Contract

0xbA1333333333a1BA1108E8412f11850A5C319bA9
Transaction Hash
Method
Block
From
To

There are no matching entries

Please try again later

Latest 1 internal transaction

Parent Transaction Hash Block From To
3681352024-12-13 13:02:345 days ago1734094954  Contract Creation0 S
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
Vault

Compiler Version
v0.8.26+commit.8a97fa7a

Optimization Enabled:
Yes with 500 runs

Other Settings:
cancun EvmVersion
File 1 of 63 : Vault.sol
// SPDX-License-Identifier: GPL-3.0-or-later

pragma solidity ^0.8.24;

import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import { SafeCast } from "@openzeppelin/contracts/utils/math/SafeCast.sol";
import { IERC4626 } from "@openzeppelin/contracts/interfaces/IERC4626.sol";
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { Address } from "@openzeppelin/contracts/utils/Address.sol";
import { Proxy } from "@openzeppelin/contracts/proxy/Proxy.sol";

import { IProtocolFeeController } from "@balancer-labs/v3-interfaces/contracts/vault/IProtocolFeeController.sol";
import { IVaultExtension } from "@balancer-labs/v3-interfaces/contracts/vault/IVaultExtension.sol";
import { IPoolLiquidity } from "@balancer-labs/v3-interfaces/contracts/vault/IPoolLiquidity.sol";
import { IAuthorizer } from "@balancer-labs/v3-interfaces/contracts/vault/IAuthorizer.sol";
import { IVaultAdmin } from "@balancer-labs/v3-interfaces/contracts/vault/IVaultAdmin.sol";
import { IVaultMain } from "@balancer-labs/v3-interfaces/contracts/vault/IVaultMain.sol";
import { IBasePool } from "@balancer-labs/v3-interfaces/contracts/vault/IBasePool.sol";
import { IHooks } from "@balancer-labs/v3-interfaces/contracts/vault/IHooks.sol";
import "@balancer-labs/v3-interfaces/contracts/vault/VaultTypes.sol";

import { StorageSlotExtension } from "@balancer-labs/v3-solidity-utils/contracts/openzeppelin/StorageSlotExtension.sol";
import { PackedTokenBalance } from "@balancer-labs/v3-solidity-utils/contracts/helpers/PackedTokenBalance.sol";
import { ScalingHelpers } from "@balancer-labs/v3-solidity-utils/contracts/helpers/ScalingHelpers.sol";
import { CastingHelpers } from "@balancer-labs/v3-solidity-utils/contracts/helpers/CastingHelpers.sol";
import { BufferHelpers } from "@balancer-labs/v3-solidity-utils/contracts/helpers/BufferHelpers.sol";
import { InputHelpers } from "@balancer-labs/v3-solidity-utils/contracts/helpers/InputHelpers.sol";
import { FixedPoint } from "@balancer-labs/v3-solidity-utils/contracts/math/FixedPoint.sol";
import {
    TransientStorageHelpers
} from "@balancer-labs/v3-solidity-utils/contracts/helpers/TransientStorageHelpers.sol";

import { VaultStateLib, VaultStateBits } from "./lib/VaultStateLib.sol";
import { HooksConfigLib } from "./lib/HooksConfigLib.sol";
import { PoolConfigLib } from "./lib/PoolConfigLib.sol";
import { PoolDataLib } from "./lib/PoolDataLib.sol";
import { BasePoolMath } from "./BasePoolMath.sol";
import { VaultCommon } from "./VaultCommon.sol";

contract Vault is IVaultMain, VaultCommon, Proxy {
    using PackedTokenBalance for bytes32;
    using BufferHelpers for bytes32;
    using InputHelpers for uint256;
    using FixedPoint for *;
    using Address for *;
    using CastingHelpers for uint256[];
    using SafeCast for *;
    using SafeERC20 for IERC20;
    using PoolConfigLib for PoolConfigBits;
    using HooksConfigLib for PoolConfigBits;
    using VaultStateLib for VaultStateBits;
    using ScalingHelpers for *;
    using TransientStorageHelpers for *;
    using StorageSlotExtension for *;
    using PoolDataLib for PoolData;

    // Local reference to the Proxy pattern Vault extension contract.
    IVaultExtension private immutable _vaultExtension;

    constructor(IVaultExtension vaultExtension, IAuthorizer authorizer, IProtocolFeeController protocolFeeController) {
        if (address(vaultExtension.vault()) != address(this)) {
            revert WrongVaultExtensionDeployment();
        }

        if (address(protocolFeeController.vault()) != address(this)) {
            revert WrongProtocolFeeControllerDeployment();
        }

        _vaultExtension = vaultExtension;
        _protocolFeeController = protocolFeeController;

        _vaultPauseWindowEndTime = IVaultAdmin(address(vaultExtension)).getPauseWindowEndTime();
        _vaultBufferPeriodDuration = IVaultAdmin(address(vaultExtension)).getBufferPeriodDuration();
        _vaultBufferPeriodEndTime = IVaultAdmin(address(vaultExtension)).getBufferPeriodEndTime();

        _MINIMUM_TRADE_AMOUNT = IVaultAdmin(address(vaultExtension)).getMinimumTradeAmount();
        _MINIMUM_WRAP_AMOUNT = IVaultAdmin(address(vaultExtension)).getMinimumWrapAmount();

        _authorizer = authorizer;
    }

    /*******************************************************************************
                              Transient Accounting
    *******************************************************************************/

    /**
     * @dev This modifier is used for functions that temporarily modify the token deltas
     * of the Vault, but expect to revert or settle balances by the end of their execution.
     * It works by ensuring that the balances are properly settled by the time the last
     * operation is executed.
     *
     * This is useful for functions like `unlock`, which perform arbitrary external calls:
     * we can keep track of temporary deltas changes, and make sure they are settled by the
     * time the external call is complete.
     */
    modifier transient() {
        bool isUnlockedBefore = _isUnlocked().tload();

        if (isUnlockedBefore == false) {
            _isUnlocked().tstore(true);
        }

        // The caller does everything here and has to settle all outstanding balances.
        _;

        if (isUnlockedBefore == false) {
            if (_nonZeroDeltaCount().tload() != 0) {
                revert BalanceNotSettled();
            }

            _isUnlocked().tstore(false);

            // If a user adds liquidity to a pool, then does a proportional withdrawal from that pool during the same
            // interaction, the system charges a "round-trip" fee on the withdrawal. This fee makes it harder for an
            // user to add liquidity to a pool using a virtually infinite flash loan, swapping in the same pool in a way
            // that benefits him and removes liquidity in the same transaction, which is not a valid use case.
            //
            // Here we introduce the "session" concept, to prevent this fee from being charged accidentally. For
            // example, if an aggregator or account abstraction contract bundled several unrelated operations in the
            // same transaction that involved the same pool with different senders, the guardrail could be triggered
            // for a user doing a simple withdrawal. If proper limits were set, the whole transaction would revert,
            // and if they were not, the user would be unfairly "taxed."
            //
            // Defining an "interaction" this way - as a single `unlock` call vs. an entire transaction - prevents the
            // guardrail from being triggered in the cases described above.

            // Increase session counter after locking the Vault.
            _sessionIdSlot().tIncrement();
        }
    }

    /// @inheritdoc IVaultMain
    function unlock(bytes calldata data) external transient returns (bytes memory result) {
        return (msg.sender).functionCall(data);
    }

    /// @inheritdoc IVaultMain
    function settle(IERC20 token, uint256 amountHint) external nonReentrant onlyWhenUnlocked returns (uint256 credit) {
        uint256 reservesBefore = _reservesOf[token];
        uint256 currentReserves = token.balanceOf(address(this));
        _reservesOf[token] = currentReserves;
        credit = currentReserves - reservesBefore;

        // If the given hint is equal or greater to the reserve difference, we just take the actual reserve difference
        // as the paid amount; the actual balance of the tokens in the Vault is what matters here.
        if (credit > amountHint) {
            // If the difference in reserves is higher than the amount claimed to be paid by the caller, there was some
            // leftover that had been sent to the Vault beforehand, which was not incorporated into the reserves.
            // In that case, we simply discard the leftover by considering the given hint as the amount paid.
            // In turn, this gives the caller credit for the given amount hint, which is what the caller is expecting.
            credit = amountHint;
        }

        _supplyCredit(token, credit);
    }

    /// @inheritdoc IVaultMain
    function sendTo(IERC20 token, address to, uint256 amount) external nonReentrant onlyWhenUnlocked {
        _takeDebt(token, amount);
        _reservesOf[token] -= amount;

        token.safeTransfer(to, amount);
    }

    /*******************************************************************************
                                    Pool Operations
    *******************************************************************************/

    // The Vault performs all upscaling and downscaling (due to token decimals, rates, etc.), so that the pools
    // don't have to. However, scaling inevitably leads to rounding errors, so we take great care to ensure that
    // any rounding errors favor the Vault. An important invariant of the system is that there is no repeatable
    // path where tokensOut > tokensIn.
    //
    // In general, this means rounding up any values entering the Vault, and rounding down any values leaving
    // the Vault, so that external users either pay a little extra or receive a little less in the case of a
    // rounding error.
    //
    // However, it's not always straightforward to determine the correct rounding direction, given the presence
    // and complexity of intermediate steps. An "amountIn" sounds like it should be rounded up: but only if that
    // is the amount actually being transferred. If instead it is an amount sent to the pool math, where rounding
    // up would result in a *higher* calculated amount out, that would favor the user instead of the Vault. So in
    // that case, amountIn should be rounded down.
    //
    // See comments justifying the rounding direction in each case.
    //
    // This reasoning applies to Weighted Pool math, and is likely to apply to others as well, but of course
    // it's possible a new pool type might not conform. Duplicate the tests for new pool types (e.g., Stable Math).
    // Also, the final code should ensure that we are not relying entirely on the rounding directions here,
    // but have enough additional layers (e.g., minimum amounts, buffer wei on all transfers) to guarantee safety,
    // even if it turns out these directions are incorrect for a new pool type.

    /*******************************************************************************
                                          Swaps
    *******************************************************************************/

    /// @inheritdoc IVaultMain
    function swap(
        VaultSwapParams memory vaultSwapParams
    )
        external
        onlyWhenUnlocked
        withInitializedPool(vaultSwapParams.pool)
        returns (uint256 amountCalculated, uint256 amountIn, uint256 amountOut)
    {
        _ensureUnpaused(vaultSwapParams.pool);

        if (vaultSwapParams.amountGivenRaw == 0) {
            revert AmountGivenZero();
        }

        if (vaultSwapParams.tokenIn == vaultSwapParams.tokenOut) {
            revert CannotSwapSameToken();
        }

        // `_loadPoolDataUpdatingBalancesAndYieldFees` is non-reentrant, as it updates storage as well
        // as filling in poolData in memory. Since the swap hooks are reentrant and could do anything, including
        // change these balances, we cannot defer settlement until `_swap`.
        //
        // Sets all fields in `poolData`. Side effects: updates `_poolTokenBalances`, `_aggregateFeeAmounts`
        // in storage.
        PoolData memory poolData = _loadPoolDataUpdatingBalancesAndYieldFees(vaultSwapParams.pool, Rounding.ROUND_DOWN);
        SwapState memory swapState = _loadSwapState(vaultSwapParams, poolData);
        PoolSwapParams memory poolSwapParams = _buildPoolSwapParams(vaultSwapParams, swapState, poolData);

        if (poolData.poolConfigBits.shouldCallBeforeSwap()) {
            HooksConfigLib.callBeforeSwapHook(
                poolSwapParams,
                vaultSwapParams.pool,
                _hooksContracts[vaultSwapParams.pool]
            );

            // The call to `onBeforeSwap` could potentially update token rates and balances.
            // We update `poolData.tokenRates`, `poolData.rawBalances` and `poolData.balancesLiveScaled18`
            // to ensure the `onSwap` and `onComputeDynamicSwapFeePercentage` are called with the current values.
            poolData.reloadBalancesAndRates(_poolTokenBalances[vaultSwapParams.pool], Rounding.ROUND_DOWN);

            // Also update amountGivenScaled18, as it will now be used in the swap, and the rates might have changed.
            swapState.amountGivenScaled18 = _computeAmountGivenScaled18(vaultSwapParams, poolData, swapState);

            poolSwapParams = _buildPoolSwapParams(vaultSwapParams, swapState, poolData);
        }

        // Note that this must be called *after* the before hook, to guarantee that the swap params are the same
        // as those passed to the main operation.
        //
        // At this point, the static swap fee percentage is loaded in the `swapState` as the default, to be used
        // unless the pool has a dynamic swap fee. It is also passed into the hook, to support common cases
        // where the dynamic fee computation logic uses it.
        if (poolData.poolConfigBits.shouldCallComputeDynamicSwapFee()) {
            swapState.swapFeePercentage = HooksConfigLib.callComputeDynamicSwapFeeHook(
                poolSwapParams,
                vaultSwapParams.pool,
                swapState.swapFeePercentage,
                _hooksContracts[vaultSwapParams.pool]
            );
        }

        // Non-reentrant call that updates accounting.
        // The following side-effects are important to note:
        // PoolData balancesRaw and balancesLiveScaled18 are adjusted for swap amounts and fees inside of _swap.
        uint256 amountCalculatedScaled18;
        (amountCalculated, amountCalculatedScaled18, amountIn, amountOut) = _swap(
            vaultSwapParams,
            swapState,
            poolData,
            poolSwapParams
        );

        // The new amount calculated is 'amountCalculated + delta'. If the underlying hook fails, or limits are
        // violated, `onAfterSwap` will revert. Uses msg.sender as the Router (the contract that called the Vault).
        if (poolData.poolConfigBits.shouldCallAfterSwap()) {
            // `hooksContract` needed to fix stack too deep.
            IHooks hooksContract = _hooksContracts[vaultSwapParams.pool];

            amountCalculated = poolData.poolConfigBits.callAfterSwapHook(
                amountCalculatedScaled18,
                amountCalculated,
                msg.sender,
                vaultSwapParams,
                swapState,
                poolData,
                hooksContract
            );
        }

        if (vaultSwapParams.kind == SwapKind.EXACT_IN) {
            amountOut = amountCalculated;
        } else {
            amountIn = amountCalculated;
        }
    }

    function _loadSwapState(
        VaultSwapParams memory vaultSwapParams,
        PoolData memory poolData
    ) private pure returns (SwapState memory swapState) {
        swapState.indexIn = _findTokenIndex(poolData.tokens, vaultSwapParams.tokenIn);
        swapState.indexOut = _findTokenIndex(poolData.tokens, vaultSwapParams.tokenOut);

        swapState.amountGivenScaled18 = _computeAmountGivenScaled18(vaultSwapParams, poolData, swapState);
        swapState.swapFeePercentage = poolData.poolConfigBits.getStaticSwapFeePercentage();
    }

    function _buildPoolSwapParams(
        VaultSwapParams memory vaultSwapParams,
        SwapState memory swapState,
        PoolData memory poolData
    ) internal view returns (PoolSwapParams memory) {
        // Uses msg.sender as the Router (the contract that called the Vault).
        return
            PoolSwapParams({
                kind: vaultSwapParams.kind,
                amountGivenScaled18: swapState.amountGivenScaled18,
                balancesScaled18: poolData.balancesLiveScaled18,
                indexIn: swapState.indexIn,
                indexOut: swapState.indexOut,
                router: msg.sender,
                userData: vaultSwapParams.userData
            });
    }

    /**
     * @dev Preconditions: decimalScalingFactors and tokenRates in `poolData` must be current.
     * Uses amountGivenRaw and kind from `vaultSwapParams`.
     */
    function _computeAmountGivenScaled18(
        VaultSwapParams memory vaultSwapParams,
        PoolData memory poolData,
        SwapState memory swapState
    ) private pure returns (uint256) {
        // If the amountGiven is entering the pool math (ExactIn), round down, since a lower apparent amountIn leads
        // to a lower calculated amountOut, favoring the pool.
        return
            vaultSwapParams.kind == SwapKind.EXACT_IN
                ? vaultSwapParams.amountGivenRaw.toScaled18ApplyRateRoundDown(
                    poolData.decimalScalingFactors[swapState.indexIn],
                    poolData.tokenRates[swapState.indexIn]
                )
                : vaultSwapParams.amountGivenRaw.toScaled18ApplyRateRoundUp(
                    poolData.decimalScalingFactors[swapState.indexOut],
                    // If the swap is ExactOut, the amountGiven is the amount of tokenOut. So, we want to use the rate
                    // rounded up to calculate the amountGivenScaled18, because if this value is bigger, the
                    // amountCalculatedRaw will be bigger, implying that the user will pay for any rounding
                    // inconsistency, and not the Vault.
                    poolData.tokenRates[swapState.indexOut].computeRateRoundUp()
                );
    }

    /**
     * @dev Auxiliary struct to prevent stack-too-deep issues inside `_swap` function.
     * Total swap fees include LP (pool) fees and aggregate (protocol + pool creator) fees.
     */
    struct SwapInternalLocals {
        uint256 totalSwapFeeAmountScaled18;
        uint256 totalSwapFeeAmountRaw;
        uint256 aggregateFeeAmountRaw;
    }

    /**
     * @dev Main non-reentrant portion of the swap, which calls the pool hook and updates accounting. `vaultSwapParams`
     * are passed to the pool's `onSwap` hook.
     *
     * Preconditions: complete `SwapParams`, `SwapState`, and `PoolData`.
     * Side effects: mutates balancesRaw and balancesLiveScaled18 in `poolData`.
     * Updates `_aggregateFeeAmounts`, and `_poolTokenBalances` in storage.
     * Emits Swap event.
     */
    function _swap(
        VaultSwapParams memory vaultSwapParams,
        SwapState memory swapState,
        PoolData memory poolData,
        PoolSwapParams memory poolSwapParams
    )
        internal
        nonReentrant
        returns (
            uint256 amountCalculatedRaw,
            uint256 amountCalculatedScaled18,
            uint256 amountInRaw,
            uint256 amountOutRaw
        )
    {
        SwapInternalLocals memory locals;

        if (vaultSwapParams.kind == SwapKind.EXACT_IN) {
            // Round up to avoid losses during precision loss.
            locals.totalSwapFeeAmountScaled18 = poolSwapParams.amountGivenScaled18.mulUp(swapState.swapFeePercentage);
            poolSwapParams.amountGivenScaled18 -= locals.totalSwapFeeAmountScaled18;
        }

        _ensureValidSwapAmount(poolSwapParams.amountGivenScaled18);

        // Perform the swap request hook and compute the new balances for 'token in' and 'token out' after the swap.
        amountCalculatedScaled18 = IBasePool(vaultSwapParams.pool).onSwap(poolSwapParams);

        _ensureValidSwapAmount(amountCalculatedScaled18);

        // Note that balances are kept in memory, and are not fully computed until the `setPoolBalances` below.
        // Intervening code cannot read balances from storage, as they are temporarily out-of-sync here. This function
        // is nonReentrant, to guard against read-only reentrancy issues.

        // (1) and (2): get raw amounts and check limits.
        if (vaultSwapParams.kind == SwapKind.EXACT_IN) {
            // Restore the original input value; this function should not mutate memory inputs.
            // At this point swap fee amounts have already been computed for EXACT_IN.
            poolSwapParams.amountGivenScaled18 = swapState.amountGivenScaled18;

            // For `ExactIn` the amount calculated is leaving the Vault, so we round down.
            amountCalculatedRaw = amountCalculatedScaled18.toRawUndoRateRoundDown(
                poolData.decimalScalingFactors[swapState.indexOut],
                // If the swap is ExactIn, the amountCalculated is the amount of tokenOut. So, we want to use the rate
                // rounded up to calculate the amountCalculatedRaw, because scale down (undo rate) is a division, the
                // larger the rate, the smaller the amountCalculatedRaw. So, any rounding imprecision will stay in the
                // Vault and not be drained by the user.
                poolData.tokenRates[swapState.indexOut].computeRateRoundUp()
            );

            (amountInRaw, amountOutRaw) = (vaultSwapParams.amountGivenRaw, amountCalculatedRaw);

            if (amountOutRaw < vaultSwapParams.limitRaw) {
                revert SwapLimit(amountOutRaw, vaultSwapParams.limitRaw);
            }
        } else {
            // To ensure symmetry with EXACT_IN, the swap fee used by ExactOut is
            // `amountCalculated * fee% / (100% - fee%)`. Add it to the calculated amountIn. Round up to avoid losing
            // value due to precision loss. Note that if the `swapFeePercentage` were 100% here, this would revert with
            // division by zero. We protect against this by ensuring in PoolConfigLib and HooksConfigLib that all swap
            // fees (static, dynamic, pool creator, and aggregate) are less than 100%.
            locals.totalSwapFeeAmountScaled18 = amountCalculatedScaled18.mulDivUp(
                swapState.swapFeePercentage,
                swapState.swapFeePercentage.complement()
            );

            amountCalculatedScaled18 += locals.totalSwapFeeAmountScaled18;

            // For `ExactOut` the amount calculated is entering the Vault, so we round up.
            amountCalculatedRaw = amountCalculatedScaled18.toRawUndoRateRoundUp(
                poolData.decimalScalingFactors[swapState.indexIn],
                poolData.tokenRates[swapState.indexIn]
            );

            (amountInRaw, amountOutRaw) = (amountCalculatedRaw, vaultSwapParams.amountGivenRaw);

            if (amountInRaw > vaultSwapParams.limitRaw) {
                revert SwapLimit(amountInRaw, vaultSwapParams.limitRaw);
            }
        }

        // 3) Deltas: debit for token in, credit for token out.
        _takeDebt(vaultSwapParams.tokenIn, amountInRaw);
        _supplyCredit(vaultSwapParams.tokenOut, amountOutRaw);

        // 4) Compute and charge protocol and creator fees.
        // Note that protocol fee storage is updated before balance storage, as the final raw balances need to take
        // the fees into account.
        (locals.totalSwapFeeAmountRaw, locals.aggregateFeeAmountRaw) = _computeAndChargeAggregateSwapFees(
            poolData,
            locals.totalSwapFeeAmountScaled18,
            vaultSwapParams.pool,
            vaultSwapParams.tokenIn,
            swapState.indexIn
        );

        // 5) Pool balances: raw and live.

        poolData.updateRawAndLiveBalance(
            swapState.indexIn,
            poolData.balancesRaw[swapState.indexIn] + amountInRaw - locals.aggregateFeeAmountRaw,
            Rounding.ROUND_DOWN
        );
        poolData.updateRawAndLiveBalance(
            swapState.indexOut,
            poolData.balancesRaw[swapState.indexOut] - amountOutRaw,
            Rounding.ROUND_DOWN
        );

        // 6) Store pool balances, raw and live (only index in and out).
        mapping(uint256 tokenIndex => bytes32 packedTokenBalance) storage poolBalances = _poolTokenBalances[
            vaultSwapParams.pool
        ];
        poolBalances[swapState.indexIn] = PackedTokenBalance.toPackedBalance(
            poolData.balancesRaw[swapState.indexIn],
            poolData.balancesLiveScaled18[swapState.indexIn]
        );
        poolBalances[swapState.indexOut] = PackedTokenBalance.toPackedBalance(
            poolData.balancesRaw[swapState.indexOut],
            poolData.balancesLiveScaled18[swapState.indexOut]
        );

        // 7) Off-chain events.
        emit Swap(
            vaultSwapParams.pool,
            vaultSwapParams.tokenIn,
            vaultSwapParams.tokenOut,
            amountInRaw,
            amountOutRaw,
            swapState.swapFeePercentage,
            locals.totalSwapFeeAmountRaw
        );
    }

    /***************************************************************************
                                   Add Liquidity
    ***************************************************************************/

    /// @inheritdoc IVaultMain
    function addLiquidity(
        AddLiquidityParams memory params
    )
        external
        onlyWhenUnlocked
        withInitializedPool(params.pool)
        returns (uint256[] memory amountsIn, uint256 bptAmountOut, bytes memory returnData)
    {
        // Round balances up when adding liquidity:
        // If proportional, higher balances = higher proportional amountsIn, favoring the pool.
        // If unbalanced, higher balances = lower invariant ratio with fees.
        // bptOut = supply * (ratio - 1), so lower ratio = less bptOut, favoring the pool.

        _ensureUnpaused(params.pool);
        _addLiquidityCalled().tSet(_sessionIdSlot().tload(), params.pool, true);

        // `_loadPoolDataUpdatingBalancesAndYieldFees` is non-reentrant, as it updates storage as well
        // as filling in poolData in memory. Since the add liquidity hooks are reentrant and could do anything,
        // including change these balances, we cannot defer settlement until `_addLiquidity`.
        //
        // Sets all fields in `poolData`. Side effects: updates `_poolTokenBalances`, and
        // `_aggregateFeeAmounts` in storage.
        PoolData memory poolData = _loadPoolDataUpdatingBalancesAndYieldFees(params.pool, Rounding.ROUND_UP);
        InputHelpers.ensureInputLengthMatch(poolData.tokens.length, params.maxAmountsIn.length);

        // Amounts are entering pool math, so round down.
        // Introducing `maxAmountsInScaled18` here and passing it through to _addLiquidity is not ideal,
        // but it avoids the even worse options of mutating amountsIn inside AddLiquidityParams,
        // or cluttering the AddLiquidityParams interface by adding amountsInScaled18.
        uint256[] memory maxAmountsInScaled18 = params.maxAmountsIn.copyToScaled18ApplyRateRoundDownArray(
            poolData.decimalScalingFactors,
            poolData.tokenRates
        );

        if (poolData.poolConfigBits.shouldCallBeforeAddLiquidity()) {
            HooksConfigLib.callBeforeAddLiquidityHook(
                msg.sender,
                maxAmountsInScaled18,
                params,
                poolData,
                _hooksContracts[params.pool]
            );
            // The hook might have altered the balances, so we need to read them again to ensure that the data
            // are fresh moving forward. We also need to upscale (adding liquidity, so round up) again.
            poolData.reloadBalancesAndRates(_poolTokenBalances[params.pool], Rounding.ROUND_UP);

            // Also update maxAmountsInScaled18, as the rates might have changed.
            maxAmountsInScaled18 = params.maxAmountsIn.copyToScaled18ApplyRateRoundDownArray(
                poolData.decimalScalingFactors,
                poolData.tokenRates
            );
        }

        // The bulk of the work is done here: the corresponding Pool hook is called, and the final balances
        // are computed. This function is non-reentrant, as it performs the accounting updates.
        //
        // Note that poolData is mutated to update the Raw and Live balances, so they are accurate when passed
        // into the AfterAddLiquidity hook.
        //
        // `amountsInScaled18` will be overwritten in the custom case, so we need to pass it back and forth to
        // encapsulate that logic in `_addLiquidity`.
        uint256[] memory amountsInScaled18;
        (amountsIn, amountsInScaled18, bptAmountOut, returnData) = _addLiquidity(
            poolData,
            params,
            maxAmountsInScaled18
        );

        // AmountsIn can be changed by onAfterAddLiquidity if the hook charges fees or gives discounts.
        // Uses msg.sender as the Router (the contract that called the Vault).
        if (poolData.poolConfigBits.shouldCallAfterAddLiquidity()) {
            // `hooksContract` needed to fix stack too deep.
            IHooks hooksContract = _hooksContracts[params.pool];

            amountsIn = poolData.poolConfigBits.callAfterAddLiquidityHook(
                msg.sender,
                amountsInScaled18,
                amountsIn,
                bptAmountOut,
                params,
                poolData,
                hooksContract
            );
        }
    }

    // Avoid "stack too deep" - without polluting the Add/RemoveLiquidity params interface.
    struct LiquidityLocals {
        uint256 numTokens;
        uint256 aggregateSwapFeeAmountRaw;
        uint256 tokenIndex;
    }

    /**
     * @dev Calls the appropriate pool hook and calculates the required inputs and outputs for the operation
     * considering the given kind, and updates the Vault's internal accounting. This includes:
     * - Setting pool balances
     * - Taking debt from the liquidity provider
     * - Minting pool tokens
     * - Emitting events
     *
     * It is non-reentrant, as it performs external calls and updates the Vault's state accordingly.
     */
    function _addLiquidity(
        PoolData memory poolData,
        AddLiquidityParams memory params,
        uint256[] memory maxAmountsInScaled18
    )
        internal
        nonReentrant
        returns (
            uint256[] memory amountsInRaw,
            uint256[] memory amountsInScaled18,
            uint256 bptAmountOut,
            bytes memory returnData
        )
    {
        LiquidityLocals memory locals;
        locals.numTokens = poolData.tokens.length;
        amountsInRaw = new uint256[](locals.numTokens);
        // `swapFeeAmounts` stores scaled18 amounts first, and is then reused to store raw amounts.
        uint256[] memory swapFeeAmounts;

        if (params.kind == AddLiquidityKind.PROPORTIONAL) {
            bptAmountOut = params.minBptAmountOut;
            // Initializes the swapFeeAmounts empty array (no swap fees on proportional add liquidity).
            swapFeeAmounts = new uint256[](locals.numTokens);

            amountsInScaled18 = BasePoolMath.computeProportionalAmountsIn(
                poolData.balancesLiveScaled18,
                _totalSupply(params.pool),
                bptAmountOut
            );
        } else if (params.kind == AddLiquidityKind.DONATION) {
            poolData.poolConfigBits.requireDonationEnabled();

            swapFeeAmounts = new uint256[](maxAmountsInScaled18.length);
            bptAmountOut = 0;
            amountsInScaled18 = maxAmountsInScaled18;
        } else if (params.kind == AddLiquidityKind.UNBALANCED) {
            poolData.poolConfigBits.requireUnbalancedLiquidityEnabled();

            amountsInScaled18 = maxAmountsInScaled18;
            // Deep copy given max amounts in raw to calculated amounts in raw to avoid scaling later, ensuring that
            // `maxAmountsIn` is preserved.
            ScalingHelpers.copyToArray(params.maxAmountsIn, amountsInRaw);

            (bptAmountOut, swapFeeAmounts) = BasePoolMath.computeAddLiquidityUnbalanced(
                poolData.balancesLiveScaled18,
                maxAmountsInScaled18,
                _totalSupply(params.pool),
                poolData.poolConfigBits.getStaticSwapFeePercentage(),
                IBasePool(params.pool)
            );
        } else if (params.kind == AddLiquidityKind.SINGLE_TOKEN_EXACT_OUT) {
            poolData.poolConfigBits.requireUnbalancedLiquidityEnabled();

            bptAmountOut = params.minBptAmountOut;
            locals.tokenIndex = InputHelpers.getSingleInputIndex(maxAmountsInScaled18);

            amountsInScaled18 = maxAmountsInScaled18;
            (amountsInScaled18[locals.tokenIndex], swapFeeAmounts) = BasePoolMath
                .computeAddLiquiditySingleTokenExactOut(
                    poolData.balancesLiveScaled18,
                    locals.tokenIndex,
                    bptAmountOut,
                    _totalSupply(params.pool),
                    poolData.poolConfigBits.getStaticSwapFeePercentage(),
                    IBasePool(params.pool)
                );
        } else if (params.kind == AddLiquidityKind.CUSTOM) {
            poolData.poolConfigBits.requireAddLiquidityCustomEnabled();

            // Uses msg.sender as the Router (the contract that called the Vault).
            (amountsInScaled18, bptAmountOut, swapFeeAmounts, returnData) = IPoolLiquidity(params.pool)
                .onAddLiquidityCustom(
                    msg.sender,
                    maxAmountsInScaled18,
                    params.minBptAmountOut,
                    poolData.balancesLiveScaled18,
                    params.userData
                );
        } else {
            revert InvalidAddLiquidityKind();
        }

        // At this point we have the calculated BPT amount.
        if (bptAmountOut < params.minBptAmountOut) {
            revert BptAmountOutBelowMin(bptAmountOut, params.minBptAmountOut);
        }

        _ensureValidTradeAmount(bptAmountOut);

        for (uint256 i = 0; i < locals.numTokens; ++i) {
            uint256 amountInRaw;

            // 1) Calculate raw amount in.
            {
                uint256 amountInScaled18 = amountsInScaled18[i];
                _ensureValidTradeAmount(amountInScaled18);

                // If the value in memory is not set, convert scaled amount to raw.
                if (amountsInRaw[i] == 0) {
                    // amountsInRaw are amounts actually entering the Pool, so we round up.
                    // Do not mutate in place yet, as we need them scaled for the `onAfterAddLiquidity` hook.
                    amountInRaw = amountInScaled18.toRawUndoRateRoundUp(
                        poolData.decimalScalingFactors[i],
                        poolData.tokenRates[i]
                    );

                    amountsInRaw[i] = amountInRaw;
                } else {
                    // Exact in requests will have the raw amount in memory already, so we use it moving forward and
                    // skip downscaling.
                    amountInRaw = amountsInRaw[i];
                }
            }

            IERC20 token = poolData.tokens[i];

            // 2) Check limits for raw amounts.
            if (amountInRaw > params.maxAmountsIn[i]) {
                revert AmountInAboveMax(token, amountInRaw, params.maxAmountsIn[i]);
            }

            // 3) Deltas: Debit of token[i] for amountInRaw.
            _takeDebt(token, amountInRaw);

            // 4) Compute and charge protocol and creator fees.
            // swapFeeAmounts[i] is now raw instead of scaled.
            (swapFeeAmounts[i], locals.aggregateSwapFeeAmountRaw) = _computeAndChargeAggregateSwapFees(
                poolData,
                swapFeeAmounts[i],
                params.pool,
                token,
                i
            );

            // 5) Pool balances: raw and live.
            // We need regular balances to complete the accounting, and the upscaled balances
            // to use in the `after` hook later on.

            // A pool's token balance increases by amounts in after adding liquidity, minus fees.
            poolData.updateRawAndLiveBalance(
                i,
                poolData.balancesRaw[i] + amountInRaw - locals.aggregateSwapFeeAmountRaw,
                Rounding.ROUND_DOWN
            );
        }

        // 6) Store pool balances, raw and live.
        _writePoolBalancesToStorage(params.pool, poolData);

        // 7) BPT supply adjustment.
        // When adding liquidity, we must mint tokens concurrently with updating pool balances,
        // as the pool's math relies on totalSupply.
        _mint(address(params.pool), params.to, bptAmountOut);

        // 8) Off-chain events.
        emit LiquidityAdded(
            params.pool,
            params.to,
            params.kind,
            _totalSupply(params.pool),
            amountsInRaw,
            swapFeeAmounts
        );
    }

    /***************************************************************************
                                 Remove Liquidity
    ***************************************************************************/

    /// @inheritdoc IVaultMain
    function removeLiquidity(
        RemoveLiquidityParams memory params
    )
        external
        onlyWhenUnlocked
        withInitializedPool(params.pool)
        returns (uint256 bptAmountIn, uint256[] memory amountsOut, bytes memory returnData)
    {
        // Round down when removing liquidity:
        // If proportional, lower balances = lower proportional amountsOut, favoring the pool.
        // If unbalanced, lower balances = lower invariant ratio without fees.
        // bptIn = supply * (1 - ratio), so lower ratio = more bptIn, favoring the pool.
        _ensureUnpaused(params.pool);

        // `_loadPoolDataUpdatingBalancesAndYieldFees` is non-reentrant, as it updates storage as well
        // as filling in poolData in memory. Since the swap hooks are reentrant and could do anything, including
        // change these balances, we cannot defer settlement until `_removeLiquidity`.
        //
        // Sets all fields in `poolData`. Side effects: updates `_poolTokenBalances` and
        // `_aggregateFeeAmounts in storage.
        PoolData memory poolData = _loadPoolDataUpdatingBalancesAndYieldFees(params.pool, Rounding.ROUND_DOWN);
        InputHelpers.ensureInputLengthMatch(poolData.tokens.length, params.minAmountsOut.length);

        // Amounts are entering pool math; higher amounts would burn more BPT, so round up to favor the pool.
        // Do not mutate minAmountsOut, so that we can directly compare the raw limits later, without potentially
        // losing precision by scaling up and then down.
        uint256[] memory minAmountsOutScaled18 = params.minAmountsOut.copyToScaled18ApplyRateRoundUpArray(
            poolData.decimalScalingFactors,
            poolData.tokenRates
        );

        // Uses msg.sender as the Router (the contract that called the Vault).
        if (poolData.poolConfigBits.shouldCallBeforeRemoveLiquidity()) {
            HooksConfigLib.callBeforeRemoveLiquidityHook(
                minAmountsOutScaled18,
                msg.sender,
                params,
                poolData,
                _hooksContracts[params.pool]
            );

            // The hook might alter the balances, so we need to read them again to ensure that the data is
            // fresh moving forward. We also need to upscale (removing liquidity, so round down) again.
            poolData.reloadBalancesAndRates(_poolTokenBalances[params.pool], Rounding.ROUND_DOWN);

            // Also update minAmountsOutScaled18, as the rates might have changed.
            minAmountsOutScaled18 = params.minAmountsOut.copyToScaled18ApplyRateRoundUpArray(
                poolData.decimalScalingFactors,
                poolData.tokenRates
            );
        }

        // The bulk of the work is done here: the corresponding Pool hook is called, and the final balances
        // are computed. This function is non-reentrant, as it performs the accounting updates.
        //
        // Note that poolData is mutated to update the Raw and Live balances, so they are accurate when passed
        // into the AfterRemoveLiquidity hook.
        uint256[] memory amountsOutScaled18;
        (bptAmountIn, amountsOut, amountsOutScaled18, returnData) = _removeLiquidity(
            poolData,
            params,
            minAmountsOutScaled18
        );

        // AmountsOut can be changed by onAfterRemoveLiquidity if the hook charges fees or gives discounts.
        // Uses msg.sender as the Router (the contract that called the Vault).
        if (poolData.poolConfigBits.shouldCallAfterRemoveLiquidity()) {
            // `hooksContract` needed to fix stack too deep.
            IHooks hooksContract = _hooksContracts[params.pool];

            amountsOut = poolData.poolConfigBits.callAfterRemoveLiquidityHook(
                msg.sender,
                amountsOutScaled18,
                amountsOut,
                bptAmountIn,
                params,
                poolData,
                hooksContract
            );
        }
    }

    /**
     * @dev Calls the appropriate pool hook and calculates the required inputs and outputs for the operation
     * considering the given kind, and updates the Vault's internal accounting. This includes:
     * - Setting pool balances
     * - Supplying credit to the liquidity provider
     * - Burning pool tokens
     * - Emitting events
     *
     * It is non-reentrant, as it performs external calls and updates the Vault's state accordingly.
     */
    function _removeLiquidity(
        PoolData memory poolData,
        RemoveLiquidityParams memory params,
        uint256[] memory minAmountsOutScaled18
    )
        internal
        nonReentrant
        returns (
            uint256 bptAmountIn,
            uint256[] memory amountsOutRaw,
            uint256[] memory amountsOutScaled18,
            bytes memory returnData
        )
    {
        LiquidityLocals memory locals;
        locals.numTokens = poolData.tokens.length;
        amountsOutRaw = new uint256[](locals.numTokens);
        // `swapFeeAmounts` stores scaled18 amounts first, and is then reused to store raw amounts.
        uint256[] memory swapFeeAmounts;

        if (params.kind == RemoveLiquidityKind.PROPORTIONAL) {
            bptAmountIn = params.maxBptAmountIn;
            swapFeeAmounts = new uint256[](locals.numTokens);
            amountsOutScaled18 = BasePoolMath.computeProportionalAmountsOut(
                poolData.balancesLiveScaled18,
                _totalSupply(params.pool),
                bptAmountIn
            );

            // Charge round-trip fee if liquidity was added to this pool in the same unlock call; this is not really a
            // valid use case, and may be an attack. Use caution when removing liquidity through a Safe or other
            // multisig / non-EOA address. Use "sign and execute," ideally through a private node (or at least not
            // allowing public execution) to avoid front-running, and always set strict limits so that it will revert
            // if any unexpected fees are charged. (It is also possible to check whether the flag has been set before
            // withdrawing, by calling `getAddLiquidityCalledFlag`.)
            if (_addLiquidityCalled().tGet(_sessionIdSlot().tload(), params.pool)) {
                uint256 swapFeePercentage = poolData.poolConfigBits.getStaticSwapFeePercentage();
                for (uint256 i = 0; i < locals.numTokens; ++i) {
                    swapFeeAmounts[i] = amountsOutScaled18[i].mulUp(swapFeePercentage);
                    amountsOutScaled18[i] -= swapFeeAmounts[i];
                }
            }
        } else if (params.kind == RemoveLiquidityKind.SINGLE_TOKEN_EXACT_IN) {
            poolData.poolConfigBits.requireUnbalancedLiquidityEnabled();
            bptAmountIn = params.maxBptAmountIn;
            amountsOutScaled18 = minAmountsOutScaled18;
            locals.tokenIndex = InputHelpers.getSingleInputIndex(params.minAmountsOut);

            (amountsOutScaled18[locals.tokenIndex], swapFeeAmounts) = BasePoolMath
                .computeRemoveLiquiditySingleTokenExactIn(
                    poolData.balancesLiveScaled18,
                    locals.tokenIndex,
                    bptAmountIn,
                    _totalSupply(params.pool),
                    poolData.poolConfigBits.getStaticSwapFeePercentage(),
                    IBasePool(params.pool)
                );
        } else if (params.kind == RemoveLiquidityKind.SINGLE_TOKEN_EXACT_OUT) {
            poolData.poolConfigBits.requireUnbalancedLiquidityEnabled();
            amountsOutScaled18 = minAmountsOutScaled18;
            locals.tokenIndex = InputHelpers.getSingleInputIndex(params.minAmountsOut);
            amountsOutRaw[locals.tokenIndex] = params.minAmountsOut[locals.tokenIndex];

            (bptAmountIn, swapFeeAmounts) = BasePoolMath.computeRemoveLiquiditySingleTokenExactOut(
                poolData.balancesLiveScaled18,
                locals.tokenIndex,
                amountsOutScaled18[locals.tokenIndex],
                _totalSupply(params.pool),
                poolData.poolConfigBits.getStaticSwapFeePercentage(),
                IBasePool(params.pool)
            );
        } else if (params.kind == RemoveLiquidityKind.CUSTOM) {
            poolData.poolConfigBits.requireRemoveLiquidityCustomEnabled();
            // Uses msg.sender as the Router (the contract that called the Vault).
            (bptAmountIn, amountsOutScaled18, swapFeeAmounts, returnData) = IPoolLiquidity(params.pool)
                .onRemoveLiquidityCustom(
                    msg.sender,
                    params.maxBptAmountIn,
                    minAmountsOutScaled18,
                    poolData.balancesLiveScaled18,
                    params.userData
                );
        } else {
            revert InvalidRemoveLiquidityKind();
        }

        if (bptAmountIn > params.maxBptAmountIn) {
            revert BptAmountInAboveMax(bptAmountIn, params.maxBptAmountIn);
        }

        _ensureValidTradeAmount(bptAmountIn);

        for (uint256 i = 0; i < locals.numTokens; ++i) {
            uint256 amountOutRaw;

            // 1) Calculate raw amount out.
            {
                uint256 amountOutScaled18 = amountsOutScaled18[i];
                _ensureValidTradeAmount(amountOutScaled18);

                // If the value in memory is not set, convert scaled amount to raw.
                if (amountsOutRaw[i] == 0) {
                    // amountsOut are amounts exiting the Pool, so we round down.
                    // Do not mutate in place yet, as we need them scaled for the `onAfterRemoveLiquidity` hook.
                    amountOutRaw = amountOutScaled18.toRawUndoRateRoundDown(
                        poolData.decimalScalingFactors[i],
                        poolData.tokenRates[i]
                    );
                    amountsOutRaw[i] = amountOutRaw;
                } else {
                    // Exact out requests will have the raw amount in memory already, so we use it moving forward and
                    // skip downscaling.
                    amountOutRaw = amountsOutRaw[i];
                }
            }

            IERC20 token = poolData.tokens[i];
            // 2) Check limits for raw amounts.
            if (amountOutRaw < params.minAmountsOut[i]) {
                revert AmountOutBelowMin(token, amountOutRaw, params.minAmountsOut[i]);
            }

            // 3) Deltas: Credit token[i] for amountOutRaw.
            _supplyCredit(token, amountOutRaw);

            // 4) Compute and charge protocol and creator fees.
            // swapFeeAmounts[i] is now raw instead of scaled.
            (swapFeeAmounts[i], locals.aggregateSwapFeeAmountRaw) = _computeAndChargeAggregateSwapFees(
                poolData,
                swapFeeAmounts[i],
                params.pool,
                token,
                i
            );

            // 5) Pool balances: raw and live.
            // We need regular balances to complete the accounting, and the upscaled balances
            // to use in the `after` hook later on.

            // A Pool's token balance always decreases after an exit (potentially by 0).
            // Also adjust by protocol and pool creator fees.
            poolData.updateRawAndLiveBalance(
                i,
                poolData.balancesRaw[i] - (amountOutRaw + locals.aggregateSwapFeeAmountRaw),
                Rounding.ROUND_DOWN
            );
        }

        // 6) Store pool balances, raw and live.
        _writePoolBalancesToStorage(params.pool, poolData);

        // 7) BPT supply adjustment.
        // Uses msg.sender as the Router (the contract that called the Vault).
        _spendAllowance(address(params.pool), params.from, msg.sender, bptAmountIn);

        if (_isQueryContext()) {
            // Increase `from` balance to ensure the burn function succeeds.
            _queryModeBalanceIncrease(params.pool, params.from, bptAmountIn);
        }
        // When removing liquidity, we must burn tokens concurrently with updating pool balances,
        // as the pool's math relies on totalSupply.
        // Burning will be reverted if it results in a total supply less than the _POOL_MINIMUM_TOTAL_SUPPLY.
        _burn(address(params.pool), params.from, bptAmountIn);

        // 8) Off-chain events.
        emit LiquidityRemoved(
            params.pool,
            params.from,
            params.kind,
            _totalSupply(params.pool),
            amountsOutRaw,
            swapFeeAmounts
        );
    }

    /**
     * @dev Preconditions: poolConfigBits, decimalScalingFactors, tokenRates in `poolData`.
     * Side effects: updates `_aggregateFeeAmounts` storage.
     * Note that this computes the aggregate total of the protocol fees and stores it, without emitting any events.
     * Splitting the fees and event emission occur during fee collection.
     * Should only be called in a non-reentrant context.
     *
     * @return totalSwapFeeAmountRaw Total swap fees raw (LP + aggregate protocol fees)
     * @return aggregateSwapFeeAmountRaw Sum of protocol and pool creator fees raw
     */
    function _computeAndChargeAggregateSwapFees(
        PoolData memory poolData,
        uint256 totalSwapFeeAmountScaled18,
        address pool,
        IERC20 token,
        uint256 index
    ) internal returns (uint256 totalSwapFeeAmountRaw, uint256 aggregateSwapFeeAmountRaw) {
        // If totalSwapFeeAmountScaled18 equals zero, no need to charge anything.
        if (totalSwapFeeAmountScaled18 > 0) {
            // The total swap fee does not go into the pool; amountIn does, and the raw fee at this point does not
            // modify it. Given that all of the fee may belong to the pool creator (i.e. outside pool balances),
            // we round down to protect the invariant.

            totalSwapFeeAmountRaw = totalSwapFeeAmountScaled18.toRawUndoRateRoundDown(
                poolData.decimalScalingFactors[index],
                poolData.tokenRates[index]
            );

            // Aggregate fees are not charged in Recovery Mode, but we still calculate and return the raw total swap
            // fee above for off-chain reporting purposes.
            if (poolData.poolConfigBits.isPoolInRecoveryMode() == false) {
                uint256 aggregateSwapFeePercentage = poolData.poolConfigBits.getAggregateSwapFeePercentage();

                // We have already calculated raw total fees rounding up.
                // Total fees = LP fees + aggregate fees, so by rounding aggregate fees down we round the fee split in
                // the LPs' favor, in turn increasing token balances and the pool invariant.
                aggregateSwapFeeAmountRaw = totalSwapFeeAmountRaw.mulDown(aggregateSwapFeePercentage);

                // Ensure we can never charge more than the total swap fee.
                if (aggregateSwapFeeAmountRaw > totalSwapFeeAmountRaw) {
                    revert ProtocolFeesExceedTotalCollected();
                }

                // Both Swap and Yield fees are stored together in a PackedTokenBalance.
                // We have designated "Raw" the derived half for Swap fee storage.
                bytes32 currentPackedBalance = _aggregateFeeAmounts[pool][token];
                _aggregateFeeAmounts[pool][token] = currentPackedBalance.setBalanceRaw(
                    currentPackedBalance.getBalanceRaw() + aggregateSwapFeeAmountRaw
                );
            }
        }
    }

    /*******************************************************************************
                                    Pool Information
    *******************************************************************************/

    /// @inheritdoc IVaultMain
    function getPoolTokenCountAndIndexOfToken(
        address pool,
        IERC20 token
    ) external view withRegisteredPool(pool) returns (uint256, uint256) {
        IERC20[] memory poolTokens = _poolTokens[pool];

        uint256 index = _findTokenIndex(poolTokens, token);

        return (poolTokens.length, index);
    }

    /*******************************************************************************
                                 Balancer Pool Tokens
    *******************************************************************************/

    /// @inheritdoc IVaultMain
    function transfer(address owner, address to, uint256 amount) external returns (bool) {
        _transfer(msg.sender, owner, to, amount);
        return true;
    }

    /// @inheritdoc IVaultMain
    function transferFrom(address spender, address from, address to, uint256 amount) external returns (bool) {
        _spendAllowance(msg.sender, from, spender, amount);
        _transfer(msg.sender, from, to, amount);
        return true;
    }

    /*******************************************************************************
                                  ERC4626 Buffers
    *******************************************************************************/

    /// @inheritdoc IVaultMain
    function erc4626BufferWrapOrUnwrap(
        BufferWrapOrUnwrapParams memory params
    )
        external
        onlyWhenUnlocked
        whenVaultBuffersAreNotPaused
        withInitializedBuffer(params.wrappedToken)
        nonReentrant
        returns (uint256 amountCalculatedRaw, uint256 amountInRaw, uint256 amountOutRaw)
    {
        IERC20 underlyingToken = IERC20(params.wrappedToken.asset());
        _ensureCorrectBufferAsset(params.wrappedToken, address(underlyingToken));

        _ensureValidWrapAmount(params.wrappedToken, params.amountGivenRaw);

        if (params.direction == WrappingDirection.UNWRAP) {
            bytes32 bufferBalances;
            (amountInRaw, amountOutRaw, bufferBalances) = _unwrapWithBuffer(
                params.kind,
                underlyingToken,
                params.wrappedToken,
                params.amountGivenRaw
            );
            emit Unwrap(params.wrappedToken, amountInRaw, amountOutRaw, bufferBalances);
        } else {
            bytes32 bufferBalances;
            (amountInRaw, amountOutRaw, bufferBalances) = _wrapWithBuffer(
                params.kind,
                underlyingToken,
                params.wrappedToken,
                params.amountGivenRaw
            );
            emit Wrap(params.wrappedToken, amountInRaw, amountOutRaw, bufferBalances);
        }

        if (params.kind == SwapKind.EXACT_IN) {
            if (amountOutRaw < params.limitRaw) {
                revert SwapLimit(amountOutRaw, params.limitRaw);
            }
            amountCalculatedRaw = amountOutRaw;
        } else {
            if (amountInRaw > params.limitRaw) {
                revert SwapLimit(amountInRaw, params.limitRaw);
            }
            amountCalculatedRaw = amountInRaw;
        }

        _ensureValidWrapAmount(params.wrappedToken, amountCalculatedRaw);
    }

    // If amount is too small, rounding issues can be introduced that favor the user and can leak value
    // from the buffer.
    // _MINIMUM_WRAP_AMOUNT prevents it. Most tokens have protections against it already; this is just an extra layer
    // of security.
    function _ensureValidWrapAmount(IERC4626 wrappedToken, uint256 amount) private view {
        if (amount < _MINIMUM_WRAP_AMOUNT) {
            revert WrapAmountTooSmall(wrappedToken);
        }
    }

    /**
     * @dev If the buffer has enough liquidity, it uses the internal ERC4626 buffer to perform the wrap
     * operation without any external calls. If not, it wraps the assets needed to fulfill the trade + the imbalance
     * of assets in the buffer, so that the buffer is rebalanced at the end of the operation.
     *
     * Updates `_reservesOf` and token deltas in storage.
     */
    function _wrapWithBuffer(
        SwapKind kind,
        IERC20 underlyingToken,
        IERC4626 wrappedToken,
        uint256 amountGiven
    ) internal returns (uint256 amountInUnderlying, uint256 amountOutWrapped, bytes32 bufferBalances) {
        if (kind == SwapKind.EXACT_IN) {
            // EXACT_IN wrap, so AmountGiven is an underlying amount. `deposit` is the ERC4626 operation that receives
            // an underlying amount in and calculates the wrapped amount out with the correct rounding. 1 wei is
            // removed from amountGiven to compensate for any rate manipulation. Also, 1 wei is removed from the
            // preview result to compensate for any rounding imprecision, so that the buffer does not leak value.
            (amountInUnderlying, amountOutWrapped) = (amountGiven, wrappedToken.previewDeposit(amountGiven - 1) - 1);
        } else {
            // EXACT_OUT wrap, so AmountGiven is a wrapped amount. `mint` is the ERC4626 operation that receives a
            // wrapped amount out and calculates the underlying amount in with the correct rounding. 1 wei is
            // added to amountGiven to compensate for any rate manipulation. Also, 1 wei is added to the
            // preview result to compensate for any rounding imprecision, so that the buffer does not leak value.
            (amountInUnderlying, amountOutWrapped) = (wrappedToken.previewMint(amountGiven + 1) + 1, amountGiven);
        }

        bufferBalances = _bufferTokenBalances[wrappedToken];

        // If it's a query, the Vault may not have enough underlying tokens to wrap. Since in a query we do not expect
        // the sender to pay for underlying tokens to wrap upfront, return the calculated amount without checking for
        // the imbalance.
        if (_isQueryContext()) {
            return (amountInUnderlying, amountOutWrapped, bufferBalances);
        }

        if (bufferBalances.getBalanceDerived() >= amountOutWrapped) {
            // The buffer has enough liquidity to facilitate the wrap without making an external call.
            uint256 newDerivedBalance;
            unchecked {
                // We have verified above that this is safe to do unchecked.
                newDerivedBalance = bufferBalances.getBalanceDerived() - amountOutWrapped;
            }

            bufferBalances = PackedTokenBalance.toPackedBalance(
                bufferBalances.getBalanceRaw() + amountInUnderlying,
                newDerivedBalance
            );
            _bufferTokenBalances[wrappedToken] = bufferBalances;
        } else {
            // The buffer does not have enough liquidity to facilitate the wrap without making an external call.
            // We wrap the user's tokens via an external call and additionally rebalance the buffer if it has an
            // imbalance of underlying tokens.

            // Expected amount of underlying deposited into the wrapper protocol.
            uint256 vaultUnderlyingDeltaHint;
            // Expected amount of wrapped minted by the wrapper protocol.
            uint256 vaultWrappedDeltaHint;

            if (kind == SwapKind.EXACT_IN) {
                // EXACT_IN requires the exact amount of underlying tokens to be deposited, so we call deposit.
                // The amount of underlying tokens to deposit is the necessary amount to fulfill the trade
                // (amountInUnderlying), plus the amount needed to leave the buffer rebalanced 50/50 at the end
                // (bufferUnderlyingImbalance). `bufferUnderlyingImbalance` may be positive if the buffer has an excess
                // of underlying, or negative if the buffer has an excess of wrapped tokens. `vaultUnderlyingDeltaHint`
                // will always be a positive number, because if `abs(bufferUnderlyingImbalance) > amountInUnderlying`
                // and `bufferUnderlyingImbalance < 0`, it means the buffer has enough liquidity to fulfill the trade
                // (i.e. `bufferBalances.getBalanceDerived() >= amountOutWrapped`).
                int256 bufferUnderlyingImbalance = bufferBalances.getBufferUnderlyingImbalance(wrappedToken);
                vaultUnderlyingDeltaHint = (amountInUnderlying.toInt256() + bufferUnderlyingImbalance).toUint256();
                underlyingToken.forceApprove(address(wrappedToken), vaultUnderlyingDeltaHint);
                vaultWrappedDeltaHint = wrappedToken.deposit(vaultUnderlyingDeltaHint, address(this));
            } else {
                // EXACT_OUT requires the exact amount of wrapped tokens to be minted, so we call mint.
                // The amount of wrapped tokens to mint is the amount necessary to fulfill the trade
                // (amountOutWrapped), minus the excess amount of wrapped tokens in the buffer (bufferWrappedImbalance).
                // `bufferWrappedImbalance` may be positive if buffer has an excess of wrapped assets or negative if
                // the buffer has an excess of underlying assets. `vaultWrappedDeltaHint` will always be a positive
                // number, because if `abs(bufferWrappedImbalance) > amountOutWrapped` and `bufferWrappedImbalance > 0`,
                // it means the buffer has enough liquidity to fulfill the trade
                // (i.e. `bufferBalances.getBalanceDerived() >= amountOutWrapped`).
                int256 bufferWrappedImbalance = bufferBalances.getBufferWrappedImbalance(wrappedToken);
                vaultWrappedDeltaHint = (amountOutWrapped.toInt256() - bufferWrappedImbalance).toUint256();

                // For Wrap ExactOut, we also need to calculate `vaultUnderlyingDeltaHint` before the mint operation,
                // to approve the transfer of underlying tokens to the wrapper protocol.
                vaultUnderlyingDeltaHint = wrappedToken.previewMint(vaultWrappedDeltaHint);

                // The mint operation returns exactly `vaultWrappedDeltaHint` shares. To do so, it withdraws underlying
                // tokens from the Vault and returns the shares. So, the Vault needs to approve the transfer of
                // underlying tokens to the wrapper.
                underlyingToken.forceApprove(address(wrappedToken), vaultUnderlyingDeltaHint);

                vaultUnderlyingDeltaHint = wrappedToken.mint(vaultWrappedDeltaHint, address(this));
            }

            // Remove approval, in case deposit/mint consumed less tokens than we approved.
            // E.g., A malicious wrapper could not consume all of the underlying tokens and use the Vault approval to
            // drain the Vault.
            underlyingToken.forceApprove(address(wrappedToken), 0);

            // Check if the Vault's underlying balance decreased by `vaultUnderlyingDeltaHint` and the Vault's
            // wrapped balance increased by `vaultWrappedDeltaHint`. If not, it reverts.
            _settleWrap(underlyingToken, IERC20(wrappedToken), vaultUnderlyingDeltaHint, vaultWrappedDeltaHint);

            // In a wrap operation, the buffer underlying balance increases by `amountInUnderlying` (the amount that
            // the caller deposited into the buffer) and decreases by `vaultUnderlyingDeltaHint` (the amount of
            // underlying deposited by the buffer into the wrapper protocol). Conversely, the buffer wrapped balance
            // decreases by `amountOutWrapped` (the amount of wrapped tokens that the buffer returned to the caller)
            // and increases by `vaultWrappedDeltaHint` (the amount of wrapped tokens minted by the wrapper protocol).
            bufferBalances = PackedTokenBalance.toPackedBalance(
                bufferBalances.getBalanceRaw() + amountInUnderlying - vaultUnderlyingDeltaHint,
                bufferBalances.getBalanceDerived() + vaultWrappedDeltaHint - amountOutWrapped
            );
            _bufferTokenBalances[wrappedToken] = bufferBalances;
        }

        _takeDebt(underlyingToken, amountInUnderlying);
        _supplyCredit(wrappedToken, amountOutWrapped);
    }

    /**
     * @dev If the buffer has enough liquidity, it uses the internal ERC4626 buffer to perform the unwrap
     * operation without any external calls. If not, it unwraps the assets needed to fulfill the trade + the imbalance
     * of assets in the buffer, so that the buffer is rebalanced at the end of the operation.
     *
     * Updates `_reservesOf` and token deltas in storage.
     */
    function _unwrapWithBuffer(
        SwapKind kind,
        IERC20 underlyingToken,
        IERC4626 wrappedToken,
        uint256 amountGiven
    ) internal returns (uint256 amountInWrapped, uint256 amountOutUnderlying, bytes32 bufferBalances) {
        if (kind == SwapKind.EXACT_IN) {
            // EXACT_IN unwrap, so AmountGiven is a wrapped amount. `redeem` is the ERC4626 operation that receives a
            // wrapped amount in and calculates the underlying amount out with the correct rounding. 1 wei is removed
            // from amountGiven to compensate for any rate manipulation. Also, 1 wei is removed from the preview result
            // to compensate for any rounding imprecision, so that the buffer does not leak value.
            (amountInWrapped, amountOutUnderlying) = (amountGiven, wrappedToken.previewRedeem(amountGiven - 1) - 1);
        } else {
            // EXACT_OUT unwrap, so AmountGiven is an underlying amount. `withdraw` is the ERC4626 operation that
            // receives an underlying amount out and calculates the wrapped amount in with the correct rounding. 1 wei
            // is added to amountGiven to compensate for any rate manipulation. Also, 1 wei is added to the preview
            // result to compensate for any rounding imprecision, so that the buffer does not leak value.
            (amountInWrapped, amountOutUnderlying) = (wrappedToken.previewWithdraw(amountGiven + 1) + 1, amountGiven);
        }

        bufferBalances = _bufferTokenBalances[wrappedToken];

        // If it's a query, the Vault may not have enough wrapped tokens to unwrap. Since in a query we do not expect
        // the sender to pay for wrapped tokens to unwrap upfront, return the calculated amount without checking for
        // the imbalance.
        if (_isQueryContext()) {
            return (amountInWrapped, amountOutUnderlying, bufferBalances);
        }

        if (bufferBalances.getBalanceRaw() >= amountOutUnderlying) {
            // The buffer has enough liquidity to facilitate the wrap without making an external call.
            uint256 newRawBalance;
            unchecked {
                // We have verified above that this is safe to do unchecked.
                newRawBalance = bufferBalances.getBalanceRaw() - amountOutUnderlying;
            }
            bufferBalances = PackedTokenBalance.toPackedBalance(
                newRawBalance,
                bufferBalances.getBalanceDerived() + amountInWrapped
            );
            _bufferTokenBalances[wrappedToken] = bufferBalances;
        } else {
            // The buffer does not have enough liquidity to facilitate the unwrap without making an external call.
            // We unwrap the user's tokens via an external call and additionally rebalance the buffer if it has an
            // imbalance of wrapped tokens.

            // Expected amount of underlying withdrawn from the wrapper protocol.
            uint256 vaultUnderlyingDeltaHint;
            // Expected amount of wrapped burned by the wrapper protocol.
            uint256 vaultWrappedDeltaHint;

            if (kind == SwapKind.EXACT_IN) {
                // EXACT_IN requires the exact amount of wrapped tokens to be unwrapped, so we call redeem. The amount
                // of wrapped tokens to redeem is the amount necessary to fulfill the trade (amountInWrapped), plus the
                // amount needed to leave the buffer rebalanced 50/50 at the end (bufferWrappedImbalance).
                // `bufferWrappedImbalance` may be positive if the buffer has an excess of wrapped, or negative if the
                // buffer has an excess of underlying tokens. `vaultWrappedDeltaHint` will always be a positive number,
                // because if `abs(bufferWrappedImbalance) > amountInWrapped` and `bufferWrappedImbalance < 0`, it
                // means the buffer has enough liquidity to fulfill the trade
                // (i.e. `bufferBalances.getBalanceRaw() >= amountOutUnderlying`).
                int256 bufferWrappedImbalance = bufferBalances.getBufferWrappedImbalance(wrappedToken);
                vaultWrappedDeltaHint = (amountInWrapped.toInt256() + bufferWrappedImbalance).toUint256();
                vaultUnderlyingDeltaHint = wrappedToken.redeem(vaultWrappedDeltaHint, address(this), address(this));
            } else {
                // EXACT_OUT requires the exact amount of underlying tokens to be returned, so we call withdraw.
                // The amount of underlying tokens to withdraw is the amount necessary to fulfill the trade
                // (amountOutUnderlying), minus the excess amount of underlying assets in the buffer
                // (bufferUnderlyingImbalance). `bufferUnderlyingImbalance` may be positive if the buffer has an excess
                // of underlying, or negative if the buffer has an excess of wrapped tokens. `vaultUnderlyingDeltaHint`
                // will always be a positive number, because if `abs(bufferUnderlyingImbalance) > amountOutUnderlying`
                // and `bufferUnderlyingImbalance > 0`, it means the buffer has enough liquidity to fulfill the trade
                // (i.e. `bufferBalances.getBalanceRaw() >= amountOutUnderlying`).
                int256 bufferUnderlyingImbalance = bufferBalances.getBufferUnderlyingImbalance(wrappedToken);
                vaultUnderlyingDeltaHint = (amountOutUnderlying.toInt256() - bufferUnderlyingImbalance).toUint256();
                vaultWrappedDeltaHint = wrappedToken.withdraw(vaultUnderlyingDeltaHint, address(this), address(this));
            }

            // Check if the Vault's underlying balance increased by `vaultUnderlyingDeltaHint` and the Vault's
            // wrapped balance decreased by `vaultWrappedDeltaHint`. If not, it reverts.
            _settleUnwrap(underlyingToken, IERC20(wrappedToken), vaultUnderlyingDeltaHint, vaultWrappedDeltaHint);

            // In an unwrap operation, the buffer underlying balance increases by `vaultUnderlyingDeltaHint` (the
            // amount of underlying withdrawn by the buffer from the wrapper protocol) and decreases by
            // `amountOutUnderlying` (the amount of underlying assets that the caller withdrawn from the buffer).
            // Conversely, the buffer wrapped balance increases by `amountInWrapped` (the amount of wrapped tokens that
            // the caller sent to the buffer) and decreases by `vaultWrappedDeltaHint` (the amount of wrapped tokens
            // burned by the wrapper protocol).
            bufferBalances = PackedTokenBalance.toPackedBalance(
                bufferBalances.getBalanceRaw() + vaultUnderlyingDeltaHint - amountOutUnderlying,
                bufferBalances.getBalanceDerived() + amountInWrapped - vaultWrappedDeltaHint
            );
            _bufferTokenBalances[wrappedToken] = bufferBalances;
        }

        _takeDebt(wrappedToken, amountInWrapped);
        _supplyCredit(underlyingToken, amountOutUnderlying);
    }

    /**
     * @notice Updates the reserves of the Vault after an ERC4626 wrap (deposit/mint) operation.
     * @dev If there are extra tokens in the Vault balances, these will be added to the reserves (which, in practice,
     * is equal to discarding such tokens). This approach avoids DoS attacks, when a frontrunner leaves vault balances
     * and reserves out of sync before a transaction starts.
     *
     * @param underlyingToken Underlying token of the ERC4626 wrapped token
     * @param wrappedToken ERC4626 wrapped token
     * @param underlyingDeltaHint Amount of underlying tokens the wrapper should have removed from the Vault
     * @param wrappedDeltaHint Amount of wrapped tokens the wrapper should have added to the Vault
     */
    function _settleWrap(
        IERC20 underlyingToken,
        IERC20 wrappedToken,
        uint256 underlyingDeltaHint,
        uint256 wrappedDeltaHint
    ) internal {
        // A wrap operation removes underlying tokens from the Vault, so the Vault's expected underlying balance after
        // the operation is `underlyingReservesBefore - underlyingDeltaHint`.
        uint256 expectedUnderlyingReservesAfter = _reservesOf[underlyingToken] - underlyingDeltaHint;

        // A wrap operation adds wrapped tokens to the Vault, so the Vault's expected wrapped balance after the
        // operation is `wrappedReservesBefore + wrappedDeltaHint`.
        uint256 expectedWrappedReservesAfter = _reservesOf[wrappedToken] + wrappedDeltaHint;

        _settleWrapUnwrap(underlyingToken, wrappedToken, expectedUnderlyingReservesAfter, expectedWrappedReservesAfter);
    }

    /**
     * @notice Updates the reserves of the Vault after an ERC4626 unwrap (withdraw/redeem) operation.
     * @dev If there are extra tokens in the Vault balances, these will be added to the reserves (which, in practice,
     * is equal to discarding such tokens). This approach avoids DoS attacks, when a frontrunner leaves vault balances
     * and state of reserves out of sync before a transaction starts.
     *
     * @param underlyingToken Underlying of ERC4626 wrapped token
     * @param wrappedToken ERC4626 wrapped token
     * @param underlyingDeltaHint Amount of underlying tokens supposedly added to the Vault
     * @param wrappedDeltaHint Amount of wrapped tokens supposedly removed from the Vault
     */
    function _settleUnwrap(
        IERC20 underlyingToken,
        IERC20 wrappedToken,
        uint256 underlyingDeltaHint,
        uint256 wrappedDeltaHint
    ) internal {
        // An unwrap operation adds underlying tokens to the Vault, so the Vault's expected underlying balance after
        // the operation is `underlyingReservesBefore + underlyingDeltaHint`.
        uint256 expectedUnderlyingReservesAfter = _reservesOf[underlyingToken] + underlyingDeltaHint;

        // An unwrap operation removes wrapped tokens from the Vault, so the Vault's expected wrapped balance after the
        // operation is `wrappedReservesBefore - wrappedDeltaHint`.
        uint256 expectedWrappedReservesAfter = _reservesOf[wrappedToken] - wrappedDeltaHint;

        _settleWrapUnwrap(underlyingToken, wrappedToken, expectedUnderlyingReservesAfter, expectedWrappedReservesAfter);
    }

    /**
     * @notice Updates the reserves of the Vault after an ERC4626 wrap/unwrap operation.
     * @dev If reserves of underlying or wrapped tokens are bigger than expected, the extra tokens will be discarded,
     * which avoids a possible DoS. However, if reserves are smaller than expected, it means that the wrapper didn't
     * respect the amount given and/or the amount calculated (informed by the wrapper operation and stored as a hint
     * variable), so the token is not ERC4626 compliant and the function should be reverted.
     *
     * @param underlyingToken Underlying of ERC4626 wrapped token
     * @param wrappedToken ERC4626 wrapped token
     * @param expectedUnderlyingReservesAfter Vault's expected reserves of underlying after the wrap/unwrap operation
     * @param expectedWrappedReservesAfter Vault's expected reserves of wrapped after the wrap/unwrap operation
     */
    function _settleWrapUnwrap(
        IERC20 underlyingToken,
        IERC20 wrappedToken,
        uint256 expectedUnderlyingReservesAfter,
        uint256 expectedWrappedReservesAfter
    ) internal {
        // Update the Vault's underlying reserves.
        uint256 underlyingBalancesAfter = underlyingToken.balanceOf(address(this));
        if (underlyingBalancesAfter < expectedUnderlyingReservesAfter) {
            // If Vault's underlying balance is smaller than expected, the Vault was drained and the operation should
            // revert. It may happen in different ways, depending on the wrap/unwrap operation:
            // * deposit: the wrapper didn't respect the exact amount in of underlying;
            // * mint: the underlying amount subtracted from the Vault is bigger than wrapper's calculated amount in;
            // * withdraw: the wrapper didn't respect the exact amount out of underlying;
            // * redeem: the underlying amount added to the Vault is smaller than wrapper's calculated amount out.
            revert NotEnoughUnderlying(
                IERC4626(address(wrappedToken)),
                expectedUnderlyingReservesAfter,
                underlyingBalancesAfter
            );
        }
        // Update the Vault's underlying reserves, discarding any unexpected imbalance of tokens (difference between
        // actual and expected vault balance).
        _reservesOf[underlyingToken] = underlyingBalancesAfter;

        // Update the Vault's wrapped reserves.
        uint256 wrappedBalancesAfter = wrappedToken.balanceOf(address(this));
        if (wrappedBalancesAfter < expectedWrappedReservesAfter) {
            // If the Vault's wrapped balance is smaller than expected, the Vault was drained and the operation should
            // revert. It may happen in different ways, depending on the wrap/unwrap operation:
            // * deposit: the wrapped amount added to the Vault is smaller than wrapper's calculated amount out;
            // * mint: the wrapper didn't respect the exact amount out of wrapped;
            // * withdraw: the wrapped amount subtracted from the Vault is bigger than wrapper's calculated amount in;
            // * redeem: the wrapper didn't respect the exact amount in of wrapped.
            revert NotEnoughWrapped(
                IERC4626(address(wrappedToken)),
                expectedWrappedReservesAfter,
                wrappedBalancesAfter
            );
        }
        // Update the Vault's wrapped reserves, discarding any unexpected surplus of tokens (difference between
        // the Vault's actual and expected balances).
        _reservesOf[wrappedToken] = wrappedBalancesAfter;
    }

    // Minimum token value in or out (applied to scaled18 values), enforced as a security measure to block potential
    // exploitation of rounding errors. This is called in the context of adding or removing liquidity, so zero is
    // allowed to support single-token operations.
    function _ensureValidTradeAmount(uint256 tradeAmount) internal view {
        if (tradeAmount != 0) {
            _ensureValidSwapAmount(tradeAmount);
        }
    }

    // Minimum token value in or out (applied to scaled18 values), enforced as a security measure to block potential
    // exploitation of rounding errors. This is called in the swap context, so zero is not a valid amount. Note that
    // since this is applied to the scaled amount, the corresponding minimum raw amount will vary according to token
    // decimals. The math functions are called with scaled amounts, and the magnitude of the minimum values is based
    // on the maximum error, so this is fine. Trying to adjust for decimals would add complexity and significant gas
    // to the critical path, so we don't do it. (Note that very low-decimal tokens don't work well in AMMs generally;
    // this is another reason to avoid them.)
    function _ensureValidSwapAmount(uint256 tradeAmount) internal view {
        if (tradeAmount < _MINIMUM_TRADE_AMOUNT) {
            revert TradeAmountTooSmall();
        }
    }

    /*******************************************************************************
                                     Miscellaneous
    *******************************************************************************/

    /// @inheritdoc IVaultMain
    function getVaultExtension() external view returns (address) {
        return _implementation();
    }

    /**
     * @inheritdoc Proxy
     * @dev Returns the VaultExtension contract, to which fallback requests are forwarded.
     */
    function _implementation() internal view override returns (address) {
        return address(_vaultExtension);
    }

    /*******************************************************************************
                                     Default handlers
    *******************************************************************************/

    receive() external payable {
        revert CannotReceiveEth();
    }

    // solhint-disable no-complex-fallback

    /**
     * @inheritdoc Proxy
     * @dev Override proxy implementation of `fallback` to disallow incoming ETH transfers.
     * This function actually returns whatever the VaultExtension does when handling the request.
     */
    fallback() external payable override {
        if (msg.value > 0) {
            revert CannotReceiveEth();
        }

        _fallback();
    }
}

File 2 of 63 : IAuthentication.sol
// SPDX-License-Identifier: GPL-3.0-or-later

pragma solidity ^0.8.24;

/// @notice Simple interface for permissioned calling of external functions.
interface IAuthentication {
    /// @notice The sender does not have permission to call a function.
    error SenderNotAllowed();

    /**
     * @notice Returns the action identifier associated with the external function described by `selector`.
     * @param selector The 4-byte selector of the permissioned function
     * @return actionId The computed actionId
     */
    function getActionId(bytes4 selector) external view returns (bytes32 actionId);
}

File 3 of 63 : IRateProvider.sol
// SPDX-License-Identifier: GPL-3.0-or-later

pragma solidity ^0.8.24;

/// @notice General interface for token exchange rates.
interface IRateProvider {
    /**
     * @notice An 18 decimal fixed point number representing the exchange rate of one token to another related token.
     * @dev The meaning of this rate depends on the context. Note that there may be an error associated with a token
     * rate, and the caller might require a certain rounding direction to ensure correctness. This (legacy) interface
     * does not take a rounding direction or return an error, so great care must be taken when interpreting and using
     * rates in downstream computations.
     *
     * @return rate The current token rate
     */
    function getRate() external view returns (uint256 rate);
}

File 4 of 63 : IAuthorizer.sol
// SPDX-License-Identifier: GPL-3.0-or-later

pragma solidity ^0.8.24;

/// @notice Interface to the Vault's permission system.
interface IAuthorizer {
    /**
     * @notice Returns true if `account` can perform the action described by `actionId` in the contract `where`.
     * @param actionId Identifier for the action to be performed
     * @param account Account trying to perform the action
     * @param where Target contract for the action
     * @return success True if the action is permitted
     */
    function canPerform(bytes32 actionId, address account, address where) external view returns (bool success);
}

File 5 of 63 : IBasePool.sol
// SPDX-License-Identifier: GPL-3.0-or-later

pragma solidity ^0.8.24;

import { IUnbalancedLiquidityInvariantRatioBounds } from "./IUnbalancedLiquidityInvariantRatioBounds.sol";
import { ISwapFeePercentageBounds } from "./ISwapFeePercentageBounds.sol";
import { PoolSwapParams, Rounding, SwapKind } from "./VaultTypes.sol";

/**
 * @notice Base interface for a Balancer Pool.
 * @dev All pool types should implement this interface. Note that it also requires implementation of:
 * - `ISwapFeePercentageBounds` to specify the minimum and maximum swap fee percentages.
 * - `IUnbalancedLiquidityInvariantRatioBounds` to specify how much the invariant can change during an unbalanced
 * liquidity operation.
 */
interface IBasePool is ISwapFeePercentageBounds, IUnbalancedLiquidityInvariantRatioBounds {
    /***************************************************************************
                                   Invariant
    ***************************************************************************/

    /**
     * @notice Computes the pool's invariant.
     * @dev This function computes the invariant based on current balances (and potentially other pool state).
     * The rounding direction must be respected for the Vault to round in the pool's favor when calling this function.
     * If the invariant computation involves no precision loss (e.g. simple sum of balances), the same result can be
     * returned for both rounding directions.
     *
     * You can think of the invariant as a measure of the "value" of the pool, which is related to the total liquidity
     * (i.e., the "BPT rate" is `invariant` / `totalSupply`). Two critical properties must hold:
     *
     * 1) The invariant should not change due to a swap. In practice, it can *increase* due to swap fees, which
     * effectively add liquidity after the swap - but it should never decrease.
     *
     * 2) The invariant must be "linear"; i.e., increasing the balances proportionally must increase the invariant in
     * the same proportion: inv(a * n, b * n, c * n) = inv(a, b, c) * n
     *
     * Property #1 is required to prevent "round trip" paths that drain value from the pool (and all LP shareholders).
     * Intuitively, an accurate pricing algorithm ensures the user gets an equal value of token out given token in, so
     * the total value should not change.
     *
     * Property #2 is essential for the "fungibility" of LP shares. If it did not hold, then different users depositing
     * the same total value would get a different number of LP shares. In that case, LP shares would not be
     * interchangeable, as they must be in a fair DEX.
     *
     * @param balancesLiveScaled18 Token balances after paying yield fees, applying decimal scaling and rates
     * @param rounding Rounding direction to consider when computing the invariant
     * @return invariant The calculated invariant of the pool, represented as a uint256
     */
    function computeInvariant(
        uint256[] memory balancesLiveScaled18,
        Rounding rounding
    ) external view returns (uint256 invariant);

    /**
     * @notice Computes a new token balance, given the invariant growth ratio and all other balances.
     * @dev Similar to V2's `_getTokenBalanceGivenInvariantAndAllOtherBalances` in StableMath.
     * The pool must round up for the Vault to round in the protocol's favor when calling this function.
     *
     * @param balancesLiveScaled18 Token balances after paying yield fees, applying decimal scaling and rates
     * @param tokenInIndex The index of the token we're computing the balance for, sorted in token registration order
     * @param invariantRatio The ratio of the new invariant (after an operation) to the old
     * @return newBalance The new balance of the selected token, after the operation
     */
    function computeBalance(
        uint256[] memory balancesLiveScaled18,
        uint256 tokenInIndex,
        uint256 invariantRatio
    ) external view returns (uint256 newBalance);

    /***************************************************************************
                                       Swaps
    ***************************************************************************/

    /**
     * @notice Execute a swap in the pool.
     * @param params Swap parameters (see above for struct definition)
     * @return amountCalculatedScaled18 Calculated amount for the swap operation
     */
    function onSwap(PoolSwapParams calldata params) external returns (uint256 amountCalculatedScaled18);
}

File 6 of 63 : IERC20MultiTokenErrors.sol
// SPDX-License-Identifier: GPL-3.0-or-later

pragma solidity ^0.8.24;

interface IERC20MultiTokenErrors {
    /**
     * @notice The total supply of a pool token can't be lower than the absolute minimum.
     * @param totalSupply The total supply value that was below the minimum
     */
    error PoolTotalSupplyTooLow(uint256 totalSupply);
}

File 7 of 63 : IHooks.sol
// SPDX-License-Identifier: GPL-3.0-or-later

pragma solidity ^0.8.24;

// Explicitly import VaultTypes structs because we expect this interface to be heavily used by external developers.
// Internally, when this list gets too long, we usually just do a simple import to keep things tidy.
import {
    TokenConfig,
    LiquidityManagement,
    PoolSwapParams,
    AfterSwapParams,
    HookFlags,
    AddLiquidityKind,
    RemoveLiquidityKind,
    SwapKind
} from "./VaultTypes.sol";

/**
 * @notice Interface for pool hooks.
 * @dev Hooks are functions invoked by the Vault at specific points in the flow of each operation. This guarantees that
 * they are called in the correct order, and with the correct arguments. To maintain this security, these functions
 * should only be called by the Vault. The recommended way to do this is to derive the hook contract from `BaseHooks`,
 * then use the `onlyVault` modifier from `VaultGuard`. (See the examples in /pool-hooks.)
 */
interface IHooks {
    /***************************************************************************
                                   Register
    ***************************************************************************/

    /**
     * @notice Hook executed when a pool is registered with a non-zero hooks contract.
     * @dev Returns true if registration was successful, and false to revert the pool registration.
     * Make sure this function is properly implemented (e.g. check the factory, and check that the
     * given pool is from the factory). The Vault address will be msg.sender.
     *
     * @param factory Address of the pool factory (contract deploying the pool)
     * @param pool Address of the pool
     * @param tokenConfig An array of descriptors for the tokens the pool will manage
     * @param liquidityManagement Liquidity management flags indicating which functions are enabled
     * @return success True if the hook allowed the registration, false otherwise
     */
    function onRegister(
        address factory,
        address pool,
        TokenConfig[] memory tokenConfig,
        LiquidityManagement calldata liquidityManagement
    ) external returns (bool success);

    /**
     * @notice Return the set of hooks implemented by the contract.
     * @dev The Vault will only call hooks the pool says it supports, and of course only if a hooks contract is defined
     * (i.e., the `poolHooksContract` in `PoolRegistrationParams` is non-zero).
     * `onRegister` is the only "mandatory" hook.
     *
     * @return hookFlags Flags indicating which hooks the contract supports
     */
    function getHookFlags() external view returns (HookFlags memory hookFlags);

    /***************************************************************************
                                   Initialize
    ***************************************************************************/

    /**
     * @notice Hook executed before pool initialization.
     * @dev Called if the `shouldCallBeforeInitialize` flag is set in the configuration. Hook contracts should use
     * the `onlyVault` modifier to guarantee this is only called by the Vault.
     *
     * @param exactAmountsIn Exact amounts of input tokens
     * @param userData Optional, arbitrary data sent with the encoded request
     * @return success True if the pool wishes to proceed with initialization
     */
    function onBeforeInitialize(uint256[] memory exactAmountsIn, bytes memory userData) external returns (bool success);

    /**
     * @notice Hook to be executed after pool initialization.
     * @dev Called if the `shouldCallAfterInitialize` flag is set in the configuration. Hook contracts should use
     * the `onlyVault` modifier to guarantee this is only called by the Vault.
     *
     * @param exactAmountsIn Exact amounts of input tokens
     * @param bptAmountOut Amount of pool tokens minted during initialization
     * @param userData Optional, arbitrary data sent with the encoded request
     * @return success True if the pool accepts the initialization results
     */
    function onAfterInitialize(
        uint256[] memory exactAmountsIn,
        uint256 bptAmountOut,
        bytes memory userData
    ) external returns (bool success);

    /***************************************************************************
                                   Add Liquidity
    ***************************************************************************/

    /**
     * @notice Hook to be executed before adding liquidity.
     * @dev Called if the `shouldCallBeforeAddLiquidity` flag is set in the configuration. Hook contracts should use
     * the `onlyVault` modifier to guarantee this is only called by the Vault.
     *
     * @param router The address (usually a router contract) that initiated an add liquidity operation on the Vault
     * @param pool Pool address, used to fetch pool information from the Vault (pool config, tokens, etc.)
     * @param kind The add liquidity operation type (e.g., proportional, custom)
     * @param maxAmountsInScaled18 Maximum amounts of input tokens
     * @param minBptAmountOut Minimum amount of output pool tokens
     * @param balancesScaled18 Current pool balances, sorted in token registration order
     * @param userData Optional, arbitrary data sent with the encoded request
     * @return success True if the pool wishes to proceed with settlement
     */
    function onBeforeAddLiquidity(
        address router,
        address pool,
        AddLiquidityKind kind,
        uint256[] memory maxAmountsInScaled18,
        uint256 minBptAmountOut,
        uint256[] memory balancesScaled18,
        bytes memory userData
    ) external returns (bool success);

    /**
     * @notice Hook to be executed after adding liquidity.
     * @dev Called if the `shouldCallAfterAddLiquidity` flag is set in the configuration. The Vault will ignore
     * `hookAdjustedAmountsInRaw` unless `enableHookAdjustedAmounts` is true. Hook contracts should use the
     * `onlyVault` modifier to guarantee this is only called by the Vault.
     *
     * @param router The address (usually a router contract) that initiated an add liquidity operation on the Vault
     * @param pool Pool address, used to fetch pool information from the Vault (pool config, tokens, etc.)
     * @param kind The add liquidity operation type (e.g., proportional, custom)
     * @param amountsInScaled18 Actual amounts of tokens added, sorted in token registration order
     * @param amountsInRaw Actual amounts of tokens added, sorted in token registration order
     * @param bptAmountOut Amount of pool tokens minted
     * @param balancesScaled18 Current pool balances, sorted in token registration order
     * @param userData Additional (optional) data provided by the user
     * @return success True if the pool wishes to proceed with settlement
     * @return hookAdjustedAmountsInRaw New amountsInRaw, potentially modified by the hook
     */
    function onAfterAddLiquidity(
        address router,
        address pool,
        AddLiquidityKind kind,
        uint256[] memory amountsInScaled18,
        uint256[] memory amountsInRaw,
        uint256 bptAmountOut,
        uint256[] memory balancesScaled18,
        bytes memory userData
    ) external returns (bool success, uint256[] memory hookAdjustedAmountsInRaw);

    /***************************************************************************
                                 Remove Liquidity
    ***************************************************************************/

    /**
     * @notice Hook to be executed before removing liquidity.
     * @dev Called if the `shouldCallBeforeRemoveLiquidity` flag is set in the configuration. Hook contracts should use
     * the `onlyVault` modifier to guarantee this is only called by the Vault.
     *
     * @param router The address (usually a router contract) that initiated a remove liquidity operation on the Vault
     * @param pool Pool address, used to fetch pool information from the Vault (pool config, tokens, etc.)
     * @param kind The type of remove liquidity operation (e.g., proportional, custom)
     * @param maxBptAmountIn Maximum amount of input pool tokens
     * @param minAmountsOutScaled18 Minimum output amounts, sorted in token registration order
     * @param balancesScaled18 Current pool balances, sorted in token registration order
     * @param userData Optional, arbitrary data sent with the encoded request
     * @return success True if the pool wishes to proceed with settlement
     */
    function onBeforeRemoveLiquidity(
        address router,
        address pool,
        RemoveLiquidityKind kind,
        uint256 maxBptAmountIn,
        uint256[] memory minAmountsOutScaled18,
        uint256[] memory balancesScaled18,
        bytes memory userData
    ) external returns (bool success);

    /**
     * @notice Hook to be executed after removing liquidity.
     * @dev Called if the `shouldCallAfterRemoveLiquidity` flag is set in the configuration. The Vault will ignore
     * `hookAdjustedAmountsOutRaw` unless `enableHookAdjustedAmounts` is true. Hook contracts should use the
     * `onlyVault` modifier to guarantee this is only called by the Vault.
     *
     * @param router The address (usually a router contract) that initiated a remove liquidity operation on the Vault
     * @param pool Pool address, used to fetch pool information from the Vault (pool config, tokens, etc.)
     * @param kind The type of remove liquidity operation (e.g., proportional, custom)
     * @param bptAmountIn Amount of pool tokens to burn
     * @param amountsOutScaled18 Scaled amount of tokens to receive, sorted in token registration order
     * @param amountsOutRaw Actual amount of tokens to receive, sorted in token registration order
     * @param balancesScaled18 Current pool balances, sorted in token registration order
     * @param userData Additional (optional) data provided by the user
     * @return success True if the pool wishes to proceed with settlement
     * @return hookAdjustedAmountsOutRaw New amountsOutRaw, potentially modified by the hook
     */
    function onAfterRemoveLiquidity(
        address router,
        address pool,
        RemoveLiquidityKind kind,
        uint256 bptAmountIn,
        uint256[] memory amountsOutScaled18,
        uint256[] memory amountsOutRaw,
        uint256[] memory balancesScaled18,
        bytes memory userData
    ) external returns (bool success, uint256[] memory hookAdjustedAmountsOutRaw);

    /***************************************************************************
                                    Swap
    ***************************************************************************/

    /**
     * @notice Called before a swap to give the Pool an opportunity to perform actions.
     * @dev Called if the `shouldCallBeforeSwap` flag is set in the configuration. Hook contracts should use the
     * `onlyVault` modifier to guarantee this is only called by the Vault.
     *
     * @param params Swap parameters (see PoolSwapParams for struct definition)
     * @param pool Pool address, used to get pool information from the Vault (poolData, token config, etc.)
     * @return success True if the pool wishes to proceed with settlement
     */
    function onBeforeSwap(PoolSwapParams calldata params, address pool) external returns (bool success);

    /**
     * @notice Called after a swap to perform further actions once the balances have been updated by the swap.
     * @dev Called if the `shouldCallAfterSwap` flag is set in the configuration. The Vault will ignore
     * `hookAdjustedAmountCalculatedRaw` unless `enableHookAdjustedAmounts` is true. Hook contracts should
     * use the `onlyVault` modifier to guarantee this is only called by the Vault.
     *
     * @param params Swap parameters (see above for struct definition)
     * @return success True if the pool wishes to proceed with settlement
     * @return hookAdjustedAmountCalculatedRaw New amount calculated, potentially modified by the hook
     */
    function onAfterSwap(
        AfterSwapParams calldata params
    ) external returns (bool success, uint256 hookAdjustedAmountCalculatedRaw);

    /**
     * @notice Called after `onBeforeSwap` and before the main swap operation, if the pool has dynamic fees.
     * @dev Called if the `shouldCallComputeDynamicSwapFee` flag is set in the configuration. Hook contracts should use
     * the `onlyVault` modifier to guarantee this is only called by the Vault.
     *
     * @param params Swap parameters (see PoolSwapParams for struct definition)
     * @param pool Pool address, used to get pool information from the Vault (poolData, token config, etc.)
     * @param staticSwapFeePercentage 18-decimal FP value of the static swap fee percentage, for reference
     * @return success True if the pool wishes to proceed with settlement
     * @return dynamicSwapFeePercentage Value of the swap fee percentage, as an 18-decimal FP value
     */
    function onComputeDynamicSwapFeePercentage(
        PoolSwapParams calldata params,
        address pool,
        uint256 staticSwapFeePercentage
    ) external view returns (bool success, uint256 dynamicSwapFeePercentage);
}

File 8 of 63 : IPoolLiquidity.sol
// SPDX-License-Identifier: GPL-3.0-or-later

pragma solidity ^0.8.24;

/// @notice Interface for custom liquidity operations.
interface IPoolLiquidity {
    /**
     * @notice Add liquidity to the pool with a custom hook.
     * @param router The address (usually a router contract) that initiated a swap operation on the Vault
     * @param maxAmountsInScaled18 Maximum input amounts, sorted in token registration order
     * @param minBptAmountOut Minimum amount of output pool tokens
     * @param balancesScaled18 Current pool balances, sorted in token registration order
     * @param userData Arbitrary data sent with the encoded request
     * @return amountsInScaled18 Input token amounts, sorted in token registration order
     * @return bptAmountOut Calculated pool token amount to receive
     * @return swapFeeAmountsScaled18 The amount of swap fees charged for each token
     * @return returnData Arbitrary data with an encoded response from the pool
     */
    function onAddLiquidityCustom(
        address router,
        uint256[] memory maxAmountsInScaled18,
        uint256 minBptAmountOut,
        uint256[] memory balancesScaled18,
        bytes memory userData
    )
        external
        returns (
            uint256[] memory amountsInScaled18,
            uint256 bptAmountOut,
            uint256[] memory swapFeeAmountsScaled18,
            bytes memory returnData
        );

    /**
     * @notice Remove liquidity from the pool with a custom hook.
     * @param router The address (usually a router contract) that initiated a swap operation on the Vault
     * @param maxBptAmountIn Maximum amount of input pool tokens
     * @param minAmountsOutScaled18 Minimum output amounts, sorted in token registration order
     * @param balancesScaled18 Current pool balances, sorted in token registration order
     * @param userData Arbitrary data sent with the encoded request
     * @return bptAmountIn Calculated pool token amount to burn
     * @return amountsOutScaled18 Amount of tokens to receive, sorted in token registration order
     * @return swapFeeAmountsScaled18 The amount of swap fees charged for each token
     * @return returnData Arbitrary data with an encoded response from the pool
     */
    function onRemoveLiquidityCustom(
        address router,
        uint256 maxBptAmountIn,
        uint256[] memory minAmountsOutScaled18,
        uint256[] memory balancesScaled18,
        bytes memory userData
    )
        external
        returns (
            uint256 bptAmountIn,
            uint256[] memory amountsOutScaled18,
            uint256[] memory swapFeeAmountsScaled18,
            bytes memory returnData
        );
}

File 9 of 63 : IProtocolFeeController.sol
// SPDX-License-Identifier: GPL-3.0-or-later

pragma solidity ^0.8.24;

import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";

import { IVault } from "./IVault.sol";

/// @notice Contract that handles protocol and pool creator fees for the Vault.
interface IProtocolFeeController {
    /**
     * @notice Emitted when the protocol swap fee percentage is updated.
     * @param swapFeePercentage The updated protocol swap fee percentage
     */
    event GlobalProtocolSwapFeePercentageChanged(uint256 swapFeePercentage);

    /**
     * @notice Emitted when the protocol yield fee percentage is updated.
     * @param yieldFeePercentage The updated protocol yield fee percentage
     */
    event GlobalProtocolYieldFeePercentageChanged(uint256 yieldFeePercentage);

    /**
     * @notice Emitted when the protocol swap fee percentage is updated for a specific pool.
     * @param pool The pool whose protocol swap fee will be changed
     * @param swapFeePercentage The updated protocol swap fee percentage
     */
    event ProtocolSwapFeePercentageChanged(address indexed pool, uint256 swapFeePercentage);

    /**
     * @notice Emitted when the protocol yield fee percentage is updated for a specific pool.
     * @param pool The pool whose protocol yield fee will be changed
     * @param yieldFeePercentage The updated protocol yield fee percentage
     */
    event ProtocolYieldFeePercentageChanged(address indexed pool, uint256 yieldFeePercentage);

    /**
     * @notice Emitted when the pool creator swap fee percentage of a pool is updated.
     * @param pool The pool whose pool creator swap fee will be changed
     * @param poolCreatorSwapFeePercentage The new pool creator swap fee percentage for the pool
     */
    event PoolCreatorSwapFeePercentageChanged(address indexed pool, uint256 poolCreatorSwapFeePercentage);

    /**
     * @notice Emitted when the pool creator yield fee percentage of a pool is updated.
     * @param pool The pool whose pool creator yield fee will be changed
     * @param poolCreatorYieldFeePercentage The new pool creator yield fee percentage for the pool
     */
    event PoolCreatorYieldFeePercentageChanged(address indexed pool, uint256 poolCreatorYieldFeePercentage);

    /**
     * @notice Logs the collection of protocol swap fees in a specific token and amount.
     * @dev Note that since charging protocol fees (i.e., distributing tokens between pool and fee balances) occurs
     * in the Vault, but fee collection happens in the ProtocolFeeController, the swap fees reported here may encompass
     * multiple operations.
     *
     * @param pool The pool on which the swap fee was charged
     * @param token The token in which the swap fee was charged
     * @param amount The amount of the token collected in fees
     */
    event ProtocolSwapFeeCollected(address indexed pool, IERC20 indexed token, uint256 amount);

    /**
     * @notice Logs the collection of protocol yield fees in a specific token and amount.
     * @dev Note that since charging protocol fees (i.e., distributing tokens between pool and fee balances) occurs
     * in the Vault, but fee collection happens in the ProtocolFeeController, the yield fees reported here may encompass
     * multiple operations.
     *
     * @param pool The pool on which the yield fee was charged
     * @param token The token in which the yield fee was charged
     * @param amount The amount of the token collected in fees
     */
    event ProtocolYieldFeeCollected(address indexed pool, IERC20 indexed token, uint256 amount);

    /**
     * @notice Logs the withdrawal of protocol fees in a specific token and amount.
     * @param pool The pool from which protocol fees are being withdrawn
     * @param token The token being withdrawn
     * @param recipient The recipient of the funds
     * @param amount The amount of the fee token that was withdrawn
     */
    event ProtocolFeesWithdrawn(address indexed pool, IERC20 indexed token, address indexed recipient, uint256 amount);

    /**
     * @notice Logs the withdrawal of pool creator fees in a specific token and amount.
     * @param pool The pool from which pool creator fees are being withdrawn
     * @param token The token being withdrawn
     * @param recipient The recipient of the funds (the pool creator if permissionless, or another account)
     * @param amount The amount of the fee token that was withdrawn
     */
    event PoolCreatorFeesWithdrawn(
        address indexed pool,
        IERC20 indexed token,
        address indexed recipient,
        uint256 amount
    );

    /**
     * @notice Error raised when the protocol swap fee percentage exceeds the maximum allowed value.
     * @dev Note that this is checked for both the global and pool-specific protocol swap fee percentages.
     */
    error ProtocolSwapFeePercentageTooHigh();

    /**
     * @notice Error raised when the protocol yield fee percentage exceeds the maximum allowed value.
     * @dev Note that this is checked for both the global and pool-specific protocol yield fee percentages.
     */
    error ProtocolYieldFeePercentageTooHigh();

    /**
     * @notice Error raised if there is no pool creator on a withdrawal attempt from the given pool.
     * @param pool The pool with no creator
     */
    error PoolCreatorNotRegistered(address pool);

    /**
     * @notice Error raised if the wrong account attempts to withdraw pool creator fees.
     * @param caller The account attempting to withdraw pool creator fees
     * @param pool The pool the caller tried to withdraw from
     */
    error CallerIsNotPoolCreator(address caller, address pool);

    /// @notice Error raised when the pool creator swap or yield fee percentage exceeds the maximum allowed value.
    error PoolCreatorFeePercentageTooHigh();

    /**
     * @notice Get the address of the main Vault contract.
     * @return vault The Vault address
     */
    function vault() external view returns (IVault);

    /**
     * @notice Collects aggregate fees from the Vault for a given pool.
     * @param pool The pool with aggregate fees
     */
    function collectAggregateFees(address pool) external;

    /**
     * @notice Getter for the current global protocol swap fee.
     * @return protocolSwapFeePercentage The global protocol swap fee percentage
     */
    function getGlobalProtocolSwapFeePercentage() external view returns (uint256 protocolSwapFeePercentage);

    /**
     * @notice Getter for the current global protocol yield fee.
     * @return protocolYieldFeePercentage The global protocol yield fee percentage
     */
    function getGlobalProtocolYieldFeePercentage() external view returns (uint256 protocolYieldFeePercentage);

    /**
     * @notice Getter for the current protocol swap fee for a given pool.
     * @param pool The address of the pool
     * @return protocolSwapFeePercentage The global protocol swap fee percentage
     * @return isOverride True if the protocol fee has been overridden
     */
    function getPoolProtocolSwapFeeInfo(
        address pool
    ) external view returns (uint256 protocolSwapFeePercentage, bool isOverride);

    /**
     * @notice Getter for the current protocol yield fee for a given pool.
     * @param pool The address of the pool
     * @return protocolYieldFeePercentage The global protocol yield fee percentage
     * @return isOverride True if the protocol fee has been overridden
     */
    function getPoolProtocolYieldFeeInfo(
        address pool
    ) external view returns (uint256 protocolYieldFeePercentage, bool isOverride);

    /**
     * @notice Returns the amount of each pool token allocated to the protocol for withdrawal.
     * @dev Includes both swap and yield fees.
     * @param pool The address of the pool on which fees were collected
     * @return feeAmounts The total amounts of each token available for withdrawal, sorted in token registration order
     */
    function getProtocolFeeAmounts(address pool) external view returns (uint256[] memory feeAmounts);

    /**
     * @notice Returns the amount of each pool token allocated to the pool creator for withdrawal.
     * @dev Includes both swap and yield fees.
     * @param pool The address of the pool on which fees were collected
     * @return feeAmounts The total amounts of each token available for withdrawal, sorted in token registration order
     */
    function getPoolCreatorFeeAmounts(address pool) external view returns (uint256[] memory feeAmounts);

    /**
     * @notice Returns a calculated aggregate percentage from protocol and pool creator fee percentages.
     * @dev Not tied to any particular pool; this just performs the low-level "additive fee" calculation. Note that
     * pool creator fees are calculated based on creatorAndLpFees, and not in totalFees. Since aggregate fees are
     * stored in the Vault with 24-bit precision, this will truncate any values that require greater precision.
     * It is expected that pool creators will negotiate with the DAO and agree on reasonable values for these fee
     * components, but the truncation ensures it will not revert for any valid set of fee percentages.
     *
     * See example below:
     *
     * tokenOutAmount = 10000; poolSwapFeePct = 10%; protocolFeePct = 40%; creatorFeePct = 60%
     * totalFees = tokenOutAmount * poolSwapFeePct = 10000 * 10% = 1000
     * protocolFees = totalFees * protocolFeePct = 1000 * 40% = 400
     * creatorAndLpFees = totalFees - protocolFees = 1000 - 400 = 600
     * creatorFees = creatorAndLpFees * creatorFeePct = 600 * 60% = 360
     * lpFees (will stay in the pool) = creatorAndLpFees - creatorFees = 600 - 360 = 240
     *
     * @param protocolFeePercentage The protocol portion of the aggregate fee percentage
     * @param poolCreatorFeePercentage The pool creator portion of the aggregate fee percentage
     * @return aggregateFeePercentage The computed aggregate percentage
     */
    function computeAggregateFeePercentage(
        uint256 protocolFeePercentage,
        uint256 poolCreatorFeePercentage
    ) external pure returns (uint256 aggregateFeePercentage);

    /**
     * @notice Override the protocol swap fee percentage for a specific pool.
     * @dev This is a permissionless call, and will set the pool's fee to the current global fee, if it is different
     * from the current value, and the fee is not controlled by governance (i.e., has never been overridden).
     *
     * @param pool The pool for which we are setting the protocol swap fee
     */
    function updateProtocolSwapFeePercentage(address pool) external;

    /**
     * @notice Override the protocol yield fee percentage for a specific pool.
     * @dev This is a permissionless call, and will set the pool's fee to the current global fee, if it is different
     * from the current value, and the fee is not controlled by governance (i.e., has never been overridden).
     *
     * @param pool The pool for which we are setting the protocol yield fee
     */
    function updateProtocolYieldFeePercentage(address pool) external;

    /***************************************************************************
                                Permissioned Functions
    ***************************************************************************/

    /**
     * @notice Add pool-specific entries to the protocol swap and yield percentages.
     * @dev This must be called from the Vault during pool registration. It will initialize the pool to the global
     * protocol fee percentage values (or 0, if the `protocolFeeExempt` flags is set), and return the initial aggregate
     * fee percentages, based on an initial pool creator fee of 0.
     *
     * @param pool The address of the pool being registered
     * @param poolCreator The address of the pool creator (or 0 if there won't be a pool creator fee)
     * @param protocolFeeExempt If true, the pool is initially exempt from protocol fees
     * @return aggregateSwapFeePercentage The initial aggregate swap fee percentage
     * @return aggregateYieldFeePercentage The initial aggregate yield fee percentage
     */
    function registerPool(
        address pool,
        address poolCreator,
        bool protocolFeeExempt
    ) external returns (uint256 aggregateSwapFeePercentage, uint256 aggregateYieldFeePercentage);

    /**
     * @notice Set the global protocol swap fee percentage, used by standard pools.
     * @param newProtocolSwapFeePercentage The new protocol swap fee percentage
     */
    function setGlobalProtocolSwapFeePercentage(uint256 newProtocolSwapFeePercentage) external;

    /**
     * @notice Set the global protocol yield fee percentage, used by standard pools.
     * @param newProtocolYieldFeePercentage The new protocol yield fee percentage
     */
    function setGlobalProtocolYieldFeePercentage(uint256 newProtocolYieldFeePercentage) external;

    /**
     * @notice Override the protocol swap fee percentage for a specific pool.
     * @param pool The address of the pool for which we are setting the protocol swap fee
     * @param newProtocolSwapFeePercentage The new protocol swap fee percentage for the pool
     */
    function setProtocolSwapFeePercentage(address pool, uint256 newProtocolSwapFeePercentage) external;

    /**
     * @notice Override the protocol yield fee percentage for a specific pool.
     * @param pool The address of the pool for which we are setting the protocol yield fee
     * @param newProtocolYieldFeePercentage The new protocol yield fee percentage for the pool
     */
    function setProtocolYieldFeePercentage(address pool, uint256 newProtocolYieldFeePercentage) external;

    /**
     * @notice Assigns a new pool creator swap fee percentage to the specified pool.
     * @dev Fees are divided between the protocol, pool creator, and LPs. The pool creator percentage is applied to
     * the "net" amount after protocol fees, and divides the remainder between the pool creator and LPs. If the
     * pool creator fee is near 100%, almost none of the fee amount remains in the pool for LPs.
     *
     * @param pool The address of the pool for which the pool creator fee will be changed
     * @param poolCreatorSwapFeePercentage The new pool creator swap fee percentage to apply to the pool
     */
    function setPoolCreatorSwapFeePercentage(address pool, uint256 poolCreatorSwapFeePercentage) external;

    /**
     * @notice Assigns a new pool creator yield fee percentage to the specified pool.
     * @dev Fees are divided between the protocol, pool creator, and LPs. The pool creator percentage is applied to
     * the "net" amount after protocol fees, and divides the remainder between the pool creator and LPs. If the
     * pool creator fee is near 100%, almost none of the fee amount remains in the pool for LPs.
     *
     * @param pool The address of the pool for which the pool creator fee will be changed
     * @param poolCreatorYieldFeePercentage The new pool creator yield fee percentage to apply to the pool
     */
    function setPoolCreatorYieldFeePercentage(address pool, uint256 poolCreatorYieldFeePercentage) external;

    /**
     * @notice Withdraw collected protocol fees for a given pool (all tokens). This is a permissioned function.
     * @dev Sends swap and yield protocol fees to the recipient.
     * @param pool The pool on which fees were collected
     * @param recipient Address to send the tokens
     */
    function withdrawProtocolFees(address pool, address recipient) external;

    /**
     * @notice Withdraw collected protocol fees for a given pool and a given token. This is a permissioned function.
     * @dev Sends swap and yield protocol fees to the recipient.
     * @param pool The pool on which fees were collected
     * @param recipient Address to send the tokens
     * @param token Token to withdraw
     */
    function withdrawProtocolFeesForToken(address pool, address recipient, IERC20 token) external;

    /**
     * @notice Withdraw collected pool creator fees for a given pool. This is a permissioned function.
     * @dev Sends swap and yield pool creator fees to the recipient.
     * @param pool The pool on which fees were collected
     * @param recipient Address to send the tokens
     */
    function withdrawPoolCreatorFees(address pool, address recipient) external;

    /**
     * @notice Withdraw collected pool creator fees for a given pool.
     * @dev Sends swap and yield pool creator fees to the registered poolCreator. Since this is a known and immutable
     * value, this function is permissionless.
     *
     * @param pool The pool on which fees were collected
     */
    function withdrawPoolCreatorFees(address pool) external;
}

File 10 of 63 : ISwapFeePercentageBounds.sol
// SPDX-License-Identifier: GPL-3.0-or-later

pragma solidity ^0.8.24;

/**
 * @notice Return the minimum/maximum swap fee percentages for a pool.
 * @dev The Vault does not enforce bounds on swap fee percentages; `IBasePool` implements this interface to ensure
 * that new pool developers think about and set these bounds according to their specific pool type.
 *
 * A minimum swap fee might be necessary to ensure mathematical soundness (e.g., Weighted Pools, which use the power
 * function in the invariant). A maximum swap fee is general protection for users. With no limits at the Vault level,
 * a pool could specify a near 100% swap fee, effectively disabling trading. Though there are some use cases, such as
 * LVR/MEV strategies, where a very high fee makes sense.
 *
 * Note that the Vault does ensure that dynamic and aggregate fees are less than 100% to prevent attempting to allocate
 * more fees than were collected by the operation. The true `MAX_FEE_PERCENTAGE` is defined in VaultTypes.sol, and is
 * the highest value below 100% that satisfies the precision requirements.
 */
interface ISwapFeePercentageBounds {
    /// @return minimumSwapFeePercentage The minimum swap fee percentage for a pool
    function getMinimumSwapFeePercentage() external view returns (uint256 minimumSwapFeePercentage);

    /// @return maximumSwapFeePercentage The maximum swap fee percentage for a pool
    function getMaximumSwapFeePercentage() external view returns (uint256 maximumSwapFeePercentage);
}

File 11 of 63 : IUnbalancedLiquidityInvariantRatioBounds.sol
// SPDX-License-Identifier: GPL-3.0-or-later

pragma solidity ^0.8.24;

/**
 * @notice Return the minimum/maximum invariant ratios allowed during an unbalanced liquidity operation.
 * @dev The Vault does not enforce any "baseline" bounds on invariant ratios, since such bounds are highly specific
 * and dependent on the math of each pool type. Instead, the Vault reads invariant ratio bounds from the pools.
 * `IBasePool` implements this interface to ensure that new pool developers think about and set these bounds according
 * to their pool type's math.
 *
 * For instance, Balancer Weighted Pool math involves exponentiation (the `pow` function), which uses natural
 * logarithms and a discrete Taylor series expansion to compute x^y values for the 18-decimal floating point numbers
 * used in all Vault computations. See `LogExpMath` and `WeightedMath` for a derivation of the bounds for these pools.
 */
interface IUnbalancedLiquidityInvariantRatioBounds {
    /// @return minimumInvariantRatio The minimum invariant ratio for a pool during unbalanced remove liquidity
    function getMinimumInvariantRatio() external view returns (uint256 minimumInvariantRatio);

    /// @return maximumInvariantRatio The maximum invariant ratio for a pool during unbalanced add liquidity
    function getMaximumInvariantRatio() external view returns (uint256 maximumInvariantRatio);
}

File 12 of 63 : IVault.sol
// SPDX-License-Identifier: GPL-3.0-or-later

pragma solidity ^0.8.24;

import { IAuthentication } from "../solidity-utils/helpers/IAuthentication.sol";
import { IVaultExtension } from "./IVaultExtension.sol";
import { IVaultErrors } from "./IVaultErrors.sol";
import { IVaultEvents } from "./IVaultEvents.sol";
import { IVaultAdmin } from "./IVaultAdmin.sol";
import { IVaultMain } from "./IVaultMain.sol";

/// @notice Composite interface for all Vault operations: swap, add/remove liquidity, and associated queries.
interface IVault is IVaultMain, IVaultExtension, IVaultAdmin, IVaultErrors, IVaultEvents, IAuthentication {
    /// @return vault The main Vault address.
    function vault() external view override(IVaultAdmin, IVaultExtension) returns (IVault);
}

File 13 of 63 : IVaultAdmin.sol
// SPDX-License-Identifier: GPL-3.0-or-later

pragma solidity ^0.8.24;

import { IERC4626 } from "@openzeppelin/contracts/interfaces/IERC4626.sol";

import { IProtocolFeeController } from "./IProtocolFeeController.sol";
import { IAuthorizer } from "./IAuthorizer.sol";
import { IVault } from "./IVault.sol";

/**
 * @notice Interface for functions defined on the `VaultAdmin` contract.
 * @dev `VaultAdmin` is the Proxy extension of `VaultExtension`, and handles the least critical operations,
 * as two delegate calls add gas to each call. Most of the permissioned calls are here.
 */
interface IVaultAdmin {
    /*******************************************************************************
                               Constants and immutables
    *******************************************************************************/

    /**
     * @notice Returns the main Vault address.
     * @dev The main Vault contains the entrypoint and main liquidity operation implementations.
     * @return vault The address of the main Vault
     */
    function vault() external view returns (IVault);

    /**
     * @notice Returns the Vault's pause window end time.
     * @dev This value is immutable, and represents the timestamp after which the Vault can no longer be paused
     * by governance. Balancer timestamps are 32 bits.
     *
     * @return pauseWindowEndTime The timestamp when the Vault's pause window ends
     */
    function getPauseWindowEndTime() external view returns (uint32 pauseWindowEndTime);

    /**
     * @notice Returns the Vault's buffer period duration.
     * @dev This value is immutable. It represents the period during which, if paused, the Vault will remain paused.
     * This ensures there is time available to address whatever issue caused the Vault to be paused. Balancer
     * timestamps are 32 bits.
     *
     * @return bufferPeriodDuration The length of the buffer period in seconds
     */
    function getBufferPeriodDuration() external view returns (uint32 bufferPeriodDuration);

    /**
     * @notice Returns the Vault's buffer period end time.
     * @dev This value is immutable. If already paused, the Vault can be unpaused until this timestamp. Balancer
     * timestamps are 32 bits.
     *
     * @return bufferPeriodEndTime The timestamp after which the Vault remains permanently unpaused
     */
    function getBufferPeriodEndTime() external view returns (uint32 bufferPeriodEndTime);

    /**
     * @notice Get the minimum number of tokens in a pool.
     * @dev We expect the vast majority of pools to be 2-token.
     * @return minTokens The minimum token count of a pool
     */
    function getMinimumPoolTokens() external pure returns (uint256 minTokens);

    /**
     * @notice Get the maximum number of tokens in a pool.
     * @return maxTokens The maximum token count of a pool
     */
    function getMaximumPoolTokens() external pure returns (uint256 maxTokens);

    /**
     * @notice Get the minimum total supply of pool tokens (BPT) for an initialized pool.
     * @dev This prevents pools from being completely drained. When the pool is initialized, this minimum amount of BPT
     * is minted to the zero address. This is an 18-decimal floating point number; BPT are always 18 decimals.
     *
     * @return poolMinimumTotalSupply The minimum total supply a pool can have after initialization
     */
    function getPoolMinimumTotalSupply() external pure returns (uint256 poolMinimumTotalSupply);

    /**
     * @notice Get the minimum total supply of an ERC4626 wrapped token buffer in the Vault.
     * @dev This prevents buffers from being completely drained. When the buffer is initialized, this minimum number
     * of shares is added to the shares resulting from the initial deposit. Buffer total supply accounting is internal
     * to the Vault, as buffers are not tokenized.
     *
     * @return bufferMinimumTotalSupply The minimum total supply a buffer can have after initialization
     */
    function getBufferMinimumTotalSupply() external pure returns (uint256 bufferMinimumTotalSupply);

    /**
     * @notice Get the minimum trade amount in a pool operation.
     * @dev This limit is applied to the 18-decimal "upscaled" amount in any operation (swap, add/remove liquidity).
     * @return minimumTradeAmount The minimum trade amount as an 18-decimal floating point number
     */
    function getMinimumTradeAmount() external view returns (uint256 minimumTradeAmount);

    /**
     * @notice Get the minimum wrap amount in a buffer operation.
     * @dev This limit is applied to the wrap operation amount, in native underlying token decimals.
     * @return minimumWrapAmount The minimum wrap amount in native underlying token decimals
     */
    function getMinimumWrapAmount() external view returns (uint256 minimumWrapAmount);

    /*******************************************************************************
                                    Vault Pausing
    *******************************************************************************/

    /**
     * @notice Indicates whether the Vault is paused.
     * @dev If the Vault is paused, all non-Recovery Mode state-changing operations on pools will revert. Note that
     * ERC4626 buffers and the Vault have separate and independent pausing mechanisms. Pausing the Vault does not
     * also pause buffers (though we anticipate they would likely be paused and unpaused together). Call
     * `areBuffersPaused` to check the pause state of the buffers.
     *
     * @return vaultPaused True if the Vault is paused
     */
    function isVaultPaused() external view returns (bool vaultPaused);

    /**
     * @notice Returns the paused status, and end times of the Vault's pause window and buffer period.
     * @dev Balancer timestamps are 32 bits.
     * @return vaultPaused True if the Vault is paused
     * @return vaultPauseWindowEndTime The timestamp of the end of the Vault's pause window
     * @return vaultBufferPeriodEndTime The timestamp of the end of the Vault's buffer period
     */
    function getVaultPausedState()
        external
        view
        returns (bool vaultPaused, uint32 vaultPauseWindowEndTime, uint32 vaultBufferPeriodEndTime);

    /**
     * @notice Pause the Vault: an emergency action which disables all operational state-changing functions on pools.
     * @dev This is a permissioned function that will only work during the Pause Window set during deployment.
     * Note that ERC4626 buffer operations have an independent pause mechanism, which is not affected by pausing
     * the Vault. Custom routers could still wrap/unwrap using buffers while the Vault is paused, unless buffers
     * are also paused (with `pauseVaultBuffers`).
     */
    function pauseVault() external;

    /**
     * @notice Reverse a `pause` operation, and restore Vault pool operations to normal functionality.
     * @dev This is a permissioned function that will only work on a paused Vault within the Buffer Period set during
     * deployment. Note that the Vault will automatically unpause after the Buffer Period expires. As noted above,
     * ERC4626 buffers and Vault operations on pools are independent. Unpausing the Vault does not reverse
     * `pauseVaultBuffers`. If buffers were also paused, they will remain in that state until explicitly unpaused.
     */
    function unpauseVault() external;

    /*******************************************************************************
                                    Pool Pausing
    *******************************************************************************/

    /**
     * @notice Pause the Pool: an emergency action which disables all pool functions.
     * @dev This is a permissioned function that will only work during the Pause Window set during pool factory
     * deployment.
     *
     * @param pool The pool being paused
     */
    function pausePool(address pool) external;

    /**
     * @notice Reverse a `pause` operation, and restore the Pool to normal functionality.
     * @dev This is a permissioned function that will only work on a paused Pool within the Buffer Period set during
     * deployment. Note that the Pool will automatically unpause after the Buffer Period expires.
     *
     * @param pool The pool being unpaused
     */
    function unpausePool(address pool) external;

    /*******************************************************************************
                                         Fees
    *******************************************************************************/

    /**
     * @notice Assigns a new static swap fee percentage to the specified pool.
     * @dev This is a permissioned function, disabled if the pool is paused. The swap fee percentage must be within
     * the bounds specified by the pool's implementation of `ISwapFeePercentageBounds`.
     * Emits the SwapFeePercentageChanged event.
     *
     * @param pool The address of the pool for which the static swap fee will be changed
     * @param swapFeePercentage The new swap fee percentage to apply to the pool
     */
    function setStaticSwapFeePercentage(address pool, uint256 swapFeePercentage) external;

    /**
     * @notice Collects accumulated aggregate swap and yield fees for the specified pool.
     * @dev Fees are sent to the ProtocolFeeController address.
     * @param pool The pool on which all aggregate fees should be collected
     * @return swapFeeAmounts An array with the total swap fees collected, sorted in token registration order
     * @return yieldFeeAmounts An array with the total yield fees collected, sorted in token registration order
     */
    function collectAggregateFees(
        address pool
    ) external returns (uint256[] memory swapFeeAmounts, uint256[] memory yieldFeeAmounts);

    /**
     * @notice Update an aggregate swap fee percentage.
     * @dev Can only be called by the current protocol fee controller. Called when governance overrides a protocol fee
     * for a specific pool, or to permissionlessly update a pool to a changed global protocol fee value (if the pool's
     * fee has not previously been set by governance). Ensures the aggregate percentage <= FixedPoint.ONE, and also
     * that the final value does not lose precision when stored in 24 bits (see `FEE_BITLENGTH` in VaultTypes.sol).
     * Emits an `AggregateSwapFeePercentageChanged` event.
     *
     * @param pool The pool whose swap fee percentage will be updated
     * @param newAggregateSwapFeePercentage The new aggregate swap fee percentage
     */
    function updateAggregateSwapFeePercentage(address pool, uint256 newAggregateSwapFeePercentage) external;

    /**
     * @notice Update an aggregate yield fee percentage.
     * @dev Can only be called by the current protocol fee controller. Called when governance overrides a protocol fee
     * for a specific pool, or to permissionlessly update a pool to a changed global protocol fee value (if the pool's
     * fee has not previously been set by governance). Ensures the aggregate percentage <= FixedPoint.ONE, and also
     * that the final value does not lose precision when stored in 24 bits (see `FEE_BITLENGTH` in VaultTypes.sol).
     * Emits an `AggregateYieldFeePercentageChanged` event.
     *
     * @param pool The pool whose yield fee percentage will be updated
     * @param newAggregateYieldFeePercentage The new aggregate yield fee percentage
     */
    function updateAggregateYieldFeePercentage(address pool, uint256 newAggregateYieldFeePercentage) external;

    /**
     * @notice Sets a new Protocol Fee Controller for the Vault.
     * @dev This is a permissioned call. Emits a `ProtocolFeeControllerChanged` event.
     * @param newProtocolFeeController The address of the new Protocol Fee Controller
     */
    function setProtocolFeeController(IProtocolFeeController newProtocolFeeController) external;

    /*******************************************************************************
                                    Recovery Mode
    *******************************************************************************/

    /**
     * @notice Enable recovery mode for a pool.
     * @dev This is a permissioned function. It enables a safe proportional withdrawal, with no external calls.
     * Since there are no external calls, ensuring that entering Recovery Mode cannot fail, we cannot compute and so
     * must forfeit any yield fees between the last operation and enabling Recovery Mode. For the same reason, live
     * balances cannot be updated while in Recovery Mode, as doing so might cause withdrawals to fail.
     *
     * @param pool The address of the pool
     */
    function enableRecoveryMode(address pool) external;

    /**
     * @notice Disable recovery mode for a pool.
     * @dev This is a permissioned function. It re-syncs live balances (which could not be updated during
     * Recovery Mode), forfeiting any yield fees that accrued while enabled. It makes external calls, and could
     * potentially fail if there is an issue with any associated Rate Providers.
     *
     * @param pool The address of the pool
     */
    function disableRecoveryMode(address pool) external;

    /*******************************************************************************
                                  Query Functionality
    *******************************************************************************/

    /**
     * @notice Disables query functionality on the Vault. Can only be called by governance.
     * @dev The query functions rely on a specific EVM feature to detect static calls. Query operations are exempt from
     * settlement constraints, so it's critical that no state changes can occur. We retain the ability to disable
     * queries in the unlikely event that EVM changes violate its assumptions (perhaps on an L2).
     * This function can be acted upon as an emergency measure in ambiguous contexts where it's not 100% clear whether
     * disabling queries is completely necessary; queries can still be re-enabled after this call.
     */
    function disableQuery() external;

    /**
     * @notice Disables query functionality permanently on the Vault. Can only be called by governance.
     * @dev Shall only be used when there is no doubt that queries pose a fundamental threat to the system.
     */
    function disableQueryPermanently() external;

    /**
     * @notice Enables query functionality on the Vault. Can only be called by governance.
     * @dev Only works if queries are not permanently disabled.
     */
    function enableQuery() external;

    /*******************************************************************************
                                  ERC4626 Buffers
    *******************************************************************************/

    /**
     * @notice Indicates whether the Vault buffers are paused.
     * @dev When buffers are paused, all buffer operations (i.e., calls on the Router with `isBuffer` true)
     * will revert. Pausing buffers is reversible. Note that ERC4626 buffers and the Vault have separate and
     * independent pausing mechanisms. Pausing the Vault does not also pause buffers (though we anticipate they
     * would likely be paused and unpaused together). Call `isVaultPaused` to check the pause state of the Vault.
     *
     * @return buffersPaused True if the Vault buffers are paused
     */
    function areBuffersPaused() external view returns (bool buffersPaused);

    /**
     * @notice Pauses native vault buffers globally.
     * @dev When buffers are paused, it's not possible to add liquidity or wrap/unwrap tokens using the Vault's
     * `erc4626BufferWrapOrUnwrap` primitive. However, it's still possible to remove liquidity. Currently it's not
     * possible to pause vault buffers individually.
     *
     * This is a permissioned call, and is reversible (see `unpauseVaultBuffers`). Note that the Vault has a separate
     * and independent pausing mechanism. It is possible to pause the Vault (i.e. pool operations), without affecting
     * buffers, and vice versa.
     */
    function pauseVaultBuffers() external;

    /**
     * @notice Unpauses native vault buffers globally.
     * @dev When buffers are paused, it's not possible to add liquidity or wrap/unwrap tokens using the Vault's
     * `erc4626BufferWrapOrUnwrap` primitive. However, it's still possible to remove liquidity. As noted above,
     * ERC4626 buffers and Vault operations on pools are independent. Unpausing buffers does not reverse `pauseVault`.
     * If the Vault was also paused, it will remain in that state until explicitly unpaused.
     *
     * This is a permissioned call.
     */
    function unpauseVaultBuffers() external;

    /**
     * @notice Initializes buffer for the given wrapped token.
     * @param wrappedToken Address of the wrapped token that implements IERC4626
     * @param amountUnderlyingRaw Amount of underlying tokens that will be deposited into the buffer
     * @param amountWrappedRaw Amount of wrapped tokens that will be deposited into the buffer
     * @param minIssuedShares Minimum amount of shares to receive from the buffer, expressed in underlying token
     * native decimals
     * @param sharesOwner Address that will own the deposited liquidity. Only this address will be able to remove
     * liquidity from the buffer
     * @return issuedShares the amount of tokens sharesOwner has in the buffer, expressed in underlying token amounts.
     * (it is the BPT of an internal ERC4626 buffer). It is expressed in underlying token native decimals.
     */
    function initializeBuffer(
        IERC4626 wrappedToken,
        uint256 amountUnderlyingRaw,
        uint256 amountWrappedRaw,
        uint256 minIssuedShares,
        address sharesOwner
    ) external returns (uint256 issuedShares);

    /**
     * @notice Adds liquidity to an internal ERC4626 buffer in the Vault, proportionally.
     * @dev The buffer needs to be initialized beforehand.
     * @param wrappedToken Address of the wrapped token that implements IERC4626
     * @param maxAmountUnderlyingInRaw Maximum amount of underlying tokens to add to the buffer. It is expressed in
     * underlying token native decimals
     * @param maxAmountWrappedInRaw Maximum amount of wrapped tokens to add to the buffer. It is expressed in wrapped
     * token native decimals
     * @param exactSharesToIssue The value in underlying tokens that `sharesOwner` wants to add to the buffer,
     * in underlying token decimals
     * @param sharesOwner Address that will own the deposited liquidity. Only this address will be able to remove
     * liquidity from the buffer
     * @return amountUnderlyingRaw Amount of underlying tokens deposited into the buffer
     * @return amountWrappedRaw Amount of wrapped tokens deposited into the buffer
     */
    function addLiquidityToBuffer(
        IERC4626 wrappedToken,
        uint256 maxAmountUnderlyingInRaw,
        uint256 maxAmountWrappedInRaw,
        uint256 exactSharesToIssue,
        address sharesOwner
    ) external returns (uint256 amountUnderlyingRaw, uint256 amountWrappedRaw);

    /**
     * @notice Removes liquidity from an internal ERC4626 buffer in the Vault.
     * @dev Only proportional exits are supported, and the sender has to be the owner of the shares.
     * This function unlocks the Vault just for this operation; it does not work with a Router as an entrypoint.
     *
     * Pre-conditions:
     * - The buffer needs to be initialized.
     * - sharesOwner is the original msg.sender, it needs to be checked in the Router. That's why
     *   this call is authenticated; only routers approved by the DAO can remove the liquidity of a buffer.
     * - The buffer needs to have some liquidity and have its asset registered in `_bufferAssets` storage.
     *
     * @param wrappedToken Address of the wrapped token that implements IERC4626
     * @param sharesToRemove Amount of shares to remove from the buffer. Cannot be greater than sharesOwner's
     * total shares. It is expressed in underlying token native decimals
     * @param minAmountUnderlyingOutRaw Minimum amount of underlying tokens to receive from the buffer. It is expressed
     * in underlying token native decimals
     * @param minAmountWrappedOutRaw Minimum amount of wrapped tokens to receive from the buffer. It is expressed in
     * wrapped token native decimals
     * @return removedUnderlyingBalanceRaw Amount of underlying tokens returned to the user
     * @return removedWrappedBalanceRaw Amount of wrapped tokens returned to the user
     */
    function removeLiquidityFromBuffer(
        IERC4626 wrappedToken,
        uint256 sharesToRemove,
        uint256 minAmountUnderlyingOutRaw,
        uint256 minAmountWrappedOutRaw
    ) external returns (uint256 removedUnderlyingBalanceRaw, uint256 removedWrappedBalanceRaw);

    /**
     * @notice Returns the asset registered for a given wrapped token.
     * @dev The asset can never change after buffer initialization.
     * @param wrappedToken Address of the wrapped token that implements IERC4626
     * @return underlyingToken Address of the underlying token registered for the wrapper; `address(0)` if the buffer
     * has not been initialized.
     */
    function getBufferAsset(IERC4626 wrappedToken) external view returns (address underlyingToken);

    /**
     * @notice Returns the shares (internal buffer BPT) of a liquidity owner: a user that deposited assets
     * in the buffer.
     *
     * @param wrappedToken Address of the wrapped token that implements IERC4626
     * @param liquidityOwner Address of the user that owns liquidity in the wrapped token's buffer
     * @return ownerShares Amount of shares allocated to the liquidity owner, in native underlying token decimals
     */
    function getBufferOwnerShares(
        IERC4626 wrappedToken,
        address liquidityOwner
    ) external view returns (uint256 ownerShares);

    /**
     * @notice Returns the supply shares (internal buffer BPT) of the ERC4626 buffer.
     * @param wrappedToken Address of the wrapped token that implements IERC4626
     * @return bufferShares Amount of supply shares of the buffer, in native underlying token decimals
     */
    function getBufferTotalShares(IERC4626 wrappedToken) external view returns (uint256 bufferShares);

    /**
     * @notice Returns the amount of underlying and wrapped tokens deposited in the internal buffer of the Vault.
     * @dev All values are in native token decimals of the wrapped or underlying tokens.
     * @param wrappedToken Address of the wrapped token that implements IERC4626
     * @return underlyingBalanceRaw Amount of underlying tokens deposited into the buffer, in native token decimals
     * @return wrappedBalanceRaw Amount of wrapped tokens deposited into the buffer, in native token decimals
     */
    function getBufferBalance(
        IERC4626 wrappedToken
    ) external view returns (uint256 underlyingBalanceRaw, uint256 wrappedBalanceRaw);

    /*******************************************************************************
                                Authentication
    *******************************************************************************/

    /**
     * @notice Sets a new Authorizer for the Vault.
     * @dev This is a permissioned call. Emits an `AuthorizerChanged` event.
     * @param newAuthorizer The address of the new authorizer
     */
    function setAuthorizer(IAuthorizer newAuthorizer) external;
}

File 14 of 63 : IVaultErrors.sol
// SPDX-License-Identifier: GPL-3.0-or-later

pragma solidity ^0.8.24;

import { IERC4626 } from "@openzeppelin/contracts/interfaces/IERC4626.sol";
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";

/// @notice Errors are declared inside an interface (namespace) to improve DX with Typechain.
interface IVaultErrors {
    /*******************************************************************************
                            Registration and Initialization
    *******************************************************************************/

    /**
     * @notice A pool has already been registered. `registerPool` may only be called once.
     * @param pool The already registered pool
     */
    error PoolAlreadyRegistered(address pool);

    /**
     * @notice A pool has already been initialized. `initialize` may only be called once.
     * @param pool The already initialized pool
     */
    error PoolAlreadyInitialized(address pool);

    /**
     * @notice A pool has not been registered.
     * @param pool The unregistered pool
     */
    error PoolNotRegistered(address pool);

    /**
     * @notice A referenced pool has not been initialized.
     * @param pool The uninitialized pool
     */
    error PoolNotInitialized(address pool);

    /**
     * @notice A hook contract rejected a pool on registration.
     * @param poolHooksContract Address of the hook contract that rejected the pool registration
     * @param pool Address of the rejected pool
     * @param poolFactory Address of the pool factory
     */
    error HookRegistrationFailed(address poolHooksContract, address pool, address poolFactory);

    /**
     * @notice A token was already registered (i.e., it is a duplicate in the pool).
     * @param token The duplicate token
     */
    error TokenAlreadyRegistered(IERC20 token);

    /// @notice The token count is below the minimum allowed.
    error MinTokens();

    /// @notice The token count is above the maximum allowed.
    error MaxTokens();

    /// @notice Invalid tokens (e.g., zero) cannot be registered.
    error InvalidToken();

    /// @notice The token type given in a TokenConfig during pool registration is invalid.
    error InvalidTokenType();

    /// @notice The data in a TokenConfig struct is inconsistent or unsupported.
    error InvalidTokenConfiguration();

    /// @notice Tokens with more than 18 decimals are not supported.
    error InvalidTokenDecimals();

    /**
     * @notice The token list passed into an operation does not match the pool tokens in the pool.
     * @param pool Address of the pool
     * @param expectedToken The correct token at a given index in the pool
     * @param actualToken The actual token found at that index
     */
    error TokensMismatch(address pool, address expectedToken, address actualToken);

    /*******************************************************************************
                                 Transient Accounting
    *******************************************************************************/

    /// @notice A transient accounting operation completed with outstanding token deltas.
    error BalanceNotSettled();

    /// @notice A user called a Vault function (swap, add/remove liquidity) outside the lock context.
    error VaultIsNotUnlocked();

    /// @notice The pool has returned false to the beforeSwap hook, indicating the transaction should revert.
    error DynamicSwapFeeHookFailed();

    /// @notice The pool has returned false to the beforeSwap hook, indicating the transaction should revert.
    error BeforeSwapHookFailed();

    /// @notice The pool has returned false to the afterSwap hook, indicating the transaction should revert.
    error AfterSwapHookFailed();

    /// @notice The pool has returned false to the beforeInitialize hook, indicating the transaction should revert.
    error BeforeInitializeHookFailed();

    /// @notice The pool has returned false to the afterInitialize hook, indicating the transaction should revert.
    error AfterInitializeHookFailed();

    /// @notice The pool has returned false to the beforeAddLiquidity hook, indicating the transaction should revert.
    error BeforeAddLiquidityHookFailed();

    /// @notice The pool has returned false to the afterAddLiquidity hook, indicating the transaction should revert.
    error AfterAddLiquidityHookFailed();

    /// @notice The pool has returned false to the beforeRemoveLiquidity hook, indicating the transaction should revert.
    error BeforeRemoveLiquidityHookFailed();

    /// @notice The pool has returned false to the afterRemoveLiquidity hook, indicating the transaction should revert.
    error AfterRemoveLiquidityHookFailed();

    /// @notice An unauthorized Router tried to call a permissioned function (i.e., using the Vault's token allowance).
    error RouterNotTrusted();

    /*******************************************************************************
                                        Swaps
    *******************************************************************************/

    /// @notice The user tried to swap zero tokens.
    error AmountGivenZero();

    /// @notice The user attempted to swap a token for itself.
    error CannotSwapSameToken();

    /**
     * @notice The user attempted to operate with a token that is not in the pool.
     * @param token The unregistered token
     */
    error TokenNotRegistered(IERC20 token);

    /**
     * @notice An amount in or out has exceeded the limit specified in the swap request.
     * @param amount The total amount in or out
     * @param limit The amount of the limit that has been exceeded
     */
    error SwapLimit(uint256 amount, uint256 limit);

    /**
     * @notice A hook adjusted amount in or out has exceeded the limit specified in the swap request.
     * @param amount The total amount in or out
     * @param limit The amount of the limit that has been exceeded
     */
    error HookAdjustedSwapLimit(uint256 amount, uint256 limit);

    /// @notice The amount given or calculated for an operation is below the minimum limit.
    error TradeAmountTooSmall();

    /*******************************************************************************
                                    Add Liquidity
    *******************************************************************************/

    /// @notice Add liquidity kind not supported.
    error InvalidAddLiquidityKind();

    /**
     * @notice A required amountIn exceeds the maximum limit specified for the operation.
     * @param tokenIn The incoming token
     * @param amountIn The total token amount in
     * @param maxAmountIn The amount of the limit that has been exceeded
     */
    error AmountInAboveMax(IERC20 tokenIn, uint256 amountIn, uint256 maxAmountIn);

    /**
     * @notice A hook adjusted amountIn exceeds the maximum limit specified for the operation.
     * @param tokenIn The incoming token
     * @param amountIn The total token amount in
     * @param maxAmountIn The amount of the limit that has been exceeded
     */
    error HookAdjustedAmountInAboveMax(IERC20 tokenIn, uint256 amountIn, uint256 maxAmountIn);

    /**
     * @notice The BPT amount received from adding liquidity is below the minimum specified for the operation.
     * @param amountOut The total BPT amount out
     * @param minAmountOut The amount of the limit that has been exceeded
     */
    error BptAmountOutBelowMin(uint256 amountOut, uint256 minAmountOut);

    /// @notice Pool does not support adding liquidity with a customized input.
    error DoesNotSupportAddLiquidityCustom();

    /// @notice Pool does not support adding liquidity through donation.
    error DoesNotSupportDonation();

    /*******************************************************************************
                                    Remove Liquidity
    *******************************************************************************/

    /// @notice Remove liquidity kind not supported.
    error InvalidRemoveLiquidityKind();

    /**
     * @notice The actual amount out is below the minimum limit specified for the operation.
     * @param tokenOut The outgoing token
     * @param amountOut The total BPT amount out
     * @param minAmountOut The amount of the limit that has been exceeded
     */
    error AmountOutBelowMin(IERC20 tokenOut, uint256 amountOut, uint256 minAmountOut);

    /**
     * @notice The hook adjusted amount out is below the minimum limit specified for the operation.
     * @param tokenOut The outgoing token
     * @param amountOut The total BPT amount out
     * @param minAmountOut The amount of the limit that has been exceeded
     */
    error HookAdjustedAmountOutBelowMin(IERC20 tokenOut, uint256 amountOut, uint256 minAmountOut);

    /**
     * @notice The required BPT amount in exceeds the maximum limit specified for the operation.
     * @param amountIn The total BPT amount in
     * @param maxAmountIn The amount of the limit that has been exceeded
     */
    error BptAmountInAboveMax(uint256 amountIn, uint256 maxAmountIn);

    /// @notice Pool does not support removing liquidity with a customized input.
    error DoesNotSupportRemoveLiquidityCustom();

    /*******************************************************************************
                                     Fees
    *******************************************************************************/

    /**
     * @notice Error raised when there is an overflow in the fee calculation.
     * @dev This occurs when the sum of the parts (aggregate swap or yield fee) is greater than the whole
     * (total swap or yield fee). Also validated when the protocol fee controller updates aggregate fee
     * percentages in the Vault.
     */
    error ProtocolFeesExceedTotalCollected();

    /**
     * @notice Error raised when the swap fee percentage is less than the minimum allowed value.
     * @dev The Vault itself does not impose a universal minimum. Rather, it validates against the
     * range specified by the `ISwapFeePercentageBounds` interface. and reverts with this error
     * if it is below the minimum value returned by the pool.
     *
     * Pools with dynamic fees do not check these limits.
     */
    error SwapFeePercentageTooLow();

    /**
     * @notice Error raised when the swap fee percentage is greater than the maximum allowed value.
     * @dev The Vault itself does not impose a universal minimum. Rather, it validates against the
     * range specified by the `ISwapFeePercentageBounds` interface. and reverts with this error
     * if it is above the maximum value returned by the pool.
     *
     * Pools with dynamic fees do not check these limits.
     */
    error SwapFeePercentageTooHigh();

    /**
     * @notice Primary fee percentages result in an aggregate fee that cannot be stored with the required precision.
     * @dev Primary fee percentages are 18-decimal values, stored here in 64 bits, and calculated with full 256-bit
     * precision. However, the resulting aggregate fees are stored in the Vault with 24-bit precision, which
     * corresponds to 0.00001% resolution (i.e., a fee can be 1%, 1.00001%, 1.00002%, but not 1.000005%).
     * Disallow setting fees such that there would be precision loss in the Vault, leading to a discrepancy between
     * the aggregate fee calculated here and that stored in the Vault.
     */
    error FeePrecisionTooHigh();

    /// @notice A given percentage is above the maximum (usually a value close to FixedPoint.ONE, or 1e18 wei).
    error PercentageAboveMax();

    /*******************************************************************************
                                    Queries
    *******************************************************************************/

    /// @notice A user tried to execute a query operation when they were disabled.
    error QueriesDisabled();

    /// @notice An admin tried to re-enable queries, but they were disabled permanently.
    error QueriesDisabledPermanently();

    /*******************************************************************************
                                Recovery Mode
    *******************************************************************************/

    /**
     * @notice Cannot enable recovery mode when already enabled.
     * @param pool The pool
     */
    error PoolInRecoveryMode(address pool);

    /**
     * @notice Cannot disable recovery mode when not enabled.
     * @param pool The pool
     */
    error PoolNotInRecoveryMode(address pool);

    /*******************************************************************************
                                Authentication
    *******************************************************************************/

    /**
     * @notice Error indicating the sender is not the Vault (e.g., someone is trying to call a permissioned function).
     * @param sender The account attempting to call a permissioned function
     */
    error SenderIsNotVault(address sender);

    /*******************************************************************************
                                        Pausing
    *******************************************************************************/

    /// @notice The caller specified a pause window period longer than the maximum.
    error VaultPauseWindowDurationTooLarge();

    /// @notice The caller specified a buffer period longer than the maximum.
    error PauseBufferPeriodDurationTooLarge();

    /// @notice A user tried to perform an operation while the Vault was paused.
    error VaultPaused();

    /// @notice Governance tried to unpause the Vault when it was not paused.
    error VaultNotPaused();

    /// @notice Governance tried to pause the Vault after the pause period expired.
    error VaultPauseWindowExpired();

    /**
     * @notice A user tried to perform an operation involving a paused Pool.
     * @param pool The paused pool
     */
    error PoolPaused(address pool);

    /**
     * @notice Governance tried to unpause the Pool when it was not paused.
     * @param pool The unpaused pool
     */
    error PoolNotPaused(address pool);

    /**
     * @notice Governance tried to pause a Pool after the pause period expired.
     * @param pool The pool
     */
    error PoolPauseWindowExpired(address pool);

    /*******************************************************************************
                                ERC4626 token buffers
    *******************************************************************************/

    /**
     * @notice The buffer for the given wrapped token was already initialized.
     * @param wrappedToken The wrapped token corresponding to the buffer
     */
    error BufferAlreadyInitialized(IERC4626 wrappedToken);

    /**
     * @notice The buffer for the given wrapped token was not initialized.
     * @param wrappedToken The wrapped token corresponding to the buffer
     */
    error BufferNotInitialized(IERC4626 wrappedToken);

    /// @notice The user is trying to remove more than their allocated shares from the buffer.
    error NotEnoughBufferShares();

    /**
     * @notice The wrapped token asset does not match the underlying token.
     * @dev This should never happen, but a malicious wrapper contract might not return the correct address.
     * Legitimate wrapper contracts should make the asset a constant or immutable value.
     *
     * @param wrappedToken The wrapped token corresponding to the buffer
     * @param underlyingToken The underlying token returned by `asset`
     */
    error WrongUnderlyingToken(IERC4626 wrappedToken, address underlyingToken);

    /**
     * @notice A wrapped token reported the zero address as its underlying token asset.
     * @dev This should never happen, but a malicious wrapper contract might do this (e.g., in an attempt to
     * re-initialize the buffer).
     *
     * @param wrappedToken The wrapped token corresponding to the buffer
     */
    error InvalidUnderlyingToken(IERC4626 wrappedToken);

    /**
     * @notice The amount given to wrap/unwrap was too small, which can introduce rounding issues.
     * @param wrappedToken The wrapped token corresponding to the buffer
     */
    error WrapAmountTooSmall(IERC4626 wrappedToken);

    /// @notice Buffer operation attempted while vault buffers are paused.
    error VaultBuffersArePaused();

    /// @notice Buffer shares were minted to the zero address.
    error BufferSharesInvalidReceiver();

    /// @notice Buffer shares were burned from the zero address.
    error BufferSharesInvalidOwner();

    /**
     * @notice The total supply of a buffer can't be lower than the absolute minimum.
     * @param totalSupply The total supply value that was below the minimum
     */
    error BufferTotalSupplyTooLow(uint256 totalSupply);

    /// @dev A wrap/unwrap operation consumed more or returned less underlying tokens than it should.
    error NotEnoughUnderlying(IERC4626 wrappedToken, uint256 expectedUnderlyingAmount, uint256 actualUnderlyingAmount);

    /// @dev A wrap/unwrap operation consumed more or returned less wrapped tokens than it should.
    error NotEnoughWrapped(IERC4626 wrappedToken, uint256 expectedWrappedAmount, uint256 actualWrappedAmount);

    /// @dev Shares issued during initialization are below the requested amount.
    error IssuedSharesBelowMin(uint256 issuedShares, uint256 minIssuedShares);

    /*******************************************************************************
                                    Miscellaneous
    *******************************************************************************/

    /// @notice Pool does not support adding / removing liquidity with an unbalanced input.
    error DoesNotSupportUnbalancedLiquidity();

    /// @notice The contract should not receive ETH.
    error CannotReceiveEth();

    /**
     * @notice The `VaultExtension` contract was called by an account directly.
     * @dev It can only be called by the Vault via delegatecall.
     */
    error NotVaultDelegateCall();

    /// @notice The `VaultExtension` contract was configured with an incorrect Vault address.
    error WrongVaultExtensionDeployment();

    /// @notice The `ProtocolFeeController` contract was configured with an incorrect Vault address.
    error WrongProtocolFeeControllerDeployment();

    /// @notice The `VaultAdmin` contract was configured with an incorrect Vault address.
    error WrongVaultAdminDeployment();

    /// @notice Quote reverted with a reserved error code.
    error QuoteResultSpoofed();
}

File 15 of 63 : IVaultEvents.sol
// SPDX-License-Identifier: GPL-3.0-or-later

pragma solidity ^0.8.24;

import { IERC4626 } from "@openzeppelin/contracts/interfaces/IERC4626.sol";
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";

import { IProtocolFeeController } from "./IProtocolFeeController.sol";
import { IAuthorizer } from "./IAuthorizer.sol";
import { IHooks } from "./IHooks.sol";
import "./VaultTypes.sol";

/// @dev Events are declared inside an interface (namespace) to improve DX with Typechain.
interface IVaultEvents {
    /**
     * @notice A Pool was registered by calling `registerPool`.
     * @param pool The pool being registered
     * @param factory The factory creating the pool
     * @param tokenConfig An array of descriptors for the tokens the pool will manage
     * @param swapFeePercentage The static swap fee of the pool
     * @param pauseWindowEndTime The pool's pause window end time
     * @param roleAccounts Addresses the Vault will allow to change certain pool settings
     * @param hooksConfig Flags indicating which hooks the pool supports and address of hooks contract
     * @param liquidityManagement Supported liquidity management hook flags
     */
    event PoolRegistered(
        address indexed pool,
        address indexed factory,
        TokenConfig[] tokenConfig,
        uint256 swapFeePercentage,
        uint32 pauseWindowEndTime,
        PoolRoleAccounts roleAccounts,
        HooksConfig hooksConfig,
        LiquidityManagement liquidityManagement
    );

    /**
     * @notice A Pool was initialized by calling `initialize`.
     * @param pool The pool being initialized
     */
    event PoolInitialized(address indexed pool);

    /**
     * @notice A swap has occurred.
     * @param pool The pool with the tokens being swapped
     * @param tokenIn The token entering the Vault (balance increases)
     * @param tokenOut The token leaving the Vault (balance decreases)
     * @param amountIn Number of tokenIn tokens
     * @param amountOut Number of tokenOut tokens
     * @param swapFeePercentage Swap fee percentage applied (can differ if dynamic)
     * @param swapFeeAmount Swap fee amount paid
     */
    event Swap(
        address indexed pool,
        IERC20 indexed tokenIn,
        IERC20 indexed tokenOut,
        uint256 amountIn,
        uint256 amountOut,
        uint256 swapFeePercentage,
        uint256 swapFeeAmount
    );

    /**
     * @notice A wrap operation has occurred.
     * @param wrappedToken The wrapped token address
     * @param depositedUnderlying Number of underlying tokens deposited
     * @param mintedShares Number of shares (wrapped tokens) minted
     * @param bufferBalances The final buffer balances, packed in 128-bit words (underlying, wrapped)
     */
    event Wrap(
        IERC4626 indexed wrappedToken,
        uint256 depositedUnderlying,
        uint256 mintedShares,
        bytes32 bufferBalances
    );

    /**
     * @notice An unwrap operation has occurred.
     * @param wrappedToken The wrapped token address
     * @param burnedShares Number of shares (wrapped tokens) burned
     * @param withdrawnUnderlying Number of underlying tokens withdrawn
     * @param bufferBalances The final buffer balances, packed in 128-bit words (underlying, wrapped)
     */
    event Unwrap(
        IERC4626 indexed wrappedToken,
        uint256 burnedShares,
        uint256 withdrawnUnderlying,
        bytes32 bufferBalances
    );

    /**
     * @notice Liquidity has been added to a pool (including initialization).
     * @param pool The pool with liquidity added
     * @param liquidityProvider The user performing the operation
     * @param kind The add liquidity operation type (e.g., proportional, custom)
     * @param totalSupply The total supply of the pool after the operation
     * @param amountsAddedRaw The amount of each token that was added, sorted in token registration order
     * @param swapFeeAmountsRaw The total swap fees charged, sorted in token registration order
     */
    event LiquidityAdded(
        address indexed pool,
        address indexed liquidityProvider,
        AddLiquidityKind indexed kind,
        uint256 totalSupply,
        uint256[] amountsAddedRaw,
        uint256[] swapFeeAmountsRaw
    );

    /**
     * @notice Liquidity has been removed from a pool.
     * @param pool The pool with liquidity removed
     * @param liquidityProvider The user performing the operation
     * @param kind The remove liquidity operation type (e.g., proportional, custom)
     * @param totalSupply The total supply of the pool after the operation
     * @param amountsRemovedRaw The amount of each token that was removed, sorted in token registration order
     * @param swapFeeAmountsRaw The total swap fees charged, sorted in token registration order
     */
    event LiquidityRemoved(
        address indexed pool,
        address indexed liquidityProvider,
        RemoveLiquidityKind indexed kind,
        uint256 totalSupply,
        uint256[] amountsRemovedRaw,
        uint256[] swapFeeAmountsRaw
    );

    /**
     * @notice The Vault's pause status has changed.
     * @param paused True if the Vault was paused
     */
    event VaultPausedStateChanged(bool paused);

    /// @notice `disableQuery` has been called on the Vault, disabling query functionality.
    event VaultQueriesDisabled();

    /// @notice `enableQuery` has been called on the Vault, enabling query functionality.
    event VaultQueriesEnabled();

    /**
     * @notice A Pool's pause status has changed.
     * @param pool The pool that was just paused or unpaused
     * @param paused True if the pool was paused
     */
    event PoolPausedStateChanged(address indexed pool, bool paused);

    /**
     * @notice Emitted when the swap fee percentage of a pool is updated.
     * @param swapFeePercentage The new swap fee percentage for the pool
     */
    event SwapFeePercentageChanged(address indexed pool, uint256 swapFeePercentage);

    /**
     * @notice Recovery mode has been enabled or disabled for a pool.
     * @param pool The pool
     * @param recoveryMode True if recovery mode was enabled
     */
    event PoolRecoveryModeStateChanged(address indexed pool, bool recoveryMode);

    /**
     * @notice A protocol or pool creator fee has changed, causing an update to the aggregate swap fee.
     * @dev The `ProtocolFeeController` will emit an event with the underlying change.
     * @param pool The pool whose aggregate swap fee percentage changed
     * @param aggregateSwapFeePercentage The new aggregate swap fee percentage
     */
    event AggregateSwapFeePercentageChanged(address indexed pool, uint256 aggregateSwapFeePercentage);

    /**
     * @notice A protocol or pool creator fee has changed, causing an update to the aggregate yield fee.
     * @dev The `ProtocolFeeController` will emit an event with the underlying change.
     * @param pool The pool whose aggregate yield fee percentage changed
     * @param aggregateYieldFeePercentage The new aggregate yield fee percentage
     */
    event AggregateYieldFeePercentageChanged(address indexed pool, uint256 aggregateYieldFeePercentage);

    /**
     * @notice A new authorizer is set by `setAuthorizer`.
     * @param newAuthorizer The address of the new authorizer
     */
    event AuthorizerChanged(IAuthorizer indexed newAuthorizer);

    /**
     * @notice A new protocol fee controller is set by `setProtocolFeeController`.
     * @param newProtocolFeeController The address of the new protocol fee controller
     */
    event ProtocolFeeControllerChanged(IProtocolFeeController indexed newProtocolFeeController);

    /**
     * @notice Liquidity was added to an ERC4626 buffer corresponding to the given wrapped token.
     * @dev The underlying token can be derived from the wrapped token, so it's not included here.
     *
     * @param wrappedToken The wrapped token that identifies the buffer
     * @param amountUnderlying The amount of the underlying token that was deposited
     * @param amountWrapped The amount of the wrapped token that was deposited
     * @param bufferBalances The final buffer balances, packed in 128-bit words (underlying, wrapped)
     */
    event LiquidityAddedToBuffer(
        IERC4626 indexed wrappedToken,
        uint256 amountUnderlying,
        uint256 amountWrapped,
        bytes32 bufferBalances
    );

    /**
     * @notice Buffer shares were minted for an ERC4626 buffer corresponding to a given wrapped token.
     * @dev The shares are not tokenized like pool BPT, but accounted for in the Vault. `getBufferOwnerShares`
     * retrieves the current total shares for a given buffer and address, and `getBufferTotalShares` returns the
     * "totalSupply" of a buffer.
     *
     * @param wrappedToken The wrapped token that identifies the buffer
     * @param to The owner of the minted shares
     * @param issuedShares The amount of "internal BPT" shares created
     */
    event BufferSharesMinted(IERC4626 indexed wrappedToken, address indexed to, uint256 issuedShares);

    /**
     * @notice Buffer shares were burned for an ERC4626 buffer corresponding to a given wrapped token.
     * @dev The shares are not tokenized like pool BPT, but accounted for in the Vault. `getBufferOwnerShares`
     * retrieves the current total shares for a given buffer and address, and `getBufferTotalShares` returns the
     * "totalSupply" of a buffer.
     *
     * @param wrappedToken The wrapped token that identifies the buffer
     * @param from The owner of the burned shares
     * @param burnedShares The amount of "internal BPT" shares burned
     */
    event BufferSharesBurned(IERC4626 indexed wrappedToken, address indexed from, uint256 burnedShares);

    /**
     * @notice Liquidity was removed from an ERC4626 buffer.
     * @dev The underlying token can be derived from the wrapped token, so it's not included here.
     * @param wrappedToken The wrapped token that identifies the buffer
     * @param amountUnderlying The amount of the underlying token that was withdrawn
     * @param amountWrapped The amount of the wrapped token that was withdrawn
     * @param bufferBalances The final buffer balances, packed in 128-bit words (underlying, wrapped)
     */
    event LiquidityRemovedFromBuffer(
        IERC4626 indexed wrappedToken,
        uint256 amountUnderlying,
        uint256 amountWrapped,
        bytes32 bufferBalances
    );

    /**
     * @notice The Vault buffers pause status has changed.
     * @dev If buffers all paused, all buffer operations (i.e., all calls through the Router with `isBuffer`
     * set to true) will revert.
     *
     * @param paused True if the Vault buffers were paused
     */
    event VaultBuffersPausedStateChanged(bool paused);

    /**
     * @notice Pools can use this event to emit event data from the Vault.
     * @param pool Pool address
     * @param eventKey Event key
     * @param eventData Encoded event data
     */
    event VaultAuxiliary(address indexed pool, bytes32 indexed eventKey, bytes eventData);
}

File 16 of 63 : IVaultExtension.sol
// SPDX-License-Identifier: GPL-3.0-or-later

pragma solidity ^0.8.24;

import { IERC4626 } from "@openzeppelin/contracts/interfaces/IERC4626.sol";
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";

import { IAuthorizer } from "./IAuthorizer.sol";
import { IProtocolFeeController } from "./IProtocolFeeController.sol";
import { IVault } from "./IVault.sol";
import { IHooks } from "./IHooks.sol";
import "./VaultTypes.sol";

/**
 * @notice Interface for functions defined on the `VaultExtension` contract.
 * @dev `VaultExtension` handles less critical or frequently used functions, since delegate calls through
 * the Vault are more expensive than direct calls. The main Vault contains the core code for swaps and
 * liquidity operations.
 */
interface IVaultExtension {
    /*******************************************************************************
                              Constants and immutables
    *******************************************************************************/

    /**
     * @notice Returns the main Vault address.
     * @dev The main Vault contains the entrypoint and main liquidity operation implementations.
     * @return vault The address of the main Vault
     */
    function vault() external view returns (IVault);

    /**
     * @notice Returns the VaultAdmin contract address.
     * @dev The VaultAdmin contract mostly implements permissioned functions.
     * @return vaultAdmin The address of the Vault admin
     */
    function getVaultAdmin() external view returns (address vaultAdmin);

    /*******************************************************************************
                              Transient Accounting
    *******************************************************************************/

    /**
     * @notice Returns whether the Vault is unlocked (i.e., executing an operation).
     * @dev The Vault must be unlocked to perform state-changing liquidity operations.
     * @return unlocked True if the Vault is unlocked, false otherwise
     */
    function isUnlocked() external view returns (bool unlocked);

    /**
     *  @notice Returns the count of non-zero deltas.
     *  @return nonzeroDeltaCount The current value of `_nonzeroDeltaCount`
     */
    function getNonzeroDeltaCount() external view returns (uint256 nonzeroDeltaCount);

    /**
     * @notice Retrieves the token delta for a specific token.
     * @dev This function allows reading the value from the `_tokenDeltas` mapping.
     * @param token The token for which the delta is being fetched
     * @return tokenDelta The delta of the specified token
     */
    function getTokenDelta(IERC20 token) external view returns (int256 tokenDelta);

    /**
     * @notice Retrieves the reserve (i.e., total Vault balance) of a given token.
     * @param token The token for which to retrieve the reserve
     * @return reserveAmount The amount of reserves for the given token
     */
    function getReservesOf(IERC20 token) external view returns (uint256 reserveAmount);

    /**
     * @notice This flag is used to detect and tax "round-trip" interactions (adding and removing liquidity in the
     * same pool).
     * @dev Taxing remove liquidity proportional whenever liquidity was added in the same `unlock` call adds an extra
     * layer of security, discouraging operations that try to undo others for profit. Remove liquidity proportional
     * is the only standard way to exit a position without fees, and this flag is used to enable fees in that case.
     * It also discourages indirect swaps via unbalanced add and remove proportional, as they are expected to be worse
     * than a simple swap for every pool type.
     *
     * @param pool Address of the pool to check
     * @return liquidityAdded True if liquidity has been added to this pool in the current transaction
     
     * Note that there is no `sessionId` argument; it always returns the value for the current (i.e., latest) session.
     */
    function getAddLiquidityCalledFlag(address pool) external view returns (bool liquidityAdded);

    /*******************************************************************************
                                    Pool Registration
    *******************************************************************************/

    /**
     * @notice Registers a pool, associating it with its factory and the tokens it manages.
     * @dev A pool can opt-out of pausing by providing a zero value for the pause window, or allow pausing indefinitely
     * by providing a large value. (Pool pause windows are not limited by the Vault maximums.) The vault defines an
     * additional buffer period during which a paused pool will stay paused. After the buffer period passes, a paused
     * pool will automatically unpause. Balancer timestamps are 32 bits.
     *
     * A pool can opt out of Balancer governance pausing by providing a custom `pauseManager`. This might be a
     * multi-sig contract or an arbitrary smart contract with its own access controls, that forwards calls to
     * the Vault.
     *
     * If the zero address is provided for the `pauseManager`, permissions for pausing the pool will default to the
     * authorizer.
     *
     * @param pool The address of the pool being registered
     * @param tokenConfig An array of descriptors for the tokens the pool will manage
     * @param swapFeePercentage The initial static swap fee percentage of the pool
     * @param pauseWindowEndTime The timestamp after which it is no longer possible to pause the pool
     * @param protocolFeeExempt If true, the pool's initial aggregate fees will be set to 0
     * @param roleAccounts Addresses the Vault will allow to change certain pool settings
     * @param poolHooksContract Contract that implements the hooks for the pool
     * @param liquidityManagement Liquidity management flags with implemented methods
     */
    function registerPool(
        address pool,
        TokenConfig[] memory tokenConfig,
        uint256 swapFeePercentage,
        uint32 pauseWindowEndTime,
        bool protocolFeeExempt,
        PoolRoleAccounts calldata roleAccounts,
        address poolHooksContract,
        LiquidityManagement calldata liquidityManagement
    ) external;

    /**
     * @notice Checks whether a pool is registered.
     * @param pool Address of the pool to check
     * @return registered True if the pool is registered, false otherwise
     */
    function isPoolRegistered(address pool) external view returns (bool registered);

    /**
     * @notice Initializes a registered pool by adding liquidity; mints BPT tokens for the first time in exchange.
     * @param pool Address of the pool to initialize
     * @param to Address that will receive the output BPT
     * @param tokens Tokens used to seed the pool (must match the registered tokens)
     * @param exactAmountsIn Exact amounts of input tokens
     * @param minBptAmountOut Minimum amount of output pool tokens
     * @param userData Additional (optional) data required for adding initial liquidity
     * @return bptAmountOut Output pool token amount
     */
    function initialize(
        address pool,
        address to,
        IERC20[] memory tokens,
        uint256[] memory exactAmountsIn,
        uint256 minBptAmountOut,
        bytes memory userData
    ) external returns (uint256 bptAmountOut);

    /*******************************************************************************
                                    Pool Information
    *******************************************************************************/

    /**
     * @notice Checks whether a pool is initialized.
     * @dev An initialized pool can be considered registered as well.
     * @param pool Address of the pool to check
     * @return initialized True if the pool is initialized, false otherwise
     */
    function isPoolInitialized(address pool) external view returns (bool initialized);

    /**
     * @notice Gets the tokens registered to a pool.
     * @param pool Address of the pool
     * @return tokens List of tokens in the pool
     */
    function getPoolTokens(address pool) external view returns (IERC20[] memory tokens);

    /**
     * @notice Gets pool token rates.
     * @dev This function performs external calls if tokens are yield-bearing. All returned arrays are in token
     * registration order.
     *
     * @param pool Address of the pool
     * @return decimalScalingFactors Conversion factor used to adjust for token decimals for uniform precision in
     * calculations. FP(1) for 18-decimal tokens
     * @return tokenRates 18-decimal FP values for rate tokens (e.g., yield-bearing), or FP(1) for standard tokens
     */
    function getPoolTokenRates(
        address pool
    ) external view returns (uint256[] memory decimalScalingFactors, uint256[] memory tokenRates);

    /**
     * @notice Returns comprehensive pool data for the given pool.
     * @dev This contains the pool configuration (flags), tokens and token types, rates, scaling factors, and balances.
     * @param pool The address of the pool
     * @return poolData The `PoolData` result
     */
    function getPoolData(address pool) external view returns (PoolData memory poolData);

    /**
     * @notice Gets the raw data for a pool: tokens, raw balances, scaling factors.
     * @param pool Address of the pool
     * @return tokens The pool tokens, sorted in registration order
     * @return tokenInfo Token info structs (type, rate provider, yield flag), sorted in token registration order
     * @return balancesRaw Current native decimal balances of the pool tokens, sorted in token registration order
     * @return lastBalancesLiveScaled18 Last saved live balances, sorted in token registration order
     */
    function getPoolTokenInfo(
        address pool
    )
        external
        view
        returns (
            IERC20[] memory tokens,
            TokenInfo[] memory tokenInfo,
            uint256[] memory balancesRaw,
            uint256[] memory lastBalancesLiveScaled18
        );

    /**
     * @notice Gets current live balances of a given pool (fixed-point, 18 decimals), corresponding to its tokens in
     * registration order.
     *
     * @param pool Address of the pool
     * @return balancesLiveScaled18 Token balances after paying yield fees, applying decimal scaling and rates
     */
    function getCurrentLiveBalances(address pool) external view returns (uint256[] memory balancesLiveScaled18);

    /**
     * @notice Gets the configuration parameters of a pool.
     * @dev The `PoolConfig` contains liquidity management and other state flags, fee percentages, the pause window.
     * @param pool Address of the pool
     * @return poolConfig The pool configuration as a `PoolConfig` struct
     */
    function getPoolConfig(address pool) external view returns (PoolConfig memory poolConfig);

    /**
     * @notice Gets the hooks configuration parameters of a pool.
     * @dev The `HooksConfig` contains flags indicating which pool hooks are implemented.
     * @param pool Address of the pool
     * @return hooksConfig The hooks configuration as a `HooksConfig` struct
     */
    function getHooksConfig(address pool) external view returns (HooksConfig memory hooksConfig);

    /**
     * @notice The current rate of a pool token (BPT) = invariant / totalSupply.
     * @param pool Address of the pool
     * @return rate BPT rate
     */
    function getBptRate(address pool) external view returns (uint256 rate);

    /*******************************************************************************
                                 Balancer Pool Tokens
    *******************************************************************************/

    /**
     * @notice Gets the total supply of a given ERC20 token.
     * @param token The token address
     * @return tokenTotalSupply Total supply of the token
     */
    function totalSupply(address token) external view returns (uint256 tokenTotalSupply);

    /**
     * @notice Gets the balance of an account for a given ERC20 token.
     * @param token Address of the token
     * @param account Address of the account
     * @return tokenBalance Token balance of the account
     */
    function balanceOf(address token, address account) external view returns (uint256 tokenBalance);

    /**
     * @notice Gets the allowance of a spender for a given ERC20 token and owner.
     * @param token Address of the token
     * @param owner Address of the owner
     * @param spender Address of the spender
     * @return tokenAllowance Amount of tokens the spender is allowed to spend
     */
    function allowance(address token, address owner, address spender) external view returns (uint256 tokenAllowance);

    /**
     * @notice Approves a spender to spend pool tokens on behalf of sender.
     * @dev Notice that the pool token address is not included in the params. This function is exclusively called by
     * the pool contract, so msg.sender is used as the token address.
     *
     * @param owner Address of the owner
     * @param spender Address of the spender
     * @param amount Amount of tokens to approve
     * @return success True if successful, false otherwise
     */
    function approve(address owner, address spender, uint256 amount) external returns (bool success);

    /*******************************************************************************
                                     Pool Pausing
    *******************************************************************************/

    /**
     * @notice Indicates whether a pool is paused.
     * @dev If a pool is paused, all non-Recovery Mode state-changing operations will revert.
     * @param pool The pool to be checked
     * @return poolPaused True if the pool is paused
     */
    function isPoolPaused(address pool) external view returns (bool poolPaused);

    /**
     * @notice Returns the paused status, and end times of the Pool's pause window and buffer period.
     * @dev Note that even when set to a paused state, the pool will automatically unpause at the end of
     * the buffer period. Balancer timestamps are 32 bits.
     *
     * @param pool The pool whose data is requested
     * @return poolPaused True if the Pool is paused
     * @return poolPauseWindowEndTime The timestamp of the end of the Pool's pause window
     * @return poolBufferPeriodEndTime The timestamp after which the Pool unpauses itself (if paused)
     * @return pauseManager The pause manager, or the zero address
     */
    function getPoolPausedState(
        address pool
    )
        external
        view
        returns (bool poolPaused, uint32 poolPauseWindowEndTime, uint32 poolBufferPeriodEndTime, address pauseManager);

    /*******************************************************************************
                                   ERC4626 Buffers
    *******************************************************************************/

    /**
     * @notice Checks if the wrapped token has an initialized buffer in the Vault.
     * @dev An initialized buffer should have an asset registered in the Vault.
     * @param wrappedToken Address of the wrapped token that implements IERC4626
     * @return isBufferInitialized True if the ERC4626 buffer is initialized
     */
    function isERC4626BufferInitialized(IERC4626 wrappedToken) external view returns (bool isBufferInitialized);

    /**
     * @notice Gets the registered asset for a given buffer.
     * @dev To avoid malicious wrappers (e.g., that might potentially change their asset after deployment), routers
     * should never call `wrapper.asset()` directly, at least without checking it against the asset registered with
     * the Vault on initialization.
     *
     * @param wrappedToken The wrapped token specifying the buffer
     * @return asset The underlying asset of the wrapped token
     */
    function getERC4626BufferAsset(IERC4626 wrappedToken) external view returns (address asset);

    /*******************************************************************************
                                          Fees
    *******************************************************************************/

    /**
     * @notice Returns the accumulated swap fees (including aggregate fees) in `token` collected by the pool.
     * @param pool The address of the pool for which aggregate fees have been collected
     * @param token The address of the token in which fees have been accumulated
     * @return swapFeeAmount The total amount of fees accumulated in the specified token
     */
    function getAggregateSwapFeeAmount(address pool, IERC20 token) external view returns (uint256 swapFeeAmount);

    /**
     * @notice Returns the accumulated yield fees (including aggregate fees) in `token` collected by the pool.
     * @param pool The address of the pool for which aggregate fees have been collected
     * @param token The address of the token in which fees have been accumulated
     * @return yieldFeeAmount The total amount of fees accumulated in the specified token
     */
    function getAggregateYieldFeeAmount(address pool, IERC20 token) external view returns (uint256 yieldFeeAmount);

    /**
     * @notice Fetches the static swap fee percentage for a given pool.
     * @param pool The address of the pool whose static swap fee percentage is being queried
     * @return swapFeePercentage The current static swap fee percentage for the specified pool
     */
    function getStaticSwapFeePercentage(address pool) external view returns (uint256 swapFeePercentage);

    /**
     * @notice Fetches the role accounts for a given pool (pause manager, swap manager, pool creator)
     * @param pool The address of the pool whose roles are being queried
     * @return roleAccounts A struct containing the role accounts for the pool (or 0 if unassigned)
     */
    function getPoolRoleAccounts(address pool) external view returns (PoolRoleAccounts memory roleAccounts);

    /**
     * @notice Query the current dynamic swap fee percentage of a pool, given a set of swap parameters.
     * @dev Reverts if the hook doesn't return the success flag set to `true`.
     * @param pool The pool
     * @param swapParams The swap parameters used to compute the fee
     * @return dynamicSwapFeePercentage The dynamic swap fee percentage
     */
    function computeDynamicSwapFeePercentage(
        address pool,
        PoolSwapParams memory swapParams
    ) external view returns (uint256 dynamicSwapFeePercentage);

    /**
     * @notice Returns the Protocol Fee Controller address.
     * @return protocolFeeController Address of the ProtocolFeeController
     */
    function getProtocolFeeController() external view returns (IProtocolFeeController protocolFeeController);

    /*******************************************************************************
                                     Recovery Mode
    *******************************************************************************/

    /**
     * @notice Checks whether a pool is in Recovery Mode.
     * @dev Recovery Mode enables a safe proportional withdrawal path, with no external calls.
     * @param pool Address of the pool to check
     * @return inRecoveryMode True if the pool is in Recovery Mode, false otherwise
     */
    function isPoolInRecoveryMode(address pool) external view returns (bool inRecoveryMode);

    /**
     * @notice Remove liquidity from a pool specifying exact pool tokens in, with proportional token amounts out.
     * The request is implemented by the Vault without any interaction with the pool, ensuring that
     * it works the same for all pools, and cannot be disabled by a new pool type.
     *
     * @param pool Address of the pool
     * @param from Address of user to burn pool tokens from
     * @param exactBptAmountIn Input pool token amount
     * @param minAmountsOut Minimum amounts of tokens to be received, sorted in token registration order
     * @return amountsOut Actual calculated amounts of output tokens, sorted in token registration order
     */
    function removeLiquidityRecovery(
        address pool,
        address from,
        uint256 exactBptAmountIn,
        uint256[] memory minAmountsOut
    ) external returns (uint256[] memory amountsOut);

    /*******************************************************************************
                                    Queries
    *******************************************************************************/

    /**
     * @notice Performs a callback on msg.sender with arguments provided in `data`.
     * @dev Used to query a set of operations on the Vault. Only off-chain eth_call are allowed,
     * anything else will revert.
     *
     * Allows querying any operation on the Vault that has the `onlyWhenUnlocked` modifier.
     *
     * Allows the external calling of a function via the Vault contract to
     * access Vault's functions guarded by `onlyWhenUnlocked`.
     * `transient` modifier ensuring balances changes within the Vault are settled.
     *
     * @param data Contains function signature and args to be passed to the msg.sender
     * @return result Resulting data from the call
     */
    function quote(bytes calldata data) external returns (bytes memory result);

    /**
     * @notice Performs a callback on msg.sender with arguments provided in `data`.
     * @dev Used to query a set of operations on the Vault. Only off-chain eth_call are allowed,
     * anything else will revert.
     *
     * Allows querying any operation on the Vault that has the `onlyWhenUnlocked` modifier.
     *
     * Allows the external calling of a function via the Vault contract to
     * access Vault's functions guarded by `onlyWhenUnlocked`.
     * `transient` modifier ensuring balances changes within the Vault are settled.
     *
     * This call always reverts, returning the result in the revert reason.
     *
     * @param data Contains function signature and args to be passed to the msg.sender
     */
    function quoteAndRevert(bytes calldata data) external;

    /**
     * @notice Returns true if queries are disabled on the Vault.
     * @dev If true, queries might either be disabled temporarily or permanently.
     * @return queryDisabled True if query functionality is reversibly disabled
     */
    function isQueryDisabled() external view returns (bool queryDisabled);

    /**
     * @notice Returns true if queries are disabled permanently; false if they are enabled.
     * @dev This is a one-way switch. Once queries are disabled permanently, they can never be re-enabled.
     * @return queryDisabledPermanently True if query functionality is permanently disabled
     */
    function isQueryDisabledPermanently() external view returns (bool queryDisabledPermanently);

    /**
     * @notice Pools can use this event to emit event data from the Vault.
     * @param eventKey Event key
     * @param eventData Encoded event data
     */
    function emitAuxiliaryEvent(bytes32 eventKey, bytes calldata eventData) external;

    /*******************************************************************************
                                Authentication
    *******************************************************************************/

    /**
     * @notice Returns the Authorizer address.
     * @dev The authorizer holds the permissions granted by governance. It is set on Vault deployment,
     * and can be changed through a permissioned call.
     *
     * @return authorizer Address of the authorizer contract
     */
    function getAuthorizer() external view returns (IAuthorizer authorizer);
}

File 17 of 63 : IVaultMain.sol
// SPDX-License-Identifier: GPL-3.0-or-later

pragma solidity ^0.8.24;

import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";

import "./VaultTypes.sol";

/**
 * @notice Interface for functions defined on the main Vault contract.
 * @dev These are generally "critical path" functions (swap, add/remove liquidity) that are in the main contract
 * for technical or performance reasons.
 */
interface IVaultMain {
    /*******************************************************************************
                              Transient Accounting
    *******************************************************************************/

    /**
     * @notice Creates a context for a sequence of operations (i.e., "unlocks" the Vault).
     * @dev Performs a callback on msg.sender with arguments provided in `data`. The Callback is `transient`,
     * meaning all balances for the caller have to be settled at the end.
     *
     * @param data Contains function signature and args to be passed to the msg.sender
     * @return result Resulting data from the call
     */
    function unlock(bytes calldata data) external returns (bytes memory result);

    /**
     * @notice Settles deltas for a token; must be successful for the current lock to be released.
     * @dev Protects the caller against leftover dust in the Vault for the token being settled. The caller
     * should know in advance how many tokens were paid to the Vault, so it can provide it as a hint to discard any
     * excess in the Vault balance.
     *
     * If the given hint is equal to or higher than the difference in reserves, the difference in reserves is given as
     * credit to the caller. If it's higher, the caller sent fewer tokens than expected, so settlement would fail.
     *
     * If the given hint is lower than the difference in reserves, the hint is given as credit to the caller.
     * In this case, the excess would be absorbed by the Vault (and reflected correctly in the reserves), but would
     * not affect settlement.
     *
     * The credit supplied by the Vault can be calculated as `min(reserveDifference, amountHint)`, where the reserve
     * difference equals current balance of the token minus existing reserves of the token when the function is called.
     *
     * @param token Address of the token
     * @param amountHint Amount paid as reported by the caller
     * @return credit Credit received in return of the payment
     */
    function settle(IERC20 token, uint256 amountHint) external returns (uint256 credit);

    /**
     * @notice Sends tokens to a recipient.
     * @dev There is no inverse operation for this function. Transfer funds to the Vault and call `settle` to cancel
     * debts.
     *
     * @param token Address of the token
     * @param to Recipient address
     * @param amount Amount of tokens to send
     */
    function sendTo(IERC20 token, address to, uint256 amount) external;

    /***************************************************************************
                                       Swaps
    ***************************************************************************/

    /**
     * @notice Swaps tokens based on provided parameters.
     * @dev All parameters are given in raw token decimal encoding.
     * @param vaultSwapParams Parameters for the swap (see above for struct definition)
     * @return amountCalculatedRaw Calculated swap amount
     * @return amountInRaw Amount of input tokens for the swap
     * @return amountOutRaw Amount of output tokens from the swap
     */
    function swap(
        VaultSwapParams memory vaultSwapParams
    ) external returns (uint256 amountCalculatedRaw, uint256 amountInRaw, uint256 amountOutRaw);

    /***************************************************************************
                                   Add Liquidity
    ***************************************************************************/

    /**
     * @notice Adds liquidity to a pool.
     * @dev Caution should be exercised when adding liquidity because the Vault has the capability
     * to transfer tokens from any user, given that it holds all allowances.
     *
     * @param params Parameters for the add liquidity (see above for struct definition)
     * @return amountsIn Actual amounts of input tokens
     * @return bptAmountOut Output pool token amount
     * @return returnData Arbitrary (optional) data with an encoded response from the pool
     */
    function addLiquidity(
        AddLiquidityParams memory params
    ) external returns (uint256[] memory amountsIn, uint256 bptAmountOut, bytes memory returnData);

    /***************************************************************************
                                 Remove Liquidity
    ***************************************************************************/

    /**
     * @notice Removes liquidity from a pool.
     * @dev Trusted routers can burn pool tokens belonging to any user and require no prior approval from the user.
     * Untrusted routers require prior approval from the user. This is the only function allowed to call
     * _queryModeBalanceIncrease (and only in a query context).
     *
     * @param params Parameters for the remove liquidity (see above for struct definition)
     * @return bptAmountIn Actual amount of BPT burned
     * @return amountsOut Actual amounts of output tokens
     * @return returnData Arbitrary (optional) data with an encoded response from the pool
     */
    function removeLiquidity(
        RemoveLiquidityParams memory params
    ) external returns (uint256 bptAmountIn, uint256[] memory amountsOut, bytes memory returnData);

    /*******************************************************************************
                                    Pool Information
    *******************************************************************************/

    /**
     * @notice Gets the index of a token in a given pool.
     * @dev Reverts if the pool is not registered, or if the token does not belong to the pool.
     * @param pool Address of the pool
     * @param token Address of the token
     * @return tokenCount Number of tokens in the pool
     * @return index Index corresponding to the given token in the pool's token list
     */
    function getPoolTokenCountAndIndexOfToken(
        address pool,
        IERC20 token
    ) external view returns (uint256 tokenCount, uint256 index);

    /*******************************************************************************
                                 Balancer Pool Tokens
    *******************************************************************************/

    /**
     * @notice Transfers pool token from owner to a recipient.
     * @dev Notice that the pool token address is not included in the params. This function is exclusively called by
     * the pool contract, so msg.sender is used as the token address.
     *
     * @param owner Address of the owner
     * @param to Address of the recipient
     * @param amount Amount of tokens to transfer
     * @return success True if successful, false otherwise
     */
    function transfer(address owner, address to, uint256 amount) external returns (bool);

    /**
     * @notice Transfers pool token from a sender to a recipient using an allowance.
     * @dev Notice that the pool token address is not included in the params. This function is exclusively called by
     * the pool contract, so msg.sender is used as the token address.
     *
     * @param spender Address allowed to perform the transfer
     * @param from Address of the sender
     * @param to Address of the recipient
     * @param amount Amount of tokens to transfer
     * @return success True if successful, false otherwise
     */
    function transferFrom(address spender, address from, address to, uint256 amount) external returns (bool success);

    /*******************************************************************************
                                  ERC4626 Buffers
    *******************************************************************************/

    /**
     * @notice Wraps/unwraps tokens based on the parameters provided.
     * @dev All parameters are given in raw token decimal encoding. It requires the buffer to be initialized,
     * and uses the internal wrapped token buffer when it has enough liquidity to avoid external calls.
     *
     * @param params Parameters for the wrap/unwrap operation (see struct definition)
     * @return amountCalculatedRaw Calculated swap amount
     * @return amountInRaw Amount of input tokens for the swap
     * @return amountOutRaw Amount of output tokens from the swap
     */
    function erc4626BufferWrapOrUnwrap(
        BufferWrapOrUnwrapParams memory params
    ) external returns (uint256 amountCalculatedRaw, uint256 amountInRaw, uint256 amountOutRaw);

    /*******************************************************************************
                                     Miscellaneous
    *******************************************************************************/

    /**
     * @notice Returns the VaultExtension contract address.
     * @dev Function is in the main Vault contract. The VaultExtension handles less critical or frequently used
     * functions, since delegate calls through the Vault are more expensive than direct calls.
     *
     * @return vaultExtension Address of the VaultExtension
     */
    function getVaultExtension() external view returns (address vaultExtension);
}

File 18 of 63 : VaultTypes.sol
// SPDX-License-Identifier: GPL-3.0-or-later

pragma solidity ^0.8.24;

import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { IERC4626 } from "@openzeppelin/contracts/interfaces/IERC4626.sol";

import { IRateProvider } from "../solidity-utils/helpers/IRateProvider.sol";

/**
 * @notice Represents a pool's liquidity management configuration.
 * @param disableUnbalancedLiquidity If set, liquidity can only be added or removed proportionally
 * @param enableAddLiquidityCustom If set, the pool has implemented `onAddLiquidityCustom`
 * @param enableRemoveLiquidityCustom If set, the pool has implemented `onRemoveLiquidityCustom`
 * @param enableDonation If set, the pool will not revert if liquidity is added with AddLiquidityKind.DONATION
 */
struct LiquidityManagement {
    bool disableUnbalancedLiquidity;
    bool enableAddLiquidityCustom;
    bool enableRemoveLiquidityCustom;
    bool enableDonation;
}

// @notice Custom type to store the entire configuration of the pool.
type PoolConfigBits is bytes32;

/**
 * @notice Represents a pool's configuration (hooks configuration are separated in another struct).
 * @param liquidityManagement Flags related to adding/removing liquidity
 * @param staticSwapFeePercentage The pool's native swap fee
 * @param aggregateSwapFeePercentage The total swap fee charged, including protocol and pool creator components
 * @param aggregateYieldFeePercentage The total swap fee charged, including protocol and pool creator components
 * @param tokenDecimalDiffs Compressed storage of the token decimals of each pool token
 * @param pauseWindowEndTime Timestamp after which the pool cannot be paused
 * @param isPoolRegistered If true, the pool has been registered with the Vault
 * @param isPoolInitialized If true, the pool has been initialized with liquidity, and is available for trading
 * @param isPoolPaused If true, the pool has been paused (by governance or the pauseManager)
 * @param isPoolInRecoveryMode If true, the pool has been placed in recovery mode, enabling recovery mode withdrawals
 */
struct PoolConfig {
    LiquidityManagement liquidityManagement;
    uint256 staticSwapFeePercentage;
    uint256 aggregateSwapFeePercentage;
    uint256 aggregateYieldFeePercentage;
    uint40 tokenDecimalDiffs;
    uint32 pauseWindowEndTime;
    bool isPoolRegistered;
    bool isPoolInitialized;
    bool isPoolPaused;
    bool isPoolInRecoveryMode;
}

/**
 * @notice The flag portion of the `HooksConfig`.
 * @dev `enableHookAdjustedAmounts` must be true for all contracts that modify the `amountCalculated`
 * in after hooks. Otherwise, the Vault will ignore any "hookAdjusted" amounts. Setting any "shouldCall"
 * flags to true will cause the Vault to call the corresponding hook during operations.
 */
struct HookFlags {
    bool enableHookAdjustedAmounts;
    bool shouldCallBeforeInitialize;
    bool shouldCallAfterInitialize;
    bool shouldCallComputeDynamicSwapFee;
    bool shouldCallBeforeSwap;
    bool shouldCallAfterSwap;
    bool shouldCallBeforeAddLiquidity;
    bool shouldCallAfterAddLiquidity;
    bool shouldCallBeforeRemoveLiquidity;
    bool shouldCallAfterRemoveLiquidity;
}

/// @notice Represents a hook contract configuration for a pool (HookFlags + hooksContract address).
struct HooksConfig {
    bool enableHookAdjustedAmounts;
    bool shouldCallBeforeInitialize;
    bool shouldCallAfterInitialize;
    bool shouldCallComputeDynamicSwapFee;
    bool shouldCallBeforeSwap;
    bool shouldCallAfterSwap;
    bool shouldCallBeforeAddLiquidity;
    bool shouldCallAfterAddLiquidity;
    bool shouldCallBeforeRemoveLiquidity;
    bool shouldCallAfterRemoveLiquidity;
    address hooksContract;
}

/**
 * @notice Represents temporary state used during a swap operation.
 * @param indexIn The zero-based index of tokenIn
 * @param indexOut The zero-based index of tokenOut
 * @param amountGivenScaled18 The amountGiven (i.e., tokenIn for ExactIn), adjusted for token decimals
 * @param swapFeePercentage The swap fee to be applied (might be static or dynamic)
 */
struct SwapState {
    uint256 indexIn;
    uint256 indexOut;
    uint256 amountGivenScaled18;
    uint256 swapFeePercentage;
}

/**
 * @notice Represents the Vault's configuration.
 * @param isQueryDisabled If set to true, disables query functionality of the Vault. Can be modified by governance
 * @param isVaultPaused If set to true, swaps and add/remove liquidity operations are halted
 * @param areBuffersPaused If set to true, the Vault wrap/unwrap primitives associated with buffers will be disabled
 */
struct VaultState {
    bool isQueryDisabled;
    bool isVaultPaused;
    bool areBuffersPaused;
}

/**
 * @notice Represents the accounts holding certain roles for a given pool. This is passed in on pool registration.
 * @param pauseManager Account empowered to pause/unpause the pool (note that governance can always pause a pool)
 * @param swapFeeManager Account empowered to set static swap fees for a pool (or 0 to delegate to governance)
 * @param poolCreator Account empowered to set the pool creator fee (or 0 if all fees go to the protocol and LPs)
 */
struct PoolRoleAccounts {
    address pauseManager;
    address swapFeeManager;
    address poolCreator;
}

/*******************************************************************************
                                   Tokens
*******************************************************************************/

// Note that the following tokens are unsupported by the Vault. This list is not meant to be exhaustive, but covers
// many common types of tokens that will not work with the Vault architecture. (See https://github.com/d-xo/weird-erc20
// for examples of token features that are problematic for many protocols.)
//
// * Rebasing tokens (e.g., aDAI). The Vault keeps track of token balances in its internal accounting; any token whose
//   balance changes asynchronously (i.e., outside a swap or liquidity operation), would get out-of-sync with this
//   internal accounting. This category would also include "airdrop" tokens, whose balances can change unexpectedly.
//
// * Double entrypoint (e.g., old Synthetix tokens, now fixed). These could likewise bypass internal accounting by
//   registering the token under one address, then accessing it through another. This is especially troublesome
//   in v3, with the introduction of ERC4626 buffers.
//
// * Fee on transfer (e.g., PAXG). The Vault issues credits and debits according to given and calculated token amounts,
//   and settlement assumes that the send/receive transfer functions transfer exactly the given number of tokens.
//   If this is not the case, transactions will not settle. Unlike with the other types, which are fundamentally
//   incompatible, it would be possible to design a Router to handle this - but we didn't try it. In any case, it's
//   not supported in the current Routers.
//
// * Tokens with more than 18 decimals (e.g., YAM-V2). The Vault handles token scaling: i.e., handling I/O for
//   amounts in native token decimals, but doing calculations with full 18-decimal precision. This requires reading
//   and storing the decimals for each token. Since virtually all tokens are 18 or fewer decimals, and we have limited
//   storage space, 18 was a reasonable maximum. Unlike the other types, this is enforceable by the Vault. Attempting
//   to register such tokens will revert with `InvalidTokenDecimals`. Of course, we must also be able to read the token
//   decimals, so the Vault only supports tokens that implement `IERC20Metadata.decimals`, and return a value less than
//   or equal to 18.
//
//  * Token decimals are checked and stored only once, on registration. Valid tokens store their decimals as immutable
//    variables or constants. Malicious tokens that don't respect this basic property would not work anywhere in DeFi.
//
// These types of tokens are supported but discouraged, as they don't tend to play well with AMMs generally.
//
// * Very low-decimal tokens (e.g., GUSD). The Vault has been extensively tested with 6-decimal tokens (e.g., USDC),
//   but going much below that may lead to unanticipated effects due to precision loss, especially with smaller trade
//   values.
//
// * Revert on zero value approval/transfer. The Vault has been tested against these, but peripheral contracts, such
//   as hooks, might not have been designed with this in mind.
//
// * Other types from "weird-erc20," such as upgradeable, pausable, or tokens with blocklists. We have seen cases
//   where a token upgrade fails, "bricking" the token - and many operations on pools containing that token. Any
//   sort of "permissioned" token that can make transfers fail can cause operations on pools containing them to
//   revert. Even Recovery Mode cannot help then, as it does a proportional withdrawal of all tokens. If one of
//   them is bricked, the whole operation will revert. Since v3 does not have "internal balances" like v2, there
//   is no recourse.
//
//   Of course, many tokens in common use have some of these "features" (especially centralized stable coins), so
//   we have to support them anyway. Working with common centralized tokens is a risk common to all of DeFi.

/**
 * @notice Token types supported by the Vault.
 * @dev In general, pools may contain any combination of these tokens.
 *
 * STANDARD tokens (e.g., BAL, WETH) have no rate provider.
 * WITH_RATE tokens (e.g., wstETH) require a rate provider. These may be tokens like wstETH, which need to be wrapped
 * because the underlying stETH token is rebasing, and such tokens are unsupported by the Vault. They may also be
 * tokens like sEUR, which track an underlying asset, but are not yield-bearing. Finally, this encompasses
 * yield-bearing ERC4626 tokens, which can be used to facilitate swaps without requiring wrapping or unwrapping
 * in most cases. The `paysYieldFees` flag can be used to indicate whether a token is yield-bearing (e.g., waDAI),
 * not yield-bearing (e.g., sEUR), or yield-bearing but exempt from fees (e.g., in certain nested pools, where
 * yield fees are charged elsewhere).
 *
 * NB: STANDARD must always be the first enum element, so that newly initialized data structures default to Standard.
 */
enum TokenType {
    STANDARD,
    WITH_RATE
}

/**
 * @notice Encapsulate the data required for the Vault to support a token of the given type.
 * @dev For STANDARD tokens, the rate provider address must be 0, and paysYieldFees must be false. All WITH_RATE tokens
 * need a rate provider, and may or may not be yield-bearing.
 *
 * At registration time, it is useful to include the token address along with the token parameters in the structure
 * passed to `registerPool`, as the alternative would be parallel arrays, which would be error prone and require
 * validation checks. `TokenConfig` is only used for registration, and is never put into storage (see `TokenInfo`).
 *
 * @param token The token address
 * @param tokenType The token type (see the enum for supported types)
 * @param rateProvider The rate provider for a token (see further documentation above)
 * @param paysYieldFees Flag indicating whether yield fees should be charged on this token
 */
struct TokenConfig {
    IERC20 token;
    TokenType tokenType;
    IRateProvider rateProvider;
    bool paysYieldFees;
}

/**
 * @notice This data structure is stored in `_poolTokenInfo`, a nested mapping from pool -> (token -> TokenInfo).
 * @dev Since the token is already the key of the nested mapping, it would be redundant (and an extra SLOAD) to store
 * it again in the struct. When we construct PoolData, the tokens are separated into their own array.
 *
 * @param tokenType The token type (see the enum for supported types)
 * @param rateProvider The rate provider for a token (see further documentation above)
 * @param paysYieldFees Flag indicating whether yield fees should be charged on this token
 */
struct TokenInfo {
    TokenType tokenType;
    IRateProvider rateProvider;
    bool paysYieldFees;
}

/**
 * @notice Data structure used to represent the current pool state in memory
 * @param poolConfigBits Custom type to store the entire configuration of the pool.
 * @param tokens Pool tokens, sorted in token registration order
 * @param tokenInfo Configuration data for each token, sorted in token registration order
 * @param balancesRaw Token balances in native decimals
 * @param balancesLiveScaled18 Token balances after paying yield fees, applying decimal scaling and rates
 * @param tokenRates 18-decimal FP values for rate tokens (e.g., yield-bearing), or FP(1) for standard tokens
 * @param decimalScalingFactors Conversion factor used to adjust for token decimals for uniform precision in
 * calculations. It is 1e18 (FP 1) for 18-decimal tokens
 */
struct PoolData {
    PoolConfigBits poolConfigBits;
    IERC20[] tokens;
    TokenInfo[] tokenInfo;
    uint256[] balancesRaw;
    uint256[] balancesLiveScaled18;
    uint256[] tokenRates;
    uint256[] decimalScalingFactors;
}

enum Rounding {
    ROUND_UP,
    ROUND_DOWN
}

/*******************************************************************************
                                    Swaps
*******************************************************************************/

enum SwapKind {
    EXACT_IN,
    EXACT_OUT
}

// There are two "SwapParams" structs defined below. `VaultSwapParams` corresponds to the external swap API defined
// in the Router contracts, which uses explicit token addresses, the amount given and limit on the calculated amount
// expressed in native token decimals, and optional user data passed in from the caller.
//
// `PoolSwapParams` passes some of this information through (kind, userData), but "translates" the parameters to fit
// the internal swap API used by `IBasePool`. It scales amounts to full 18-decimal precision, adds the token balances,
// converts the raw token addresses to indices, and adds the address of the Router originating the request. It does
// not need the limit, since this is checked at the Router level.

/**
 * @notice Data passed into primary Vault `swap` operations.
 * @param kind Type of swap (Exact In or Exact Out)
 * @param pool The pool with the tokens being swapped
 * @param tokenIn The token entering the Vault (balance increases)
 * @param tokenOut The token leaving the Vault (balance decreases)
 * @param amountGivenRaw Amount specified for tokenIn or tokenOut (depending on the type of swap)
 * @param limitRaw Minimum or maximum value of the calculated amount (depending on the type of swap)
 * @param userData Additional (optional) user data
 */
struct VaultSwapParams {
    SwapKind kind;
    address pool;
    IERC20 tokenIn;
    IERC20 tokenOut;
    uint256 amountGivenRaw;
    uint256 limitRaw;
    bytes userData;
}

/**
 * @notice Data for a swap operation, used by contracts implementing `IBasePool`.
 * @param kind Type of swap (exact in or exact out)
 * @param amountGivenScaled18 Amount given based on kind of the swap (e.g., tokenIn for EXACT_IN)
 * @param balancesScaled18 Current pool balances
 * @param indexIn Index of tokenIn
 * @param indexOut Index of tokenOut
 * @param router The address (usually a router contract) that initiated a swap operation on the Vault
 * @param userData Additional (optional) data required for the swap
 */
struct PoolSwapParams {
    SwapKind kind;
    uint256 amountGivenScaled18;
    uint256[] balancesScaled18;
    uint256 indexIn;
    uint256 indexOut;
    address router;
    bytes userData;
}

/**
 * @notice Data for the hook after a swap operation.
 * @param kind Type of swap (exact in or exact out)
 * @param tokenIn Token to be swapped from
 * @param tokenOut Token to be swapped to
 * @param amountInScaled18 Amount of tokenIn (entering the Vault)
 * @param amountOutScaled18 Amount of tokenOut (leaving the Vault)
 * @param tokenInBalanceScaled18 Updated (after swap) balance of tokenIn
 * @param tokenOutBalanceScaled18 Updated (after swap) balance of tokenOut
 * @param amountCalculatedScaled18 Token amount calculated by the swap
 * @param amountCalculatedRaw Token amount calculated by the swap
 * @param router The address (usually a router contract) that initiated a swap operation on the Vault
 * @param pool Pool address
 * @param userData Additional (optional) data required for the swap
 */
struct AfterSwapParams {
    SwapKind kind;
    IERC20 tokenIn;
    IERC20 tokenOut;
    uint256 amountInScaled18;
    uint256 amountOutScaled18;
    uint256 tokenInBalanceScaled18;
    uint256 tokenOutBalanceScaled18;
    uint256 amountCalculatedScaled18;
    uint256 amountCalculatedRaw;
    address router;
    address pool;
    bytes userData;
}

/*******************************************************************************
                                Add liquidity
*******************************************************************************/

enum AddLiquidityKind {
    PROPORTIONAL,
    UNBALANCED,
    SINGLE_TOKEN_EXACT_OUT,
    DONATION,
    CUSTOM
}

/**
 * @notice Data for an add liquidity operation.
 * @param pool Address of the pool
 * @param to Address of user to mint to
 * @param maxAmountsIn Maximum amounts of input tokens
 * @param minBptAmountOut Minimum amount of output pool tokens
 * @param kind Add liquidity kind
 * @param userData Optional user data
 */
struct AddLiquidityParams {
    address pool;
    address to;
    uint256[] maxAmountsIn;
    uint256 minBptAmountOut;
    AddLiquidityKind kind;
    bytes userData;
}

/*******************************************************************************
                                Remove liquidity
*******************************************************************************/

enum RemoveLiquidityKind {
    PROPORTIONAL,
    SINGLE_TOKEN_EXACT_IN,
    SINGLE_TOKEN_EXACT_OUT,
    CUSTOM
}

/**
 * @notice Data for an remove liquidity operation.
 * @param pool Address of the pool
 * @param from Address of user to burn from
 * @param maxBptAmountIn Maximum amount of input pool tokens
 * @param minAmountsOut Minimum amounts of output tokens
 * @param kind Remove liquidity kind
 * @param userData Optional user data
 */
struct RemoveLiquidityParams {
    address pool;
    address from;
    uint256 maxBptAmountIn;
    uint256[] minAmountsOut;
    RemoveLiquidityKind kind;
    bytes userData;
}

/*******************************************************************************
                                Remove liquidity
*******************************************************************************/

enum WrappingDirection {
    WRAP,
    UNWRAP
}

/**
 * @notice Data for a wrap/unwrap operation.
 * @param kind Type of swap (Exact In or Exact Out)
 * @param direction Direction of the wrapping operation (Wrap or Unwrap)
 * @param wrappedToken Wrapped token, compatible with interface ERC4626
 * @param amountGivenRaw Amount specified for tokenIn or tokenOut (depends on the type of swap and wrapping direction)
 * @param limitRaw Minimum or maximum amount specified for the other token (depends on the type of swap and wrapping
 * direction)
 */
struct BufferWrapOrUnwrapParams {
    SwapKind kind;
    WrappingDirection direction;
    IERC4626 wrappedToken;
    uint256 amountGivenRaw;
    uint256 limitRaw;
}

// Protocol Fees are 24-bit values. We transform them by multiplying by 1e11, so that they can be set to any value
// between 0% and 100% (step 0.00001%). Protocol and pool creator fees are set in the `ProtocolFeeController`, and
// ensure both constituent and aggregate fees do not exceed this precision.
uint256 constant FEE_BITLENGTH = 24;
uint256 constant FEE_SCALING_FACTOR = 1e11;
// Used to ensure the safety of fee-related math (e.g., pools or hooks don't set it greater than 100%).
// This value should work for practical purposes and is well within the max precision requirements.
uint256 constant MAX_FEE_PERCENTAGE = 99.9999e16; // 99.9999%

File 19 of 63 : BufferHelpers.sol
// SPDX-License-Identifier: GPL-3.0-or-later

pragma solidity ^0.8.24;

import { IERC4626 } from "@openzeppelin/contracts/interfaces/IERC4626.sol";
import { SafeCast } from "@openzeppelin/contracts/utils/math/SafeCast.sol";

import { PackedTokenBalance } from "./PackedTokenBalance.sol";

library BufferHelpers {
    using PackedTokenBalance for bytes32;
    using SafeCast for *;

    /**
     * @notice Returns the imbalance of a buffer in terms of the underlying asset.
     * @dev The imbalance refers to the difference between the buffer's underlying asset balance and its wrapped asset
     * balance, both expressed in terms of the underlying asset. A positive imbalance means the buffer holds more
     * underlying assets than wrapped assets, indicating that the excess underlying should be wrapped to restore
     * balance. Conversely, a negative imbalance means the buffer has more wrapped assets than underlying assets, so
     * during a wrap operation, fewer underlying tokens need to be wrapped, and the surplus wrapped tokens can be
     * returned to the caller.
     * For instance, consider the following scenario:
     * - buffer balances: 2 wrapped and 10 underlying
     * - wrapped rate: 2
     * - normalized buffer balances: 4 wrapped as underlying (2 wrapped * rate) and 10 underlying
     * - underlying token imbalance = (10 - 4) / 2 = 3 underlying
     * We need to wrap 3 underlying tokens to rebalance the buffer.
     * - 3 underlying = 1.5 wrapped
     * - final balances: 3.5 wrapped (2 existing + 1.5 new) and 7 underlying (10 existing - 3)
     * These balances are equal value, given the rate.
     */
    function getBufferUnderlyingImbalance(bytes32 bufferBalance, IERC4626 wrappedToken) internal view returns (int256) {
        int256 underlyingBalance = bufferBalance.getBalanceRaw().toInt256();

        int256 wrappedBalanceAsUnderlying = 0;
        if (bufferBalance.getBalanceDerived() > 0) {
            // The buffer underlying imbalance is used when wrapping (it means, deposit underlying and get wrapped
            // tokens), so we use `previewMint` to convert wrapped balance to underlying. The `mint` function is used
            // here, as it performs the inverse of a `deposit` operation.
            wrappedBalanceAsUnderlying = wrappedToken.previewMint(bufferBalance.getBalanceDerived()).toInt256();
        }

        // The return value may be positive (excess of underlying) or negative (excess of wrapped).
        return (underlyingBalance - wrappedBalanceAsUnderlying) / 2;
    }

    /**
     * @notice Returns the imbalance of a buffer in terms of the wrapped asset.
     * @dev The imbalance refers to the difference between the buffer's underlying asset balance and its wrapped asset
     * balance, both expressed in terms of the wrapped asset. A positive imbalance means the buffer holds more
     * wrapped assets than underlying assets, indicating that the excess wrapped should be unwrapped to restore
     * balance. Conversely, a negative imbalance means the buffer has more underlying assets than wrapped assets, so
     * during an unwrap operation, fewer wrapped tokens need to be unwrapped, and the surplus underlying tokens can be
     * returned to the caller.
     * For instance, consider the following scenario:
     * - buffer balances: 10 wrapped and 4 underlying
     * - wrapped rate: 2
     * - normalized buffer balances: 10 wrapped and 2 underlying as wrapped (2 underlying / rate)
     * - imbalance of wrapped = (10 - 2) / 2 = 4 wrapped
     * We need to unwrap 4 wrapped tokens to rebalance the buffer.
     * - 4 wrapped = 8 underlying
     * - final balances: 6 wrapped (10 existing - 4) and 12 underlying (4 existing + 8 new)
     * These balances are equal value, given the rate.
     */
    function getBufferWrappedImbalance(bytes32 bufferBalance, IERC4626 wrappedToken) internal view returns (int256) {
        int256 wrappedBalance = bufferBalance.getBalanceDerived().toInt256();

        int256 underlyingBalanceAsWrapped = 0;
        if (bufferBalance.getBalanceRaw() > 0) {
            // The buffer wrapped imbalance is used when unwrapping (it means, deposit wrapped and get underlying
            // tokens), so we use `previewWithdraw` to convert underlying balance to wrapped. The `withdraw` function
            // is used here, as it performs the inverse of a `redeem` operation.
            underlyingBalanceAsWrapped = wrappedToken.previewWithdraw(bufferBalance.getBalanceRaw()).toInt256();
        }

        // The return value may be positive (excess of wrapped) or negative (excess of underlying).
        return (wrappedBalance - underlyingBalanceAsWrapped) / 2;
    }
}

File 20 of 63 : CastingHelpers.sol
// SPDX-License-Identifier: GPL-3.0-or-later

pragma solidity ^0.8.24;

import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";

/// @notice Library of helper functions related to typecasting arrays.
library CastingHelpers {
    /// @dev Returns a native array of addresses as an IERC20[] array.
    function asIERC20(address[] memory addresses) internal pure returns (IERC20[] memory tokens) {
        // solhint-disable-next-line no-inline-assembly
        assembly ("memory-safe") {
            tokens := addresses
        }
    }

    /// @dev Returns an IERC20[] array as an address[] array.
    function asAddress(IERC20[] memory tokens) internal pure returns (address[] memory addresses) {
        // solhint-disable-next-line no-inline-assembly
        assembly ("memory-safe") {
            addresses := tokens
        }
    }
}

File 21 of 63 : EVMCallModeHelpers.sol
// SPDX-License-Identifier: GPL-3.0-or-later

pragma solidity ^0.8.24;

/// @notice Library used to check whether the current operation was initiated through a static call.
library EVMCallModeHelpers {
    /// @notice A state-changing transaction was initiated in a context that only allows static calls.
    error NotStaticCall();

    /**
     * @dev Detects whether the current transaction is a static call.
     * A static call is one where `tx.origin` equals 0x0 for most implementations.
     * See this tweet for a table on how transaction parameters are set on different platforms:
     * https://twitter.com/0xkarmacoma/status/1493380279309717505
     *
     * Solidity eth_call reference docs are here: https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_call
     */
    function isStaticCall() internal view returns (bool) {
        return tx.origin == address(0);
        // solhint-disable-previous-line avoid-tx-origin
    }
}

File 22 of 63 : InputHelpers.sol
// SPDX-License-Identifier: GPL-3.0-or-later

pragma solidity ^0.8.24;

import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";

import { CastingHelpers } from "./CastingHelpers.sol";

library InputHelpers {
    /// @notice Arrays passed to a function and intended to be parallel have different lengths.
    error InputLengthMismatch();

    /**
     * @notice More than one non-zero value was given for a single token operation.
     * @dev Input arrays for single token add/remove liquidity operations are expected to have only one non-zero value,
     * corresponding to the token being added or removed. This error results if there are multiple non-zero entries.
     */
    error MultipleNonZeroInputs();

    /**
     * @notice No valid input was given for a single token operation.
     * @dev Input arrays for single token add/remove liquidity operations are expected to have one non-zero value,
     * corresponding to the token being added or removed. This error results if all entries are zero.
     */
    error AllZeroInputs();

    /**
     * @notice The tokens supplied to an array argument were not sorted in numerical order.
     * @dev Tokens are not sorted by address on registration. This is an optimization so that off-chain processes can
     * predict the token order without having to query the Vault. (It is also legacy v2 behavior.)
     */
    error TokensNotSorted();

    function ensureInputLengthMatch(uint256 a, uint256 b) internal pure {
        if (a != b) {
            revert InputLengthMismatch();
        }
    }

    function ensureInputLengthMatch(uint256 a, uint256 b, uint256 c) internal pure {
        if (a != b || b != c) {
            revert InputLengthMismatch();
        }
    }

    // Find the single non-zero input; revert if there is not exactly one such value.
    function getSingleInputIndex(uint256[] memory maxAmountsIn) internal pure returns (uint256 inputIndex) {
        uint256 length = maxAmountsIn.length;
        inputIndex = length;

        for (uint256 i = 0; i < length; ++i) {
            if (maxAmountsIn[i] != 0) {
                if (inputIndex != length) {
                    revert MultipleNonZeroInputs();
                }
                inputIndex = i;
            }
        }

        if (inputIndex >= length) {
            revert AllZeroInputs();
        }

        return inputIndex;
    }

    /**
     * @dev Sort an array of tokens, mutating in place (and also returning them).
     * This assumes the tokens have been (or will be) validated elsewhere for length
     * and non-duplication. All this does is the sorting.
     *
     * A bubble sort should be gas- and bytecode-efficient enough for such small arrays.
     * Could have also done "manual" comparisons for each of the cases, but this is
     * about the same number of operations, and more concise.
     *
     * This is less efficient for larger token count (i.e., above 4), but such pools should
     * be rare. And in any case, sorting is only done on-chain in test code.
     */
    function sortTokens(IERC20[] memory tokens) internal pure returns (IERC20[] memory) {
        for (uint256 i = 0; i < tokens.length - 1; ++i) {
            for (uint256 j = 0; j < tokens.length - i - 1; ++j) {
                if (tokens[j] > tokens[j + 1]) {
                    // Swap if they're out of order.
                    (tokens[j], tokens[j + 1]) = (tokens[j + 1], tokens[j]);
                }
            }
        }

        return tokens;
    }

    /// @dev Ensure an array of tokens is sorted. As above, does not validate length or uniqueness.
    function ensureSortedTokens(IERC20[] memory tokens) internal pure {
        IERC20 previous = tokens[0];

        for (uint256 i = 1; i < tokens.length; ++i) {
            IERC20 current = tokens[i];

            if (previous > current) {
                revert TokensNotSorted();
            }

            previous = current;
        }
    }
}

File 23 of 63 : PackedTokenBalance.sol
// SPDX-License-Identifier: GPL-3.0-or-later

pragma solidity ^0.8.24;

/**
 * @notice This library represents a data structure for packing a token's current raw and derived balances. A derived
 * balance can be the "last" live balance scaled18 of the raw token, or the balance of the wrapped version of the
 * token in a vault buffer, among others.
 *
 * @dev We could use a Solidity struct to pack balance values together in a single storage slot, but unfortunately
 * Solidity only allows for structs to live in either storage, calldata or memory. Because a memory struct still takes
 * up a slot in the stack (to store its memory location), and because the entire balance fits in a single stack slot
 * (two 128 bit values), using memory is strictly less gas performant. Therefore, we do manual packing and unpacking.
 *
 * We could also use custom types now, but given the simplicity here, and the existing EnumerableMap type, it seemed
 * easier to leave it as a bytes32.
 */
library PackedTokenBalance {
    // The 'rawBalance' portion of the balance is stored in the least significant 128 bits of a 256 bit word, while the
    // The 'derivedBalance' part uses the remaining 128 bits.
    uint256 private constant _MAX_BALANCE = 2 ** (128) - 1;

    /// @notice One of the balances is above the maximum value that can be stored.
    error BalanceOverflow();

    function getBalanceRaw(bytes32 balance) internal pure returns (uint256) {
        return uint256(balance) & _MAX_BALANCE;
    }

    function getBalanceDerived(bytes32 balance) internal pure returns (uint256) {
        return uint256(balance >> 128) & _MAX_BALANCE;
    }

    /// @dev Sets only the raw balance of balances and returns the new bytes32 balance.
    function setBalanceRaw(bytes32 balance, uint256 newBalanceRaw) internal pure returns (bytes32) {
        return toPackedBalance(newBalanceRaw, getBalanceDerived(balance));
    }

    /// @dev Sets only the derived balance of balances and returns the new bytes32 balance.
    function setBalanceDerived(bytes32 balance, uint256 newBalanceDerived) internal pure returns (bytes32) {
        return toPackedBalance(getBalanceRaw(balance), newBalanceDerived);
    }

    /// @dev Validates the size of `balanceRaw` and `balanceDerived`, then returns a packed balance bytes32.
    function toPackedBalance(uint256 balanceRaw, uint256 balanceDerived) internal pure returns (bytes32) {
        if (balanceRaw > _MAX_BALANCE || balanceDerived > _MAX_BALANCE) {
            revert BalanceOverflow();
        }

        return _pack(balanceRaw, balanceDerived);
    }

    /// @dev Decode and fetch both balances.
    function fromPackedBalance(bytes32 balance) internal pure returns (uint256 balanceRaw, uint256 balanceDerived) {
        return (getBalanceRaw(balance), getBalanceDerived(balance));
    }

    /// @dev Packs two uint128 values into a packed balance bytes32. It does not check balance sizes.
    function _pack(uint256 leastSignificant, uint256 mostSignificant) private pure returns (bytes32) {
        return bytes32((mostSignificant << 128) + leastSignificant);
    }
}

File 24 of 63 : ScalingHelpers.sol
// SPDX-License-Identifier: GPL-3.0-or-later

pragma solidity ^0.8.24;

import { FixedPoint } from "../math/FixedPoint.sol";
import { InputHelpers } from "./InputHelpers.sol";

/**
 * @notice Helper functions to apply/undo token decimal and rate adjustments, rounding in the direction indicated.
 * @dev To simplify Pool logic, all token balances and amounts are normalized to behave as if the token had
 * 18 decimals. When comparing DAI (18 decimals) and USDC (6 decimals), 1 USDC and 1 DAI would both be
 * represented as 1e18. This allows us to not consider differences in token decimals in the internal Pool
 * math, simplifying it greatly.
 *
 * The Vault does not support tokens with more than 18 decimals (see `_MAX_TOKEN_DECIMALS` in `VaultStorage`),
 * or tokens that do not implement `IERC20Metadata.decimals`.
 *
 * These helpers can also be used to scale amounts by other 18-decimal floating point values, such as rates.
 */
library ScalingHelpers {
    using FixedPoint for *;
    using ScalingHelpers for uint256;

    /***************************************************************************
                                Single Value Functions
    ***************************************************************************/

    /**
     * @notice Applies `scalingFactor` and `tokenRate` to `amount`.
     * @dev This may result in a larger or equal value, depending on whether it needed scaling/rate adjustment or not.
     * The result is rounded down.
     *
     * @param amount Amount to be scaled up to 18 decimals
     * @param scalingFactor The token decimal scaling factor, `10^(18-tokenDecimals)`
     * @param tokenRate The token rate scaling factor
     * @return result The final 18-decimal precision result, rounded down
     */
    function toScaled18ApplyRateRoundDown(
        uint256 amount,
        uint256 scalingFactor,
        uint256 tokenRate
    ) internal pure returns (uint256) {
        return (amount * scalingFactor).mulDown(tokenRate);
    }

    /**
     * @notice Applies `scalingFactor` and `tokenRate` to `amount`.
     * @dev This may result in a larger or equal value, depending on whether it needed scaling/rate adjustment or not.
     * The result is rounded up.
     *
     * @param amount Amount to be scaled up to 18 decimals
     * @param scalingFactor The token decimal scaling factor, `10^(18-tokenDecimals)`
     * @param tokenRate The token rate scaling factor
     * @return result The final 18-decimal precision result, rounded up
     */
    function toScaled18ApplyRateRoundUp(
        uint256 amount,
        uint256 scalingFactor,
        uint256 tokenRate
    ) internal pure returns (uint256) {
        return (amount * scalingFactor).mulUp(tokenRate);
    }

    /**
     * @notice Reverses the `scalingFactor` and `tokenRate` applied to `amount`.
     * @dev This may result in a smaller or equal value, depending on whether it needed scaling/rate adjustment or not.
     * The result is rounded down.
     *
     * @param amount Amount to be scaled down to native token decimals
     * @param scalingFactor The token decimal scaling factor, `10^(18-tokenDecimals)`
     * @param tokenRate The token rate scaling factor
     * @return result The final native decimal result, rounded down
     */
    function toRawUndoRateRoundDown(
        uint256 amount,
        uint256 scalingFactor,
        uint256 tokenRate
    ) internal pure returns (uint256) {
        // Do division last. Scaling factor is not a FP18, but a FP18 normalized by FP(1).
        // `scalingFactor * tokenRate` is a precise FP18, so there is no rounding direction here.
        return FixedPoint.divDown(amount, scalingFactor * tokenRate);
    }

    /**
     * @notice Reverses the `scalingFactor` and `tokenRate` applied to `amount`.
     * @dev This may result in a smaller or equal value, depending on whether it needed scaling/rate adjustment or not.
     * The result is rounded up.
     *
     * @param amount Amount to be scaled down to native token decimals
     * @param scalingFactor The token decimal scaling factor, `10^(18-tokenDecimals)`
     * @param tokenRate The token rate scaling factor
     * @return result The final native decimal result, rounded up
     */
    function toRawUndoRateRoundUp(
        uint256 amount,
        uint256 scalingFactor,
        uint256 tokenRate
    ) internal pure returns (uint256) {
        // Do division last. Scaling factor is not a FP18, but a FP18 normalized by FP(1).
        // `scalingFactor * tokenRate` is a precise FP18, so there is no rounding direction here.
        return FixedPoint.divUp(amount, scalingFactor * tokenRate);
    }

    /***************************************************************************
                                    Array Functions
    ***************************************************************************/

    function copyToArray(uint256[] memory from, uint256[] memory to) internal pure {
        uint256 length = from.length;
        InputHelpers.ensureInputLengthMatch(length, to.length);

        // solhint-disable-next-line no-inline-assembly
        assembly ("memory-safe") {
            mcopy(add(to, 0x20), add(from, 0x20), mul(length, 0x20))
        }
    }

    /**
     * @notice Same as `toScaled18ApplyRateRoundDown`, but for an entire array.
     * @dev This function does not return anything, but instead *mutates* the `amounts` array.
     * @param amounts Amounts to be scaled up to 18 decimals, sorted in token registration order
     * @param scalingFactors The token decimal scaling factors, sorted in token registration order
     * @param tokenRates The token rate scaling factors, sorted in token registration order
     */
    function toScaled18ApplyRateRoundDownArray(
        uint256[] memory amounts,
        uint256[] memory scalingFactors,
        uint256[] memory tokenRates
    ) internal pure {
        uint256 length = amounts.length;
        InputHelpers.ensureInputLengthMatch(length, scalingFactors.length, tokenRates.length);

        for (uint256 i = 0; i < length; ++i) {
            amounts[i] = amounts[i].toScaled18ApplyRateRoundDown(scalingFactors[i], tokenRates[i]);
        }
    }

    /**
     * @notice Same as `toScaled18ApplyRateRoundDown`, but returns a new array, leaving the original intact.
     * @param amounts Amounts to be scaled up to 18 decimals, sorted in token registration order
     * @param scalingFactors The token decimal scaling factors, sorted in token registration order
     * @param tokenRates The token rate scaling factors, sorted in token registration order
     * @return results The final 18 decimal results, sorted in token registration order, rounded down
     */
    function copyToScaled18ApplyRateRoundDownArray(
        uint256[] memory amounts,
        uint256[] memory scalingFactors,
        uint256[] memory tokenRates
    ) internal pure returns (uint256[] memory) {
        uint256 length = amounts.length;
        InputHelpers.ensureInputLengthMatch(length, scalingFactors.length, tokenRates.length);
        uint256[] memory amountsScaled18 = new uint256[](length);

        for (uint256 i = 0; i < length; ++i) {
            amountsScaled18[i] = amounts[i].toScaled18ApplyRateRoundDown(scalingFactors[i], tokenRates[i]);
        }

        return amountsScaled18;
    }

    /**
     * @notice Same as `toScaled18ApplyRateRoundUp`, but for an entire array.
     * @dev This function does not return anything, but instead *mutates* the `amounts` array.
     * @param amounts Amounts to be scaled up to 18 decimals, sorted in token registration order
     * @param scalingFactors The token decimal scaling factors, sorted in token registration order
     * @param tokenRates The token rate scaling factors, sorted in token registration order
     */
    function toScaled18ApplyRateRoundUpArray(
        uint256[] memory amounts,
        uint256[] memory scalingFactors,
        uint256[] memory tokenRates
    ) internal pure {
        uint256 length = amounts.length;
        InputHelpers.ensureInputLengthMatch(length, scalingFactors.length, tokenRates.length);

        for (uint256 i = 0; i < length; ++i) {
            amounts[i] = amounts[i].toScaled18ApplyRateRoundUp(scalingFactors[i], tokenRates[i]);
        }
    }

    /**
     * @notice Same as `toScaled18ApplyRateRoundUp`, but returns a new array, leaving the original intact.
     * @param amounts Amounts to be scaled up to 18 decimals, sorted in token registration order
     * @param scalingFactors The token decimal scaling factors, sorted in token registration order
     * @param tokenRates The token rate scaling factors, sorted in token registration order
     * @return results The final 18 decimal results, sorted in token registration order, rounded up
     */
    function copyToScaled18ApplyRateRoundUpArray(
        uint256[] memory amounts,
        uint256[] memory scalingFactors,
        uint256[] memory tokenRates
    ) internal pure returns (uint256[] memory) {
        uint256 length = amounts.length;
        InputHelpers.ensureInputLengthMatch(length, scalingFactors.length, tokenRates.length);
        uint256[] memory amountsScaled18 = new uint256[](length);

        for (uint256 i = 0; i < length; ++i) {
            amountsScaled18[i] = amounts[i].toScaled18ApplyRateRoundUp(scalingFactors[i], tokenRates[i]);
        }

        return amountsScaled18;
    }

    /**
     * @notice Rounds up a rate informed by a rate provider.
     * @dev Rates calculated by an external rate provider have rounding errors. Intuitively, a rate provider
     * rounds the rate down so the pool math is executed with conservative amounts. However, when upscaling or
     * downscaling the amount out, the rate should be rounded up to make sure the amounts scaled are conservative.
     * @param rate The original rate
     * @return roundedRate The final rate, with rounding applied
     */
    function computeRateRoundUp(uint256 rate) internal pure returns (uint256) {
        uint256 roundedRate;
        // If rate is divisible by FixedPoint.ONE, roundedRate and rate will be equal. It means that rate has 18 zeros,
        // so there's no rounding issue and the rate should not be rounded up.
        unchecked {
            roundedRate = (rate / FixedPoint.ONE) * FixedPoint.ONE;
        }
        return roundedRate == rate ? rate : rate + 1;
    }
}

File 25 of 63 : TransientStorageHelpers.sol
// SPDX-License-Identifier: GPL-3.0-or-later

pragma solidity ^0.8.24;

import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";

import { StorageSlotExtension } from "../openzeppelin/StorageSlotExtension.sol";
import { SlotDerivation } from "../openzeppelin/SlotDerivation.sol";

type TokenDeltaMappingSlotType is bytes32;
type AddressToUintMappingSlot is bytes32;
type UintToAddressToBooleanMappingSlot is bytes32;
type AddressArraySlotType is bytes32;

/**
 * @notice Helper functions to read and write values from transient storage, including support for arrays and mappings.
 * @dev This is temporary, based on Open Zeppelin's partially released library. When the final version is published, we
 * should be able to remove our copies and import directly from OZ. When Solidity catches up and puts direct support
 * for transient storage in the language, we should be able to get rid of this altogether.
 *
 * This only works on networks where EIP-1153 is supported.
 */
library TransientStorageHelpers {
    using SlotDerivation for *;
    using StorageSlotExtension for *;

    /// @notice An index is out of bounds on an array operation (e.g., at).
    error TransientIndexOutOfBounds();

    // Calculate the slot for a transient storage variable.
    function calculateSlot(string memory domain, string memory varName) internal pure returns (bytes32) {
        return
            keccak256(
                abi.encode(uint256(keccak256(abi.encodePacked("balancer-labs.v3.storage.", domain, ".", varName))) - 1)
            ) & ~bytes32(uint256(0xff));
    }

    /***************************************************************************
                                    Mappings
    ***************************************************************************/

    function tGet(TokenDeltaMappingSlotType slot, IERC20 k1) internal view returns (int256) {
        return TokenDeltaMappingSlotType.unwrap(slot).deriveMapping(address(k1)).asInt256().tload();
    }

    function tSet(TokenDeltaMappingSlotType slot, IERC20 k1, int256 value) internal {
        TokenDeltaMappingSlotType.unwrap(slot).deriveMapping(address(k1)).asInt256().tstore(value);
    }

    function tGet(AddressToUintMappingSlot slot, address key) internal view returns (uint256) {
        return AddressToUintMappingSlot.unwrap(slot).deriveMapping(key).asUint256().tload();
    }

    function tSet(AddressToUintMappingSlot slot, address key, uint256 value) internal {
        AddressToUintMappingSlot.unwrap(slot).deriveMapping(key).asUint256().tstore(value);
    }

    function tGet(
        UintToAddressToBooleanMappingSlot slot,
        uint256 uintKey,
        address addressKey
    ) internal view returns (bool) {
        return
            UintToAddressToBooleanMappingSlot
                .unwrap(slot)
                .deriveMapping(uintKey)
                .deriveMapping(addressKey)
                .asBoolean()
                .tload();
    }

    function tSet(UintToAddressToBooleanMappingSlot slot, uint256 uintKey, address addressKey, bool value) internal {
        UintToAddressToBooleanMappingSlot
            .unwrap(slot)
            .deriveMapping(uintKey)
            .deriveMapping(addressKey)
            .asBoolean()
            .tstore(value);
    }

    // Implement the common "+=" operation: map[key] += value.
    function tAdd(AddressToUintMappingSlot slot, address key, uint256 value) internal {
        AddressToUintMappingSlot.unwrap(slot).deriveMapping(key).asUint256().tstore(tGet(slot, key) + value);
    }

    function tSub(AddressToUintMappingSlot slot, address key, uint256 value) internal {
        AddressToUintMappingSlot.unwrap(slot).deriveMapping(key).asUint256().tstore(tGet(slot, key) - value);
    }

    /***************************************************************************
                                      Arrays
    ***************************************************************************/

    function tLength(AddressArraySlotType slot) internal view returns (uint256) {
        return AddressArraySlotType.unwrap(slot).asUint256().tload();
    }

    function tAt(AddressArraySlotType slot, uint256 index) internal view returns (address) {
        _ensureIndexWithinBounds(slot, index);
        return AddressArraySlotType.unwrap(slot).deriveArray().offset(index).asAddress().tload();
    }

    function tSet(AddressArraySlotType slot, uint256 index, address value) internal {
        _ensureIndexWithinBounds(slot, index);
        AddressArraySlotType.unwrap(slot).deriveArray().offset(index).asAddress().tstore(value);
    }

    function _ensureIndexWithinBounds(AddressArraySlotType slot, uint256 index) private view {
        uint256 length = AddressArraySlotType.unwrap(slot).asUint256().tload();
        if (index >= length) {
            revert TransientIndexOutOfBounds();
        }
    }

    function tUncheckedAt(AddressArraySlotType slot, uint256 index) internal view returns (address) {
        return AddressArraySlotType.unwrap(slot).deriveArray().offset(index).asAddress().tload();
    }

    function tUncheckedSet(AddressArraySlotType slot, uint256 index, address value) internal {
        AddressArraySlotType.unwrap(slot).deriveArray().offset(index).asAddress().tstore(value);
    }

    function tPush(AddressArraySlotType slot, address value) internal {
        // Store the value at offset corresponding to the current length.
        uint256 length = AddressArraySlotType.unwrap(slot).asUint256().tload();
        AddressArraySlotType.unwrap(slot).deriveArray().offset(length).asAddress().tstore(value);
        // Update current length to consider the new value.
        AddressArraySlotType.unwrap(slot).asUint256().tstore(length + 1);
    }

    function tPop(AddressArraySlotType slot) internal returns (address value) {
        uint256 lastElementIndex = AddressArraySlotType.unwrap(slot).asUint256().tload() - 1;
        // Update length to last element. When the index is 0, the slot that holds the length is cleared out.
        AddressArraySlotType.unwrap(slot).asUint256().tstore(lastElementIndex);
        StorageSlotExtension.AddressSlotType lastElementSlot = AddressArraySlotType
            .unwrap(slot)
            .deriveArray()
            .offset(lastElementIndex)
            .asAddress();
        // Return last element.
        value = lastElementSlot.tload();
        // Clear value in temporary storage.
        lastElementSlot.tstore(address(0));
    }

    /***************************************************************************
                                  Uint256 Values
    ***************************************************************************/

    function tIncrement(StorageSlotExtension.Uint256SlotType slot) internal {
        slot.tstore(slot.tload() + 1);
    }

    function tDecrement(StorageSlotExtension.Uint256SlotType slot) internal {
        slot.tstore(slot.tload() - 1);
    }
}

File 26 of 63 : WordCodec.sol
// SPDX-License-Identifier: GPL-3.0-or-later

pragma solidity ^0.8.24;

import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";

/**
 * @notice Library for encoding and decoding values stored inside a 256 bit word.
 * @dev Typically used to pack multiple values in a single slot, saving gas by performing fewer storage accesses.
 *
 * Each value is defined by its size and the least significant bit in the word, also known as offset. For example, two
 * 128 bit values may be encoded in a word by assigning one an offset of 0, and the other an offset of 128.
 *
 * We could use Solidity structs to pack values together in a single storage slot instead of relying on a custom and
 * error-prone library, but unfortunately Solidity only allows for structs to live in either storage, calldata or
 * memory. Because a memory struct uses not just memory but also a slot in the stack (to store its memory location),
 * using memory for word-sized values (i.e. of 256 bits or less) is strictly less gas performant, and doesn't even
 * prevent stack-too-deep issues. This is compounded by the fact that Balancer contracts typically are memory-
 * intensive, and the cost of accessing memory increases quadratically with the number of allocated words. Manual
 * packing and unpacking is therefore the preferred approach.
 */
library WordCodec {
    using Math for uint256;
    using SignedMath for int256;

    // solhint-disable no-inline-assembly

    /// @notice Function called with an invalid value.
    error CodecOverflow();

    /// @notice Function called with an invalid bitLength or offset.
    error OutOfBounds();

    /***************************************************************************
                                 In-place Insertion
    ***************************************************************************/

    /**
     * @dev Inserts an unsigned integer of bitLength, shifted by an offset, into a 256 bit word,
     * replacing the old value. Returns the new word.
     */
    function insertUint(
        bytes32 word,
        uint256 value,
        uint256 offset,
        uint256 bitLength
    ) internal pure returns (bytes32 result) {
        _validateEncodingParams(value, offset, bitLength);
        // Equivalent to:
        // uint256 mask = (1 << bitLength) - 1;
        // bytes32 clearedWord = bytes32(uint256(word) & ~(mask << offset));
        // result = clearedWord | bytes32(value << offset);

        assembly ("memory-safe") {
            let mask := sub(shl(bitLength, 1), 1)
            let clearedWord := and(word, not(shl(offset, mask)))
            result := or(clearedWord, shl(offset, value))
        }
    }

    /**
     * @dev Inserts an address (160 bits), shifted by an offset, into a 256 bit word,
     * replacing the old value. Returns the new word.
     */
    function insertAddress(bytes32 word, address value, uint256 offset) internal pure returns (bytes32 result) {
        uint256 addressBitLength = 160;
        _validateEncodingParams(uint256(uint160(value)), offset, addressBitLength);
        // Equivalent to:
        // uint256 mask = (1 << bitLength) - 1;
        // bytes32 clearedWord = bytes32(uint256(word) & ~(mask << offset));
        // result = clearedWord | bytes32(value << offset);

        assembly ("memory-safe") {
            let mask := sub(shl(addressBitLength, 1), 1)
            let clearedWord := and(word, not(shl(offset, mask)))
            result := or(clearedWord, shl(offset, value))
        }
    }

    /**
     * @dev Inserts a signed integer shifted by an offset into a 256 bit word, replacing the old value. Returns
     * the new word.
     *
     * Assumes `value` can be represented using `bitLength` bits.
     */
    function insertInt(bytes32 word, int256 value, uint256 offset, uint256 bitLength) internal pure returns (bytes32) {
        _validateEncodingParams(value, offset, bitLength);

        uint256 mask = (1 << bitLength) - 1;
        bytes32 clearedWord = bytes32(uint256(word) & ~(mask << offset));
        // Integer values need masking to remove the upper bits of negative values.
        return clearedWord | bytes32((uint256(value) & mask) << offset);
    }

    /***************************************************************************
                                      Encoding
    ***************************************************************************/

    /**
     * @dev Encodes an unsigned integer shifted by an offset. Ensures value fits within
     * `bitLength` bits.
     *
     * The return value can be ORed bitwise with other encoded values to form a 256 bit word.
     */
    function encodeUint(uint256 value, uint256 offset, uint256 bitLength) internal pure returns (bytes32) {
        _validateEncodingParams(value, offset, bitLength);

        return bytes32(value << offset);
    }

    /**
     * @dev Encodes a signed integer shifted by an offset.
     *
     * The return value can be ORed bitwise with other encoded values to form a 256 bit word.
     */
    function encodeInt(int256 value, uint256 offset, uint256 bitLength) internal pure returns (bytes32) {
        _validateEncodingParams(value, offset, bitLength);

        uint256 mask = (1 << bitLength) - 1;
        // Integer values need masking to remove the upper bits of negative values.
        return bytes32((uint256(value) & mask) << offset);
    }

    /***************************************************************************
                                      Decoding
    ***************************************************************************/

    /// @dev Decodes and returns an unsigned integer with `bitLength` bits, shifted by an offset, from a 256 bit word.
    function decodeUint(bytes32 word, uint256 offset, uint256 bitLength) internal pure returns (uint256 result) {
        // Equivalent to:
        // result = uint256(word >> offset) & ((1 << bitLength) - 1);

        assembly ("memory-safe") {
            result := and(shr(offset, word), sub(shl(bitLength, 1), 1))
        }
    }

    /// @dev Decodes and returns a signed integer with `bitLength` bits, shifted by an offset, from a 256 bit word.
    function decodeInt(bytes32 word, uint256 offset, uint256 bitLength) internal pure returns (int256 result) {
        int256 maxInt = int256((1 << (bitLength - 1)) - 1);
        uint256 mask = (1 << bitLength) - 1;

        int256 value = int256(uint256(word >> offset) & mask);
        // In case the decoded value is greater than the max positive integer that can be represented with bitLength
        // bits, we know it was originally a negative integer. Therefore, we mask it to restore the sign in the 256 bit
        // representation.
        //
        // Equivalent to:
        // result = value > maxInt ? (value | int256(~mask)) : value;

        assembly ("memory-safe") {
            result := or(mul(gt(value, maxInt), not(mask)), value)
        }
    }

    /// @dev Decodes and returns an address (160 bits), shifted by an offset, from a 256 bit word.
    function decodeAddress(bytes32 word, uint256 offset) internal pure returns (address result) {
        // Equivalent to:
        // result = address(word >> offset) & ((1 << bitLength) - 1);

        assembly ("memory-safe") {
            result := and(shr(offset, word), sub(shl(160, 1), 1))
        }
    }

    /***************************************************************************
                                    Special Cases
    ***************************************************************************/

    /// @dev Decodes and returns a boolean shifted by an offset from a 256 bit word.
    function decodeBool(bytes32 word, uint256 offset) internal pure returns (bool result) {
        // Equivalent to:
        // result = (uint256(word >> offset) & 1) == 1;

        assembly ("memory-safe") {
            result := and(shr(offset, word), 1)
        }
    }

    /**
     * @dev Inserts a boolean value shifted by an offset into a 256 bit word, replacing the old value.
     * Returns the new word.
     */
    function insertBool(bytes32 word, bool value, uint256 offset) internal pure returns (bytes32 result) {
        // Equivalent to:
        // bytes32 clearedWord = bytes32(uint256(word) & ~(1 << offset));
        // bytes32 referenceInsertBool = clearedWord | bytes32(uint256(value ? 1 : 0) << offset);

        assembly ("memory-safe") {
            let clearedWord := and(word, not(shl(offset, 1)))
            result := or(clearedWord, shl(offset, value))
        }
    }

    /***************************************************************************
                                     Helpers
    ***************************************************************************/

    function _validateEncodingParams(uint256 value, uint256 offset, uint256 bitLength) private pure {
        if (offset >= 256) {
            revert OutOfBounds();
        }
        // We never accept 256 bit values (which would make the codec pointless), and the larger the offset the smaller
        // the maximum bit length.
        if (!(bitLength >= 1 && bitLength <= Math.min(255, 256 - offset))) {
            revert OutOfBounds();
        }

        // Testing unsigned values for size is straightforward: their upper bits must be cleared.
        if (value >> bitLength != 0) {
            revert CodecOverflow();
        }
    }

    function _validateEncodingParams(int256 value, uint256 offset, uint256 bitLength) private pure {
        if (offset >= 256) {
            revert OutOfBounds();
        }
        // We never accept 256 bit values (which would make the codec pointless), and the larger the offset the smaller
        // the maximum bit length.
        if (!(bitLength >= 1 && bitLength <= Math.min(255, 256 - offset))) {
            revert OutOfBounds();
        }

        // Testing signed values for size is a bit more involved.
        if (value >= 0) {
            // For positive values, we can simply check that the upper bits are clear. Notice we remove one bit from the
            // length for the sign bit.
            if (value >> (bitLength - 1) != 0) {
                revert CodecOverflow();
            }
        } else {
            // Negative values can receive the same treatment by making them positive, with the caveat that the range
            // for negative values in two's complement supports one more value than for the positive case.
            if ((value + 1).abs() >> (bitLength - 1) != 0) {
                revert CodecOverflow();
            }
        }
    }
}

File 27 of 63 : FixedPoint.sol
// SPDX-License-Identifier: GPL-3.0-or-later

pragma solidity ^0.8.24;

import { LogExpMath } from "./LogExpMath.sol";

/// @notice Support 18-decimal fixed point arithmetic. All Vault calculations use this for high and uniform precision.
library FixedPoint {
    /// @notice Attempted division by zero.
    error ZeroDivision();

    // solhint-disable no-inline-assembly
    // solhint-disable private-vars-leading-underscore

    uint256 internal constant ONE = 1e18; // 18 decimal places
    uint256 internal constant TWO = 2 * ONE;
    uint256 internal constant FOUR = 4 * ONE;
    uint256 internal constant MAX_POW_RELATIVE_ERROR = 10000; // 10^(-14)

    function mulDown(uint256 a, uint256 b) internal pure returns (uint256) {
        // Multiplication overflow protection is provided by Solidity 0.8.x.
        uint256 product = a * b;

        return product / ONE;
    }

    function mulUp(uint256 a, uint256 b) internal pure returns (uint256 result) {
        // Multiplication overflow protection is provided by Solidity 0.8.x.
        uint256 product = a * b;

        // Equivalent to:
        // result = product == 0 ? 0 : ((product - 1) / FixedPoint.ONE) + 1
        assembly ("memory-safe") {
            result := mul(iszero(iszero(product)), add(div(sub(product, 1), ONE), 1))
        }
    }

    function divDown(uint256 a, uint256 b) internal pure returns (uint256) {
        // Solidity 0.8 reverts with a Panic code (0x11) if the multiplication overflows.
        uint256 aInflated = a * ONE;

        // Solidity 0.8 reverts with a "Division by Zero" Panic code (0x12) if b is zero
        return aInflated / b;
    }

    function divUp(uint256 a, uint256 b) internal pure returns (uint256 result) {
        return mulDivUp(a, ONE, b);
    }

    /// @dev Return (a * b) / c, rounding up.
    function mulDivUp(uint256 a, uint256 b, uint256 c) internal pure returns (uint256 result) {
        // This check is required because Yul's `div` doesn't revert on c==0.
        if (c == 0) {
            revert ZeroDivision();
        }

        // Multiple overflow protection is done by Solidity 0.8.x.
        uint256 product = a * b;

        // The traditional divUp formula is:
        // divUp(x, y) := (x + y - 1) / y
        // To avoid intermediate overflow in the addition, we distribute the division and get:
        // divUp(x, y) := (x - 1) / y + 1
        // Note that this requires x != 0, if x == 0 then the result is zero
        //
        // Equivalent to:
        // result = a == 0 ? 0 : (a * b - 1) / c + 1
        assembly ("memory-safe") {
            result := mul(iszero(iszero(product)), add(div(sub(product, 1), c), 1))
        }
    }

    /**
     * @dev Version of divUp when the input is raw (i.e., already "inflated"). For instance,
     * invariant * invariant (36 decimals) vs. invariant.mulDown(invariant) (18 decimal FP).
     * This can occur in calculations with many successive multiplications and divisions, and
     * we want to minimize the number of operations by avoiding unnecessary scaling by ONE.
     */
    function divUpRaw(uint256 a, uint256 b) internal pure returns (uint256 result) {
        // This check is required because Yul's `div` doesn't revert on b==0.
        if (b == 0) {
            revert ZeroDivision();
        }

        // Equivalent to:
        // result = a == 0 ? 0 : 1 + (a - 1) / b
        assembly ("memory-safe") {
            result := mul(iszero(iszero(a)), add(1, div(sub(a, 1), b)))
        }
    }

    /**
     * @dev Returns x^y, assuming both are fixed point numbers, rounding down. The result is guaranteed to not be above
     * the true value (that is, the error function expected - actual is always positive).
     */
    function powDown(uint256 x, uint256 y) internal pure returns (uint256) {
        // Optimize for when y equals 1.0, 2.0 or 4.0, as those are very simple to implement and occur often in 50/50
        // and 80/20 Weighted Pools
        if (y == ONE) {
            return x;
        } else if (y == TWO) {
            return mulDown(x, x);
        } else if (y == FOUR) {
            uint256 square = mulDown(x, x);
            return mulDown(square, square);
        } else {
            uint256 raw = LogExpMath.pow(x, y);
            uint256 maxError = mulUp(raw, MAX_POW_RELATIVE_ERROR) + 1;

            if (raw < maxError) {
                return 0;
            } else {
                unchecked {
                    return raw - maxError;
                }
            }
        }
    }

    /**
     * @dev Returns x^y, assuming both are fixed point numbers, rounding up. The result is guaranteed to not be below
     * the true value (that is, the error function expected - actual is always negative).
     */
    function powUp(uint256 x, uint256 y) internal pure returns (uint256) {
        // Optimize for when y equals 1.0, 2.0 or 4.0, as those are very simple to implement and occur often in 50/50
        // and 80/20 Weighted Pools
        if (y == ONE) {
            return x;
        } else if (y == TWO) {
            return mulUp(x, x);
        } else if (y == FOUR) {
            uint256 square = mulUp(x, x);
            return mulUp(square, square);
        } else {
            uint256 raw = LogExpMath.pow(x, y);
            uint256 maxError = mulUp(raw, MAX_POW_RELATIVE_ERROR) + 1;

            return raw + maxError;
        }
    }

    /**
     * @dev Returns the complement of a value (1 - x), capped to 0 if x is larger than 1.
     *
     * Useful when computing the complement for values with some level of relative error, as it strips this error and
     * prevents intermediate negative values.
     */
    function complement(uint256 x) internal pure returns (uint256 result) {
        // Equivalent to:
        // result = (x < ONE) ? (ONE - x) : 0
        assembly ("memory-safe") {
            result := mul(lt(x, ONE), sub(ONE, x))
        }
    }
}

File 28 of 63 : LogExpMath.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.24;

// solhint-disable

/**
 * @dev Exponentiation and logarithm functions for 18 decimal fixed point numbers (both base and exponent/argument).
 *
 * Exponentiation and logarithm with arbitrary bases (x^y and log_x(y)) are implemented by conversion to natural
 * exponentiation and logarithm (where the base is Euler's number).
 *
 * All math operations are unchecked in order to save gas.
 *
 * @author Fernando Martinelli - @fernandomartinelli
 * @author Sergio Yuhjtman     - @sergioyuhjtman
 * @author Daniel Fernandez    - @dmf7z
 */
library LogExpMath {
    /// @notice This error is thrown when a base is not within an acceptable range.
    error BaseOutOfBounds();

    /// @notice This error is thrown when a exponent is not within an acceptable range.
    error ExponentOutOfBounds();

    /// @notice This error is thrown when the exponent * ln(base) is not within an acceptable range.
    error ProductOutOfBounds();

    /// @notice This error is thrown when an exponent used in the exp function is not within an acceptable range.
    error InvalidExponent();

    /// @notice This error is thrown when a variable or result is not within the acceptable bounds defined in the function.
    error OutOfBounds();

    // All fixed point multiplications and divisions are inlined. This means we need to divide by ONE when multiplying
    // two numbers, and multiply by ONE when dividing them.

    // All arguments and return values are 18 decimal fixed point numbers.
    int256 constant ONE_18 = 1e18;

    // Internally, intermediate values are computed with higher precision as 20 decimal fixed point numbers, and in the
    // case of ln36, 36 decimals.
    int256 constant ONE_20 = 1e20;
    int256 constant ONE_36 = 1e36;

    // The domain of natural exponentiation is bound by the word size and number of decimals used.
    //
    // Because internally the result will be stored using 20 decimals, the largest possible result is
    // (2^255 - 1) / 10^20, which makes the largest exponent ln((2^255 - 1) / 10^20) = 130.700829182905140221.
    // The smallest possible result is 10^(-18), which makes largest negative argument
    // ln(10^(-18)) = -41.446531673892822312.
    // We use 130.0 and -41.0 to have some safety margin.
    int256 constant MAX_NATURAL_EXPONENT = 130e18;
    int256 constant MIN_NATURAL_EXPONENT = -41e18;

    // Bounds for ln_36's argument. Both ln(0.9) and ln(1.1) can be represented with 36 decimal places in a fixed point
    // 256 bit integer.
    int256 constant LN_36_LOWER_BOUND = ONE_18 - 1e17;
    int256 constant LN_36_UPPER_BOUND = ONE_18 + 1e17;

    uint256 constant MILD_EXPONENT_BOUND = 2 ** 254 / uint256(ONE_20);

    // 18 decimal constants
    int256 constant x0 = 128000000000000000000; // 2ˆ7
    int256 constant a0 = 38877084059945950922200000000000000000000000000000000000; // eˆ(x0) (no decimals)
    int256 constant x1 = 64000000000000000000; // 2ˆ6
    int256 constant a1 = 6235149080811616882910000000; // eˆ(x1) (no decimals)

    // 20 decimal constants
    int256 constant x2 = 3200000000000000000000; // 2ˆ5
    int256 constant a2 = 7896296018268069516100000000000000; // eˆ(x2)
    int256 constant x3 = 1600000000000000000000; // 2ˆ4
    int256 constant a3 = 888611052050787263676000000; // eˆ(x3)
    int256 constant x4 = 800000000000000000000; // 2ˆ3
    int256 constant a4 = 298095798704172827474000; // eˆ(x4)
    int256 constant x5 = 400000000000000000000; // 2ˆ2
    int256 constant a5 = 5459815003314423907810; // eˆ(x5)
    int256 constant x6 = 200000000000000000000; // 2ˆ1
    int256 constant a6 = 738905609893065022723; // eˆ(x6)
    int256 constant x7 = 100000000000000000000; // 2ˆ0
    int256 constant a7 = 271828182845904523536; // eˆ(x7)
    int256 constant x8 = 50000000000000000000; // 2ˆ-1
    int256 constant a8 = 164872127070012814685; // eˆ(x8)
    int256 constant x9 = 25000000000000000000; // 2ˆ-2
    int256 constant a9 = 128402541668774148407; // eˆ(x9)
    int256 constant x10 = 12500000000000000000; // 2ˆ-3
    int256 constant a10 = 113314845306682631683; // eˆ(x10)
    int256 constant x11 = 6250000000000000000; // 2ˆ-4
    int256 constant a11 = 106449445891785942956; // eˆ(x11)

    /**
     * @dev Exponentiation (x^y) with unsigned 18 decimal fixed point base and exponent.
     *
     * Reverts if ln(x) * y is smaller than `MIN_NATURAL_EXPONENT`, or larger than `MAX_NATURAL_EXPONENT`.
     */
    function pow(uint256 x, uint256 y) internal pure returns (uint256) {
        if (y == 0) {
            // We solve the 0^0 indetermination by making it equal one.
            return uint256(ONE_18);
        }

        if (x == 0) {
            return 0;
        }

        // Instead of computing x^y directly, we instead rely on the properties of logarithms and exponentiation to
        // arrive at that result. In particular, exp(ln(x)) = x, and ln(x^y) = y * ln(x). This means
        // x^y = exp(y * ln(x)).

        // The ln function takes a signed value, so we need to make sure x fits in the signed 256 bit range.
        if (x >> 255 != 0) {
            revert BaseOutOfBounds();
        }
        int256 x_int256 = int256(x);

        // We will compute y * ln(x) in a single step. Depending on the value of x, we can either use ln or ln_36. In
        // both cases, we leave the division by ONE_18 (due to fixed point multiplication) to the end.

        // This prevents y * ln(x) from overflowing, and at the same time guarantees y fits in the signed 256 bit range.
        if (y >= MILD_EXPONENT_BOUND) {
            revert ExponentOutOfBounds();
        }
        int256 y_int256 = int256(y);

        int256 logx_times_y;
        unchecked {
            if (LN_36_LOWER_BOUND < x_int256 && x_int256 < LN_36_UPPER_BOUND) {
                int256 ln_36_x = _ln_36(x_int256);

                // ln_36_x has 36 decimal places, so multiplying by y_int256 isn't as straightforward, since we can't just
                // bring y_int256 to 36 decimal places, as it might overflow. Instead, we perform two 18 decimal
                // multiplications and add the results: one with the first 18 decimals of ln_36_x, and one with the
                // (downscaled) last 18 decimals.
                logx_times_y = ((ln_36_x / ONE_18) * y_int256 + ((ln_36_x % ONE_18) * y_int256) / ONE_18);
            } else {
                logx_times_y = _ln(x_int256) * y_int256;
            }
            logx_times_y /= ONE_18;
        }

        // Finally, we compute exp(y * ln(x)) to arrive at x^y
        if (!(MIN_NATURAL_EXPONENT <= logx_times_y && logx_times_y <= MAX_NATURAL_EXPONENT)) {
            revert ProductOutOfBounds();
        }

        return uint256(exp(logx_times_y));
    }

    /**
     * @dev Natural exponentiation (e^x) with signed 18 decimal fixed point exponent.
     *
     * Reverts if `x` is smaller than MIN_NATURAL_EXPONENT, or larger than `MAX_NATURAL_EXPONENT`.
     */
    function exp(int256 x) internal pure returns (int256) {
        if (!(x >= MIN_NATURAL_EXPONENT && x <= MAX_NATURAL_EXPONENT)) {
            revert InvalidExponent();
        }

        // We avoid using recursion here because zkSync doesn't support it.
        bool negativeExponent = false;

        if (x < 0) {
            // We only handle positive exponents: e^(-x) is computed as 1 / e^x. We can safely make x positive since it
            // fits in the signed 256 bit range (as it is larger than MIN_NATURAL_EXPONENT). In the negative
            // exponent case, compute e^x, then return 1 / result.
            unchecked {
                x = -x;
            }
            negativeExponent = true;
        }

        // First, we use the fact that e^(x+y) = e^x * e^y to decompose x into a sum of powers of two, which we call x_n,
        // where x_n == 2^(7 - n), and e^x_n = a_n has been precomputed. We choose the first x_n, x0, to equal 2^7
        // because all larger powers are larger than MAX_NATURAL_EXPONENT, and therefore not present in the
        // decomposition.
        // At the end of this process we will have the product of all e^x_n = a_n that apply, and the remainder of this
        // decomposition, which will be lower than the smallest x_n.
        // exp(x) = k_0 * a_0 * k_1 * a_1 * ... + k_n * a_n * exp(remainder), where each k_n equals either 0 or 1.
        // We mutate x by subtracting x_n, making it the remainder of the decomposition.

        // The first two a_n (e^(2^7) and e^(2^6)) are too large if stored as 18 decimal numbers, and could cause
        // intermediate overflows. Instead we store them as plain integers, with 0 decimals.
        // Additionally, x0 + x1 is larger than MAX_NATURAL_EXPONENT, which means they will not both be present in the
        // decomposition.

        // For each x_n, we test if that term is present in the decomposition (if x is larger than it), and if so deduct
        // it and compute the accumulated product.

        int256 firstAN;
        unchecked {
            if (x >= x0) {
                x -= x0;
                firstAN = a0;
            } else if (x >= x1) {
                x -= x1;
                firstAN = a1;
            } else {
                firstAN = 1; // One with no decimal places
            }

            // We now transform x into a 20 decimal fixed point number, to have enhanced precision when computing the
            // smaller terms.
            x *= 100;
        }

        // `product` is the accumulated product of all a_n (except a0 and a1), which starts at 20 decimal fixed point
        // one. Recall that fixed point multiplication requires dividing by ONE_20.
        int256 product = ONE_20;

        unchecked {
            if (x >= x2) {
                x -= x2;
                product = (product * a2) / ONE_20;
            }
            if (x >= x3) {
                x -= x3;
                product = (product * a3) / ONE_20;
            }
            if (x >= x4) {
                x -= x4;
                product = (product * a4) / ONE_20;
            }
            if (x >= x5) {
                x -= x5;
                product = (product * a5) / ONE_20;
            }
            if (x >= x6) {
                x -= x6;
                product = (product * a6) / ONE_20;
            }
            if (x >= x7) {
                x -= x7;
                product = (product * a7) / ONE_20;
            }
            if (x >= x8) {
                x -= x8;
                product = (product * a8) / ONE_20;
            }
            if (x >= x9) {
                x -= x9;
                product = (product * a9) / ONE_20;
            }
        }

        // x10 and x11 are unnecessary here since we have high enough precision already.

        // Now we need to compute e^x, where x is small (in particular, it is smaller than x9). We use the Taylor series
        // expansion for e^x: 1 + x + (x^2 / 2!) + (x^3 / 3!) + ... + (x^n / n!).

        int256 seriesSum = ONE_20; // The initial one in the sum, with 20 decimal places.
        int256 term; // Each term in the sum, where the nth term is (x^n / n!).

        // The first term is simply x.
        term = x;
        unchecked {
            seriesSum += term;

            // Each term (x^n / n!) equals the previous one times x, divided by n. Since x is a fixed point number,
            // multiplying by it requires dividing by ONE_20, but dividing by the non-fixed point n values does not.

            term = ((term * x) / ONE_20) / 2;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 3;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 4;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 5;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 6;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 7;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 8;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 9;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 10;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 11;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 12;
            seriesSum += term;

            // 12 Taylor terms are sufficient for 18 decimal precision.

            // We now have the first a_n (with no decimals), and the product of all other a_n present, and the Taylor
            // approximation of the exponentiation of the remainder (both with 20 decimals). All that remains is to multiply
            // all three (one 20 decimal fixed point multiplication, dividing by ONE_20, and one integer multiplication),
            // and then drop two digits to return an 18 decimal value.

            int256 result = (((product * seriesSum) / ONE_20) * firstAN) / 100;

            // We avoid using recursion here because zkSync doesn't support it.
            return negativeExponent ? (ONE_18 * ONE_18) / result : result;
        }
    }

    /// @dev Logarithm (log(arg, base), with signed 18 decimal fixed point base and argument.
    function log(int256 arg, int256 base) internal pure returns (int256) {
        // This performs a simple base change: log(arg, base) = ln(arg) / ln(base).

        // Both logBase and logArg are computed as 36 decimal fixed point numbers, either by using ln_36, or by
        // upscaling.

        int256 logBase;
        unchecked {
            if (LN_36_LOWER_BOUND < base && base < LN_36_UPPER_BOUND) {
                logBase = _ln_36(base);
            } else {
                logBase = _ln(base) * ONE_18;
            }
        }

        int256 logArg;
        unchecked {
            if (LN_36_LOWER_BOUND < arg && arg < LN_36_UPPER_BOUND) {
                logArg = _ln_36(arg);
            } else {
                logArg = _ln(arg) * ONE_18;
            }

            // When dividing, we multiply by ONE_18 to arrive at a result with 18 decimal places
            return (logArg * ONE_18) / logBase;
        }
    }

    /// @dev Natural logarithm (ln(a)) with signed 18 decimal fixed point argument.
    function ln(int256 a) internal pure returns (int256) {
        // The real natural logarithm is not defined for negative numbers or zero.
        if (a <= 0) {
            revert OutOfBounds();
        }
        if (LN_36_LOWER_BOUND < a && a < LN_36_UPPER_BOUND) {
            unchecked {
                return _ln_36(a) / ONE_18;
            }
        } else {
            return _ln(a);
        }
    }

    /// @dev Internal natural logarithm (ln(a)) with signed 18 decimal fixed point argument.
    function _ln(int256 a) private pure returns (int256) {
        // We avoid using recursion here because zkSync doesn't support it.
        bool negativeExponent = false;

        if (a < ONE_18) {
            // Since ln(a^k) = k * ln(a), we can compute ln(a) as ln(a) = ln((1/a)^(-1)) = - ln((1/a)). If a is less
            // than one, 1/a will be greater than one, so in this case we compute ln(1/a) and negate the final result.
            unchecked {
                a = (ONE_18 * ONE_18) / a;
            }
            negativeExponent = true;
        }

        // First, we use the fact that ln^(a * b) = ln(a) + ln(b) to decompose ln(a) into a sum of powers of two, which
        // we call x_n, where x_n == 2^(7 - n), which are the natural logarithm of precomputed quantities a_n (that is,
        // ln(a_n) = x_n). We choose the first x_n, x0, to equal 2^7 because the exponential of all larger powers cannot
        // be represented as 18 fixed point decimal numbers in 256 bits, and are therefore larger than a.
        // At the end of this process we will have the sum of all x_n = ln(a_n) that apply, and the remainder of this
        // decomposition, which will be lower than the smallest a_n.
        // ln(a) = k_0 * x_0 + k_1 * x_1 + ... + k_n * x_n + ln(remainder), where each k_n equals either 0 or 1.
        // We mutate a by subtracting a_n, making it the remainder of the decomposition.

        // For reasons related to how `exp` works, the first two a_n (e^(2^7) and e^(2^6)) are not stored as fixed point
        // numbers with 18 decimals, but instead as plain integers with 0 decimals, so we need to multiply them by
        // ONE_18 to convert them to fixed point.
        // For each a_n, we test if that term is present in the decomposition (if a is larger than it), and if so divide
        // by it and compute the accumulated sum.

        int256 sum = 0;
        unchecked {
            if (a >= a0 * ONE_18) {
                a /= a0; // Integer, not fixed point division
                sum += x0;
            }

            if (a >= a1 * ONE_18) {
                a /= a1; // Integer, not fixed point division
                sum += x1;
            }

            // All other a_n and x_n are stored as 20 digit fixed point numbers, so we convert the sum and a to this format.
            sum *= 100;
            a *= 100;

            // Because further a_n are  20 digit fixed point numbers, we multiply by ONE_20 when dividing by them.

            if (a >= a2) {
                a = (a * ONE_20) / a2;
                sum += x2;
            }

            if (a >= a3) {
                a = (a * ONE_20) / a3;
                sum += x3;
            }

            if (a >= a4) {
                a = (a * ONE_20) / a4;
                sum += x4;
            }

            if (a >= a5) {
                a = (a * ONE_20) / a5;
                sum += x5;
            }

            if (a >= a6) {
                a = (a * ONE_20) / a6;
                sum += x6;
            }

            if (a >= a7) {
                a = (a * ONE_20) / a7;
                sum += x7;
            }

            if (a >= a8) {
                a = (a * ONE_20) / a8;
                sum += x8;
            }

            if (a >= a9) {
                a = (a * ONE_20) / a9;
                sum += x9;
            }

            if (a >= a10) {
                a = (a * ONE_20) / a10;
                sum += x10;
            }

            if (a >= a11) {
                a = (a * ONE_20) / a11;
                sum += x11;
            }
        }

        // a is now a small number (smaller than a_11, which roughly equals 1.06). This means we can use a Taylor series
        // that converges rapidly for values of `a` close to one - the same one used in ln_36.
        // Let z = (a - 1) / (a + 1).
        // ln(a) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1))

        // Recall that 20 digit fixed point division requires multiplying by ONE_20, and multiplication requires
        // division by ONE_20.
        unchecked {
            int256 z = ((a - ONE_20) * ONE_20) / (a + ONE_20);
            int256 z_squared = (z * z) / ONE_20;

            // num is the numerator of the series: the z^(2 * n + 1) term
            int256 num = z;

            // seriesSum holds the accumulated sum of each term in the series, starting with the initial z
            int256 seriesSum = num;

            // In each step, the numerator is multiplied by z^2
            num = (num * z_squared) / ONE_20;
            seriesSum += num / 3;

            num = (num * z_squared) / ONE_20;
            seriesSum += num / 5;

            num = (num * z_squared) / ONE_20;
            seriesSum += num / 7;

            num = (num * z_squared) / ONE_20;
            seriesSum += num / 9;

            num = (num * z_squared) / ONE_20;
            seriesSum += num / 11;

            // 6 Taylor terms are sufficient for 36 decimal precision.

            // Finally, we multiply by 2 (non fixed point) to compute ln(remainder)
            seriesSum *= 2;

            // We now have the sum of all x_n present, and the Taylor approximation of the logarithm of the remainder (both
            // with 20 decimals). All that remains is to sum these two, and then drop two digits to return a 18 decimal
            // value.

            int256 result = (sum + seriesSum) / 100;

            // We avoid using recursion here because zkSync doesn't support it.
            return negativeExponent ? -result : result;
        }
    }

    /**
     * @dev Internal high precision (36 decimal places) natural logarithm (ln(x)) with signed 18 decimal fixed point argument,
     * for x close to one.
     *
     * Should only be used if x is between LN_36_LOWER_BOUND and LN_36_UPPER_BOUND.
     */
    function _ln_36(int256 x) private pure returns (int256) {
        // Since ln(1) = 0, a value of x close to one will yield a very small result, which makes using 36 digits
        // worthwhile.

        // First, we transform x to a 36 digit fixed point value.
        unchecked {
            x *= ONE_18;

            // We will use the following Taylor expansion, which converges very rapidly. Let z = (x - 1) / (x + 1).
            // ln(x) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1))

            // Recall that 36 digit fixed point division requires multiplying by ONE_36, and multiplication requires
            // division by ONE_36.
            int256 z = ((x - ONE_36) * ONE_36) / (x + ONE_36);
            int256 z_squared = (z * z) / ONE_36;

            // num is the numerator of the series: the z^(2 * n + 1) term
            int256 num = z;

            // seriesSum holds the accumulated sum of each term in the series, starting with the initial z
            int256 seriesSum = num;

            // In each step, the numerator is multiplied by z^2
            num = (num * z_squared) / ONE_36;
            seriesSum += num / 3;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 5;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 7;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 9;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 11;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 13;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 15;

            // 8 Taylor terms are sufficient for 36 decimal precision.

            // All that remains is multiplying by 2 (non fixed point).
            return seriesSum * 2;
        }
    }
}

File 29 of 63 : ReentrancyGuardTransient.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.24;

import { StorageSlotExtension } from "./StorageSlotExtension.sol";

/**
 * @notice Variant of {ReentrancyGuard} that uses transient storage.
 * @dev NOTE: This variant only works on networks where EIP-1153 is available.
 */
abstract contract ReentrancyGuardTransient {
    using StorageSlotExtension for *;

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.ReentrancyGuard")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant _REENTRANCY_GUARD_STORAGE =
        0x9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f00;

    /// @notice Unauthorized reentrant call.
    error ReentrancyGuardReentrantCall();

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be NOT_ENTERED.
        if (_reentrancyGuardEntered()) {
            revert ReentrancyGuardReentrantCall();
        }

        // Any calls to nonReentrant after this point will fail.
        _REENTRANCY_GUARD_STORAGE.asBoolean().tstore(true);
    }

    function _nonReentrantAfter() private {
        _REENTRANCY_GUARD_STORAGE.asBoolean().tstore(false);
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _REENTRANCY_GUARD_STORAGE.asBoolean().tload();
    }
}

File 30 of 63 : SlotDerivation.sol
// SPDX-License-Identifier: MIT
// This file was procedurally generated from scripts/generate/templates/SlotDerivation.js.

// Taken from https://raw.githubusercontent.com/Amxx/openzeppelin-contracts/ce497cb05ca05bb9aa2b86ec1d99e6454e7ab2e9/contracts/utils/SlotDerivation.sol

pragma solidity ^0.8.20;

/**
 * @notice Library for computing storage (and transient storage) locations from namespaces and deriving slots
 * corresponding to standard patterns.
 * @dev The derivation method for array and mapping matches the storage layout used by the solidity language/compiler.
 *
 * See https://docs.soliditylang.org/en/v0.8.20/internals/layout_in_storage.html#mappings-and-dynamic-arrays[Solidity docs for mappings and dynamic arrays.].
 *
 * Example usage:
 * ```solidity
 * contract Example {
 *     // Add the library methods
 *     using StorageSlot for bytes32;
 *     using SlotDerivation for bytes32;
 *
 *     // Declare a namespace
 *     string private constant _NAMESPACE = "<namespace>" // eg. OpenZeppelin.Slot
 *
 *     function setValueInNamespace(uint256 key, address newValue) internal {
 *         _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value = newValue;
 *     }
 *
 *     function getValueInNamespace(uint256 key) internal view returns (address) {
 *         return _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value;
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {StorageSlot}.
 *
 * NOTE: This library provides a way to manipulate storage locations in a non-standard way. Tooling for checking
 * upgrade safety will ignore the slots accessed through this library.
 */
library SlotDerivation {
    /// @dev Derive an ERC-7201 slot from a string (namespace).
    function erc7201Slot(string memory namespace) internal pure returns (bytes32 slot) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, sub(keccak256(add(namespace, 0x20), mload(namespace)), 1))
            slot := and(keccak256(0x00, 0x20), not(0xff))
        }
    }

    /// @dev Add an offset to a slot to get the n-th element of a structure or an array.
    function offset(bytes32 slot, uint256 pos) internal pure returns (bytes32 result) {
        unchecked {
            return bytes32(uint256(slot) + pos);
        }
    }

    /// @dev Derive the location of the first element in an array from the slot where the length is stored.
    function deriveArray(bytes32 slot) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, slot)
            result := keccak256(0x00, 0x20)
        }
    }

    /// @dev Derive the location of a mapping element from the key.
    function deriveMapping(bytes32 slot, address key) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, key)
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /// @dev Derive the location of a mapping element from the key.
    function deriveMapping(bytes32 slot, bool key) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, key)
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /// @dev Derive the location of a mapping element from the key.
    function deriveMapping(bytes32 slot, bytes32 key) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, key)
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /// @dev Derive the location of a mapping element from the key.
    function deriveMapping(bytes32 slot, uint256 key) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, key)
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /// @dev Derive the location of a mapping element from the key.
    function deriveMapping(bytes32 slot, int256 key) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, key)
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /// @dev Derive the location of a mapping element from the key.
    function deriveMapping(bytes32 slot, string memory key) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            let length := mload(key)
            let begin := add(key, 0x20)
            let end := add(begin, length)
            let cache := mload(end)
            mstore(end, slot)
            result := keccak256(begin, add(length, 0x20))
            mstore(end, cache)
        }
    }

    /// @dev Derive the location of a mapping element from the key.
    function deriveMapping(bytes32 slot, bytes memory key) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            let length := mload(key)
            let begin := add(key, 0x20)
            let end := add(begin, length)
            let cache := mload(end)
            mstore(end, slot)
            result := keccak256(begin, add(length, 0x20))
            mstore(end, cache)
        }
    }
}

File 31 of 63 : StorageSlotExtension.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.24;

/**
 * @notice Library for reading and writing primitive types to specific storage slots. Based on OpenZeppelin; just adding support for int256.
 * @dev TIP: Consider using this library along with {SlotDerivation}.
 */
library StorageSlotExtension {
    struct Int256Slot {
        int256 value;
    }

    /// @dev Returns an `Int256Slot` with member `value` located at `slot`.
    function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /// @dev Custom type that represents a slot holding an address.
    type AddressSlotType is bytes32;

    /// @dev Cast an arbitrary slot to a AddressSlotType.
    function asAddress(bytes32 slot) internal pure returns (AddressSlotType) {
        return AddressSlotType.wrap(slot);
    }

    /// @dev Custom type that represents a slot holding a boolean.
    type BooleanSlotType is bytes32;

    /// @dev Cast an arbitrary slot to a BooleanSlotType.
    function asBoolean(bytes32 slot) internal pure returns (BooleanSlotType) {
        return BooleanSlotType.wrap(slot);
    }

    /// @dev Custom type that represents a slot holding a bytes32.
    type Bytes32SlotType is bytes32;

    /// @dev Cast an arbitrary slot to a Bytes32SlotType.
    function asBytes32(bytes32 slot) internal pure returns (Bytes32SlotType) {
        return Bytes32SlotType.wrap(slot);
    }

    /// @dev Custom type that represents a slot holding a uint256.
    type Uint256SlotType is bytes32;

    /// @dev Cast an arbitrary slot to a Uint256SlotType.
    function asUint256(bytes32 slot) internal pure returns (Uint256SlotType) {
        return Uint256SlotType.wrap(slot);
    }

    /// @dev Custom type that represents a slot holding an int256.
    type Int256SlotType is bytes32;

    /// @dev Cast an arbitrary slot to an Int256SlotType.
    function asInt256(bytes32 slot) internal pure returns (Int256SlotType) {
        return Int256SlotType.wrap(slot);
    }

    /// @dev Load the value held at location `slot` in transient storage.
    function tload(AddressSlotType slot) internal view returns (address value) {
        /// @solidity memory-safe-assembly
        assembly {
            value := tload(slot)
        }
    }

    /// @dev Store `value` at location `slot` in transient storage.
    function tstore(AddressSlotType slot, address value) internal {
        /// @solidity memory-safe-assembly
        assembly {
            tstore(slot, value)
        }
    }

    /// @dev Load the value held at location `slot` in transient storage.
    function tload(BooleanSlotType slot) internal view returns (bool value) {
        /// @solidity memory-safe-assembly
        assembly {
            value := tload(slot)
        }
    }

    /// @dev Store `value` at location `slot` in transient storage.
    function tstore(BooleanSlotType slot, bool value) internal {
        /// @solidity memory-safe-assembly
        assembly {
            tstore(slot, value)
        }
    }

    /// @dev Load the value held at location `slot` in transient storage.
    function tload(Bytes32SlotType slot) internal view returns (bytes32 value) {
        /// @solidity memory-safe-assembly
        assembly {
            value := tload(slot)
        }
    }

    /// @dev Store `value` at location `slot` in transient storage.
    function tstore(Bytes32SlotType slot, bytes32 value) internal {
        /// @solidity memory-safe-assembly
        assembly {
            tstore(slot, value)
        }
    }

    /// @dev Load the value held at location `slot` in transient storage.
    function tload(Uint256SlotType slot) internal view returns (uint256 value) {
        /// @solidity memory-safe-assembly
        assembly {
            value := tload(slot)
        }
    }

    /// @dev Store `value` at location `slot` in transient storage.
    function tstore(Uint256SlotType slot, uint256 value) internal {
        /// @solidity memory-safe-assembly
        assembly {
            tstore(slot, value)
        }
    }

    /// @dev Load the value held at location `slot` in transient storage.
    function tload(Int256SlotType slot) internal view returns (int256 value) {
        /// @solidity memory-safe-assembly
        assembly {
            value := tload(slot)
        }
    }

    /// @dev Store `value` at location `slot` in transient storage.
    function tstore(Int256SlotType slot, int256 value) internal {
        /// @solidity memory-safe-assembly
        assembly {
            tstore(slot, value)
        }
    }
}

File 32 of 63 : draft-IERC6093.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;

/**
 * @dev Standard ERC20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in EIP-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}

File 33 of 63 : IERC4626.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC4626.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../token/ERC20/IERC20.sol";
import {IERC20Metadata} from "../token/ERC20/extensions/IERC20Metadata.sol";

/**
 * @dev Interface of the ERC4626 "Tokenized Vault Standard", as defined in
 * https://eips.ethereum.org/EIPS/eip-4626[ERC-4626].
 */
interface IERC4626 is IERC20, IERC20Metadata {
    event Deposit(address indexed sender, address indexed owner, uint256 assets, uint256 shares);

    event Withdraw(
        address indexed sender,
        address indexed receiver,
        address indexed owner,
        uint256 assets,
        uint256 shares
    );

    /**
     * @dev Returns the address of the underlying token used for the Vault for accounting, depositing, and withdrawing.
     *
     * - MUST be an ERC-20 token contract.
     * - MUST NOT revert.
     */
    function asset() external view returns (address assetTokenAddress);

    /**
     * @dev Returns the total amount of the underlying asset that is “managed” by Vault.
     *
     * - SHOULD include any compounding that occurs from yield.
     * - MUST be inclusive of any fees that are charged against assets in the Vault.
     * - MUST NOT revert.
     */
    function totalAssets() external view returns (uint256 totalManagedAssets);

    /**
     * @dev Returns the amount of shares that the Vault would exchange for the amount of assets provided, in an ideal
     * scenario where all the conditions are met.
     *
     * - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
     * - MUST NOT show any variations depending on the caller.
     * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
     * - MUST NOT revert.
     *
     * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
     * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
     * from.
     */
    function convertToShares(uint256 assets) external view returns (uint256 shares);

    /**
     * @dev Returns the amount of assets that the Vault would exchange for the amount of shares provided, in an ideal
     * scenario where all the conditions are met.
     *
     * - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
     * - MUST NOT show any variations depending on the caller.
     * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
     * - MUST NOT revert.
     *
     * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
     * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
     * from.
     */
    function convertToAssets(uint256 shares) external view returns (uint256 assets);

    /**
     * @dev Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver,
     * through a deposit call.
     *
     * - MUST return a limited value if receiver is subject to some deposit limit.
     * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of assets that may be deposited.
     * - MUST NOT revert.
     */
    function maxDeposit(address receiver) external view returns (uint256 maxAssets);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their deposit at the current block, given
     * current on-chain conditions.
     *
     * - MUST return as close to and no more than the exact amount of Vault shares that would be minted in a deposit
     *   call in the same transaction. I.e. deposit should return the same or more shares as previewDeposit if called
     *   in the same transaction.
     * - MUST NOT account for deposit limits like those returned from maxDeposit and should always act as though the
     *   deposit would be accepted, regardless if the user has enough tokens approved, etc.
     * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToShares and previewDeposit SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by depositing.
     */
    function previewDeposit(uint256 assets) external view returns (uint256 shares);

    /**
     * @dev Mints shares Vault shares to receiver by depositing exactly amount of underlying tokens.
     *
     * - MUST emit the Deposit event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
     *   deposit execution, and are accounted for during deposit.
     * - MUST revert if all of assets cannot be deposited (due to deposit limit being reached, slippage, the user not
     *   approving enough underlying tokens to the Vault contract, etc).
     *
     * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
     */
    function deposit(uint256 assets, address receiver) external returns (uint256 shares);

    /**
     * @dev Returns the maximum amount of the Vault shares that can be minted for the receiver, through a mint call.
     * - MUST return a limited value if receiver is subject to some mint limit.
     * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of shares that may be minted.
     * - MUST NOT revert.
     */
    function maxMint(address receiver) external view returns (uint256 maxShares);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their mint at the current block, given
     * current on-chain conditions.
     *
     * - MUST return as close to and no fewer than the exact amount of assets that would be deposited in a mint call
     *   in the same transaction. I.e. mint should return the same or fewer assets as previewMint if called in the
     *   same transaction.
     * - MUST NOT account for mint limits like those returned from maxMint and should always act as though the mint
     *   would be accepted, regardless if the user has enough tokens approved, etc.
     * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToAssets and previewMint SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by minting.
     */
    function previewMint(uint256 shares) external view returns (uint256 assets);

    /**
     * @dev Mints exactly shares Vault shares to receiver by depositing amount of underlying tokens.
     *
     * - MUST emit the Deposit event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the mint
     *   execution, and are accounted for during mint.
     * - MUST revert if all of shares cannot be minted (due to deposit limit being reached, slippage, the user not
     *   approving enough underlying tokens to the Vault contract, etc).
     *
     * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
     */
    function mint(uint256 shares, address receiver) external returns (uint256 assets);

    /**
     * @dev Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the
     * Vault, through a withdraw call.
     *
     * - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
     * - MUST NOT revert.
     */
    function maxWithdraw(address owner) external view returns (uint256 maxAssets);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their withdrawal at the current block,
     * given current on-chain conditions.
     *
     * - MUST return as close to and no fewer than the exact amount of Vault shares that would be burned in a withdraw
     *   call in the same transaction. I.e. withdraw should return the same or fewer shares as previewWithdraw if
     *   called
     *   in the same transaction.
     * - MUST NOT account for withdrawal limits like those returned from maxWithdraw and should always act as though
     *   the withdrawal would be accepted, regardless if the user has enough shares, etc.
     * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToShares and previewWithdraw SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by depositing.
     */
    function previewWithdraw(uint256 assets) external view returns (uint256 shares);

    /**
     * @dev Burns shares from owner and sends exactly assets of underlying tokens to receiver.
     *
     * - MUST emit the Withdraw event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
     *   withdraw execution, and are accounted for during withdraw.
     * - MUST revert if all of assets cannot be withdrawn (due to withdrawal limit being reached, slippage, the owner
     *   not having enough shares, etc).
     *
     * Note that some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
     * Those methods should be performed separately.
     */
    function withdraw(uint256 assets, address receiver, address owner) external returns (uint256 shares);

    /**
     * @dev Returns the maximum amount of Vault shares that can be redeemed from the owner balance in the Vault,
     * through a redeem call.
     *
     * - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
     * - MUST return balanceOf(owner) if owner is not subject to any withdrawal limit or timelock.
     * - MUST NOT revert.
     */
    function maxRedeem(address owner) external view returns (uint256 maxShares);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their redeemption at the current block,
     * given current on-chain conditions.
     *
     * - MUST return as close to and no more than the exact amount of assets that would be withdrawn in a redeem call
     *   in the same transaction. I.e. redeem should return the same or more assets as previewRedeem if called in the
     *   same transaction.
     * - MUST NOT account for redemption limits like those returned from maxRedeem and should always act as though the
     *   redemption would be accepted, regardless if the user has enough shares, etc.
     * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToAssets and previewRedeem SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by redeeming.
     */
    function previewRedeem(uint256 shares) external view returns (uint256 assets);

    /**
     * @dev Burns exactly shares from owner and sends assets of underlying tokens to receiver.
     *
     * - MUST emit the Withdraw event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
     *   redeem execution, and are accounted for during redeem.
     * - MUST revert if all of shares cannot be redeemed (due to withdrawal limit being reached, slippage, the owner
     *   not having enough shares, etc).
     *
     * NOTE: some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
     * Those methods should be performed separately.
     */
    function redeem(uint256 shares, address receiver, address owner) external returns (uint256 assets);
}

File 34 of 63 : IERC5267.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)

pragma solidity ^0.8.20;

interface IERC5267 {
    /**
     * @dev MAY be emitted to signal that the domain could have changed.
     */
    event EIP712DomainChanged();

    /**
     * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
     * signature.
     */
    function eip712Domain()
        external
        view
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        );
}

File 35 of 63 : Proxy.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/Proxy.sol)

pragma solidity ^0.8.20;

/**
 * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
 * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
 * be specified by overriding the virtual {_implementation} function.
 *
 * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
 * different contract through the {_delegate} function.
 *
 * The success and return data of the delegated call will be returned back to the caller of the proxy.
 */
abstract contract Proxy {
    /**
     * @dev Delegates the current call to `implementation`.
     *
     * This function does not return to its internal call site, it will return directly to the external caller.
     */
    function _delegate(address implementation) internal virtual {
        assembly {
            // Copy msg.data. We take full control of memory in this inline assembly
            // block because it will not return to Solidity code. We overwrite the
            // Solidity scratch pad at memory position 0.
            calldatacopy(0, 0, calldatasize())

            // Call the implementation.
            // out and outsize are 0 because we don't know the size yet.
            let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)

            // Copy the returned data.
            returndatacopy(0, 0, returndatasize())

            switch result
            // delegatecall returns 0 on error.
            case 0 {
                revert(0, returndatasize())
            }
            default {
                return(0, returndatasize())
            }
        }
    }

    /**
     * @dev This is a virtual function that should be overridden so it returns the address to which the fallback
     * function and {_fallback} should delegate.
     */
    function _implementation() internal view virtual returns (address);

    /**
     * @dev Delegates the current call to the address returned by `_implementation()`.
     *
     * This function does not return to its internal call site, it will return directly to the external caller.
     */
    function _fallback() internal virtual {
        _delegate(_implementation());
    }

    /**
     * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
     * function in the contract matches the call data.
     */
    fallback() external payable virtual {
        _fallback();
    }
}

File 36 of 63 : IERC20Metadata.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

File 37 of 63 : IERC20Permit.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

File 38 of 63 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

File 39 of 63 : SafeERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC20Permit} from "../extensions/IERC20Permit.sol";
import {Address} from "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    /**
     * @dev An operation with an ERC20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data);
        if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
    }
}

File 40 of 63 : Address.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error AddressInsufficientBalance(address account);

    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedInnerCall();

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert AddressInsufficientBalance(address(this));
        }

        (bool success, ) = recipient.call{value: amount}("");
        if (!success) {
            revert FailedInnerCall();
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {FailedInnerCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert AddressInsufficientBalance(address(this));
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
     * unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {FailedInnerCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert FailedInnerCall();
        }
    }
}

File 41 of 63 : ECDSA.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.20;

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS
    }

    /**
     * @dev The signature derives the `address(0)`.
     */
    error ECDSAInvalidSignature();

    /**
     * @dev The signature has an invalid length.
     */
    error ECDSAInvalidSignatureLength(uint256 length);

    /**
     * @dev The signature has an S value that is in the upper half order.
     */
    error ECDSAInvalidSignatureS(bytes32 s);

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
     * return address(0) without also returning an error description. Errors are documented using an enum (error type)
     * and a bytes32 providing additional information about the error.
     *
     * If no error is returned, then the address can be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     */
    function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) {
        unchecked {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            // We do not check for an overflow here since the shift operation results in 0 or 1.
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address, RecoverError, bytes32) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS, s);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature, bytes32(0));
        }

        return (signer, RecoverError.NoError, bytes32(0));
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
     */
    function _throwError(RecoverError error, bytes32 errorArg) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert ECDSAInvalidSignature();
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert ECDSAInvalidSignatureLength(uint256(errorArg));
        } else if (error == RecoverError.InvalidSignatureS) {
            revert ECDSAInvalidSignatureS(errorArg);
        }
    }
}

File 42 of 63 : EIP712.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/EIP712.sol)

pragma solidity ^0.8.20;

import {MessageHashUtils} from "./MessageHashUtils.sol";
import {ShortStrings, ShortString} from "../ShortStrings.sol";
import {IERC5267} from "../../interfaces/IERC5267.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
 * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
 * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
 * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
 * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
 * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
 *
 * @custom:oz-upgrades-unsafe-allow state-variable-immutable
 */
abstract contract EIP712 is IERC5267 {
    using ShortStrings for *;

    bytes32 private constant TYPE_HASH =
        keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");

    // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
    // invalidate the cached domain separator if the chain id changes.
    bytes32 private immutable _cachedDomainSeparator;
    uint256 private immutable _cachedChainId;
    address private immutable _cachedThis;

    bytes32 private immutable _hashedName;
    bytes32 private immutable _hashedVersion;

    ShortString private immutable _name;
    ShortString private immutable _version;
    string private _nameFallback;
    string private _versionFallback;

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    constructor(string memory name, string memory version) {
        _name = name.toShortStringWithFallback(_nameFallback);
        _version = version.toShortStringWithFallback(_versionFallback);
        _hashedName = keccak256(bytes(name));
        _hashedVersion = keccak256(bytes(version));

        _cachedChainId = block.chainid;
        _cachedDomainSeparator = _buildDomainSeparator();
        _cachedThis = address(this);
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view returns (bytes32) {
        if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
            return _cachedDomainSeparator;
        } else {
            return _buildDomainSeparator();
        }
    }

    function _buildDomainSeparator() private view returns (bytes32) {
        return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
    }

    /**
     * @dev See {IERC-5267}.
     */
    function eip712Domain()
        public
        view
        virtual
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        )
    {
        return (
            hex"0f", // 01111
            _EIP712Name(),
            _EIP712Version(),
            block.chainid,
            address(this),
            bytes32(0),
            new uint256[](0)
        );
    }

    /**
     * @dev The name parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _name which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Name() internal view returns (string memory) {
        return _name.toStringWithFallback(_nameFallback);
    }

    /**
     * @dev The version parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _version which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Version() internal view returns (string memory) {
        return _version.toStringWithFallback(_versionFallback);
    }
}

File 43 of 63 : MessageHashUtils.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol)

pragma solidity ^0.8.20;

import {Strings} from "../Strings.sol";

/**
 * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
 *
 * The library provides methods for generating a hash of a message that conforms to the
 * https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
 * specifications.
 */
library MessageHashUtils {
    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing a bytes32 `messageHash` with
     * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
     * keccak256, although any bytes32 value can be safely used because the final digest will
     * be re-hashed.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
            mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
            digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing an arbitrary `message` with
     * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
        return
            keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x00` (data with intended validator).
     *
     * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
     * `validator` address. Then hashing the result.
     *
     * See {ECDSA-recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked(hex"19_00", validator, data));
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`).
     *
     * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
     * `\x19\x01` and hashing the result. It corresponds to the hash signed by the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
     *
     * See {ECDSA-recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, hex"19_01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            digest := keccak256(ptr, 0x42)
        }
    }
}

File 44 of 63 : ERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/ERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 */
abstract contract ERC165 is IERC165 {
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}

File 45 of 63 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

File 46 of 63 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 47 of 63 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }
}

File 48 of 63 : SignedMath.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

File 49 of 63 : Nonces.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol)
pragma solidity ^0.8.20;

/**
 * @dev Provides tracking nonces for addresses. Nonces will only increment.
 */
abstract contract Nonces {
    /**
     * @dev The nonce used for an `account` is not the expected current nonce.
     */
    error InvalidAccountNonce(address account, uint256 currentNonce);

    mapping(address account => uint256) private _nonces;

    /**
     * @dev Returns the next unused nonce for an address.
     */
    function nonces(address owner) public view virtual returns (uint256) {
        return _nonces[owner];
    }

    /**
     * @dev Consumes a nonce.
     *
     * Returns the current value and increments nonce.
     */
    function _useNonce(address owner) internal virtual returns (uint256) {
        // For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be
        // decremented or reset. This guarantees that the nonce never overflows.
        unchecked {
            // It is important to do x++ and not ++x here.
            return _nonces[owner]++;
        }
    }

    /**
     * @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`.
     */
    function _useCheckedNonce(address owner, uint256 nonce) internal virtual {
        uint256 current = _useNonce(owner);
        if (nonce != current) {
            revert InvalidAccountNonce(owner, current);
        }
    }
}

File 50 of 63 : ShortStrings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/ShortStrings.sol)

pragma solidity ^0.8.20;

import {StorageSlot} from "./StorageSlot.sol";

// | string  | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA   |
// | length  | 0x                                                              BB |
type ShortString is bytes32;

/**
 * @dev This library provides functions to convert short memory strings
 * into a `ShortString` type that can be used as an immutable variable.
 *
 * Strings of arbitrary length can be optimized using this library if
 * they are short enough (up to 31 bytes) by packing them with their
 * length (1 byte) in a single EVM word (32 bytes). Additionally, a
 * fallback mechanism can be used for every other case.
 *
 * Usage example:
 *
 * ```solidity
 * contract Named {
 *     using ShortStrings for *;
 *
 *     ShortString private immutable _name;
 *     string private _nameFallback;
 *
 *     constructor(string memory contractName) {
 *         _name = contractName.toShortStringWithFallback(_nameFallback);
 *     }
 *
 *     function name() external view returns (string memory) {
 *         return _name.toStringWithFallback(_nameFallback);
 *     }
 * }
 * ```
 */
library ShortStrings {
    // Used as an identifier for strings longer than 31 bytes.
    bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;

    error StringTooLong(string str);
    error InvalidShortString();

    /**
     * @dev Encode a string of at most 31 chars into a `ShortString`.
     *
     * This will trigger a `StringTooLong` error is the input string is too long.
     */
    function toShortString(string memory str) internal pure returns (ShortString) {
        bytes memory bstr = bytes(str);
        if (bstr.length > 31) {
            revert StringTooLong(str);
        }
        return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
    }

    /**
     * @dev Decode a `ShortString` back to a "normal" string.
     */
    function toString(ShortString sstr) internal pure returns (string memory) {
        uint256 len = byteLength(sstr);
        // using `new string(len)` would work locally but is not memory safe.
        string memory str = new string(32);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(str, len)
            mstore(add(str, 0x20), sstr)
        }
        return str;
    }

    /**
     * @dev Return the length of a `ShortString`.
     */
    function byteLength(ShortString sstr) internal pure returns (uint256) {
        uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
        if (result > 31) {
            revert InvalidShortString();
        }
        return result;
    }

    /**
     * @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
     */
    function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
        if (bytes(value).length < 32) {
            return toShortString(value);
        } else {
            StorageSlot.getStringSlot(store).value = value;
            return ShortString.wrap(FALLBACK_SENTINEL);
        }
    }

    /**
     * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
     */
    function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return toString(value);
        } else {
            return store;
        }
    }

    /**
     * @dev Return the length of a string that was encoded to `ShortString` or written to storage using
     * {setWithFallback}.
     *
     * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
     * actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
     */
    function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return byteLength(value);
        } else {
            return bytes(store).length;
        }
    }
}

File 51 of 63 : StorageSlot.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(newImplementation.code.length > 0);
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := store.slot
        }
    }
}

File 52 of 63 : Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

File 53 of 63 : BalancerPoolToken.sol
// SPDX-License-Identifier: GPL-3.0-or-later

pragma solidity ^0.8.24;

import { IERC20Metadata } from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import { IERC20Permit } from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Permit.sol";
import { ERC165 } from "@openzeppelin/contracts/utils/introspection/ERC165.sol";
import { EIP712 } from "@openzeppelin/contracts/utils/cryptography/EIP712.sol";
import { ECDSA } from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { Nonces } from "@openzeppelin/contracts/utils/Nonces.sol";

import { IRateProvider } from "@balancer-labs/v3-interfaces/contracts/solidity-utils/helpers/IRateProvider.sol";
import { IVault } from "@balancer-labs/v3-interfaces/contracts/vault/IVault.sol";

import { VaultGuard } from "./VaultGuard.sol";

/**
 * @notice `BalancerPoolToken` is a fully ERC20-compatible token to be used as the base contract for Balancer Pools,
 * with all the data and implementation delegated to the ERC20Multitoken contract.

 * @dev Implementation of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
 */
contract BalancerPoolToken is IERC20, IERC20Metadata, IERC20Permit, IRateProvider, EIP712, Nonces, ERC165, VaultGuard {
    bytes32 public constant PERMIT_TYPEHASH =
        keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");

    /**
     * @notice Operation failed due to an expired permit signature.
     * @param deadline The permit deadline that expired
     */
    error ERC2612ExpiredSignature(uint256 deadline);

    /**
     * @notice Operation failed due to a non-matching signature.
     * @param signer The address corresponding to the signature provider
     * @param owner The address of the owner (expected value of the signature provider)
     */
    error ERC2612InvalidSigner(address signer, address owner);

    // EIP712 also defines _name.
    string private _bptName;
    string private _bptSymbol;

    constructor(IVault vault_, string memory bptName, string memory bptSymbol) EIP712(bptName, "1") VaultGuard(vault_) {
        _bptName = bptName;
        _bptSymbol = bptSymbol;
    }

    /// @inheritdoc IERC20Metadata
    function name() external view returns (string memory) {
        return _bptName;
    }

    /// @inheritdoc IERC20Metadata
    function symbol() external view returns (string memory) {
        return _bptSymbol;
    }

    /// @inheritdoc IERC20Metadata
    function decimals() external pure returns (uint8) {
        // Always 18 decimals for BPT.
        return 18;
    }

    /// @inheritdoc IERC20
    function totalSupply() public view returns (uint256) {
        return _vault.totalSupply(address(this));
    }

    function getVault() public view returns (IVault) {
        return _vault;
    }

    /// @inheritdoc IERC20
    function balanceOf(address account) external view returns (uint256) {
        return _vault.balanceOf(address(this), account);
    }

    /// @inheritdoc IERC20
    function transfer(address to, uint256 amount) external returns (bool) {
        // Vault will perform the transfer and call emitTransfer to emit the event from this contract.
        _vault.transfer(msg.sender, to, amount);
        return true;
    }

    /// @inheritdoc IERC20
    function allowance(address owner, address spender) external view returns (uint256) {
        return _vault.allowance(address(this), owner, spender);
    }

    /// @inheritdoc IERC20
    function approve(address spender, uint256 amount) external returns (bool) {
        // Vault will perform the approval and call emitApproval to emit the event from this contract.
        _vault.approve(msg.sender, spender, amount);
        return true;
    }

    /// @inheritdoc IERC20
    function transferFrom(address from, address to, uint256 amount) external returns (bool) {
        // Vault will perform the transfer and call emitTransfer to emit the event from this contract.
        _vault.transferFrom(msg.sender, from, to, amount);
        return true;
    }

    /**
     * Accounting is centralized in the MultiToken contract, and the actual transfers and approvals are done there.
     * Operations can be initiated from either the token contract or the MultiToken.
     *
     * To maintain compliance with the ERC-20 standard, and conform to the expectations of off-chain processes,
     * the MultiToken calls `emitTransfer` and `emitApproval` during those operations, so that the event is emitted
     * only from the token contract. These events are NOT defined in the MultiToken contract.
     */

    /// @dev Emit the Transfer event. This function can only be called by the MultiToken.
    function emitTransfer(address from, address to, uint256 amount) external onlyVault {
        emit Transfer(from, to, amount);
    }

    /// @dev Emit the Approval event. This function can only be called by the MultiToken.
    function emitApproval(address owner, address spender, uint256 amount) external onlyVault {
        emit Approval(owner, spender, amount);
    }

    // @inheritdoc IERC20Permit
    function permit(
        address owner,
        address spender,
        uint256 amount,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual {
        // solhint-disable-next-line not-rely-on-time
        if (block.timestamp > deadline) {
            revert ERC2612ExpiredSignature(deadline);
        }

        bytes32 structHash = keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, amount, _useNonce(owner), deadline));

        bytes32 hash = _hashTypedDataV4(structHash);

        address signer = ECDSA.recover(hash, v, r, s);
        if (signer != owner) {
            revert ERC2612InvalidSigner(signer, owner);
        }

        _vault.approve(owner, spender, amount);
    }

    // @inheritdoc IERC20Permit
    function nonces(address owner) public view virtual override(IERC20Permit, Nonces) returns (uint256) {
        return super.nonces(owner);
    }

    /// @notice Increment the sender's nonce to revoke any currently granted (but not yet executed) `permit`.
    function incrementNonce() external {
        _useNonce(msg.sender);
    }

    // @inheritdoc IERC20Permit
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view virtual returns (bytes32) {
        return _domainSeparatorV4();
    }

    /**
     * @notice Get the BPT rate, which is defined as: pool invariant/total supply.
     * @dev The VaultExtension contract defines a default implementation (`getBptRate`) to calculate the rate
     * of any given pool, which should be sufficient in nearly all cases.
     *
     * @return rate Rate of the pool's BPT
     */
    function getRate() public view virtual returns (uint256) {
        return getVault().getBptRate(address(this));
    }
}

File 54 of 63 : BasePoolMath.sol
// SPDX-License-Identifier: GPL-3.0-or-later

pragma solidity ^0.8.24;

import { IBasePool } from "@balancer-labs/v3-interfaces/contracts/vault/IBasePool.sol";
import { Rounding } from "@balancer-labs/v3-interfaces/contracts/vault/VaultTypes.sol";

import { FixedPoint } from "@balancer-labs/v3-solidity-utils/contracts/math/FixedPoint.sol";

library BasePoolMath {
    using FixedPoint for uint256;

    /**
     * @notice An add liquidity operation increased the invariant above the limit.
     * @dev This value is determined by each pool type, and depends on the specific math used to compute
     * the price curve.
     *
     * @param invariantRatio The ratio of the new invariant (after an operation) to the old
     * @param maxInvariantRatio The maximum allowed invariant ratio
     */
    error InvariantRatioAboveMax(uint256 invariantRatio, uint256 maxInvariantRatio);

    /**
     * @notice A remove liquidity operation decreased the invariant below the limit.
     * @dev This value is determined by each pool type, and depends on the specific math used to compute
     * the price curve.
     *
     * @param invariantRatio The ratio of the new invariant (after an operation) to the old
     * @param minInvariantRatio The minimum allowed invariant ratio
     */
    error InvariantRatioBelowMin(uint256 invariantRatio, uint256 minInvariantRatio);

    // For security reasons, to help ensure that for all possible "round trip" paths the caller always receives the
    // same or fewer tokens than supplied, we have chosen the rounding direction to favor the protocol in all cases.

    /**
     * @notice Computes the proportional amounts of tokens to be deposited into the pool.
     * @dev This function computes the amount of each token that needs to be deposited in order to mint a specific
     * amount of pool tokens (BPT). It ensures that the amounts of tokens deposited are proportional to the current
     * pool balances.
     *
     * Calculation: For each token, amountIn = balance * (bptAmountOut / bptTotalSupply).
     * Rounding up is used to ensure that the pool is not underfunded.
     *
     * @param balances Array of current token balances in the pool
     * @param bptTotalSupply Total supply of the pool tokens (BPT)
     * @param bptAmountOut The amount of pool tokens that need to be minted
     * @return amountsIn Array of amounts for each token to be deposited
     */
    function computeProportionalAmountsIn(
        uint256[] memory balances,
        uint256 bptTotalSupply,
        uint256 bptAmountOut
    ) internal pure returns (uint256[] memory amountsIn) {
        /************************************************************************************
        // computeProportionalAmountsIn                                                    //
        // (per token)                                                                     //
        // aI = amountIn                   /      bptOut      \                            //
        // b = balance           aI = b * | ----------------- |                            //
        // bptOut = bptAmountOut           \  bptTotalSupply  /                            //
        // bpt = bptTotalSupply                                                            //
        ************************************************************************************/

        // Create a new array to hold the amounts of each token to be deposited.
        amountsIn = new uint256[](balances.length);
        for (uint256 i = 0; i < balances.length; ++i) {
            // Since we multiply and divide we don't need to use FP math.
            // We're calculating amounts in so we round up.
            amountsIn[i] = balances[i].mulDivUp(bptAmountOut, bptTotalSupply);
        }
    }

    /**
     * @notice Computes the proportional amounts of tokens to be withdrawn from the pool.
     * @dev This function computes the amount of each token that will be withdrawn in exchange for burning
     * a specific amount of pool tokens (BPT). It ensures that the amounts of tokens withdrawn are proportional
     * to the current pool balances.
     *
     * Calculation: For each token, amountOut = balance * (bptAmountIn / bptTotalSupply).
     * Rounding down is used to prevent withdrawing more than the pool can afford.
     *
     * @param balances Array of current token balances in the pool
     * @param bptTotalSupply Total supply of the pool tokens (BPT)
     * @param bptAmountIn The amount of pool tokens that will be burned
     * @return amountsOut Array of amounts for each token to be withdrawn
     */
    function computeProportionalAmountsOut(
        uint256[] memory balances,
        uint256 bptTotalSupply,
        uint256 bptAmountIn
    ) internal pure returns (uint256[] memory amountsOut) {
        /**********************************************************************************************
        // computeProportionalAmountsOut                                                             //
        // (per token)                                                                               //
        // aO = tokenAmountOut             /        bptIn         \                                  //
        // b = tokenBalance      a0 = b * | ---------------------  |                                 //
        // bptIn = bptAmountIn             \     bptTotalSupply    /                                 //
        // bpt = bptTotalSupply                                                                      //
        **********************************************************************************************/

        // Create a new array to hold the amounts of each token to be withdrawn.
        amountsOut = new uint256[](balances.length);
        for (uint256 i = 0; i < balances.length; ++i) {
            // Since we multiply and divide we don't need to use FP math.
            // Round down since we're calculating amounts out.
            amountsOut[i] = (balances[i] * bptAmountIn) / bptTotalSupply;
        }
    }

    /**
     * @notice Computes the amount of pool tokens (BPT) to be minted for an unbalanced liquidity addition.
     * @dev This function handles liquidity addition where the proportion of tokens deposited does not match
     * the current pool composition. It considers the current balances, exact amounts of tokens to be added,
     * total supply, and swap fee percentage. The function calculates a new invariant with the added tokens,
     * applying swap fees if necessary, and then calculates the amount of BPT to mint based on the change
     * in the invariant.
     *
     * @param currentBalances Current pool balances, sorted in token registration order
     * @param exactAmounts Array of exact amounts for each token to be added to the pool
     * @param totalSupply The current total supply of the pool tokens (BPT)
     * @param swapFeePercentage The swap fee percentage applied to the transaction
     * @param pool The pool to which we're adding liquidity
     * @return bptAmountOut The amount of pool tokens (BPT) that will be minted as a result of the liquidity addition
     * @return swapFeeAmounts The amount of swap fees charged for each token
     */
    function computeAddLiquidityUnbalanced(
        uint256[] memory currentBalances,
        uint256[] memory exactAmounts,
        uint256 totalSupply,
        uint256 swapFeePercentage,
        IBasePool pool
    ) internal view returns (uint256 bptAmountOut, uint256[] memory swapFeeAmounts) {
        /***********************************************************************
        //                                                                    //
        // s = totalSupply                                 (iFees - iCur)     //
        // b = tokenBalance                  bptOut = s *  --------------     //
        // bptOut = bptAmountOut                                iCur          //
        // iFees = invariantWithFeesApplied                                   //
        // iCur = currentInvariant                                            //
        // iNew = newInvariant                                                //
        ***********************************************************************/

        // Determine the number of tokens in the pool.
        uint256 numTokens = currentBalances.length;

        // Create a new array to hold the updated balances after the addition.
        uint256[] memory newBalances = new uint256[](numTokens);
        // Create a new array to hold the swap fee amount for each token.
        swapFeeAmounts = new uint256[](numTokens);

        // Loop through each token, updating the balance with the added amount.
        for (uint256 i = 0; i < numTokens; ++i) {
            newBalances[i] = currentBalances[i] + exactAmounts[i] - 1; // Undo balance round up for new balances.
        }

        // Calculate the new invariant ratio by dividing the new invariant by the old invariant.
        // Rounding current invariant up reduces BPT amount out at the end (see comments below).
        uint256 currentInvariant = pool.computeInvariant(currentBalances, Rounding.ROUND_UP);
        // Round down to make `taxableAmount` larger below.
        uint256 invariantRatio = pool.computeInvariant(newBalances, Rounding.ROUND_DOWN).divDown(currentInvariant);

        ensureInvariantRatioBelowMaximumBound(pool, invariantRatio);

        // Loop through each token to apply fees if necessary.
        for (uint256 i = 0; i < numTokens; ++i) {
            // Check if the new balance is greater than the equivalent proportional balance.
            // If so, calculate the taxable amount, rounding in favor of the protocol.
            // We round the second term down to subtract less and get a higher `taxableAmount`,
            // which charges higher swap fees. This will lower `newBalances`, which in turn lowers
            // `invariantWithFeesApplied` below.
            uint256 proportionalTokenBalance = invariantRatio.mulDown(currentBalances[i]);
            if (newBalances[i] > proportionalTokenBalance) {
                uint256 taxableAmount;
                unchecked {
                    taxableAmount = newBalances[i] - proportionalTokenBalance;
                }
                // Calculate the fee amount.
                swapFeeAmounts[i] = taxableAmount.mulUp(swapFeePercentage);

                // Subtract the fee from the new balance.
                // We are essentially imposing swap fees on non-proportional incoming amounts.
                // Note: `swapFeeAmounts` should always be <= `taxableAmount` since `swapFeePercentage` is <= FP(1),
                // but since that's not verifiable within this contract, a checked subtraction is preferred.
                newBalances[i] = newBalances[i] - swapFeeAmounts[i];
            }
        }

        // Calculate the new invariant with fees applied.
        // This invariant should be lower than the original one, so we don't need to check invariant ratio bounds again.
        // Rounding down makes bptAmountOut go down (see comment below).
        uint256 invariantWithFeesApplied = pool.computeInvariant(newBalances, Rounding.ROUND_DOWN);

        // Calculate the amount of BPT to mint. This is done by multiplying the
        // total supply with the ratio of the change in invariant.
        // Since we multiply and divide we don't need to use FP math.
        // Round down since we're calculating BPT amount out. This is the most important result of this function,
        // equivalent to:
        // `totalSupply * (invariantWithFeesApplied / currentInvariant - 1)`

        // Then, to round `bptAmountOut` down we use `invariantWithFeesApplied` rounded down and `currentInvariant`
        // rounded up.
        // If rounding makes `invariantWithFeesApplied` smaller or equal to `currentInvariant`, this would effectively
        // be a donation. In that case we just let checked math revert for simplicity; it's not a valid use-case to
        // support at this point.
        bptAmountOut = (totalSupply * (invariantWithFeesApplied - currentInvariant)) / currentInvariant;
    }

    /**
     * @notice Computes the amount of input token needed to receive an exact amount of pool tokens (BPT) in a
     * single-token liquidity addition.
     * @dev This function is used when a user wants to add liquidity to the pool by specifying the exact amount
     * of pool tokens they want to receive, and the function calculates the corresponding amount of the input token.
     * It considers the current pool balances, total supply, swap fee percentage, and the desired BPT amount.
     *
     * @param currentBalances Array of current token balances in the pool, sorted in token registration order
     * @param tokenInIndex Index of the input token for which the amount needs to be calculated
     * @param exactBptAmountOut Exact amount of pool tokens (BPT) the user wants to receive
     * @param totalSupply The current total supply of the pool tokens (BPT)
     * @param swapFeePercentage The swap fee percentage applied to the taxable amount
     * @param pool The pool to which we're adding liquidity
     * @return amountInWithFee The amount of input token needed, including the swap fee, to receive the exact BPT amount
     * @return swapFeeAmounts The amount of swap fees charged for each token
     */
    function computeAddLiquiditySingleTokenExactOut(
        uint256[] memory currentBalances,
        uint256 tokenInIndex,
        uint256 exactBptAmountOut,
        uint256 totalSupply,
        uint256 swapFeePercentage,
        IBasePool pool
    ) internal view returns (uint256 amountInWithFee, uint256[] memory swapFeeAmounts) {
        // Calculate new supply after minting exactBptAmountOut.
        uint256 newSupply = exactBptAmountOut + totalSupply;

        // Calculate the initial amount of the input token needed for the desired amount of BPT out
        // "divUp" leads to a higher "newBalance", which in turn results in a larger "amountIn".
        // This leads to receiving more tokens for the same amount of BPT minted.
        uint256 invariantRatio = newSupply.divUp(totalSupply);
        ensureInvariantRatioBelowMaximumBound(pool, invariantRatio);

        uint256 newBalance = pool.computeBalance(currentBalances, tokenInIndex, invariantRatio);

        // Compute the amount to be deposited into the pool.
        uint256 amountIn = newBalance - currentBalances[tokenInIndex];

        // Calculate the non-taxable amount, which is the new balance proportionate to the BPT minted.
        // Since we multiply and divide we don't need to use FP math.
        // Rounding down makes `taxableAmount` larger, which in turn makes `fee` larger below.
        uint256 nonTaxableBalance = (newSupply * currentBalances[tokenInIndex]) / totalSupply;

        // Calculate the taxable amount, which is the difference between the actual new balance and
        // the non-taxable balance.
        uint256 taxableAmount = newBalance - nonTaxableBalance;

        // Calculate the swap fee based on the taxable amount and the swap fee percentage.
        uint256 fee = taxableAmount.divUp(swapFeePercentage.complement()) - taxableAmount;

        // Create swap fees amount array and set the single fee we charge.
        swapFeeAmounts = new uint256[](currentBalances.length);
        swapFeeAmounts[tokenInIndex] = fee;

        // Return the total amount of input token needed, including the swap fee.
        amountInWithFee = amountIn + fee;
    }

    /**
     * @notice Computes the amount of pool tokens to burn to receive exact amount out.
     * @param currentBalances Current pool balances, sorted in token registration order
     * @param tokenOutIndex Index of the token to receive in exchange for pool tokens burned
     * @param exactAmountOut Exact amount of tokens to receive
     * @param totalSupply The current total supply of the pool tokens (BPT)
     * @param swapFeePercentage The swap fee percentage applied to the taxable amount
     * @param pool The pool from which we're removing liquidity
     * @return bptAmountIn Amount of pool tokens to burn
     * @return swapFeeAmounts The amount of swap fees charged for each token
     */
    function computeRemoveLiquiditySingleTokenExactOut(
        uint256[] memory currentBalances,
        uint256 tokenOutIndex,
        uint256 exactAmountOut,
        uint256 totalSupply,
        uint256 swapFeePercentage,
        IBasePool pool
    ) internal view returns (uint256 bptAmountIn, uint256[] memory swapFeeAmounts) {
        // Determine the number of tokens in the pool.
        uint256 numTokens = currentBalances.length;

        // Create a new array to hold the updated balances.
        uint256[] memory newBalances = new uint256[](numTokens);

        // Copy currentBalances to newBalances.
        for (uint256 i = 0; i < numTokens; ++i) {
            newBalances[i] = currentBalances[i] - 1;
        }

        // Update the balance of tokenOutIndex with exactAmountOut.
        newBalances[tokenOutIndex] = newBalances[tokenOutIndex] - exactAmountOut;

        // Calculate the new invariant using the new balances (after the removal).
        // Calculate the new invariant ratio by dividing the new invariant by the old invariant.
        // Calculate the new proportional balance by multiplying the new invariant ratio by the current balance.
        // Calculate the taxable amount by subtracting the new balance from the equivalent proportional balance.
        // We round `currentInvariant` up as it affects the calculated `bptAmountIn` directly (see below).
        uint256 currentInvariant = pool.computeInvariant(currentBalances, Rounding.ROUND_UP);

        // We round invariant ratio up (see reason below).
        // This invariant ratio could be rounded up even more by rounding `currentInvariant` down. But since it only
        // affects the taxable amount and the fee calculation, whereas `currentInvariant` affects BPT in more directly,
        // we use `currentInvariant` rounded up here as well.
        uint256 invariantRatio = pool.computeInvariant(newBalances, Rounding.ROUND_UP).divUp(currentInvariant);

        ensureInvariantRatioAboveMinimumBound(pool, invariantRatio);

        // Taxable amount is proportional to invariant ratio; a larger taxable amount rounds in the Vault's favor.
        uint256 taxableAmount = invariantRatio.mulUp(currentBalances[tokenOutIndex]) - newBalances[tokenOutIndex];

        // Calculate the swap fee based on the taxable amount and the swap fee percentage.
        // Fee is proportional to taxable amount; larger fee rounds in the Vault's favor.
        uint256 fee = taxableAmount.divUp(swapFeePercentage.complement()) - taxableAmount;

        // Update new balances array with a fee.
        newBalances[tokenOutIndex] = newBalances[tokenOutIndex] - fee;

        // Calculate the new invariant with fees applied.
        // Larger fee means `invariantWithFeesApplied` goes lower.
        uint256 invariantWithFeesApplied = pool.computeInvariant(newBalances, Rounding.ROUND_DOWN);

        // Create swap fees amount array and set the single fee we charge.
        swapFeeAmounts = new uint256[](numTokens);
        swapFeeAmounts[tokenOutIndex] = fee;

        // Calculate the amount of BPT to burn. This is done by multiplying the total supply by the ratio of the
        // invariant delta to the current invariant.
        //
        // Calculating BPT amount in, so we round up. This is the most important result of this function, equivalent to:
        // `totalSupply * (1 - invariantWithFeesApplied / currentInvariant)`.
        // Then, to round `bptAmountIn` up we use `invariantWithFeesApplied` rounded down and `currentInvariant`
        // rounded up.
        //
        // Since `currentInvariant` is rounded up and `invariantWithFeesApplied` is rounded down, the difference
        // should always be positive. The checked math will revert if that is not the case.
        bptAmountIn = totalSupply.mulDivUp(currentInvariant - invariantWithFeesApplied, currentInvariant);
    }

    /**
     * @notice Computes the amount of a single token to withdraw for a given amount of BPT to burn.
     * @dev It computes the output token amount for an exact input of BPT, considering current balances,
     * total supply, and swap fees.
     *
     * @param currentBalances The current token balances in the pool
     * @param tokenOutIndex The index of the token to be withdrawn
     * @param exactBptAmountIn The exact amount of BPT the user wants to burn
     * @param totalSupply The current total supply of the pool tokens (BPT)
     * @param swapFeePercentage The swap fee percentage applied to the taxable amount
     * @param pool The pool from which we're removing liquidity
     * @return amountOutWithFee The amount of the output token the user receives, accounting for swap fees
     * @return swapFeeAmounts The total amount of swap fees charged
     */
    function computeRemoveLiquiditySingleTokenExactIn(
        uint256[] memory currentBalances,
        uint256 tokenOutIndex,
        uint256 exactBptAmountIn,
        uint256 totalSupply,
        uint256 swapFeePercentage,
        IBasePool pool
    ) internal view returns (uint256 amountOutWithFee, uint256[] memory swapFeeAmounts) {
        // Calculate new supply accounting for burning exactBptAmountIn.
        uint256 newSupply = totalSupply - exactBptAmountIn;
        uint256 invariantRatio = newSupply.divUp(totalSupply);
        ensureInvariantRatioAboveMinimumBound(pool, invariantRatio);

        // Calculate the new balance of the output token after the BPT burn.
        // "divUp" leads to a higher "newBalance", which in turn results in a lower "amountOut", but also a lower
        // "taxableAmount". Although the former leads to giving less tokens for the same amount of BPT burned,
        // the latter leads to charging less swap fees. In consequence, a conflict of interests arises regarding
        // the rounding of "newBalance"; we prioritize getting a lower "amountOut".
        uint256 newBalance = pool.computeBalance(currentBalances, tokenOutIndex, invariantRatio);

        // Compute the amount to be withdrawn from the pool.
        uint256 amountOut = currentBalances[tokenOutIndex] - newBalance;

        // Calculate the new balance proportionate to the amount of BPT burned.
        // We round up: higher `newBalanceBeforeTax` makes `taxableAmount` go up, which rounds in the Vault's favor.
        uint256 newBalanceBeforeTax = newSupply.mulDivUp(currentBalances[tokenOutIndex], totalSupply);

        // Compute the taxable amount: the difference between the new proportional and disproportional balances.
        uint256 taxableAmount = newBalanceBeforeTax - newBalance;

        // Calculate the swap fee on the taxable amount.
        uint256 fee = taxableAmount.mulUp(swapFeePercentage);

        // Create swap fees amount array and set the single fee we charge.
        swapFeeAmounts = new uint256[](currentBalances.length);
        swapFeeAmounts[tokenOutIndex] = fee;

        // Return the net amount after subtracting the fee.
        amountOutWithFee = amountOut - fee;
    }

    /**
     * @notice Validate the invariant ratio against the maximum bound.
     * @dev This is checked when we're adding liquidity, so the `invariantRatio` > 1.
     * @param pool The pool to which we're adding liquidity
     * @param invariantRatio The ratio of the new invariant (after an operation) to the old
     */
    function ensureInvariantRatioBelowMaximumBound(IBasePool pool, uint256 invariantRatio) internal view {
        uint256 maxInvariantRatio = pool.getMaximumInvariantRatio();
        if (invariantRatio > maxInvariantRatio) {
            revert InvariantRatioAboveMax(invariantRatio, maxInvariantRatio);
        }
    }

    /**
     * @notice Validate the invariant ratio against the maximum bound.
     * @dev This is checked when we're removing liquidity, so the `invariantRatio` < 1.
     * @param pool The pool from which we're removing liquidity
     * @param invariantRatio The ratio of the new invariant (after an operation) to the old
     */
    function ensureInvariantRatioAboveMinimumBound(IBasePool pool, uint256 invariantRatio) internal view {
        uint256 minInvariantRatio = pool.getMinimumInvariantRatio();
        if (invariantRatio < minInvariantRatio) {
            revert InvariantRatioBelowMin(invariantRatio, minInvariantRatio);
        }
    }
}

File 55 of 63 : HooksConfigLib.sol
// SPDX-License-Identifier: GPL-3.0-or-later

pragma solidity ^0.8.24;

import { IVaultErrors } from "@balancer-labs/v3-interfaces/contracts/vault/IVaultErrors.sol";
import { IHooks } from "@balancer-labs/v3-interfaces/contracts/vault/IHooks.sol";
import "@balancer-labs/v3-interfaces/contracts/vault/VaultTypes.sol";

import { WordCodec } from "@balancer-labs/v3-solidity-utils/contracts/helpers/WordCodec.sol";

import { PoolConfigConst } from "./PoolConfigConst.sol";

/**
 * @notice Helper functions to read and write the packed hook configuration flags stored in `_poolConfigBits`.
 * @dev This library has two additional functions. `toHooksConfig` constructs a `HooksConfig` structure from the
 * PoolConfig and the hooks contract address. Also, there are `call<hook>` functions that forward the arguments
 * to the corresponding functions in the hook contract, then validate and return the results.
 *
 * Note that the entire configuration of each pool is stored in the `_poolConfigBits` mapping (one slot per pool).
 * This includes the data in the `PoolConfig` struct, plus the data in the `HookFlags` struct. The layout (i.e.,
 * offsets for each data field) is specified in `PoolConfigConst`.
 *
 * There are two libraries for interpreting these data. This one parses fields related to hooks, and also
 * contains helpers for the struct building and hooks contract forwarding functions described above. `PoolConfigLib`
 * contains helpers related to the non-hook-related flags, along with aggregate fee percentages and other data
 * associated with pools.
 *
 * The `PoolData` struct contains the raw bitmap with the entire pool state (`PoolConfigBits`), plus the token
 * configuration, scaling factors, and dynamic information such as current balances and rates.
 *
 * The hooks contract addresses themselves are stored in a separate `_hooksContracts` mapping.
 */
library HooksConfigLib {
    using WordCodec for bytes32;
    using HooksConfigLib for PoolConfigBits;

    function enableHookAdjustedAmounts(PoolConfigBits config) internal pure returns (bool) {
        return PoolConfigBits.unwrap(config).decodeBool(PoolConfigConst.ENABLE_HOOK_ADJUSTED_AMOUNTS_OFFSET);
    }

    function setHookAdjustedAmounts(PoolConfigBits config, bool value) internal pure returns (PoolConfigBits) {
        return
            PoolConfigBits.wrap(
                PoolConfigBits.unwrap(config).insertBool(value, PoolConfigConst.ENABLE_HOOK_ADJUSTED_AMOUNTS_OFFSET)
            );
    }

    function shouldCallBeforeInitialize(PoolConfigBits config) internal pure returns (bool) {
        return PoolConfigBits.unwrap(config).decodeBool(PoolConfigConst.BEFORE_INITIALIZE_OFFSET);
    }

    function setShouldCallBeforeInitialize(PoolConfigBits config, bool value) internal pure returns (PoolConfigBits) {
        return
            PoolConfigBits.wrap(
                PoolConfigBits.unwrap(config).insertBool(value, PoolConfigConst.BEFORE_INITIALIZE_OFFSET)
            );
    }

    function shouldCallAfterInitialize(PoolConfigBits config) internal pure returns (bool) {
        return PoolConfigBits.unwrap(config).decodeBool(PoolConfigConst.AFTER_INITIALIZE_OFFSET);
    }

    function setShouldCallAfterInitialize(PoolConfigBits config, bool value) internal pure returns (PoolConfigBits) {
        return
            PoolConfigBits.wrap(
                PoolConfigBits.unwrap(config).insertBool(value, PoolConfigConst.AFTER_INITIALIZE_OFFSET)
            );
    }

    function shouldCallComputeDynamicSwapFee(PoolConfigBits config) internal pure returns (bool) {
        return PoolConfigBits.unwrap(config).decodeBool(PoolConfigConst.DYNAMIC_SWAP_FEE_OFFSET);
    }

    function setShouldCallComputeDynamicSwapFee(
        PoolConfigBits config,
        bool value
    ) internal pure returns (PoolConfigBits) {
        return
            PoolConfigBits.wrap(
                PoolConfigBits.unwrap(config).insertBool(value, PoolConfigConst.DYNAMIC_SWAP_FEE_OFFSET)
            );
    }

    function shouldCallBeforeSwap(PoolConfigBits config) internal pure returns (bool) {
        return PoolConfigBits.unwrap(config).decodeBool(PoolConfigConst.BEFORE_SWAP_OFFSET);
    }

    function setShouldCallBeforeSwap(PoolConfigBits config, bool value) internal pure returns (PoolConfigBits) {
        return PoolConfigBits.wrap(PoolConfigBits.unwrap(config).insertBool(value, PoolConfigConst.BEFORE_SWAP_OFFSET));
    }

    function shouldCallAfterSwap(PoolConfigBits config) internal pure returns (bool) {
        return PoolConfigBits.unwrap(config).decodeBool(PoolConfigConst.AFTER_SWAP_OFFSET);
    }

    function setShouldCallAfterSwap(PoolConfigBits config, bool value) internal pure returns (PoolConfigBits) {
        return PoolConfigBits.wrap(PoolConfigBits.unwrap(config).insertBool(value, PoolConfigConst.AFTER_SWAP_OFFSET));
    }

    function shouldCallBeforeAddLiquidity(PoolConfigBits config) internal pure returns (bool) {
        return PoolConfigBits.unwrap(config).decodeBool(PoolConfigConst.BEFORE_ADD_LIQUIDITY_OFFSET);
    }

    function setShouldCallBeforeAddLiquidity(PoolConfigBits config, bool value) internal pure returns (PoolConfigBits) {
        return
            PoolConfigBits.wrap(
                PoolConfigBits.unwrap(config).insertBool(value, PoolConfigConst.BEFORE_ADD_LIQUIDITY_OFFSET)
            );
    }

    function shouldCallAfterAddLiquidity(PoolConfigBits config) internal pure returns (bool) {
        return PoolConfigBits.unwrap(config).decodeBool(PoolConfigConst.AFTER_ADD_LIQUIDITY_OFFSET);
    }

    function setShouldCallAfterAddLiquidity(PoolConfigBits config, bool value) internal pure returns (PoolConfigBits) {
        return
            PoolConfigBits.wrap(
                PoolConfigBits.unwrap(config).insertBool(value, PoolConfigConst.AFTER_ADD_LIQUIDITY_OFFSET)
            );
    }

    function shouldCallBeforeRemoveLiquidity(PoolConfigBits config) internal pure returns (bool) {
        return PoolConfigBits.unwrap(config).decodeBool(PoolConfigConst.BEFORE_REMOVE_LIQUIDITY_OFFSET);
    }

    function setShouldCallBeforeRemoveLiquidity(
        PoolConfigBits config,
        bool value
    ) internal pure returns (PoolConfigBits) {
        return
            PoolConfigBits.wrap(
                PoolConfigBits.unwrap(config).insertBool(value, PoolConfigConst.BEFORE_REMOVE_LIQUIDITY_OFFSET)
            );
    }

    function shouldCallAfterRemoveLiquidity(PoolConfigBits config) internal pure returns (bool) {
        return PoolConfigBits.unwrap(config).decodeBool(PoolConfigConst.AFTER_REMOVE_LIQUIDITY_OFFSET);
    }

    function setShouldCallAfterRemoveLiquidity(
        PoolConfigBits config,
        bool value
    ) internal pure returns (PoolConfigBits) {
        return
            PoolConfigBits.wrap(
                PoolConfigBits.unwrap(config).insertBool(value, PoolConfigConst.AFTER_REMOVE_LIQUIDITY_OFFSET)
            );
    }

    function toHooksConfig(PoolConfigBits config, IHooks hooksContract) internal pure returns (HooksConfig memory) {
        return
            HooksConfig({
                enableHookAdjustedAmounts: config.enableHookAdjustedAmounts(),
                shouldCallBeforeInitialize: config.shouldCallBeforeInitialize(),
                shouldCallAfterInitialize: config.shouldCallAfterInitialize(),
                shouldCallBeforeAddLiquidity: config.shouldCallBeforeAddLiquidity(),
                shouldCallAfterAddLiquidity: config.shouldCallAfterAddLiquidity(),
                shouldCallBeforeRemoveLiquidity: config.shouldCallBeforeRemoveLiquidity(),
                shouldCallAfterRemoveLiquidity: config.shouldCallAfterRemoveLiquidity(),
                shouldCallComputeDynamicSwapFee: config.shouldCallComputeDynamicSwapFee(),
                shouldCallBeforeSwap: config.shouldCallBeforeSwap(),
                shouldCallAfterSwap: config.shouldCallAfterSwap(),
                hooksContract: address(hooksContract)
            });
    }

    /**
     * @dev Call the `onComputeDynamicSwapFeePercentage` hook and return the result. Reverts on failure.
     * @param swapParams The swap parameters used to calculate the fee
     * @param pool Pool address
     * @param staticSwapFeePercentage Value of the static swap fee, for reference
     * @param hooksContract Storage slot with the address of the hooks contract
     * @return swapFeePercentage The calculated swap fee percentage
     */
    function callComputeDynamicSwapFeeHook(
        PoolSwapParams memory swapParams,
        address pool,
        uint256 staticSwapFeePercentage,
        IHooks hooksContract
    ) internal view returns (uint256) {
        (bool success, uint256 swapFeePercentage) = hooksContract.onComputeDynamicSwapFeePercentage(
            swapParams,
            pool,
            staticSwapFeePercentage
        );

        if (success == false) {
            revert IVaultErrors.DynamicSwapFeeHookFailed();
        }

        // A 100% fee is not supported. In the ExactOut case, the Vault divides by the complement of the swap fee.
        // The minimum precision constraint provides an additional buffer.
        if (swapFeePercentage > MAX_FEE_PERCENTAGE) {
            revert IVaultErrors.PercentageAboveMax();
        }

        return swapFeePercentage;
    }

    /**
     * @dev Call the `onBeforeSwap` hook. Reverts on failure.
     * @param swapParams The swap parameters used in the hook
     * @param pool Pool address
     * @param hooksContract Storage slot with the address of the hooks contract
     */
    function callBeforeSwapHook(PoolSwapParams memory swapParams, address pool, IHooks hooksContract) internal {
        if (hooksContract.onBeforeSwap(swapParams, pool) == false) {
            // Hook contract implements onBeforeSwap, but it has failed, so reverts the transaction.
            revert IVaultErrors.BeforeSwapHookFailed();
        }
    }

    /**
     * @dev Call the `onAfterSwap` hook, then validate and return the result. Reverts on failure, or if the limits
     * are violated. If the hook contract did not enable hook-adjusted amounts, it will ignore the hook results and
     * return the original `amountCalculatedRaw`.
     *
     * @param config The encoded pool configuration
     * @param amountCalculatedScaled18 Token amount calculated by the swap
     * @param amountCalculatedRaw Token amount calculated by the swap
     * @param router Router address
     * @param vaultSwapParams The swap parameters
     * @param state Temporary state used in swap operations
     * @param poolData Struct containing balance and token information of the pool
     * @param hooksContract Storage slot with the address of the hooks contract
     * @return hookAdjustedAmountCalculatedRaw New amount calculated, potentially modified by the hook
     */
    function callAfterSwapHook(
        PoolConfigBits config,
        uint256 amountCalculatedScaled18,
        uint256 amountCalculatedRaw,
        address router,
        VaultSwapParams memory vaultSwapParams,
        SwapState memory state,
        PoolData memory poolData,
        IHooks hooksContract
    ) internal returns (uint256) {
        // Adjust balances for the AfterSwap hook.
        (uint256 amountInScaled18, uint256 amountOutScaled18) = vaultSwapParams.kind == SwapKind.EXACT_IN
            ? (state.amountGivenScaled18, amountCalculatedScaled18)
            : (amountCalculatedScaled18, state.amountGivenScaled18);

        (bool success, uint256 hookAdjustedAmountCalculatedRaw) = hooksContract.onAfterSwap(
            AfterSwapParams({
                kind: vaultSwapParams.kind,
                tokenIn: vaultSwapParams.tokenIn,
                tokenOut: vaultSwapParams.tokenOut,
                amountInScaled18: amountInScaled18,
                amountOutScaled18: amountOutScaled18,
                tokenInBalanceScaled18: poolData.balancesLiveScaled18[state.indexIn],
                tokenOutBalanceScaled18: poolData.balancesLiveScaled18[state.indexOut],
                amountCalculatedScaled18: amountCalculatedScaled18,
                amountCalculatedRaw: amountCalculatedRaw,
                router: router,
                pool: vaultSwapParams.pool,
                userData: vaultSwapParams.userData
            })
        );

        if (success == false) {
            // Hook contract implements onAfterSwap, but it has failed, so reverts the transaction.
            revert IVaultErrors.AfterSwapHookFailed();
        }

        // If hook adjusted amounts is not enabled, ignore amounts returned by the hook
        if (config.enableHookAdjustedAmounts() == false) {
            return amountCalculatedRaw;
        }

        if (
            (vaultSwapParams.kind == SwapKind.EXACT_IN && hookAdjustedAmountCalculatedRaw < vaultSwapParams.limitRaw) ||
            (vaultSwapParams.kind == SwapKind.EXACT_OUT && hookAdjustedAmountCalculatedRaw > vaultSwapParams.limitRaw)
        ) {
            revert IVaultErrors.HookAdjustedSwapLimit(hookAdjustedAmountCalculatedRaw, vaultSwapParams.limitRaw);
        }

        return hookAdjustedAmountCalculatedRaw;
    }

    /**
     * @dev Call the `onBeforeAddLiquidity` hook. Reverts on failure.
     * @param router Router address
     * @param maxAmountsInScaled18 An array with maximum amounts for each input token of the add liquidity operation
     * @param params The add liquidity parameters
     * @param poolData Struct containing balance and token information of the pool
     * @param hooksContract Storage slot with the address of the hooks contract
     */
    function callBeforeAddLiquidityHook(
        address router,
        uint256[] memory maxAmountsInScaled18,
        AddLiquidityParams memory params,
        PoolData memory poolData,
        IHooks hooksContract
    ) internal {
        if (
            hooksContract.onBeforeAddLiquidity(
                router,
                params.pool,
                params.kind,
                maxAmountsInScaled18,
                params.minBptAmountOut,
                poolData.balancesLiveScaled18,
                params.userData
            ) == false
        ) {
            revert IVaultErrors.BeforeAddLiquidityHookFailed();
        }
    }

    /**
     * @dev Call the `onAfterAddLiquidity` hook, then validate and return the result. Reverts on failure, or if
     * the limits are violated. If the contract did not enable hook-adjusted amounts, it will ignore the hook
     * results and return the original `amountsInRaw`.
     *
     * @param config The encoded pool configuration
     * @param router Router address
     * @param amountsInScaled18 An array with amounts for each input token of the add liquidity operation
     * @param amountsInRaw An array with amounts for each input token of the add liquidity operation
     * @param bptAmountOut The BPT amount a user will receive after add liquidity operation succeeds
     * @param params The add liquidity parameters
     * @param poolData Struct containing balance and token information of the pool
     * @param hooksContract Storage slot with the address of the hooks contract
     * @return hookAdjustedAmountsInRaw New amountsInRaw, potentially modified by the hook
     */
    function callAfterAddLiquidityHook(
        PoolConfigBits config,
        address router,
        uint256[] memory amountsInScaled18,
        uint256[] memory amountsInRaw,
        uint256 bptAmountOut,
        AddLiquidityParams memory params,
        PoolData memory poolData,
        IHooks hooksContract
    ) internal returns (uint256[] memory) {
        (bool success, uint256[] memory hookAdjustedAmountsInRaw) = hooksContract.onAfterAddLiquidity(
            router,
            params.pool,
            params.kind,
            amountsInScaled18,
            amountsInRaw,
            bptAmountOut,
            poolData.balancesLiveScaled18,
            params.userData
        );

        if (success == false || hookAdjustedAmountsInRaw.length != amountsInRaw.length) {
            revert IVaultErrors.AfterAddLiquidityHookFailed();
        }

        // If hook adjusted amounts is not enabled, ignore amounts returned by the hook
        if (config.enableHookAdjustedAmounts() == false) {
            return amountsInRaw;
        }

        for (uint256 i = 0; i < hookAdjustedAmountsInRaw.length; i++) {
            if (hookAdjustedAmountsInRaw[i] > params.maxAmountsIn[i]) {
                revert IVaultErrors.HookAdjustedAmountInAboveMax(
                    poolData.tokens[i],
                    hookAdjustedAmountsInRaw[i],
                    params.maxAmountsIn[i]
                );
            }
        }

        return hookAdjustedAmountsInRaw;
    }

    /**
     * @dev Call the `onBeforeRemoveLiquidity` hook. Reverts on failure.
     * @param minAmountsOutScaled18 Minimum amounts for each output token of the remove liquidity operation
     * @param router Router address
     * @param params The remove liquidity parameters
     * @param poolData Struct containing balance and token information of the pool
     * @param hooksContract Storage slot with the address of the hooks contract
     */
    function callBeforeRemoveLiquidityHook(
        uint256[] memory minAmountsOutScaled18,
        address router,
        RemoveLiquidityParams memory params,
        PoolData memory poolData,
        IHooks hooksContract
    ) internal {
        if (
            hooksContract.onBeforeRemoveLiquidity(
                router,
                params.pool,
                params.kind,
                params.maxBptAmountIn,
                minAmountsOutScaled18,
                poolData.balancesLiveScaled18,
                params.userData
            ) == false
        ) {
            revert IVaultErrors.BeforeRemoveLiquidityHookFailed();
        }
    }

    /**
     * @dev Call the `onAfterRemoveLiquidity` hook, then validate and return the result. Reverts on failure, or if
     * the limits are violated. If the contract did not enable hook-adjusted amounts, it will ignore the hook
     * results and return the original `amountsOutRaw`.
     *
     * @param config The encoded pool configuration
     * @param router Router address
     * @param amountsOutScaled18 Scaled amount of tokens to receive, sorted in token registration order
     * @param amountsOutRaw Actual amount of tokens to receive, sorted in token registration order
     * @param bptAmountIn The BPT amount a user will need burn to remove the liquidity of the pool
     * @param params The remove liquidity parameters
     * @param poolData Struct containing balance and token information of the pool
     * @param hooksContract Storage slot with the address of the hooks contract
     * @return hookAdjustedAmountsOutRaw New amountsOutRaw, potentially modified by the hook
     */
    function callAfterRemoveLiquidityHook(
        PoolConfigBits config,
        address router,
        uint256[] memory amountsOutScaled18,
        uint256[] memory amountsOutRaw,
        uint256 bptAmountIn,
        RemoveLiquidityParams memory params,
        PoolData memory poolData,
        IHooks hooksContract
    ) internal returns (uint256[] memory) {
        (bool success, uint256[] memory hookAdjustedAmountsOutRaw) = hooksContract.onAfterRemoveLiquidity(
            router,
            params.pool,
            params.kind,
            bptAmountIn,
            amountsOutScaled18,
            amountsOutRaw,
            poolData.balancesLiveScaled18,
            params.userData
        );

        if (success == false || hookAdjustedAmountsOutRaw.length != amountsOutRaw.length) {
            revert IVaultErrors.AfterRemoveLiquidityHookFailed();
        }

        // If hook adjusted amounts is not enabled, ignore amounts returned by the hook
        if (config.enableHookAdjustedAmounts() == false) {
            return amountsOutRaw;
        }

        for (uint256 i = 0; i < hookAdjustedAmountsOutRaw.length; i++) {
            if (hookAdjustedAmountsOutRaw[i] < params.minAmountsOut[i]) {
                revert IVaultErrors.HookAdjustedAmountOutBelowMin(
                    poolData.tokens[i],
                    hookAdjustedAmountsOutRaw[i],
                    params.minAmountsOut[i]
                );
            }
        }

        return hookAdjustedAmountsOutRaw;
    }

    /**
     * @dev Call the `onBeforeInitialize` hook. Reverts on failure.
     * @param exactAmountsInScaled18 An array with the initial liquidity of the pool
     * @param userData Additional (optional) data required for adding initial liquidity
     * @param hooksContract Storage slot with the address of the hooks contract
     */
    function callBeforeInitializeHook(
        uint256[] memory exactAmountsInScaled18,
        bytes memory userData,
        IHooks hooksContract
    ) internal {
        if (hooksContract.onBeforeInitialize(exactAmountsInScaled18, userData) == false) {
            revert IVaultErrors.BeforeInitializeHookFailed();
        }
    }

    /**
     * @dev Call the `onAfterInitialize` hook. Reverts on failure.
     * @param exactAmountsInScaled18 An array with the initial liquidity of the pool
     * @param bptAmountOut The BPT amount a user will receive after initialization operation succeeds
     * @param userData Additional (optional) data required for adding initial liquidity
     * @param hooksContract Storage slot with the address of the hooks contract
     */
    function callAfterInitializeHook(
        uint256[] memory exactAmountsInScaled18,
        uint256 bptAmountOut,
        bytes memory userData,
        IHooks hooksContract
    ) internal {
        if (hooksContract.onAfterInitialize(exactAmountsInScaled18, bptAmountOut, userData) == false) {
            revert IVaultErrors.AfterInitializeHookFailed();
        }
    }
}

File 56 of 63 : PoolConfigConst.sol
// SPDX-License-Identifier: GPL-3.0-or-later

pragma solidity ^0.8.24;

import { FEE_BITLENGTH } from "@balancer-labs/v3-interfaces/contracts/vault/VaultTypes.sol";

/**
 * @notice Helper functions to read and write the packed configuration flags stored in `_poolConfigBits`.
 * @dev Note that the entire configuration of each pool is stored in the `_poolConfigBits` mapping (one slot per pool).
 * This includes the data in the `PoolConfig` struct, plus the data in the `HookFlags` struct. The layout (i.e.,
 * offsets for each data field) is specified here.
 *
 * There are two libraries for interpreting these data. `HooksConfigLib` parses fields related to hooks, while
 * `PoolConfigLib` contains helpers related to the non-hook-related flags, along with aggregate fee percentages
 * and other data associated with pools.
 */
library PoolConfigConst {
    // Bit offsets for main pool config settings.
    uint8 public constant POOL_REGISTERED_OFFSET = 0;
    uint8 public constant POOL_INITIALIZED_OFFSET = POOL_REGISTERED_OFFSET + 1;
    uint8 public constant POOL_PAUSED_OFFSET = POOL_INITIALIZED_OFFSET + 1;
    uint8 public constant POOL_RECOVERY_MODE_OFFSET = POOL_PAUSED_OFFSET + 1;

    // Bit offsets for liquidity operations.
    uint8 public constant UNBALANCED_LIQUIDITY_OFFSET = POOL_RECOVERY_MODE_OFFSET + 1;
    uint8 public constant ADD_LIQUIDITY_CUSTOM_OFFSET = UNBALANCED_LIQUIDITY_OFFSET + 1;
    uint8 public constant REMOVE_LIQUIDITY_CUSTOM_OFFSET = ADD_LIQUIDITY_CUSTOM_OFFSET + 1;
    uint8 public constant DONATION_OFFSET = REMOVE_LIQUIDITY_CUSTOM_OFFSET + 1;

    // Bit offsets for hooks config.
    uint8 public constant BEFORE_INITIALIZE_OFFSET = DONATION_OFFSET + 1;
    uint8 public constant ENABLE_HOOK_ADJUSTED_AMOUNTS_OFFSET = BEFORE_INITIALIZE_OFFSET + 1;
    uint8 public constant AFTER_INITIALIZE_OFFSET = ENABLE_HOOK_ADJUSTED_AMOUNTS_OFFSET + 1;
    uint8 public constant DYNAMIC_SWAP_FEE_OFFSET = AFTER_INITIALIZE_OFFSET + 1;
    uint8 public constant BEFORE_SWAP_OFFSET = DYNAMIC_SWAP_FEE_OFFSET + 1;
    uint8 public constant AFTER_SWAP_OFFSET = BEFORE_SWAP_OFFSET + 1;
    uint8 public constant BEFORE_ADD_LIQUIDITY_OFFSET = AFTER_SWAP_OFFSET + 1;
    uint8 public constant AFTER_ADD_LIQUIDITY_OFFSET = BEFORE_ADD_LIQUIDITY_OFFSET + 1;
    uint8 public constant BEFORE_REMOVE_LIQUIDITY_OFFSET = AFTER_ADD_LIQUIDITY_OFFSET + 1;
    uint8 public constant AFTER_REMOVE_LIQUIDITY_OFFSET = BEFORE_REMOVE_LIQUIDITY_OFFSET + 1;

    // Bit offsets for uint values.
    uint8 public constant STATIC_SWAP_FEE_OFFSET = AFTER_REMOVE_LIQUIDITY_OFFSET + 1;
    uint256 public constant AGGREGATE_SWAP_FEE_OFFSET = STATIC_SWAP_FEE_OFFSET + FEE_BITLENGTH;
    uint256 public constant AGGREGATE_YIELD_FEE_OFFSET = AGGREGATE_SWAP_FEE_OFFSET + FEE_BITLENGTH;
    uint256 public constant DECIMAL_SCALING_FACTORS_OFFSET = AGGREGATE_YIELD_FEE_OFFSET + FEE_BITLENGTH;
    uint256 public constant PAUSE_WINDOW_END_TIME_OFFSET =
        DECIMAL_SCALING_FACTORS_OFFSET + TOKEN_DECIMAL_DIFFS_BITLENGTH;

    // Uses a uint40 to pack the values: 8 tokens * 5 bits/token.
    // This maximum token count is also hard-coded in the Vault.
    uint8 public constant TOKEN_DECIMAL_DIFFS_BITLENGTH = 40;
    uint8 public constant DECIMAL_DIFF_BITLENGTH = 5;

    uint8 public constant TIMESTAMP_BITLENGTH = 32;
}

File 57 of 63 : PoolConfigLib.sol
// SPDX-License-Identifier: GPL-3.0-or-later

pragma solidity ^0.8.24;

import { IVaultErrors } from "@balancer-labs/v3-interfaces/contracts/vault/IVaultErrors.sol";
import "@balancer-labs/v3-interfaces/contracts/vault/VaultTypes.sol";

import { WordCodec } from "@balancer-labs/v3-solidity-utils/contracts/helpers/WordCodec.sol";

import { PoolConfigConst } from "./PoolConfigConst.sol";

/**
 * @notice Helper functions to read and write the packed hook configuration flags stored in `_poolConfigBits`.
 * @dev  Note that the entire configuration of each pool is stored in the `_poolConfigBits` mapping (one slot
 * per pool). This includes the data in the `PoolConfig` struct, plus the data in the `HookFlags` struct.
 * The layout (i.e., offsets for each data field) is specified in `PoolConfigConst`.
 *
 * There are two libraries for interpreting these data. `HooksConfigLib` parses fields related to hooks, while
 * this one contains helpers related to the non-hook-related flags, along with aggregate fee percentages and
 * other data associated with pools.
 *
 * The `PoolData` struct contains the raw bitmap with the entire pool state (`PoolConfigBits`), plus the token
 * configuration, scaling factors, and dynamic information such as current balances and rates.
 */
library PoolConfigLib {
    using WordCodec for bytes32;
    using PoolConfigLib for PoolConfigBits;

    // Bit offsets for main pool config settings.
    function isPoolRegistered(PoolConfigBits config) internal pure returns (bool) {
        return PoolConfigBits.unwrap(config).decodeBool(PoolConfigConst.POOL_REGISTERED_OFFSET);
    }

    function setPoolRegistered(PoolConfigBits config, bool value) internal pure returns (PoolConfigBits) {
        return
            PoolConfigBits.wrap(
                PoolConfigBits.unwrap(config).insertBool(value, PoolConfigConst.POOL_REGISTERED_OFFSET)
            );
    }

    function isPoolInitialized(PoolConfigBits config) internal pure returns (bool) {
        return PoolConfigBits.unwrap(config).decodeBool(PoolConfigConst.POOL_INITIALIZED_OFFSET);
    }

    function setPoolInitialized(PoolConfigBits config, bool value) internal pure returns (PoolConfigBits) {
        return
            PoolConfigBits.wrap(
                PoolConfigBits.unwrap(config).insertBool(value, PoolConfigConst.POOL_INITIALIZED_OFFSET)
            );
    }

    function isPoolPaused(PoolConfigBits config) internal pure returns (bool) {
        return PoolConfigBits.unwrap(config).decodeBool(PoolConfigConst.POOL_PAUSED_OFFSET);
    }

    function setPoolPaused(PoolConfigBits config, bool value) internal pure returns (PoolConfigBits) {
        return PoolConfigBits.wrap(PoolConfigBits.unwrap(config).insertBool(value, PoolConfigConst.POOL_PAUSED_OFFSET));
    }

    function isPoolInRecoveryMode(PoolConfigBits config) internal pure returns (bool) {
        return PoolConfigBits.unwrap(config).decodeBool(PoolConfigConst.POOL_RECOVERY_MODE_OFFSET);
    }

    function setPoolInRecoveryMode(PoolConfigBits config, bool value) internal pure returns (PoolConfigBits) {
        return
            PoolConfigBits.wrap(
                PoolConfigBits.unwrap(config).insertBool(value, PoolConfigConst.POOL_RECOVERY_MODE_OFFSET)
            );
    }

    // Bit offsets for liquidity operations.
    function supportsUnbalancedLiquidity(PoolConfigBits config) internal pure returns (bool) {
        // NOTE: The unbalanced liquidity flag is default-on (false means it is supported).
        // This function returns the inverted value.
        return !PoolConfigBits.unwrap(config).decodeBool(PoolConfigConst.UNBALANCED_LIQUIDITY_OFFSET);
    }

    function requireUnbalancedLiquidityEnabled(PoolConfigBits config) internal pure {
        if (config.supportsUnbalancedLiquidity() == false) {
            revert IVaultErrors.DoesNotSupportUnbalancedLiquidity();
        }
    }

    function setDisableUnbalancedLiquidity(
        PoolConfigBits config,
        bool disableUnbalancedLiquidity
    ) internal pure returns (PoolConfigBits) {
        return
            PoolConfigBits.wrap(
                PoolConfigBits.unwrap(config).insertBool(
                    disableUnbalancedLiquidity,
                    PoolConfigConst.UNBALANCED_LIQUIDITY_OFFSET
                )
            );
    }

    function supportsAddLiquidityCustom(PoolConfigBits config) internal pure returns (bool) {
        return PoolConfigBits.unwrap(config).decodeBool(PoolConfigConst.ADD_LIQUIDITY_CUSTOM_OFFSET);
    }

    function requireAddLiquidityCustomEnabled(PoolConfigBits config) internal pure {
        if (config.supportsAddLiquidityCustom() == false) {
            revert IVaultErrors.DoesNotSupportAddLiquidityCustom();
        }
    }

    function setAddLiquidityCustom(
        PoolConfigBits config,
        bool enableAddLiquidityCustom
    ) internal pure returns (PoolConfigBits) {
        return
            PoolConfigBits.wrap(
                PoolConfigBits.unwrap(config).insertBool(
                    enableAddLiquidityCustom,
                    PoolConfigConst.ADD_LIQUIDITY_CUSTOM_OFFSET
                )
            );
    }

    function supportsRemoveLiquidityCustom(PoolConfigBits config) internal pure returns (bool) {
        return PoolConfigBits.unwrap(config).decodeBool(PoolConfigConst.REMOVE_LIQUIDITY_CUSTOM_OFFSET);
    }

    function requireRemoveLiquidityCustomEnabled(PoolConfigBits config) internal pure {
        if (config.supportsRemoveLiquidityCustom() == false) {
            revert IVaultErrors.DoesNotSupportRemoveLiquidityCustom();
        }
    }

    function setRemoveLiquidityCustom(
        PoolConfigBits config,
        bool enableRemoveLiquidityCustom
    ) internal pure returns (PoolConfigBits) {
        return
            PoolConfigBits.wrap(
                PoolConfigBits.unwrap(config).insertBool(
                    enableRemoveLiquidityCustom,
                    PoolConfigConst.REMOVE_LIQUIDITY_CUSTOM_OFFSET
                )
            );
    }

    function supportsDonation(PoolConfigBits config) internal pure returns (bool) {
        return PoolConfigBits.unwrap(config).decodeBool(PoolConfigConst.DONATION_OFFSET);
    }

    function setDonation(PoolConfigBits config, bool enableDonation) internal pure returns (PoolConfigBits) {
        return
            PoolConfigBits.wrap(
                PoolConfigBits.unwrap(config).insertBool(enableDonation, PoolConfigConst.DONATION_OFFSET)
            );
    }

    function requireDonationEnabled(PoolConfigBits config) internal pure {
        if (config.supportsDonation() == false) {
            revert IVaultErrors.DoesNotSupportDonation();
        }
    }

    // Bit offsets for uint values.
    function getStaticSwapFeePercentage(PoolConfigBits config) internal pure returns (uint256) {
        return
            PoolConfigBits.unwrap(config).decodeUint(PoolConfigConst.STATIC_SWAP_FEE_OFFSET, FEE_BITLENGTH) *
            FEE_SCALING_FACTOR;
    }

    function setStaticSwapFeePercentage(PoolConfigBits config, uint256 value) internal pure returns (PoolConfigBits) {
        // A 100% fee is not supported. In the ExactOut case, the Vault divides by the complement of the swap fee.
        // The max fee percentage is slightly below 100%.
        if (value > MAX_FEE_PERCENTAGE) {
            revert IVaultErrors.PercentageAboveMax();
        }
        value /= FEE_SCALING_FACTOR;

        return
            PoolConfigBits.wrap(
                PoolConfigBits.unwrap(config).insertUint(value, PoolConfigConst.STATIC_SWAP_FEE_OFFSET, FEE_BITLENGTH)
            );
    }

    function getAggregateSwapFeePercentage(PoolConfigBits config) internal pure returns (uint256) {
        return
            PoolConfigBits.unwrap(config).decodeUint(PoolConfigConst.AGGREGATE_SWAP_FEE_OFFSET, FEE_BITLENGTH) *
            FEE_SCALING_FACTOR;
    }

    function setAggregateSwapFeePercentage(
        PoolConfigBits config,
        uint256 value
    ) internal pure returns (PoolConfigBits) {
        if (value > MAX_FEE_PERCENTAGE) {
            revert IVaultErrors.PercentageAboveMax();
        }
        value /= FEE_SCALING_FACTOR;

        return
            PoolConfigBits.wrap(
                PoolConfigBits.unwrap(config).insertUint(
                    value,
                    PoolConfigConst.AGGREGATE_SWAP_FEE_OFFSET,
                    FEE_BITLENGTH
                )
            );
    }

    function getAggregateYieldFeePercentage(PoolConfigBits config) internal pure returns (uint256) {
        return
            PoolConfigBits.unwrap(config).decodeUint(PoolConfigConst.AGGREGATE_YIELD_FEE_OFFSET, FEE_BITLENGTH) *
            FEE_SCALING_FACTOR;
    }

    function setAggregateYieldFeePercentage(
        PoolConfigBits config,
        uint256 value
    ) internal pure returns (PoolConfigBits) {
        if (value > MAX_FEE_PERCENTAGE) {
            revert IVaultErrors.PercentageAboveMax();
        }
        value /= FEE_SCALING_FACTOR;

        return
            PoolConfigBits.wrap(
                PoolConfigBits.unwrap(config).insertUint(
                    value,
                    PoolConfigConst.AGGREGATE_YIELD_FEE_OFFSET,
                    FEE_BITLENGTH
                )
            );
    }

    function getTokenDecimalDiffs(PoolConfigBits config) internal pure returns (uint40) {
        return
            uint40(
                PoolConfigBits.unwrap(config).decodeUint(
                    PoolConfigConst.DECIMAL_SCALING_FACTORS_OFFSET,
                    PoolConfigConst.TOKEN_DECIMAL_DIFFS_BITLENGTH
                )
            );
    }

    function getDecimalScalingFactors(
        PoolConfigBits config,
        uint256 numTokens
    ) internal pure returns (uint256[] memory) {
        uint256[] memory scalingFactors = new uint256[](numTokens);

        bytes32 tokenDecimalDiffs = bytes32(uint256(config.getTokenDecimalDiffs()));

        for (uint256 i = 0; i < numTokens; ++i) {
            uint256 decimalDiff = tokenDecimalDiffs.decodeUint(
                i * PoolConfigConst.DECIMAL_DIFF_BITLENGTH,
                PoolConfigConst.DECIMAL_DIFF_BITLENGTH
            );

            // This is a "raw" factor, not a fixed point number. It should be applied using raw math to raw amounts
            // instead of using FP multiplication.
            scalingFactors[i] = 10 ** decimalDiff;
        }

        return scalingFactors;
    }

    function setTokenDecimalDiffs(PoolConfigBits config, uint40 value) internal pure returns (PoolConfigBits) {
        return
            PoolConfigBits.wrap(
                PoolConfigBits.unwrap(config).insertUint(
                    value,
                    PoolConfigConst.DECIMAL_SCALING_FACTORS_OFFSET,
                    PoolConfigConst.TOKEN_DECIMAL_DIFFS_BITLENGTH
                )
            );
    }

    function getPauseWindowEndTime(PoolConfigBits config) internal pure returns (uint32) {
        return
            uint32(
                PoolConfigBits.unwrap(config).decodeUint(
                    PoolConfigConst.PAUSE_WINDOW_END_TIME_OFFSET,
                    PoolConfigConst.TIMESTAMP_BITLENGTH
                )
            );
    }

    function setPauseWindowEndTime(PoolConfigBits config, uint32 value) internal pure returns (PoolConfigBits) {
        return
            PoolConfigBits.wrap(
                PoolConfigBits.unwrap(config).insertUint(
                    value,
                    PoolConfigConst.PAUSE_WINDOW_END_TIME_OFFSET,
                    PoolConfigConst.TIMESTAMP_BITLENGTH
                )
            );
    }

    // Convert from an array of decimal differences, to the encoded 40-bit value (8 tokens * 5 bits/token).
    function toTokenDecimalDiffs(uint8[] memory tokenDecimalDiffs) internal pure returns (uint40) {
        bytes32 value;

        for (uint256 i = 0; i < tokenDecimalDiffs.length; ++i) {
            value = value.insertUint(
                tokenDecimalDiffs[i],
                i * PoolConfigConst.DECIMAL_DIFF_BITLENGTH,
                PoolConfigConst.DECIMAL_DIFF_BITLENGTH
            );
        }

        return uint40(uint256(value));
    }
}

File 58 of 63 : PoolDataLib.sol
// SPDX-License-Identifier: GPL-3.0-or-later

pragma solidity ^0.8.24;

import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";

import { PoolData, TokenInfo, TokenType, Rounding } from "@balancer-labs/v3-interfaces/contracts/vault/VaultTypes.sol";
import { IVaultErrors } from "@balancer-labs/v3-interfaces/contracts/vault/IVaultErrors.sol";

import { FixedPoint } from "@balancer-labs/v3-solidity-utils/contracts/math/FixedPoint.sol";
import { ScalingHelpers } from "@balancer-labs/v3-solidity-utils/contracts/helpers/ScalingHelpers.sol";
import { PackedTokenBalance } from "@balancer-labs/v3-solidity-utils/contracts/helpers/PackedTokenBalance.sol";

import { PoolConfigBits, PoolConfigLib } from "./PoolConfigLib.sol";

/**
 * @notice Helper functions to read/write a `PoolData` struct.
 * @dev Note that the entire configuration of each pool is stored in the `_poolConfigBits` mapping (one slot per pool).
 * This includes the data in the `PoolConfig` struct, plus the data in the `HookFlags` struct. The layout (i.e.,
 * offsets for each data field) is specified in `PoolConfigConst`.
 *
 * The `PoolData` struct contains the raw bitmap with the entire pool state (`PoolConfigBits`), plus the token
 * configuration, scaling factors, and dynamic information such as current balances and rates.
 */
library PoolDataLib {
    using PackedTokenBalance for bytes32;
    using FixedPoint for *;
    using ScalingHelpers for *;
    using PoolConfigLib for PoolConfigBits;

    function load(
        PoolData memory poolData,
        mapping(uint256 tokenIndex => bytes32 packedTokenBalance) storage poolTokenBalances,
        PoolConfigBits poolConfigBits,
        mapping(IERC20 poolToken => TokenInfo tokenInfo) storage poolTokenInfo,
        IERC20[] storage tokens,
        Rounding roundingDirection
    ) internal view {
        uint256 numTokens = tokens.length;

        poolData.poolConfigBits = poolConfigBits;
        poolData.tokens = tokens;
        poolData.tokenInfo = new TokenInfo[](numTokens);
        poolData.balancesRaw = new uint256[](numTokens);
        poolData.balancesLiveScaled18 = new uint256[](numTokens);
        poolData.decimalScalingFactors = PoolConfigLib.getDecimalScalingFactors(poolData.poolConfigBits, numTokens);
        poolData.tokenRates = new uint256[](numTokens);

        bool poolSubjectToYieldFees = poolData.poolConfigBits.isPoolInitialized() &&
            poolData.poolConfigBits.getAggregateYieldFeePercentage() > 0 &&
            poolData.poolConfigBits.isPoolInRecoveryMode() == false;

        for (uint256 i = 0; i < numTokens; ++i) {
            TokenInfo memory tokenInfo = poolTokenInfo[poolData.tokens[i]];
            bytes32 packedBalance = poolTokenBalances[i];

            poolData.tokenInfo[i] = tokenInfo;
            poolData.tokenRates[i] = getTokenRate(tokenInfo);
            updateRawAndLiveBalance(poolData, i, packedBalance.getBalanceRaw(), roundingDirection);

            // If there are no yield fees, we can save gas by skipping to the next token now.
            if (poolSubjectToYieldFees == false) {
                continue;
            }

            // `poolData` already has live balances computed from raw balances according to the token rates and the
            // given rounding direction. Charging a yield fee changes the raw balance, in which case the safest and
            // most numerically precise way to adjust the live balance is to simply repeat the scaling (hence the
            // second call below).

            // The Vault actually guarantees that a token with paysYieldFees set is a WITH_RATE token, so technically
            // we could just check the flag, but we don't want to introduce that dependency for a slight gas savings.
            bool tokenSubjectToYieldFees = tokenInfo.paysYieldFees && tokenInfo.tokenType == TokenType.WITH_RATE;

            // Do not charge yield fees before the pool is initialized, or in recovery mode.
            if (tokenSubjectToYieldFees) {
                uint256 aggregateYieldFeePercentage = poolData.poolConfigBits.getAggregateYieldFeePercentage();
                uint256 balanceRaw = poolData.balancesRaw[i];

                uint256 aggregateYieldFeeAmountRaw = _computeYieldFeesDue(
                    poolData,
                    packedBalance.getBalanceDerived(),
                    i,
                    aggregateYieldFeePercentage
                );

                if (aggregateYieldFeeAmountRaw > 0) {
                    updateRawAndLiveBalance(poolData, i, balanceRaw - aggregateYieldFeeAmountRaw, roundingDirection);
                }
            }
        }
    }

    function syncPoolBalancesAndFees(
        PoolData memory poolData,
        mapping(uint256 tokenIndex => bytes32 packedTokenBalance) storage poolTokenBalances,
        mapping(IERC20 token => bytes32 packedFeeAmounts) storage poolAggregateProtocolFeeAmounts
    ) internal {
        uint256 numTokens = poolData.balancesRaw.length;

        for (uint256 i = 0; i < numTokens; ++i) {
            IERC20 token = poolData.tokens[i];
            bytes32 packedBalances = poolTokenBalances[i];
            uint256 storedBalanceRaw = packedBalances.getBalanceRaw();

            // `poolData` now has balances updated with yield fees.
            // If yield fees are not 0, then the stored balance is greater than the one in memory.
            if (storedBalanceRaw > poolData.balancesRaw[i]) {
                // Both Swap and Yield fees are stored together in a `PackedTokenBalance`.
                // We have designated "Derived" the derived half for Yield fee storage.
                bytes32 packedProtocolFeeAmounts = poolAggregateProtocolFeeAmounts[token];
                poolAggregateProtocolFeeAmounts[token] = packedProtocolFeeAmounts.setBalanceDerived(
                    packedProtocolFeeAmounts.getBalanceDerived() + (storedBalanceRaw - poolData.balancesRaw[i])
                );
            }

            poolTokenBalances[i] = PackedTokenBalance.toPackedBalance(
                poolData.balancesRaw[i],
                poolData.balancesLiveScaled18[i]
            );
        }
    }

    /**
     * @dev This is typically called after a reentrant callback (e.g., a "before" liquidity operation callback),
     * to refresh the poolData struct with any balances (or rates) that might have changed.
     *
     * Preconditions: tokenConfig, balancesRaw, and decimalScalingFactors must be current in `poolData`.
     * Side effects: mutates tokenRates, balancesLiveScaled18 in `poolData`.
     */
    function reloadBalancesAndRates(
        PoolData memory poolData,
        mapping(uint256 tokenIndex => bytes32 packedTokenBalance) storage poolTokenBalances,
        Rounding roundingDirection
    ) internal view {
        uint256 numTokens = poolData.tokens.length;

        // It's possible a reentrant hook changed the raw balances in Vault storage.
        // Update them before computing the live balances.
        bytes32 packedBalance;

        for (uint256 i = 0; i < numTokens; ++i) {
            poolData.tokenRates[i] = getTokenRate(poolData.tokenInfo[i]);

            packedBalance = poolTokenBalances[i];

            // Note the order dependency. This requires up-to-date tokenRate for the token at index `i` in `poolData`.
            updateRawAndLiveBalance(poolData, i, packedBalance.getBalanceRaw(), roundingDirection);
        }
    }

    function getTokenRate(TokenInfo memory tokenInfo) internal view returns (uint256 rate) {
        TokenType tokenType = tokenInfo.tokenType;

        if (tokenType == TokenType.STANDARD) {
            rate = FixedPoint.ONE;
        } else if (tokenType == TokenType.WITH_RATE) {
            rate = tokenInfo.rateProvider.getRate();
        } else {
            revert IVaultErrors.InvalidTokenConfiguration();
        }
    }

    function updateRawAndLiveBalance(
        PoolData memory poolData,
        uint256 tokenIndex,
        uint256 newRawBalance,
        Rounding roundingDirection
    ) internal pure {
        poolData.balancesRaw[tokenIndex] = newRawBalance;

        function(uint256, uint256, uint256) internal pure returns (uint256) _upOrDown = roundingDirection ==
            Rounding.ROUND_UP
            ? ScalingHelpers.toScaled18ApplyRateRoundUp
            : ScalingHelpers.toScaled18ApplyRateRoundDown;

        poolData.balancesLiveScaled18[tokenIndex] = _upOrDown(
            newRawBalance,
            poolData.decimalScalingFactors[tokenIndex],
            poolData.tokenRates[tokenIndex]
        );
    }

    // solhint-disable-next-line private-vars-leading-underscore
    function _computeYieldFeesDue(
        PoolData memory poolData,
        uint256 lastLiveBalance,
        uint256 tokenIndex,
        uint256 aggregateYieldFeePercentage
    ) internal pure returns (uint256 aggregateYieldFeeAmountRaw) {
        uint256 currentLiveBalance = poolData.balancesLiveScaled18[tokenIndex];

        // Do not charge fees if rates go down. If the rate were to go up, down, and back up again, protocol fees
        // would be charged multiple times on the "same" yield. For tokens subject to yield fees, this should not
        // happen, or at least be very rare. It can be addressed for known volatile rates by setting the yield fee
        // exempt flag on registration, or compensated off-chain if there is an incident with a normally
        // well-behaved rate provider.
        if (currentLiveBalance > lastLiveBalance) {
            unchecked {
                // Magnitudes are checked above, so it's safe to do unchecked math here.
                uint256 aggregateYieldFeeAmountScaled18 = (currentLiveBalance - lastLiveBalance).mulUp(
                    aggregateYieldFeePercentage
                );

                // A pool is subject to yield fees if poolSubjectToYieldFees is true, meaning that
                // `protocolYieldFeePercentage > 0`. So, we don't need to check this again in here, saving some gas.
                aggregateYieldFeeAmountRaw = aggregateYieldFeeAmountScaled18.toRawUndoRateRoundDown(
                    poolData.decimalScalingFactors[tokenIndex],
                    poolData.tokenRates[tokenIndex]
                );
            }
        }
    }
}

File 59 of 63 : VaultStateLib.sol
// SPDX-License-Identifier: GPL-3.0-or-later

pragma solidity ^0.8.24;

import { WordCodec } from "@balancer-labs/v3-solidity-utils/contracts/helpers/WordCodec.sol";

// @notice Custom type to store the Vault configuration.
type VaultStateBits is bytes32;

/// @notice Helper functions for reading and writing the `VaultState` struct.
library VaultStateLib {
    using WordCodec for bytes32;

    // Bit offsets for the Vault state flags.
    uint256 public constant QUERY_DISABLED_OFFSET = 0;
    uint256 public constant VAULT_PAUSED_OFFSET = QUERY_DISABLED_OFFSET + 1;
    uint256 public constant BUFFER_PAUSED_OFFSET = VAULT_PAUSED_OFFSET + 1;

    function isQueryDisabled(VaultStateBits config) internal pure returns (bool) {
        return VaultStateBits.unwrap(config).decodeBool(QUERY_DISABLED_OFFSET);
    }

    function setQueryDisabled(VaultStateBits config, bool value) internal pure returns (VaultStateBits) {
        return VaultStateBits.wrap(VaultStateBits.unwrap(config).insertBool(value, QUERY_DISABLED_OFFSET));
    }

    function isVaultPaused(VaultStateBits config) internal pure returns (bool) {
        return VaultStateBits.unwrap(config).decodeBool(VAULT_PAUSED_OFFSET);
    }

    function setVaultPaused(VaultStateBits config, bool value) internal pure returns (VaultStateBits) {
        return VaultStateBits.wrap(VaultStateBits.unwrap(config).insertBool(value, VAULT_PAUSED_OFFSET));
    }

    function areBuffersPaused(VaultStateBits config) internal pure returns (bool) {
        return VaultStateBits.unwrap(config).decodeBool(BUFFER_PAUSED_OFFSET);
    }

    function setBuffersPaused(VaultStateBits config, bool value) internal pure returns (VaultStateBits) {
        return VaultStateBits.wrap(VaultStateBits.unwrap(config).insertBool(value, BUFFER_PAUSED_OFFSET));
    }
}

File 60 of 63 : ERC20MultiToken.sol
// SPDX-License-Identifier: GPL-3.0-or-later

pragma solidity ^0.8.24;

import { IERC20Errors } from "@openzeppelin/contracts/interfaces/draft-IERC6093.sol";

import { IERC20MultiTokenErrors } from "@balancer-labs/v3-interfaces/contracts/vault/IERC20MultiTokenErrors.sol";

import { EVMCallModeHelpers } from "@balancer-labs/v3-solidity-utils/contracts/helpers/EVMCallModeHelpers.sol";

import { BalancerPoolToken } from "../BalancerPoolToken.sol";

/**
 * @notice Store Token data and handle accounting for pool tokens in the Vault.
 * @dev The ERC20MultiToken is an ERC20-focused multi-token implementation that is fully compatible with the ERC20 API
 * on the token side. It also allows for the minting and burning of tokens on the multi-token side.
 */
abstract contract ERC20MultiToken is IERC20Errors, IERC20MultiTokenErrors {
    // Minimum total supply amount.
    uint256 internal constant _POOL_MINIMUM_TOTAL_SUPPLY = 1e6;

    /**
     * @notice Pool tokens are moved from one account (`from`) to another (`to`). Note that `value` may be zero.
     * @param pool The pool token being transferred
     * @param from The token source
     * @param to The token destination
     * @param value The number of tokens
     */
    event Transfer(address indexed pool, address indexed from, address indexed to, uint256 value);

    /**
     * @notice The allowance of a `spender` for an `owner` is set by a call to {approve}. `value` is the new allowance.
     * @param pool The pool token receiving the allowance
     * @param owner The token holder
     * @param spender The account being authorized to spend a given amount of the token
     * @param value The number of tokens spender is authorized to transfer from owner
     */
    event Approval(address indexed pool, address indexed owner, address indexed spender, uint256 value);

    // Users' pool token (BPT) balances.
    mapping(address token => mapping(address owner => uint256 balance)) private _balances;

    // Users' pool token (BPT) allowances.
    mapping(address token => mapping(address owner => mapping(address spender => uint256 allowance)))
        private _allowances;

    // Total supply of all pool tokens (BPT). These are tokens minted and burned by the Vault.
    // The Vault balances of regular pool tokens are stored in `_reservesOf`.
    mapping(address token => uint256 totalSupply) private _totalSupplyOf;

    function _totalSupply(address pool) internal view returns (uint256) {
        return _totalSupplyOf[pool];
    }

    function _balanceOf(address pool, address account) internal view returns (uint256) {
        return _balances[pool][account];
    }

    function _allowance(address pool, address owner, address spender) internal view returns (uint256) {
        // Owner can spend anything without approval
        if (owner == spender) {
            return type(uint256).max;
        } else {
            return _allowances[pool][owner][spender];
        }
    }

    /**
     * @dev DO NOT CALL THIS METHOD!
     * Only `removeLiquidity` in the Vault may call this - in a query context - to allow burning tokens the caller
     * does not have.
     */
    function _queryModeBalanceIncrease(address pool, address to, uint256 amount) internal {
        // Enforce that this can only be called in a read-only, query context.
        if (EVMCallModeHelpers.isStaticCall() == false) {
            revert EVMCallModeHelpers.NotStaticCall();
        }

        // Increase `to` balance to ensure the burn function succeeds during query.
        _balances[address(pool)][to] += amount;
    }

    function _mint(address pool, address to, uint256 amount) internal {
        if (to == address(0)) {
            revert ERC20InvalidReceiver(to);
        }

        uint256 newTotalSupply = _totalSupplyOf[pool] + amount;
        unchecked {
            // Overflow is not possible. balance + amount is at most totalSupply + amount, which is checked above.
            _balances[pool][to] += amount;
        }

        _ensurePoolMinimumTotalSupply(newTotalSupply);

        _totalSupplyOf[pool] = newTotalSupply;

        emit Transfer(pool, address(0), to, amount);

        // We also emit the "transfer" event on the pool token to ensure full compliance with the ERC20 standard.
        BalancerPoolToken(pool).emitTransfer(address(0), to, amount);
    }

    function _ensurePoolMinimumTotalSupply(uint256 newTotalSupply) internal pure {
        if (newTotalSupply < _POOL_MINIMUM_TOTAL_SUPPLY) {
            revert PoolTotalSupplyTooLow(newTotalSupply);
        }
    }

    function _mintMinimumSupplyReserve(address pool) internal {
        _totalSupplyOf[pool] += _POOL_MINIMUM_TOTAL_SUPPLY;
        unchecked {
            // Overflow is not possible. balance + amount is at most totalSupply + amount, which is checked above.
            _balances[pool][address(0)] += _POOL_MINIMUM_TOTAL_SUPPLY;
        }
        emit Transfer(pool, address(0), address(0), _POOL_MINIMUM_TOTAL_SUPPLY);

        // We also emit the "transfer" event on the pool token to ensure full compliance with the ERC20 standard.
        BalancerPoolToken(pool).emitTransfer(address(0), address(0), _POOL_MINIMUM_TOTAL_SUPPLY);
    }

    function _burn(address pool, address from, uint256 amount) internal {
        if (from == address(0)) {
            revert ERC20InvalidSender(from);
        }

        uint256 accountBalance = _balances[pool][from];
        if (amount > accountBalance) {
            revert ERC20InsufficientBalance(from, accountBalance, amount);
        }

        unchecked {
            _balances[pool][from] = accountBalance - amount;
        }
        uint256 newTotalSupply = _totalSupplyOf[pool] - amount;

        _ensurePoolMinimumTotalSupply(newTotalSupply);

        _totalSupplyOf[pool] = newTotalSupply;

        // We also emit the "transfer" event on the pool token to ensure full compliance with the ERC20 standard.
        // If this function fails we keep going, as this is used in recovery mode.
        // Well-behaved pools will just emit an event here, so they should never fail.
        try BalancerPoolToken(pool).emitTransfer(from, address(0), amount) {} catch {
            // solhint-disable-previous-line no-empty-blocks
        }

        // Emit the internal event last to spend some gas after try / catch.
        emit Transfer(pool, from, address(0), amount);
    }

    function _transfer(address pool, address from, address to, uint256 amount) internal {
        if (from == address(0)) {
            revert ERC20InvalidSender(from);
        }

        if (to == address(0)) {
            revert ERC20InvalidReceiver(to);
        }

        uint256 fromBalance = _balances[pool][from];
        if (amount > fromBalance) {
            revert ERC20InsufficientBalance(from, fromBalance, amount);
        }

        unchecked {
            _balances[pool][from] = fromBalance - amount;
            // Overflow is not possible. The sum of all balances is capped by totalSupply, and that sum is preserved by
            // decrementing then incrementing.
            _balances[pool][to] += amount;
        }

        emit Transfer(pool, from, to, amount);

        // We also emit the "transfer" event on the pool token to ensure full compliance with the ERC20 standard.
        BalancerPoolToken(pool).emitTransfer(from, to, amount);
    }

    function _approve(address pool, address owner, address spender, uint256 amount) internal {
        if (owner == address(0)) {
            revert ERC20InvalidApprover(owner);
        }

        if (spender == address(0)) {
            revert ERC20InvalidSpender(spender);
        }

        _allowances[pool][owner][spender] = amount;

        // We also emit the "approve" event on the pool token to ensure full compliance with the ERC20 standard.
        // If this function fails we keep going, as this is used in recovery mode.
        // Well-behaved pools will just emit an event here, so they should never fail.
        try BalancerPoolToken(pool).emitApproval(owner, spender, amount) {} catch {
            // solhint-disable-previous-line no-empty-blocks
        }

        // Emit the internal event last to spend some gas after try / catch.
        emit Approval(pool, owner, spender, amount);
    }

    function _spendAllowance(address pool, address owner, address spender, uint256 amount) internal {
        uint256 currentAllowance = _allowance(pool, owner, spender);
        if (currentAllowance != type(uint256).max) {
            if (amount > currentAllowance) {
                revert ERC20InsufficientAllowance(spender, currentAllowance, amount);
            }

            unchecked {
                _approve(pool, owner, spender, currentAllowance - amount);
            }
        }
    }
}

File 61 of 63 : VaultCommon.sol
// SPDX-License-Identifier: GPL-3.0-or-later

pragma solidity ^0.8.24;

import { IERC4626 } from "@openzeppelin/contracts/interfaces/IERC4626.sol";
import { SafeCast } from "@openzeppelin/contracts/utils/math/SafeCast.sol";
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";

import { ISwapFeePercentageBounds } from "@balancer-labs/v3-interfaces/contracts/vault/ISwapFeePercentageBounds.sol";
import { PoolData, Rounding } from "@balancer-labs/v3-interfaces/contracts/vault/VaultTypes.sol";
import { IVaultErrors } from "@balancer-labs/v3-interfaces/contracts/vault/IVaultErrors.sol";
import { IVaultEvents } from "@balancer-labs/v3-interfaces/contracts/vault/IVaultEvents.sol";

import { StorageSlotExtension } from "@balancer-labs/v3-solidity-utils/contracts/openzeppelin/StorageSlotExtension.sol";
import { EVMCallModeHelpers } from "@balancer-labs/v3-solidity-utils/contracts/helpers/EVMCallModeHelpers.sol";
import { PackedTokenBalance } from "@balancer-labs/v3-solidity-utils/contracts/helpers/PackedTokenBalance.sol";
import { ScalingHelpers } from "@balancer-labs/v3-solidity-utils/contracts/helpers/ScalingHelpers.sol";
import {
    ReentrancyGuardTransient
} from "@balancer-labs/v3-solidity-utils/contracts/openzeppelin/ReentrancyGuardTransient.sol";
import {
    TransientStorageHelpers
} from "@balancer-labs/v3-solidity-utils/contracts/helpers/TransientStorageHelpers.sol";

import { VaultStateBits, VaultStateLib } from "./lib/VaultStateLib.sol";
import { PoolConfigBits, PoolConfigLib } from "./lib/PoolConfigLib.sol";
import { ERC20MultiToken } from "./token/ERC20MultiToken.sol";
import { PoolDataLib } from "./lib/PoolDataLib.sol";
import { VaultStorage } from "./VaultStorage.sol";

/**
 * @notice Functions and modifiers shared between the main Vault and its extension contracts.
 * @dev This contract contains common utilities in the inheritance chain that require storage to work,
 * and will be required in both the main Vault and its extensions.
 */
abstract contract VaultCommon is IVaultEvents, IVaultErrors, VaultStorage, ReentrancyGuardTransient, ERC20MultiToken {
    using PoolConfigLib for PoolConfigBits;
    using VaultStateLib for VaultStateBits;
    using SafeCast for *;
    using TransientStorageHelpers for *;
    using StorageSlotExtension for *;
    using PoolDataLib for PoolData;

    /*******************************************************************************
                              Transient Accounting
    *******************************************************************************/

    /**
     * @dev This modifier ensures that the function it modifies can only be called
     * when a tab has been opened.
     */
    modifier onlyWhenUnlocked() {
        _ensureUnlocked();
        _;
    }

    function _ensureUnlocked() internal view {
        if (_isUnlocked().tload() == false) {
            revert VaultIsNotUnlocked();
        }
    }

    /**
     * @notice Expose the state of the Vault's reentrancy guard.
     * @return True if the Vault is currently executing a nonReentrant function
     */
    function reentrancyGuardEntered() public view returns (bool) {
        return _reentrancyGuardEntered();
    }

    /**
     * @notice Records the `credit` for a given token.
     * @param token The ERC20 token for which the 'credit' will be accounted
     * @param credit The amount of `token` supplied to the Vault in favor of the caller
     */
    function _supplyCredit(IERC20 token, uint256 credit) internal {
        _accountDelta(token, -credit.toInt256());
    }

    /**
     * @notice Records the `debt` for a given token.
     * @param token The ERC20 token for which the `debt` will be accounted
     * @param debt The amount of `token` taken from the Vault in favor of the caller
     */
    function _takeDebt(IERC20 token, uint256 debt) internal {
        _accountDelta(token, debt.toInt256());
    }

    /**
     * @dev Accounts the delta for the given token. A positive delta represents debt,
     * while a negative delta represents surplus.
     *
     * @param token The ERC20 token for which the delta is being accounted
     * @param delta The difference in the token balance
     * Positive indicates a debit or a decrease in Vault's tokens,
     * negative indicates a credit or an increase in Vault's tokens.
     */
    function _accountDelta(IERC20 token, int256 delta) internal {
        // If the delta is zero, there's nothing to account for.
        if (delta == 0) return;

        // Get the current recorded delta for this token.
        int256 current = _tokenDeltas().tGet(token);

        // Calculate the new delta after accounting for the change.
        int256 next = current + delta;

        if (next == 0) {
            // If the resultant delta becomes zero after this operation,
            // decrease the count of non-zero deltas.
            _nonZeroDeltaCount().tDecrement();
        } else if (current == 0) {
            // If there was no previous delta (i.e., it was zero) and now we have one,
            // increase the count of non-zero deltas.
            _nonZeroDeltaCount().tIncrement();
        }

        // Update the delta for this token.
        _tokenDeltas().tSet(token, next);
    }

    /*******************************************************************************
                                    Vault Pausing
    *******************************************************************************/

    /// @dev Modifier to make a function callable only when the Vault is not paused.
    modifier whenVaultNotPaused() {
        _ensureVaultNotPaused();
        _;
    }

    /// @dev Reverts if the Vault is paused.
    function _ensureVaultNotPaused() internal view {
        if (_isVaultPaused()) {
            revert VaultPaused();
        }
    }

    /// @dev Reverts if the Vault or the given pool are paused.
    function _ensureUnpaused(address pool) internal view {
        _ensureVaultNotPaused();
        _ensurePoolNotPaused(pool);
    }

    /**
     * @dev For gas efficiency, storage is only read before `_vaultBufferPeriodEndTime`. Once we're past that
     * timestamp, the expression short-circuits false, and the Vault is permanently unpaused.
     */
    function _isVaultPaused() internal view returns (bool) {
        // solhint-disable-next-line not-rely-on-time
        return block.timestamp <= _vaultBufferPeriodEndTime && _vaultStateBits.isVaultPaused();
    }

    /*******************************************************************************
                                     Pool Pausing
    *******************************************************************************/

    /// @dev Reverts if the pool is paused.
    function _ensurePoolNotPaused(address pool) internal view {
        if (_isPoolPaused(pool)) {
            revert PoolPaused(pool);
        }
    }

    /// @dev Check both the flag and timestamp to determine whether the pool is paused.
    function _isPoolPaused(address pool) internal view returns (bool) {
        (bool paused, ) = _getPoolPausedState(pool);

        return paused;
    }

    /// @dev Lowest level routine that plucks only the minimum necessary parts from storage.
    function _getPoolPausedState(address pool) internal view returns (bool, uint32) {
        PoolConfigBits config = _poolConfigBits[pool];

        bool isPoolPaused = config.isPoolPaused();
        uint32 pauseWindowEndTime = config.getPauseWindowEndTime();

        // Use the Vault's buffer period.
        // solhint-disable-next-line not-rely-on-time
        return (isPoolPaused && block.timestamp <= pauseWindowEndTime + _vaultBufferPeriodDuration, pauseWindowEndTime);
    }

    /*******************************************************************************
                                     Buffer Pausing
    *******************************************************************************/
    /// @dev Modifier to make a function callable only when vault buffers are not paused.
    modifier whenVaultBuffersAreNotPaused() {
        _ensureVaultBuffersAreNotPaused();
        _;
    }

    /// @dev Reverts if vault buffers are paused.
    function _ensureVaultBuffersAreNotPaused() internal view {
        if (_vaultStateBits.areBuffersPaused()) {
            revert VaultBuffersArePaused();
        }
    }

    /*******************************************************************************
                            Pool Registration and Initialization
    *******************************************************************************/

    /// @dev Reverts unless `pool` is a registered Pool.
    modifier withRegisteredPool(address pool) {
        _ensureRegisteredPool(pool);
        _;
    }

    /// @dev Reverts unless `pool` is an initialized Pool.
    modifier withInitializedPool(address pool) {
        _ensureInitializedPool(pool);
        _;
    }

    function _ensureRegisteredPool(address pool) internal view {
        if (!_isPoolRegistered(pool)) {
            revert PoolNotRegistered(pool);
        }
    }

    /// @dev See `isPoolRegistered`
    function _isPoolRegistered(address pool) internal view returns (bool) {
        PoolConfigBits config = _poolConfigBits[pool];
        return config.isPoolRegistered();
    }

    function _ensureInitializedPool(address pool) internal view {
        if (!_isPoolInitialized(pool)) {
            revert PoolNotInitialized(pool);
        }
    }

    /// @dev See `isPoolInitialized`
    function _isPoolInitialized(address pool) internal view returns (bool) {
        PoolConfigBits config = _poolConfigBits[pool];
        return config.isPoolInitialized();
    }

    /*******************************************************************************
                          Buffer Initialization & Validation
    *******************************************************************************/

    modifier withInitializedBuffer(IERC4626 wrappedToken) {
        _ensureBufferInitialized(wrappedToken);
        _;
    }

    function _ensureBufferInitialized(IERC4626 wrappedToken) internal view {
        if (_bufferAssets[wrappedToken] == address(0)) {
            revert BufferNotInitialized(wrappedToken);
        }
    }

    /**
     * @dev This assumes `underlyingToken` is non-zero; should be called by functions that have already ensured the
     * buffer has been initialized (e.g., those protected by `withInitializedBuffer`).
     */
    function _ensureCorrectBufferAsset(IERC4626 wrappedToken, address underlyingToken) internal view {
        if (_bufferAssets[wrappedToken] != underlyingToken) {
            // Asset was changed since the buffer was initialized.
            revert WrongUnderlyingToken(wrappedToken, underlyingToken);
        }
    }

    /*******************************************************************************
                                    Pool Information
    *******************************************************************************/

    /**
     * @dev Packs and sets the raw and live balances of a Pool's tokens to the current values in poolData.balancesRaw
     * and poolData.liveBalances in the same storage slot.
     */
    function _writePoolBalancesToStorage(address pool, PoolData memory poolData) internal {
        mapping(uint256 tokenIndex => bytes32 packedTokenBalance) storage poolBalances = _poolTokenBalances[pool];

        for (uint256 i = 0; i < poolData.balancesRaw.length; ++i) {
            // We assume all newBalances are properly ordered.
            poolBalances[i] = PackedTokenBalance.toPackedBalance(
                poolData.balancesRaw[i],
                poolData.balancesLiveScaled18[i]
            );
        }
    }

    /**
     * @dev Fill in PoolData, including paying protocol yield fees and computing final raw and live balances.
     * In normal operation, we update both balances and fees together. However, while Recovery Mode is enabled,
     * we cannot track yield fees, as that would involve making external calls that could fail and block withdrawals.
     *
     * Therefore, disabling Recovery Mode requires writing *only* the balances to storage, so we still need this
     * as a separate function. It is normally called by `_loadPoolDataUpdatingBalancesAndYieldFees`, but in the
     * Recovery Mode special case, it is called separately, with the result passed into `_writePoolBalancesToStorage`.
     */
    function _loadPoolData(address pool, Rounding roundingDirection) internal view returns (PoolData memory poolData) {
        poolData.load(
            _poolTokenBalances[pool],
            _poolConfigBits[pool],
            _poolTokenInfo[pool],
            _poolTokens[pool],
            roundingDirection
        );
    }

    /**
     * @dev Fill in PoolData, including paying protocol yield fees and computing final raw and live balances.
     * This function modifies protocol fees and balance storage. Out of an abundance of caution, since `_loadPoolData`
     * makes external calls, we are making anything that calls it and then modifies storage non-reentrant.
     * Side effects: updates `_aggregateFeeAmounts` and `_poolTokenBalances` in storage.
     */
    function _loadPoolDataUpdatingBalancesAndYieldFees(
        address pool,
        Rounding roundingDirection
    ) internal nonReentrant returns (PoolData memory poolData) {
        // Initialize poolData with base information for subsequent calculations.
        poolData.load(
            _poolTokenBalances[pool],
            _poolConfigBits[pool],
            _poolTokenInfo[pool],
            _poolTokens[pool],
            roundingDirection
        );

        PoolDataLib.syncPoolBalancesAndFees(poolData, _poolTokenBalances[pool], _aggregateFeeAmounts[pool]);
    }

    /**
     * @dev Updates the raw and live balance of a given token in poolData, scaling the given raw balance by both decimal
     * and token rates, and rounding the result in the given direction. Assumes scaling factors and rates are current
     * in PoolData.
     */
    function _updateRawAndLiveTokenBalancesInPoolData(
        PoolData memory poolData,
        uint256 newRawBalance,
        Rounding roundingDirection,
        uint256 tokenIndex
    ) internal pure returns (uint256) {
        poolData.balancesRaw[tokenIndex] = newRawBalance;

        function(uint256, uint256, uint256) internal pure returns (uint256) _upOrDown = roundingDirection ==
            Rounding.ROUND_UP
            ? ScalingHelpers.toScaled18ApplyRateRoundUp
            : ScalingHelpers.toScaled18ApplyRateRoundDown;

        poolData.balancesLiveScaled18[tokenIndex] = _upOrDown(
            newRawBalance,
            poolData.decimalScalingFactors[tokenIndex],
            poolData.tokenRates[tokenIndex]
        );

        return _upOrDown(newRawBalance, poolData.decimalScalingFactors[tokenIndex], poolData.tokenRates[tokenIndex]);
    }

    function _setStaticSwapFeePercentage(address pool, uint256 swapFeePercentage) internal {
        // These cannot be called during pool construction. Pools must be deployed first, then registered.
        if (swapFeePercentage < ISwapFeePercentageBounds(pool).getMinimumSwapFeePercentage()) {
            revert SwapFeePercentageTooLow();
        }

        if (swapFeePercentage > ISwapFeePercentageBounds(pool).getMaximumSwapFeePercentage()) {
            revert SwapFeePercentageTooHigh();
        }

        // The library also checks that the percentage is <= FP(1), regardless of what the pool defines.
        _poolConfigBits[pool] = _poolConfigBits[pool].setStaticSwapFeePercentage(swapFeePercentage);

        emit SwapFeePercentageChanged(pool, swapFeePercentage);
    }

    /// @dev Find the index of a token in a token array. Reverts if not found.
    function _findTokenIndex(IERC20[] memory tokens, IERC20 token) internal pure returns (uint256) {
        for (uint256 i = 0; i < tokens.length; i++) {
            if (tokens[i] == token) {
                return i;
            }
        }

        revert TokenNotRegistered(token);
    }

    /*******************************************************************************
                                    Recovery Mode
    *******************************************************************************/

    /// @dev Place on functions that may only be called when the associated pool is in recovery mode.
    modifier onlyInRecoveryMode(address pool) {
        _ensurePoolInRecoveryMode(pool);
        _;
    }

    /// @dev Reverts if the pool is not in recovery mode.
    function _ensurePoolInRecoveryMode(address pool) internal view {
        if (!_isPoolInRecoveryMode(pool)) {
            revert PoolNotInRecoveryMode(pool);
        }
    }

    /**
     * @notice Checks whether a pool is in recovery mode.
     * @param pool Address of the pool to check
     * @return inRecoveryMode True if the pool is in recovery mode, false otherwise
     */
    function _isPoolInRecoveryMode(address pool) internal view returns (bool) {
        return _poolConfigBits[pool].isPoolInRecoveryMode();
    }

    function _isQueryContext() internal view returns (bool) {
        return EVMCallModeHelpers.isStaticCall() && _vaultStateBits.isQueryDisabled() == false;
    }
}

File 62 of 63 : VaultGuard.sol
// SPDX-License-Identifier: GPL-3.0-or-later

pragma solidity ^0.8.24;

import { IVaultErrors } from "@balancer-labs/v3-interfaces/contracts/vault/IVaultErrors.sol";
import { IVault } from "@balancer-labs/v3-interfaces/contracts/vault/IVault.sol";

/// @notice Contract that shares the modifier `onlyVault`.
contract VaultGuard {
    IVault internal immutable _vault;

    constructor(IVault vault) {
        _vault = vault;
    }

    modifier onlyVault() {
        _ensureOnlyVault();
        _;
    }

    function _ensureOnlyVault() private view {
        if (msg.sender != address(_vault)) {
            revert IVaultErrors.SenderIsNotVault(msg.sender);
        }
    }
}

File 63 of 63 : VaultStorage.sol
// SPDX-License-Identifier: GPL-3.0-or-later

pragma solidity ^0.8.24;

import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";

import { IProtocolFeeController } from "@balancer-labs/v3-interfaces/contracts/vault/IProtocolFeeController.sol";
import { IVaultExtension } from "@balancer-labs/v3-interfaces/contracts/vault/IVaultExtension.sol";
import { IAuthorizer } from "@balancer-labs/v3-interfaces/contracts/vault/IAuthorizer.sol";
import { IHooks } from "@balancer-labs/v3-interfaces/contracts/vault/IHooks.sol";
import "@balancer-labs/v3-interfaces/contracts/vault/VaultTypes.sol";

import { StorageSlotExtension } from "@balancer-labs/v3-solidity-utils/contracts/openzeppelin/StorageSlotExtension.sol";
import {
    TransientStorageHelpers,
    TokenDeltaMappingSlotType,
    UintToAddressToBooleanMappingSlot
} from "@balancer-labs/v3-solidity-utils/contracts/helpers/TransientStorageHelpers.sol";

import { VaultStateBits } from "./lib/VaultStateLib.sol";
import { PoolConfigBits } from "./lib/PoolConfigLib.sol";

// solhint-disable max-states-count

/**
 * @notice Storage layout for the Vault.
 * @dev This contract has no code, but is inherited by all three Vault contracts. In order to ensure that *only* the
 * Vault contract's storage is actually used, calls to the extension contracts must be delegate calls made through the
 * main Vault.
 */
contract VaultStorage {
    using StorageSlotExtension for *;

    /***************************************************************************
                                     Constants
    ***************************************************************************/

    // Pools can have between two and eight tokens.
    uint256 internal constant _MIN_TOKENS = 2;
    // This maximum token count is also implicitly hard-coded in `PoolConfigLib` (through packing `tokenDecimalDiffs`).
    uint256 internal constant _MAX_TOKENS = 8;
    // Tokens with more than 18 decimals are not supported. Tokens must also implement `IERC20Metadata.decimals`.
    uint8 internal constant _MAX_TOKEN_DECIMALS = 18;

    // Maximum pause and buffer period durations.
    uint256 internal constant _MAX_PAUSE_WINDOW_DURATION = 365 days * 4;
    uint256 internal constant _MAX_BUFFER_PERIOD_DURATION = 180 days;

    // Minimum swap amount (applied to scaled18 values), enforced as a security measure to block potential
    // exploitation of rounding errors.
    // solhint-disable-next-line var-name-mixedcase
    uint256 internal immutable _MINIMUM_TRADE_AMOUNT;

    // Minimum given amount to wrap/unwrap (applied to native decimal values), to avoid rounding issues.
    // solhint-disable-next-line var-name-mixedcase
    uint256 internal immutable _MINIMUM_WRAP_AMOUNT;

    /***************************************************************************
                          Transient Storage Declarations
    ***************************************************************************/

    // NOTE: If you use a constant, then it is simply replaced everywhere when this constant is used
    // by what is written after =. If you use immutable, the value is first calculated and
    // then replaced everywhere. That means that if a constant has executable variables,
    // they will be executed every time the constant is used.

    // solhint-disable var-name-mixedcase
    bytes32 private immutable _IS_UNLOCKED_SLOT = _calculateVaultStorageSlot("isUnlocked");
    bytes32 private immutable _NON_ZERO_DELTA_COUNT_SLOT = _calculateVaultStorageSlot("nonZeroDeltaCount");
    bytes32 private immutable _TOKEN_DELTAS_SLOT = _calculateVaultStorageSlot("tokenDeltas");
    bytes32 private immutable _ADD_LIQUIDITY_CALLED_SLOT = _calculateVaultStorageSlot("addLiquidityCalled");
    bytes32 private immutable _SESSION_ID_SLOT = _calculateVaultStorageSlot("sessionId");
    // solhint-enable var-name-mixedcase

    /***************************************************************************
                                    Pool State
    ***************************************************************************/

    // Pool-specific configuration data (e.g., fees, pause window, configuration flags).
    mapping(address pool => PoolConfigBits poolConfig) internal _poolConfigBits;

    // Accounts assigned to specific roles; e.g., pauseManager, swapManager.
    mapping(address pool => PoolRoleAccounts roleAccounts) internal _poolRoleAccounts;

    // The hooks contracts associated with each pool.
    mapping(address pool => IHooks hooksContract) internal _hooksContracts;

    // The set of tokens associated with each pool.
    mapping(address pool => IERC20[] poolTokens) internal _poolTokens;

    // The token configuration of each Pool's tokens.
    mapping(address pool => mapping(IERC20 token => TokenInfo tokenInfo)) internal _poolTokenInfo;

    // Structure containing the current raw and "last live" scaled balances. Last live balances are used for
    // yield fee computation, and since these have rates applied, they are stored as scaled 18-decimal FP values.
    // Each value takes up half the storage slot (i.e., 128 bits).
    mapping(address pool => mapping(uint256 tokenIndex => bytes32 packedTokenBalance)) internal _poolTokenBalances;

    // Aggregate protocol swap/yield fees accumulated in the Vault for harvest.
    // Reusing PackedTokenBalance for the bytes32 values to save bytecode (despite differing semantics).
    // It's arbitrary which is which: we define raw = swap; derived = yield.
    mapping(address pool => mapping(IERC20 token => bytes32 packedFeeAmounts)) internal _aggregateFeeAmounts;

    /***************************************************************************
                                    Vault State
    ***************************************************************************/

    // The Pause Window and Buffer Period are timestamp-based: they should not be relied upon for sub-minute accuracy.
    uint32 internal immutable _vaultPauseWindowEndTime;
    uint32 internal immutable _vaultBufferPeriodEndTime;

    // Stored as a convenience, to avoid calculating it on every operation.
    uint32 internal immutable _vaultBufferPeriodDuration;

    // Bytes32 with pause flags for the Vault, buffers, and queries.
    VaultStateBits internal _vaultStateBits;

    /**
     * @dev Represents the total reserve of each ERC20 token. It should be always equal to `token.balanceOf(vault)`,
     * except during `unlock`.
     */
    mapping(IERC20 token => uint256 vaultBalance) internal _reservesOf;

    /// @dev Flag that prevents re-enabling queries.
    bool internal _queriesDisabledPermanently;

    /***************************************************************************
                                Contract References
    ***************************************************************************/

    // Upgradeable contract in charge of setting permissions.
    IAuthorizer internal _authorizer;

    // Contract that receives aggregate swap and yield fees.
    IProtocolFeeController internal _protocolFeeController;

    /***************************************************************************
                                  ERC4626 Buffers
    ***************************************************************************/

    // Any ERC4626 token can trade using a buffer, which is like a pool, but internal to the Vault.
    // The registry key is the wrapped token address, so there can only ever be one buffer per wrapped token.
    // This means they are permissionless, and have no registration function.
    //
    // Anyone can add liquidity to a buffer

    // A buffer will only ever have two tokens: wrapped and underlying. We pack the wrapped and underlying balances
    // into a single bytes32, interpreted with the `PackedTokenBalance` library.

    // ERC4626 token address -> PackedTokenBalance, which stores both the underlying and wrapped token balances.
    // Reusing PackedTokenBalance to save bytecode (despite differing semantics).
    // It's arbitrary which is which: we define raw = underlying token; derived = wrapped token.
    mapping(IERC4626 wrappedToken => bytes32 packedTokenBalance) internal _bufferTokenBalances;

    // The LP balances for buffers. LP balances are not tokenized (i.e., represented by ERC20 tokens like BPT), but
    // rather accounted for within the Vault.

    // Track the internal "BPT" shares of each buffer depositor.
    mapping(IERC4626 wrappedToken => mapping(address user => uint256 userShares)) internal _bufferLpShares;

    // Total LP shares.
    mapping(IERC4626 wrappedToken => uint256 totalShares) internal _bufferTotalShares;

    // Prevents a malicious ERC4626 from changing the asset after the buffer was initialized.
    mapping(IERC4626 wrappedToken => address underlyingToken) internal _bufferAssets;

    /***************************************************************************
                             Transient Storage Access
    ***************************************************************************/

    function _isUnlocked() internal view returns (StorageSlotExtension.BooleanSlotType slot) {
        return _IS_UNLOCKED_SLOT.asBoolean();
    }

    function _nonZeroDeltaCount() internal view returns (StorageSlotExtension.Uint256SlotType slot) {
        return _NON_ZERO_DELTA_COUNT_SLOT.asUint256();
    }

    function _tokenDeltas() internal view returns (TokenDeltaMappingSlotType slot) {
        return TokenDeltaMappingSlotType.wrap(_TOKEN_DELTAS_SLOT);
    }

    function _addLiquidityCalled() internal view returns (UintToAddressToBooleanMappingSlot slot) {
        return UintToAddressToBooleanMappingSlot.wrap(_ADD_LIQUIDITY_CALLED_SLOT);
    }

    function _sessionIdSlot() internal view returns (StorageSlotExtension.Uint256SlotType slot) {
        return _SESSION_ID_SLOT.asUint256();
    }

    function _calculateVaultStorageSlot(string memory key) private pure returns (bytes32) {
        return TransientStorageHelpers.calculateSlot(type(VaultStorage).name, key);
    }
}

Settings
{
  "viaIR": true,
  "evmVersion": "cancun",
  "optimizer": {
    "enabled": true,
    "runs": 500,
    "details": {
      "yulDetails": {
        "optimizerSteps": "dhfoDgvulfnTUtnIf [ xa[r]EscLM cCTUtTOntnfDIul Lcul Vcul [j] Tpeul xa[rul] xa[r]cL gvif CTUca[r]LSsTFOtfDnca[r]Iulc ] jmul[jul] VcTOcul jmul : fDnTOcmu"
      }
    }
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "libraries": {}
}

Contract Security Audit

Contract ABI

[{"inputs":[{"internalType":"contract IVaultExtension","name":"vaultExtension","type":"address"},{"internalType":"contract IAuthorizer","name":"authorizer","type":"address"},{"internalType":"contract IProtocolFeeController","name":"protocolFeeController","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"target","type":"address"}],"name":"AddressEmptyCode","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"AddressInsufficientBalance","type":"error"},{"inputs":[],"name":"AfterAddLiquidityHookFailed","type":"error"},{"inputs":[],"name":"AfterInitializeHookFailed","type":"error"},{"inputs":[],"name":"AfterRemoveLiquidityHookFailed","type":"error"},{"inputs":[],"name":"AfterSwapHookFailed","type":"error"},{"inputs":[],"name":"AllZeroInputs","type":"error"},{"inputs":[],"name":"AmountGivenZero","type":"error"},{"inputs":[{"internalType":"contract IERC20","name":"tokenIn","type":"address"},{"internalType":"uint256","name":"amountIn","type":"uint256"},{"internalType":"uint256","name":"maxAmountIn","type":"uint256"}],"name":"AmountInAboveMax","type":"error"},{"inputs":[{"internalType":"contract IERC20","name":"tokenOut","type":"address"},{"internalType":"uint256","name":"amountOut","type":"uint256"},{"internalType":"uint256","name":"minAmountOut","type":"uint256"}],"name":"AmountOutBelowMin","type":"error"},{"inputs":[],"name":"BalanceNotSettled","type":"error"},{"inputs":[],"name":"BalanceOverflow","type":"error"},{"inputs":[],"name":"BeforeAddLiquidityHookFailed","type":"error"},{"inputs":[],"name":"BeforeInitializeHookFailed","type":"error"},{"inputs":[],"name":"BeforeRemoveLiquidityHookFailed","type":"error"},{"inputs":[],"name":"BeforeSwapHookFailed","type":"error"},{"inputs":[{"internalType":"uint256","name":"amountIn","type":"uint256"},{"internalType":"uint256","name":"maxAmountIn","type":"uint256"}],"name":"BptAmountInAboveMax","type":"error"},{"inputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"},{"internalType":"uint256","name":"minAmountOut","type":"uint256"}],"name":"BptAmountOutBelowMin","type":"error"},{"inputs":[{"internalType":"contract IERC4626","name":"wrappedToken","type":"address"}],"name":"BufferAlreadyInitialized","type":"error"},{"inputs":[{"internalType":"contract IERC4626","name":"wrappedToken","type":"address"}],"name":"BufferNotInitialized","type":"error"},{"inputs":[],"name":"BufferSharesInvalidOwner","type":"error"},{"inputs":[],"name":"BufferSharesInvalidReceiver","type":"error"},{"inputs":[{"internalType":"uint256","name":"totalSupply","type":"uint256"}],"name":"BufferTotalSupplyTooLow","type":"error"},{"inputs":[],"name":"CannotReceiveEth","type":"error"},{"inputs":[],"name":"CannotSwapSameToken","type":"error"},{"inputs":[],"name":"DoesNotSupportAddLiquidityCustom","type":"error"},{"inputs":[],"name":"DoesNotSupportDonation","type":"error"},{"inputs":[],"name":"DoesNotSupportRemoveLiquidityCustom","type":"error"},{"inputs":[],"name":"DoesNotSupportUnbalancedLiquidity","type":"error"},{"inputs":[],"name":"DynamicSwapFeeHookFailed","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"allowance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientAllowance","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC20InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC20InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC20InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"}],"name":"ERC20InvalidSpender","type":"error"},{"inputs":[],"name":"FailedInnerCall","type":"error"},{"inputs":[],"name":"FeePrecisionTooHigh","type":"error"},{"inputs":[{"internalType":"contract IERC20","name":"tokenIn","type":"address"},{"internalType":"uint256","name":"amountIn","type":"uint256"},{"internalType":"uint256","name":"maxAmountIn","type":"uint256"}],"name":"HookAdjustedAmountInAboveMax","type":"error"},{"inputs":[{"internalType":"contract IERC20","name":"tokenOut","type":"address"},{"internalType":"uint256","name":"amountOut","type":"uint256"},{"internalType":"uint256","name":"minAmountOut","type":"uint256"}],"name":"HookAdjustedAmountOutBelowMin","type":"error"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"limit","type":"uint256"}],"name":"HookAdjustedSwapLimit","type":"error"},{"inputs":[{"internalType":"address","name":"poolHooksContract","type":"address"},{"internalType":"address","name":"pool","type":"address"},{"internalType":"address","name":"poolFactory","type":"address"}],"name":"HookRegistrationFailed","type":"error"},{"inputs":[],"name":"InputLengthMismatch","type":"error"},{"inputs":[],"name":"InvalidAddLiquidityKind","type":"error"},{"inputs":[],"name":"InvalidRemoveLiquidityKind","type":"error"},{"inputs":[],"name":"InvalidToken","type":"error"},{"inputs":[],"name":"InvalidTokenConfiguration","type":"error"},{"inputs":[],"name":"InvalidTokenDecimals","type":"error"},{"inputs":[],"name":"InvalidTokenType","type":"error"},{"inputs":[{"internalType":"contract IERC4626","name":"wrappedToken","type":"address"}],"name":"InvalidUnderlyingToken","type":"error"},{"inputs":[{"internalType":"uint256","name":"invariantRatio","type":"uint256"},{"internalType":"uint256","name":"maxInvariantRatio","type":"uint256"}],"name":"InvariantRatioAboveMax","type":"error"},{"inputs":[{"internalType":"uint256","name":"invariantRatio","type":"uint256"},{"internalType":"uint256","name":"minInvariantRatio","type":"uint256"}],"name":"InvariantRatioBelowMin","type":"error"},{"inputs":[{"internalType":"uint256","name":"issuedShares","type":"uint256"},{"internalType":"uint256","name":"minIssuedShares","type":"uint256"}],"name":"IssuedSharesBelowMin","type":"error"},{"inputs":[],"name":"MaxTokens","type":"error"},{"inputs":[],"name":"MinTokens","type":"error"},{"inputs":[],"name":"MultipleNonZeroInputs","type":"error"},{"inputs":[],"name":"NotEnoughBufferShares","type":"error"},{"inputs":[{"internalType":"contract IERC4626","name":"wrappedToken","type":"address"},{"internalType":"uint256","name":"expectedUnderlyingAmount","type":"uint256"},{"internalType":"uint256","name":"actualUnderlyingAmount","type":"uint256"}],"name":"NotEnoughUnderlying","type":"error"},{"inputs":[{"internalType":"contract IERC4626","name":"wrappedToken","type":"address"},{"internalType":"uint256","name":"expectedWrappedAmount","type":"uint256"},{"internalType":"uint256","name":"actualWrappedAmount","type":"uint256"}],"name":"NotEnoughWrapped","type":"error"},{"inputs":[],"name":"NotStaticCall","type":"error"},{"inputs":[],"name":"NotVaultDelegateCall","type":"error"},{"inputs":[],"name":"PauseBufferPeriodDurationTooLarge","type":"error"},{"inputs":[],"name":"PercentageAboveMax","type":"error"},{"inputs":[{"internalType":"address","name":"pool","type":"address"}],"name":"PoolAlreadyInitialized","type":"error"},{"inputs":[{"internalType":"address","name":"pool","type":"address"}],"name":"PoolAlreadyRegistered","type":"error"},{"inputs":[{"internalType":"address","name":"pool","type":"address"}],"name":"PoolInRecoveryMode","type":"error"},{"inputs":[{"internalType":"address","name":"pool","type":"address"}],"name":"PoolNotInRecoveryMode","type":"error"},{"inputs":[{"internalType":"address","name":"pool","type":"address"}],"name":"PoolNotInitialized","type":"error"},{"inputs":[{"internalType":"address","name":"pool","type":"address"}],"name":"PoolNotPaused","type":"error"},{"inputs":[{"internalType":"address","name":"pool","type":"address"}],"name":"PoolNotRegistered","type":"error"},{"inputs":[{"internalType":"address","name":"pool","type":"address"}],"name":"PoolPauseWindowExpired","type":"error"},{"inputs":[{"internalType":"address","name":"pool","type":"address"}],"name":"PoolPaused","type":"error"},{"inputs":[{"internalType":"uint256","name":"totalSupply","type":"uint256"}],"name":"PoolTotalSupplyTooLow","type":"error"},{"inputs":[],"name":"ProtocolFeesExceedTotalCollected","type":"error"},{"inputs":[],"name":"QueriesDisabled","type":"error"},{"inputs":[],"name":"QueriesDisabledPermanently","type":"error"},{"inputs":[],"name":"QuoteResultSpoofed","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[],"name":"RouterNotTrusted","type":"error"},{"inputs":[{"internalType":"int256","name":"value","type":"int256"}],"name":"SafeCastOverflowedIntToUint","type":"error"},{"inputs":[{"internalType":"uint256","name":"value","type":"uint256"}],"name":"SafeCastOverflowedUintToInt","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"SenderIsNotVault","type":"error"},{"inputs":[],"name":"SwapFeePercentageTooHigh","type":"error"},{"inputs":[],"name":"SwapFeePercentageTooLow","type":"error"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"limit","type":"uint256"}],"name":"SwapLimit","type":"error"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"}],"name":"TokenAlreadyRegistered","type":"error"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"}],"name":"TokenNotRegistered","type":"error"},{"inputs":[{"internalType":"address","name":"pool","type":"address"},{"internalType":"address","name":"expectedToken","type":"address"},{"internalType":"address","name":"actualToken","type":"address"}],"name":"TokensMismatch","type":"error"},{"inputs":[],"name":"TradeAmountTooSmall","type":"error"},{"inputs":[],"name":"VaultBuffersArePaused","type":"error"},{"inputs":[],"name":"VaultIsNotUnlocked","type":"error"},{"inputs":[],"name":"VaultNotPaused","type":"error"},{"inputs":[],"name":"VaultPauseWindowDurationTooLarge","type":"error"},{"inputs":[],"name":"VaultPauseWindowExpired","type":"error"},{"inputs":[],"name":"VaultPaused","type":"error"},{"inputs":[{"internalType":"contract IERC4626","name":"wrappedToken","type":"address"}],"name":"WrapAmountTooSmall","type":"error"},{"inputs":[],"name":"WrongProtocolFeeControllerDeployment","type":"error"},{"inputs":[{"internalType":"contract IERC4626","name":"wrappedToken","type":"address"},{"internalType":"address","name":"underlyingToken","type":"address"}],"name":"WrongUnderlyingToken","type":"error"},{"inputs":[],"name":"WrongVaultAdminDeployment","type":"error"},{"inputs":[],"name":"WrongVaultExtensionDeployment","type":"error"},{"inputs":[],"name":"ZeroDivision","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pool","type":"address"},{"indexed":false,"internalType":"uint256","name":"aggregateSwapFeePercentage","type":"uint256"}],"name":"AggregateSwapFeePercentageChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pool","type":"address"},{"indexed":false,"internalType":"uint256","name":"aggregateYieldFeePercentage","type":"uint256"}],"name":"AggregateYieldFeePercentageChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pool","type":"address"},{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"contract IAuthorizer","name":"newAuthorizer","type":"address"}],"name":"AuthorizerChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"contract IERC4626","name":"wrappedToken","type":"address"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":false,"internalType":"uint256","name":"burnedShares","type":"uint256"}],"name":"BufferSharesBurned","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"contract IERC4626","name":"wrappedToken","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"issuedShares","type":"uint256"}],"name":"BufferSharesMinted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pool","type":"address"},{"indexed":true,"internalType":"address","name":"liquidityProvider","type":"address"},{"indexed":true,"internalType":"enum AddLiquidityKind","name":"kind","type":"uint8"},{"indexed":false,"internalType":"uint256","name":"totalSupply","type":"uint256"},{"indexed":false,"internalType":"uint256[]","name":"amountsAddedRaw","type":"uint256[]"},{"indexed":false,"internalType":"uint256[]","name":"swapFeeAmountsRaw","type":"uint256[]"}],"name":"LiquidityAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"contract IERC4626","name":"wrappedToken","type":"address"},{"indexed":false,"internalType":"uint256","name":"amountUnderlying","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amountWrapped","type":"uint256"},{"indexed":false,"internalType":"bytes32","name":"bufferBalances","type":"bytes32"}],"name":"LiquidityAddedToBuffer","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pool","type":"address"},{"indexed":true,"internalType":"address","name":"liquidityProvider","type":"address"},{"indexed":true,"internalType":"enum RemoveLiquidityKind","name":"kind","type":"uint8"},{"indexed":false,"internalType":"uint256","name":"totalSupply","type":"uint256"},{"indexed":false,"internalType":"uint256[]","name":"amountsRemovedRaw","type":"uint256[]"},{"indexed":false,"internalType":"uint256[]","name":"swapFeeAmountsRaw","type":"uint256[]"}],"name":"LiquidityRemoved","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"contract IERC4626","name":"wrappedToken","type":"address"},{"indexed":false,"internalType":"uint256","name":"amountUnderlying","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amountWrapped","type":"uint256"},{"indexed":false,"internalType":"bytes32","name":"bufferBalances","type":"bytes32"}],"name":"LiquidityRemovedFromBuffer","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pool","type":"address"}],"name":"PoolInitialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pool","type":"address"},{"indexed":false,"internalType":"bool","name":"paused","type":"bool"}],"name":"PoolPausedStateChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pool","type":"address"},{"indexed":false,"internalType":"bool","name":"recoveryMode","type":"bool"}],"name":"PoolRecoveryModeStateChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pool","type":"address"},{"indexed":true,"internalType":"address","name":"factory","type":"address"},{"components":[{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"enum TokenType","name":"tokenType","type":"uint8"},{"internalType":"contract IRateProvider","name":"rateProvider","type":"address"},{"internalType":"bool","name":"paysYieldFees","type":"bool"}],"indexed":false,"internalType":"struct TokenConfig[]","name":"tokenConfig","type":"tuple[]"},{"indexed":false,"internalType":"uint256","name":"swapFeePercentage","type":"uint256"},{"indexed":false,"internalType":"uint32","name":"pauseWindowEndTime","type":"uint32"},{"components":[{"internalType":"address","name":"pauseManager","type":"address"},{"internalType":"address","name":"swapFeeManager","type":"address"},{"internalType":"address","name":"poolCreator","type":"address"}],"indexed":false,"internalType":"struct PoolRoleAccounts","name":"roleAccounts","type":"tuple"},{"components":[{"internalType":"bool","name":"enableHookAdjustedAmounts","type":"bool"},{"internalType":"bool","name":"shouldCallBeforeInitialize","type":"bool"},{"internalType":"bool","name":"shouldCallAfterInitialize","type":"bool"},{"internalType":"bool","name":"shouldCallComputeDynamicSwapFee","type":"bool"},{"internalType":"bool","name":"shouldCallBeforeSwap","type":"bool"},{"internalType":"bool","name":"shouldCallAfterSwap","type":"bool"},{"internalType":"bool","name":"shouldCallBeforeAddLiquidity","type":"bool"},{"internalType":"bool","name":"shouldCallAfterAddLiquidity","type":"bool"},{"internalType":"bool","name":"shouldCallBeforeRemoveLiquidity","type":"bool"},{"internalType":"bool","name":"shouldCallAfterRemoveLiquidity","type":"bool"},{"internalType":"address","name":"hooksContract","type":"address"}],"indexed":false,"internalType":"struct HooksConfig","name":"hooksConfig","type":"tuple"},{"components":[{"internalType":"bool","name":"disableUnbalancedLiquidity","type":"bool"},{"internalType":"bool","name":"enableAddLiquidityCustom","type":"bool"},{"internalType":"bool","name":"enableRemoveLiquidityCustom","type":"bool"},{"internalType":"bool","name":"enableDonation","type":"bool"}],"indexed":false,"internalType":"struct LiquidityManagement","name":"liquidityManagement","type":"tuple"}],"name":"PoolRegistered","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"contract IProtocolFeeController","name":"newProtocolFeeController","type":"address"}],"name":"ProtocolFeeControllerChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pool","type":"address"},{"indexed":true,"internalType":"contract IERC20","name":"tokenIn","type":"address"},{"indexed":true,"internalType":"contract IERC20","name":"tokenOut","type":"address"},{"indexed":false,"internalType":"uint256","name":"amountIn","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amountOut","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"swapFeePercentage","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"swapFeeAmount","type":"uint256"}],"name":"Swap","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pool","type":"address"},{"indexed":false,"internalType":"uint256","name":"swapFeePercentage","type":"uint256"}],"name":"SwapFeePercentageChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pool","type":"address"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"contract IERC4626","name":"wrappedToken","type":"address"},{"indexed":false,"internalType":"uint256","name":"burnedShares","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"withdrawnUnderlying","type":"uint256"},{"indexed":false,"internalType":"bytes32","name":"bufferBalances","type":"bytes32"}],"name":"Unwrap","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pool","type":"address"},{"indexed":true,"internalType":"bytes32","name":"eventKey","type":"bytes32"},{"indexed":false,"internalType":"bytes","name":"eventData","type":"bytes"}],"name":"VaultAuxiliary","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"paused","type":"bool"}],"name":"VaultBuffersPausedStateChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"paused","type":"bool"}],"name":"VaultPausedStateChanged","type":"event"},{"anonymous":false,"inputs":[],"name":"VaultQueriesDisabled","type":"event"},{"anonymous":false,"inputs":[],"name":"VaultQueriesEnabled","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"contract IERC4626","name":"wrappedToken","type":"address"},{"indexed":false,"internalType":"uint256","name":"depositedUnderlying","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"mintedShares","type":"uint256"},{"indexed":false,"internalType":"bytes32","name":"bufferBalances","type":"bytes32"}],"name":"Wrap","type":"event"},{"stateMutability":"payable","type":"fallback"},{"inputs":[{"components":[{"internalType":"address","name":"pool","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256[]","name":"maxAmountsIn","type":"uint256[]"},{"internalType":"uint256","name":"minBptAmountOut","type":"uint256"},{"internalType":"enum AddLiquidityKind","name":"kind","type":"uint8"},{"internalType":"bytes","name":"userData","type":"bytes"}],"internalType":"struct AddLiquidityParams","name":"params","type":"tuple"}],"name":"addLiquidity","outputs":[{"internalType":"uint256[]","name":"amountsIn","type":"uint256[]"},{"internalType":"uint256","name":"bptAmountOut","type":"uint256"},{"internalType":"bytes","name":"returnData","type":"bytes"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"enum SwapKind","name":"kind","type":"uint8"},{"internalType":"enum WrappingDirection","name":"direction","type":"uint8"},{"internalType":"contract IERC4626","name":"wrappedToken","type":"address"},{"internalType":"uint256","name":"amountGivenRaw","type":"uint256"},{"internalType":"uint256","name":"limitRaw","type":"uint256"}],"internalType":"struct BufferWrapOrUnwrapParams","name":"params","type":"tuple"}],"name":"erc4626BufferWrapOrUnwrap","outputs":[{"internalType":"uint256","name":"amountCalculatedRaw","type":"uint256"},{"internalType":"uint256","name":"amountInRaw","type":"uint256"},{"internalType":"uint256","name":"amountOutRaw","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"pool","type":"address"},{"internalType":"contract IERC20","name":"token","type":"address"}],"name":"getPoolTokenCountAndIndexOfToken","outputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getVaultExtension","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"reentrancyGuardEntered","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"pool","type":"address"},{"internalType":"address","name":"from","type":"address"},{"internalType":"uint256","name":"maxBptAmountIn","type":"uint256"},{"internalType":"uint256[]","name":"minAmountsOut","type":"uint256[]"},{"internalType":"enum RemoveLiquidityKind","name":"kind","type":"uint8"},{"internalType":"bytes","name":"userData","type":"bytes"}],"internalType":"struct RemoveLiquidityParams","name":"params","type":"tuple"}],"name":"removeLiquidity","outputs":[{"internalType":"uint256","name":"bptAmountIn","type":"uint256"},{"internalType":"uint256[]","name":"amountsOut","type":"uint256[]"},{"internalType":"bytes","name":"returnData","type":"bytes"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"sendTo","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"uint256","name":"amountHint","type":"uint256"}],"name":"settle","outputs":[{"internalType":"uint256","name":"credit","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"enum SwapKind","name":"kind","type":"uint8"},{"internalType":"address","name":"pool","type":"address"},{"internalType":"contract IERC20","name":"tokenIn","type":"address"},{"internalType":"contract IERC20","name":"tokenOut","type":"address"},{"internalType":"uint256","name":"amountGivenRaw","type":"uint256"},{"internalType":"uint256","name":"limitRaw","type":"uint256"},{"internalType":"bytes","name":"userData","type":"bytes"}],"internalType":"struct VaultSwapParams","name":"vaultSwapParams","type":"tuple"}],"name":"swap","outputs":[{"internalType":"uint256","name":"amountCalculated","type":"uint256"},{"internalType":"uint256","name":"amountIn","type":"uint256"},{"internalType":"uint256","name":"amountOut","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes","name":"data","type":"bytes"}],"name":"unlock","outputs":[{"internalType":"bytes","name":"result","type":"bytes"}],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]

6101e06040908082523461036b576060816165dd803803809161002282856104d1565b83398101031261036b5780516001600160a01b0380821680830361036b5760208085015194838616860361036b5786015183811680910361036b57610086875161006b816104a2565b600a8152691a5cd55b9b1bd8dad95960b21b8482015261052f565b60c0526100b98751610097816104a2565b60118152701b9bdb96995c9bd1195b1d1850dbdd5b9d607a1b8482015261052f565b60e0526100e687516100ca816104a2565b600b81526a746f6b656e44656c74617360a81b8482015261052f565b9661010097885261011e81516100fb816104a2565b6012815271185919131a5c5d5a591a5d1e50d85b1b195960721b8582015261052f565b9661012097885261014d8251610133816104a2565b60098152681cd95cdcda5bdb925960ba1b8682015261052f565b9261014093845282519663fbfa77cf60e01b9081895260049887818b818c5afa9081156103af575f91610485575b50813091160361047757845191825286828a81865afa9182156103e8575f92610448575b503091160361043a576101c0978852600a80546001600160a01b0319169190911790558151634546891d60e11b81529380858881895afa948515610430575f95610411575b506101609485528251631060fdbd60e11b815296818882818a5afa978815610376575f986103f2575b506101a0978852835163cd51c12f60e01b81529682888381845afa9788156103e8575f986103b9575b506101809788528451630716585d60e51b815283818481855afa9081156103af57908492915f91610380575b5060805285516329cab55160e11b815292839182905afa918215610376575f92610344575b505060a05260098054610100600160a81b03191660089290921b610100600160a81b031691909117905551615fda97909690886106038939608051886152c0015260a051886135f8015260c0518881816111d401526114dd015260e051888181611215015281816146a601526146e8015251876146640152518681816112e60152612389015251858181611241015281816112b2015261235501525184505051836118730152518261190901525181818161096f01526114470152f35b90809250813d831161036f575b61035b81836104d1565b8101031261036b57515f80610287565b5f80fd5b503d610351565b84513d5f823e3d90fd5b83819492503d83116103a8575b61039781836104d1565b8101031261036b578391515f610262565b503d61038d565b86513d5f823e3d90fd5b6103da919850833d85116103e1575b6103d281836104d1565b810190610513565b965f610236565b503d6103c8565b85513d5f823e3d90fd5b61040a919850823d84116103e1576103d281836104d1565b965f61020d565b816104299296503d87116103e1576103d281836104d1565b935f6101e4565b83513d5f823e3d90fd5b86631bbe95c760e01b5f525ffd5b610469919250873d8911610470575b61046181836104d1565b8101906104f4565b905f61019f565b503d610457565b886301ab9d9d60e41b5f525ffd5b61049c9150883d8a116104705761046181836104d1565b5f61017b565b604081019081106001600160401b038211176104bd57604052565b634e487b7160e01b5f52604160045260245ffd5b601f909101601f19168101906001600160401b038211908210176104bd57604052565b9081602091031261036b57516001600160a01b038116810361036b5790565b9081602091031261036b575163ffffffff8116810361036b5790565b6040519061053c826104a2565b600c82526105bd603a602084016b5661756c7453746f7261676560a01b81526020604051948592828401977f62616c616e6365722d6c6162732e76332e73746f726167652e000000000000008952518091603986015e830190601760f91b60398301528051928391018583015e015f8382015203601a8101845201826104d1565b5190205f1981019081116105ee576040519060208201908152602082526105e3826104a2565b9051902060ff191690565b634e487b7160e01b5f52601160045260245ffdfe60806040526004361015610018575b3661143057611421565b5f3560e01c806315afd409146100d757806315dacbea146100d257806321457897146100cd5780632bfb780c146100c857806343583be5146100c357806348c89491146100be5780634af29ec4146100b9578063ae639329146100b4578063b9a8effa146100af578063beabacc8146100aa578063c9c1661b146100a55763d2c725e00361000e57610aae565b6109c9565b610993565b610950565b610866565b610796565b6106fd565b610671565b610599565b6104b4565b61020f565b6100fe565b6001600160a01b038116036100ed57565b5f80fd5b35906100fc826100dc565b565b346100ed5760403660031901126100ed5760043561011b816100dc565b60243561012661147a565b61012e6114db565b6001600160a01b0382165f818152600860209081526040918290205491516370a0823160e01b8152306004820152919492829060249082905afa93841561020a576101cd946101a1925f916101db575b508061019b856001600160a01b03165f52600860205260405f2090565b55610b28565b918083116101d1575b50816101b591611513565b6101bd6114b6565b6040519081529081906020820190565b0390f35b91506101b56101aa565b6101fd915060203d602011610203575b6101f581836102cd565b810190610aec565b5f61017e565b503d6101eb565b610afb565b346100ed5760803660031901126100ed5761025d60043561022f816100dc565b60243561023b816100dc565b60443590610248826100dc565b61025760643580948333611535565b336116b5565b602060405160018152f35b634e487b7160e01b5f52604160045260245ffd5b67ffffffffffffffff811161029057604052565b610268565b60e0810190811067ffffffffffffffff82111761029057604052565b6060810190811067ffffffffffffffff82111761029057604052565b90601f8019910116810190811067ffffffffffffffff82111761029057604052565b6040519060c0820182811067ffffffffffffffff82111761029057604052565b604051906100fc82610295565b60405190610180820182811067ffffffffffffffff82111761029057604052565b67ffffffffffffffff81116102905760051b60200190565b9080601f830112156100ed57602090823561036f8161033d565b9361037d60405195866102cd565b81855260208086019260051b8201019283116100ed57602001905b8282106103a6575050505090565b81358152908301908301610398565b359060048210156100ed57565b67ffffffffffffffff811161029057601f01601f191660200190565b9291926103ea826103c2565b916103f860405193846102cd565b8294818452818301116100ed578281602093845f960137010152565b9080601f830112156100ed5781602061042f933591016103de565b90565b9081518082526020808093019301915f5b828110610451575050505090565b835185529381019392810192600101610443565b805180835260209291819084018484015e5f828201840152601f01601f1916010190565b916104a69061042f94928452606060208501526060840190610432565b916040818403910152610465565b346100ed576003196020368201126100ed5760043567ffffffffffffffff918282116100ed5760c09082360301126100ed576104ee6102ef565b6104fa826004016100f1565b8152610508602483016100f1565b60208201526044820135604082015260648201358381116100ed576105339060043691850101610355565b6060820152610544608483016103b5565b608082015260a48201359283116100ed5761056b6105759260046101cd9536920101610414565b60a0820152610b35565b60409391935193849384610489565b600211156100ed57565b35906100fc82610584565b346100ed576003196020368201126100ed5760043567ffffffffffffffff918282116100ed5760e09082360301126100ed576105d361030f565b6105df8260040161058e565b81526105ed602483016100f1565b60208201526105fe604483016100f1565b604082015261060f606483016100f1565b60608201526084820135608082015260a482013560a082015260c48201359283116100ed5761064a6106549260046101cd9536920101610414565b60c0820152610cbf565b604080519384526020840192909252908201529081906060820190565b346100ed5760a03660031901126100ed5760405160a0810181811067ffffffffffffffff821117610290576101cd91610654916040526004356106b381610584565b81526024356106c181610584565b60208201526044356106d2816100dc565b604082015260643560608201526084356080820152610f03565b90602061042f928181520190610465565b346100ed5760203660031901126100ed5767ffffffffffffffff6004358181116100ed57366023820112156100ed5780600401359182116100ed5736602483830101116100ed576101cd91602461075492016111c9565b604051918291826106ec565b359060058210156100ed57565b61078361042f9492606083526060830190610432565b9260208201526040818403910152610465565b346100ed576003196020368201126100ed5760043567ffffffffffffffff918282116100ed5760c09082360301126100ed576107d06102ef565b6107dc826004016100f1565b81526107ea602483016100f1565b602082015260448201358381116100ed5761080b9060043691850101610355565b60408201526064820135606082015261082660848301610760565b608082015260a48201359283116100ed5761084d6108579260046101cd9536920101610414565b60a082015261127d565b6040939193519384938461076d565b346100ed5760603660031901126100ed57600435610883816100dc565b60243590610890826100dc565b6044359061089c61147a565b6108a46114db565b6108b66108b083614618565b82614654565b6001600160a01b0381165f52600860205260405f208054938385039485116109415793905560405163a9059cbb60e01b60208201526001600160a01b03909316602484015260448084019290925290825261091c91906109176064836102cd565b615b9b565b5f7f9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f005d005b610b06565b5f9103126100ed57565b346100ed575f3660031901126100ed5760206040516001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000168152f35b346100ed5760603660031901126100ed5761025d6004356109b3816100dc565b6024356109bf816100dc565b60443591336116b5565b346100ed5760403660031901126100ed576004356109e6816100dc565b602435906109f3826100dc565b6001600160a01b0380911691825f525f602052600192600160405f20541615610a9c575f93929352600360205260405f20926040519283602086549182815201955f5260205f20925f905b828210610a6f5786610a5c87610a56838c03846102cd565b826145cb565b9051604080519182526020820192909252f35b90919280610a9086998483985416906001600160a01b036020921681520190565b98019493920190610a3e565b6327946f5760e21b5f5260045260245ffd5b346100ed575f3660031901126100ed5760207f9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f005c6040519015158152f35b908160209103126100ed575190565b6040513d5f823e3d90fd5b634e487b7160e01b5f52601160045260245ffd5b5f1981019190821161094157565b9190820391821161094157565b90610b3e6114db565b610b516001600160a01b03835116611837565b610b6a610b6583516001600160a01b031690565b61186b565b610b83610b7e83516001600160a01b031690565b611961565b90610bd7602083015151610b9e606086019182515190611e0c565b805160c0850190610bb882519160a0880192835191611e7c565b92610bc8875160019060101c1690565b610c50575b50505084846122bc565b9490919586610beb835160019060111c1690565b610bf9575b50505050929190565b84975093610c4694610c3c610c2f610c1885516001600160a01b031690565b6001600160a01b03165f52600260205260405f2090565b546001600160a01b031690565b94845133906129c4565b925f808080610bf0565b610c78610cb794888a610c70610c2f610c1883516001600160a01b031690565b923390611f8b565b610cac610ca6610c8f8a516001600160a01b031690565b6001600160a01b03165f52600560205260405f2090565b88612043565b519151905191611e7c565b5f8080610bcd565b90610cc86114db565b60208201906001600160a01b03610ce181845116611837565b610cf5610b6584516001600160a01b031690565b608084015115610ed15760408401516001600160a01b031690610d31610d2560608701516001600160a01b031690565b6001600160a01b031690565b911614610ec257610d4c610b7e83516001600160a01b031690565b92610d578482612b33565b90610d63858383612bca565b8551600c1c600116610e47575b8551610d8a9190600b1c600116610e06575b868484612f05565b9791979490978397610da18451600190600d1c1690565b610dd1575b505050505051610db581610ef4565b610dbe81610ef4565b610dc9575081929190565b918093509190565b85985090610df0610c2f610c18610dfb9894516001600160a01b031690565b94845191339261338a565b925f80808080610da6565b85516001600160a01b0316610e4060608601918251610e39610c2f836001600160a01b03165f52600260205260405f2090565b9185612e43565b9052610d82565b610e8090610e5c86516001600160a01b031690565b610e7a610c2f826001600160a01b03165f52600260205260405f2090565b91612d01565b610e9d610e97610c8f86516001600160a01b031690565b86612043565b610ea8828683612d88565b6040830152610d8a610ebb868484612bca565b9050610d70565b63a54b181d60e01b5f5260045ffd5b6357a456b760e01b5f5260045ffd5b634e487b7160e01b5f52602160045260245ffd5b60021115610efe57565b610ee0565b610f0b6114db565b600160075460021c166111a55760408101916001600160a01b03928381511693845f52600e6020528060405f205416156111925760049450610f4b61147a565b6020610f61610d2584516001600160a01b031690565b6040516338d52e0f60e01b815296879182905afa801561020a576080955f91611163575b5016610fa181610f9c84516001600160a01b031690565b6135b8565b81516001600160a01b031690610fbd60608601928351906135f5565b60016020860151610fcd81610ef4565b610fd681610ef4565b036110f857610ffe91855191610feb83610ef4565b84516001600160a01b0316915192613a34565b7feeb740c90bf2b18c9532eb7d473137767036d893dff3e009f32718f821b2a4c0829692979397968861105c61103e610d2589516001600160a01b031690565b94604051938493846040919493926060820195825260208201520152565b0390a25b805161106b81610ef4565b61107481610ef4565b6110c75701518084106110ad57506110a061109b91849283915b516001600160a01b031690565b6135f5565b6110a86114b6565b929190565b63e2ea151b60e01b5f52600484905260245260445ffd5b5ffd5b01518085116110e157506110a061109b918592839161108e565b63e2ea151b60e01b5f52600485905260245260445ffd5b61111b9185519161110883610ef4565b84516001600160a01b031691519261366e565b7f3771d13c67011e31e12031c54bb59b0bf544a80b81d280a3711e172aa8b7f47b829692979397968861115b61103e610d2589516001600160a01b031690565b0390a2611060565b611185915060203d60201161118b575b61117d81836102cd565b8101906111b4565b5f610f85565b503d611173565b846385f4129960e01b5f5260045260245ffd5b630f27df0960e01b5f5260045ffd5b908160209103126100ed575161042f816100dc565b91909161120b6112057f000000000000000000000000000000000000000000000000000000000000000092835c159586611274575b36916103de565b336156cc565b926112135750565b7f00000000000000000000000000000000000000000000000000000000000000005c611265575f905d6100fc7f0000000000000000000000000000000000000000000000000000000000000000613d31565b6320f1d86d60e01b5f5260045ffd5b6001855d6111fe565b906112866114db565b6112996001600160a01b03835116611837565b6112ad610b6583516001600160a01b031690565b61130a7f00000000000000000000000000000000000000000000000000000000000000005c6112e384516001600160a01b031690565b907f0000000000000000000000000000000000000000000000000000000000000000613d42565b61132361131e83516001600160a01b031690565b611bf0565b9061137760208301515161133e604086019182515190611e0c565b805160c085019061135882519160a0880192835191613d5b565b926113688751600190600e1c1690565b6113ca575b5050508484613f6a565b949095868461138b8451600190600f1c1690565b61139a575b5050505050929190565b6113c095506113b6610c2f610c1885516001600160a01b031690565b948451339061445b565b5f80808681611390565b6113f161141994888a6113ea610c2f610c1883516001600160a01b031690565b9233613e39565b61140e611408610c8f8a516001600160a01b031690565b886120a7565b519151905191613d5b565b5f808061136d565b637911c44b60e11b5f5260045ffd5b3461142157365f80375f8036816001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000165af43d5f803e15611476573d5ff35b3d5ffd5b7f9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f00805c6114a7576001905d565b633ee5aeb560e01b5f5260045ffd5b5f7f9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f005d565b7f00000000000000000000000000000000000000000000000000000000000000005c1561150457565b63604dd39b60e11b5f5260045ffd5b9061151d90614618565b90600160ff1b8214610941576100fc915f0390614654565b92919091611544828486614715565b60018101611554575b5050505050565b8082116116935703906001600160a01b03928381169384156116775780831695861561165b57846115b48561159e8661159e866001600160a01b03165f52601060205260405f2090565b906001600160a01b03165f5260205260405f2090565b551692833b156100ed57604051630ad0fe5760e31b81526001600160a01b039283166004820152919092166024820152604481018290527fa0175360a15bca328baf7ea85c7b784d58b222a50d0ce760b10dba336d226a6191611635915f8180606481015b038183895af1611642575b506040519081529081906020820190565b0390a45f8080808061154d565b8061164f6116559261027c565b80610946565b5f611624565b634a1406b160e11b5f526001600160a01b03841660045260245ffd5b63e602df0560e01b5f526001600160a01b03821660045260245ffd5b6001600160a01b0383637dc7a0d960e11b5f521660045260245260445260645ffd5b929091926001600160a01b039081841691821561181b578086169182156117ff576116f58661159e836001600160a01b03165f52600f60205260405f2090565b548086116117db5785900361171f8761159e846001600160a01b03165f52600f60205260405f2090565b5561173f8761159e836001600160a01b03165f52600f60205260405f2090565b8581540190551691827fd1398bee19313d6bf672ccb116e51f4a1a947e91c757907f51fbb5b5e56c698f6040518061177c88829190602083019252565b0390a4803b156100ed576040516323de665160e01b81526001600160a01b03938416600482015293909216602484015260448301525f908290818381606481015b03925af1801561020a576117ce5750565b8061164f6100fc9261027c565b63391434e360e21b5f526001600160a01b038716600452602452604485905260645ffd5b63ec442f0560e01b5f526001600160a01b03871660045260245ffd5b634b637e8f60e11b5f526001600160a01b03851660045260245ffd5b6001600160a01b0316805f525f602052600160405f2054811c16156118595750565b634bdace1360e01b5f5260045260245ffd5b63ffffffff807f00000000000000000000000000000000000000000000000000000000000000001642111580611953575b611944576001600160a01b0382165f525f60205260405f20549060018260021c16906118c6605a90565b906028820180921161094157826118fe575b505090506118e35750565b63d971f59760e01b5f526001600160a01b031660045260245ffd5b6119309250611939937f0000000000000000000000000000000000000000000000000000000000000000921c16615f8c565b63ffffffff1690565b421115805f806118d8565b6336a7e2cd60e21b5f5260045ffd5b506001600754811c1661189c565b60409081519161197083610295565b5f8352826020810191606080845281830190808252808401908082526080936080860182815260a0870183815260c088019384526119ac61147a565b6001600160a01b038a165f526005602052825f20935f602052835f20549260046020526119e8855f20946003602052865f209081549c52614761565b8b526119f38a6147b8565b88526119fe8a611e22565b8752611a098a611e22565b9052611a16898d51615bf2565b9052611a2188611e22565b81528a5191600199600184811c169384611bdc575b5083611bca575b5f5b8d8b8210611a9d575050505050505050505050505080611a8e611a76611a95936001600160a01b03165f52600560205260405f2090565b916001600160a01b03165f52600660205260405f2090565b9083614846565b61042f6114b6565b908a8d92828c8c8c611aff84611aeb81611add611ad88f8f61108e85611ac39251611e54565b6001600160a01b03165f5260205260405f2090565b614807565b94905f5260205260405f2090565b54945183611af98383611e54565b52611e54565b50611b09816149a1565b611b14858d51611e54565b52611b296001600160801b0384168587614a40565b878d8d15611bbd5782015115159182611b9f575b5050611b50575b50505050505b01611a3f565b82611b7392611b6a82611b638851615c4e565b9451611e54565b51961c85615c71565b9283611b83575b8e93508c611b44565b611b9693611b9091610b28565b91614a40565b5f8f8282611b7a565b90915051611bac81610ef4565b611bb581610ef4565b14875f611b3d565b5050505050505050611b4a565b8c5190935060031c6001161592611a3d565b611be7919450615c4e565b1515925f611a36565b604090815191611bff83610295565b5f8352826020810191606080845281830190808252808401908082526080936080860182815260a0870183815260c08801938452611c3b61147a565b6001600160a01b038a165f526005602052825f20935f602052835f2054926004602052611c77855f20946003602052865f209081549c52614761565b8b52611c828a6147b8565b8852611c8d8a611e22565b8752611c988a611e22565b9052611ca5898d51615bf2565b9052611cb088611e22565b81528a5191600199600184811c169384611df8575b5083611de6575b5f5b8d8b8210611d05575050505050505050505050505080611a8e611a76611a95936001600160a01b03165f52600560205260405f2090565b908a8d92828c8c8c611d2b84611aeb81611add611ad88f8f61108e85611ac39251611e54565b50611d35816149a1565b611d40858d51611e54565b52611d556001600160801b0384168587614a8d565b878d8d15611dd95782015115159182611dbb575b5050611d7c575b50505050505b01611cce565b82611d8f92611b6a82611b638851615c4e565b9283611d9f575b8e93508c611d70565b611db293611dac91610b28565b91614a8d565b5f8f8282611d96565b90915051611dc881610ef4565b611dd181610ef4565b14875f611d69565b5050505050505050611d76565b8c5190935060031c6001161592611ccc565b611e03919450615c4e565b1515925f611cc5565b03611e1357565b63aaad13f760e01b5f5260045ffd5b90611e2c8261033d565b611e3960405191826102cd565b8281528092611e4a601f199161033d565b0190602036910137565b8051821015611e685760209160051b010190565b634e487b7160e01b5f52603260045260245ffd5b9190825191611e8f825182519085614952565b611e9883611e22565b935f5b848110611eaa57505050505090565b80611edf611eba60019385611e54565b51611eda611ec88489611e54565b51611ed38589611e54565b519261498e565b614f33565b611ee98289611e54565b5201611e9b565b60041115610efe57565b519081151582036100ed57565b908160209103126100ed5761042f90611efa565b906004821015610efe5752565b959293611f59611f7d9561042f999793611f6f956001600160a01b038092168b521660208a01526040890190611f1b565b606087015260e0608087015260e0860190610432565b9084820360a0860152610432565b9160c0818403910152610465565b5f6001600160a01b036020959693611fea611fad87516001600160a01b031690565b94608088015197611fbd89611ef0565b60a0608060408301519c0151910151916040519b8c9a8b998a976302e97e7d60e61b895260048901611f28565b0393165af190811561020a575f91612014575b501561200557565b631557c43360e11b5f5260045ffd5b612036915060203d60201161203c575b61202e81836102cd565b810190611f07565b5f611ffd565b503d612024565b60208082015151925f5b84811061205b575050505050565b6001906120a16001600160801b03604061208161207b85838b0151611e54565b516149a1565b61208f8560a08b0151611e54565b52835f528587525f2054168287614a40565b0161204d565b60208082015151925f5b8481106120bf575050505050565b6001906120ff6001600160801b0360406120df61207b85838b0151611e54565b6120ed8560a08b0151611e54565b52835f528587525f2054168287614a8d565b016120b1565b60405190612112826102b1565b5f6040838281528260208201520152565b9080601f830112156100ed5781519060209161213e8161033d565b9361214c60405195866102cd565b81855260208086019260051b8201019283116100ed57602001905b828210612175575050505090565b81518152908301908301612167565b81601f820112156100ed5780519061219b826103c2565b926121a960405194856102cd565b828452602083830101116100ed57815f9260208093018386015e8301015290565b6080818303126100ed5780519260208201519167ffffffffffffffff928381116100ed57846121fa918301612123565b9360408201518481116100ed5781612213918401612123565b9360608301519081116100ed5761042f9201612184565b939061042f9593612268936001600160a01b0361225a93168752602087015260a0604087015260a0860190610432565b908482036060860152610432565b916080818403910152610465565b906001820180921161094157565b9190820180921161094157565b916122ae9061042f94928452606060208501526060840190610432565b916040818403910152610432565b926122c561147a565b6060916122d0612105565b9260208601906122e4825151808752611e22565b90608084019687516122f581611ef0565b6122fe81611ef0565b61270157506040840151906123138751611e22565b9561234f8360808c01516123496123318a516001600160a01b031690565b6001600160a01b03165f52601160205260405f205490565b90614ee2565b926123c07f00000000000000000000000000000000000000000000000000000000000000005c61238689516001600160a01b031690565b907f0000000000000000000000000000000000000000000000000000000000000000905f5260205260405f20905f5260205260405f205c90565b612684575b604087015180821161266c57506123de819a999a614f55565b60208a01985f5b8b51811015612527578c6123f98288611e54565b5161240381614f55565b61240d838a611e54565b5161251557816124338460a061242a8260c061243a980151611e54565b51930151611e54565b5191614f66565b80612445838a611e54565b525b61245561108e838b51611e54565b60608b01612464848251611e54565b5183106124e257508e83611b908f8f8f966124d6916124be866124b6818b60019e9d612493886124dc9f611513565b6124af6124a08489611e54565b5191516001600160a01b031690565b908d614f95565b875292611e54565b526124cd856060880151611e54565b51925190612284565b90610b28565b016123e5565b916124f1846110c49451611e54565b516317bc2f2360e11b5f526001600160a01b03909216600452602452604452606490565b50506125218188611e54565b51612447565b5093995095945095929861254d91975061254885516001600160a01b031690565b615097565b7ffbe5b0d79fb94f1e81c0a92bf86ae9d3a19e9d1bf6202c0d3e75120f65d5d8a561257f84516001600160a01b031690565b926125a186602087019561259a87516001600160a01b031690565b3391611535565b6125a96150fa565b612641575b6125d4866125c387516001600160a01b031690565b86516001600160a01b031690615161565b6126086123316125fc6125ee88516001600160a01b031690565b96516001600160a01b031690565b94519661108e88611ef0565b926126306001600160a01b039261261e88611ef0565b8c846040519586951698169684612291565b0390a461263b6114b6565b93929190565b6126678661265687516001600160a01b031690565b86516001600160a01b03169061510f565b6125ae565b6331d38e0b60e01b5f5260049190915260245260445ffd5b9894916126978b97949995929b51614b64565b9a5f5b86518110156126f157808b6126ea8f936126e46126d38f83906126c96001996126c3848a611e54565b51614f33565b611af98383611e54565b516126de8386611e54565b51610b28565b92611e54565b520161269a565b5091949893969a509194986123c5565b94906001885161271081611ef0565b61271981611ef0565b0361279d576127288951614aec565b60408501519186928a61279761278d8b8a60406127486060830151614b07565b92019482865286608082015193612787610d2561277961277261233188516001600160a01b031690565b9551614b64565b95516001600160a01b031690565b94614de5565b909251909a611e54565b526123c5565b600288969296516127ad81611ef0565b6127b681611ef0565b03612849576127c58951614aec565b6128428260608701906127e96127db8351614b07565b60408c019381855251611e54565b516127f5835188611e54565b528b612808608082015193518093611e54565b516128276128206123318c516001600160a01b031690565b9251614b64565b9261283c610d258c516001600160a01b031690565b94614bbb565b96906123c5565b50936003875161285881611ef0565b61286181611ef0565b03612909576128708851614ad0565b5f612888610d25610d2587516001600160a01b031690565b60408681015160808c015160a08901519251632ada38a360e21b8152998a94938593879385936128bd9392336004870161222a565b03925af194851561020a575f915f965f925f916128de575b509196926123c5565b92505095506128ff91503d805f833e6128f781836102cd565b8101906121ca565b919690915f6128d5565b63137a9a3960e01b5f5260045ffd5b9190916040818403126100ed5761292e81611efa565b92602082015167ffffffffffffffff81116100ed5761042f9201612123565b96939461042f9896926129b6966129876129a89661299a95610100948d6001600160a01b0380931690521660208d015260408c0190611f1b565b60608a01528060808a0152880190610432565b9086820360a0880152610432565b9084820360c0860152610432565b9160e0818403910152610465565b9493959296919084516129dd906001600160a01b031690565b906080860151926129ed84611ef0565b60808601518a60a0890151926040519b8c978897632754888d60e01b89526004890197612a199861294d565b03916001600160a01b031691815a5f948591f193841561020a575f905f95612b0c575b50158015612b00575b612af1576001809360091c1615612a635792935090915f835b612a6a575b5050505090565b8451811015612aec57612a7d8186611e54565b516060840190612a8e838351611e54565b5111612a9d5750830183612a5e565b612ac882612ac081612aba61108e8b9760206110c49a0151611e54565b95611e54565b519251611e54565b51633ef629c960e21b5f526001600160a01b03909216600452602452604452606490565b612a63565b6303a6723b60e31b5f5260045ffd5b50835185511415612a45565b9050612b2b9194503d805f833e612b2381836102cd565b810190612918565b93905f612a3c565b6040519291608084019067ffffffffffffffff82118583101761029057612bba916040525f855260208501945f8652612bb260408201915f83528360608201965f88528299612bab60208401805190612b9b6001600160a01b039283604088015116906145cb565b87525190606085015116906145cb565b9052612d88565b905251614b64565b9052565b612bc782610ef4565b52565b919091606060c0604051612bdd81610295565b5f81525f60208201528260408201525f838201525f60808201525f60a08201520152805192612c0b84610ef4565b6080604082015193015160c06020835193015193015193612c34612c2d61030f565b9687612bbe565b60208601526040850152606084015260808301523360a083015260c082015290565b90612bc782610ef4565b919060e08101908351612c7281610ef4565b8152602080850151602083015260408501519260e060408401528351809152602061010084019401915f5b828110612ced575050505060c084606061042f95960151606084015260808101516080840152612cdd60a082015160a08501906001600160a01b03169052565b01519060c0818403910152610465565b835186529481019492810192600101612c9d565b60209192612d385f6001600160a01b03809460405197889687958693635211fa7760e01b8552604060048601526044850190612c60565b911660248301520393165af190811561020a575f91612d69575b5015612d5a57565b63e91e17e760e01b5f5260045ffd5b612d82915060203d60201161203c5761202e81836102cd565b5f612d52565b9190918051612d9681610ef4565b612d9f81610ef4565b612de45790612ddb670de0b6b3a764000093611ed36080612de09501519360a0612dcf60c0850151835190611e54565b51930151905190611e54565b61498e565b0490565b61042f92612e20612e1a6080611eda9401519460a0612e0e602060c0870151930192835190611e54565b51940151905190611e54565b5161529a565b9261498e565b91908260409103126100ed576020612e3d83611efa565b92015190565b6040805163283a3d6b60e21b8152606060048201529490938593919284926001600160a01b039284928490612e7c906064860190612c60565b9216602484015260448301520392165afa90811561020a575f905f92612ed3575b5015612ec457670de0b5cad2bef0008111612eb55790565b6301d1b96560e61b5f5260045ffd5b6314fe5db560e21b5f5260045ffd5b9050612ef7915060403d604011612efe575b612eef81836102cd565b810190612e26565b905f612e9d565b503d612ee5565b5f9491939293612f1361147a565b612f1b612105565b918051612f2781610ef4565b612f3081610ef4565b1561328a575b602091828601612f4681516152be565b83612f8281850198612f65610d25610d258c516001600160a01b031690565b906040519c8d80948193633964c0c360e11b8352600483016132b2565b03925af198891561020a575f9961326b575b5088612f9f816152be565b8351612faa81610ef4565b612fb381610ef4565b6131f3575060408201519052612ff260c0880151612feb612e1a612fdc87860193845190611e54565b519260a08c0151905190611e54565b908a614f66565b9360808301519685979860a08501518088106131dc57505b60408501948a8651613022906001600160a01b031690565b9061302c916145b9565b60600195898751613043906001600160a01b031690565b9061304d91611513565b835183516001600160a01b031687516001600160a01b03168751916130729386614f95565b9190818601956040019283528552855160608401928d8285519061309591611e54565b51906130a091612284565b90516130ab91610b28565b6130b59185614a40565b85019182518b818451906130c891611e54565b51906130d391610b28565b6130dd9183614a40565b83516001600160a01b03165f908152600560205260409020918051875161310391611e54565b5191608001918251885161311691611e54565b5161312091615369565b87516131349085905f5260205260405f2090565b5551835161314191611e54565b519051835161314f91611e54565b5161315991615369565b915161316c91905f5260205260405f2090565b5551925193516060928301519151604080518b8152602081018b905290810193909352928201929092526001600160a01b039182169382169291909116907f0874b2d545cb271cdbda4e093020c452328b24af12382ed62c4d00f5c26709db90608090a4939291906100fc6114b6565b63e2ea151b60e01b5f52600488905260245260445ffd5b905081985061321a6060613223930151670de0b6b3a7640000818103908210029083615335565b90818652612284565b9661325061323760c0890151835190611e54565b5161324860a08a0151845190611e54565b51908a615355565b93608083015196859860a08501518088116131dc575061300a565b613283919950843d8611610203576101f581836102cd565b975f612f94565b602085016132ab6132a18251606086015190614f33565b8086528251610b28565b9052612f36565b90602061042f928181520190612c60565b6101a061042f92602083526132dc602084018251612c56565b60208101516001600160a01b0316604084015260408101516001600160a01b0316606084015260608101516080840152608081015160a084015260a081015160c084015260c081015160e084015260e08101516101009081850152810151610120908185015281015161335d61014091828601906001600160a01b03169052565b8101519061337961016092838601906001600160a01b03169052565b015191610180808201520190610465565b939590919492865161339b81610ef4565b6133a481610ef4565b6135a95786604085015191845b8251946133bd86610ef4565b6040978897888601516133d6906001600160a01b031690565b9660608701516133ec906001600160a01b031690565b9360800192835181516133fe91611e54565b519351906020015161340f91611e54565b51936020880151613426906001600160a01b031690565b9760c001519861343461031c565b9a61343f908c612bbe565b6001600160a01b031660208b01526001600160a01b0316898b01526060890152608088015260a087015260c086015260e085015261010084018890526001600160a01b03166101208401526001600160a01b031661014083015261016082015281516318b6eb5560e01b8152968791829081906134bf90600483016132c3565b03916001600160a01b03165a905f91f194851561020a575f915f96613585575b5050156135765760091c60011615613570575080516134fd81610ef4565b61350681610ef4565b1580613563575b8015613538575b61351c575090565b60a0015163cc0e4a9960e01b5f5260049190915260245260445ffd5b506001815161354681610ef4565b61354f81610ef4565b148015613514575060a08101518211613514565b5060a0810151821061350d565b91505090565b630568a77b60e21b5f5260045ffd5b6135a093965080919250903d10612efe57612eef81836102cd565b93905f806134df565b866040850151918492946133b1565b6001600160a01b0380911690815f52600e6020528060405f20541692168092036135e0575050565b6336b18d0960e01b5f5260045260245260445ffd5b907f00000000000000000000000000000000000000000000000000000000000000001161361f5750565b6001600160a01b03906318fe738560e01b5f521660045260245ffd5b81810392915f13801582851316918412161761094157565b9190915f838201938412911290801582169115161761094157565b93909161367a85610ef4565b841580156139bd576136af602061369087610b1a565b6040518093819263ef8b30f760e01b8352600483019190602083019252565b03816001600160a01b0387165afa801561020a576136d4915f9161399e575b50610b1a565b94955b6136f2836001600160a01b03165f52600b60205260405f2090565b54916136fc6150fa565b61399657869288929091608083901c91858310613771575050509261376b82613748866137436001600160a01b03966001600160801b03896100fc9b60801c039316612284565b615369565b9788613765856001600160a01b03165f52600b60205260405f2090565b556145b9565b16611513565b90929350613780919450610ef4565b15613879576137a86137a361379585846155a0565b61379e8a614618565b613653565b61544c565b926001600160a01b038116936137bf81868961556a565b604051636e553f6560e01b81526004810182905230602482015294602090869060449082905f905af1801561020a576137488995613854876138496001600160a01b038f96888f896100fc9f859e6138438f61376b9f6138499661384e996001600160801b03965f9161385a575b509a8b935b169061383e8282615468565b615613565b16612284565b610b28565b94612284565b90615369565b613873915060203d602011610203576101f581836102cd565b5f61382d565b90916138996137a361388b83856153ab565b61389489614618565b61363b565b60405163b3d7f6b960e01b8152600481018290526001600160a01b038316936020939290918481602481895afa801561020a576138df915f91613979575b50868a61556a565b6040516394bf804d60e01b815260048101829052306024820152948490869060449082905f905af191821561020a576100fc966138548b613849858f966001600160a01b038f896001600160801b03879f9a849f8f9661376b9f97613849966137489f9961384e9a613843955f9261395c575b5050988992613832565b6139729250803d10610203576101f581836102cd565b5f80613952565b6139909150863d8811610203576101f581836102cd565b5f6138d7565b509093505050565b6139b7915060203d602011610203576101f581836102cd565b5f6136ce565b6139ea60206139cb87612276565b6040518093819263b3d7f6b960e01b8352600483019190602083019252565b03816001600160a01b0387165afa801561020a57613a0f915f91613a15575b50612276565b956136d7565b613a2e915060203d602011610203576101f581836102cd565b5f613a09565b9390613a3f85610ef4565b8415948515613cda57613a756020613a5687610b1a565b6040518093819263266d6a8360e11b8352600483019190602083019252565b03816001600160a01b0389165afa801561020a57613a99915f9161399e5750610b1a565b94955b613ab7856001600160a01b03165f52600b60205260405f2090565b5491613ac16150fa565b6139965787938793909290916001600160801b039182841691868310613b3857505050936001600160a01b03613b0e83866100fc98613b0686613b339860801c612284565b921603615369565b9788613b2b826001600160a01b03165f52600b60205260405f2090565b555b166145b9565b611513565b919650929450613b489150610ef4565b15613c2d57613b5d6137a361379587856153ab565b604051635d043b2960e11b8152600481018290523060248201819052604482015293906020856064815f6001600160a01b038c165af1801561020a57613beb8995613854846138498e613be28b8f6001600160a01b036100fc9f9c613bdd8f9d613b339f94889f859f613849975f91613c0e575b509586925b1690615658565b612284565b9460801c612284565b9788613c08826001600160a01b03165f52600b60205260405f2090565b55613b2d565b613c27915060203d602011610203576101f581836102cd565b5f613bd1565b613c3d6137a361388b87856155a0565b604051632d182be560e21b81526004810182905230602482018190526044820152906020826064815f6001600160a01b038c165af191821561020a57613beb89956138546001600160a01b036138498e613be28b8f8a6100fc9f613bdd8f93613b339f9e889f958b9f96613849975f91613cbb575b509b8c93613bd6565b613cd4915060203d602011610203576101f581836102cd565b5f613cb2565b613d076020613ce887612276565b60405180938192630a28a47760e01b8352600483019190602083019252565b03816001600160a01b0389165afa801561020a57613d2b915f91613a155750612276565b95613a9c565b805c9060018201809211610941575d565b905f5260205260405f20905f52602052600160405f205d565b9190825191613d6e825182519085614952565b613d7783611e22565b935f5b848110613d8957505050505090565b80670de0b6b3a7640000613dbb613da260019486611e54565b51612ddb613db0858a611e54565b51611ed3868a611e54565b04613dc68289611e54565b5201613d7a565b60051115610efe57565b906005821015610efe5752565b959193613e1561042f989694613e2693611f7d976001600160a01b038092168b521660208a01526040890190613dd7565b60e0606088015260e0870190610432565b91608086015284820360a0860152610432565b925f6001600160a01b03602095969396613e9a613e5d87516001600160a01b031690565b94608088015197613e6d89613dcd565b60a060806060830151930151910151916040519b8c9a8b998a976345421ec760e01b895260048901613de4565b0393165af190811561020a575f91613ec4575b5015613eb557565b6305975b2960e11b5f5260045ffd5b613edd915060203d60201161203c5761202e81836102cd565b5f613ead565b916080838303126100ed5782519067ffffffffffffffff918281116100ed5783613f0e918601612123565b9360208101519360408201518481116100ed5781612213918401612123565b93613f57612268936001600160a01b0361042f98969416875260a0602088015260a0870190610432565b9160408601528482036060860152610432565b9190613f7461147a565b6060613f7e612105565b9160208501613f91815151808652611e22565b60808301958651613fa181613dcd565b613faa81613dcd565b6141e957506060830151613fbe8651611e22565b94613fe28260808b0151613fdc61233189516001600160a01b031690565b90615a38565b995b60608601518084106141d25750613ffd83999899614f55565b60208901975f5b8c8b51821015614111578161401891611e54565b5161402281614f55565b61402c8288611e54565b5161410057614051908d61404a8460a061242a8260c0860151611e54565b5191615355565b8061405c8389611e54565b525b61406c61108e838a51611e54565b60408a0161407b848251611e54565b5183116140cd57508d83611b908e6140bf8f968f976140aa866124b6818b60019e9d612493886140c79f6145b9565b526140b9856060880151611e54565b51612284565b905190610b28565b01614004565b916140dc846110c49451611e54565b516323b6a17960e21b5f526001600160a01b03909216600452602452604452606490565b5061410b8187611e54565b5161405e565b50509396945096509650966141319061254885516001600160a01b031690565b7fa26a52d8d53702bba7f137907b8e1f99ff87f6d450144270ca25e72481cca87161416384516001600160a01b031690565b9261418489602087019561417e87516001600160a01b031690565b90615a7f565b6141aa61233161419e6125ee88516001600160a01b031690565b94519661108e88613dcd565b926126306001600160a01b03926141c088613dcd565b88846040519586951698169684612291565b638d261d5d60e01b5f52600484905260245260445ffd5b600387516141f681613dcd565b6141ff81613dcd565b036142215761420e8851615a1c565b6142188151611e22565b945f9199613fe4565b976001875161422f81613dcd565b61423881613dcd565b036142a0576142478851614aec565b614298896142598460408801516157d1565b60808a01519061427361233188516001600160a01b031690565b61427d8c51614b64565b91614292610d258a516001600160a01b031690565b936157ec565b959091613fe4565b9793600287516142af81613dcd565b6142b881613dcd565b03614324579787986142ca8951614aec565b6060850151916142d987614b07565b61431e61431460408b0192808452898b9f8860808201519361430e610d2561277961277261233188516001600160a01b031690565b94615706565b9092519099611e54565b52613fe4565b506004865161433281613dcd565b61433b81613dcd565b036143e35761434a87516156ea565b5f614362610d25610d2586516001600160a01b031690565b60608501519060808a0151918360a0880151986143966040519a8b968795869463e4c4366360e01b86523360048701613f2d565b03925af193841561020a575f905f955f915f916143b8575b5090959199613fe4565b925050506143d99194503d805f833e6143d181836102cd565b810190613ee3565b919592915f6143ae565b636c02b39560e01b5f5260045ffd5b969261042f9896946144489361442c61443a936129b69995610100938d6001600160a01b0380931690521660208d015260408c0190613dd7565b8060608b0152890190610432565b908782036080890152610432565b9160a086015284820360c0860152610432565b949391959296908451614474906001600160a01b031690565b60808601519161448383613dcd565b608086015160a0880151906040968c6040519c8d9788976325da41f360e21b895260048901976144b2986143f2565b03916001600160a01b031691815a5f948591f194851561020a575f905f9661459a575b5015801561458e575b61457f576001809460091c16156144fe57909192809495505f905b614506575b505050505090565b855181101561457a576145198187611e54565b5182850190614529838351611e54565b511061453857508401846144f9565b869061455683612ac081612aba61108e6110c49860208c0151611e54565b5163677d1d7d60e11b5f526001600160a01b03909216600452602452604452606490565b6144fe565b63e124916560e01b5f5260045ffd5b508451865114156144de565b90506145b19195503d805f833e612b2381836102cd565b94905f6144d5565b6145c56100fc92614618565b90614654565b905f5b82518110156145fc576001600160a01b03806145ea8386611e54565b511690831614613570576001016145ce565b6001600160a01b038263ddef98d760e01b5f521660045260245ffd5b7f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff81116146425790565b63123baf0360e11b5f5260045260245ffd5b8115614711576001600160a01b037f00000000000000000000000000000000000000000000000000000000000000009116805f528160205261469b60405f205c9384613653565b92836146df57505f197f0000000000000000000000000000000000000000000000000000000000000000805c918201918211610941575d5b5f5260205260405f205d565b6146d35761470c7f0000000000000000000000000000000000000000000000000000000000000000613d31565b6146d3565b5050565b6001600160a01b0392918381168484160361473357505050505f1990565b61475d9361159e92165f52601060205260405f20906001600160a01b03165f5260205260405f2090565b5490565b90604051918281549182825260209260208301915f5260205f20935f905b828210614795575050506100fc925003836102cd565b85546001600160a01b03168452600195860195889550938101939091019061477f565b906147c28261033d565b6147cf60405191826102cd565b82815280926147e0601f199161033d565b01905f5b8281106147f057505050565b6020906147fb612105565b828285010152016147e4565b90604051614814816102b1565b604060ff82945481811661482781610ef4565b84526001600160a01b038160081c16602085015260a81c161515910152565b60608101805151935f5b85811061485f57505050505050565b8061487361108e6001936020880151611e54565b6148956148888389905f5260205260405f2090565b546001600160801b031690565b6148a0838751611e54565b5181116148e7575b50506148ce6148b8828651611e54565b516148c7836080890151611e54565b5190615369565b6148e08288905f5260205260405f2090565b5501614850565b61493261494a9161492c61492361490f868a906001600160a01b03165f5260205260405f2090565b549261491c888c51611e54565b5190610b28565b8260801c612284565b90615cc4565b9185906001600160a01b03165f5260205260405f2090565b555f806148a8565b81148015929190614966575b5050611e1357565b141590505f8061495e565b90670de0b6b3a76400009182810292818404149015171561094157565b8181029291811591840414171561094157565b80516149ac81610ef4565b6149b581610ef4565b806149c8575050670de0b6b3a764000090565b806149d4600192610ef4565b03614a315760206149f3610d258260049401516001600160a01b031690565b6040516333cd77e760e11b815292839182905afa90811561020a575f91614a18575090565b61042f915060203d602011610203576101f581836102cd565b636fa2831960e11b5f5260045ffd5b91906080670de0b6b3a7640000614a84612bc79480614a638660608a0151611e54565b52612ddb614a758660c08a0151611e54565b51611ed38760a08b0151611e54565b04930151611e54565b91906080614ac8612bc79380614aa7856060890151611e54565b52611eda614ab98560c0890151611e54565b51611ed38660a08a0151611e54565b930151611e54565b60061c60011615614add57565b63033c2a5760e61b5f5260045ffd5b60041c600116614af857565b63353d5de760e21b5f5260045ffd5b80519081905f5b828110614b30575050811015614b215790565b631f91af7760e21b5f5260045ffd5b614b3a8183611e54565b51614b48575b600101614b0e565b928203614b555782614b40565b636b8c3be560e01b5f5260045ffd5b62ffffff9060121c1664174876e800908181029181830414901517156109415790565b91906020614b9e5f92604086526040860190610432565b930152565b91906020614b9e600192604086526040860190610432565b9094929192815194614bcc86611e22565b945f5b878110614d9c5750614be5906126de8988611e54565b614bef8887611e54565b5260405194631309bd3d60e31b9283875260208780614c118860048301614b87565b03816001600160a01b0385165afa96871561020a575f97614d7b575b506040519484865260208680614c468660048301614b87565b03816001600160a01b0386165afa93841561020a57613849614ca88c61491c614ca1614cbe96614c9a8f614c8a614cf49f9160209e88935f91614d5c575b506152f5565b92614c95848d615cd7565b611e54565b5190614f33565b9188611e54565b91670de0b6b3a7640000818103911002826152f5565b93614ccd856126de8c86611e54565b614cd78b85611e54565b526001600160a01b03604051809781958294835260048301614ba3565b0392165afa90811561020a57614d3095614d2a935f93614d33575b50614d1c614d2391611e22565b9788611e54565b5283610b28565b90615335565b91565b614d23919350614d54614d1c9160203d602011610203576101f581836102cd565b939150614d0f565b6020614d7592503d602011610203576101f581836102cd565b5f614c84565b614d9591975060203d602011610203576101f581836102cd565b955f614c2d565b80614db2614dac60019388611e54565b51610b1a565b614dbc828a611e54565b5201614bcf565b614ddb60409295949395606083526060830190610432565b9460208201520152565b909491830391838311610941576020614e316001600160a01b0392614e0a87876152f5565b614e148183615cd7565b60405194858094819362b5059f60e51b83528d8a60048501614dc3565b0392165afa801561020a57614d3095611eda88614e7c93614e8598614e8c965f92614e92575b50614e6a826126de61384994958b611e54565b98614e758d8a611e54565b5190615335565b93849251611e22565b9586611e54565b52610b28565b61384992506126de93614eb6614e6a9260203d602011610203576101f581836102cd565b93509350614e57565b634e487b7160e01b5f52601260045260245ffd5b8115614edd570490565b614ebf565b909291614eef8251611e22565b915f5b8151811015614f2c57614f0f83614f098385611e54565b5161498e565b908615614edd578660019204614f258287611e54565b5201614ef2565b5050509150565b90614f3d9161498e565b6001670de0b6b3a76400005f19830104019015150290565b80614f5d5750565b6100fc906152be565b91614f709161498e565b90670de0b6b3a764000090818102918183041490151715610941578115614edd570490565b91949290945f955f9581614faa575050505050565b849750612433614fc38260c0614fcf9697980151611e54565b519160a08a0151611e54565b945160018160031c1615614fe5575b808061154d565b62ffffff91929450602a1c1664174876e800908181029181830414901517156109415761501b670de0b6b3a7640000918661498e565b0492848411615088578061159e61506761504d61507f9461159e876001600160a01b03165f52600660205260405f2090565b54615061886001600160801b038316612284565b90615d5c565b936001600160a01b03165f52600660205260405f2090565b555f8080614fde565b634c69ac5d60e01b5f5260045ffd5b6001600160a01b0390929192165f52602060056020526040805f205f5b606086015180518210156150f157906150e16150d282600194611e54565b516148c78360808b0151611e54565b815f52838652845f2055016150b4565b50505050509050565b3215806151045790565b506001600754161590565b9032615152576001600160a01b0361514392165f52600f60205260405f20906001600160a01b03165f5260205260405f2090565b80549182018092116109415755565b6333fc255960e11b5f5260045ffd5b90916001600160a01b0380841692831561181b576151948561159e836001600160a01b03165f52600f60205260405f2090565b54808411615276578390036151be8661159e846001600160a01b03165f52600f60205260405f2090565b556151e4836151de836001600160a01b03165f52601160205260405f2090565b54610b28565b6151ed81615d6a565b615208826001600160a01b03165f52601160205260405f2090565b551690813b156100ed576040516323de665160e01b81526001600160a01b0390941660048501525f6024850181905260448501829052937fd1398bee19313d6bf672ccb116e51f4a1a947e91c757907f51fbb5b5e56c698f916152719186818060648101611619565b0390a4565b63391434e360e21b5f526001600160a01b038616600452602452604483905260645ffd5b670de0b6b3a76400008082040281036152b05790565b600181018091116109415790565b7f0000000000000000000000000000000000000000000000000000000000000000116152e657565b6303da9a2360e31b5f5260045ffd5b90801561532657670de0b6b3a764000091828102928184041490151715610941576001905f19830104019015150290565b630a0c22c760e01b5f5260045ffd5b8215615326576001916153479161498e565b915f19830104019015150290565b9061042f926153639161498e565b906152f5565b906001600160801b038083119081156153a1575b506153925760801b9081018091116109415790565b6389560ca160e01b5f5260045ffd5b905081115f61537d565b906153b88260801c614618565b906001600160801b035f9316806153dc575b50506002916153d89161363b565b0590565b6001600160a01b0393509060246020926040519586938492630a28a47760e01b84526004840152165afa90811561020a576154246153d8926002945f9161542d575b50614618565b928192506153ca565b615446915060203d602011610203576101f581836102cd565b5f61541e565b5f81126154565790565b635467221960e11b5f5260045260245ffd5b60405163095ea7b360e01b602082018181526001600160a01b03851660248401525f6044840152909391929183606481015b03916154ae601f19938481018752866102cd565b5f806001600160a01b0386169287519082855af1906154cb61569d565b82615538575b508161552d575b50156154e5575050505050565b60405160208101959095526001600160a01b031660248501525f604485015260649081018452615523936109179161551d90826102cd565b82615b9b565b5f8080808061154d565b90503b15155f6154d8565b80519192508115918215615550575b5050905f6154d1565b6155639250602080918301019101611f07565b5f80615547565b60405163095ea7b360e01b602082018181526001600160a01b03851660248401526044830195909552939092836064810161549a565b906155b36001600160801b038316614618565b905f9260801c806155cc5750506002916153d89161363b565b6001600160a01b039350906024602092604051958693849263b3d7f6b960e01b84526004840152165afa90811561020a576154246153d8926002945f9161542d5750614618565b9291906001600160a01b038085165f52600860205260405f20549283039283116109415781165f52600860205260405f2054928301809311610941576100fc93615d89565b9291906001600160a01b038085165f52600860205260405f20549283018093116109415781165f52600860205260405f2054928303928311610941576100fc93615d89565b3d156156c7573d906156ae826103c2565b916156bc60405193846102cd565b82523d5f602084013e565b606090565b5f8061042f9360208151910182855af16156e461569d565b91615ec0565b60051c600116156156f757565b63121db02f60e21b5f5260045ffd5b9094916020615735615720866001600160a01b0394612284565b9461572b87876152f5565b614e148183615f1a565b0392165afa801561020a57614d3095613849614ca885614e7c94614e85998c998a615794995f9461579a575b509061578861578161577a61578f946124d69798611e54565b5187610b28565b9c8c611e54565b519061498e565b614ed3565b52612284565b6124d6945061578161577a61578f94936157c56157889460203d602011610203576101f581836102cd565b97509394505050615761565b9060208083516157e2845182611e0c565b60051b930191015e565b9291909383516157fb81611e22565b9161580582611e22565b965f5b8381106159e15750506001600160a01b0381169160405195631309bd3d60e31b9283885260209889898061583f8460048301614b87565b0381895afa98891561020a575f996159c2575b506040518581528a81806158698b60048301614ba3565b03818a5afa90811561020a578a61578f6158a49361589d938f5f926159a5575b9b999d9c9a98979695949392919050614971565b8093615f1a565b5f5b89811061591357505050506158ca9550604051809681948293835260048301614ba3565b03915afa91821561020a578361578f936158f092614d30975f926158f6575b5050610b28565b9061498e565b61590c9250803d10610203576101f581836102cd565b5f806158e9565b869899959750838d83949596988361593761593082600198611e54565b5189615d49565b806159428385611e54565b511161595e575b505050505001908a96949897959392916158a6565b818361597f61599097615989946159788561491c99611e54565b5103614f33565b611af98388611e54565b5192611e54565b61599a828b611e54565b52848d8a835f615949565b6159bb9250803d10610203576101f581836102cd565b5f8f615889565b6159da9199508a3d8c11610203576101f581836102cd565b975f615852565b80615a0b615a066159f46001948c611e54565b516159ff8487611e54565b5190612284565b610b1a565b615a158288611e54565b5201615808565b60071c60011615615a2957565b63efe0265d60e01b5f5260045ffd5b9291615a448451611e22565b935f5b8151811015615a795780615a688585615a6260019587611e54565b51615335565b615a728289611e54565b5201615a47565b50505050565b916001600160a01b03808316938415615b7f57615ab783615ab1836001600160a01b03165f52601160205260405f2090565b54612284565b615ad68561159e846001600160a01b03165f52600f60205260405f2090565b848154019055615ae581615d6a565b615b00826001600160a01b03165f52601160205260405f2090565b5516925f847fd1398bee19313d6bf672ccb116e51f4a1a947e91c757907f51fbb5b5e56c698f60405180615b3987829190602083019252565b0390a4823b156100ed576040516323de665160e01b81525f600482018190526001600160a01b0390931660248201526044810191909152918290818381606481016117bd565b63ec442f0560e01b5f526001600160a01b03841660045260245ffd5b6001600160a01b03615baf911691826156cc565b8051908115159182615bd7575b5050615bc55750565b635274afe760e01b5f5260045260245ffd5b615bea9250602080918301019101611f07565b155f80615bbc565b9064ffffffffff615c0282611e22565b92605a1c165f5b828110615c165750505090565b60058082029082820414821517156109415782601f911c1690604d821161094157600191600a0a615c478287611e54565b5201615c09565b62ffffff9060421c1664174876e800908181029181830414901517156109415790565b9093925f94615c84846080850151611e54565b51818111615c93575050505050565b615cb995965091615ca8916124339303614f33565b9260a061242a8260c0860151611e54565b905f8080808061154d565b906001600160801b0361042f9216615369565b9060206001600160a01b0392600460405180958193635b3bfd2b60e11b8352165afa91821561020a575f92615d28575b50818110615d13575050565b63718e4adf60e11b5f5260045260245260445ffd5b615d4291925060203d602011610203576101f581836102cd565b905f615d07565b670de0b6b3a764000091612de09161498e565b9061042f9160801c90615369565b620f42408110615d775750565b6334e3483f60e21b5f5260045260245ffd5b6040516370a0823160e01b808252306004830152602095939490926001600160a01b03929187836024818786165afa92831561020a575f93615ea1575b50808310615e7a5750615dea906001600160a01b03165f52600860205260405f2090565b556040519182523060048301528316908481602481855afa94851561020a575f95615e5b575b5050818410615e39575050615e36906001600160a01b03165f52600860205260405f2090565b55565b631149424d60e01b5f526001600160a01b03166004526024525060445260645ffd5b615e72929550803d10610203576101f581836102cd565b925f80615e10565b631c6a537560e01b5f9081529387166001600160a01b031660045260245250604452606490fd5b615eb9919350883d8a11610203576101f581836102cd565b915f615dc6565b90615ee45750805115615ed557805190602001fd5b630a12f52160e11b5f5260045ffd5b81511580615f11575b615ef5575090565b6001600160a01b0390639996b31560e01b5f521660045260245ffd5b50803b15615eed565b9060206001600160a01b039260046040518095819363273c1adf60e01b8352165afa91821561020a575f92615f6b575b50818111615f56575050565b630fa2583760e21b5f5260045260245260445ffd5b615f8591925060203d602011610203576101f581836102cd565b905f615f4a565b91909163ffffffff808094169116019182116109415756fea26469706673582212206683429dd8621233bf9dfafe00f40360d4204093d879bd8a2517bc175dc511eb64736f6c634300081a00330000000000000000000000000e8b07657d719b86e06bf0806d6729e3d528c9a9000000000000000000000000e39b5e3b6d74016b2f6a9673d7d7493b6df549d5000000000000000000000000a731c23d7c95436baaae9d52782f966e1ed07cc8

Deployed Bytecode

0x60806040526004361015610018575b3661143057611421565b5f3560e01c806315afd409146100d757806315dacbea146100d257806321457897146100cd5780632bfb780c146100c857806343583be5146100c357806348c89491146100be5780634af29ec4146100b9578063ae639329146100b4578063b9a8effa146100af578063beabacc8146100aa578063c9c1661b146100a55763d2c725e00361000e57610aae565b6109c9565b610993565b610950565b610866565b610796565b6106fd565b610671565b610599565b6104b4565b61020f565b6100fe565b6001600160a01b038116036100ed57565b5f80fd5b35906100fc826100dc565b565b346100ed5760403660031901126100ed5760043561011b816100dc565b60243561012661147a565b61012e6114db565b6001600160a01b0382165f818152600860209081526040918290205491516370a0823160e01b8152306004820152919492829060249082905afa93841561020a576101cd946101a1925f916101db575b508061019b856001600160a01b03165f52600860205260405f2090565b55610b28565b918083116101d1575b50816101b591611513565b6101bd6114b6565b6040519081529081906020820190565b0390f35b91506101b56101aa565b6101fd915060203d602011610203575b6101f581836102cd565b810190610aec565b5f61017e565b503d6101eb565b610afb565b346100ed5760803660031901126100ed5761025d60043561022f816100dc565b60243561023b816100dc565b60443590610248826100dc565b61025760643580948333611535565b336116b5565b602060405160018152f35b634e487b7160e01b5f52604160045260245ffd5b67ffffffffffffffff811161029057604052565b610268565b60e0810190811067ffffffffffffffff82111761029057604052565b6060810190811067ffffffffffffffff82111761029057604052565b90601f8019910116810190811067ffffffffffffffff82111761029057604052565b6040519060c0820182811067ffffffffffffffff82111761029057604052565b604051906100fc82610295565b60405190610180820182811067ffffffffffffffff82111761029057604052565b67ffffffffffffffff81116102905760051b60200190565b9080601f830112156100ed57602090823561036f8161033d565b9361037d60405195866102cd565b81855260208086019260051b8201019283116100ed57602001905b8282106103a6575050505090565b81358152908301908301610398565b359060048210156100ed57565b67ffffffffffffffff811161029057601f01601f191660200190565b9291926103ea826103c2565b916103f860405193846102cd565b8294818452818301116100ed578281602093845f960137010152565b9080601f830112156100ed5781602061042f933591016103de565b90565b9081518082526020808093019301915f5b828110610451575050505090565b835185529381019392810192600101610443565b805180835260209291819084018484015e5f828201840152601f01601f1916010190565b916104a69061042f94928452606060208501526060840190610432565b916040818403910152610465565b346100ed576003196020368201126100ed5760043567ffffffffffffffff918282116100ed5760c09082360301126100ed576104ee6102ef565b6104fa826004016100f1565b8152610508602483016100f1565b60208201526044820135604082015260648201358381116100ed576105339060043691850101610355565b6060820152610544608483016103b5565b608082015260a48201359283116100ed5761056b6105759260046101cd9536920101610414565b60a0820152610b35565b60409391935193849384610489565b600211156100ed57565b35906100fc82610584565b346100ed576003196020368201126100ed5760043567ffffffffffffffff918282116100ed5760e09082360301126100ed576105d361030f565b6105df8260040161058e565b81526105ed602483016100f1565b60208201526105fe604483016100f1565b604082015261060f606483016100f1565b60608201526084820135608082015260a482013560a082015260c48201359283116100ed5761064a6106549260046101cd9536920101610414565b60c0820152610cbf565b604080519384526020840192909252908201529081906060820190565b346100ed5760a03660031901126100ed5760405160a0810181811067ffffffffffffffff821117610290576101cd91610654916040526004356106b381610584565b81526024356106c181610584565b60208201526044356106d2816100dc565b604082015260643560608201526084356080820152610f03565b90602061042f928181520190610465565b346100ed5760203660031901126100ed5767ffffffffffffffff6004358181116100ed57366023820112156100ed5780600401359182116100ed5736602483830101116100ed576101cd91602461075492016111c9565b604051918291826106ec565b359060058210156100ed57565b61078361042f9492606083526060830190610432565b9260208201526040818403910152610465565b346100ed576003196020368201126100ed5760043567ffffffffffffffff918282116100ed5760c09082360301126100ed576107d06102ef565b6107dc826004016100f1565b81526107ea602483016100f1565b602082015260448201358381116100ed5761080b9060043691850101610355565b60408201526064820135606082015261082660848301610760565b608082015260a48201359283116100ed5761084d6108579260046101cd9536920101610414565b60a082015261127d565b6040939193519384938461076d565b346100ed5760603660031901126100ed57600435610883816100dc565b60243590610890826100dc565b6044359061089c61147a565b6108a46114db565b6108b66108b083614618565b82614654565b6001600160a01b0381165f52600860205260405f208054938385039485116109415793905560405163a9059cbb60e01b60208201526001600160a01b03909316602484015260448084019290925290825261091c91906109176064836102cd565b615b9b565b5f7f9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f005d005b610b06565b5f9103126100ed57565b346100ed575f3660031901126100ed5760206040516001600160a01b037f0000000000000000000000000e8b07657d719b86e06bf0806d6729e3d528c9a9168152f35b346100ed5760603660031901126100ed5761025d6004356109b3816100dc565b6024356109bf816100dc565b60443591336116b5565b346100ed5760403660031901126100ed576004356109e6816100dc565b602435906109f3826100dc565b6001600160a01b0380911691825f525f602052600192600160405f20541615610a9c575f93929352600360205260405f20926040519283602086549182815201955f5260205f20925f905b828210610a6f5786610a5c87610a56838c03846102cd565b826145cb565b9051604080519182526020820192909252f35b90919280610a9086998483985416906001600160a01b036020921681520190565b98019493920190610a3e565b6327946f5760e21b5f5260045260245ffd5b346100ed575f3660031901126100ed5760207f9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f005c6040519015158152f35b908160209103126100ed575190565b6040513d5f823e3d90fd5b634e487b7160e01b5f52601160045260245ffd5b5f1981019190821161094157565b9190820391821161094157565b90610b3e6114db565b610b516001600160a01b03835116611837565b610b6a610b6583516001600160a01b031690565b61186b565b610b83610b7e83516001600160a01b031690565b611961565b90610bd7602083015151610b9e606086019182515190611e0c565b805160c0850190610bb882519160a0880192835191611e7c565b92610bc8875160019060101c1690565b610c50575b50505084846122bc565b9490919586610beb835160019060111c1690565b610bf9575b50505050929190565b84975093610c4694610c3c610c2f610c1885516001600160a01b031690565b6001600160a01b03165f52600260205260405f2090565b546001600160a01b031690565b94845133906129c4565b925f808080610bf0565b610c78610cb794888a610c70610c2f610c1883516001600160a01b031690565b923390611f8b565b610cac610ca6610c8f8a516001600160a01b031690565b6001600160a01b03165f52600560205260405f2090565b88612043565b519151905191611e7c565b5f8080610bcd565b90610cc86114db565b60208201906001600160a01b03610ce181845116611837565b610cf5610b6584516001600160a01b031690565b608084015115610ed15760408401516001600160a01b031690610d31610d2560608701516001600160a01b031690565b6001600160a01b031690565b911614610ec257610d4c610b7e83516001600160a01b031690565b92610d578482612b33565b90610d63858383612bca565b8551600c1c600116610e47575b8551610d8a9190600b1c600116610e06575b868484612f05565b9791979490978397610da18451600190600d1c1690565b610dd1575b505050505051610db581610ef4565b610dbe81610ef4565b610dc9575081929190565b918093509190565b85985090610df0610c2f610c18610dfb9894516001600160a01b031690565b94845191339261338a565b925f80808080610da6565b85516001600160a01b0316610e4060608601918251610e39610c2f836001600160a01b03165f52600260205260405f2090565b9185612e43565b9052610d82565b610e8090610e5c86516001600160a01b031690565b610e7a610c2f826001600160a01b03165f52600260205260405f2090565b91612d01565b610e9d610e97610c8f86516001600160a01b031690565b86612043565b610ea8828683612d88565b6040830152610d8a610ebb868484612bca565b9050610d70565b63a54b181d60e01b5f5260045ffd5b6357a456b760e01b5f5260045ffd5b634e487b7160e01b5f52602160045260245ffd5b60021115610efe57565b610ee0565b610f0b6114db565b600160075460021c166111a55760408101916001600160a01b03928381511693845f52600e6020528060405f205416156111925760049450610f4b61147a565b6020610f61610d2584516001600160a01b031690565b6040516338d52e0f60e01b815296879182905afa801561020a576080955f91611163575b5016610fa181610f9c84516001600160a01b031690565b6135b8565b81516001600160a01b031690610fbd60608601928351906135f5565b60016020860151610fcd81610ef4565b610fd681610ef4565b036110f857610ffe91855191610feb83610ef4565b84516001600160a01b0316915192613a34565b7feeb740c90bf2b18c9532eb7d473137767036d893dff3e009f32718f821b2a4c0829692979397968861105c61103e610d2589516001600160a01b031690565b94604051938493846040919493926060820195825260208201520152565b0390a25b805161106b81610ef4565b61107481610ef4565b6110c75701518084106110ad57506110a061109b91849283915b516001600160a01b031690565b6135f5565b6110a86114b6565b929190565b63e2ea151b60e01b5f52600484905260245260445ffd5b5ffd5b01518085116110e157506110a061109b918592839161108e565b63e2ea151b60e01b5f52600485905260245260445ffd5b61111b9185519161110883610ef4565b84516001600160a01b031691519261366e565b7f3771d13c67011e31e12031c54bb59b0bf544a80b81d280a3711e172aa8b7f47b829692979397968861115b61103e610d2589516001600160a01b031690565b0390a2611060565b611185915060203d60201161118b575b61117d81836102cd565b8101906111b4565b5f610f85565b503d611173565b846385f4129960e01b5f5260045260245ffd5b630f27df0960e01b5f5260045ffd5b908160209103126100ed575161042f816100dc565b91909161120b6112057f1369d017453f080f2416efe5ae39c8a4b4655ea0634227aaab0afdb9a9f93f0092835c159586611274575b36916103de565b336156cc565b926112135750565b7fbcbf50c510014a975eac30806436734486f167c41af035c1645353d475d571005c611265575f905d6100fc7fa33ab5ae38c334f99ce8d4a88c1634397ed0415a9df15c29dfd3914852f29900613d31565b6320f1d86d60e01b5f5260045ffd5b6001855d6111fe565b906112866114db565b6112996001600160a01b03835116611837565b6112ad610b6583516001600160a01b031690565b61130a7fa33ab5ae38c334f99ce8d4a88c1634397ed0415a9df15c29dfd3914852f299005c6112e384516001600160a01b031690565b907f3db93ac236d7287d4b8c711cce6b3cca52815a3bd1fc0fcef99ab26afea5d200613d42565b61132361131e83516001600160a01b031690565b611bf0565b9061137760208301515161133e604086019182515190611e0c565b805160c085019061135882519160a0880192835191613d5b565b926113688751600190600e1c1690565b6113ca575b5050508484613f6a565b949095868461138b8451600190600f1c1690565b61139a575b5050505050929190565b6113c095506113b6610c2f610c1885516001600160a01b031690565b948451339061445b565b5f80808681611390565b6113f161141994888a6113ea610c2f610c1883516001600160a01b031690565b9233613e39565b61140e611408610c8f8a516001600160a01b031690565b886120a7565b519151905191613d5b565b5f808061136d565b637911c44b60e11b5f5260045ffd5b3461142157365f80375f8036816001600160a01b037f0000000000000000000000000e8b07657d719b86e06bf0806d6729e3d528c9a9165af43d5f803e15611476573d5ff35b3d5ffd5b7f9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f00805c6114a7576001905d565b633ee5aeb560e01b5f5260045ffd5b5f7f9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f005d565b7f1369d017453f080f2416efe5ae39c8a4b4655ea0634227aaab0afdb9a9f93f005c1561150457565b63604dd39b60e11b5f5260045ffd5b9061151d90614618565b90600160ff1b8214610941576100fc915f0390614654565b92919091611544828486614715565b60018101611554575b5050505050565b8082116116935703906001600160a01b03928381169384156116775780831695861561165b57846115b48561159e8661159e866001600160a01b03165f52601060205260405f2090565b906001600160a01b03165f5260205260405f2090565b551692833b156100ed57604051630ad0fe5760e31b81526001600160a01b039283166004820152919092166024820152604481018290527fa0175360a15bca328baf7ea85c7b784d58b222a50d0ce760b10dba336d226a6191611635915f8180606481015b038183895af1611642575b506040519081529081906020820190565b0390a45f8080808061154d565b8061164f6116559261027c565b80610946565b5f611624565b634a1406b160e11b5f526001600160a01b03841660045260245ffd5b63e602df0560e01b5f526001600160a01b03821660045260245ffd5b6001600160a01b0383637dc7a0d960e11b5f521660045260245260445260645ffd5b929091926001600160a01b039081841691821561181b578086169182156117ff576116f58661159e836001600160a01b03165f52600f60205260405f2090565b548086116117db5785900361171f8761159e846001600160a01b03165f52600f60205260405f2090565b5561173f8761159e836001600160a01b03165f52600f60205260405f2090565b8581540190551691827fd1398bee19313d6bf672ccb116e51f4a1a947e91c757907f51fbb5b5e56c698f6040518061177c88829190602083019252565b0390a4803b156100ed576040516323de665160e01b81526001600160a01b03938416600482015293909216602484015260448301525f908290818381606481015b03925af1801561020a576117ce5750565b8061164f6100fc9261027c565b63391434e360e21b5f526001600160a01b038716600452602452604485905260645ffd5b63ec442f0560e01b5f526001600160a01b03871660045260245ffd5b634b637e8f60e11b5f526001600160a01b03851660045260245ffd5b6001600160a01b0316805f525f602052600160405f2054811c16156118595750565b634bdace1360e01b5f5260045260245ffd5b63ffffffff807f000000000000000000000000000000000000000000000000000000006fb3ee6a1642111580611953575b611944576001600160a01b0382165f525f60205260405f20549060018260021c16906118c6605a90565b906028820180921161094157826118fe575b505090506118e35750565b63d971f59760e01b5f526001600160a01b031660045260245ffd5b6119309250611939937f0000000000000000000000000000000000000000000000000000000000ed4e00921c16615f8c565b63ffffffff1690565b421115805f806118d8565b6336a7e2cd60e21b5f5260045ffd5b506001600754811c1661189c565b60409081519161197083610295565b5f8352826020810191606080845281830190808252808401908082526080936080860182815260a0870183815260c088019384526119ac61147a565b6001600160a01b038a165f526005602052825f20935f602052835f20549260046020526119e8855f20946003602052865f209081549c52614761565b8b526119f38a6147b8565b88526119fe8a611e22565b8752611a098a611e22565b9052611a16898d51615bf2565b9052611a2188611e22565b81528a5191600199600184811c169384611bdc575b5083611bca575b5f5b8d8b8210611a9d575050505050505050505050505080611a8e611a76611a95936001600160a01b03165f52600560205260405f2090565b916001600160a01b03165f52600660205260405f2090565b9083614846565b61042f6114b6565b908a8d92828c8c8c611aff84611aeb81611add611ad88f8f61108e85611ac39251611e54565b6001600160a01b03165f5260205260405f2090565b614807565b94905f5260205260405f2090565b54945183611af98383611e54565b52611e54565b50611b09816149a1565b611b14858d51611e54565b52611b296001600160801b0384168587614a40565b878d8d15611bbd5782015115159182611b9f575b5050611b50575b50505050505b01611a3f565b82611b7392611b6a82611b638851615c4e565b9451611e54565b51961c85615c71565b9283611b83575b8e93508c611b44565b611b9693611b9091610b28565b91614a40565b5f8f8282611b7a565b90915051611bac81610ef4565b611bb581610ef4565b14875f611b3d565b5050505050505050611b4a565b8c5190935060031c6001161592611a3d565b611be7919450615c4e565b1515925f611a36565b604090815191611bff83610295565b5f8352826020810191606080845281830190808252808401908082526080936080860182815260a0870183815260c08801938452611c3b61147a565b6001600160a01b038a165f526005602052825f20935f602052835f2054926004602052611c77855f20946003602052865f209081549c52614761565b8b52611c828a6147b8565b8852611c8d8a611e22565b8752611c988a611e22565b9052611ca5898d51615bf2565b9052611cb088611e22565b81528a5191600199600184811c169384611df8575b5083611de6575b5f5b8d8b8210611d05575050505050505050505050505080611a8e611a76611a95936001600160a01b03165f52600560205260405f2090565b908a8d92828c8c8c611d2b84611aeb81611add611ad88f8f61108e85611ac39251611e54565b50611d35816149a1565b611d40858d51611e54565b52611d556001600160801b0384168587614a8d565b878d8d15611dd95782015115159182611dbb575b5050611d7c575b50505050505b01611cce565b82611d8f92611b6a82611b638851615c4e565b9283611d9f575b8e93508c611d70565b611db293611dac91610b28565b91614a8d565b5f8f8282611d96565b90915051611dc881610ef4565b611dd181610ef4565b14875f611d69565b5050505050505050611d76565b8c5190935060031c6001161592611ccc565b611e03919450615c4e565b1515925f611cc5565b03611e1357565b63aaad13f760e01b5f5260045ffd5b90611e2c8261033d565b611e3960405191826102cd565b8281528092611e4a601f199161033d565b0190602036910137565b8051821015611e685760209160051b010190565b634e487b7160e01b5f52603260045260245ffd5b9190825191611e8f825182519085614952565b611e9883611e22565b935f5b848110611eaa57505050505090565b80611edf611eba60019385611e54565b51611eda611ec88489611e54565b51611ed38589611e54565b519261498e565b614f33565b611ee98289611e54565b5201611e9b565b60041115610efe57565b519081151582036100ed57565b908160209103126100ed5761042f90611efa565b906004821015610efe5752565b959293611f59611f7d9561042f999793611f6f956001600160a01b038092168b521660208a01526040890190611f1b565b606087015260e0608087015260e0860190610432565b9084820360a0860152610432565b9160c0818403910152610465565b5f6001600160a01b036020959693611fea611fad87516001600160a01b031690565b94608088015197611fbd89611ef0565b60a0608060408301519c0151910151916040519b8c9a8b998a976302e97e7d60e61b895260048901611f28565b0393165af190811561020a575f91612014575b501561200557565b631557c43360e11b5f5260045ffd5b612036915060203d60201161203c575b61202e81836102cd565b810190611f07565b5f611ffd565b503d612024565b60208082015151925f5b84811061205b575050505050565b6001906120a16001600160801b03604061208161207b85838b0151611e54565b516149a1565b61208f8560a08b0151611e54565b52835f528587525f2054168287614a40565b0161204d565b60208082015151925f5b8481106120bf575050505050565b6001906120ff6001600160801b0360406120df61207b85838b0151611e54565b6120ed8560a08b0151611e54565b52835f528587525f2054168287614a8d565b016120b1565b60405190612112826102b1565b5f6040838281528260208201520152565b9080601f830112156100ed5781519060209161213e8161033d565b9361214c60405195866102cd565b81855260208086019260051b8201019283116100ed57602001905b828210612175575050505090565b81518152908301908301612167565b81601f820112156100ed5780519061219b826103c2565b926121a960405194856102cd565b828452602083830101116100ed57815f9260208093018386015e8301015290565b6080818303126100ed5780519260208201519167ffffffffffffffff928381116100ed57846121fa918301612123565b9360408201518481116100ed5781612213918401612123565b9360608301519081116100ed5761042f9201612184565b939061042f9593612268936001600160a01b0361225a93168752602087015260a0604087015260a0860190610432565b908482036060860152610432565b916080818403910152610465565b906001820180921161094157565b9190820180921161094157565b916122ae9061042f94928452606060208501526060840190610432565b916040818403910152610432565b926122c561147a565b6060916122d0612105565b9260208601906122e4825151808752611e22565b90608084019687516122f581611ef0565b6122fe81611ef0565b61270157506040840151906123138751611e22565b9561234f8360808c01516123496123318a516001600160a01b031690565b6001600160a01b03165f52601160205260405f205490565b90614ee2565b926123c07fa33ab5ae38c334f99ce8d4a88c1634397ed0415a9df15c29dfd3914852f299005c61238689516001600160a01b031690565b907f3db93ac236d7287d4b8c711cce6b3cca52815a3bd1fc0fcef99ab26afea5d200905f5260205260405f20905f5260205260405f205c90565b612684575b604087015180821161266c57506123de819a999a614f55565b60208a01985f5b8b51811015612527578c6123f98288611e54565b5161240381614f55565b61240d838a611e54565b5161251557816124338460a061242a8260c061243a980151611e54565b51930151611e54565b5191614f66565b80612445838a611e54565b525b61245561108e838b51611e54565b60608b01612464848251611e54565b5183106124e257508e83611b908f8f8f966124d6916124be866124b6818b60019e9d612493886124dc9f611513565b6124af6124a08489611e54565b5191516001600160a01b031690565b908d614f95565b875292611e54565b526124cd856060880151611e54565b51925190612284565b90610b28565b016123e5565b916124f1846110c49451611e54565b516317bc2f2360e11b5f526001600160a01b03909216600452602452604452606490565b50506125218188611e54565b51612447565b5093995095945095929861254d91975061254885516001600160a01b031690565b615097565b7ffbe5b0d79fb94f1e81c0a92bf86ae9d3a19e9d1bf6202c0d3e75120f65d5d8a561257f84516001600160a01b031690565b926125a186602087019561259a87516001600160a01b031690565b3391611535565b6125a96150fa565b612641575b6125d4866125c387516001600160a01b031690565b86516001600160a01b031690615161565b6126086123316125fc6125ee88516001600160a01b031690565b96516001600160a01b031690565b94519661108e88611ef0565b926126306001600160a01b039261261e88611ef0565b8c846040519586951698169684612291565b0390a461263b6114b6565b93929190565b6126678661265687516001600160a01b031690565b86516001600160a01b03169061510f565b6125ae565b6331d38e0b60e01b5f5260049190915260245260445ffd5b9894916126978b97949995929b51614b64565b9a5f5b86518110156126f157808b6126ea8f936126e46126d38f83906126c96001996126c3848a611e54565b51614f33565b611af98383611e54565b516126de8386611e54565b51610b28565b92611e54565b520161269a565b5091949893969a509194986123c5565b94906001885161271081611ef0565b61271981611ef0565b0361279d576127288951614aec565b60408501519186928a61279761278d8b8a60406127486060830151614b07565b92019482865286608082015193612787610d2561277961277261233188516001600160a01b031690565b9551614b64565b95516001600160a01b031690565b94614de5565b909251909a611e54565b526123c5565b600288969296516127ad81611ef0565b6127b681611ef0565b03612849576127c58951614aec565b6128428260608701906127e96127db8351614b07565b60408c019381855251611e54565b516127f5835188611e54565b528b612808608082015193518093611e54565b516128276128206123318c516001600160a01b031690565b9251614b64565b9261283c610d258c516001600160a01b031690565b94614bbb565b96906123c5565b50936003875161285881611ef0565b61286181611ef0565b03612909576128708851614ad0565b5f612888610d25610d2587516001600160a01b031690565b60408681015160808c015160a08901519251632ada38a360e21b8152998a94938593879385936128bd9392336004870161222a565b03925af194851561020a575f915f965f925f916128de575b509196926123c5565b92505095506128ff91503d805f833e6128f781836102cd565b8101906121ca565b919690915f6128d5565b63137a9a3960e01b5f5260045ffd5b9190916040818403126100ed5761292e81611efa565b92602082015167ffffffffffffffff81116100ed5761042f9201612123565b96939461042f9896926129b6966129876129a89661299a95610100948d6001600160a01b0380931690521660208d015260408c0190611f1b565b60608a01528060808a0152880190610432565b9086820360a0880152610432565b9084820360c0860152610432565b9160e0818403910152610465565b9493959296919084516129dd906001600160a01b031690565b906080860151926129ed84611ef0565b60808601518a60a0890151926040519b8c978897632754888d60e01b89526004890197612a199861294d565b03916001600160a01b031691815a5f948591f193841561020a575f905f95612b0c575b50158015612b00575b612af1576001809360091c1615612a635792935090915f835b612a6a575b5050505090565b8451811015612aec57612a7d8186611e54565b516060840190612a8e838351611e54565b5111612a9d5750830183612a5e565b612ac882612ac081612aba61108e8b9760206110c49a0151611e54565b95611e54565b519251611e54565b51633ef629c960e21b5f526001600160a01b03909216600452602452604452606490565b612a63565b6303a6723b60e31b5f5260045ffd5b50835185511415612a45565b9050612b2b9194503d805f833e612b2381836102cd565b810190612918565b93905f612a3c565b6040519291608084019067ffffffffffffffff82118583101761029057612bba916040525f855260208501945f8652612bb260408201915f83528360608201965f88528299612bab60208401805190612b9b6001600160a01b039283604088015116906145cb565b87525190606085015116906145cb565b9052612d88565b905251614b64565b9052565b612bc782610ef4565b52565b919091606060c0604051612bdd81610295565b5f81525f60208201528260408201525f838201525f60808201525f60a08201520152805192612c0b84610ef4565b6080604082015193015160c06020835193015193015193612c34612c2d61030f565b9687612bbe565b60208601526040850152606084015260808301523360a083015260c082015290565b90612bc782610ef4565b919060e08101908351612c7281610ef4565b8152602080850151602083015260408501519260e060408401528351809152602061010084019401915f5b828110612ced575050505060c084606061042f95960151606084015260808101516080840152612cdd60a082015160a08501906001600160a01b03169052565b01519060c0818403910152610465565b835186529481019492810192600101612c9d565b60209192612d385f6001600160a01b03809460405197889687958693635211fa7760e01b8552604060048601526044850190612c60565b911660248301520393165af190811561020a575f91612d69575b5015612d5a57565b63e91e17e760e01b5f5260045ffd5b612d82915060203d60201161203c5761202e81836102cd565b5f612d52565b9190918051612d9681610ef4565b612d9f81610ef4565b612de45790612ddb670de0b6b3a764000093611ed36080612de09501519360a0612dcf60c0850151835190611e54565b51930151905190611e54565b61498e565b0490565b61042f92612e20612e1a6080611eda9401519460a0612e0e602060c0870151930192835190611e54565b51940151905190611e54565b5161529a565b9261498e565b91908260409103126100ed576020612e3d83611efa565b92015190565b6040805163283a3d6b60e21b8152606060048201529490938593919284926001600160a01b039284928490612e7c906064860190612c60565b9216602484015260448301520392165afa90811561020a575f905f92612ed3575b5015612ec457670de0b5cad2bef0008111612eb55790565b6301d1b96560e61b5f5260045ffd5b6314fe5db560e21b5f5260045ffd5b9050612ef7915060403d604011612efe575b612eef81836102cd565b810190612e26565b905f612e9d565b503d612ee5565b5f9491939293612f1361147a565b612f1b612105565b918051612f2781610ef4565b612f3081610ef4565b1561328a575b602091828601612f4681516152be565b83612f8281850198612f65610d25610d258c516001600160a01b031690565b906040519c8d80948193633964c0c360e11b8352600483016132b2565b03925af198891561020a575f9961326b575b5088612f9f816152be565b8351612faa81610ef4565b612fb381610ef4565b6131f3575060408201519052612ff260c0880151612feb612e1a612fdc87860193845190611e54565b519260a08c0151905190611e54565b908a614f66565b9360808301519685979860a08501518088106131dc57505b60408501948a8651613022906001600160a01b031690565b9061302c916145b9565b60600195898751613043906001600160a01b031690565b9061304d91611513565b835183516001600160a01b031687516001600160a01b03168751916130729386614f95565b9190818601956040019283528552855160608401928d8285519061309591611e54565b51906130a091612284565b90516130ab91610b28565b6130b59185614a40565b85019182518b818451906130c891611e54565b51906130d391610b28565b6130dd9183614a40565b83516001600160a01b03165f908152600560205260409020918051875161310391611e54565b5191608001918251885161311691611e54565b5161312091615369565b87516131349085905f5260205260405f2090565b5551835161314191611e54565b519051835161314f91611e54565b5161315991615369565b915161316c91905f5260205260405f2090565b5551925193516060928301519151604080518b8152602081018b905290810193909352928201929092526001600160a01b039182169382169291909116907f0874b2d545cb271cdbda4e093020c452328b24af12382ed62c4d00f5c26709db90608090a4939291906100fc6114b6565b63e2ea151b60e01b5f52600488905260245260445ffd5b905081985061321a6060613223930151670de0b6b3a7640000818103908210029083615335565b90818652612284565b9661325061323760c0890151835190611e54565b5161324860a08a0151845190611e54565b51908a615355565b93608083015196859860a08501518088116131dc575061300a565b613283919950843d8611610203576101f581836102cd565b975f612f94565b602085016132ab6132a18251606086015190614f33565b8086528251610b28565b9052612f36565b90602061042f928181520190612c60565b6101a061042f92602083526132dc602084018251612c56565b60208101516001600160a01b0316604084015260408101516001600160a01b0316606084015260608101516080840152608081015160a084015260a081015160c084015260c081015160e084015260e08101516101009081850152810151610120908185015281015161335d61014091828601906001600160a01b03169052565b8101519061337961016092838601906001600160a01b03169052565b015191610180808201520190610465565b939590919492865161339b81610ef4565b6133a481610ef4565b6135a95786604085015191845b8251946133bd86610ef4565b6040978897888601516133d6906001600160a01b031690565b9660608701516133ec906001600160a01b031690565b9360800192835181516133fe91611e54565b519351906020015161340f91611e54565b51936020880151613426906001600160a01b031690565b9760c001519861343461031c565b9a61343f908c612bbe565b6001600160a01b031660208b01526001600160a01b0316898b01526060890152608088015260a087015260c086015260e085015261010084018890526001600160a01b03166101208401526001600160a01b031661014083015261016082015281516318b6eb5560e01b8152968791829081906134bf90600483016132c3565b03916001600160a01b03165a905f91f194851561020a575f915f96613585575b5050156135765760091c60011615613570575080516134fd81610ef4565b61350681610ef4565b1580613563575b8015613538575b61351c575090565b60a0015163cc0e4a9960e01b5f5260049190915260245260445ffd5b506001815161354681610ef4565b61354f81610ef4565b148015613514575060a08101518211613514565b5060a0810151821061350d565b91505090565b630568a77b60e21b5f5260045ffd5b6135a093965080919250903d10612efe57612eef81836102cd565b93905f806134df565b866040850151918492946133b1565b6001600160a01b0380911690815f52600e6020528060405f20541692168092036135e0575050565b6336b18d0960e01b5f5260045260245260445ffd5b907f00000000000000000000000000000000000000000000000000000000000027101161361f5750565b6001600160a01b03906318fe738560e01b5f521660045260245ffd5b81810392915f13801582851316918412161761094157565b9190915f838201938412911290801582169115161761094157565b93909161367a85610ef4565b841580156139bd576136af602061369087610b1a565b6040518093819263ef8b30f760e01b8352600483019190602083019252565b03816001600160a01b0387165afa801561020a576136d4915f9161399e575b50610b1a565b94955b6136f2836001600160a01b03165f52600b60205260405f2090565b54916136fc6150fa565b61399657869288929091608083901c91858310613771575050509261376b82613748866137436001600160a01b03966001600160801b03896100fc9b60801c039316612284565b615369565b9788613765856001600160a01b03165f52600b60205260405f2090565b556145b9565b16611513565b90929350613780919450610ef4565b15613879576137a86137a361379585846155a0565b61379e8a614618565b613653565b61544c565b926001600160a01b038116936137bf81868961556a565b604051636e553f6560e01b81526004810182905230602482015294602090869060449082905f905af1801561020a576137488995613854876138496001600160a01b038f96888f896100fc9f859e6138438f61376b9f6138499661384e996001600160801b03965f9161385a575b509a8b935b169061383e8282615468565b615613565b16612284565b610b28565b94612284565b90615369565b613873915060203d602011610203576101f581836102cd565b5f61382d565b90916138996137a361388b83856153ab565b61389489614618565b61363b565b60405163b3d7f6b960e01b8152600481018290526001600160a01b038316936020939290918481602481895afa801561020a576138df915f91613979575b50868a61556a565b6040516394bf804d60e01b815260048101829052306024820152948490869060449082905f905af191821561020a576100fc966138548b613849858f966001600160a01b038f896001600160801b03879f9a849f8f9661376b9f97613849966137489f9961384e9a613843955f9261395c575b5050988992613832565b6139729250803d10610203576101f581836102cd565b5f80613952565b6139909150863d8811610203576101f581836102cd565b5f6138d7565b509093505050565b6139b7915060203d602011610203576101f581836102cd565b5f6136ce565b6139ea60206139cb87612276565b6040518093819263b3d7f6b960e01b8352600483019190602083019252565b03816001600160a01b0387165afa801561020a57613a0f915f91613a15575b50612276565b956136d7565b613a2e915060203d602011610203576101f581836102cd565b5f613a09565b9390613a3f85610ef4565b8415948515613cda57613a756020613a5687610b1a565b6040518093819263266d6a8360e11b8352600483019190602083019252565b03816001600160a01b0389165afa801561020a57613a99915f9161399e5750610b1a565b94955b613ab7856001600160a01b03165f52600b60205260405f2090565b5491613ac16150fa565b6139965787938793909290916001600160801b039182841691868310613b3857505050936001600160a01b03613b0e83866100fc98613b0686613b339860801c612284565b921603615369565b9788613b2b826001600160a01b03165f52600b60205260405f2090565b555b166145b9565b611513565b919650929450613b489150610ef4565b15613c2d57613b5d6137a361379587856153ab565b604051635d043b2960e11b8152600481018290523060248201819052604482015293906020856064815f6001600160a01b038c165af1801561020a57613beb8995613854846138498e613be28b8f6001600160a01b036100fc9f9c613bdd8f9d613b339f94889f859f613849975f91613c0e575b509586925b1690615658565b612284565b9460801c612284565b9788613c08826001600160a01b03165f52600b60205260405f2090565b55613b2d565b613c27915060203d602011610203576101f581836102cd565b5f613bd1565b613c3d6137a361388b87856155a0565b604051632d182be560e21b81526004810182905230602482018190526044820152906020826064815f6001600160a01b038c165af191821561020a57613beb89956138546001600160a01b036138498e613be28b8f8a6100fc9f613bdd8f93613b339f9e889f958b9f96613849975f91613cbb575b509b8c93613bd6565b613cd4915060203d602011610203576101f581836102cd565b5f613cb2565b613d076020613ce887612276565b60405180938192630a28a47760e01b8352600483019190602083019252565b03816001600160a01b0389165afa801561020a57613d2b915f91613a155750612276565b95613a9c565b805c9060018201809211610941575d565b905f5260205260405f20905f52602052600160405f205d565b9190825191613d6e825182519085614952565b613d7783611e22565b935f5b848110613d8957505050505090565b80670de0b6b3a7640000613dbb613da260019486611e54565b51612ddb613db0858a611e54565b51611ed3868a611e54565b04613dc68289611e54565b5201613d7a565b60051115610efe57565b906005821015610efe5752565b959193613e1561042f989694613e2693611f7d976001600160a01b038092168b521660208a01526040890190613dd7565b60e0606088015260e0870190610432565b91608086015284820360a0860152610432565b925f6001600160a01b03602095969396613e9a613e5d87516001600160a01b031690565b94608088015197613e6d89613dcd565b60a060806060830151930151910151916040519b8c9a8b998a976345421ec760e01b895260048901613de4565b0393165af190811561020a575f91613ec4575b5015613eb557565b6305975b2960e11b5f5260045ffd5b613edd915060203d60201161203c5761202e81836102cd565b5f613ead565b916080838303126100ed5782519067ffffffffffffffff918281116100ed5783613f0e918601612123565b9360208101519360408201518481116100ed5781612213918401612123565b93613f57612268936001600160a01b0361042f98969416875260a0602088015260a0870190610432565b9160408601528482036060860152610432565b9190613f7461147a565b6060613f7e612105565b9160208501613f91815151808652611e22565b60808301958651613fa181613dcd565b613faa81613dcd565b6141e957506060830151613fbe8651611e22565b94613fe28260808b0151613fdc61233189516001600160a01b031690565b90615a38565b995b60608601518084106141d25750613ffd83999899614f55565b60208901975f5b8c8b51821015614111578161401891611e54565b5161402281614f55565b61402c8288611e54565b5161410057614051908d61404a8460a061242a8260c0860151611e54565b5191615355565b8061405c8389611e54565b525b61406c61108e838a51611e54565b60408a0161407b848251611e54565b5183116140cd57508d83611b908e6140bf8f968f976140aa866124b6818b60019e9d612493886140c79f6145b9565b526140b9856060880151611e54565b51612284565b905190610b28565b01614004565b916140dc846110c49451611e54565b516323b6a17960e21b5f526001600160a01b03909216600452602452604452606490565b5061410b8187611e54565b5161405e565b50509396945096509650966141319061254885516001600160a01b031690565b7fa26a52d8d53702bba7f137907b8e1f99ff87f6d450144270ca25e72481cca87161416384516001600160a01b031690565b9261418489602087019561417e87516001600160a01b031690565b90615a7f565b6141aa61233161419e6125ee88516001600160a01b031690565b94519661108e88613dcd565b926126306001600160a01b03926141c088613dcd565b88846040519586951698169684612291565b638d261d5d60e01b5f52600484905260245260445ffd5b600387516141f681613dcd565b6141ff81613dcd565b036142215761420e8851615a1c565b6142188151611e22565b945f9199613fe4565b976001875161422f81613dcd565b61423881613dcd565b036142a0576142478851614aec565b614298896142598460408801516157d1565b60808a01519061427361233188516001600160a01b031690565b61427d8c51614b64565b91614292610d258a516001600160a01b031690565b936157ec565b959091613fe4565b9793600287516142af81613dcd565b6142b881613dcd565b03614324579787986142ca8951614aec565b6060850151916142d987614b07565b61431e61431460408b0192808452898b9f8860808201519361430e610d2561277961277261233188516001600160a01b031690565b94615706565b9092519099611e54565b52613fe4565b506004865161433281613dcd565b61433b81613dcd565b036143e35761434a87516156ea565b5f614362610d25610d2586516001600160a01b031690565b60608501519060808a0151918360a0880151986143966040519a8b968795869463e4c4366360e01b86523360048701613f2d565b03925af193841561020a575f905f955f915f916143b8575b5090959199613fe4565b925050506143d99194503d805f833e6143d181836102cd565b810190613ee3565b919592915f6143ae565b636c02b39560e01b5f5260045ffd5b969261042f9896946144489361442c61443a936129b69995610100938d6001600160a01b0380931690521660208d015260408c0190613dd7565b8060608b0152890190610432565b908782036080890152610432565b9160a086015284820360c0860152610432565b949391959296908451614474906001600160a01b031690565b60808601519161448383613dcd565b608086015160a0880151906040968c6040519c8d9788976325da41f360e21b895260048901976144b2986143f2565b03916001600160a01b031691815a5f948591f194851561020a575f905f9661459a575b5015801561458e575b61457f576001809460091c16156144fe57909192809495505f905b614506575b505050505090565b855181101561457a576145198187611e54565b5182850190614529838351611e54565b511061453857508401846144f9565b869061455683612ac081612aba61108e6110c49860208c0151611e54565b5163677d1d7d60e11b5f526001600160a01b03909216600452602452604452606490565b6144fe565b63e124916560e01b5f5260045ffd5b508451865114156144de565b90506145b19195503d805f833e612b2381836102cd565b94905f6144d5565b6145c56100fc92614618565b90614654565b905f5b82518110156145fc576001600160a01b03806145ea8386611e54565b511690831614613570576001016145ce565b6001600160a01b038263ddef98d760e01b5f521660045260245ffd5b7f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff81116146425790565b63123baf0360e11b5f5260045260245ffd5b8115614711576001600160a01b037ff74f46243717369ff9f20877dfc1ba8491e6be48bfe7acc5b65f5ac68f585c009116805f528160205261469b60405f205c9384613653565b92836146df57505f197fbcbf50c510014a975eac30806436734486f167c41af035c1645353d475d57100805c918201918211610941575d5b5f5260205260405f205d565b6146d35761470c7fbcbf50c510014a975eac30806436734486f167c41af035c1645353d475d57100613d31565b6146d3565b5050565b6001600160a01b0392918381168484160361473357505050505f1990565b61475d9361159e92165f52601060205260405f20906001600160a01b03165f5260205260405f2090565b5490565b90604051918281549182825260209260208301915f5260205f20935f905b828210614795575050506100fc925003836102cd565b85546001600160a01b03168452600195860195889550938101939091019061477f565b906147c28261033d565b6147cf60405191826102cd565b82815280926147e0601f199161033d565b01905f5b8281106147f057505050565b6020906147fb612105565b828285010152016147e4565b90604051614814816102b1565b604060ff82945481811661482781610ef4565b84526001600160a01b038160081c16602085015260a81c161515910152565b60608101805151935f5b85811061485f57505050505050565b8061487361108e6001936020880151611e54565b6148956148888389905f5260205260405f2090565b546001600160801b031690565b6148a0838751611e54565b5181116148e7575b50506148ce6148b8828651611e54565b516148c7836080890151611e54565b5190615369565b6148e08288905f5260205260405f2090565b5501614850565b61493261494a9161492c61492361490f868a906001600160a01b03165f5260205260405f2090565b549261491c888c51611e54565b5190610b28565b8260801c612284565b90615cc4565b9185906001600160a01b03165f5260205260405f2090565b555f806148a8565b81148015929190614966575b5050611e1357565b141590505f8061495e565b90670de0b6b3a76400009182810292818404149015171561094157565b8181029291811591840414171561094157565b80516149ac81610ef4565b6149b581610ef4565b806149c8575050670de0b6b3a764000090565b806149d4600192610ef4565b03614a315760206149f3610d258260049401516001600160a01b031690565b6040516333cd77e760e11b815292839182905afa90811561020a575f91614a18575090565b61042f915060203d602011610203576101f581836102cd565b636fa2831960e11b5f5260045ffd5b91906080670de0b6b3a7640000614a84612bc79480614a638660608a0151611e54565b52612ddb614a758660c08a0151611e54565b51611ed38760a08b0151611e54565b04930151611e54565b91906080614ac8612bc79380614aa7856060890151611e54565b52611eda614ab98560c0890151611e54565b51611ed38660a08a0151611e54565b930151611e54565b60061c60011615614add57565b63033c2a5760e61b5f5260045ffd5b60041c600116614af857565b63353d5de760e21b5f5260045ffd5b80519081905f5b828110614b30575050811015614b215790565b631f91af7760e21b5f5260045ffd5b614b3a8183611e54565b51614b48575b600101614b0e565b928203614b555782614b40565b636b8c3be560e01b5f5260045ffd5b62ffffff9060121c1664174876e800908181029181830414901517156109415790565b91906020614b9e5f92604086526040860190610432565b930152565b91906020614b9e600192604086526040860190610432565b9094929192815194614bcc86611e22565b945f5b878110614d9c5750614be5906126de8988611e54565b614bef8887611e54565b5260405194631309bd3d60e31b9283875260208780614c118860048301614b87565b03816001600160a01b0385165afa96871561020a575f97614d7b575b506040519484865260208680614c468660048301614b87565b03816001600160a01b0386165afa93841561020a57613849614ca88c61491c614ca1614cbe96614c9a8f614c8a614cf49f9160209e88935f91614d5c575b506152f5565b92614c95848d615cd7565b611e54565b5190614f33565b9188611e54565b91670de0b6b3a7640000818103911002826152f5565b93614ccd856126de8c86611e54565b614cd78b85611e54565b526001600160a01b03604051809781958294835260048301614ba3565b0392165afa90811561020a57614d3095614d2a935f93614d33575b50614d1c614d2391611e22565b9788611e54565b5283610b28565b90615335565b91565b614d23919350614d54614d1c9160203d602011610203576101f581836102cd565b939150614d0f565b6020614d7592503d602011610203576101f581836102cd565b5f614c84565b614d9591975060203d602011610203576101f581836102cd565b955f614c2d565b80614db2614dac60019388611e54565b51610b1a565b614dbc828a611e54565b5201614bcf565b614ddb60409295949395606083526060830190610432565b9460208201520152565b909491830391838311610941576020614e316001600160a01b0392614e0a87876152f5565b614e148183615cd7565b60405194858094819362b5059f60e51b83528d8a60048501614dc3565b0392165afa801561020a57614d3095611eda88614e7c93614e8598614e8c965f92614e92575b50614e6a826126de61384994958b611e54565b98614e758d8a611e54565b5190615335565b93849251611e22565b9586611e54565b52610b28565b61384992506126de93614eb6614e6a9260203d602011610203576101f581836102cd565b93509350614e57565b634e487b7160e01b5f52601260045260245ffd5b8115614edd570490565b614ebf565b909291614eef8251611e22565b915f5b8151811015614f2c57614f0f83614f098385611e54565b5161498e565b908615614edd578660019204614f258287611e54565b5201614ef2565b5050509150565b90614f3d9161498e565b6001670de0b6b3a76400005f19830104019015150290565b80614f5d5750565b6100fc906152be565b91614f709161498e565b90670de0b6b3a764000090818102918183041490151715610941578115614edd570490565b91949290945f955f9581614faa575050505050565b849750612433614fc38260c0614fcf9697980151611e54565b519160a08a0151611e54565b945160018160031c1615614fe5575b808061154d565b62ffffff91929450602a1c1664174876e800908181029181830414901517156109415761501b670de0b6b3a7640000918661498e565b0492848411615088578061159e61506761504d61507f9461159e876001600160a01b03165f52600660205260405f2090565b54615061886001600160801b038316612284565b90615d5c565b936001600160a01b03165f52600660205260405f2090565b555f8080614fde565b634c69ac5d60e01b5f5260045ffd5b6001600160a01b0390929192165f52602060056020526040805f205f5b606086015180518210156150f157906150e16150d282600194611e54565b516148c78360808b0151611e54565b815f52838652845f2055016150b4565b50505050509050565b3215806151045790565b506001600754161590565b9032615152576001600160a01b0361514392165f52600f60205260405f20906001600160a01b03165f5260205260405f2090565b80549182018092116109415755565b6333fc255960e11b5f5260045ffd5b90916001600160a01b0380841692831561181b576151948561159e836001600160a01b03165f52600f60205260405f2090565b54808411615276578390036151be8661159e846001600160a01b03165f52600f60205260405f2090565b556151e4836151de836001600160a01b03165f52601160205260405f2090565b54610b28565b6151ed81615d6a565b615208826001600160a01b03165f52601160205260405f2090565b551690813b156100ed576040516323de665160e01b81526001600160a01b0390941660048501525f6024850181905260448501829052937fd1398bee19313d6bf672ccb116e51f4a1a947e91c757907f51fbb5b5e56c698f916152719186818060648101611619565b0390a4565b63391434e360e21b5f526001600160a01b038616600452602452604483905260645ffd5b670de0b6b3a76400008082040281036152b05790565b600181018091116109415790565b7f00000000000000000000000000000000000000000000000000000000000f4240116152e657565b6303da9a2360e31b5f5260045ffd5b90801561532657670de0b6b3a764000091828102928184041490151715610941576001905f19830104019015150290565b630a0c22c760e01b5f5260045ffd5b8215615326576001916153479161498e565b915f19830104019015150290565b9061042f926153639161498e565b906152f5565b906001600160801b038083119081156153a1575b506153925760801b9081018091116109415790565b6389560ca160e01b5f5260045ffd5b905081115f61537d565b906153b88260801c614618565b906001600160801b035f9316806153dc575b50506002916153d89161363b565b0590565b6001600160a01b0393509060246020926040519586938492630a28a47760e01b84526004840152165afa90811561020a576154246153d8926002945f9161542d575b50614618565b928192506153ca565b615446915060203d602011610203576101f581836102cd565b5f61541e565b5f81126154565790565b635467221960e11b5f5260045260245ffd5b60405163095ea7b360e01b602082018181526001600160a01b03851660248401525f6044840152909391929183606481015b03916154ae601f19938481018752866102cd565b5f806001600160a01b0386169287519082855af1906154cb61569d565b82615538575b508161552d575b50156154e5575050505050565b60405160208101959095526001600160a01b031660248501525f604485015260649081018452615523936109179161551d90826102cd565b82615b9b565b5f8080808061154d565b90503b15155f6154d8565b80519192508115918215615550575b5050905f6154d1565b6155639250602080918301019101611f07565b5f80615547565b60405163095ea7b360e01b602082018181526001600160a01b03851660248401526044830195909552939092836064810161549a565b906155b36001600160801b038316614618565b905f9260801c806155cc5750506002916153d89161363b565b6001600160a01b039350906024602092604051958693849263b3d7f6b960e01b84526004840152165afa90811561020a576154246153d8926002945f9161542d5750614618565b9291906001600160a01b038085165f52600860205260405f20549283039283116109415781165f52600860205260405f2054928301809311610941576100fc93615d89565b9291906001600160a01b038085165f52600860205260405f20549283018093116109415781165f52600860205260405f2054928303928311610941576100fc93615d89565b3d156156c7573d906156ae826103c2565b916156bc60405193846102cd565b82523d5f602084013e565b606090565b5f8061042f9360208151910182855af16156e461569d565b91615ec0565b60051c600116156156f757565b63121db02f60e21b5f5260045ffd5b9094916020615735615720866001600160a01b0394612284565b9461572b87876152f5565b614e148183615f1a565b0392165afa801561020a57614d3095613849614ca885614e7c94614e85998c998a615794995f9461579a575b509061578861578161577a61578f946124d69798611e54565b5187610b28565b9c8c611e54565b519061498e565b614ed3565b52612284565b6124d6945061578161577a61578f94936157c56157889460203d602011610203576101f581836102cd565b97509394505050615761565b9060208083516157e2845182611e0c565b60051b930191015e565b9291909383516157fb81611e22565b9161580582611e22565b965f5b8381106159e15750506001600160a01b0381169160405195631309bd3d60e31b9283885260209889898061583f8460048301614b87565b0381895afa98891561020a575f996159c2575b506040518581528a81806158698b60048301614ba3565b03818a5afa90811561020a578a61578f6158a49361589d938f5f926159a5575b9b999d9c9a98979695949392919050614971565b8093615f1a565b5f5b89811061591357505050506158ca9550604051809681948293835260048301614ba3565b03915afa91821561020a578361578f936158f092614d30975f926158f6575b5050610b28565b9061498e565b61590c9250803d10610203576101f581836102cd565b5f806158e9565b869899959750838d83949596988361593761593082600198611e54565b5189615d49565b806159428385611e54565b511161595e575b505050505001908a96949897959392916158a6565b818361597f61599097615989946159788561491c99611e54565b5103614f33565b611af98388611e54565b5192611e54565b61599a828b611e54565b52848d8a835f615949565b6159bb9250803d10610203576101f581836102cd565b5f8f615889565b6159da9199508a3d8c11610203576101f581836102cd565b975f615852565b80615a0b615a066159f46001948c611e54565b516159ff8487611e54565b5190612284565b610b1a565b615a158288611e54565b5201615808565b60071c60011615615a2957565b63efe0265d60e01b5f5260045ffd5b9291615a448451611e22565b935f5b8151811015615a795780615a688585615a6260019587611e54565b51615335565b615a728289611e54565b5201615a47565b50505050565b916001600160a01b03808316938415615b7f57615ab783615ab1836001600160a01b03165f52601160205260405f2090565b54612284565b615ad68561159e846001600160a01b03165f52600f60205260405f2090565b848154019055615ae581615d6a565b615b00826001600160a01b03165f52601160205260405f2090565b5516925f847fd1398bee19313d6bf672ccb116e51f4a1a947e91c757907f51fbb5b5e56c698f60405180615b3987829190602083019252565b0390a4823b156100ed576040516323de665160e01b81525f600482018190526001600160a01b0390931660248201526044810191909152918290818381606481016117bd565b63ec442f0560e01b5f526001600160a01b03841660045260245ffd5b6001600160a01b03615baf911691826156cc565b8051908115159182615bd7575b5050615bc55750565b635274afe760e01b5f5260045260245ffd5b615bea9250602080918301019101611f07565b155f80615bbc565b9064ffffffffff615c0282611e22565b92605a1c165f5b828110615c165750505090565b60058082029082820414821517156109415782601f911c1690604d821161094157600191600a0a615c478287611e54565b5201615c09565b62ffffff9060421c1664174876e800908181029181830414901517156109415790565b9093925f94615c84846080850151611e54565b51818111615c93575050505050565b615cb995965091615ca8916124339303614f33565b9260a061242a8260c0860151611e54565b905f8080808061154d565b906001600160801b0361042f9216615369565b9060206001600160a01b0392600460405180958193635b3bfd2b60e11b8352165afa91821561020a575f92615d28575b50818110615d13575050565b63718e4adf60e11b5f5260045260245260445ffd5b615d4291925060203d602011610203576101f581836102cd565b905f615d07565b670de0b6b3a764000091612de09161498e565b9061042f9160801c90615369565b620f42408110615d775750565b6334e3483f60e21b5f5260045260245ffd5b6040516370a0823160e01b808252306004830152602095939490926001600160a01b03929187836024818786165afa92831561020a575f93615ea1575b50808310615e7a5750615dea906001600160a01b03165f52600860205260405f2090565b556040519182523060048301528316908481602481855afa94851561020a575f95615e5b575b5050818410615e39575050615e36906001600160a01b03165f52600860205260405f2090565b55565b631149424d60e01b5f526001600160a01b03166004526024525060445260645ffd5b615e72929550803d10610203576101f581836102cd565b925f80615e10565b631c6a537560e01b5f9081529387166001600160a01b031660045260245250604452606490fd5b615eb9919350883d8a11610203576101f581836102cd565b915f615dc6565b90615ee45750805115615ed557805190602001fd5b630a12f52160e11b5f5260045ffd5b81511580615f11575b615ef5575090565b6001600160a01b0390639996b31560e01b5f521660045260245ffd5b50803b15615eed565b9060206001600160a01b039260046040518095819363273c1adf60e01b8352165afa91821561020a575f92615f6b575b50818111615f56575050565b630fa2583760e21b5f5260045260245260445ffd5b615f8591925060203d602011610203576101f581836102cd565b905f615f4a565b91909163ffffffff808094169116019182116109415756fea26469706673582212206683429dd8621233bf9dfafe00f40360d4204093d879bd8a2517bc175dc511eb64736f6c634300081a0033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

0000000000000000000000000e8b07657d719b86e06bf0806d6729e3d528c9a9000000000000000000000000e39b5e3b6d74016b2f6a9673d7d7493b6df549d5000000000000000000000000a731c23d7c95436baaae9d52782f966e1ed07cc8

-----Decoded View---------------
Arg [0] : vaultExtension (address): 0x0E8B07657D719B86e06bF0806D6729e3D528C9A9
Arg [1] : authorizer (address): 0xE39B5e3B6D74016b2F6A9673D7d7493B6DF549d5
Arg [2] : protocolFeeController (address): 0xa731C23D7c95436Baaae9D52782f966E1ed07cc8

-----Encoded View---------------
3 Constructor Arguments found :
Arg [0] : 0000000000000000000000000e8b07657d719b86e06bf0806d6729e3d528c9a9
Arg [1] : 000000000000000000000000e39b5e3b6d74016b2f6a9673d7d7493b6df549d5
Arg [2] : 000000000000000000000000a731c23d7c95436baaae9d52782f966e1ed07cc8


Block Transaction Gas Used Reward
view all blocks produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Chain Token Portfolio % Price Amount Value
ETH50.81%$3,867.03715.0149$2,764,983.97
ETH26.05%$3,815.47371.5519$1,417,645.03
ETH2.95%$3,691.3843.4607$160,430.2
ETH0.91%$4,378.2811.2692$49,339.72
ETH0.88%$3,780.5312.6513$47,828.75
ETH0.66%$0.99995135,969.9777$35,968.22
ETH0.46%$0.99963625,018.4361$25,009.33
ETH0.02%$1.13844.3727$954.14
ETH<0.01%$1267.3086$267.58
ETH<0.01%$3,669.590.0508$186.33
ETH<0.01%$150.0078$50.01
GNO17.25%$1.14823,311.8301$938,575.49
GNO<0.01%$4,375.470.058$253.84
GNO<0.01%$3,689.090.0552$203.53
GNO<0.01%$0.999849137.5503$137.53
GNO<0.01%$264.380.2025$53.55
GNO<0.01%$0.99995250.8772$50.87
GNO<0.01%$0.4273120.1898$8.63
GNO<0.01%$1.042.1703$2.25
GNO<0.01%$0.9993131.4172$1.42
GNO<0.01%$0.689040.8291$0.5712
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.