-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing an arbitrary `message` with * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) { return keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message)); } /** * @dev Returns the keccak256 digest of an EIP-191 signed data with version * `0x00` (data with intended validator). * * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended * `validator` address. Then hashing the result. * * See {ECDSA-recover}. */ function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) { return keccak256(abi.encodePacked(hex"19_00", validator, data)); } /** * @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`). * * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with * `\x19\x01` and hashing the result. It corresponds to the hash signed by the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712. * * See {ECDSA-recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) { /// @solidity memory-safe-assembly assembly { let ptr := mload(0x40) mstore(ptr, hex"19_01") mstore(add(ptr, 0x02), domainSeparator) mstore(add(ptr, 0x22), structHash) digest := keccak256(ptr, 0x42) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/ERC165.sol) pragma solidity ^0.8.20; import {IERC165} from "./IERC165.sol"; /** * @dev Implementation of the {IERC165} interface. * * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check * for the additional interface id that will be supported. For example: * * ```solidity * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { * return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId); * } * ``` */ abstract contract ERC165 is IERC165 { /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) { return interfaceId == type(IERC165).interfaceId; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol) pragma solidity ^0.8.20; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { /** * @dev Muldiv operation overflow. */ error MathOverflowedMulDiv(); enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an overflow flag. */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an overflow flag. */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. return a / b; } // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (denominator <= prod1) { revert MathOverflowedMulDiv(); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol) // This file was procedurally generated from scripts/generate/templates/SafeCast.js. pragma solidity ^0.8.20; /** * @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeCast { /** * @dev Value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value); /** * @dev An int value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedIntToUint(int256 value); /** * @dev Value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedIntDowncast(uint8 bits, int256 value); /** * @dev An uint value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedUintToInt(uint256 value); /** * @dev Returns the downcasted uint248 from uint256, reverting on * overflow (when the input is greater than largest uint248). * * Counterpart to Solidity's `uint248` operator. * * Requirements: * * - input must fit into 248 bits */ function toUint248(uint256 value) internal pure returns (uint248) { if (value > type(uint248).max) { revert SafeCastOverflowedUintDowncast(248, value); } return uint248(value); } /** * @dev Returns the downcasted uint240 from uint256, reverting on * overflow (when the input is greater than largest uint240). * * Counterpart to Solidity's `uint240` operator. * * Requirements: * * - input must fit into 240 bits */ function toUint240(uint256 value) internal pure returns (uint240) { if (value > type(uint240).max) { revert SafeCastOverflowedUintDowncast(240, value); } return uint240(value); } /** * @dev Returns the downcasted uint232 from uint256, reverting on * overflow (when the input is greater than largest uint232). * * Counterpart to Solidity's `uint232` operator. * * Requirements: * * - input must fit into 232 bits */ function toUint232(uint256 value) internal pure returns (uint232) { if (value > type(uint232).max) { revert SafeCastOverflowedUintDowncast(232, value); } return uint232(value); } /** * @dev Returns the downcasted uint224 from uint256, reverting on * overflow (when the input is greater than largest uint224). * * Counterpart to Solidity's `uint224` operator. * * Requirements: * * - input must fit into 224 bits */ function toUint224(uint256 value) internal pure returns (uint224) { if (value > type(uint224).max) { revert SafeCastOverflowedUintDowncast(224, value); } return uint224(value); } /** * @dev Returns the downcasted uint216 from uint256, reverting on * overflow (when the input is greater than largest uint216). * * Counterpart to Solidity's `uint216` operator. * * Requirements: * * - input must fit into 216 bits */ function toUint216(uint256 value) internal pure returns (uint216) { if (value > type(uint216).max) { revert SafeCastOverflowedUintDowncast(216, value); } return uint216(value); } /** * @dev Returns the downcasted uint208 from uint256, reverting on * overflow (when the input is greater than largest uint208). * * Counterpart to Solidity's `uint208` operator. * * Requirements: * * - input must fit into 208 bits */ function toUint208(uint256 value) internal pure returns (uint208) { if (value > type(uint208).max) { revert SafeCastOverflowedUintDowncast(208, value); } return uint208(value); } /** * @dev Returns the downcasted uint200 from uint256, reverting on * overflow (when the input is greater than largest uint200). * * Counterpart to Solidity's `uint200` operator. * * Requirements: * * - input must fit into 200 bits */ function toUint200(uint256 value) internal pure returns (uint200) { if (value > type(uint200).max) { revert SafeCastOverflowedUintDowncast(200, value); } return uint200(value); } /** * @dev Returns the downcasted uint192 from uint256, reverting on * overflow (when the input is greater than largest uint192). * * Counterpart to Solidity's `uint192` operator. * * Requirements: * * - input must fit into 192 bits */ function toUint192(uint256 value) internal pure returns (uint192) { if (value > type(uint192).max) { revert SafeCastOverflowedUintDowncast(192, value); } return uint192(value); } /** * @dev Returns the downcasted uint184 from uint256, reverting on * overflow (when the input is greater than largest uint184). * * Counterpart to Solidity's `uint184` operator. * * Requirements: * * - input must fit into 184 bits */ function toUint184(uint256 value) internal pure returns (uint184) { if (value > type(uint184).max) { revert SafeCastOverflowedUintDowncast(184, value); } return uint184(value); } /** * @dev Returns the downcasted uint176 from uint256, reverting on * overflow (when the input is greater than largest uint176). * * Counterpart to Solidity's `uint176` operator. * * Requirements: * * - input must fit into 176 bits */ function toUint176(uint256 value) internal pure returns (uint176) { if (value > type(uint176).max) { revert SafeCastOverflowedUintDowncast(176, value); } return uint176(value); } /** * @dev Returns the downcasted uint168 from uint256, reverting on * overflow (when the input is greater than largest uint168). * * Counterpart to Solidity's `uint168` operator. * * Requirements: * * - input must fit into 168 bits */ function toUint168(uint256 value) internal pure returns (uint168) { if (value > type(uint168).max) { revert SafeCastOverflowedUintDowncast(168, value); } return uint168(value); } /** * @dev Returns the downcasted uint160 from uint256, reverting on * overflow (when the input is greater than largest uint160). * * Counterpart to Solidity's `uint160` operator. * * Requirements: * * - input must fit into 160 bits */ function toUint160(uint256 value) internal pure returns (uint160) { if (value > type(uint160).max) { revert SafeCastOverflowedUintDowncast(160, value); } return uint160(value); } /** * @dev Returns the downcasted uint152 from uint256, reverting on * overflow (when the input is greater than largest uint152). * * Counterpart to Solidity's `uint152` operator. * * Requirements: * * - input must fit into 152 bits */ function toUint152(uint256 value) internal pure returns (uint152) { if (value > type(uint152).max) { revert SafeCastOverflowedUintDowncast(152, value); } return uint152(value); } /** * @dev Returns the downcasted uint144 from uint256, reverting on * overflow (when the input is greater than largest uint144). * * Counterpart to Solidity's `uint144` operator. * * Requirements: * * - input must fit into 144 bits */ function toUint144(uint256 value) internal pure returns (uint144) { if (value > type(uint144).max) { revert SafeCastOverflowedUintDowncast(144, value); } return uint144(value); } /** * @dev Returns the downcasted uint136 from uint256, reverting on * overflow (when the input is greater than largest uint136). * * Counterpart to Solidity's `uint136` operator. * * Requirements: * * - input must fit into 136 bits */ function toUint136(uint256 value) internal pure returns (uint136) { if (value > type(uint136).max) { revert SafeCastOverflowedUintDowncast(136, value); } return uint136(value); } /** * @dev Returns the downcasted uint128 from uint256, reverting on * overflow (when the input is greater than largest uint128). * * Counterpart to Solidity's `uint128` operator. * * Requirements: * * - input must fit into 128 bits */ function toUint128(uint256 value) internal pure returns (uint128) { if (value > type(uint128).max) { revert SafeCastOverflowedUintDowncast(128, value); } return uint128(value); } /** * @dev Returns the downcasted uint120 from uint256, reverting on * overflow (when the input is greater than largest uint120). * * Counterpart to Solidity's `uint120` operator. * * Requirements: * * - input must fit into 120 bits */ function toUint120(uint256 value) internal pure returns (uint120) { if (value > type(uint120).max) { revert SafeCastOverflowedUintDowncast(120, value); } return uint120(value); } /** * @dev Returns the downcasted uint112 from uint256, reverting on * overflow (when the input is greater than largest uint112). * * Counterpart to Solidity's `uint112` operator. * * Requirements: * * - input must fit into 112 bits */ function toUint112(uint256 value) internal pure returns (uint112) { if (value > type(uint112).max) { revert SafeCastOverflowedUintDowncast(112, value); } return uint112(value); } /** * @dev Returns the downcasted uint104 from uint256, reverting on * overflow (when the input is greater than largest uint104). * * Counterpart to Solidity's `uint104` operator. * * Requirements: * * - input must fit into 104 bits */ function toUint104(uint256 value) internal pure returns (uint104) { if (value > type(uint104).max) { revert SafeCastOverflowedUintDowncast(104, value); } return uint104(value); } /** * @dev Returns the downcasted uint96 from uint256, reverting on * overflow (when the input is greater than largest uint96). * * Counterpart to Solidity's `uint96` operator. * * Requirements: * * - input must fit into 96 bits */ function toUint96(uint256 value) internal pure returns (uint96) { if (value > type(uint96).max) { revert SafeCastOverflowedUintDowncast(96, value); } return uint96(value); } /** * @dev Returns the downcasted uint88 from uint256, reverting on * overflow (when the input is greater than largest uint88). * * Counterpart to Solidity's `uint88` operator. * * Requirements: * * - input must fit into 88 bits */ function toUint88(uint256 value) internal pure returns (uint88) { if (value > type(uint88).max) { revert SafeCastOverflowedUintDowncast(88, value); } return uint88(value); } /** * @dev Returns the downcasted uint80 from uint256, reverting on * overflow (when the input is greater than largest uint80). * * Counterpart to Solidity's `uint80` operator. * * Requirements: * * - input must fit into 80 bits */ function toUint80(uint256 value) internal pure returns (uint80) { if (value > type(uint80).max) { revert SafeCastOverflowedUintDowncast(80, value); } return uint80(value); } /** * @dev Returns the downcasted uint72 from uint256, reverting on * overflow (when the input is greater than largest uint72). * * Counterpart to Solidity's `uint72` operator. * * Requirements: * * - input must fit into 72 bits */ function toUint72(uint256 value) internal pure returns (uint72) { if (value > type(uint72).max) { revert SafeCastOverflowedUintDowncast(72, value); } return uint72(value); } /** * @dev Returns the downcasted uint64 from uint256, reverting on * overflow (when the input is greater than largest uint64). * * Counterpart to Solidity's `uint64` operator. * * Requirements: * * - input must fit into 64 bits */ function toUint64(uint256 value) internal pure returns (uint64) { if (value > type(uint64).max) { revert SafeCastOverflowedUintDowncast(64, value); } return uint64(value); } /** * @dev Returns the downcasted uint56 from uint256, reverting on * overflow (when the input is greater than largest uint56). * * Counterpart to Solidity's `uint56` operator. * * Requirements: * * - input must fit into 56 bits */ function toUint56(uint256 value) internal pure returns (uint56) { if (value > type(uint56).max) { revert SafeCastOverflowedUintDowncast(56, value); } return uint56(value); } /** * @dev Returns the downcasted uint48 from uint256, reverting on * overflow (when the input is greater than largest uint48). * * Counterpart to Solidity's `uint48` operator. * * Requirements: * * - input must fit into 48 bits */ function toUint48(uint256 value) internal pure returns (uint48) { if (value > type(uint48).max) { revert SafeCastOverflowedUintDowncast(48, value); } return uint48(value); } /** * @dev Returns the downcasted uint40 from uint256, reverting on * overflow (when the input is greater than largest uint40). * * Counterpart to Solidity's `uint40` operator. * * Requirements: * * - input must fit into 40 bits */ function toUint40(uint256 value) internal pure returns (uint40) { if (value > type(uint40).max) { revert SafeCastOverflowedUintDowncast(40, value); } return uint40(value); } /** * @dev Returns the downcasted uint32 from uint256, reverting on * overflow (when the input is greater than largest uint32). * * Counterpart to Solidity's `uint32` operator. * * Requirements: * * - input must fit into 32 bits */ function toUint32(uint256 value) internal pure returns (uint32) { if (value > type(uint32).max) { revert SafeCastOverflowedUintDowncast(32, value); } return uint32(value); } /** * @dev Returns the downcasted uint24 from uint256, reverting on * overflow (when the input is greater than largest uint24). * * Counterpart to Solidity's `uint24` operator. * * Requirements: * * - input must fit into 24 bits */ function toUint24(uint256 value) internal pure returns (uint24) { if (value > type(uint24).max) { revert SafeCastOverflowedUintDowncast(24, value); } return uint24(value); } /** * @dev Returns the downcasted uint16 from uint256, reverting on * overflow (when the input is greater than largest uint16). * * Counterpart to Solidity's `uint16` operator. * * Requirements: * * - input must fit into 16 bits */ function toUint16(uint256 value) internal pure returns (uint16) { if (value > type(uint16).max) { revert SafeCastOverflowedUintDowncast(16, value); } return uint16(value); } /** * @dev Returns the downcasted uint8 from uint256, reverting on * overflow (when the input is greater than largest uint8). * * Counterpart to Solidity's `uint8` operator. * * Requirements: * * - input must fit into 8 bits */ function toUint8(uint256 value) internal pure returns (uint8) { if (value > type(uint8).max) { revert SafeCastOverflowedUintDowncast(8, value); } return uint8(value); } /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. */ function toUint256(int256 value) internal pure returns (uint256) { if (value < 0) { revert SafeCastOverflowedIntToUint(value); } return uint256(value); } /** * @dev Returns the downcasted int248 from int256, reverting on * overflow (when the input is less than smallest int248 or * greater than largest int248). * * Counterpart to Solidity's `int248` operator. * * Requirements: * * - input must fit into 248 bits */ function toInt248(int256 value) internal pure returns (int248 downcasted) { downcasted = int248(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(248, value); } } /** * @dev Returns the downcasted int240 from int256, reverting on * overflow (when the input is less than smallest int240 or * greater than largest int240). * * Counterpart to Solidity's `int240` operator. * * Requirements: * * - input must fit into 240 bits */ function toInt240(int256 value) internal pure returns (int240 downcasted) { downcasted = int240(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(240, value); } } /** * @dev Returns the downcasted int232 from int256, reverting on * overflow (when the input is less than smallest int232 or * greater than largest int232). * * Counterpart to Solidity's `int232` operator. * * Requirements: * * - input must fit into 232 bits */ function toInt232(int256 value) internal pure returns (int232 downcasted) { downcasted = int232(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(232, value); } } /** * @dev Returns the downcasted int224 from int256, reverting on * overflow (when the input is less than smallest int224 or * greater than largest int224). * * Counterpart to Solidity's `int224` operator. * * Requirements: * * - input must fit into 224 bits */ function toInt224(int256 value) internal pure returns (int224 downcasted) { downcasted = int224(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(224, value); } } /** * @dev Returns the downcasted int216 from int256, reverting on * overflow (when the input is less than smallest int216 or * greater than largest int216). * * Counterpart to Solidity's `int216` operator. * * Requirements: * * - input must fit into 216 bits */ function toInt216(int256 value) internal pure returns (int216 downcasted) { downcasted = int216(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(216, value); } } /** * @dev Returns the downcasted int208 from int256, reverting on * overflow (when the input is less than smallest int208 or * greater than largest int208). * * Counterpart to Solidity's `int208` operator. * * Requirements: * * - input must fit into 208 bits */ function toInt208(int256 value) internal pure returns (int208 downcasted) { downcasted = int208(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(208, value); } } /** * @dev Returns the downcasted int200 from int256, reverting on * overflow (when the input is less than smallest int200 or * greater than largest int200). * * Counterpart to Solidity's `int200` operator. * * Requirements: * * - input must fit into 200 bits */ function toInt200(int256 value) internal pure returns (int200 downcasted) { downcasted = int200(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(200, value); } } /** * @dev Returns the downcasted int192 from int256, reverting on * overflow (when the input is less than smallest int192 or * greater than largest int192). * * Counterpart to Solidity's `int192` operator. * * Requirements: * * - input must fit into 192 bits */ function toInt192(int256 value) internal pure returns (int192 downcasted) { downcasted = int192(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(192, value); } } /** * @dev Returns the downcasted int184 from int256, reverting on * overflow (when the input is less than smallest int184 or * greater than largest int184). * * Counterpart to Solidity's `int184` operator. * * Requirements: * * - input must fit into 184 bits */ function toInt184(int256 value) internal pure returns (int184 downcasted) { downcasted = int184(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(184, value); } } /** * @dev Returns the downcasted int176 from int256, reverting on * overflow (when the input is less than smallest int176 or * greater than largest int176). * * Counterpart to Solidity's `int176` operator. * * Requirements: * * - input must fit into 176 bits */ function toInt176(int256 value) internal pure returns (int176 downcasted) { downcasted = int176(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(176, value); } } /** * @dev Returns the downcasted int168 from int256, reverting on * overflow (when the input is less than smallest int168 or * greater than largest int168). * * Counterpart to Solidity's `int168` operator. * * Requirements: * * - input must fit into 168 bits */ function toInt168(int256 value) internal pure returns (int168 downcasted) { downcasted = int168(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(168, value); } } /** * @dev Returns the downcasted int160 from int256, reverting on * overflow (when the input is less than smallest int160 or * greater than largest int160). * * Counterpart to Solidity's `int160` operator. * * Requirements: * * - input must fit into 160 bits */ function toInt160(int256 value) internal pure returns (int160 downcasted) { downcasted = int160(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(160, value); } } /** * @dev Returns the downcasted int152 from int256, reverting on * overflow (when the input is less than smallest int152 or * greater than largest int152). * * Counterpart to Solidity's `int152` operator. * * Requirements: * * - input must fit into 152 bits */ function toInt152(int256 value) internal pure returns (int152 downcasted) { downcasted = int152(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(152, value); } } /** * @dev Returns the downcasted int144 from int256, reverting on * overflow (when the input is less than smallest int144 or * greater than largest int144). * * Counterpart to Solidity's `int144` operator. * * Requirements: * * - input must fit into 144 bits */ function toInt144(int256 value) internal pure returns (int144 downcasted) { downcasted = int144(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(144, value); } } /** * @dev Returns the downcasted int136 from int256, reverting on * overflow (when the input is less than smallest int136 or * greater than largest int136). * * Counterpart to Solidity's `int136` operator. * * Requirements: * * - input must fit into 136 bits */ function toInt136(int256 value) internal pure returns (int136 downcasted) { downcasted = int136(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(136, value); } } /** * @dev Returns the downcasted int128 from int256, reverting on * overflow (when the input is less than smallest int128 or * greater than largest int128). * * Counterpart to Solidity's `int128` operator. * * Requirements: * * - input must fit into 128 bits */ function toInt128(int256 value) internal pure returns (int128 downcasted) { downcasted = int128(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(128, value); } } /** * @dev Returns the downcasted int120 from int256, reverting on * overflow (when the input is less than smallest int120 or * greater than largest int120). * * Counterpart to Solidity's `int120` operator. * * Requirements: * * - input must fit into 120 bits */ function toInt120(int256 value) internal pure returns (int120 downcasted) { downcasted = int120(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(120, value); } } /** * @dev Returns the downcasted int112 from int256, reverting on * overflow (when the input is less than smallest int112 or * greater than largest int112). * * Counterpart to Solidity's `int112` operator. * * Requirements: * * - input must fit into 112 bits */ function toInt112(int256 value) internal pure returns (int112 downcasted) { downcasted = int112(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(112, value); } } /** * @dev Returns the downcasted int104 from int256, reverting on * overflow (when the input is less than smallest int104 or * greater than largest int104). * * Counterpart to Solidity's `int104` operator. * * Requirements: * * - input must fit into 104 bits */ function toInt104(int256 value) internal pure returns (int104 downcasted) { downcasted = int104(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(104, value); } } /** * @dev Returns the downcasted int96 from int256, reverting on * overflow (when the input is less than smallest int96 or * greater than largest int96). * * Counterpart to Solidity's `int96` operator. * * Requirements: * * - input must fit into 96 bits */ function toInt96(int256 value) internal pure returns (int96 downcasted) { downcasted = int96(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(96, value); } } /** * @dev Returns the downcasted int88 from int256, reverting on * overflow (when the input is less than smallest int88 or * greater than largest int88). * * Counterpart to Solidity's `int88` operator. * * Requirements: * * - input must fit into 88 bits */ function toInt88(int256 value) internal pure returns (int88 downcasted) { downcasted = int88(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(88, value); } } /** * @dev Returns the downcasted int80 from int256, reverting on * overflow (when the input is less than smallest int80 or * greater than largest int80). * * Counterpart to Solidity's `int80` operator. * * Requirements: * * - input must fit into 80 bits */ function toInt80(int256 value) internal pure returns (int80 downcasted) { downcasted = int80(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(80, value); } } /** * @dev Returns the downcasted int72 from int256, reverting on * overflow (when the input is less than smallest int72 or * greater than largest int72). * * Counterpart to Solidity's `int72` operator. * * Requirements: * * - input must fit into 72 bits */ function toInt72(int256 value) internal pure returns (int72 downcasted) { downcasted = int72(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(72, value); } } /** * @dev Returns the downcasted int64 from int256, reverting on * overflow (when the input is less than smallest int64 or * greater than largest int64). * * Counterpart to Solidity's `int64` operator. * * Requirements: * * - input must fit into 64 bits */ function toInt64(int256 value) internal pure returns (int64 downcasted) { downcasted = int64(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(64, value); } } /** * @dev Returns the downcasted int56 from int256, reverting on * overflow (when the input is less than smallest int56 or * greater than largest int56). * * Counterpart to Solidity's `int56` operator. * * Requirements: * * - input must fit into 56 bits */ function toInt56(int256 value) internal pure returns (int56 downcasted) { downcasted = int56(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(56, value); } } /** * @dev Returns the downcasted int48 from int256, reverting on * overflow (when the input is less than smallest int48 or * greater than largest int48). * * Counterpart to Solidity's `int48` operator. * * Requirements: * * - input must fit into 48 bits */ function toInt48(int256 value) internal pure returns (int48 downcasted) { downcasted = int48(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(48, value); } } /** * @dev Returns the downcasted int40 from int256, reverting on * overflow (when the input is less than smallest int40 or * greater than largest int40). * * Counterpart to Solidity's `int40` operator. * * Requirements: * * - input must fit into 40 bits */ function toInt40(int256 value) internal pure returns (int40 downcasted) { downcasted = int40(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(40, value); } } /** * @dev Returns the downcasted int32 from int256, reverting on * overflow (when the input is less than smallest int32 or * greater than largest int32). * * Counterpart to Solidity's `int32` operator. * * Requirements: * * - input must fit into 32 bits */ function toInt32(int256 value) internal pure returns (int32 downcasted) { downcasted = int32(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(32, value); } } /** * @dev Returns the downcasted int24 from int256, reverting on * overflow (when the input is less than smallest int24 or * greater than largest int24). * * Counterpart to Solidity's `int24` operator. * * Requirements: * * - input must fit into 24 bits */ function toInt24(int256 value) internal pure returns (int24 downcasted) { downcasted = int24(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(24, value); } } /** * @dev Returns the downcasted int16 from int256, reverting on * overflow (when the input is less than smallest int16 or * greater than largest int16). * * Counterpart to Solidity's `int16` operator. * * Requirements: * * - input must fit into 16 bits */ function toInt16(int256 value) internal pure returns (int16 downcasted) { downcasted = int16(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(16, value); } } /** * @dev Returns the downcasted int8 from int256, reverting on * overflow (when the input is less than smallest int8 or * greater than largest int8). * * Counterpart to Solidity's `int8` operator. * * Requirements: * * - input must fit into 8 bits */ function toInt8(int256 value) internal pure returns (int8 downcasted) { downcasted = int8(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(8, value); } } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. */ function toInt256(uint256 value) internal pure returns (int256) { // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive if (value > uint256(type(int256).max)) { revert SafeCastOverflowedUintToInt(value); } return int256(value); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.20; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol) pragma solidity ^0.8.20; /** * @dev Provides tracking nonces for addresses. Nonces will only increment. */ abstract contract Nonces { /** * @dev The nonce used for an `account` is not the expected current nonce. */ error InvalidAccountNonce(address account, uint256 currentNonce); mapping(address account => uint256) private _nonces; /** * @dev Returns the next unused nonce for an address. */ function nonces(address owner) public view virtual returns (uint256) { return _nonces[owner]; } /** * @dev Consumes a nonce. * * Returns the current value and increments nonce. */ function _useNonce(address owner) internal virtual returns (uint256) { // For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be // decremented or reset. This guarantees that the nonce never overflows. unchecked { // It is important to do x++ and not ++x here. return _nonces[owner]++; } } /** * @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`. */ function _useCheckedNonce(address owner, uint256 nonce) internal virtual { uint256 current = _useNonce(owner); if (nonce != current) { revert InvalidAccountNonce(owner, current); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/ShortStrings.sol) pragma solidity ^0.8.20; import {StorageSlot} from "./StorageSlot.sol"; // | string | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA | // | length | 0x BB | type ShortString is bytes32; /** * @dev This library provides functions to convert short memory strings * into a `ShortString` type that can be used as an immutable variable. * * Strings of arbitrary length can be optimized using this library if * they are short enough (up to 31 bytes) by packing them with their * length (1 byte) in a single EVM word (32 bytes). Additionally, a * fallback mechanism can be used for every other case. * * Usage example: * * ```solidity * contract Named { * using ShortStrings for *; * * ShortString private immutable _name; * string private _nameFallback; * * constructor(string memory contractName) { * _name = contractName.toShortStringWithFallback(_nameFallback); * } * * function name() external view returns (string memory) { * return _name.toStringWithFallback(_nameFallback); * } * } * ``` */ library ShortStrings { // Used as an identifier for strings longer than 31 bytes. bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF; error StringTooLong(string str); error InvalidShortString(); /** * @dev Encode a string of at most 31 chars into a `ShortString`. * * This will trigger a `StringTooLong` error is the input string is too long. */ function toShortString(string memory str) internal pure returns (ShortString) { bytes memory bstr = bytes(str); if (bstr.length > 31) { revert StringTooLong(str); } return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length)); } /** * @dev Decode a `ShortString` back to a "normal" string. */ function toString(ShortString sstr) internal pure returns (string memory) { uint256 len = byteLength(sstr); // using `new string(len)` would work locally but is not memory safe. string memory str = new string(32); /// @solidity memory-safe-assembly assembly { mstore(str, len) mstore(add(str, 0x20), sstr) } return str; } /** * @dev Return the length of a `ShortString`. */ function byteLength(ShortString sstr) internal pure returns (uint256) { uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF; if (result > 31) { revert InvalidShortString(); } return result; } /** * @dev Encode a string into a `ShortString`, or write it to storage if it is too long. */ function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) { if (bytes(value).length < 32) { return toShortString(value); } else { StorageSlot.getStringSlot(store).value = value; return ShortString.wrap(FALLBACK_SENTINEL); } } /** * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}. */ function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) { if (ShortString.unwrap(value) != FALLBACK_SENTINEL) { return toString(value); } else { return store; } } /** * @dev Return the length of a string that was encoded to `ShortString` or written to storage using * {setWithFallback}. * * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of * actual characters as the UTF-8 encoding of a single character can span over multiple bytes. */ function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) { if (ShortString.unwrap(value) != FALLBACK_SENTINEL) { return byteLength(value); } else { return bytes(store).length; } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/StorageSlot.sol) // This file was procedurally generated from scripts/generate/templates/StorageSlot.js. pragma solidity ^0.8.20; /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC1967 implementation slot: * ```solidity * contract ERC1967 { * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(newImplementation.code.length > 0); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` */ library StorageSlot { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } struct StringSlot { string value; } struct BytesSlot { bytes value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `StringSlot` with member `value` located at `slot`. */ function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `StringSlot` representation of the string storage pointer `store`. */ function getStringSlot(string storage store) internal pure returns (StringSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := store.slot } } /** * @dev Returns an `BytesSlot` with member `value` located at `slot`. */ function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`. */ function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := store.slot } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol) pragma solidity ^0.8.20; import {Math} from "./math/Math.sol"; import {SignedMath} from "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant HEX_DIGITS = "0123456789abcdef"; uint8 private constant ADDRESS_LENGTH = 20; /** * @dev The `value` string doesn't fit in the specified `length`. */ error StringsInsufficientHexLength(uint256 value, uint256 length); /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), HEX_DIGITS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toStringSigned(int256 value) internal pure returns (string memory) { return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { uint256 localValue = value; bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = HEX_DIGITS[localValue & 0xf]; localValue >>= 4; } if (localValue != 0) { revert StringsInsufficientHexLength(value, length); } return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal * representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b)); } }
{ "viaIR": true, "evmVersion": "cancun", "optimizer": { "enabled": true, "runs": 9999, "details": { "yulDetails": { "optimizerSteps": "dhfoDgvulfnTUtnIf [ xa[r]EscLM cCTUtTOntnfDIul Lcul Vcul [j] Tpeul xa[rul] xa[r]cL gvif CTUca[r]LSsTFOtfDnca[r]Iulc ] jmul[jul] VcTOcul jmul : fDnTOcmu" } } }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"components":[{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"symbol","type":"string"},{"internalType":"uint256","name":"amplificationParameter","type":"uint256"},{"internalType":"string","name":"version","type":"string"}],"internalType":"struct StablePool.NewPoolParams","name":"params","type":"tuple"},{"internalType":"contract IVault","name":"vault","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AmpUpdateAlreadyStarted","type":"error"},{"inputs":[],"name":"AmpUpdateDurationTooShort","type":"error"},{"inputs":[],"name":"AmpUpdateNotStarted","type":"error"},{"inputs":[],"name":"AmpUpdateRateTooFast","type":"error"},{"inputs":[],"name":"AmplificationFactorTooHigh","type":"error"},{"inputs":[],"name":"AmplificationFactorTooLow","type":"error"},{"inputs":[],"name":"ECDSAInvalidSignature","type":"error"},{"inputs":[{"internalType":"uint256","name":"length","type":"uint256"}],"name":"ECDSAInvalidSignatureLength","type":"error"},{"inputs":[{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"ECDSAInvalidSignatureS","type":"error"},{"inputs":[{"internalType":"uint256","name":"deadline","type":"uint256"}],"name":"ERC2612ExpiredSignature","type":"error"},{"inputs":[{"internalType":"address","name":"signer","type":"address"},{"internalType":"address","name":"owner","type":"address"}],"name":"ERC2612InvalidSigner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"currentNonce","type":"uint256"}],"name":"InvalidAccountNonce","type":"error"},{"inputs":[],"name":"InvalidShortString","type":"error"},{"inputs":[{"internalType":"uint8","name":"bits","type":"uint8"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"SafeCastOverflowedUintDowncast","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"SenderIsNotVault","type":"error"},{"inputs":[],"name":"SenderNotAllowed","type":"error"},{"inputs":[],"name":"StableComputeBalanceDidNotConverge","type":"error"},{"inputs":[],"name":"StableInvariantDidNotConverge","type":"error"},{"inputs":[{"internalType":"string","name":"str","type":"string"}],"name":"StringTooLong","type":"error"},{"inputs":[],"name":"ZeroDivision","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"startValue","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"endValue","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"startTime","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"endTime","type":"uint256"}],"name":"AmpUpdateStarted","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"currentValue","type":"uint256"}],"name":"AmpUpdateStopped","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[],"name":"EIP712DomainChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"DOMAIN_SEPARATOR","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"PERMIT_TYPEHASH","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"balancesLiveScaled18","type":"uint256[]"},{"internalType":"uint256","name":"tokenInIndex","type":"uint256"},{"internalType":"uint256","name":"invariantRatio","type":"uint256"}],"name":"computeBalance","outputs":[{"internalType":"uint256","name":"newBalance","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"balancesLiveScaled18","type":"uint256[]"},{"internalType":"enum Rounding","name":"rounding","type":"uint8"}],"name":"computeInvariant","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"eip712Domain","outputs":[{"internalType":"bytes1","name":"fields","type":"bytes1"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"},{"internalType":"uint256","name":"chainId","type":"uint256"},{"internalType":"address","name":"verifyingContract","type":"address"},{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"uint256[]","name":"extensions","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"emitApproval","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"emitTransfer","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"selector","type":"bytes4"}],"name":"getActionId","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAggregateFeePercentages","outputs":[{"internalType":"uint256","name":"aggregateSwapFeePercentage","type":"uint256"},{"internalType":"uint256","name":"aggregateYieldFeePercentage","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAmplificationParameter","outputs":[{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"bool","name":"isUpdating","type":"bool"},{"internalType":"uint256","name":"precision","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAmplificationState","outputs":[{"components":[{"internalType":"uint64","name":"startValue","type":"uint64"},{"internalType":"uint64","name":"endValue","type":"uint64"},{"internalType":"uint32","name":"startTime","type":"uint32"},{"internalType":"uint32","name":"endTime","type":"uint32"}],"internalType":"struct AmplificationState","name":"amplificationState","type":"tuple"},{"internalType":"uint256","name":"precision","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getCurrentLiveBalances","outputs":[{"internalType":"uint256[]","name":"balancesLiveScaled18","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getMaximumInvariantRatio","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"getMaximumSwapFeePercentage","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"getMinimumInvariantRatio","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"getMinimumSwapFeePercentage","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"getRate","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getStablePoolDynamicData","outputs":[{"components":[{"internalType":"uint256[]","name":"balancesLiveScaled18","type":"uint256[]"},{"internalType":"uint256[]","name":"tokenRates","type":"uint256[]"},{"internalType":"uint256","name":"staticSwapFeePercentage","type":"uint256"},{"internalType":"uint256","name":"totalSupply","type":"uint256"},{"internalType":"uint256","name":"bptRate","type":"uint256"},{"internalType":"uint256","name":"amplificationParameter","type":"uint256"},{"internalType":"uint256","name":"startValue","type":"uint256"},{"internalType":"uint256","name":"endValue","type":"uint256"},{"internalType":"uint32","name":"startTime","type":"uint32"},{"internalType":"uint32","name":"endTime","type":"uint32"},{"internalType":"bool","name":"isAmpUpdating","type":"bool"},{"internalType":"bool","name":"isPoolInitialized","type":"bool"},{"internalType":"bool","name":"isPoolPaused","type":"bool"},{"internalType":"bool","name":"isPoolInRecoveryMode","type":"bool"}],"internalType":"struct StablePoolDynamicData","name":"data","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getStablePoolImmutableData","outputs":[{"components":[{"internalType":"contract IERC20[]","name":"tokens","type":"address[]"},{"internalType":"uint256[]","name":"decimalScalingFactors","type":"uint256[]"},{"internalType":"uint256","name":"amplificationParameterPrecision","type":"uint256"}],"internalType":"struct StablePoolImmutableData","name":"data","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getStaticSwapFeePercentage","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getTokenInfo","outputs":[{"internalType":"contract IERC20[]","name":"tokens","type":"address[]"},{"components":[{"internalType":"enum TokenType","name":"tokenType","type":"uint8"},{"internalType":"contract IRateProvider","name":"rateProvider","type":"address"},{"internalType":"bool","name":"paysYieldFees","type":"bool"}],"internalType":"struct TokenInfo[]","name":"tokenInfo","type":"tuple[]"},{"internalType":"uint256[]","name":"balancesRaw","type":"uint256[]"},{"internalType":"uint256[]","name":"lastBalancesLiveScaled18","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getTokens","outputs":[{"internalType":"contract IERC20[]","name":"tokens","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getVault","outputs":[{"internalType":"contract IVault","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"incrementNonce","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"enum SwapKind","name":"kind","type":"uint8"},{"internalType":"uint256","name":"amountGivenScaled18","type":"uint256"},{"internalType":"uint256[]","name":"balancesScaled18","type":"uint256[]"},{"internalType":"uint256","name":"indexIn","type":"uint256"},{"internalType":"uint256","name":"indexOut","type":"uint256"},{"internalType":"address","name":"router","type":"address"},{"internalType":"bytes","name":"userData","type":"bytes"}],"internalType":"struct PoolSwapParams","name":"request","type":"tuple"}],"name":"onSwap","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"permit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"rawEndValue","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"}],"name":"startAmplificationParameterUpdate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"stopAmplificationParameterUpdate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"version","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"}]
Contract Creation Code
6101e0806040523461082a576143e3803803809161001d828561082e565b8339810160408282031261082a5781516001600160401b03811161082a57820190608092838383031261082a57604051918483016001600160401b038111848210176106035760405283516001600160401b03811161082a5781610082918601610851565b835260208401516001600160401b03811161082a57816100a3918601610851565b60208401908152604080860151908501526060850151909490916001600160401b03831161082a576020926100d89201610851565b60608401819052910151916001600160a01b038316830361082a578051935160408051959086016001600160401b03811187821017610603576040526001865260208601603160f81b815261012c826108a6565b6101205261013987610a29565b6101405281516020830120968760e05251902095610100968088524660a0526040519060208201927f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f84526040830152606082015246898201523060a082015260a0815260c0810181811060018060401b038211176106035760405251902087523060c0526101608590528051906001600160401b0382116106035760035490600182811c92168015610820575b60208310146105e55781601f8493116107b2575b50602090601f831160011461072a575f9261071f575b50508160011b915f199060031b1c1916176003555b8051906001600160401b0382116106035760045490600182811c92168015610715575b60208310146105e55781601f8493116106aa575b50602090601f8311600114610622575f92610617575b50508160011b915f199060031b1c1916176004555b610180903382526101a0928484526101c0948552805160018060401b03811161060357600591825490600182811c921680156105f9575b60208310146105e55781601f849311610597575b50602090601f8311600114610533575f92610528575b50508160011b915f199060031b1c19161790555b60016040820151106105195761138860408201511161050a57604001516103e8908181029181830414901517156104f6576001600160401b0381116104df57600654906001600160401b03811663ffffffff42116104c7574280891b63ffffffff60801b16604093841b6fffffffffffffffff0000000000000000166001600160c01b03199095168317949094179390931760a09390931b63ffffffff60a01b1692909217600655519081527fa0d01593e47e69d07e0ccd87bece09411e07dd1ed40ca8f2e7af2976542a023390602090a1604051936138839586610b60873951856132b8015260a05185613384015260c05185613289015260e051856133070152518461332d0152610120518461146d015261014051846114960152610160518481816102d90152818161045b0152818161068f015281816109090152818161098401528181610a0301528181610afc01528181611187015281816113e1015281816117fb0152818161194601528181611ddc015281816120c40152818161231401528181612766015281816129c20152612fa301525183612c6b015251826130690152518181816107e001528181610d5b01528181610e1f0152818161108201526115ab0152f35b6306dfcc6560e41b5f5260206004524260245260445ffd5b6306dfcc6560e41b5f52604060045260245260445ffd5b634e487b7160e01b5f52601160045260245ffd5b6309b80d3960e41b5f5260045ffd5b63ab92332360e01b5f5260045ffd5b015190505f806102e9565b5f858152602081209350601f198516905b81811061057f5750908460019594939210610567575b505050811b0190556102fd565b01515f1960f88460031b161c191690555f808061055a565b92936020600181928786015181550195019301610544565b909150835f5260205f20601f8401851c810191602085106105db575b90601f8594939201861c01905b8181106105cd57506102d3565b5f81558493506001016105c0565b90915081906105b3565b634e487b7160e01b5f52602260045260245ffd5b91607f16916102bf565b634e487b7160e01b5f52604160045260245ffd5b015190505f80610273565b60045f90815293507f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b91905b601f198416851061068f576001945083601f19811610610677575b505050811b01600455610288565b01515f1960f88460031b161c191690555f8080610669565b8181015183556020948501946001909301929091019061064e565b60045f529091507f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b601f840160051c81016020851061070e575b90849392915b601f830160051c8201811061070057505061025d565b5f81558594506001016106ea565b50806106e4565b91607f1691610249565b015190505f80610211565b60035f90815293507fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b91905b601f1984168510610797576001945083601f1981161061077f575b505050811b01600355610226565b01515f1960f88460031b161c191690555f8080610771565b81810151835560209485019460019093019290910190610756565b60035f529091507fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b601f840160051c81019160208510610816575b90601f859493920160051c01905b81811061080857506101fb565b5f81558493506001016107fb565b90915081906107ed565b91607f16916101e7565b5f80fd5b601f909101601f19168101906001600160401b0382119082101761060357604052565b81601f8201121561082a578051906001600160401b0382116106035760405192610885601f8401601f19166020018561082e565b8284526020838301011161082a57815f9260208093018386015e8301015290565b80516020908181101561091c5750601f8251116108de57808251920151908083106108d057501790565b825f19910360031b1b161790565b60448260405192839163305a27a960e01b83528160048401528051918291826024860152018484015e5f828201840152601f01601f19168101030190fd5b906001600160401b038211610603575f54926001938481811c91168015610a1f575b838210146105e557601f81116109ec575b5081601f841160011461098a57509282939183925f9461097f575b50501b915f199060031b1c1916175f5560ff90565b015192505f8061096a565b919083601f1981165f8052845f20945f905b888383106109d257505050106109ba575b505050811b015f5560ff90565b01515f1960f88460031b161c191690555f80806109ad565b85870151885590960195948501948793509081019061099c565b5f805284601f845f20920160051c820191601f860160051c015b828110610a1457505061094f565b5f8155018590610a06565b90607f169061093e565b805160209081811015610a535750601f8251116108de57808251920151908083106108d057501790565b9192916001600160401b0381116106035760019182548381811c91168015610b55575b828210146105e557601f8111610b22575b5080601f8311600114610ac25750819293945f92610ab7575b50505f19600383901b1c191690821b17905560ff90565b015190505f80610aa0565b90601f19831695845f52825f20925f905b888210610b0b5750508385969710610af3575b505050811b01905560ff90565b01515f1960f88460031b161c191690555f8080610ae6565b808785968294968601518155019501930190610ad3565b835f5283601f835f20920160051c820191601f850160051c015b828110610b4a575050610a87565b5f8155018490610b3c565b90607f1690610a7656fe6080806040526004361015610012575f80fd5b5f905f3560e01c90816301ffc9a7146123f45750806306fdde031461234b578063095ea7b31461227d57806316a0b3e0146121cb57806318160ddd146121b157806321da5e191461213257806323b872dd1461205357806323de665114611ff2578063273c1adf14611fd05780632f1a0bc914611c2d57806330adf81f14611bf2578063313ce56714611bd65780633644e51514611bbb57806354fd4d5014611b115780635687f2b814611aae5780635c1e6259146118f9578063627cdcb9146118d0578063654cf15d146118ad578063679aefce146118925780636daccffa1461186057806370a082311461178c57806372c98186146116565780637ecebe001461161157806381fa807c1461154e57806384b0196e14611457578063851c1bb3146114055780638d928af8146113b457806395d89b41146112b7578063984de9e8146111f8578063a9059cbb146110ef578063aa6ca80814611029578063abb1dc4414610dc4578063b156aa0a14610d02578063b677fa5614610cdf578063cbd4e28014610839578063ce20ece714610819578063d335b0cf14610785578063d505accf146104d8578063dd62ed3e146103dc5763eb0f24d6146101d6575f80fd5b346103a257806003193601126103a2576101ee612ff7565b6101f6612d0f565b156103b457807fa0d01593e47e69d07e0ccd87bece09411e07dd1ed40ca8f2e7af2976542a0233602061022985946131ec565b60065467ffffffffffffffff82169173ffffffff0000000000000000000000000000000061025642613231565b916fffffffffffffffff0000000000000000857fffffffffffffffff00000000000000000000000000000000000000000000000077ffffffff00000000000000000000000000000000000000008660a01b169616179160401b16179160801b161717600655604051908152a173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000166040519160208301526020825261030f82612513565b803b156103b05761038183929183926040519485809481937fc80882470000000000000000000000000000000000000000000000000000000083527f416d7055706461746553746f7070656400000000000000000000000000000000600484015260406024840152604483019061245c565b03925af180156103a5576103925750f35b61039b906124e3565b6103a25780f35b80fd5b6040513d84823e3d90fd5b5050fd5b6004827f4673a675000000000000000000000000000000000000000000000000000000008152fd5b50346103a25760406003193601126103a2576103f6612481565b9060206104016124a4565b92606473ffffffffffffffffffffffffffffffffffffffff91828060405197889586947f927da1050000000000000000000000000000000000000000000000000000000086523060048701521660248501521660448301527f0000000000000000000000000000000000000000000000000000000000000000165afa9081156104cc5790610495575b602090604051908152f35b506020813d6020116104c4575b816104af6020938361252f565b810103126104c0576020905161048a565b5f80fd5b3d91506104a2565b604051903d90823e3d90fd5b50346103a25760e06003193601126103a2576104f2612481565b6104fa6124a4565b90604435916064359160843560ff8116810361078157834211610755576105488273ffffffffffffffffffffffffffffffffffffffff165f52600260205260405f2080549060018201905590565b9060405160208101917f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9835273ffffffffffffffffffffffffffffffffffffffff9687861694856040850152888816606085015289608085015260a084015260c083015260c0825260e082019082821067ffffffffffffffff83111761072857879361062b93610622936040525190206105e0613272565b90604051917f190100000000000000000000000000000000000000000000000000000000000083526002830152602282015260c43591604260a4359220613713565b909291926137a2565b168181036106fa576040517fe1f21c6700000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff848116600483015285166024820152604481018790528790602081606481857f00000000000000000000000000000000000000000000000000000000000000008c165af180156103a5576106c0575080f35b6020813d6020116106f2575b816106d96020938361252f565b810103126106ee576106ea90612710565b5080f35b5080fd5b3d91506106cc565b7f4b800e46000000000000000000000000000000000000000000000000000000008752600452602452604485fd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b602486857f62791302000000000000000000000000000000000000000000000000000000008252600452fd5b8580fd5b50346103a257806003193601126103a257604051907fb45090f900000000000000000000000000000000000000000000000000000000825230600483015260208260248173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000165afa9081156104cc579061049557602090604051908152f35b50346103a257806003193601126103a257602060405164e8d4a510008152f35b50346103a257806003193601126103a2576040516101c0810181811067ffffffffffffffff8211176107285760405260608152606060208201528160408201528160608201528160808201528160a08201528160c08201528160e08201528161010082015281610120820152816101408201528161016082015281610180820152816101a08201526040517f535cfd8a000000000000000000000000000000000000000000000000000000008152306004820152828160248173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000165afa908115610c5c578391610cbd575b5081526040517f7e361bde000000000000000000000000000000000000000000000000000000008152306004820152828160248173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000165afa908115610c5c578391610c99575b5060208201526040517fb45090f900000000000000000000000000000000000000000000000000000000815230600482015260208160248173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000165afa908115610c5c578391610c67575b506040820152610a4161271d565b6060820152610a4e612979565b6080820152610a5b612d0f565b151561014083015260a082015263ffffffff6060610a776127c8565b67ffffffffffffffff81511660c085015267ffffffffffffffff60208201511660e0850152826040820151166101008501520151166101208201526040517ff29486a10000000000000000000000000000000000000000000000000000000081523060048201526101a08160248173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000165afa908115610c5c57610120929391610c2b575b5060e081015115156101608401526101008101511515610180840152015115156101a08201526040518091602082526101a0610b93610b7d83516101c060208701526101e086019061260c565b6020840151601f1986830301604087015261260c565b916040810151606085015260608101516080850152608081015160a085015260a081015160c085015260c081015160e085015260e081015161010085015263ffffffff6101008201511661012085015263ffffffff6101208201511661014085015261014081015115156101608501526101608101511515610180850152610180810151151582850152015115156101c08301520390f35b610c4f91506101a03d6101a011610c55575b610c47818361252f565b810190612b25565b5f610b30565b503d610c3d565b6040513d85823e3d90fd5b90506020813d602011610c91575b81610c826020938361252f565b810103126104c057515f610a33565b3d9150610c75565b610cb591503d8085833e610cad818361252f565b810190612935565b90505f6109b4565b610cd991503d8085833e610cd1818361252f565b810190612cb2565b5f610939565b50346103a257806003193601126103a2576020604051670853a0d2313c00008152f35b50346103a257806003193601126103a2576040517f535cfd8a000000000000000000000000000000000000000000000000000000008152306004820152818160248173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000165afa9081156103a55782610da59392610da9575b505060405191829160208352602083019061260c565b0390f35b610dbd92503d8091833e610cd1818361252f565b5f80610d8f565b50346103a257806003193601126103a25773ffffffffffffffffffffffffffffffffffffffff906040517f67e0e0760000000000000000000000000000000000000000000000000000000081523060048201528181602481867f0000000000000000000000000000000000000000000000000000000000000000165afa9081156103a55782809481928294610eec575b50610e6a6040519560808752608087019061263f565b9060209086830382880152818089519485815201980193905b838210610eb0578780610da589610ea28d8b858203604087015261260c565b90838203606085015261260c565b909192939783606060019260408c518051610eca81612688565b8352808501518716858401520151151560408201520199019493920190610e83565b955092509250503d8083853e610f02818561252f565b83016080848203126110255783519267ffffffffffffffff938481116106ee5782610f2e91870161282d565b9160209485870151818111610fc657870182601f82011215610fc657805190610f5682612552565b97610f64604051998a61252f565b82895280890181606080950284010192868411611021578201905b838210610fca5750505050506040870151818111610fc65782610fa39189016128d4565b966060810151918211610fc657610fbb9291016128d4565b91939491925f610e54565b8380fd5b848288031261102157604051610fdf816124f7565b8251600281101561101d578152838301518b8116810361101d57848201528591849161100d60408601612710565b6040820152815201910190610f7f565b8980fd5b8780fd5b8280fd5b50346103a257806003193601126103a2576040517fca4f2803000000000000000000000000000000000000000000000000000000008152306004820152818160248173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000165afa9081156103a55782610da593926110cc575b505060405191829160208352602083019061263f565b6110e892503d8091833e6110e0818361252f565b8101906128ab565b5f806110b6565b50346103a25760406003193601126103a25761116d602061110e612481565b6040517fbeabacc800000000000000000000000000000000000000000000000000000000815233600482015273ffffffffffffffffffffffffffffffffffffffff90911660248083019190915235604482015291829081906064820190565b03818573ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000165af180156103a5576111bf575b602060405160018152f35b6020813d6020116111f0575b816111d86020938361252f565b810103126106ee576111ea9150612710565b5f6111b4565b3d91506111cb565b50346103a25760406003193601126103a25760043567ffffffffffffffff81116106ee5761122a90369060040161256a565b6024359160028310156103a2575061124a90611244612d0f565b506133aa565b908161125c575b602082604051908152f35b80611268600192612688565b03611277576020905b90611251565b6001810180911161128a57602090611271565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b50346103a257806003193601126103a2576040516004545f826112d9836126bf565b91828252602093600190856001821691825f1461137657505060011461131b575b506113079250038361252f565b610da560405192828493845283019061245c565b84915060045f527f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b905f915b85831061135e5750506113079350820101856112fa565b80548389018501528794508693909201918101611347565b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00168582015261130795151560051b85010192508791506112fa9050565b50346103a257806003193601126103a257602060405173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000168152f35b50346103a25760206003193601126103a257600435907fffffffff00000000000000000000000000000000000000000000000000000000821682036103a257602061144f83612c40565b604051908152f35b50346103a257806003193601126103a2576114917f0000000000000000000000000000000000000000000000000000000000000000613523565b6114ba7f0000000000000000000000000000000000000000000000000000000000000000613655565b60405192602084019380851067ffffffffffffffff8611176107285761152f610da593611521966040528383526040519687967f0f00000000000000000000000000000000000000000000000000000000000000885260e0602089015260e088019061245c565b90868203604088015261245c565b9146606086015230608086015260a085015283820360c085015261260c565b50346103a257806003193601126103a2576040517ff29486a10000000000000000000000000000000000000000000000000000000081523060048201526101a090818160248173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000165afa918215610c5c57604093926115f4575b505060608282015191015182519182526020820152f35b61160a9250803d10610c5557610c47818361252f565b5f806115dd565b50346103a25760206003193601126103a257604060209173ffffffffffffffffffffffffffffffffffffffff611645612481565b168152600283522054604051908152f35b50346103a25760206003198181360112611025576004359067ffffffffffffffff908183116117885760e0908336030112610fc6576040519160e083018381108382111761072857604052806004013560028110156107815783526024810135848401526044810135828111610781576116d6906004369184010161256a565b6040840152606481013560608401526084810135608084015260a481013573ffffffffffffffffffffffffffffffffffffffff811681036104c05760a084015260c48101359082821161078157019036602383011215611788576004820135908111610728576040519161175385601f19601f850116018461252f565b8183523660248383010111610781579381819692602461144f9701838601378301015260c0820152611783612f8c565b6129f5565b8480fd5b50346103a257602090816003193601126103a2576044826117ab612481565b6040517ff7888aec00000000000000000000000000000000000000000000000000000000815230600482015273ffffffffffffffffffffffffffffffffffffffff918216602482015292839182907f0000000000000000000000000000000000000000000000000000000000000000165afa9182156104cc5791611833575b50604051908152f35b90508181813d8311611859575b61184a818361252f565b810103126104c057515f61182a565b503d611840565b50346103a257806003193601126103a257606061187b612d0f565b604051918252151560208201526103e86040820152f35b50346103a257806003193601126103a257602061144f612979565b50346103a257806003193601126103a257602060405167016345785d8a00008152f35b50346103a257806003193601126103a257335f9081526002602052604090208054600101905580f35b50346103a257806003193601126103a25760405190611917826124f7565b6060825260209182810160608152604082019183835273ffffffffffffffffffffffffffffffffffffffff94857f0000000000000000000000000000000000000000000000000000000000000000166040517fca4f28030000000000000000000000000000000000000000000000000000000081523060048201528681602481855afa908115611aa3579187916024938391611a89575b508552604051928380927f7e361bde0000000000000000000000000000000000000000000000000000000082523060048301525afa908115611a7e578691611a65575b508395929195526103e88452604051948086526080860191519660608288015287518093528160a08801980193905b838210611a4c57878088611a418c8a51601f1985830301604086015261260c565b905160608301520390f35b8451811689529782019793820193600190910190611a20565b611a7991503d8088833e610cad818361252f565b6119f1565b6040513d88823e3d90fd5b611a9d91503d8085833e6110e0818361252f565b5f6119ae565b6040513d89823e3d90fd5b50346103a25760207f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925611ae0366125ca565b92919390611aec612f8c565b73ffffffffffffffffffffffffffffffffffffffff809160405195865216941692a380f35b50346103a257806003193601126103a2576040516005545f82611b33836126bf565b91828252602093600190856001821691825f14611376575050600114611b6057506113079250038361252f565b84915060055f527f036b6384b5eca791c62761152d0c79bb0604c104a5fb6f4eb0703f3154bb3db0905f915b858310611ba35750506113079350820101856112fa565b80548389018501528794508693909201918101611b8c565b50346103a257806003193601126103a257602061144f613272565b50346103a257806003193601126103a257602060405160128152f35b50346103a257806003193601126103a25760206040517f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c98152f35b50346104c05760406003193601126104c057600435602435611c4d612ff7565b60018210611fa8576113888211611f8057611c68428261280d565b62015180808210611f5857611c7b612d0f565b929092611f30576103e89485810295818704148115171561128a5783861115611f0a576305265c000291858304148515171561128a57600291611cc1611cc7928561281a565b9061318f565b11611ee257611cd8611cde916131ec565b926131ec565b611cf0611cea42613231565b92613231565b67ffffffffffffffff809416916006548582169473ffffffff0000000000000000000000000000000063ffffffff936fffffffffffffffff0000000000000000877fffffffffffffffff00000000000000000000000000000000000000000000000077ffffffff0000000000000000000000000000000000000000888716988a169960a01b169616179160401b16179160801b1617176006557f1835882ee7a34ac194f717a35e09bb1d24c82a3b9d854ab6c9749525b714cdf26080604051858152866020820152836040820152846060820152a173ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000000000000000000000000000000000000000000016936040519360208501526040840152606083015260808201526080815260a0810192818410908411176107285782604052813b156104c0575f9183837fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6082947fc80882470000000000000000000000000000000000000000000000000000000084527f416d70557064617465537461727465640000000000000000000000000000000060a4820152604060c4820152611eb860e482018261245c565b0301925af18015611ed757611ecb575080f35b611ed591506124e3565b005b6040513d5f823e3d90fd5b7f1c708b92000000000000000000000000000000000000000000000000000000005f5260045ffd5b5081830291838304148315171561128a57600291611cc1611f2b928761281a565b611cc7565b7f2f301e7e000000000000000000000000000000000000000000000000000000005f5260045ffd5b7fcd6b022a000000000000000000000000000000000000000000000000000000005f5260045ffd5b7f9b80d390000000000000000000000000000000000000000000000000000000005f5260045ffd5b7fab923323000000000000000000000000000000000000000000000000000000005f5260045ffd5b346104c0575f6003193601126104c0576020604051674563918244f400008152f35b346104c05760207fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef612023366125ca565b9291939061202f612f8c565b73ffffffffffffffffffffffffffffffffffffffff809160405195865216941692a3005b346104c05760846020612065366125ca565b6040517f15dacbea00000000000000000000000000000000000000000000000000000000815233600482015273ffffffffffffffffffffffffffffffffffffffff93841660248201529183166044830152606482015292839182905f907f0000000000000000000000000000000000000000000000000000000000000000165af18015611ed7576120fb57602060405160018152f35b6020813d60201161212a575b816121146020938361252f565b810103126104c05761212590612710565b6111b4565b3d9150612107565b346104c0575f6003193601126104c0575f6060604051612151816124c7565b828152826020820152826040820152015260a061216c6127c8565b6040519067ffffffffffffffff8082511683526020820151166020830152606060408201519163ffffffff809316604085015201511660608201526103e86080820152f35b346104c0575f6003193601126104c057602061144f61271d565b346104c05760606003193601126104c05760043567ffffffffffffffff81116104c0576121fc90369060040161256a565b612204612d0f565b509061221281611244612d0f565b8061226b575b9060209261222c61144f936044359061281a565b91602435926001670de0b6b3a76400007fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff830104019015150291612dd7565b906001820180921161128a5790612218565b346104c05760406003193601126104c0576122fa602061229b612481565b6040517fe1f21c6700000000000000000000000000000000000000000000000000000000815233600482015273ffffffffffffffffffffffffffffffffffffffff90911660248083019190915235604482015291829081906064820190565b03815f73ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000165af18015611ed7576120fb57602060405160018152f35b346104c0575f6003193601126104c0576040516003545f8261236c836126bf565b91828252602093600190856001821691825f1461137657505060011461239957506113079250038361252f565b84915060035f527fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b905f915b8583106123dc5750506113079350820101856112fa565b805483890185015287945086939092019181016123c5565b346104c05760206003193601126104c057600435907fffffffff0000000000000000000000000000000000000000000000000000000082168092036104c0577f01ffc9a700000000000000000000000000000000000000000000000000000000602092148152f35b90601f19601f602080948051918291828752018686015e5f8582860101520116010190565b6004359073ffffffffffffffffffffffffffffffffffffffff821682036104c057565b6024359073ffffffffffffffffffffffffffffffffffffffff821682036104c057565b6080810190811067ffffffffffffffff82111761072857604052565b67ffffffffffffffff811161072857604052565b6060810190811067ffffffffffffffff82111761072857604052565b6040810190811067ffffffffffffffff82111761072857604052565b90601f601f19910116810190811067ffffffffffffffff82111761072857604052565b67ffffffffffffffff81116107285760051b60200190565b9080601f830112156104c057602090823561258481612552565b93612592604051958661252f565b81855260208086019260051b8201019283116104c057602001905b8282106125bb575050505090565b813581529083019083016125ad565b60031960609101126104c05773ffffffffffffffffffffffffffffffffffffffff9060043582811681036104c0579160243590811681036104c0579060443590565b9081518082526020808093019301915f5b82811061262b575050505090565b83518552938101939281019260010161261d565b9081518082526020808093019301915f5b82811061265e575050505090565b835173ffffffffffffffffffffffffffffffffffffffff1685529381019392810192600101612650565b6002111561269257565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602160045260245ffd5b90600182811c92168015612706575b60208310146126d957565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b91607f16916126ce565b519081151582036104c057565b6040517fe4dc2aa400000000000000000000000000000000000000000000000000000000815230600482015260208160248173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000165afa908115611ed7575f91612799575090565b90506020813d6020116127c0575b816127b46020938361252f565b810103126104c0575190565b3d91506127a7565b604051906127d5826124c7565b81606060065467ffffffffffffffff80821684528160401c16602084015263ffffffff90818160801c16604085015260a01c16910152565b9190820391821161128a57565b8181029291811591840414171561128a57565b9080601f830112156104c05781519060209161284881612552565b93612856604051958661252f565b81855260208086019260051b8201019283116104c057602001905b82821061287f575050505090565b815173ffffffffffffffffffffffffffffffffffffffff811681036104c0578152908301908301612871565b906020828203126104c057815167ffffffffffffffff81116104c0576128d1920161282d565b90565b9080601f830112156104c0578151906020916128ef81612552565b936128fd604051958661252f565b81855260208086019260051b8201019283116104c057602001905b828210612926575050505090565b81518152908301908301612918565b9190916040818403126104c05780519267ffffffffffffffff938481116104c057816129629184016128d4565b9360208301519081116104c0576128d192016128d4565b6040517f4f037ee700000000000000000000000000000000000000000000000000000000815230600482015260208160248173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000165afa908115611ed7575f91612799575090565b6040810190612a078251611244612d0f565b9081612b20575b612a16612d0f565b50918151612a2381612688565b612a2c81612688565b612ac657612a9391602091612a8d612a79612a99975193606081015193856080830151978893015199612a698b612a638985612dc3565b51612ca5565b612a738884612dc3565b52612dd7565b95612a848385612dc3565b51039183612dc3565b52612dc3565b5161280d565b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff810190811161128a5790565b612b0b91612b12945190612a8d612af760608301518095856020608087015196015199612a698b612a938985612dc3565b95612b028385612dc3565b51019183612dc3565b519061280d565b6001810180911161128a5790565b612a0e565b6101a0918190038281126104c05760405192610140928385019285841067ffffffffffffffff8511176107285760809084604052126104c057612b67836124c7565b612b7081612710565b8352612b7e60208201612710565b926101609384870152612b9360408301612710565b926101809384880152612ba860608401612710565b9087015285526080810151602086015260a0810151604086015260c0810151606086015260e081015164ffffffffff811681036104c05760808601526101008082015163ffffffff811681036104c057612c3994612c2f9160a0890152612c2361012097612c17898701612710565b60c08b01528501612710565b60e08901528301612710565b9086015201612710565b9082015290565b6040517fffffffff0000000000000000000000000000000000000000000000000000000060208201927f0000000000000000000000000000000000000000000000000000000000000000845216604082015260248152612c9f816124f7565b51902090565b9190820180921161128a57565b906020828203126104c057815167ffffffffffffffff81116104c0576128d192016128d4565b8115612ce2570490565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b612d176127c8565b67ffffffffffffffff80825116906020830151169163ffffffff60608160408401511692015116908142105f14612d81576001938380821115612d695782612d659403924203910302612cd8565b0191565b5081612d7c930391420390840302612cd8565b900391565b5050505f9091565b805115612d965760200190565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603260045260245ffd5b8051821015612d965760209160051b010190565b92919092612de78451809261281a565b90612df185612d89565b51612e0582612dff88612d89565b5161281a565b916001905b8588828410612f4a57612e26949350612b0b9250889150612dc3565b90612e31848061281a565b956103e8958688029088820488148915171561128a57612e5b612e6192611cc1612e68968961281a565b92612dc3565b519061281a565b9380840290848204148415171561128a57612e94612e9a92612e8e612ea4958894612cd8565b90612ca5565b95612ca5565b611cc18584612ca5565b5f5b60ff8110612ed6577fdcbda05c000000000000000000000000000000000000000000000000000000005f5260045ffd5b81612eea85612ee5838061281a565b612ca5565b908060011b908082046002149015171561128a57600191611cc186612f128a612f1795612ca5565b61280d565b928381811115612f3a57031115612f32576001905b01612ea6565b509250505090565b90031115612f3257600190612f2c565b612f8491612f6d84612f68879899612e6160019899612f7297612dc3565b61281a565b612cd8565b94612f7d858b612dc3565b5190612ca5565b920190612e0a565b73ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000163303612fcb57565b7f089676d5000000000000000000000000000000000000000000000000000000005f523360045260245ffd5b6130237fffffffff000000000000000000000000000000000000000000000000000000005f3516612c40565b73ffffffffffffffffffffffffffffffffffffffff6040517faaabadc50000000000000000000000000000000000000000000000000000000081526020928382600481867f0000000000000000000000000000000000000000000000000000000000000000165afa908115611ed75784925f92613153575b5060649060405194859384927f9be2a8840000000000000000000000000000000000000000000000000000000084526004840152336024840152306044840152165afa918215611ed7575f9261311d575b5050156130f557565b7f23dada53000000000000000000000000000000000000000000000000000000005f5260045ffd5b90809250813d831161314c575b613134818361252f565b810103126104c05761314590612710565b5f806130ec565b503d61312a565b8092508391933d8311613188575b61316b818361252f565b810103126104c057519082821682036104c057839190606461309b565b503d613161565b9080156131c4577fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8201046001019015150290565b7f0a0c22c7000000000000000000000000000000000000000000000000000000005f5260045ffd5b67ffffffffffffffff90818111613201571690565b7f6dfcc650000000000000000000000000000000000000000000000000000000005f52604060045260245260445ffd5b63ffffffff90818111613242571690565b7f6dfcc650000000000000000000000000000000000000000000000000000000005f52602060045260245260445ffd5b73ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000000000000000000000000000000000000000000016301480613381575b156132da577f000000000000000000000000000000000000000000000000000000000000000090565b60405160208101907f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f82527f000000000000000000000000000000000000000000000000000000000000000060408201527f000000000000000000000000000000000000000000000000000000000000000060608201524660808201523060a082015260a0815260c0810181811067ffffffffffffffff8211176107285760405251902090565b507f000000000000000000000000000000000000000000000000000000000000000046146132b1565b90915f9183515f5b81811061350b575083156135025792906133cd84839261281a565b915f907ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc18840196848811916001986001890194858a11965b60ff8210613435577f010ca320000000000000000000000000000000000000000000000000000000005f5260045ffd5b805f5b8d8d82106134d45750509081878661346c8f95612f688f9897612e8e839a6134646103e897889261281a565b04918961281a565b9161128a5761347c8c938861281a565b049161128a576134958f9392612e8e61349b948d61281a565b90612cd8565b9283818111156134c5570311156134b6578b905b0190613405565b50985050505050505050915090565b900311156134b6578b906134af565b909691939c926134e7856134f59261281a565b61349585612dff8b87612dc3565b96019b929095919b613438565b50509150505f90565b9361351c600191612f7d8789612dc3565b94016133b2565b60ff81146135775760ff811690601f821161354f576040519161354583612513565b8252602082015290565b7fb3512b0c000000000000000000000000000000000000000000000000000000005f5260045ffd5b506040515f815f5491613589836126bf565b8083529260209060019081811690811561361257506001146135b4575b50506128d19250038261252f565b9150925f80527f290decd9548b62a8d60345a988386fc84ba6bc95484008f6362f93160ef3e563935f925b8284106135fa57506128d19450505081016020015f806135a6565b855487850183015294850194869450928101926135df565b9050602093506128d19592507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0091501682840152151560051b8201015f806135a6565b60ff81146136775760ff811690601f821161354f576040519161354583612513565b506040515f8160019160015461368c816126bf565b808452936020916001811690811561361257506001146136b45750506128d19250038261252f565b91509260015f527fb10e2d527612073b26eecdfd717e6a320cf44b4afac2b0732d9fcbe2b7fa0cf6935f925b8284106136fb57506128d19450505081016020015f806135a6565b855487850183015294850194869450928101926136e0565b91907f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a08411613797579160209360809260ff5f9560405194855216868401526040830152606082015282805260015afa15611ed7575f5173ffffffffffffffffffffffffffffffffffffffff81161561378d57905f905f90565b505f906001905f90565b5050505f9160039190565b600481101561269257806137b4575050565b600181036137e4577ff645eedf000000000000000000000000000000000000000000000000000000005f5260045ffd5b6002810361381857507ffce698f7000000000000000000000000000000000000000000000000000000005f5260045260245ffd5b6003146138225750565b7fd78bce0c000000000000000000000000000000000000000000000000000000005f5260045260245ffdfea26469706673582212205f0545cd780f72372cb3a41777cfaea685cd547404869d46a606879390daf1da64736f6c634300081a00330000000000000000000000000000000000000000000000000000000000000040000000000000000000000000ba1333333333a1ba1108e8412f11850a5c319ba9000000000000000000000000000000000000000000000000000000000000008000000000000000000000000000000000000000000000000000000000000000c000000000000000000000000000000000000000000000000000000000000003e80000000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000001d444f204e4f5420555345202d204d6f636b20537461626c6520506f6f6c0000000000000000000000000000000000000000000000000000000000000000000004544553540000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000487b226e616d65223a22537461626c65506f6f6c222c2276657273696f6e223a312c226465706c6f796d656e74223a2232303234313230352d76332d737461626c652d706f6f6c227d000000000000000000000000000000000000000000000000
Deployed Bytecode
0x6080806040526004361015610012575f80fd5b5f905f3560e01c90816301ffc9a7146123f45750806306fdde031461234b578063095ea7b31461227d57806316a0b3e0146121cb57806318160ddd146121b157806321da5e191461213257806323b872dd1461205357806323de665114611ff2578063273c1adf14611fd05780632f1a0bc914611c2d57806330adf81f14611bf2578063313ce56714611bd65780633644e51514611bbb57806354fd4d5014611b115780635687f2b814611aae5780635c1e6259146118f9578063627cdcb9146118d0578063654cf15d146118ad578063679aefce146118925780636daccffa1461186057806370a082311461178c57806372c98186146116565780637ecebe001461161157806381fa807c1461154e57806384b0196e14611457578063851c1bb3146114055780638d928af8146113b457806395d89b41146112b7578063984de9e8146111f8578063a9059cbb146110ef578063aa6ca80814611029578063abb1dc4414610dc4578063b156aa0a14610d02578063b677fa5614610cdf578063cbd4e28014610839578063ce20ece714610819578063d335b0cf14610785578063d505accf146104d8578063dd62ed3e146103dc5763eb0f24d6146101d6575f80fd5b346103a257806003193601126103a2576101ee612ff7565b6101f6612d0f565b156103b457807fa0d01593e47e69d07e0ccd87bece09411e07dd1ed40ca8f2e7af2976542a0233602061022985946131ec565b60065467ffffffffffffffff82169173ffffffff0000000000000000000000000000000061025642613231565b916fffffffffffffffff0000000000000000857fffffffffffffffff00000000000000000000000000000000000000000000000077ffffffff00000000000000000000000000000000000000008660a01b169616179160401b16179160801b161717600655604051908152a173ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000ba1333333333a1ba1108e8412f11850a5c319ba9166040519160208301526020825261030f82612513565b803b156103b05761038183929183926040519485809481937fc80882470000000000000000000000000000000000000000000000000000000083527f416d7055706461746553746f7070656400000000000000000000000000000000600484015260406024840152604483019061245c565b03925af180156103a5576103925750f35b61039b906124e3565b6103a25780f35b80fd5b6040513d84823e3d90fd5b5050fd5b6004827f4673a675000000000000000000000000000000000000000000000000000000008152fd5b50346103a25760406003193601126103a2576103f6612481565b9060206104016124a4565b92606473ffffffffffffffffffffffffffffffffffffffff91828060405197889586947f927da1050000000000000000000000000000000000000000000000000000000086523060048701521660248501521660448301527f000000000000000000000000ba1333333333a1ba1108e8412f11850a5c319ba9165afa9081156104cc5790610495575b602090604051908152f35b506020813d6020116104c4575b816104af6020938361252f565b810103126104c0576020905161048a565b5f80fd5b3d91506104a2565b604051903d90823e3d90fd5b50346103a25760e06003193601126103a2576104f2612481565b6104fa6124a4565b90604435916064359160843560ff8116810361078157834211610755576105488273ffffffffffffffffffffffffffffffffffffffff165f52600260205260405f2080549060018201905590565b9060405160208101917f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9835273ffffffffffffffffffffffffffffffffffffffff9687861694856040850152888816606085015289608085015260a084015260c083015260c0825260e082019082821067ffffffffffffffff83111761072857879361062b93610622936040525190206105e0613272565b90604051917f190100000000000000000000000000000000000000000000000000000000000083526002830152602282015260c43591604260a4359220613713565b909291926137a2565b168181036106fa576040517fe1f21c6700000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff848116600483015285166024820152604481018790528790602081606481857f000000000000000000000000ba1333333333a1ba1108e8412f11850a5c319ba98c165af180156103a5576106c0575080f35b6020813d6020116106f2575b816106d96020938361252f565b810103126106ee576106ea90612710565b5080f35b5080fd5b3d91506106cc565b7f4b800e46000000000000000000000000000000000000000000000000000000008752600452602452604485fd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b602486857f62791302000000000000000000000000000000000000000000000000000000008252600452fd5b8580fd5b50346103a257806003193601126103a257604051907fb45090f900000000000000000000000000000000000000000000000000000000825230600483015260208260248173ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000ba1333333333a1ba1108e8412f11850a5c319ba9165afa9081156104cc579061049557602090604051908152f35b50346103a257806003193601126103a257602060405164e8d4a510008152f35b50346103a257806003193601126103a2576040516101c0810181811067ffffffffffffffff8211176107285760405260608152606060208201528160408201528160608201528160808201528160a08201528160c08201528160e08201528161010082015281610120820152816101408201528161016082015281610180820152816101a08201526040517f535cfd8a000000000000000000000000000000000000000000000000000000008152306004820152828160248173ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000ba1333333333a1ba1108e8412f11850a5c319ba9165afa908115610c5c578391610cbd575b5081526040517f7e361bde000000000000000000000000000000000000000000000000000000008152306004820152828160248173ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000ba1333333333a1ba1108e8412f11850a5c319ba9165afa908115610c5c578391610c99575b5060208201526040517fb45090f900000000000000000000000000000000000000000000000000000000815230600482015260208160248173ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000ba1333333333a1ba1108e8412f11850a5c319ba9165afa908115610c5c578391610c67575b506040820152610a4161271d565b6060820152610a4e612979565b6080820152610a5b612d0f565b151561014083015260a082015263ffffffff6060610a776127c8565b67ffffffffffffffff81511660c085015267ffffffffffffffff60208201511660e0850152826040820151166101008501520151166101208201526040517ff29486a10000000000000000000000000000000000000000000000000000000081523060048201526101a08160248173ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000ba1333333333a1ba1108e8412f11850a5c319ba9165afa908115610c5c57610120929391610c2b575b5060e081015115156101608401526101008101511515610180840152015115156101a08201526040518091602082526101a0610b93610b7d83516101c060208701526101e086019061260c565b6020840151601f1986830301604087015261260c565b916040810151606085015260608101516080850152608081015160a085015260a081015160c085015260c081015160e085015260e081015161010085015263ffffffff6101008201511661012085015263ffffffff6101208201511661014085015261014081015115156101608501526101608101511515610180850152610180810151151582850152015115156101c08301520390f35b610c4f91506101a03d6101a011610c55575b610c47818361252f565b810190612b25565b5f610b30565b503d610c3d565b6040513d85823e3d90fd5b90506020813d602011610c91575b81610c826020938361252f565b810103126104c057515f610a33565b3d9150610c75565b610cb591503d8085833e610cad818361252f565b810190612935565b90505f6109b4565b610cd991503d8085833e610cd1818361252f565b810190612cb2565b5f610939565b50346103a257806003193601126103a2576020604051670853a0d2313c00008152f35b50346103a257806003193601126103a2576040517f535cfd8a000000000000000000000000000000000000000000000000000000008152306004820152818160248173ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000ba1333333333a1ba1108e8412f11850a5c319ba9165afa9081156103a55782610da59392610da9575b505060405191829160208352602083019061260c565b0390f35b610dbd92503d8091833e610cd1818361252f565b5f80610d8f565b50346103a257806003193601126103a25773ffffffffffffffffffffffffffffffffffffffff906040517f67e0e0760000000000000000000000000000000000000000000000000000000081523060048201528181602481867f000000000000000000000000ba1333333333a1ba1108e8412f11850a5c319ba9165afa9081156103a55782809481928294610eec575b50610e6a6040519560808752608087019061263f565b9060209086830382880152818089519485815201980193905b838210610eb0578780610da589610ea28d8b858203604087015261260c565b90838203606085015261260c565b909192939783606060019260408c518051610eca81612688565b8352808501518716858401520151151560408201520199019493920190610e83565b955092509250503d8083853e610f02818561252f565b83016080848203126110255783519267ffffffffffffffff938481116106ee5782610f2e91870161282d565b9160209485870151818111610fc657870182601f82011215610fc657805190610f5682612552565b97610f64604051998a61252f565b82895280890181606080950284010192868411611021578201905b838210610fca5750505050506040870151818111610fc65782610fa39189016128d4565b966060810151918211610fc657610fbb9291016128d4565b91939491925f610e54565b8380fd5b848288031261102157604051610fdf816124f7565b8251600281101561101d578152838301518b8116810361101d57848201528591849161100d60408601612710565b6040820152815201910190610f7f565b8980fd5b8780fd5b8280fd5b50346103a257806003193601126103a2576040517fca4f2803000000000000000000000000000000000000000000000000000000008152306004820152818160248173ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000ba1333333333a1ba1108e8412f11850a5c319ba9165afa9081156103a55782610da593926110cc575b505060405191829160208352602083019061263f565b6110e892503d8091833e6110e0818361252f565b8101906128ab565b5f806110b6565b50346103a25760406003193601126103a25761116d602061110e612481565b6040517fbeabacc800000000000000000000000000000000000000000000000000000000815233600482015273ffffffffffffffffffffffffffffffffffffffff90911660248083019190915235604482015291829081906064820190565b03818573ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000ba1333333333a1ba1108e8412f11850a5c319ba9165af180156103a5576111bf575b602060405160018152f35b6020813d6020116111f0575b816111d86020938361252f565b810103126106ee576111ea9150612710565b5f6111b4565b3d91506111cb565b50346103a25760406003193601126103a25760043567ffffffffffffffff81116106ee5761122a90369060040161256a565b6024359160028310156103a2575061124a90611244612d0f565b506133aa565b908161125c575b602082604051908152f35b80611268600192612688565b03611277576020905b90611251565b6001810180911161128a57602090611271565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b50346103a257806003193601126103a2576040516004545f826112d9836126bf565b91828252602093600190856001821691825f1461137657505060011461131b575b506113079250038361252f565b610da560405192828493845283019061245c565b84915060045f527f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b905f915b85831061135e5750506113079350820101856112fa565b80548389018501528794508693909201918101611347565b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00168582015261130795151560051b85010192508791506112fa9050565b50346103a257806003193601126103a257602060405173ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000ba1333333333a1ba1108e8412f11850a5c319ba9168152f35b50346103a25760206003193601126103a257600435907fffffffff00000000000000000000000000000000000000000000000000000000821682036103a257602061144f83612c40565b604051908152f35b50346103a257806003193601126103a2576114917f444f204e4f5420555345202d204d6f636b20537461626c6520506f6f6c00001d613523565b6114ba7f3100000000000000000000000000000000000000000000000000000000000001613655565b60405192602084019380851067ffffffffffffffff8611176107285761152f610da593611521966040528383526040519687967f0f00000000000000000000000000000000000000000000000000000000000000885260e0602089015260e088019061245c565b90868203604088015261245c565b9146606086015230608086015260a085015283820360c085015261260c565b50346103a257806003193601126103a2576040517ff29486a10000000000000000000000000000000000000000000000000000000081523060048201526101a090818160248173ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000ba1333333333a1ba1108e8412f11850a5c319ba9165afa918215610c5c57604093926115f4575b505060608282015191015182519182526020820152f35b61160a9250803d10610c5557610c47818361252f565b5f806115dd565b50346103a25760206003193601126103a257604060209173ffffffffffffffffffffffffffffffffffffffff611645612481565b168152600283522054604051908152f35b50346103a25760206003198181360112611025576004359067ffffffffffffffff908183116117885760e0908336030112610fc6576040519160e083018381108382111761072857604052806004013560028110156107815783526024810135848401526044810135828111610781576116d6906004369184010161256a565b6040840152606481013560608401526084810135608084015260a481013573ffffffffffffffffffffffffffffffffffffffff811681036104c05760a084015260c48101359082821161078157019036602383011215611788576004820135908111610728576040519161175385601f19601f850116018461252f565b8183523660248383010111610781579381819692602461144f9701838601378301015260c0820152611783612f8c565b6129f5565b8480fd5b50346103a257602090816003193601126103a2576044826117ab612481565b6040517ff7888aec00000000000000000000000000000000000000000000000000000000815230600482015273ffffffffffffffffffffffffffffffffffffffff918216602482015292839182907f000000000000000000000000ba1333333333a1ba1108e8412f11850a5c319ba9165afa9182156104cc5791611833575b50604051908152f35b90508181813d8311611859575b61184a818361252f565b810103126104c057515f61182a565b503d611840565b50346103a257806003193601126103a257606061187b612d0f565b604051918252151560208201526103e86040820152f35b50346103a257806003193601126103a257602061144f612979565b50346103a257806003193601126103a257602060405167016345785d8a00008152f35b50346103a257806003193601126103a257335f9081526002602052604090208054600101905580f35b50346103a257806003193601126103a25760405190611917826124f7565b6060825260209182810160608152604082019183835273ffffffffffffffffffffffffffffffffffffffff94857f000000000000000000000000ba1333333333a1ba1108e8412f11850a5c319ba9166040517fca4f28030000000000000000000000000000000000000000000000000000000081523060048201528681602481855afa908115611aa3579187916024938391611a89575b508552604051928380927f7e361bde0000000000000000000000000000000000000000000000000000000082523060048301525afa908115611a7e578691611a65575b508395929195526103e88452604051948086526080860191519660608288015287518093528160a08801980193905b838210611a4c57878088611a418c8a51601f1985830301604086015261260c565b905160608301520390f35b8451811689529782019793820193600190910190611a20565b611a7991503d8088833e610cad818361252f565b6119f1565b6040513d88823e3d90fd5b611a9d91503d8085833e6110e0818361252f565b5f6119ae565b6040513d89823e3d90fd5b50346103a25760207f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925611ae0366125ca565b92919390611aec612f8c565b73ffffffffffffffffffffffffffffffffffffffff809160405195865216941692a380f35b50346103a257806003193601126103a2576040516005545f82611b33836126bf565b91828252602093600190856001821691825f14611376575050600114611b6057506113079250038361252f565b84915060055f527f036b6384b5eca791c62761152d0c79bb0604c104a5fb6f4eb0703f3154bb3db0905f915b858310611ba35750506113079350820101856112fa565b80548389018501528794508693909201918101611b8c565b50346103a257806003193601126103a257602061144f613272565b50346103a257806003193601126103a257602060405160128152f35b50346103a257806003193601126103a25760206040517f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c98152f35b50346104c05760406003193601126104c057600435602435611c4d612ff7565b60018210611fa8576113888211611f8057611c68428261280d565b62015180808210611f5857611c7b612d0f565b929092611f30576103e89485810295818704148115171561128a5783861115611f0a576305265c000291858304148515171561128a57600291611cc1611cc7928561281a565b9061318f565b11611ee257611cd8611cde916131ec565b926131ec565b611cf0611cea42613231565b92613231565b67ffffffffffffffff809416916006548582169473ffffffff0000000000000000000000000000000063ffffffff936fffffffffffffffff0000000000000000877fffffffffffffffff00000000000000000000000000000000000000000000000077ffffffff0000000000000000000000000000000000000000888716988a169960a01b169616179160401b16179160801b1617176006557f1835882ee7a34ac194f717a35e09bb1d24c82a3b9d854ab6c9749525b714cdf26080604051858152866020820152836040820152846060820152a173ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000ba1333333333a1ba1108e8412f11850a5c319ba916936040519360208501526040840152606083015260808201526080815260a0810192818410908411176107285782604052813b156104c0575f9183837fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6082947fc80882470000000000000000000000000000000000000000000000000000000084527f416d70557064617465537461727465640000000000000000000000000000000060a4820152604060c4820152611eb860e482018261245c565b0301925af18015611ed757611ecb575080f35b611ed591506124e3565b005b6040513d5f823e3d90fd5b7f1c708b92000000000000000000000000000000000000000000000000000000005f5260045ffd5b5081830291838304148315171561128a57600291611cc1611f2b928761281a565b611cc7565b7f2f301e7e000000000000000000000000000000000000000000000000000000005f5260045ffd5b7fcd6b022a000000000000000000000000000000000000000000000000000000005f5260045ffd5b7f9b80d390000000000000000000000000000000000000000000000000000000005f5260045ffd5b7fab923323000000000000000000000000000000000000000000000000000000005f5260045ffd5b346104c0575f6003193601126104c0576020604051674563918244f400008152f35b346104c05760207fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef612023366125ca565b9291939061202f612f8c565b73ffffffffffffffffffffffffffffffffffffffff809160405195865216941692a3005b346104c05760846020612065366125ca565b6040517f15dacbea00000000000000000000000000000000000000000000000000000000815233600482015273ffffffffffffffffffffffffffffffffffffffff93841660248201529183166044830152606482015292839182905f907f000000000000000000000000ba1333333333a1ba1108e8412f11850a5c319ba9165af18015611ed7576120fb57602060405160018152f35b6020813d60201161212a575b816121146020938361252f565b810103126104c05761212590612710565b6111b4565b3d9150612107565b346104c0575f6003193601126104c0575f6060604051612151816124c7565b828152826020820152826040820152015260a061216c6127c8565b6040519067ffffffffffffffff8082511683526020820151166020830152606060408201519163ffffffff809316604085015201511660608201526103e86080820152f35b346104c0575f6003193601126104c057602061144f61271d565b346104c05760606003193601126104c05760043567ffffffffffffffff81116104c0576121fc90369060040161256a565b612204612d0f565b509061221281611244612d0f565b8061226b575b9060209261222c61144f936044359061281a565b91602435926001670de0b6b3a76400007fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff830104019015150291612dd7565b906001820180921161128a5790612218565b346104c05760406003193601126104c0576122fa602061229b612481565b6040517fe1f21c6700000000000000000000000000000000000000000000000000000000815233600482015273ffffffffffffffffffffffffffffffffffffffff90911660248083019190915235604482015291829081906064820190565b03815f73ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000ba1333333333a1ba1108e8412f11850a5c319ba9165af18015611ed7576120fb57602060405160018152f35b346104c0575f6003193601126104c0576040516003545f8261236c836126bf565b91828252602093600190856001821691825f1461137657505060011461239957506113079250038361252f565b84915060035f527fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b905f915b8583106123dc5750506113079350820101856112fa565b805483890185015287945086939092019181016123c5565b346104c05760206003193601126104c057600435907fffffffff0000000000000000000000000000000000000000000000000000000082168092036104c0577f01ffc9a700000000000000000000000000000000000000000000000000000000602092148152f35b90601f19601f602080948051918291828752018686015e5f8582860101520116010190565b6004359073ffffffffffffffffffffffffffffffffffffffff821682036104c057565b6024359073ffffffffffffffffffffffffffffffffffffffff821682036104c057565b6080810190811067ffffffffffffffff82111761072857604052565b67ffffffffffffffff811161072857604052565b6060810190811067ffffffffffffffff82111761072857604052565b6040810190811067ffffffffffffffff82111761072857604052565b90601f601f19910116810190811067ffffffffffffffff82111761072857604052565b67ffffffffffffffff81116107285760051b60200190565b9080601f830112156104c057602090823561258481612552565b93612592604051958661252f565b81855260208086019260051b8201019283116104c057602001905b8282106125bb575050505090565b813581529083019083016125ad565b60031960609101126104c05773ffffffffffffffffffffffffffffffffffffffff9060043582811681036104c0579160243590811681036104c0579060443590565b9081518082526020808093019301915f5b82811061262b575050505090565b83518552938101939281019260010161261d565b9081518082526020808093019301915f5b82811061265e575050505090565b835173ffffffffffffffffffffffffffffffffffffffff1685529381019392810192600101612650565b6002111561269257565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602160045260245ffd5b90600182811c92168015612706575b60208310146126d957565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b91607f16916126ce565b519081151582036104c057565b6040517fe4dc2aa400000000000000000000000000000000000000000000000000000000815230600482015260208160248173ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000ba1333333333a1ba1108e8412f11850a5c319ba9165afa908115611ed7575f91612799575090565b90506020813d6020116127c0575b816127b46020938361252f565b810103126104c0575190565b3d91506127a7565b604051906127d5826124c7565b81606060065467ffffffffffffffff80821684528160401c16602084015263ffffffff90818160801c16604085015260a01c16910152565b9190820391821161128a57565b8181029291811591840414171561128a57565b9080601f830112156104c05781519060209161284881612552565b93612856604051958661252f565b81855260208086019260051b8201019283116104c057602001905b82821061287f575050505090565b815173ffffffffffffffffffffffffffffffffffffffff811681036104c0578152908301908301612871565b906020828203126104c057815167ffffffffffffffff81116104c0576128d1920161282d565b90565b9080601f830112156104c0578151906020916128ef81612552565b936128fd604051958661252f565b81855260208086019260051b8201019283116104c057602001905b828210612926575050505090565b81518152908301908301612918565b9190916040818403126104c05780519267ffffffffffffffff938481116104c057816129629184016128d4565b9360208301519081116104c0576128d192016128d4565b6040517f4f037ee700000000000000000000000000000000000000000000000000000000815230600482015260208160248173ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000ba1333333333a1ba1108e8412f11850a5c319ba9165afa908115611ed7575f91612799575090565b6040810190612a078251611244612d0f565b9081612b20575b612a16612d0f565b50918151612a2381612688565b612a2c81612688565b612ac657612a9391602091612a8d612a79612a99975193606081015193856080830151978893015199612a698b612a638985612dc3565b51612ca5565b612a738884612dc3565b52612dd7565b95612a848385612dc3565b51039183612dc3565b52612dc3565b5161280d565b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff810190811161128a5790565b612b0b91612b12945190612a8d612af760608301518095856020608087015196015199612a698b612a938985612dc3565b95612b028385612dc3565b51019183612dc3565b519061280d565b6001810180911161128a5790565b612a0e565b6101a0918190038281126104c05760405192610140928385019285841067ffffffffffffffff8511176107285760809084604052126104c057612b67836124c7565b612b7081612710565b8352612b7e60208201612710565b926101609384870152612b9360408301612710565b926101809384880152612ba860608401612710565b9087015285526080810151602086015260a0810151604086015260c0810151606086015260e081015164ffffffffff811681036104c05760808601526101008082015163ffffffff811681036104c057612c3994612c2f9160a0890152612c2361012097612c17898701612710565b60c08b01528501612710565b60e08901528301612710565b9086015201612710565b9082015290565b6040517fffffffff0000000000000000000000000000000000000000000000000000000060208201927f000000000000000000000000815ab57a5a2e4976cec0b43c2d50cf26ef6f31fd845216604082015260248152612c9f816124f7565b51902090565b9190820180921161128a57565b906020828203126104c057815167ffffffffffffffff81116104c0576128d192016128d4565b8115612ce2570490565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b612d176127c8565b67ffffffffffffffff80825116906020830151169163ffffffff60608160408401511692015116908142105f14612d81576001938380821115612d695782612d659403924203910302612cd8565b0191565b5081612d7c930391420390840302612cd8565b900391565b5050505f9091565b805115612d965760200190565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603260045260245ffd5b8051821015612d965760209160051b010190565b92919092612de78451809261281a565b90612df185612d89565b51612e0582612dff88612d89565b5161281a565b916001905b8588828410612f4a57612e26949350612b0b9250889150612dc3565b90612e31848061281a565b956103e8958688029088820488148915171561128a57612e5b612e6192611cc1612e68968961281a565b92612dc3565b519061281a565b9380840290848204148415171561128a57612e94612e9a92612e8e612ea4958894612cd8565b90612ca5565b95612ca5565b611cc18584612ca5565b5f5b60ff8110612ed6577fdcbda05c000000000000000000000000000000000000000000000000000000005f5260045ffd5b81612eea85612ee5838061281a565b612ca5565b908060011b908082046002149015171561128a57600191611cc186612f128a612f1795612ca5565b61280d565b928381811115612f3a57031115612f32576001905b01612ea6565b509250505090565b90031115612f3257600190612f2c565b612f8491612f6d84612f68879899612e6160019899612f7297612dc3565b61281a565b612cd8565b94612f7d858b612dc3565b5190612ca5565b920190612e0a565b73ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000ba1333333333a1ba1108e8412f11850a5c319ba9163303612fcb57565b7f089676d5000000000000000000000000000000000000000000000000000000005f523360045260245ffd5b6130237fffffffff000000000000000000000000000000000000000000000000000000005f3516612c40565b73ffffffffffffffffffffffffffffffffffffffff6040517faaabadc50000000000000000000000000000000000000000000000000000000081526020928382600481867f000000000000000000000000ba1333333333a1ba1108e8412f11850a5c319ba9165afa908115611ed75784925f92613153575b5060649060405194859384927f9be2a8840000000000000000000000000000000000000000000000000000000084526004840152336024840152306044840152165afa918215611ed7575f9261311d575b5050156130f557565b7f23dada53000000000000000000000000000000000000000000000000000000005f5260045ffd5b90809250813d831161314c575b613134818361252f565b810103126104c05761314590612710565b5f806130ec565b503d61312a565b8092508391933d8311613188575b61316b818361252f565b810103126104c057519082821682036104c057839190606461309b565b503d613161565b9080156131c4577fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8201046001019015150290565b7f0a0c22c7000000000000000000000000000000000000000000000000000000005f5260045ffd5b67ffffffffffffffff90818111613201571690565b7f6dfcc650000000000000000000000000000000000000000000000000000000005f52604060045260245260445ffd5b63ffffffff90818111613242571690565b7f6dfcc650000000000000000000000000000000000000000000000000000000005f52602060045260245260445ffd5b73ffffffffffffffffffffffffffffffffffffffff7f00000000000000000000000082f2d4c5beac74a1684c1792cab67b04c7e5f6f316301480613381575b156132da577febf8077253690e706b9c40d50ad78b52a27d59b485f8671116687f25ca4e8abf90565b60405160208101907f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f82527f258d18349b90bc8a209d5a888af0909ca318a23144a6ddf1681c9b4d99f36ec860408201527fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc660608201524660808201523060a082015260a0815260c0810181811067ffffffffffffffff8211176107285760405251902090565b507f000000000000000000000000000000000000000000000000000000000000009246146132b1565b90915f9183515f5b81811061350b575083156135025792906133cd84839261281a565b915f907ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc18840196848811916001986001890194858a11965b60ff8210613435577f010ca320000000000000000000000000000000000000000000000000000000005f5260045ffd5b805f5b8d8d82106134d45750509081878661346c8f95612f688f9897612e8e839a6134646103e897889261281a565b04918961281a565b9161128a5761347c8c938861281a565b049161128a576134958f9392612e8e61349b948d61281a565b90612cd8565b9283818111156134c5570311156134b6578b905b0190613405565b50985050505050505050915090565b900311156134b6578b906134af565b909691939c926134e7856134f59261281a565b61349585612dff8b87612dc3565b96019b929095919b613438565b50509150505f90565b9361351c600191612f7d8789612dc3565b94016133b2565b60ff81146135775760ff811690601f821161354f576040519161354583612513565b8252602082015290565b7fb3512b0c000000000000000000000000000000000000000000000000000000005f5260045ffd5b506040515f815f5491613589836126bf565b8083529260209060019081811690811561361257506001146135b4575b50506128d19250038261252f565b9150925f80527f290decd9548b62a8d60345a988386fc84ba6bc95484008f6362f93160ef3e563935f925b8284106135fa57506128d19450505081016020015f806135a6565b855487850183015294850194869450928101926135df565b9050602093506128d19592507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0091501682840152151560051b8201015f806135a6565b60ff81146136775760ff811690601f821161354f576040519161354583612513565b506040515f8160019160015461368c816126bf565b808452936020916001811690811561361257506001146136b45750506128d19250038261252f565b91509260015f527fb10e2d527612073b26eecdfd717e6a320cf44b4afac2b0732d9fcbe2b7fa0cf6935f925b8284106136fb57506128d19450505081016020015f806135a6565b855487850183015294850194869450928101926136e0565b91907f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a08411613797579160209360809260ff5f9560405194855216868401526040830152606082015282805260015afa15611ed7575f5173ffffffffffffffffffffffffffffffffffffffff81161561378d57905f905f90565b505f906001905f90565b5050505f9160039190565b600481101561269257806137b4575050565b600181036137e4577ff645eedf000000000000000000000000000000000000000000000000000000005f5260045ffd5b6002810361381857507ffce698f7000000000000000000000000000000000000000000000000000000005f5260045260245ffd5b6003146138225750565b7fd78bce0c000000000000000000000000000000000000000000000000000000005f5260045260245ffdfea26469706673582212205f0545cd780f72372cb3a41777cfaea685cd547404869d46a606879390daf1da64736f6c634300081a0033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
0000000000000000000000000000000000000000000000000000000000000040000000000000000000000000ba1333333333a1ba1108e8412f11850a5c319ba9000000000000000000000000000000000000000000000000000000000000008000000000000000000000000000000000000000000000000000000000000000c000000000000000000000000000000000000000000000000000000000000003e80000000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000001d444f204e4f5420555345202d204d6f636b20537461626c6520506f6f6c0000000000000000000000000000000000000000000000000000000000000000000004544553540000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000487b226e616d65223a22537461626c65506f6f6c222c2276657273696f6e223a312c226465706c6f796d656e74223a2232303234313230352d76332d737461626c652d706f6f6c227d000000000000000000000000000000000000000000000000
-----Decoded View---------------
Arg [0] : params (tuple): System.Collections.Generic.List`1[Nethereum.ABI.FunctionEncoding.ParameterOutput]
Arg [1] : vault (address): 0xbA1333333333a1BA1108E8412f11850A5C319bA9
-----Encoded View---------------
14 Constructor Arguments found :
Arg [0] : 0000000000000000000000000000000000000000000000000000000000000040
Arg [1] : 000000000000000000000000ba1333333333a1ba1108e8412f11850a5c319ba9
Arg [2] : 0000000000000000000000000000000000000000000000000000000000000080
Arg [3] : 00000000000000000000000000000000000000000000000000000000000000c0
Arg [4] : 00000000000000000000000000000000000000000000000000000000000003e8
Arg [5] : 0000000000000000000000000000000000000000000000000000000000000100
Arg [6] : 000000000000000000000000000000000000000000000000000000000000001d
Arg [7] : 444f204e4f5420555345202d204d6f636b20537461626c6520506f6f6c000000
Arg [8] : 0000000000000000000000000000000000000000000000000000000000000004
Arg [9] : 5445535400000000000000000000000000000000000000000000000000000000
Arg [10] : 0000000000000000000000000000000000000000000000000000000000000048
Arg [11] : 7b226e616d65223a22537461626c65506f6f6c222c2276657273696f6e223a31
Arg [12] : 2c226465706c6f796d656e74223a2232303234313230352d76332d737461626c
Arg [13] : 652d706f6f6c227d000000000000000000000000000000000000000000000000
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.