S Price: $0.424305 (-9.72%)

Contract

0x45adB05683a27a71BF161825de3291aC2F9B6c3F

Overview

S Balance

Sonic LogoSonic LogoSonic Logo0 S

S Value

$0.00

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To

There are no matching entries

> 10 Internal Transactions found.

Latest 19 internal transactions

Parent Transaction Hash Block From To
57821132025-01-29 13:48:485 days ago1738158528
0x45adB056...C2F9B6c3F
 Contract Creation0 S
57821132025-01-29 13:48:485 days ago1738158528
0x45adB056...C2F9B6c3F
 Contract Creation0 S
57052962025-01-28 19:00:596 days ago1738090859
0x45adB056...C2F9B6c3F
 Contract Creation0 S
57052962025-01-28 19:00:596 days ago1738090859
0x45adB056...C2F9B6c3F
 Contract Creation0 S
55738552025-01-27 12:36:327 days ago1737981392
0x45adB056...C2F9B6c3F
 Contract Creation0 S
55738552025-01-27 12:36:327 days ago1737981392
0x45adB056...C2F9B6c3F
 Contract Creation0 S
51498512025-01-23 16:57:4811 days ago1737651468
0x45adB056...C2F9B6c3F
 Contract Creation0 S
51498512025-01-23 16:57:4811 days ago1737651468
0x45adB056...C2F9B6c3F
 Contract Creation0 S
51498512025-01-23 16:57:4811 days ago1737651468
0x45adB056...C2F9B6c3F
 Contract Creation0 S
51498512025-01-23 16:57:4811 days ago1737651468
0x45adB056...C2F9B6c3F
 Contract Creation0 S
42925312025-01-17 17:59:3417 days ago1737136774
0x45adB056...C2F9B6c3F
 Contract Creation0 S
42925312025-01-17 17:59:3417 days ago1737136774
0x45adB056...C2F9B6c3F
 Contract Creation0 S
42925312025-01-17 17:59:3417 days ago1737136774
0x45adB056...C2F9B6c3F
 Contract Creation0 S
42925312025-01-17 17:59:3417 days ago1737136774
0x45adB056...C2F9B6c3F
 Contract Creation0 S
42388162025-01-17 7:11:5018 days ago1737097910
0x45adB056...C2F9B6c3F
 Contract Creation0 S
42388162025-01-17 7:11:5018 days ago1737097910
0x45adB056...C2F9B6c3F
 Contract Creation0 S
28570482025-01-07 13:12:1527 days ago1736255535
0x45adB056...C2F9B6c3F
 Contract Creation0 S
28570482025-01-07 13:12:1527 days ago1736255535
0x45adB056...C2F9B6c3F
 Contract Creation0 S
26721662025-01-06 6:16:4929 days ago1736144209
0x45adB056...C2F9B6c3F
 Contract Creation0 S
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
InterestRateModelV2Factory

Compiler Version
v0.8.28+commit.7893614a

Optimization Enabled:
Yes with 200 runs

Other Settings:
cancun EvmVersion
File 1 of 29 : InterestRateModelV2Factory.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.28;

import {Clones} from "openzeppelin5/proxy/Clones.sol";

import {InterestRateModelV2} from "./InterestRateModelV2.sol";
import {IInterestRateModel} from "../interfaces/IInterestRateModel.sol";
import {IInterestRateModelV2} from "../interfaces/IInterestRateModelV2.sol";
import {IInterestRateModelV2Factory} from "../interfaces/IInterestRateModelV2Factory.sol";
import {InterestRateModelV2Config} from "./InterestRateModelV2Config.sol";

/// @title InterestRateModelV2Factory
/// @dev It creates InterestRateModelV2Config.
contract InterestRateModelV2Factory is IInterestRateModelV2Factory {
    /// @dev DP is 18 decimal points used for integer calculations
    uint256 public constant DP = 1e18;

    /// @dev IRM contract implementation address to clone
    address public immutable IRM;

    /// Config hash is determine by initial configuration, the logic is the same, so config is the only difference
    /// that's why we can use it as ID, at the same time we can detect duplicated and save gas by reusing same config
    /// multiple times
    mapping(bytes32 configHash => IInterestRateModelV2) public irmByConfigHash;

    constructor() {
        IRM = address(new InterestRateModelV2());
    }

    /// @inheritdoc IInterestRateModelV2Factory
    function create(IInterestRateModelV2.Config calldata _config)
        external
        virtual
        returns (bytes32 configHash, IInterestRateModelV2 irm)
    {
        configHash = hashConfig(_config);

        irm = irmByConfigHash[configHash];

        if (address(irm) != address(0)) {
            return (configHash, irm);
        }

        verifyConfig(_config);

        address configContract = address(new InterestRateModelV2Config(_config));

        irm = IInterestRateModelV2(Clones.clone(IRM));
        IInterestRateModel(address(irm)).initialize(configContract);

        irmByConfigHash[configHash] = irm;

        emit NewInterestRateModelV2(configHash, irm);
    }

    /// @inheritdoc IInterestRateModelV2Factory
    // solhint-disable-next-line code-complexity
    function verifyConfig(IInterestRateModelV2.Config calldata _config) public view virtual {
        int256 dp = int256(DP);

        require(_config.uopt > 0 && _config.uopt < dp, IInterestRateModelV2.InvalidUopt());
        require(_config.ucrit > _config.uopt && _config.ucrit < dp, IInterestRateModelV2.InvalidUcrit());
        require(_config.ulow > 0 && _config.ulow < _config.uopt, IInterestRateModelV2.InvalidUlow());
        require(_config.ki >= 0, IInterestRateModelV2.InvalidKi());
        require(_config.kcrit >= 0, IInterestRateModelV2.InvalidKcrit());
        require(_config.klow >= 0, IInterestRateModelV2.InvalidKlow());
        require(_config.klin >= 0, IInterestRateModelV2.InvalidKlin());
        require(_config.beta >= 0, IInterestRateModelV2.InvalidBeta());

        require(_config.ri >= 0, IInterestRateModelV2.InvalidRi());
        require(_config.Tcrit >= 0, IInterestRateModelV2.InvalidTcrit());

        // overflow check
        InterestRateModelV2(IRM).configOverflowCheck(_config);
    }

    /// @inheritdoc IInterestRateModelV2Factory
    function hashConfig(IInterestRateModelV2.Config calldata _config)
        public
        pure
        virtual
        returns (bytes32 configId)
    {
        configId = keccak256(abi.encode(_config));
    }
}

File 2 of 29 : Clones.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/Clones.sol)

pragma solidity ^0.8.20;

import {Errors} from "../utils/Errors.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-1167[ERC-1167] is a standard for
 * deploying minimal proxy contracts, also known as "clones".
 *
 * > To simply and cheaply clone contract functionality in an immutable way, this standard specifies
 * > a minimal bytecode implementation that delegates all calls to a known, fixed address.
 *
 * The library includes functions to deploy a proxy using either `create` (traditional deployment) or `create2`
 * (salted deterministic deployment). It also includes functions to predict the addresses of clones deployed using the
 * deterministic method.
 */
library Clones {
    /**
     * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`.
     *
     * This function uses the create opcode, which should never revert.
     */
    function clone(address implementation) internal returns (address instance) {
        return clone(implementation, 0);
    }

    /**
     * @dev Same as {xref-Clones-clone-address-}[clone], but with a `value` parameter to send native currency
     * to the new contract.
     *
     * NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
     * to always have enough balance for new deployments. Consider exposing this function under a payable method.
     */
    function clone(address implementation, uint256 value) internal returns (address instance) {
        if (address(this).balance < value) {
            revert Errors.InsufficientBalance(address(this).balance, value);
        }
        /// @solidity memory-safe-assembly
        assembly {
            // Stores the bytecode after address
            mstore(0x20, 0x5af43d82803e903d91602b57fd5bf3)
            // implementation address
            mstore(0x11, implementation)
            // Packs the first 3 bytes of the `implementation` address with the bytecode before the address.
            mstore(0x00, or(shr(0x88, implementation), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000))
            instance := create(value, 0x09, 0x37)
        }
        if (instance == address(0)) {
            revert Errors.FailedDeployment();
        }
    }

    /**
     * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`.
     *
     * This function uses the create2 opcode and a `salt` to deterministically deploy
     * the clone. Using the same `implementation` and `salt` multiple time will revert, since
     * the clones cannot be deployed twice at the same address.
     */
    function cloneDeterministic(address implementation, bytes32 salt) internal returns (address instance) {
        return cloneDeterministic(implementation, salt, 0);
    }

    /**
     * @dev Same as {xref-Clones-cloneDeterministic-address-bytes32-}[cloneDeterministic], but with
     * a `value` parameter to send native currency to the new contract.
     *
     * NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
     * to always have enough balance for new deployments. Consider exposing this function under a payable method.
     */
    function cloneDeterministic(
        address implementation,
        bytes32 salt,
        uint256 value
    ) internal returns (address instance) {
        if (address(this).balance < value) {
            revert Errors.InsufficientBalance(address(this).balance, value);
        }
        /// @solidity memory-safe-assembly
        assembly {
            // Stores the bytecode after address
            mstore(0x20, 0x5af43d82803e903d91602b57fd5bf3)
            // implementation address
            mstore(0x11, implementation)
            // Packs the first 3 bytes of the `implementation` address with the bytecode before the address.
            mstore(0x00, or(shr(0x88, implementation), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000))
            instance := create2(value, 0x09, 0x37, salt)
        }
        if (instance == address(0)) {
            revert Errors.FailedDeployment();
        }
    }

    /**
     * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
     */
    function predictDeterministicAddress(
        address implementation,
        bytes32 salt,
        address deployer
    ) internal pure returns (address predicted) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(add(ptr, 0x38), deployer)
            mstore(add(ptr, 0x24), 0x5af43d82803e903d91602b57fd5bf3ff)
            mstore(add(ptr, 0x14), implementation)
            mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73)
            mstore(add(ptr, 0x58), salt)
            mstore(add(ptr, 0x78), keccak256(add(ptr, 0x0c), 0x37))
            predicted := keccak256(add(ptr, 0x43), 0x55)
        }
    }

    /**
     * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
     */
    function predictDeterministicAddress(
        address implementation,
        bytes32 salt
    ) internal view returns (address predicted) {
        return predictDeterministicAddress(implementation, salt, address(this));
    }
}

File 3 of 29 : InterestRateModelV2.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.28;

import {SafeCast} from "openzeppelin5/utils/math/SafeCast.sol";

import {PRBMathSD59x18} from "../lib/PRBMathSD59x18.sol";
import {SiloMathLib} from "../lib/SiloMathLib.sol";
import {ISilo} from "../interfaces/ISilo.sol";
import {IInterestRateModel} from "../interfaces/IInterestRateModel.sol";
import {IInterestRateModelV2} from "../interfaces/IInterestRateModelV2.sol";
import {IInterestRateModelV2Config} from "../interfaces/IInterestRateModelV2Config.sol";

// solhint-disable func-name-mixedcase

/// @title InterestRateModelV2
/// @notice This model is for one silo/asset set. So one silo need to have as many IRMs as many assets it holds.
/// @dev Model stores some Silo specific data. If model is replaced, it needs to set proper config after redeployment
/// for seamless service. Please refer to separate litepaper about model for design details.
/// Difference between original `InterestRateModel` is that we made methods to be `virtual` and :
///     if (_config.ki < 0) revert InvalidKi();  --- was ... <= 0
//      if (_config.kcrit < 0) revert InvalidKcrit();  --- was ... <= 0
/// @custom:security-contact [email protected]
contract InterestRateModelV2 is IInterestRateModel, IInterestRateModelV2 {
    using PRBMathSD59x18 for int256;
    using SafeCast for int256;
    using SafeCast for uint256;

    struct LocalVarsRCur {
        int256 T;
        int256 u;
        int256 DP;
        int256 rp;
        int256 rlin;
        int256 ri;
        bool overflow;
    }

    struct LocalVarsRComp {
        int256 T;
        int256 slopei;
        int256 rp;
        int256 slope;
        int256 r0;
        int256 rlin;
        int256 r1;
        int256 x;
        int256 rlin1;
        int256 u;
    }

    /// @dev DP is 18 decimal points used for integer calculations
    uint256 internal constant _DP = 1e18;

    /// @dev maximum value of compound interest the model will return
    uint256 public constant RCOMP_MAX = (2**16) * 1e18;

    /// @dev maximum value of X for which, RCOMP_MAX should be returned. If x > X_MAX => exp(x) > RCOMP_MAX.
    /// X_MAX = ln(RCOMP_MAX + 1)
    int256 public constant X_MAX = 11090370147631773313;

    /// @dev maximum allowed amount for accruedInterest, totalDeposits and totalBorrowedAmount
    /// after adding compounded interest. If rcomp cause this values to overflow, rcomp is reduced.
    /// 196 bits max allowed for an asset amounts because the multiplication product with
    /// decimal points (10^18) should not cause an overflow. 196 < log2(2^256 / 10^18) => ~196.2
    /// there is another case, for which we need to limit asset amount, we multiply it by rcomp
    /// 2^196 > (max(uitn256) / RCOMP_MAX), so as a limit we need to use: `max(uitn256) / RCOMP_MAX`
    uint256 public constant ASSET_DATA_OVERFLOW_LIMIT = type(uint256).max / RCOMP_MAX;

    /// @dev Each Silo setup is stored separately in mapping. We will write to this mapping based on the msg.sender.
    /// Silo => IInterestRateModelV2.Setup
    mapping (address silo => Setup) public getSetup;

    /// @dev Config for the model
    IInterestRateModelV2Config public irmConfig;

    /// @notice Emitted on config init
    /// @param config config struct for asset in Silo
    event Initialized(address indexed config);

    /// @inheritdoc IInterestRateModel
    function initialize(address _irmConfig) external virtual {
        require(_irmConfig != address(0), AddressZero());
        require(address(irmConfig) == address(0), AlreadyInitialized());

        irmConfig = IInterestRateModelV2Config(_irmConfig);

        emit Initialized(_irmConfig);
    }

    /// @inheritdoc IInterestRateModel
    function getCompoundInterestRateAndUpdate(
        uint256 _collateralAssets,
        uint256 _debtAssets,
        uint256 _interestRateTimestamp
    )
        external
        virtual
        override
        returns (uint256 rcomp)
    {
        // assume that caller is Silo
        address silo = msg.sender;

        Setup storage currentSetup = getSetup[silo];

        int256 ri;
        int256 Tcrit;

        (rcomp, ri, Tcrit) = calculateCompoundInterestRate(
            getConfig(silo),
            _collateralAssets,
            _debtAssets,
            _interestRateTimestamp,
            block.timestamp
        );

        currentSetup.initialized = true;

        currentSetup.ri = ri > type(int112).max
            ? type(int112).max
            : ri < type(int112).min ? type(int112).min : int112(ri);

        currentSetup.Tcrit = Tcrit > type(int112).max
            ? type(int112).max
            : Tcrit < type(int112).min ? type(int112).min : int112(Tcrit);
    }

    /// @inheritdoc IInterestRateModel
    function decimals() external view virtual returns (uint256) {
        return 18;
    }

    /// @inheritdoc IInterestRateModel
    function getCompoundInterestRate(address _silo, uint256 _blockTimestamp)
        external
        view
        virtual
        override
        returns (uint256 rcomp)
    {
        ISilo.UtilizationData memory data = ISilo(_silo).utilizationData();

        (rcomp,,) = calculateCompoundInterestRate(
            getConfig(_silo),
            data.collateralAssets,
            data.debtAssets,
            data.interestRateTimestamp,
            _blockTimestamp
        );
    }

    /// @inheritdoc IInterestRateModelV2
    function overflowDetected(address _silo, uint256 _blockTimestamp)
        external
        view
        virtual
        override
        returns (bool overflow)
    {
        ISilo.UtilizationData memory data = ISilo(_silo).utilizationData();

        (,,,overflow) = calculateCompoundInterestRateWithOverflowDetection(
            getConfig(_silo),
            data.collateralAssets,
            data.debtAssets,
            data.interestRateTimestamp,
            _blockTimestamp
        );
    }

    /// @inheritdoc IInterestRateModel
    function getCurrentInterestRate(address _silo, uint256 _blockTimestamp)
        external
        view
        virtual
        override
        returns (uint256 rcur)
    {
        ISilo.UtilizationData memory data = ISilo(_silo).utilizationData();

        rcur = calculateCurrentInterestRate(
            getConfig(_silo),
            data.collateralAssets,
            data.debtAssets,
            data.interestRateTimestamp,
            _blockTimestamp
        );
    }

    function getConfig(address _silo) public view virtual returns (Config memory fullConfig) {
        Setup memory siloSetup = getSetup[_silo];
        fullConfig = irmConfig.getConfig();

        // if initialized, read ri and Tcrit from storage. Otherwise use config values.
        if (siloSetup.initialized) {
            fullConfig.ri = siloSetup.ri;
            fullConfig.Tcrit = siloSetup.Tcrit;
        }
    }

    /// @inheritdoc IInterestRateModelV2
    function calculateCurrentInterestRate(
        Config memory _c,
        uint256 _totalDeposits,
        uint256 _totalBorrowAmount,
        uint256 _interestRateTimestamp,
        uint256 _blockTimestamp
    ) public pure virtual returns (uint256 rcur) {
        require(_interestRateTimestamp <= _blockTimestamp, InvalidTimestamps());

        LocalVarsRCur memory _l = LocalVarsRCur(0,0,0,0,0,0,false); // struct for local vars to avoid "Stack too deep"

        (,,,_l.overflow) = calculateCompoundInterestRateWithOverflowDetection(
            _c,
            _totalDeposits,
            _totalBorrowAmount,
            _interestRateTimestamp,
            _blockTimestamp
        );

        if (_l.overflow) {
            return 0;
        }

        // There can't be an underflow in the subtraction because of the previous check
        unchecked {
            // T := t1 - t0 # length of time period in seconds
            _l.T = (_blockTimestamp - _interestRateTimestamp).toInt256();
        }

        _l.u = SiloMathLib.calculateUtilization(_DP, _totalDeposits, _totalBorrowAmount).toInt256();
        _l.DP = int256(_DP);

        if (_l.u > _c.ucrit) {
            // rp := kcrit *(1 + Tcrit + beta *T)*( u0 - ucrit )
            _l.rp = _c.kcrit * (_l.DP + _c.Tcrit + _c.beta * _l.T) / _l.DP * (_l.u - _c.ucrit) / _l.DP;
        } else {
            // rp := min (0, klow * (u0 - ulow ))
            _l.rp = _min(0, _c.klow * (_l.u - _c.ulow) / _l.DP);
        }

        // rlin := klin * u0 # lower bound between t0 and t1
        _l.rlin = _c.klin * _l.u / _l.DP;
        // ri := max(ri , rlin )
        _l.ri = _max(_c.ri, _l.rlin);
        // ri := max(ri + ki * (u0 - uopt ) * T, rlin )
        _l.ri = _max(_l.ri + _c.ki * (_l.u - _c.uopt) * _l.T / _l.DP, _l.rlin);
        // rcur := max (ri + rp , rlin ) # current per second interest rate
        rcur = (_max(_l.ri + _l.rp, _l.rlin)).toUint256();
        rcur *= 365 days;

        return _currentInterestRateCAP(rcur);
    }

    /// @inheritdoc IInterestRateModelV2
    function calculateCompoundInterestRate(
        Config memory _c,
        uint256 _totalDeposits,
        uint256 _totalBorrowAmount,
        uint256 _interestRateTimestamp,
        uint256 _blockTimestamp
    ) public pure virtual override returns (
        uint256 rcomp,
        int256 ri,
        int256 Tcrit
    ) {
        (rcomp, ri, Tcrit,) = calculateCompoundInterestRateWithOverflowDetection(
            _c,
            _totalDeposits,
            _totalBorrowAmount,
            _interestRateTimestamp,
            _blockTimestamp
        );
    }

    /// @inheritdoc IInterestRateModelV2
    function calculateCompoundInterestRateWithOverflowDetection( // solhint-disable-line function-max-lines
        Config memory _c,
        uint256 _totalDeposits,
        uint256 _totalBorrowAmount,
        uint256 _interestRateTimestamp,
        uint256 _blockTimestamp
    ) public pure virtual returns (
        uint256 rcomp,
        int256 ri,
        int256 Tcrit,
        bool overflow
    ) {
        ri = _c.ri;
        Tcrit = _c.Tcrit;

        // struct for local vars to avoid "Stack too deep"
        LocalVarsRComp memory _l = LocalVarsRComp(0,0,0,0,0,0,0,0,0,0);

        require(_interestRateTimestamp <= _blockTimestamp, InvalidTimestamps());

        // There can't be an underflow in the subtraction because of the previous check
        unchecked {
            // length of time period in seconds
            _l.T = (_blockTimestamp - _interestRateTimestamp).toInt256();
        }

        int256 decimalPoints = int256(_DP);

        _l.u = SiloMathLib.calculateUtilization(_DP, _totalDeposits, _totalBorrowAmount).toInt256();

        // slopei := ki * (u0 - uopt )
        _l.slopei = _c.ki * (_l.u - _c.uopt) / decimalPoints;

        if (_l.u > _c.ucrit) {
            // rp := kcrit * (1 + Tcrit) * (u0 - ucrit )
            _l.rp = _c.kcrit * (decimalPoints + Tcrit) / decimalPoints * (_l.u - _c.ucrit) / decimalPoints;
            // slope := slopei + kcrit * beta * (u0 - ucrit )
            _l.slope = _l.slopei + _c.kcrit * _c.beta / decimalPoints * (_l.u - _c.ucrit) / decimalPoints;
            // Tcrit := Tcrit + beta * T
            Tcrit = Tcrit + _c.beta * _l.T;
        } else {
            // rp := min (0, klow * (u0 - ulow ))
            _l.rp = _min(0, _c.klow * (_l.u - _c.ulow) / decimalPoints);
            // slope := slopei
            _l.slope = _l.slopei;
            // Tcrit := max (0, Tcrit - beta * T)
            Tcrit = _max(0, Tcrit - _c.beta * _l.T);
        }

        // rlin := klin * u0 # lower bound between t0 and t1
        _l.rlin = _c.klin * _l.u / decimalPoints;
        // ri := max(ri , rlin )
        ri = _max(ri , _l.rlin);
        // r0 := ri + rp # interest rate at t0 ignoring lower bound
        _l.r0 = ri + _l.rp;
        // r1 := r0 + slope *T # what interest rate would be at t1 ignoring lower bound
        _l.r1 = _l.r0 + _l.slope * _l.T;

        // Calculating the compound interest

        if (_l.r0 >= _l.rlin && _l.r1 >= _l.rlin) {
            // lower bound isn’t activated
            // rcomp := exp (( r0 + r1) * T / 2) - 1
            _l.x = (_l.r0 + _l.r1) * _l.T / 2;
        } else if (_l.r0 < _l.rlin && _l.r1 < _l.rlin) {
            // lower bound is active during the whole time
            // rcomp := exp( rlin * T) - 1
            _l.x = _l.rlin * _l.T;
        } else if (_l.r0 >= _l.rlin && _l.r1 < _l.rlin) {
            // lower bound is active after some time
            // rcomp := exp( rlin *T - (r0 - rlin )^2/ slope /2) - 1
            _l.x = _l.rlin * _l.T - (_l.r0 - _l.rlin)**2 / _l.slope / 2;
        } else {
            // lower bound is active before some time
            // rcomp := exp( rlin *T + (r1 - rlin )^2/ slope /2) - 1
            _l.x = _l.rlin * _l.T + (_l.r1 - _l.rlin)**2 / _l.slope / 2;
        }

        // ri := max(ri + slopei * T, rlin )
        ri = _max(ri + _l.slopei * _l.T, _l.rlin);

        // Checking for the overflow below. In case of the overflow, ri and Tcrit will be set back to zeros. Rcomp is
        // calculated to not make an overflow in totalBorrowedAmount, totalDeposits.
        (rcomp, overflow) = _calculateRComp(_totalDeposits, _totalBorrowAmount, _l.x);

        // if we got a limit for rcomp, we reset Tcrit and Ri model parameters to zeros
        // Resetting parameters will make IR drop from 10k%/year to 100% per year and it will start growing again.
        // If we don’t reset, we will have to wait ~2 weeks to make IR drop (low utilization ratio required).
        // So zeroing parameters is a only hope for a market to get well again, otherwise it will be almost impossible.
        bool capApplied;

        (rcomp, capApplied) = _compoundInterestRateCAP(rcomp, _l.T.toUint256());

        if (overflow || capApplied) {
            ri = 0;
            Tcrit = 0;
        }
    }

    /// @dev this method is to detect possible overflow in math for provided config in next 50 years
    function configOverflowCheck(IInterestRateModelV2.Config calldata _config) external pure virtual {
        int256 YEAR = 365 days;
        int256 MAX_TIME = 50 * 365 days;
        int256 DP = int256(_DP);

        int256 rcur_max;

        {
            int256 Tcrit_max = _config.Tcrit + _config.beta * MAX_TIME;
            int256 rp_max = _config.kcrit * (DP + Tcrit_max) / DP * (DP - _config.ucrit) / DP;
            int256 rp_min = -_config.klow * _config.ulow / DP;
            int256 rlin_max = _config.klin * DP / DP;
            int256 ri_max = _max(_config.ri, rlin_max) +_config.ki * (DP - _config.uopt) * MAX_TIME / DP;
            int256 ri_min = -_config.ki * _config.uopt * MAX_TIME / DP;
            rcur_max = ri_max + rp_max;
            int256 rcur_min = ri_min + rp_min;
            int256 rcur_ann_max = rcur_max * YEAR;
        }

        {
            int256 slopei_max = _config.ki * (DP - _config.uopt) / DP;
            int256 slopei_min = - _config.ki * _config.uopt / DP;
            int256 slope_max = slopei_max + _config.kcrit * _config.beta / DP * (DP - _config.ucrit) / DP;
            int256 slope_min = slopei_min;

            int256 x_max = rcur_max * 2 * MAX_TIME / 2 + (_max(slope_max, -slope_min) * MAX_TIME)**2 / 2;
        }
    }

    /// @dev checks for the overflow in rcomp calculations, accruedInterest, totalDeposits and totalBorrowedAmount.
    /// In case of the overflow, rcomp is reduced to make totalDeposits and totalBorrowedAmount <= 2**196.
    function _calculateRComp(
        uint256 _totalDeposits,
        uint256 _totalBorrowAmount,
        int256 _x
    ) internal pure virtual returns (uint256 rcomp, bool overflow) {
        int256 rcompSigned;

        if (_x >= X_MAX) {
            rcomp = RCOMP_MAX;
            // overflow, but not return now. It counts as an overflow to reset model parameters,
            // but later on we can get overflow worse.
            overflow = true;
        } else {
            rcompSigned = _x.exp() - int256(_DP);
            rcomp = rcompSigned > 0 ? rcompSigned.toUint256() : 0;
        }

        unchecked {
            // maxAmount = max(_totalDeposits, _totalBorrowAmount) to see
            // if any of this variables overflow in result.
            uint256 maxAmount = _totalDeposits > _totalBorrowAmount ? _totalDeposits : _totalBorrowAmount;

            if (maxAmount >= ASSET_DATA_OVERFLOW_LIMIT) {
                return (0, true);
            }

            uint256 rcompMulTBA = rcomp * _totalBorrowAmount;

            if (rcompMulTBA == 0) {
                return (rcomp, overflow);
            }

            if (
                rcompMulTBA / rcomp != _totalBorrowAmount ||
                rcompMulTBA / _DP > ASSET_DATA_OVERFLOW_LIMIT - maxAmount
            ) {
                rcomp = (ASSET_DATA_OVERFLOW_LIMIT - maxAmount) * _DP / _totalBorrowAmount;

                return (rcomp, true);
            }
        }
    }

    /// @dev Returns the largest of two numbers
    function _max(int256 a, int256 b) internal pure virtual returns (int256) {
        return a > b ? a : b;
    }

    /// @dev Returns the smallest of two numbers
    function _min(int256 a, int256 b) internal pure virtual returns (int256) {
        return a < b ? a : b;
    }

    /// @dev in order to keep methods pure and bee able to deploy easily new caps,
    /// that method with hardcoded CAP was created
    /// @notice limit for compounding interest rcomp := RCOMP_CAP * _l.T.
    /// The limit is simple. Let’s threat our interest rate model as the black box. And for past _l.T time we got
    /// a value for rcomp. We need to provide the top limit this value to take into account the limit for current
    /// interest. Let’s imagine, if we had maximum allowed interest for _l.T. `RCOMP_CAP * _l.T` will be the value of
    /// rcomp in this case, which will serve as the limit.
    /// If we got this limit, we should make Tcrit and Ri equal to zero, otherwise there is a low probability of the
    /// market going back below the limit.
    function _compoundInterestRateCAP(uint256 _rcomp, uint256 _t)
        internal
        pure
        virtual
        returns (uint256 updatedRcomp, bool capApplied)
    {
        // uint256 cap = 10**20 / (365 * 24 * 3600); // this is per-second rate because _l.T is in seconds.
        uint256 cap = 3170979198376 * _t;
        return _rcomp > cap ? (cap, true) : (_rcomp, false);
    }

    /// @notice limit for rcur - RCUR_CAP (FE/integrations, does not affect our protocol).
    /// This is the limit for current interest rate, we picked 10k% of interest per year. Interest rate model is working
    /// as expected before that threshold and simply sets the maximum value in case of limit.
    /// 10k% is a really significant threshold, which will mean the death of market in most of cases.
    /// Before 10k% interest rate can be good for certain market conditions.
    /// We don’t read the current interest rate in our protocol, because we care only about the interest we compounded
    /// over the past time since the last update. It is used in UI and other protocols integrations,
    /// for example investing strategies.
    function _currentInterestRateCAP(uint256 _rcur) internal pure virtual returns (uint256) {
        uint256 cap = 1e20; // 10**20; this is 10,000% APR in the 18-decimals format.
        return _rcur > cap ? cap : _rcur;
    }
}

File 4 of 29 : IInterestRateModel.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;

interface IInterestRateModel {
    event InterestRateModelError();

    /// @dev Sets config address for all Silos that will use this model
    /// @param _irmConfig address of IRM config contract
    function initialize(address _irmConfig) external;

    /// @dev get compound interest rate and update model storage for current block.timestamp
    /// @param _collateralAssets total silo collateral assets
    /// @param _debtAssets total silo debt assets
    /// @param _interestRateTimestamp last IRM timestamp
    /// @return rcomp compounded interest rate from last update until now (1e18 == 100%)
    function getCompoundInterestRateAndUpdate(
        uint256 _collateralAssets,
        uint256 _debtAssets,
        uint256 _interestRateTimestamp
    )
        external
        returns (uint256 rcomp);

    /// @dev get compound interest rate
    /// @param _silo address of Silo for which interest rate should be calculated
    /// @param _blockTimestamp current block timestamp
    /// @return rcomp compounded interest rate from last update until now (1e18 == 100%)
    function getCompoundInterestRate(address _silo, uint256 _blockTimestamp)
        external
        view
        returns (uint256 rcomp);

    /// @dev get current annual interest rate
    /// @param _silo address of Silo for which interest rate should be calculated
    /// @param _blockTimestamp current block timestamp
    /// @return rcur current annual interest rate (1e18 == 100%)
    function getCurrentInterestRate(address _silo, uint256 _blockTimestamp)
        external
        view
        returns (uint256 rcur);

    /// @dev returns decimal points used by model
    function decimals() external view returns (uint256);
}

File 5 of 29 : IInterestRateModelV2.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;

import {IInterestRateModelV2Config} from "./IInterestRateModelV2Config.sol";

interface IInterestRateModelV2 {
    struct Config {
        // uopt ∈ (0, 1) – optimal utilization;
        int256 uopt;
        // ucrit ∈ (uopt, 1) – threshold of large utilization;
        int256 ucrit;
        // ulow ∈ (0, uopt) – threshold of low utilization
        int256 ulow;
        // ki > 0 – integrator gain
        int256 ki;
        // kcrit > 0 – proportional gain for large utilization
        int256 kcrit;
        // klow ≥ 0 – proportional gain for low utilization
        int256 klow;
        // klin ≥ 0 – coefficient of the lower linear bound
        int256 klin;
        // beta ≥ 0 - a scaling factor
        int256 beta;
        // ri ≥ 0 – initial value of the integrator
        int112 ri;
        // Tcrit ≥ 0 - initial value of the time during which the utilization exceeds the critical value
        int112 Tcrit;
    }

    struct Setup {
        // ri ≥ 0 – the integrator
        int112 ri;
        // Tcrit ≥ 0 - the time during which the utilization exceeds the critical value
        int112 Tcrit;
        // flag that informs if setup is initialized
        bool initialized;
    }
    /* solhint-enable */

    error AddressZero();
    error DeployConfigFirst();
    error AlreadyInitialized();

    error InvalidBeta();
    error InvalidKcrit();
    error InvalidKi();
    error InvalidKlin();
    error InvalidKlow();
    error InvalidTcrit();
    error InvalidTimestamps();
    error InvalidUcrit();
    error InvalidUlow();
    error InvalidUopt();
    error InvalidRi();

    /// @dev Get config for given asset in a Silo.
    /// @param _silo Silo address for which config should be set
    /// @return Config struct for asset in Silo
    function getConfig(address _silo) external view returns (Config memory);

    /// @notice get the flag to detect rcomp restriction (zero current interest) due to overflow
    /// overflow boolean flag to detect rcomp restriction
    function overflowDetected(address _silo, uint256 _blockTimestamp)
        external
        view
        returns (bool overflow);

    /// @dev pure function that calculates current annual interest rate
    /// @param _c configuration object, IInterestRateModel.Config
    /// @param _totalBorrowAmount current total borrows for asset
    /// @param _totalDeposits current total deposits for asset
    /// @param _interestRateTimestamp timestamp of last interest rate update
    /// @param _blockTimestamp current block timestamp
    /// @return rcur current annual interest rate (1e18 == 100%)
    function calculateCurrentInterestRate(
        Config calldata _c,
        uint256 _totalDeposits,
        uint256 _totalBorrowAmount,
        uint256 _interestRateTimestamp,
        uint256 _blockTimestamp
    ) external pure returns (uint256 rcur);

    /// @dev pure function that calculates interest rate based on raw input data
    /// @param _c configuration object, IInterestRateModel.Config
    /// @param _totalBorrowAmount current total borrows for asset
    /// @param _totalDeposits current total deposits for asset
    /// @param _interestRateTimestamp timestamp of last interest rate update
    /// @param _blockTimestamp current block timestamp
    /// @return rcomp compounded interest rate from last update until now (1e18 == 100%)
    /// @return ri current integral part of the rate
    /// @return Tcrit time during which the utilization exceeds the critical value
    /// @return overflow boolean flag to detect rcomp restriction
    function calculateCompoundInterestRateWithOverflowDetection(
        Config memory _c,
        uint256 _totalDeposits,
        uint256 _totalBorrowAmount,
        uint256 _interestRateTimestamp,
        uint256 _blockTimestamp
    )
        external
        pure
        returns (
            uint256 rcomp,
            int256 ri,
            int256 Tcrit,
            bool overflow
        );

    /// @dev pure function that calculates interest rate based on raw input data
    /// @param _c configuration object, IInterestRateModel.Config
    /// @param _totalBorrowAmount current total borrows for asset
    /// @param _totalDeposits current total deposits for asset
    /// @param _interestRateTimestamp timestamp of last interest rate update
    /// @param _blockTimestamp current block timestamp
    /// @return rcomp compounded interest rate from last update until now (1e18 == 100%)
    /// @return ri current integral part of the rate
    /// @return Tcrit time during which the utilization exceeds the critical value
    function calculateCompoundInterestRate(
        Config memory _c,
        uint256 _totalDeposits,
        uint256 _totalBorrowAmount,
        uint256 _interestRateTimestamp,
        uint256 _blockTimestamp
    ) external pure returns (uint256 rcomp, int256 ri, int256 Tcrit);
}

File 6 of 29 : IInterestRateModelV2Factory.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;

import {IInterestRateModelV2} from "./IInterestRateModelV2.sol";

interface IInterestRateModelV2Factory {
    /// @dev config hash and IRM should be easily accessible directly from oracle contract
    event NewInterestRateModelV2(bytes32 indexed configHash, IInterestRateModelV2 indexed irm);

    /// @dev verifies config and creates IRM config contract
    /// @notice it can be used in separate tx eg config can be prepared before it will be used for Silo creation
    /// @param _config IRM configuration
    /// @return configHash the hashed config used as a key for IRM contract
    /// @return irm deployed (or existing one, depends on the config) contract address
    function create(IInterestRateModelV2.Config calldata _config)
        external
        returns (bytes32 configHash, IInterestRateModelV2 irm);

    /// @dev DP is 18 decimal points used for integer calculations
    // solhint-disable-next-line func-name-mixedcase
    function DP() external view returns (uint256);

    /// @dev verifies if config has correct values for a model, throws on invalid `_config`
    /// @param _config config that will ve verified
    function verifyConfig(IInterestRateModelV2.Config calldata _config) external view;

    /// @dev hashes IRM config
    /// @param _config IRM config
    /// @return configId hash of `_config`
    function hashConfig(IInterestRateModelV2.Config calldata _config) external pure returns (bytes32 configId);
}

File 7 of 29 : InterestRateModelV2Config.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.28;

import {IInterestRateModelV2Config} from "../interfaces/IInterestRateModelV2Config.sol";
import {IInterestRateModelV2} from "../interfaces/IInterestRateModelV2.sol";

/// @title InterestRateModelV2Config
/// @notice Please never deploy config manually, always use factory, because factory does necessary checks.
contract InterestRateModelV2Config is IInterestRateModelV2Config {
    // uopt ∈ (0, 1) – optimal utilization;
    int256 internal immutable _UOPT;
    // ucrit ∈ (uopt, 1) – threshold of large utilization;
    int256 internal immutable _UCRIT;
    // ulow ∈ (0, uopt) – threshold of low utilization
    int256 internal immutable _ULOW;
    // ki > 0 – integrator gain
    int256 internal immutable _KI;
    // kcrit > 0 – proportional gain for large utilization
    int256 internal immutable _KCRIT;
    // klow ≥ 0 – proportional gain for low utilization
    int256 internal immutable _KLOW;
    // klin ≥ 0 – coefficient of the lower linear bound
    int256 internal immutable _KLIN;
    // beta ≥ 0 - a scaling factor
    int256 internal immutable _BETA;

    // initial value for ri, ri ≥ 0 – initial value of the integrator
    int112 internal immutable _RI;
    // initial value for Tcrit, Tcrit ≥ 0 - the time during which the utilization exceeds the critical value
    int112 internal immutable _TCRIT;

    constructor(IInterestRateModelV2.Config memory _config) {
        _UOPT = _config.uopt;
        _UCRIT = _config.ucrit;
        _ULOW = _config.ulow;
        _KI = _config.ki;
        _KCRIT = _config.kcrit;
        _KLOW = _config.klow;
        _KLIN = _config.klin;
        _BETA = _config.beta;

        _RI = _config.ri;
        _TCRIT = _config.Tcrit;
    }

    /// @inheritdoc IInterestRateModelV2Config
    function getConfig() external view virtual returns (IInterestRateModelV2.Config memory config) {
        config.uopt = _UOPT;
        config.ucrit = _UCRIT;
        config.ulow = _ULOW;
        config.ki = _KI;
        config.kcrit = _KCRIT;
        config.klow = _KLOW;
        config.klin = _KLIN;
        config.beta = _BETA;

        config.ri = _RI;
        config.Tcrit = _TCRIT;
    }
}

File 8 of 29 : Errors.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.20;

/**
 * @dev Collection of common custom errors used in multiple contracts
 *
 * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
 * It is recommended to avoid relying on the error API for critical functionality.
 */
library Errors {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error InsufficientBalance(uint256 balance, uint256 needed);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedCall();

    /**
     * @dev The deployment failed.
     */
    error FailedDeployment();
}

File 9 of 29 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        /// @solidity memory-safe-assembly
        assembly {
            u := iszero(iszero(b))
        }
    }
}

File 10 of 29 : PRBMathSD59x18.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.28;

import {PRBMathCommon} from "./PRBMathCommon.sol";

/* solhint-disable */
/// @title PRBMathSD59x18
/// @author Paul Razvan Berg
/// @notice Smart contract library for advanced fixed-point math. It works with int256 numbers considered to have 18
/// trailing decimals. We call this number representation signed 59.18-decimal fixed-point, since the numbers can have
/// a sign and there can be up to 59 digits in the integer part and up to 18 decimals in the fractional part. The numbers
/// are bound by the minimum and the maximum values permitted by the Solidity type int256.
library PRBMathSD59x18 {
    /// @dev log2(e) as a signed 59.18-decimal fixed-point number.
    int256 internal constant _LOG2_E = 1442695040888963407;

    /// @dev Half the SCALE number.
    int256 internal constant _HALF_SCALE = 5e17;

    /// @dev The maximum value a signed 59.18-decimal fixed-point number can have.
    int256 internal constant _MAX_SD59x18 = 57896044618658097711785492504343953926634992332820282019728792003956564819967;

    /// @dev How many trailing decimals can be represented.
    int256 internal constant _SCALE = 1e18;

    /// INTERNAL FUNCTIONS ///


    /// @notice Calculates the natural exponent of x.
    ///
    /// @dev Based on the insight that e^x = 2^(x * log2(e)).
    ///
    /// Requirements:
    /// - All from "log2".
    /// - x must be less than 88722839111672999628.
    ///
    /// @param x The exponent as a signed 59.18-decimal fixed-point number.
    /// @return result The result as a signed 59.18-decimal fixed-point number.
    function exp(int256 x) internal pure returns (int256 result) {
        // Without this check, the value passed to "exp2" would be less than -59794705707972522261.
        if (x < -41446531673892822322) {
            return 0;
        }

        // Without this check, the value passed to "exp2" would be greater than 128e18.
        require(x < 88722839111672999628);

        // Do the fixed-point multiplication inline to save gas.
        unchecked {
            int256 doubleScaleProduct = x * _LOG2_E;
            result = exp2((doubleScaleProduct + _HALF_SCALE) / _SCALE);
        }
    }

    /// @notice Calculates the binary exponent of x using the binary fraction method.
    ///
    /// @dev See https://ethereum.stackexchange.com/q/79903/24693.
    ///
    /// Requirements:
    /// - x must be 128e18 or less.
    /// - The result must fit within MAX_SD59x18.
    ///
    /// Caveats:
    /// - For any x less than -59794705707972522261, the result is zero.
    ///
    /// @param x The exponent as a signed 59.18-decimal fixed-point number.
    /// @return result The result as a signed 59.18-decimal fixed-point number.
    function exp2(int256 x) internal pure returns (int256 result) {
        // This works because 2^-x = 1/2^x.
        if (x < 0) {
            // 2**59.794705707972522262 is the maximum number whose inverse does not equal zero.
            if (x < -59794705707972522261) {
                return 0;
            }

            // Do the fixed-point inversion inline to save gas. The numerator is SCALE * SCALE.
            unchecked { result = 1e36 / exp2(-x); }
            return result;
        } else {
            // 2**128 doesn't fit within the 128.128-bit fixed-point representation.
            require(x < 128e18);

            unchecked {
                // Convert x to the 128.128-bit fixed-point format.
                uint256 x128x128 = (uint256(x) << 128) / uint256(_SCALE);

                // Safe to convert the result to int256 directly because the maximum input allowed is 128e18.
                result = int256(PRBMathCommon.exp2(x128x128));
            }
        }
    }
}
/* solhint-enable */

File 11 of 29 : SiloMathLib.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.28;

import {Math} from "openzeppelin5/utils/math/Math.sol";
import {Rounding} from "../lib/Rounding.sol";
import {ISilo} from "../interfaces/ISilo.sol";

library SiloMathLib {
    using Math for uint256;

    uint256 internal constant _PRECISION_DECIMALS = 1e18;

    uint256 internal constant _DECIMALS_OFFSET = 3;

    /// @dev this is constant version of openzeppelin5/contracts/token/ERC20/extensions/ERC4626._decimalsOffset
    uint256 internal constant _DECIMALS_OFFSET_POW = 10 ** _DECIMALS_OFFSET;

    /// @notice Returns available liquidity to be borrowed
    /// @dev Accrued interest is entirely added to `debtAssets` but only part of it is added to `collateralAssets`. The
    ///      difference is DAO's and deployer's cut. That means DAO's and deployer's cut is not considered a borrowable
    ///      liquidity.
    function liquidity(uint256 _collateralAssets, uint256 _debtAssets) internal pure returns (uint256 liquidAssets) {
        unchecked {
            // we checked the underflow
            liquidAssets = _debtAssets > _collateralAssets ? 0 : _collateralAssets - _debtAssets;
        }
    }

    /// @notice Calculate collateral assets with accrued interest and associated fees
    /// @param _collateralAssets The total amount of collateral assets
    /// @param _debtAssets The total amount of debt assets
    /// @param _rcomp Compound interest rate for debt
    /// @param _daoFee The fee (in 18 decimals points) to be taken for the DAO
    /// @param _deployerFee The fee (in 18 decimals points) to be taken for the deployer
    /// @return collateralAssetsWithInterest The total collateral assets including the accrued interest
    /// @return debtAssetsWithInterest The debt assets with accrued interest
    /// @return daoAndDeployerRevenue Total fees amount to be split between DAO and deployer
    /// @return accruedInterest The total accrued interest
    function getCollateralAmountsWithInterest(
        uint256 _collateralAssets,
        uint256 _debtAssets,
        uint256 _rcomp,
        uint256 _daoFee,
        uint256 _deployerFee
    )
        internal
        pure
        returns (
            uint256 collateralAssetsWithInterest,
            uint256 debtAssetsWithInterest,
            uint256 daoAndDeployerRevenue,
            uint256 accruedInterest
        )
    {
        (debtAssetsWithInterest, accruedInterest) = getDebtAmountsWithInterest(_debtAssets, _rcomp);

        uint256 fees;

        // _daoFee and _deployerFee are expected to be less than 1e18, so we will not overflow
        unchecked { fees = _daoFee + _deployerFee; }

        daoAndDeployerRevenue = mulDivOverflow(accruedInterest, fees, _PRECISION_DECIMALS);

        // we will not underflow because daoAndDeployerRevenue is chunk of accruedInterest
        uint256 collateralInterest = accruedInterest - daoAndDeployerRevenue;

        // save to uncheck because variable can not be more than max
        uint256 cap = type(uint256).max - _collateralAssets;

        if (cap < collateralInterest) {
            // avoid overflow on interest
            collateralInterest = cap;
        }

        // safe to uncheck because of cap
        unchecked {  collateralAssetsWithInterest = _collateralAssets + collateralInterest; }
    }

    /// @notice Calculate the debt assets with accrued interest, it should never revert with over/under flow
    /// @param _totalDebtAssets The total amount of debt assets before accrued interest
    /// @param _rcomp Compound interest rate for the debt in 18 decimal precision
    /// @return debtAssetsWithInterest The debt assets including the accrued interest
    /// @return accruedInterest The total amount of interest accrued on the debt assets
    function getDebtAmountsWithInterest(uint256 _totalDebtAssets, uint256 _rcomp)
        internal
        pure
        returns (uint256 debtAssetsWithInterest, uint256 accruedInterest)
    {
        if (_totalDebtAssets == 0 || _rcomp == 0) {
            return (_totalDebtAssets, 0);
        }

        accruedInterest = mulDivOverflow(_totalDebtAssets, _rcomp, _PRECISION_DECIMALS);

        unchecked {
            // We intentionally allow overflow here, to prevent transaction revert due to interest calculation.
            debtAssetsWithInterest = _totalDebtAssets + accruedInterest;

            // If overflow occurs, we skip accruing interest.
            if (debtAssetsWithInterest < _totalDebtAssets) {
                debtAssetsWithInterest = _totalDebtAssets;
                accruedInterest = 0;
            }
        }
    }

    /// @notice Calculates fraction between borrowed and deposited amount of tokens denominated in percentage
    /// @dev It assumes `_dp` = 100%.
    /// @param _dp decimal points used by model
    /// @param _collateralAssets current total deposits for assets
    /// @param _debtAssets current total borrows for assets
    /// @return utilization value, capped to 100%
    /// Limiting utilization ratio by 100% max will allows us to perform better interest rate computations
    /// and should not affect any other part of protocol. It is possible to go over 100% only when bad debt.
    function calculateUtilization(uint256 _dp, uint256 _collateralAssets, uint256 _debtAssets)
        internal
        pure
        returns (uint256 utilization)
    {
        if (_collateralAssets == 0 || _debtAssets == 0 || _dp == 0) return 0;

        /*
            how to prevent overflow on: _debtAssets.mulDiv(_dp, _collateralAssets, Rounding.ACCRUED_INTEREST):
            1. max > _debtAssets * _dp / _collateralAssets
            2. max / _dp > _debtAssets / _collateralAssets
        */
        if (type(uint256).max / _dp > _debtAssets / _collateralAssets) {
            utilization = _debtAssets.mulDiv(_dp, _collateralAssets, Rounding.ACCRUED_INTEREST);
            // cap at 100%
            if (utilization > _dp) utilization = _dp;
        } else {
            // we have overflow
            utilization = _dp;
        }
    }

    function convertToAssetsOrToShares(
        uint256 _assets,
        uint256 _shares,
        uint256 _totalAssets,
        uint256 _totalShares,
        Math.Rounding _roundingToAssets,
        Math.Rounding _roundingToShares,
        ISilo.AssetType _assetType
    ) internal pure returns (uint256 assets, uint256 shares) {
        if (_assets == 0) {
            require(_shares != 0, ISilo.InputZeroShares());
            shares = _shares;
            assets = convertToAssets(_shares, _totalAssets, _totalShares, _roundingToAssets, _assetType);
            require(assets != 0, ISilo.ReturnZeroAssets());
        } else if (_shares == 0) {
            shares = convertToShares(_assets, _totalAssets, _totalShares, _roundingToShares, _assetType);
            assets = _assets;
            require(shares != 0, ISilo.ReturnZeroShares());
        } else {
            revert ISilo.InputCanBeAssetsOrShares();
        }
    }

    /// @dev Math for collateral is exact copy of
    ///      openzeppelin5/contracts/token/ERC20/extensions/ERC4626._convertToShares
    function convertToShares(
        uint256 _assets,
        uint256 _totalAssets,
        uint256 _totalShares,
        Math.Rounding _rounding,
        ISilo.AssetType _assetType
    ) internal pure returns (uint256 shares) {
        (uint256 totalShares, uint256 totalAssets) = _commonConvertTo(_totalAssets, _totalShares, _assetType);

        // initially, in case of debt, if silo is empty we return shares==assets
        // for collateral, this will never be the case, because we are adding `+1` and offset in `_commonConvertTo`
        if (totalShares == 0) return _assets;

        shares = _assets.mulDiv(totalShares, totalAssets, _rounding);
    }

    /// @dev Math for collateral is exact copy of
    ///      openzeppelin5/contracts/token/ERC20/extensions/ERC4626._convertToAssets
    function convertToAssets(
        uint256 _shares,
        uint256 _totalAssets,
        uint256 _totalShares,
        Math.Rounding _rounding,
        ISilo.AssetType _assetType
    ) internal pure returns (uint256 assets) {
        (uint256 totalShares, uint256 totalAssets) = _commonConvertTo(_totalAssets, _totalShares, _assetType);

        // initially, in case of debt, if silo is empty we return shares==assets
        // for collateral, this will never be the case, because of `+1` in line above
        if (totalShares == 0) return _shares;

        assets = _shares.mulDiv(totalAssets, totalShares, _rounding);
    }

    /// @param _collateralMaxLtv maxLTV in 18 decimals that is set for debt asset
    /// @param _sumOfBorrowerCollateralValue borrower total collateral value (including protected)
    /// @param _borrowerDebtValue total value of borrower debt
    /// @return maxBorrowValue max borrow value yet available for borrower
    function calculateMaxBorrowValue(
        uint256 _collateralMaxLtv,
        uint256 _sumOfBorrowerCollateralValue,
        uint256 _borrowerDebtValue
    ) internal pure returns (uint256 maxBorrowValue) {
        if (_sumOfBorrowerCollateralValue == 0) {
            return 0;
        }

        uint256 maxDebtValue = _sumOfBorrowerCollateralValue.mulDiv(
            _collateralMaxLtv, _PRECISION_DECIMALS, Rounding.MAX_BORROW_VALUE
        );

        unchecked {
            // we will not underflow because we checking `maxDebtValue > _borrowerDebtValue`
            maxBorrowValue = maxDebtValue > _borrowerDebtValue ? maxDebtValue - _borrowerDebtValue : 0;
        }
    }

    /// @notice Calculate the maximum assets a borrower can withdraw without breaching the liquidation threshold
    /// @param _sumOfCollateralsValue The combined value of collateral and protected assets of the borrower
    /// @param _debtValue The total debt value of the borrower
    /// @param _lt The liquidation threshold in 18 decimal points
    /// @param _borrowerCollateralAssets The borrower's collateral assets before the withdrawal
    /// @param _borrowerProtectedAssets The borrower's protected assets before the withdrawal
    /// @return maxAssets The maximum assets the borrower can safely withdraw
    function calculateMaxAssetsToWithdraw(
        uint256 _sumOfCollateralsValue,
        uint256 _debtValue,
        uint256 _lt,
        uint256 _borrowerCollateralAssets,
        uint256 _borrowerProtectedAssets
    ) internal pure returns (uint256 maxAssets) {
        if (_sumOfCollateralsValue == 0) return 0;
        if (_debtValue == 0) return _sumOfCollateralsValue;
        if (_lt == 0) return 0;

        // using Rounding.LT (up) to have highest collateralValue that we have to leave for user to stay solvent
        uint256 minimumCollateralValue = _debtValue.mulDiv(_PRECISION_DECIMALS, _lt, Rounding.LTV);

        // if we over LT, we can not withdraw
        if (_sumOfCollateralsValue <= minimumCollateralValue) {
            return 0;
        }

        uint256 spareCollateralValue;
        // safe because we checked `if (_sumOfCollateralsValue <= minimumCollateralValue)`
        unchecked { spareCollateralValue = _sumOfCollateralsValue - minimumCollateralValue; }

        maxAssets = (_borrowerProtectedAssets + _borrowerCollateralAssets)
                .mulDiv(spareCollateralValue, _sumOfCollateralsValue, Rounding.MAX_WITHDRAW_TO_ASSETS);
    }

    /// @notice Determines the maximum number of assets and corresponding shares a borrower can safely withdraw
    /// @param _maxAssets The calculated limit on how many assets can be withdrawn without breaching the liquidation
    /// threshold
    /// @param _borrowerCollateralAssets Amount of collateral assets currently held by the borrower
    /// @param _borrowerProtectedAssets Amount of protected assets currently held by the borrower
    /// @param _collateralType Specifies whether the asset is of type Collateral or Protected
    /// @param _totalAssets The entire quantity of assets available in the system for withdrawal
    /// @param _assetTypeShareTokenTotalSupply Total supply of share tokens for the specified asset type
    /// @param _liquidity Current liquidity in the system for the asset type
    /// @return assets Maximum assets the borrower can withdraw
    /// @return shares Corresponding number of shares for the derived `assets` amount
    function maxWithdrawToAssetsAndShares(
        uint256 _maxAssets,
        uint256 _borrowerCollateralAssets,
        uint256 _borrowerProtectedAssets,
        ISilo.CollateralType _collateralType,
        uint256 _totalAssets,
        uint256 _assetTypeShareTokenTotalSupply,
        uint256 _liquidity
    ) internal pure returns (uint256 assets, uint256 shares) {
        if (_maxAssets == 0) return (0, 0);
        if (_assetTypeShareTokenTotalSupply == 0) return (0, 0);

        if (_collateralType == ISilo.CollateralType.Collateral) {
            assets = _maxAssets > _borrowerCollateralAssets ? _borrowerCollateralAssets : _maxAssets;

            if (assets > _liquidity) {
                assets = _liquidity;
            }
        } else {
            assets = _maxAssets > _borrowerProtectedAssets ? _borrowerProtectedAssets : _maxAssets;
        }

        shares = SiloMathLib.convertToShares(
            assets,
            _totalAssets,
            _assetTypeShareTokenTotalSupply,
            Rounding.MAX_WITHDRAW_TO_SHARES,
            ISilo.AssetType(uint256(_collateralType))
        );
    }

    /// @dev executed `_a * _b / _c`, reverts on _c == 0
    /// @return mulDivResult on overflow returns 0
    function mulDivOverflow(uint256 _a, uint256 _b, uint256 _c)
        internal
        pure
        returns (uint256 mulDivResult)
    {
        if (_a == 0) return (0);

        unchecked {
            // we have to uncheck to detect overflow
            mulDivResult = _a * _b;
            if (mulDivResult / _a != _b) return 0;

            mulDivResult /= _c;
        }
    }

    /// @dev Debt calculations should not lower the result. Debt is a liability so protocol should not take any for
    /// itself. It should return actual result and round it up.
    function _commonConvertTo(
        uint256 _totalAssets,
        uint256 _totalShares,
        ISilo.AssetType _assetType
    ) private pure returns (uint256 totalShares, uint256 totalAssets) {
        if (_totalShares == 0) {
            // silo is empty and we have dust to redistribute: this can only happen when everyone exits silo
            // this case can happen only for collateral, because for collateral we rounding in favorite of protocol
            // by resetting totalAssets, the dust that we have will go to first depositor and we starts from clean state
            _totalAssets = 0;
        }

            (totalShares, totalAssets) = _assetType == ISilo.AssetType.Debt
                ? (_totalShares, _totalAssets)
                : (_totalShares + _DECIMALS_OFFSET_POW, _totalAssets + 1);
    }
}

File 12 of 29 : ISilo.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;

import {IERC4626, IERC20, IERC20Metadata} from "openzeppelin5/interfaces/IERC4626.sol";

import {IERC3156FlashLender} from "./IERC3156FlashLender.sol";
import {ISiloConfig} from "./ISiloConfig.sol";
import {ISiloFactory} from "./ISiloFactory.sol";

import {IHookReceiver} from "./IHookReceiver.sol";

// solhint-disable ordering
interface ISilo is IERC20, IERC4626, IERC3156FlashLender {
    /// @dev Interest accrual happens on each deposit/withdraw/borrow/repay. View methods work on storage that might be
    ///      outdate. Some calculations require accrued interest to return current state of Silo. This struct is used
    ///      to make a decision inside functions if interest should be accrued in memory to work on updated values.
    enum AccrueInterestInMemory {
        No,
        Yes
    }

    /// @dev Silo has two separate oracles for solvency and maxLtv calculations. MaxLtv oracle is optional. Solvency
    ///      oracle can also be optional if asset is used as denominator in Silo config. For example, in ETH/USDC Silo
    ///      one could setup only solvency oracle for ETH that returns price in USDC. Then USDC does not need an oracle
    ///      because it's used as denominator for ETH and it's "price" can be assume as 1.
    enum OracleType {
        Solvency,
        MaxLtv
    }

    /// @dev There are 3 types of accounting in the system: for non-borrowable collateral deposit called "protected",
    ///      for borrowable collateral deposit called "collateral" and for borrowed tokens called "debt". System does
    ///      identical calculations for each type of accounting but it uses different data. To avoid code duplication
    ///      this enum is used to decide which data should be read.
    enum AssetType {
        Protected, // default
        Collateral,
        Debt
    }

    /// @dev There are 2 types of accounting in the system: for non-borrowable collateral deposit called "protected" and
    ///      for borrowable collateral deposit called "collateral". System does
    ///      identical calculations for each type of accounting but it uses different data. To avoid code duplication
    ///      this enum is used to decide which data should be read.
    enum CollateralType {
        Protected, // default
        Collateral
    }

    /// @dev Types of calls that can be made by the hook receiver on behalf of Silo via `callOnBehalfOfSilo` fn
    enum CallType {
        Call, // default
        Delegatecall
    }

    /// @param _assets Amount of assets the user wishes to withdraw. Use 0 if shares are provided.
    /// @param _shares Shares the user wishes to burn in exchange for the withdrawal. Use 0 if assets are provided.
    /// @param _receiver Address receiving the withdrawn assets
    /// @param _owner Address of the owner of the shares being burned
    /// @param _spender Address executing the withdrawal; may be different than `_owner` if an allowance was set
    /// @param _collateralType Type of the asset being withdrawn (Collateral or Protected)
    struct WithdrawArgs {
        uint256 assets;
        uint256 shares;
        address receiver;
        address owner;
        address spender;
        ISilo.CollateralType collateralType;
    }

    /// @param assets Number of assets the borrower intends to borrow. Use 0 if shares are provided.
    /// @param shares Number of shares corresponding to the assets that the borrower intends to borrow. Use 0 if
    /// assets are provided.
    /// @param receiver Address that will receive the borrowed assets
    /// @param borrower The user who is borrowing the assets
    struct BorrowArgs {
        uint256 assets;
        uint256 shares;
        address receiver;
        address borrower;
    }

    /// @param shares Amount of shares the user wishes to transit.
    /// @param owner owner of the shares after transition.
    /// @param transitionFrom type of collateral that will be transitioned.
    struct TransitionCollateralArgs {
        uint256 shares;
        address owner;
        ISilo.CollateralType transitionFrom;
    }

    struct UtilizationData {
        /// @dev COLLATERAL: Amount of asset token that has been deposited to Silo plus interest earned by depositors.
        /// It also includes token amount that has been borrowed.
        uint256 collateralAssets;
        /// @dev DEBT: Amount of asset token that has been borrowed plus accrued interest.
        uint256 debtAssets;
        /// @dev timestamp of the last interest accrual
        uint64 interestRateTimestamp;
    }

    struct SiloStorage {
        /// @param daoAndDeployerRevenue Current amount of assets (fees) accrued by DAO and Deployer
        /// but not yet withdrawn
        uint192 daoAndDeployerRevenue;
        /// @dev timestamp of the last interest accrual
        uint64 interestRateTimestamp;

        /// @dev silo is just for one asset,
        /// but this one asset can be of three types: mapping key is uint256(AssetType), so we store `assets` by type.
        /// Assets based on type:
        /// - PROTECTED COLLATERAL: Amount of asset token that has been deposited to Silo that can be ONLY used
        /// as collateral. These deposits do NOT earn interest and CANNOT be borrowed.
        /// - COLLATERAL: Amount of asset token that has been deposited to Silo plus interest earned by depositors.
        /// It also includes token amount that has been borrowed.
        /// - DEBT: Amount of asset token that has been borrowed plus accrued interest.
        /// `totalAssets` can have outdated value (without interest), if you doing view call (of off-chain call)
        /// please use getters eg `getCollateralAssets()` to fetch value that includes interest.
        mapping(AssetType assetType => uint256 assets) totalAssets;
    }

    /// @notice Emitted on protected deposit
    /// @param sender wallet address that deposited asset
    /// @param owner wallet address that received shares in Silo
    /// @param assets amount of asset that was deposited
    /// @param shares amount of shares that was minted
    event DepositProtected(address indexed sender, address indexed owner, uint256 assets, uint256 shares);

    /// @notice Emitted on protected withdraw
    /// @param sender wallet address that sent transaction
    /// @param receiver wallet address that received asset
    /// @param owner wallet address that owned asset
    /// @param assets amount of asset that was withdrew
    /// @param shares amount of shares that was burn
    event WithdrawProtected(
        address indexed sender, address indexed receiver, address indexed owner, uint256 assets, uint256 shares
    );

    /// @notice Emitted on borrow
    /// @param sender wallet address that sent transaction
    /// @param receiver wallet address that received asset
    /// @param owner wallet address that owes assets
    /// @param assets amount of asset that was borrowed
    /// @param shares amount of shares that was minted
    event Borrow(
        address indexed sender, address indexed receiver, address indexed owner, uint256 assets, uint256 shares
    );

    /// @notice Emitted on repayment
    /// @param sender wallet address that repaid asset
    /// @param owner wallet address that owed asset
    /// @param assets amount of asset that was repaid
    /// @param shares amount of shares that was burn
    event Repay(address indexed sender, address indexed owner, uint256 assets, uint256 shares);

    /// @notice emitted only when collateral has been switched to other one
    event CollateralTypeChanged(address indexed borrower);

    event HooksUpdated(uint24 hooksBefore, uint24 hooksAfter);

    event AccruedInterest(uint256 hooksBefore);

    event FlashLoan(uint256 amount);

    event WithdrawnFeed(uint256 daoFees, uint256 deployerFees);

    error Unsupported();
    error NothingToWithdraw();
    error NotEnoughLiquidity();
    error NotSolvent();
    error BorrowNotPossible();
    error EarnedZero();
    error FlashloanFailed();
    error AboveMaxLtv();
    error SiloInitialized();
    error OnlyHookReceiver();
    error NoLiquidity();
    error InputCanBeAssetsOrShares();
    error CollateralSiloAlreadySet();
    error RepayTooHigh();
    error ZeroAmount();
    error InputZeroShares();
    error ReturnZeroAssets();
    error ReturnZeroShares();

    /// @return siloFactory The associated factory of the silo
    function factory() external view returns (ISiloFactory siloFactory);

    /// @notice Method for HookReceiver only to call on behalf of Silo
    /// @param _target address of the contract to call
    /// @param _value amount of ETH to send
    /// @param _callType type of the call (Call or Delegatecall)
    /// @param _input calldata for the call
    function callOnBehalfOfSilo(address _target, uint256 _value, CallType _callType, bytes calldata _input)
        external
        payable
        returns (bool success, bytes memory result);

    /// @notice Initialize Silo
    /// @param _siloConfig address of ISiloConfig with full config for this Silo
    function initialize(ISiloConfig _siloConfig) external;

    /// @notice Update hooks configuration for Silo
    /// @dev This function must be called after the hooks configuration is changed in the hook receiver
    function updateHooks() external;

    /// @notice Fetches the silo configuration contract
    /// @return siloConfig Address of the configuration contract associated with the silo
    function config() external view returns (ISiloConfig siloConfig);

    /// @notice Fetches the utilization data of the silo used by IRM
    function utilizationData() external view returns (UtilizationData memory utilizationData);

    /// @notice Fetches the real (available to borrow) liquidity in the silo, it does include interest
    /// @return liquidity The amount of liquidity
    function getLiquidity() external view returns (uint256 liquidity);

    /// @notice Determines if a borrower is solvent
    /// @param _borrower Address of the borrower to check for solvency
    /// @return True if the borrower is solvent, otherwise false
    function isSolvent(address _borrower) external view returns (bool);

    /// @notice Retrieves the raw total amount of assets based on provided type (direct storage access)
    function getTotalAssetsStorage(AssetType _assetType) external view returns (uint256);

    /// @notice Direct storage access to silo storage
    /// @dev See struct `SiloStorage` for more details
    function getSiloStorage()
        external
        view
        returns (
            uint192 daoAndDeployerRevenue,
            uint64 interestRateTimestamp,
            uint256 protectedAssets,
            uint256 collateralAssets,
            uint256 debtAssets
        );

    /// @notice Retrieves the total amount of collateral (borrowable) assets with interest
    /// @return totalCollateralAssets The total amount of assets of type 'Collateral'
    function getCollateralAssets() external view returns (uint256 totalCollateralAssets);

    /// @notice Retrieves the total amount of debt assets with interest
    /// @return totalDebtAssets The total amount of assets of type 'Debt'
    function getDebtAssets() external view returns (uint256 totalDebtAssets);

    /// @notice Retrieves the total amounts of collateral and protected (non-borrowable) assets
    /// @return totalCollateralAssets The total amount of assets of type 'Collateral'
    /// @return totalProtectedAssets The total amount of protected (non-borrowable) assets
    function getCollateralAndProtectedTotalsStorage()
        external
        view
        returns (uint256 totalCollateralAssets, uint256 totalProtectedAssets);

    /// @notice Retrieves the total amounts of collateral and debt assets
    /// @return totalCollateralAssets The total amount of assets of type 'Collateral'
    /// @return totalDebtAssets The total amount of debt assets of type 'Debt'
    function getCollateralAndDebtTotalsStorage()
        external
        view
        returns (uint256 totalCollateralAssets, uint256 totalDebtAssets);

    /// @notice Implements IERC4626.convertToShares for each asset type
    function convertToShares(uint256 _assets, AssetType _assetType) external view returns (uint256 shares);

    /// @notice Implements IERC4626.convertToAssets for each asset type
    function convertToAssets(uint256 _shares, AssetType _assetType) external view returns (uint256 assets);

    /// @notice Implements IERC4626.previewDeposit for protected (non-borrowable) collateral and collateral
    /// @dev Reverts for debt asset type
    function previewDeposit(uint256 _assets, CollateralType _collateralType) external view returns (uint256 shares);

    /// @notice Implements IERC4626.deposit for protected (non-borrowable) collateral and collateral
    /// @dev Reverts for debt asset type
    function deposit(uint256 _assets, address _receiver, CollateralType _collateralType)
        external
        returns (uint256 shares);

    /// @notice Implements IERC4626.previewMint for protected (non-borrowable) collateral and collateral
    /// @dev Reverts for debt asset type
    function previewMint(uint256 _shares, CollateralType _collateralType) external view returns (uint256 assets);

    /// @notice Implements IERC4626.mint for protected (non-borrowable) collateral and collateral
    /// @dev Reverts for debt asset type
    function mint(uint256 _shares, address _receiver, CollateralType _collateralType) external returns (uint256 assets);

    /// @notice Implements IERC4626.maxWithdraw for protected (non-borrowable) collateral and collateral
    /// @dev Reverts for debt asset type
    function maxWithdraw(address _owner, CollateralType _collateralType) external view returns (uint256 maxAssets);

    /// @notice Implements IERC4626.previewWithdraw for protected (non-borrowable) collateral and collateral
    /// @dev Reverts for debt asset type
    function previewWithdraw(uint256 _assets, CollateralType _collateralType) external view returns (uint256 shares);

    /// @notice Implements IERC4626.withdraw for protected (non-borrowable) collateral and collateral
    /// @dev Reverts for debt asset type
    function withdraw(uint256 _assets, address _receiver, address _owner, CollateralType _collateralType)
        external
        returns (uint256 shares);

    /// @notice Implements IERC4626.maxRedeem for protected (non-borrowable) collateral and collateral
    /// @dev Reverts for debt asset type
    function maxRedeem(address _owner, CollateralType _collateralType) external view returns (uint256 maxShares);

    /// @notice Implements IERC4626.previewRedeem for protected (non-borrowable) collateral and collateral
    /// @dev Reverts for debt asset type
    function previewRedeem(uint256 _shares, CollateralType _collateralType) external view returns (uint256 assets);

    /// @notice Implements IERC4626.redeem for protected (non-borrowable) collateral and collateral
    /// @dev Reverts for debt asset type
    function redeem(uint256 _shares, address _receiver, address _owner, CollateralType _collateralType)
        external
        returns (uint256 assets);

    /// @notice Calculates the maximum amount of assets that can be borrowed by the given address
    /// @param _borrower Address of the potential borrower
    /// @return maxAssets Maximum amount of assets that the borrower can borrow, this value is underestimated
    /// That means, in some cases when you borrow maxAssets, you will be able to borrow again eg. up to 2wei
    /// Reason for underestimation is to return value that will not cause borrow revert
    function maxBorrow(address _borrower) external view returns (uint256 maxAssets);

    /// @notice Previews the amount of shares equivalent to the given asset amount for borrowing
    /// @param _assets Amount of assets to preview the equivalent shares for
    /// @return shares Amount of shares equivalent to the provided asset amount
    function previewBorrow(uint256 _assets) external view returns (uint256 shares);

    /// @notice Allows an address to borrow a specified amount of assets
    /// @param _assets Amount of assets to borrow
    /// @param _receiver Address receiving the borrowed assets
    /// @param _borrower Address responsible for the borrowed assets
    /// @return shares Amount of shares equivalent to the borrowed assets
    function borrow(uint256 _assets, address _receiver, address _borrower)
        external returns (uint256 shares);

    /// @notice Calculates the maximum amount of shares that can be borrowed by the given address
    /// @param _borrower Address of the potential borrower
    /// @return maxShares Maximum number of shares that the borrower can borrow
    function maxBorrowShares(address _borrower) external view returns (uint256 maxShares);

    /// @notice Previews the amount of assets equivalent to the given share amount for borrowing
    /// @param _shares Amount of shares to preview the equivalent assets for
    /// @return assets Amount of assets equivalent to the provided share amount
    function previewBorrowShares(uint256 _shares) external view returns (uint256 assets);

    /// @notice Calculates the maximum amount of assets that can be borrowed by the given address
    /// @param _borrower Address of the potential borrower
    /// @return maxAssets Maximum amount of assets that the borrower can borrow, this value is underestimated
    /// That means, in some cases when you borrow maxAssets, you will be able to borrow again eg. up to 2wei
    /// Reason for underestimation is to return value that will not cause borrow revert
    function maxBorrowSameAsset(address _borrower) external view returns (uint256 maxAssets);

    /// @notice Allows an address to borrow a specified amount of assets that will be back up with deposit made with the
    /// same asset
    /// @param _assets Amount of assets to borrow
    /// @param _receiver Address receiving the borrowed assets
    /// @param _borrower Address responsible for the borrowed assets
    /// @return shares Amount of shares equivalent to the borrowed assets
    function borrowSameAsset(uint256 _assets, address _receiver, address _borrower)
        external returns (uint256 shares);

    /// @notice Allows a user to borrow assets based on the provided share amount
    /// @param _shares Amount of shares to borrow against
    /// @param _receiver Address to receive the borrowed assets
    /// @param _borrower Address responsible for the borrowed assets
    /// @return assets Amount of assets borrowed
    function borrowShares(uint256 _shares, address _receiver, address _borrower)
        external
        returns (uint256 assets);

    /// @notice Calculates the maximum amount an address can repay based on their debt shares
    /// @param _borrower Address of the borrower
    /// @return assets Maximum amount of assets the borrower can repay
    function maxRepay(address _borrower) external view returns (uint256 assets);

    /// @notice Provides an estimation of the number of shares equivalent to a given asset amount for repayment
    /// @param _assets Amount of assets to be repaid
    /// @return shares Estimated number of shares equivalent to the provided asset amount
    function previewRepay(uint256 _assets) external view returns (uint256 shares);

    /// @notice Repays a given asset amount and returns the equivalent number of shares
    /// @param _assets Amount of assets to be repaid
    /// @param _borrower Address of the borrower whose debt is being repaid
    /// @return shares The equivalent number of shares for the provided asset amount
    function repay(uint256 _assets, address _borrower) external returns (uint256 shares);

    /// @notice Calculates the maximum number of shares that can be repaid for a given borrower
    /// @param _borrower Address of the borrower
    /// @return shares The maximum number of shares that can be repaid for the borrower
    function maxRepayShares(address _borrower) external view returns (uint256 shares);

    /// @notice Provides a preview of the equivalent assets for a given number of shares to repay
    /// @param _shares Number of shares to preview repayment for
    /// @return assets Equivalent assets for the provided shares
    function previewRepayShares(uint256 _shares) external view returns (uint256 assets);

    /// @notice Allows a user to repay a loan using shares instead of assets
    /// @param _shares The number of shares the borrower wants to repay with
    /// @param _borrower The address of the borrower for whom to repay the loan
    /// @return assets The equivalent assets amount for the provided shares
    function repayShares(uint256 _shares, address _borrower) external returns (uint256 assets);

    /// @notice Transitions assets between borrowable (collateral) and non-borrowable (protected) states
    /// @dev This function allows assets to move between collateral and protected (non-borrowable) states without
    /// leaving the protocol
    /// @param _shares Amount of shares to be transitioned
    /// @param _owner Owner of the assets being transitioned
    /// @param _transitionFrom Specifies if the transition is from collateral or protected assets
    /// @return assets Amount of assets transitioned
    function transitionCollateral(uint256 _shares, address _owner, CollateralType _transitionFrom)
        external
        returns (uint256 assets);

    /// @notice Switches the collateral silo to this silo
    /// @dev Revert if the collateral silo is already set
    function switchCollateralToThisSilo() external;

    /// @notice Accrues interest for the asset and returns the accrued interest amount
    /// @return accruedInterest The total interest accrued during this operation
    function accrueInterest() external returns (uint256 accruedInterest);

    /// @notice only for SiloConfig
    function accrueInterestForConfig(
        address _interestRateModel,
        uint256 _daoFee,
        uint256 _deployerFee
    ) external;

    /// @notice Withdraws earned fees and distributes them to the DAO and deployer fee receivers
    function withdrawFees() external;
}

File 13 of 29 : IInterestRateModelV2Config.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;

import {IInterestRateModelV2} from "./IInterestRateModelV2.sol";

interface IInterestRateModelV2Config {
    /// @return config returns immutable IRM configuration that is present in contract
    function getConfig() external view returns (IInterestRateModelV2.Config memory config);
}

File 14 of 29 : PRBMathCommon.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.28;

/* solhint-disable */
/// @dev Common mathematical functions used in both PRBMathSD59x18 and PRBMathUD60x18. Note that this shared library
/// does not always assume the signed 59.18-decimal fixed-point or the unsigned 60.18-decimal fixed-point
// representation. When it does not, it is annotated in the function's NatSpec documentation.
/// @author Paul Razvan Berg
library PRBMathCommon {
    /// @dev How many trailing decimals can be represented.
    uint256 internal constant _SCALE = 1e18;

    /// @notice Calculates the binary exponent of x using the binary fraction method.
    /// @dev Uses 128.128-bit fixed-point numbers - it is the most efficient way.
    /// @param x The exponent as an unsigned 128.128-bit fixed-point number.
    /// @return result The result as an unsigned 60x18 decimal fixed-point number.
    function exp2(uint256 x) internal pure returns (uint256 result) {
        unchecked {
            // Start from 0.5 in the 128.128-bit fixed-point format. We need to use uint256 because the intermediary
            // may get very close to 2^256, which doesn't fit in int256.
            result = 0x80000000000000000000000000000000;

            // Multiply the result by root(2, 2^-i) when the bit at debt i is 1. None of the intermediary results overflows
            // because the initial result is 2^127 and all magic factors are less than 2^129.
            if (x & 0x80000000000000000000000000000000 > 0) result = (result * 0x16A09E667F3BCC908B2FB1366EA957D3E) >> 128;
            if (x & 0x40000000000000000000000000000000 > 0) result = (result * 0x1306FE0A31B7152DE8D5A46305C85EDED) >> 128;
            if (x & 0x20000000000000000000000000000000 > 0) result = (result * 0x1172B83C7D517ADCDF7C8C50EB14A7920) >> 128;
            if (x & 0x10000000000000000000000000000000 > 0) result = (result * 0x10B5586CF9890F6298B92B71842A98364) >> 128;
            if (x & 0x8000000000000000000000000000000 > 0) result = (result * 0x1059B0D31585743AE7C548EB68CA417FE) >> 128;
            if (x & 0x4000000000000000000000000000000 > 0) result = (result * 0x102C9A3E778060EE6F7CACA4F7A29BDE9) >> 128;
            if (x & 0x2000000000000000000000000000000 > 0) result = (result * 0x10163DA9FB33356D84A66AE336DCDFA40) >> 128;
            if (x & 0x1000000000000000000000000000000 > 0) result = (result * 0x100B1AFA5ABCBED6129AB13EC11DC9544) >> 128;
            if (x & 0x800000000000000000000000000000 > 0) result = (result * 0x10058C86DA1C09EA1FF19D294CF2F679C) >> 128;
            if (x & 0x400000000000000000000000000000 > 0) result = (result * 0x1002C605E2E8CEC506D21BFC89A23A011) >> 128;
            if (x & 0x200000000000000000000000000000 > 0) result = (result * 0x100162F3904051FA128BCA9C55C31E5E0) >> 128;
            if (x & 0x100000000000000000000000000000 > 0) result = (result * 0x1000B175EFFDC76BA38E31671CA939726) >> 128;
            if (x & 0x80000000000000000000000000000 > 0) result = (result * 0x100058BA01FB9F96D6CACD4B180917C3E) >> 128;
            if (x & 0x40000000000000000000000000000 > 0) result = (result * 0x10002C5CC37DA9491D0985C348C68E7B4) >> 128;
            if (x & 0x20000000000000000000000000000 > 0) result = (result * 0x1000162E525EE054754457D5995292027) >> 128;
            if (x & 0x10000000000000000000000000000 > 0) result = (result * 0x10000B17255775C040618BF4A4ADE83FD) >> 128;
            if (x & 0x8000000000000000000000000000 > 0) result = (result * 0x1000058B91B5BC9AE2EED81E9B7D4CFAC) >> 128;
            if (x & 0x4000000000000000000000000000 > 0) result = (result * 0x100002C5C89D5EC6CA4D7C8ACC017B7CA) >> 128;
            if (x & 0x2000000000000000000000000000 > 0) result = (result * 0x10000162E43F4F831060E02D839A9D16D) >> 128;
            if (x & 0x1000000000000000000000000000 > 0) result = (result * 0x100000B1721BCFC99D9F890EA06911763) >> 128;
            if (x & 0x800000000000000000000000000 > 0) result = (result * 0x10000058B90CF1E6D97F9CA14DBCC1629) >> 128;
            if (x & 0x400000000000000000000000000 > 0) result = (result * 0x1000002C5C863B73F016468F6BAC5CA2C) >> 128;
            if (x & 0x200000000000000000000000000 > 0) result = (result * 0x100000162E430E5A18F6119E3C02282A6) >> 128;
            if (x & 0x100000000000000000000000000 > 0) result = (result * 0x1000000B1721835514B86E6D96EFD1BFF) >> 128;
            if (x & 0x80000000000000000000000000 > 0) result = (result * 0x100000058B90C0B48C6BE5DF846C5B2F0) >> 128;
            if (x & 0x40000000000000000000000000 > 0) result = (result * 0x10000002C5C8601CC6B9E94213C72737B) >> 128;
            if (x & 0x20000000000000000000000000 > 0) result = (result * 0x1000000162E42FFF037DF38AA2B219F07) >> 128;
            if (x & 0x10000000000000000000000000 > 0) result = (result * 0x10000000B17217FBA9C739AA5819F44FA) >> 128;
            if (x & 0x8000000000000000000000000 > 0) result = (result * 0x1000000058B90BFCDEE5ACD3C1CEDC824) >> 128;
            if (x & 0x4000000000000000000000000 > 0) result = (result * 0x100000002C5C85FE31F35A6A30DA1BE51) >> 128;
            if (x & 0x2000000000000000000000000 > 0) result = (result * 0x10000000162E42FF0999CE3541B9FFFD0) >> 128;
            if (x & 0x1000000000000000000000000 > 0) result = (result * 0x100000000B17217F80F4EF5AADDA45554) >> 128;
            if (x & 0x800000000000000000000000 > 0) result = (result * 0x10000000058B90BFBF8479BD5A81B51AE) >> 128;
            if (x & 0x400000000000000000000000 > 0) result = (result * 0x1000000002C5C85FDF84BD62AE30A74CD) >> 128;
            if (x & 0x200000000000000000000000 > 0) result = (result * 0x100000000162E42FEFB2FED257559BDAA) >> 128;
            if (x & 0x100000000000000000000000 > 0) result = (result * 0x1000000000B17217F7D5A7716BBA4A9AF) >> 128;
            if (x & 0x80000000000000000000000 > 0) result = (result * 0x100000000058B90BFBE9DDBAC5E109CCF) >> 128;
            if (x & 0x40000000000000000000000 > 0) result = (result * 0x10000000002C5C85FDF4B15DE6F17EB0E) >> 128;
            if (x & 0x20000000000000000000000 > 0) result = (result * 0x1000000000162E42FEFA494F1478FDE05) >> 128;
            if (x & 0x10000000000000000000000 > 0) result = (result * 0x10000000000B17217F7D20CF927C8E94D) >> 128;
            if (x & 0x8000000000000000000000 > 0) result = (result * 0x1000000000058B90BFBE8F71CB4E4B33E) >> 128;
            if (x & 0x4000000000000000000000 > 0) result = (result * 0x100000000002C5C85FDF477B662B26946) >> 128;
            if (x & 0x2000000000000000000000 > 0) result = (result * 0x10000000000162E42FEFA3AE53369388D) >> 128;
            if (x & 0x1000000000000000000000 > 0) result = (result * 0x100000000000B17217F7D1D351A389D41) >> 128;
            if (x & 0x800000000000000000000 > 0) result = (result * 0x10000000000058B90BFBE8E8B2D3D4EDF) >> 128;
            if (x & 0x400000000000000000000 > 0) result = (result * 0x1000000000002C5C85FDF4741BEA6E77F) >> 128;
            if (x & 0x200000000000000000000 > 0) result = (result * 0x100000000000162E42FEFA39FE95583C3) >> 128;
            if (x & 0x100000000000000000000 > 0) result = (result * 0x1000000000000B17217F7D1CFB72B45E3) >> 128;
            if (x & 0x80000000000000000000 > 0) result = (result * 0x100000000000058B90BFBE8E7CC35C3F2) >> 128;
            if (x & 0x40000000000000000000 > 0) result = (result * 0x10000000000002C5C85FDF473E242EA39) >> 128;
            if (x & 0x20000000000000000000 > 0) result = (result * 0x1000000000000162E42FEFA39F02B772C) >> 128;
            if (x & 0x10000000000000000000 > 0) result = (result * 0x10000000000000B17217F7D1CF7D83C1A) >> 128;
            if (x & 0x8000000000000000000 > 0) result = (result * 0x1000000000000058B90BFBE8E7BDCBE2E) >> 128;
            if (x & 0x4000000000000000000 > 0) result = (result * 0x100000000000002C5C85FDF473DEA871F) >> 128;
            if (x & 0x2000000000000000000 > 0) result = (result * 0x10000000000000162E42FEFA39EF44D92) >> 128;
            if (x & 0x1000000000000000000 > 0) result = (result * 0x100000000000000B17217F7D1CF79E949) >> 128;
            if (x & 0x800000000000000000 > 0) result = (result * 0x10000000000000058B90BFBE8E7BCE545) >> 128;
            if (x & 0x400000000000000000 > 0) result = (result * 0x1000000000000002C5C85FDF473DE6ECA) >> 128;
            if (x & 0x200000000000000000 > 0) result = (result * 0x100000000000000162E42FEFA39EF366F) >> 128;
            if (x & 0x100000000000000000 > 0) result = (result * 0x1000000000000000B17217F7D1CF79AFA) >> 128;
            if (x & 0x80000000000000000 > 0) result = (result * 0x100000000000000058B90BFBE8E7BCD6E) >> 128;
            if (x & 0x40000000000000000 > 0) result = (result * 0x10000000000000002C5C85FDF473DE6B3) >> 128;
            if (x & 0x20000000000000000 > 0) result = (result * 0x1000000000000000162E42FEFA39EF359) >> 128;
            if (x & 0x10000000000000000 > 0) result = (result * 0x10000000000000000B17217F7D1CF79AC) >> 128;

            // Multiply the result by the integer part 2^n + 1. We have to shift by one bit extra because we have already divided
            // by two when we set the result equal to 0.5 above.
            result = result << ((x >> 128) + 1);

            // Convert the result to the signed 60.18-decimal fixed-point format.
            result = PRBMathCommon.mulDiv(result, 1e18, 2**128);
        }
    }

    /// @notice Calculates floor(x*y÷denominator) with full precision.
    ///
    /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv.
    ///
    /// Requirements:
    /// - The denominator cannot be zero.
    /// - The result must fit within uint256.
    ///
    /// Caveats:
    /// - This function does not work with fixed-point numbers.
    ///
    /// @param x The multiplicand as an uint256.
    /// @param y The multiplier as an uint256.
    /// @param denominator The divisor as an uint256.
    /// @return result The result as an uint256.
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2**256 and mod 2**256 - 1, then use
        // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
        // variables such that product = prod1 * 2**256 + prod0.
        uint256 prod0; // Least significant 256 bits of the product
        uint256 prod1; // Most significant 256 bits of the product
        assembly {
            let mm := mulmod(x, y, not(0))
            prod0 := mul(x, y)
            prod1 := sub(sub(mm, prod0), lt(mm, prod0))
        }

        // Handle non-overflow cases, 256 by 256 division
        if (prod1 == 0) {
            require(denominator > 0);
            assembly {
                result := div(prod0, denominator)
            }
            return result;
        }

        // Make sure the result is less than 2**256. Also prevents denominator == 0.
        require(denominator > prod1);

        ///////////////////////////////////////////////
        // 512 by 256 division.
        ///////////////////////////////////////////////

        // Make division exact by subtracting the remainder from [prod1 prod0].
        uint256 remainder;
        assembly {
            // Compute remainder using mulmod.
            remainder := mulmod(x, y, denominator)

            // Subtract 256 bit number from 512 bit number
            prod1 := sub(prod1, gt(remainder, prod0))
            prod0 := sub(prod0, remainder)
        }

        // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
        // See https://cs.stackexchange.com/q/138556/92363.
        unchecked {
            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 lpotdod = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by lpotdod.
                denominator := div(denominator, lpotdod)

                // Divide [prod1 prod0] by lpotdod.
                prod0 := div(prod0, lpotdod)

                // Flip lpotdod such that it is 2**256 / lpotdod. If lpotdod is zero, then it becomes one.
                lpotdod := add(div(sub(0, lpotdod), lpotdod), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * lpotdod;

            // Invert denominator mod 2**256. Now that denominator is an odd number, it has an inverse modulo 2**256 such
            // that denominator * inv = 1 mod 2**256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2**4
            uint256 inverse = (3 * denominator) ^ 2;

            // Now use Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2**8
            inverse *= 2 - denominator * inverse; // inverse mod 2**16
            inverse *= 2 - denominator * inverse; // inverse mod 2**32
            inverse *= 2 - denominator * inverse; // inverse mod 2**64
            inverse *= 2 - denominator * inverse; // inverse mod 2**128
            inverse *= 2 - denominator * inverse; // inverse mod 2**256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2**256. Since the preconditions guarantee that the outcome is
            // less than 2**256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }
}
/* solhint-enable */

File 15 of 29 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return a == 0 ? 0 : (a - 1) / b + 1;
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2²⁵⁶ + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= prod1) {
                Panic.panic(denominator == 0 ? Panic.DIVISION_BY_ZERO : Panic.UNDER_OVERFLOW);
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, expect 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Ferma's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return x < 0 ? (n - uint256(-x)) : uint256(x); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked has failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        /// @solidity memory-safe-assembly
        assembly {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 exp;
        unchecked {
            exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
            value >>= exp;
            result += exp;

            exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
            value >>= exp;
            result += exp;

            exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
            value >>= exp;
            result += exp;

            exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
            value >>= exp;
            result += exp;

            exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
            value >>= exp;
            result += exp;

            exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
            value >>= exp;
            result += exp;

            exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
            value >>= exp;
            result += exp;

            result += SafeCast.toUint(value > 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 isGt;
        unchecked {
            isGt = SafeCast.toUint(value > (1 << 128) - 1);
            value >>= isGt * 128;
            result += isGt * 16;

            isGt = SafeCast.toUint(value > (1 << 64) - 1);
            value >>= isGt * 64;
            result += isGt * 8;

            isGt = SafeCast.toUint(value > (1 << 32) - 1);
            value >>= isGt * 32;
            result += isGt * 4;

            isGt = SafeCast.toUint(value > (1 << 16) - 1);
            value >>= isGt * 16;
            result += isGt * 2;

            result += SafeCast.toUint(value > (1 << 8) - 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 16 of 29 : Rounding.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.28;

import {Math} from "openzeppelin5/utils/math/Math.sol";

// solhint-disable private-vars-leading-underscore
library Rounding {
    Math.Rounding internal constant UP = (Math.Rounding.Ceil);
    Math.Rounding internal constant DOWN = (Math.Rounding.Floor);
    Math.Rounding internal constant DEBT_TO_ASSETS = (Math.Rounding.Ceil);
    // COLLATERAL_TO_ASSETS is used to calculate borrower collateral (so we want to round down)
    Math.Rounding internal constant COLLATERAL_TO_ASSETS = (Math.Rounding.Floor);
    // why DEPOSIT_TO_ASSETS is Up if COLLATERAL_TO_ASSETS is Down?
    // DEPOSIT_TO_ASSETS is used for preview deposit and deposit, based on provided shares we want to pull "more" tokens
    // so we rounding up, "token flow" is in different direction than for COLLATERAL_TO_ASSETS, that's why
    // different rounding policy
    Math.Rounding internal constant DEPOSIT_TO_ASSETS = (Math.Rounding.Ceil);
    Math.Rounding internal constant DEPOSIT_TO_SHARES = (Math.Rounding.Floor);
    Math.Rounding internal constant BORROW_TO_ASSETS = (Math.Rounding.Floor);
    Math.Rounding internal constant BORROW_TO_SHARES = (Math.Rounding.Ceil);
    Math.Rounding internal constant MAX_BORROW_TO_ASSETS = (Math.Rounding.Floor);
    Math.Rounding internal constant MAX_BORROW_TO_SHARES = (Math.Rounding.Floor);
    Math.Rounding internal constant MAX_BORROW_VALUE = (Math.Rounding.Floor);
    Math.Rounding internal constant REPAY_TO_ASSETS = (Math.Rounding.Ceil);
    Math.Rounding internal constant REPAY_TO_SHARES = (Math.Rounding.Floor);
    Math.Rounding internal constant MAX_REPAY_TO_ASSETS = (Math.Rounding.Ceil);
    Math.Rounding internal constant WITHDRAW_TO_ASSETS = (Math.Rounding.Floor);
    Math.Rounding internal constant WITHDRAW_TO_SHARES = (Math.Rounding.Ceil);
    Math.Rounding internal constant MAX_WITHDRAW_TO_ASSETS = (Math.Rounding.Floor);
    Math.Rounding internal constant MAX_WITHDRAW_TO_SHARES = (Math.Rounding.Floor);
    Math.Rounding internal constant LIQUIDATE_TO_SHARES = (Math.Rounding.Floor);
    Math.Rounding internal constant LTV = (Math.Rounding.Ceil);
    Math.Rounding internal constant ACCRUED_INTEREST = (Math.Rounding.Floor);
}

File 17 of 29 : IERC4626.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC4626.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../token/ERC20/IERC20.sol";
import {IERC20Metadata} from "../token/ERC20/extensions/IERC20Metadata.sol";

/**
 * @dev Interface of the ERC-4626 "Tokenized Vault Standard", as defined in
 * https://eips.ethereum.org/EIPS/eip-4626[ERC-4626].
 */
interface IERC4626 is IERC20, IERC20Metadata {
    event Deposit(address indexed sender, address indexed owner, uint256 assets, uint256 shares);

    event Withdraw(
        address indexed sender,
        address indexed receiver,
        address indexed owner,
        uint256 assets,
        uint256 shares
    );

    /**
     * @dev Returns the address of the underlying token used for the Vault for accounting, depositing, and withdrawing.
     *
     * - MUST be an ERC-20 token contract.
     * - MUST NOT revert.
     */
    function asset() external view returns (address assetTokenAddress);

    /**
     * @dev Returns the total amount of the underlying asset that is “managed” by Vault.
     *
     * - SHOULD include any compounding that occurs from yield.
     * - MUST be inclusive of any fees that are charged against assets in the Vault.
     * - MUST NOT revert.
     */
    function totalAssets() external view returns (uint256 totalManagedAssets);

    /**
     * @dev Returns the amount of shares that the Vault would exchange for the amount of assets provided, in an ideal
     * scenario where all the conditions are met.
     *
     * - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
     * - MUST NOT show any variations depending on the caller.
     * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
     * - MUST NOT revert.
     *
     * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
     * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
     * from.
     */
    function convertToShares(uint256 assets) external view returns (uint256 shares);

    /**
     * @dev Returns the amount of assets that the Vault would exchange for the amount of shares provided, in an ideal
     * scenario where all the conditions are met.
     *
     * - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
     * - MUST NOT show any variations depending on the caller.
     * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
     * - MUST NOT revert.
     *
     * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
     * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
     * from.
     */
    function convertToAssets(uint256 shares) external view returns (uint256 assets);

    /**
     * @dev Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver,
     * through a deposit call.
     *
     * - MUST return a limited value if receiver is subject to some deposit limit.
     * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of assets that may be deposited.
     * - MUST NOT revert.
     */
    function maxDeposit(address receiver) external view returns (uint256 maxAssets);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their deposit at the current block, given
     * current on-chain conditions.
     *
     * - MUST return as close to and no more than the exact amount of Vault shares that would be minted in a deposit
     *   call in the same transaction. I.e. deposit should return the same or more shares as previewDeposit if called
     *   in the same transaction.
     * - MUST NOT account for deposit limits like those returned from maxDeposit and should always act as though the
     *   deposit would be accepted, regardless if the user has enough tokens approved, etc.
     * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToShares and previewDeposit SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by depositing.
     */
    function previewDeposit(uint256 assets) external view returns (uint256 shares);

    /**
     * @dev Mints shares Vault shares to receiver by depositing exactly amount of underlying tokens.
     *
     * - MUST emit the Deposit event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
     *   deposit execution, and are accounted for during deposit.
     * - MUST revert if all of assets cannot be deposited (due to deposit limit being reached, slippage, the user not
     *   approving enough underlying tokens to the Vault contract, etc).
     *
     * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
     */
    function deposit(uint256 assets, address receiver) external returns (uint256 shares);

    /**
     * @dev Returns the maximum amount of the Vault shares that can be minted for the receiver, through a mint call.
     * - MUST return a limited value if receiver is subject to some mint limit.
     * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of shares that may be minted.
     * - MUST NOT revert.
     */
    function maxMint(address receiver) external view returns (uint256 maxShares);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their mint at the current block, given
     * current on-chain conditions.
     *
     * - MUST return as close to and no fewer than the exact amount of assets that would be deposited in a mint call
     *   in the same transaction. I.e. mint should return the same or fewer assets as previewMint if called in the
     *   same transaction.
     * - MUST NOT account for mint limits like those returned from maxMint and should always act as though the mint
     *   would be accepted, regardless if the user has enough tokens approved, etc.
     * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToAssets and previewMint SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by minting.
     */
    function previewMint(uint256 shares) external view returns (uint256 assets);

    /**
     * @dev Mints exactly shares Vault shares to receiver by depositing amount of underlying tokens.
     *
     * - MUST emit the Deposit event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the mint
     *   execution, and are accounted for during mint.
     * - MUST revert if all of shares cannot be minted (due to deposit limit being reached, slippage, the user not
     *   approving enough underlying tokens to the Vault contract, etc).
     *
     * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
     */
    function mint(uint256 shares, address receiver) external returns (uint256 assets);

    /**
     * @dev Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the
     * Vault, through a withdraw call.
     *
     * - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
     * - MUST NOT revert.
     */
    function maxWithdraw(address owner) external view returns (uint256 maxAssets);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their withdrawal at the current block,
     * given current on-chain conditions.
     *
     * - MUST return as close to and no fewer than the exact amount of Vault shares that would be burned in a withdraw
     *   call in the same transaction. I.e. withdraw should return the same or fewer shares as previewWithdraw if
     *   called
     *   in the same transaction.
     * - MUST NOT account for withdrawal limits like those returned from maxWithdraw and should always act as though
     *   the withdrawal would be accepted, regardless if the user has enough shares, etc.
     * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToShares and previewWithdraw SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by depositing.
     */
    function previewWithdraw(uint256 assets) external view returns (uint256 shares);

    /**
     * @dev Burns shares from owner and sends exactly assets of underlying tokens to receiver.
     *
     * - MUST emit the Withdraw event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
     *   withdraw execution, and are accounted for during withdraw.
     * - MUST revert if all of assets cannot be withdrawn (due to withdrawal limit being reached, slippage, the owner
     *   not having enough shares, etc).
     *
     * Note that some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
     * Those methods should be performed separately.
     */
    function withdraw(uint256 assets, address receiver, address owner) external returns (uint256 shares);

    /**
     * @dev Returns the maximum amount of Vault shares that can be redeemed from the owner balance in the Vault,
     * through a redeem call.
     *
     * - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
     * - MUST return balanceOf(owner) if owner is not subject to any withdrawal limit or timelock.
     * - MUST NOT revert.
     */
    function maxRedeem(address owner) external view returns (uint256 maxShares);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their redeemption at the current block,
     * given current on-chain conditions.
     *
     * - MUST return as close to and no more than the exact amount of assets that would be withdrawn in a redeem call
     *   in the same transaction. I.e. redeem should return the same or more assets as previewRedeem if called in the
     *   same transaction.
     * - MUST NOT account for redemption limits like those returned from maxRedeem and should always act as though the
     *   redemption would be accepted, regardless if the user has enough shares, etc.
     * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToAssets and previewRedeem SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by redeeming.
     */
    function previewRedeem(uint256 shares) external view returns (uint256 assets);

    /**
     * @dev Burns exactly shares from owner and sends assets of underlying tokens to receiver.
     *
     * - MUST emit the Withdraw event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
     *   redeem execution, and are accounted for during redeem.
     * - MUST revert if all of shares cannot be redeemed (due to withdrawal limit being reached, slippage, the owner
     *   not having enough shares, etc).
     *
     * NOTE: some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
     * Those methods should be performed separately.
     */
    function redeem(uint256 shares, address receiver, address owner) external returns (uint256 assets);
}

File 18 of 29 : IERC3156FlashLender.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;

import {IERC3156FlashBorrower} from "./IERC3156FlashBorrower.sol";

/// @notice https://eips.ethereum.org/EIPS/eip-3156
interface IERC3156FlashLender {
    /// @notice Protected deposits are not available for a flash loan.
    /// During the execution of the flashloan, Silo methods are not taking into consideration the fact,
    /// that some (or all) tokens were transferred as flashloan, therefore some methods can return invalid state
    /// eg. maxWithdraw can return amount that are not available to withdraw during flashlon.
    /// @dev Initiate a flash loan.
    /// @param _receiver The receiver of the tokens in the loan, and the receiver of the callback.
    /// @param _token The loan currency.
    /// @param _amount The amount of tokens lent.
    /// @param _data Arbitrary data structure, intended to contain user-defined parameters.
    function flashLoan(IERC3156FlashBorrower _receiver, address _token, uint256 _amount, bytes calldata _data)
        external
        returns (bool);

    /// @dev The amount of currency available to be lent.
    /// @param _token The loan currency.
    /// @return The amount of `token` that can be borrowed.
    function maxFlashLoan(address _token) external view returns (uint256);

    /// @dev The fee to be charged for a given loan.
    /// @param _token The loan currency.
    /// @param _amount The amount of tokens lent.
    /// @return The amount of `token` to be charged for the loan, on top of the returned principal.
    function flashFee(address _token, uint256 _amount) external view returns (uint256);
}

File 19 of 29 : ISiloConfig.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;

import {ISilo} from "./ISilo.sol";
import {ICrossReentrancyGuard} from "./ICrossReentrancyGuard.sol";

interface ISiloConfig is ICrossReentrancyGuard {
    struct InitData {
        /// @notice Can be address zero if deployer fees are not to be collected. If deployer address is zero then
        /// deployer fee must be zero as well. Deployer will be minted an NFT that gives the right to claim deployer
        /// fees. NFT can be transferred with the right to claim.
        address deployer;

        /// @notice Address of the hook receiver called on every before/after action on Silo. Hook contract also
        /// implements liquidation logic and veSilo gauge connection.
        address hookReceiver;

        /// @notice Deployer's fee in 18 decimals points. Deployer will earn this fee based on the interest earned
        /// by the Silo. Max deployer fee is set by the DAO. At deployment it is 15%.
        uint256 deployerFee;

        /// @notice DAO's fee in 18 decimals points. DAO will earn this fee based on the interest earned
        /// by the Silo. Acceptable fee range fee is set by the DAO. Default at deployment is 5% - 50%.
        uint256 daoFee;

        /// @notice Address of the first token
        address token0;

        /// @notice Address of the solvency oracle. Solvency oracle is used to calculate LTV when deciding if borrower
        /// is solvent or should be liquidated. Solvency oracle is optional and if not set price of 1 will be assumed.
        address solvencyOracle0;

        /// @notice Address of the maxLtv oracle. Max LTV oracle is used to calculate LTV when deciding if borrower
        /// can borrow given amount of assets. Max LTV oracle is optional and if not set it defaults to solvency
        /// oracle. If neither is set price of 1 will be assumed.
        address maxLtvOracle0;

        /// @notice Address of the interest rate model
        address interestRateModel0;

        /// @notice Maximum LTV for first token. maxLTV is in 18 decimals points and is used to determine, if borrower
        /// can borrow given amount of assets. MaxLtv is in 18 decimals points. MaxLtv must be lower or equal to LT.
        uint256 maxLtv0;

        /// @notice Liquidation threshold for first token. LT is used to calculate solvency. LT is in 18 decimals
        /// points. LT must not be lower than maxLTV.
        uint256 lt0;

        /// @notice minimal acceptable LTV after liquidation, in 18 decimals points
        uint256 liquidationTargetLtv0;

        /// @notice Liquidation fee for the first token in 18 decimals points. Liquidation fee is what liquidator earns
        /// for repaying insolvent loan.
        uint256 liquidationFee0;

        /// @notice Flashloan fee sets the cost of taking a flashloan in 18 decimals points
        uint256 flashloanFee0;

        /// @notice Indicates if a beforeQuote on oracle contract should be called before quoting price
        bool callBeforeQuote0;

        /// @notice Address of the second token
        address token1;

        /// @notice Address of the solvency oracle. Solvency oracle is used to calculate LTV when deciding if borrower
        /// is solvent or should be liquidated. Solvency oracle is optional and if not set price of 1 will be assumed.
        address solvencyOracle1;

        /// @notice Address of the maxLtv oracle. Max LTV oracle is used to calculate LTV when deciding if borrower
        /// can borrow given amount of assets. Max LTV oracle is optional and if not set it defaults to solvency
        /// oracle. If neither is set price of 1 will be assumed.
        address maxLtvOracle1;

        /// @notice Address of the interest rate model
        address interestRateModel1;

        /// @notice Maximum LTV for first token. maxLTV is in 18 decimals points and is used to determine,
        /// if borrower can borrow given amount of assets. maxLtv is in 18 decimals points
        uint256 maxLtv1;

        /// @notice Liquidation threshold for first token. LT is used to calculate solvency. LT is in 18 decimals points
        uint256 lt1;

        /// @notice minimal acceptable LTV after liquidation, in 18 decimals points
        uint256 liquidationTargetLtv1;

        /// @notice Liquidation fee is what liquidator earns for repaying insolvent loan.
        uint256 liquidationFee1;

        /// @notice Flashloan fee sets the cost of taking a flashloan in 18 decimals points
        uint256 flashloanFee1;

        /// @notice Indicates if a beforeQuote on oracle contract should be called before quoting price
        bool callBeforeQuote1;
    }

    struct ConfigData {
        uint256 daoFee;
        uint256 deployerFee;
        address silo;
        address token;
        address protectedShareToken;
        address collateralShareToken;
        address debtShareToken;
        address solvencyOracle;
        address maxLtvOracle;
        address interestRateModel;
        uint256 maxLtv;
        uint256 lt;
        uint256 liquidationTargetLtv;
        uint256 liquidationFee;
        uint256 flashloanFee;
        address hookReceiver;
        bool callBeforeQuote;
    }

    struct DepositConfig {
        address silo;
        address token;
        address collateralShareToken;
        address protectedShareToken;
        uint256 daoFee;
        uint256 deployerFee;
        address interestRateModel;
    }

    error OnlySilo();
    error OnlySiloOrTokenOrHookReceiver();
    error WrongSilo();
    error OnlyDebtShareToken();
    error DebtExistInOtherSilo();
    error FeeTooHigh();

    /// @dev It should be called on debt transfer (debt share token transfer).
    /// In the case if the`_recipient` doesn't have configured a collateral silo,
    /// it will be set to the collateral silo of the `_sender`.
    /// @param _sender sender address
    /// @param _recipient recipient address
    function onDebtTransfer(address _sender, address _recipient) external;

    /// @notice Set collateral silo.
    /// @dev Revert if msg.sender is not a SILO_0 or SILO_1.
    /// @dev Always set collateral silo the same as msg.sender.
    /// @param _borrower borrower address
    function setThisSiloAsCollateralSilo(address _borrower) external;

    /// @notice Set collateral silo
    /// @dev Revert if msg.sender is not a SILO_0 or SILO_1.
    /// @dev Always set collateral silo opposite to the msg.sender.
    /// @param _borrower borrower address
    function setOtherSiloAsCollateralSilo(address _borrower) external;

    /// @notice Accrue interest for the silo
    /// @param _silo silo for which accrue interest
    function accrueInterestForSilo(address _silo) external;

    /// @notice Accrue interest for both silos (SILO_0 and SILO_1 in a config)
    function accrueInterestForBothSilos() external;

    /// @notice Retrieves the collateral silo for a specific borrower.
    /// @dev As a user can deposit into `Silo0` and `Silo1`, this property specifies which Silo
    /// will be used as collateral for the debt. Later on, it will be used for max LTV and solvency checks.
    /// After being set, the collateral silo is never set to `address(0)` again but such getters as
    /// `getConfigsForSolvency`, `getConfigsForBorrow`, `getConfigsForWithdraw` will return empty
    /// collateral silo config if borrower doesn't have debt.
    ///
    /// In the SiloConfig collateral silo is set by the following functions:
    /// `onDebtTransfer` - only if the recipient doesn't have collateral silo set (inherits it from the sender)
    /// This function is called on debt share token transfer (debt transfer).
    /// `setThisSiloAsCollateralSilo` - sets the same silo as the one that calls the function.
    /// `setOtherSiloAsCollateralSilo` - sets the opposite silo as collateral from the one that calls the function.
    ///
    /// In the Silo collateral silo is set by the following functions:
    /// `borrow` - always sets opposite silo as collateral.
    /// If Silo0 borrows, then Silo1 will be collateral and vice versa.
    /// `borrowSameAsset` - always sets the same silo as collateral.
    /// `switchCollateralToThisSilo` - always sets the same silo as collateral.
    /// @param _borrower The address of the borrower for which the collateral silo is being retrieved
    /// @return collateralSilo The address of the collateral silo for the specified borrower
    function borrowerCollateralSilo(address _borrower) external view returns (address collateralSilo);

    /// @notice Retrieves the silo ID
    /// @dev Each silo is assigned a unique ID. ERC-721 token is minted with identical ID to deployer.
    /// An owner of that token receives the deployer fees.
    /// @return siloId The ID of the silo
    function SILO_ID() external view returns (uint256 siloId); // solhint-disable-line func-name-mixedcase

    /// @notice Retrieves the addresses of the two silos
    /// @return silo0 The address of the first silo
    /// @return silo1 The address of the second silo
    function getSilos() external view returns (address silo0, address silo1);

    /// @notice Retrieves the asset associated with a specific silo
    /// @dev This function reverts for incorrect silo address input
    /// @param _silo The address of the silo for which the associated asset is being retrieved
    /// @return asset The address of the asset associated with the specified silo
    function getAssetForSilo(address _silo) external view returns (address asset);

    /// @notice Verifies if the borrower has debt in other silo by checking the debt share token balance
    /// @param _thisSilo The address of the silo in respect of which the debt is checked
    /// @param _borrower The address of the borrower for which the debt is checked
    /// @return hasDebt true if the borrower has debt in other silo
    function hasDebtInOtherSilo(address _thisSilo, address _borrower) external view returns (bool hasDebt);

    /// @notice Retrieves the debt silo associated with a specific borrower
    /// @dev This function reverts if debt present in two silo (should not happen)
    /// @param _borrower The address of the borrower for which the debt silo is being retrieved
    function getDebtSilo(address _borrower) external view returns (address debtSilo);

    /// @notice Retrieves configuration data for both silos. First config is for the silo that is asking for configs.
    /// @param borrower borrower address for which debtConfig will be returned
    /// @return collateralConfig The configuration data for collateral silo (empty if there is no debt).
    /// @return debtConfig The configuration data for debt silo (empty if there is no debt).
    function getConfigsForSolvency(address borrower)
        external
        view
        returns (ConfigData memory collateralConfig, ConfigData memory debtConfig);

    /// @notice Retrieves configuration data for a specific silo
    /// @dev This function reverts for incorrect silo address input.
    /// @param _silo The address of the silo for which configuration data is being retrieved
    /// @return config The configuration data for the specified silo
    function getConfig(address _silo) external view returns (ConfigData memory config);

    /// @notice Retrieves configuration data for a specific silo for withdraw fn.
    /// @dev This function reverts for incorrect silo address input.
    /// @param _silo The address of the silo for which configuration data is being retrieved
    /// @return depositConfig The configuration data for the specified silo (always config for `_silo`)
    /// @return collateralConfig The configuration data for the collateral silo (empty if there is no debt)
    /// @return debtConfig The configuration data for the debt silo (empty if there is no debt)
    function getConfigsForWithdraw(address _silo, address _borrower) external view returns (
        DepositConfig memory depositConfig,
        ConfigData memory collateralConfig,
        ConfigData memory debtConfig
    );

    /// @notice Retrieves configuration data for a specific silo for borrow fn.
    /// @dev This function reverts for incorrect silo address input.
    /// @param _debtSilo The address of the silo for which configuration data is being retrieved
    /// @return collateralConfig The configuration data for the collateral silo (always other than `_debtSilo`)
    /// @return debtConfig The configuration data for the debt silo (always config for `_debtSilo`)
    function getConfigsForBorrow(address _debtSilo)
        external
        view
        returns (ConfigData memory collateralConfig, ConfigData memory debtConfig);

    /// @notice Retrieves fee-related information for a specific silo
    /// @dev This function reverts for incorrect silo address input
    /// @param _silo The address of the silo for which fee-related information is being retrieved.
    /// @return daoFee The DAO fee percentage in 18 decimals points.
    /// @return deployerFee The deployer fee percentage in 18 decimals points.
    /// @return flashloanFee The flashloan fee percentage in 18 decimals points.
    /// @return asset The address of the asset associated with the specified silo.
    function getFeesWithAsset(address _silo)
        external
        view
        returns (uint256 daoFee, uint256 deployerFee, uint256 flashloanFee, address asset);

    /// @notice Retrieves share tokens associated with a specific silo
    /// @dev This function reverts for incorrect silo address input
    /// @param _silo The address of the silo for which share tokens are being retrieved
    /// @return protectedShareToken The address of the protected (non-borrowable) share token
    /// @return collateralShareToken The address of the collateral share token
    /// @return debtShareToken The address of the debt share token
    function getShareTokens(address _silo)
        external
        view
        returns (address protectedShareToken, address collateralShareToken, address debtShareToken);

    /// @notice Retrieves the share token and the silo token associated with a specific silo
    /// @param _silo The address of the silo for which the share token and silo token are being retrieved
    /// @param _collateralType The type of collateral
    /// @return shareToken The address of the share token (collateral or protected collateral)
    /// @return asset The address of the silo token
    function getCollateralShareTokenAndAsset(address _silo, ISilo.CollateralType _collateralType)
        external
        view
        returns (address shareToken, address asset);

    /// @notice Retrieves the share token and the silo token associated with a specific silo
    /// @param _silo The address of the silo for which the share token and silo token are being retrieved
    /// @return shareToken The address of the share token (debt)
    /// @return asset The address of the silo token
    function getDebtShareTokenAndAsset(address _silo)
        external
        view
        returns (address shareToken, address asset);
}

File 20 of 29 : ISiloFactory.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;

import {IERC721} from "openzeppelin5/interfaces/IERC721.sol";
import {ISiloConfig} from "./ISiloConfig.sol";

interface ISiloFactory is IERC721 {
    struct Range {
        uint128 min;
        uint128 max;
    }

    /// @notice Emitted on the creation of a Silo.
    /// @param implementation Address of the Silo implementation.
    /// @param token0 Address of the first Silo token.
    /// @param token1 Address of the second Silo token.
    /// @param silo0 Address of the first Silo.
    /// @param silo1 Address of the second Silo.
    /// @param siloConfig Address of the SiloConfig.
    event NewSilo(
        address indexed implementation,
        address indexed token0,
        address indexed token1,
        address silo0,
        address silo1,
        address siloConfig
    );

    event BaseURI(string newBaseURI);

    /// @notice Emitted on the update of DAO fee.
    /// @param minDaoFee Value of the new minimal DAO fee.
    /// @param maxDaoFee Value of the new maximal DAO fee.
    event DaoFeeChanged(uint128 minDaoFee, uint128 maxDaoFee);

    /// @notice Emitted on the update of max deployer fee.
    /// @param maxDeployerFee Value of the new max deployer fee.
    event MaxDeployerFeeChanged(uint256 maxDeployerFee);

    /// @notice Emitted on the update of max flashloan fee.
    /// @param maxFlashloanFee Value of the new max flashloan fee.
    event MaxFlashloanFeeChanged(uint256 maxFlashloanFee);

    /// @notice Emitted on the update of max liquidation fee.
    /// @param maxLiquidationFee Value of the new max liquidation fee.
    event MaxLiquidationFeeChanged(uint256 maxLiquidationFee);

    /// @notice Emitted on the change of DAO fee receiver.
    /// @param daoFeeReceiver Address of the new DAO fee receiver.
    event DaoFeeReceiverChanged(address daoFeeReceiver);

    error MissingHookReceiver();
    error ZeroAddress();
    error DaoFeeReceiverZeroAddress();
    error EmptyToken0();
    error EmptyToken1();
    error MaxFeeExceeded();
    error InvalidFeeRange();
    error SameAsset();
    error SameRange();
    error InvalidIrm();
    error InvalidMaxLtv();
    error InvalidLt();
    error InvalidDeployer();
    error DaoMinRangeExceeded();
    error DaoMaxRangeExceeded();
    error MaxDeployerFeeExceeded();
    error MaxFlashloanFeeExceeded();
    error MaxLiquidationFeeExceeded();
    error InvalidCallBeforeQuote();
    error OracleMisconfiguration();
    error InvalidQuoteToken();
    error HookIsZeroAddress();
    error LiquidationTargetLtvTooHigh();

    /// @notice Create a new Silo.
    /// @param _initData Silo initialization data.
    /// @param _siloConfig Silo configuration.
    /// @param _siloImpl Address of the `Silo` implementation.
    /// @param _shareProtectedCollateralTokenImpl Address of the `ShareProtectedCollateralToken` implementation.
    /// @param _shareDebtTokenImpl Address of the `ShareDebtToken` implementation.
    function createSilo(
        ISiloConfig.InitData memory _initData,
        ISiloConfig _siloConfig,
        address _siloImpl,
        address _shareProtectedCollateralTokenImpl,
        address _shareDebtTokenImpl
    )
        external;

    /// @notice NFT ownership represents the deployer fee receiver for the each Silo ID.  After burning, 
    /// the deployer fee is sent to the DAO. Burning doesn't affect Silo's behavior. It is only about fee distribution.
    /// @param _siloIdToBurn silo ID to burn.
    function burn(uint256 _siloIdToBurn) external;

    /// @notice Update the value of DAO fee. Updated value will be used only for a new Silos.
    /// Previously deployed SiloConfigs are immutable.
    /// @param _minFee Value of the new DAO minimal fee.
    /// @param _maxFee Value of the new DAO maximal fee.
    function setDaoFee(uint128 _minFee, uint128 _maxFee) external;

    /// @notice Set the new DAO fee receiver.
    /// @param _newDaoFeeReceiver Address of the new DAO fee receiver.
    function setDaoFeeReceiver(address _newDaoFeeReceiver) external;

    /// @notice Update the value of max deployer fee. Updated value will be used only for a new Silos max deployer
    /// fee validation. Previously deployed SiloConfigs are immutable.
    /// @param _newMaxDeployerFee Value of the new max deployer fee.
    function setMaxDeployerFee(uint256 _newMaxDeployerFee) external;

    /// @notice Update the value of max flashloan fee. Updated value will be used only for a new Silos max flashloan
    /// fee validation. Previously deployed SiloConfigs are immutable.
    /// @param _newMaxFlashloanFee Value of the new max flashloan fee.
    function setMaxFlashloanFee(uint256 _newMaxFlashloanFee) external;

    /// @notice Update the value of max liquidation fee. Updated value will be used only for a new Silos max
    /// liquidation fee validation. Previously deployed SiloConfigs are immutable.
    /// @param _newMaxLiquidationFee Value of the new max liquidation fee.
    function setMaxLiquidationFee(uint256 _newMaxLiquidationFee) external;
   
    /// @notice Update the base URI.
    /// @param _newBaseURI Value of the new base URI.
    function setBaseURI(string calldata _newBaseURI) external;

    /// @notice Acceptable DAO fee range for new Silos. Denominated in 18 decimals points. 1e18 == 100%.
    function daoFeeRange() external view returns (Range memory);

    /// @notice Max deployer fee for a new Silos. Denominated in 18 decimals points. 1e18 == 100%.
    function maxDeployerFee() external view returns (uint256);

    /// @notice Max flashloan fee for a new Silos. Denominated in 18 decimals points. 1e18 == 100%.
    function maxFlashloanFee() external view returns (uint256);

    /// @notice Max liquidation fee for a new Silos. Denominated in 18 decimals points. 1e18 == 100%.
    function maxLiquidationFee() external view returns (uint256);

    /// @notice The recipient of DAO fees.
    function daoFeeReceiver() external view returns (address);

    /// @notice Get SiloConfig address by Silo id.
    function idToSiloConfig(uint256 _id) external view returns (address);

    /// @notice Do not use this method to check if silo is secure. Anyone can deploy silo with any configuration
    /// and implementation. Most critical part of verification would be to check who deployed it.
    /// @dev True if the address was deployed using SiloFactory.
    function isSilo(address _silo) external view returns (bool);

    /// @notice Id of a next Silo to be deployed. This is an ID of non-existing Silo outside of createSilo
    /// function call. ID of a first Silo is 1.
    function getNextSiloId() external view returns (uint256);

    /// @notice Get the DAO and deployer fee receivers for a particular Silo address.
    /// @param _silo Silo address.
    /// @return dao DAO fee receiver.
    /// @return deployer Deployer fee receiver.
    function getFeeReceivers(address _silo) external view returns (address dao, address deployer);

    /// @notice Validate InitData for a new Silo. Config will be checked for the fee limits, missing parameters.
    /// @param _initData Silo init data.
    function validateSiloInitData(ISiloConfig.InitData memory _initData) external view returns (bool);
}

File 21 of 29 : IHookReceiver.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;

import {ISiloConfig} from "./ISiloConfig.sol";

interface IHookReceiver {
    struct HookConfig {
        uint24 hooksBefore;
        uint24 hooksAfter;
    }

    event HookConfigured(address silo, uint24 hooksBefore, uint24 hooksAfter);

    /// @notice Initialize a hook receiver
    /// @param _siloConfig Silo configuration with all the details about the silo
    /// @param _data Data to initialize the hook receiver (if needed)
    function initialize(ISiloConfig _siloConfig, bytes calldata _data) external;

    /// @notice state of Silo before action, can be also without interest, if you need them, call silo.accrueInterest()
    function beforeAction(address _silo, uint256 _action, bytes calldata _input) external;

    function afterAction(address _silo, uint256 _action, bytes calldata _inputAndOutput) external;

    /// @notice return hooksBefore and hooksAfter configuration
    function hookReceiverConfig(address _silo) external view returns (uint24 hooksBefore, uint24 hooksAfter);
}

File 22 of 29 : Panic.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

File 23 of 29 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

File 24 of 29 : IERC20Metadata.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC-20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

File 25 of 29 : IERC3156FlashBorrower.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;

interface IERC3156FlashBorrower {
    /// @notice During the execution of the flashloan, Silo methods are not taking into consideration the fact,
    /// that some (or all) tokens were transferred as flashloan, therefore some methods can return invalid state
    /// eg. maxWithdraw can return amount that are not available to withdraw during flashlon.
    /// @dev Receive a flash loan.
    /// @param _initiator The initiator of the loan.
    /// @param _token The loan currency.
    /// @param _amount The amount of tokens lent.
    /// @param _fee The additional amount of tokens to repay.
    /// @param _data Arbitrary data structure, intended to contain user-defined parameters.
    /// @return The keccak256 hash of "ERC3156FlashBorrower.onFlashLoan"
    function onFlashLoan(address _initiator, address _token, uint256 _amount, uint256 _fee, bytes calldata _data)
        external
        returns (bytes32);
}

File 26 of 29 : ICrossReentrancyGuard.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;

interface ICrossReentrancyGuard {
    error CrossReentrantCall();
    error CrossReentrancyNotActive();

    /// @notice only silo method for cross Silo reentrancy
    function turnOnReentrancyProtection() external;

    /// @notice only silo method for cross Silo reentrancy
    function turnOffReentrancyProtection() external;

    /// @notice view method for checking cross Silo reentrancy flag
    /// @return entered true if the reentrancy guard is currently set to "entered", which indicates there is a
    /// `nonReentrant` function in the call stack.
    function reentrancyGuardEntered() external view returns (bool entered);
}

File 27 of 29 : IERC721.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC721.sol)

pragma solidity ^0.8.20;

import {IERC721} from "../token/ERC721/IERC721.sol";

File 28 of 29 : IERC721.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/IERC721.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../../utils/introspection/IERC165.sol";

/**
 * @dev Required interface of an ERC-721 compliant contract.
 */
interface IERC721 is IERC165 {
    /**
     * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
     */
    event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
     */
    event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
     */
    event ApprovalForAll(address indexed owner, address indexed operator, bool approved);

    /**
     * @dev Returns the number of tokens in ``owner``'s account.
     */
    function balanceOf(address owner) external view returns (uint256 balance);

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) external view returns (address owner);

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
     *   a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
     * are aware of the ERC-721 protocol to prevent tokens from being forever locked.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or
     *   {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
     *   a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Transfers `tokenId` token from `from` to `to`.
     *
     * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC-721
     * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
     * understand this adds an external call which potentially creates a reentrancy vulnerability.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) external;

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the address zero.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool approved) external;

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) external view returns (address operator);

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}
     */
    function isApprovedForAll(address owner, address operator) external view returns (bool);
}

File 29 of 29 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[ERC].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

Settings
{
  "remappings": [
    "forge-std/=gitmodules/forge-std/src/",
    "silo-foundry-utils/=gitmodules/silo-foundry-utils/contracts/",
    "properties/=gitmodules/crytic/properties/contracts/",
    "silo-core/=silo-core/",
    "silo-oracles/=silo-oracles/",
    "silo-vaults/=silo-vaults/",
    "ve-silo/=ve-silo/",
    "@openzeppelin/=gitmodules/openzeppelin-contracts-5/contracts/",
    "morpho-blue/=gitmodules/morpho-blue/src/",
    "openzeppelin5/=gitmodules/openzeppelin-contracts-5/contracts/",
    "openzeppelin5-upgradeable/=gitmodules/openzeppelin-contracts-upgradeable-5/contracts/",
    "chainlink/=gitmodules/chainlink/contracts/src/",
    "chainlink-ccip/=gitmodules/chainlink-ccip/contracts/src/",
    "uniswap/=gitmodules/uniswap/",
    "@uniswap/v3-core/=gitmodules/uniswap/v3-core/",
    "balancer-labs/v2-solidity-utils/=external/balancer-v2-monorepo/pkg/solidity-utils/contracts/",
    "balancer-labs/v2-interfaces/=external/balancer-v2-monorepo/pkg/interfaces/contracts/",
    "balancer-labs/v2-liquidity-mining/=external/balancer-v2-monorepo/pkg/liquidity-mining/contracts/",
    "@balancer-labs/=node_modules/@balancer-labs/",
    "@ensdomains/=node_modules/@ensdomains/",
    "@openzeppelin/contracts-upgradeable/=gitmodules/openzeppelin-contracts-upgradeable-5/contracts/",
    "@openzeppelin/contracts/=gitmodules/openzeppelin-contracts-5/contracts/",
    "@solidity-parser/=node_modules/@solidity-parser/",
    "ERC4626/=gitmodules/crytic/properties/lib/ERC4626/contracts/",
    "crytic/=gitmodules/crytic/",
    "ds-test/=gitmodules/openzeppelin-contracts-5/lib/forge-std/lib/ds-test/src/",
    "erc4626-tests/=gitmodules/openzeppelin-contracts-5/lib/erc4626-tests/",
    "halmos-cheatcodes/=gitmodules/morpho-blue/lib/halmos-cheatcodes/src/",
    "hardhat/=node_modules/hardhat/",
    "openzeppelin-contracts-5/=gitmodules/openzeppelin-contracts-5/",
    "openzeppelin-contracts-upgradeable-5/=gitmodules/openzeppelin-contracts-upgradeable-5/",
    "openzeppelin-contracts/=gitmodules/openzeppelin-contracts-upgradeable-5/lib/openzeppelin-contracts/",
    "prettier-plugin-solidity/=node_modules/prettier-plugin-solidity/",
    "proposals/=node_modules/proposals/",
    "solmate/=gitmodules/crytic/properties/lib/solmate/src/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "cancun",
  "viaIR": false,
  "libraries": {
    "silo-core/contracts/lib/Actions.sol": {
      "Actions": "0x393B19dFF84C806369f49F3d350d3cd90E63794A"
    },
    "silo-core/contracts/lib/ShareCollateralTokenLib.sol": {
      "ShareCollateralTokenLib": "0xD57d3abE1ef81e9A4e15a991A81fB66ec5Ef30AF"
    },
    "silo-core/contracts/lib/ShareTokenLib.sol": {
      "ShareTokenLib": "0x3a53E387f6567F0d4F04c754654Cfe5539d20A70"
    },
    "silo-core/contracts/lib/SiloLendingLib.sol": {
      "SiloLendingLib": "0xBCAfe498Ec5cA2f6bD9276e65Ad2fbF7555B8379"
    },
    "silo-core/contracts/lib/Views.sol": {
      "Views": "0x49De884BE1d5E523be4Df58ABF45881baE791808"
    }
  }
}

Contract Security Audit

Contract ABI

[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"FailedDeployment","type":"error"},{"inputs":[{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"InsufficientBalance","type":"error"},{"inputs":[],"name":"InvalidBeta","type":"error"},{"inputs":[],"name":"InvalidKcrit","type":"error"},{"inputs":[],"name":"InvalidKi","type":"error"},{"inputs":[],"name":"InvalidKlin","type":"error"},{"inputs":[],"name":"InvalidKlow","type":"error"},{"inputs":[],"name":"InvalidRi","type":"error"},{"inputs":[],"name":"InvalidTcrit","type":"error"},{"inputs":[],"name":"InvalidUcrit","type":"error"},{"inputs":[],"name":"InvalidUlow","type":"error"},{"inputs":[],"name":"InvalidUopt","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"configHash","type":"bytes32"},{"indexed":true,"internalType":"contract IInterestRateModelV2","name":"irm","type":"address"}],"name":"NewInterestRateModelV2","type":"event"},{"inputs":[],"name":"DP","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"IRM","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"int256","name":"uopt","type":"int256"},{"internalType":"int256","name":"ucrit","type":"int256"},{"internalType":"int256","name":"ulow","type":"int256"},{"internalType":"int256","name":"ki","type":"int256"},{"internalType":"int256","name":"kcrit","type":"int256"},{"internalType":"int256","name":"klow","type":"int256"},{"internalType":"int256","name":"klin","type":"int256"},{"internalType":"int256","name":"beta","type":"int256"},{"internalType":"int112","name":"ri","type":"int112"},{"internalType":"int112","name":"Tcrit","type":"int112"}],"internalType":"struct IInterestRateModelV2.Config","name":"_config","type":"tuple"}],"name":"create","outputs":[{"internalType":"bytes32","name":"configHash","type":"bytes32"},{"internalType":"contract IInterestRateModelV2","name":"irm","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"int256","name":"uopt","type":"int256"},{"internalType":"int256","name":"ucrit","type":"int256"},{"internalType":"int256","name":"ulow","type":"int256"},{"internalType":"int256","name":"ki","type":"int256"},{"internalType":"int256","name":"kcrit","type":"int256"},{"internalType":"int256","name":"klow","type":"int256"},{"internalType":"int256","name":"klin","type":"int256"},{"internalType":"int256","name":"beta","type":"int256"},{"internalType":"int112","name":"ri","type":"int112"},{"internalType":"int112","name":"Tcrit","type":"int112"}],"internalType":"struct IInterestRateModelV2.Config","name":"_config","type":"tuple"}],"name":"hashConfig","outputs":[{"internalType":"bytes32","name":"configId","type":"bytes32"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"bytes32","name":"configHash","type":"bytes32"}],"name":"irmByConfigHash","outputs":[{"internalType":"contract IInterestRateModelV2","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"int256","name":"uopt","type":"int256"},{"internalType":"int256","name":"ucrit","type":"int256"},{"internalType":"int256","name":"ulow","type":"int256"},{"internalType":"int256","name":"ki","type":"int256"},{"internalType":"int256","name":"kcrit","type":"int256"},{"internalType":"int256","name":"klow","type":"int256"},{"internalType":"int256","name":"klin","type":"int256"},{"internalType":"int256","name":"beta","type":"int256"},{"internalType":"int112","name":"ri","type":"int112"},{"internalType":"int112","name":"Tcrit","type":"int112"}],"internalType":"struct IInterestRateModelV2.Config","name":"_config","type":"tuple"}],"name":"verifyConfig","outputs":[],"stateMutability":"view","type":"function"}]

60a0604052348015600e575f5ffd5b506040516019906042565b604051809103905ff0801580156031573d5f5f3e3d5ffd5b506001600160a01b0316608052604f565b6125ee80610c0c83390190565b608051610b986100745f395f81816069015281816101b9015261046b0152610b985ff3fe608060405234801561000f575f5ffd5b5060043610610060575f3560e01c80631e75db16146100645780632864e091146100a85780636bcc8216146100d057806379c682c1146100ed578063d465018a1461011d578063f92d641814610132575b5f5ffd5b61008b7f000000000000000000000000000000000000000000000000000000000000000081565b6040516001600160a01b0390911681526020015b60405180910390f35b61008b6100b63660046105b1565b5f602081905290815260409020546001600160a01b031681565b6100df670de0b6b3a764000081565b60405190815260200161009f565b6101006100fb3660046105c8565b610145565b604080519283526001600160a01b0390911660208301520161009f565b61013061012b3660046105c8565b610290565b005b6100df6101403660046105c8565b6104d0565b5f5f610150836104d0565b5f818152602081905260409020549092506001600160a01b03169050801561017757915091565b61018083610290565b5f8360405161018e906105a4565b61019891906105f8565b604051809103905ff0801580156101b1573d5f5f3e3d5ffd5b5090506101dd7f00000000000000000000000000000000000000000000000000000000000000006104ff565b60405163189acdbd60e31b81526001600160a01b0383811660048301529193509083169063c4d66de8906024015f604051808303815f87803b158015610221575f5ffd5b505af1158015610233573d5f5f3e3d5ffd5b5050505f8481526020819052604080822080546001600160a01b0319166001600160a01b038716908117909155905190925085917f7a56c031e2e076b9c466d347a09b8bc9458baafdcfc59a33dfffb06f37bbc54291a350915091565b670de0b6b3a76400005f82351380156102a95750813581135b6102c6576040516313e9c00360e21b815260040160405180910390fd5b813560208301351380156102dd5750808260200135125b6102fa576040516339bda99160e11b815260040160405180910390fd5b5f8260400135138015610311575081356040830135125b61032e57604051635c65494d60e01b815260040160405180910390fd5b5f826060013512156103535760405163fe06781560e01b815260040160405180910390fd5b5f82608001351215610378576040516320d12cb560e21b815260040160405180910390fd5b5f8260a0013512156103a0576040516001627ddb5960e01b0319815260040160405180910390fd5b5f8260c0013512156103c557604051634e435a2160e01b815260040160405180910390fd5b5f8260e0013512156103ea576040516378a8371160e01b815260040160405180910390fd5b5f6103fd61012084016101008501610689565b600d0b121561041f576040516330eecc6b60e21b815260040160405180910390fd5b5f61043261014084016101208501610689565b600d0b121561045457604051630266493760e31b815260040160405180910390fd5b60405163167c93eb60e31b81526001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000169063b3e49f58906104a09085906004016105f8565b5f6040518083038186803b1580156104b6575f5ffd5b505afa1580156104c8573d5f5f3e3d5ffd5b505050505050565b5f816040516020016104e291906105f8565b604051602081830303815290604052805190602001209050919050565b5f61050a825f610510565b92915050565b5f8147101561053f5760405163cf47918160e01b81524760048201526024810183905260440160405180910390fd5b6e5af43d82803e903d91602b57fd5bf360205282601152763d602d80600a3d3981f3363d3d373d3d3d363d730000008360881c175f526037600983f090506001600160a01b03811661050a5760405163b06ebf3d60e01b815260040160405180910390fd5b6104b9806106aa83390190565b5f602082840312156105c1575f5ffd5b5035919050565b5f6101408284031280156105da575f5ffd5b509092915050565b8035600d81900b81146105f3575f5ffd5b919050565b813581526020808301359082015260408083013590820152606080830135908201526080808301359082015260a0808301359082015260c0808301359082015260e08083013590820152610140810161065461010084016105e2565b610664610100840182600d0b9052565b5061067261012084016105e2565b610682610120840182600d0b9052565b5092915050565b5f60208284031215610699575f5ffd5b6106a2826105e2565b939250505056fe6101c0604052348015610010575f5ffd5b506040516104b93803806104b983398101604081905261002f916100dd565b80516080908152602082015160a0908152604083015160c0908152606084015160e0908152928401516101009081529184015161012090815290840151610140529183015161016052820151600d90810b61018052910151900b6101a05261016f565b60405161014081016001600160401b03811182821017156100c157634e487b7160e01b5f52604160045260245ffd5b60405290565b8051600d81900b81146100d8575f5ffd5b919050565b5f6101408284031280156100ef575f5ffd5b506100f8610092565b825181526020808401519082015260408084015190820152606080840151908201526080808401519082015260a0808401519082015260c0808401519082015260e0808401519082015261014f61010084016100c7565b61010082015261016261012084016100c7565b6101208201529392505050565b60805160a05160c05160e05161010051610120516101405161016051610180516101a0516102de6101db5f395f6101f801525f6101cc01525f6101a601525f61018001525f61015a01525f61013401525f61010e01525f60e801525f60c201525f609f01526102de5ff3fe608060405234801561000f575f5ffd5b5060043610610029575f3560e01c8063c3f909d41461002d575b5f5ffd5b61003561004b565b6040516100429190610222565b60405180910390f35b61009d6040518061014001604052805f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f600d0b81526020015f600d0b81525090565b7f000000000000000000000000000000000000000000000000000000000000000081527f000000000000000000000000000000000000000000000000000000000000000060208201527f000000000000000000000000000000000000000000000000000000000000000060408201527f000000000000000000000000000000000000000000000000000000000000000060608201527f000000000000000000000000000000000000000000000000000000000000000060808201527f000000000000000000000000000000000000000000000000000000000000000060a08201527f000000000000000000000000000000000000000000000000000000000000000060c08201527f000000000000000000000000000000000000000000000000000000000000000060e08201527f0000000000000000000000000000000000000000000000000000000000000000600d90810b6101008301527f0000000000000000000000000000000000000000000000000000000000000000900b61012082015290565b5f61014082019050825182526020830151602083015260408301516040830152606083015160608301526080830151608083015260a083015160a083015260c083015160c083015260e083015160e083015261010083015161028a610100840182600d0b9052565b506101208301516102a1610120840182600d0b9052565b509291505056fea2646970667358221220b115e739af79140490d56798607b39258eac5f9c54365bedb6b20f53dfb5988564736f6c634300081c0033a2646970667358221220ceb8a55682ed92de14904915ad9e25d76a6488bc9aa1df5fe9dcf669c73163e864736f6c634300081c00336080604052348015600e575f5ffd5b506125d28061001c5f395ff3fe608060405234801561000f575f5ffd5b50600436106100fb575f3560e01c806384de969a11610093578063c6c721b311610063578063c6c721b314610242578063cfdfcffa146102a1578063e076a551146102b4578063e48a5f7b146102c5575f5ffd5b806384de969a146101e4578063b3e49f58146101f7578063b78fec821461020c578063c4d66de81461022f575f5ffd5b80635c0e02a3116100ce5780635c0e02a31461015f57806364efe1771461018d57806367f37b56146101a057806381b51e0c146101d5575f5ffd5b8063109a006e146100ff578063313ce5671461011a5780634cacae5e146101215780634fa165e614610134575b5f5ffd5b6101076102e5565b6040519081526020015b60405180910390f35b6012610107565b61010761012f366004611ff8565b6102fd565b600154610147906001600160a01b031681565b6040516001600160a01b039091168152602001610111565b61017261016d366004611ff8565b610580565b60408051938452602084019290925290820152606001610111565b61010761019b3660046120d0565b6105a2565b6101b36101ae366004611ff8565b610636565b6040805194855260208501939093529183015215156060820152608001610111565b6101076799e8e8e3d530368181565b6101076101f23660046120f8565b610aab565b61020a610205366004612121565b610bba565b005b61021f61021a3660046120d0565b610e4f565b6040519015158152602001610111565b61020a61023d36600461213b565b610ee6565b61027c61025036600461213b565b5f60208190529081526040902054600d81810b91600160701b810490910b90600160e01b900460ff1683565b60408051600d94850b81529290930b6020830152151591810191909152606001610111565b6101076102af3660046120d0565b610f7f565b610107690de0b6b3a7640000000081565b6102d86102d336600461213b565b611016565b6040516101119190612154565b6102fa690de0b6b3a764000000005f19612202565b81565b5f8183111561031f5760405163d22806e360e01b815260040160405180910390fd5b5f6040518060e001604052805f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f151581525090506103648787878787610636565b15801560c0860152925061037e915050575f915050610577565b610389848403611143565b81526103a66103a1670de0b6b3a76400008888611178565b611143565b6020808301829052670de0b6b3a76400006040840152880151121561044d578060400151876020015182602001516103de9190612215565b6040830151835160e08b01516103f49190612234565b8a6101200151600d0b856040015161040c9190612263565b6104169190612263565b8a608001516104259190612234565b61042f919061228a565b6104399190612234565b610443919061228a565b606082015261048e565b6104885f82604001518960400151846020015161046a9190612215565b8a60a001516104799190612234565b610483919061228a565b6111dc565b60608201525b806040015181602001518860c001516104a79190612234565b6104b1919061228a565b608082018190526101008801516104ce91600d9190910b906111f5565b60a0820152604081015181518851602084015161052c9392916104f091612215565b8a606001516104ff9190612234565b6105099190612234565b610513919061228a565b8260a001516105229190612263565b82608001516111f5565b60a082018190526060820151610558916105539161054991612263565b83608001516111f5565b611203565b91506105686301e13380836122b6565b915061057382611228565b9150505b95945050505050565b5f5f5f6105908888888888610636565b50919a90995090975095505050505050565b5f5f836001600160a01b0316639ef2fda06040518163ffffffff1660e01b8152600401606060405180830381865afa1580156105e0573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061060491906122cd565b905061062e61061285611016565b82516020840151604085015167ffffffffffffffff16876102fd565b949350505050565b5f5f5f5f886101000151600d0b9250886101200151600d0b91505f6040518061014001604052805f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f8152509050858711156106ba5760405163d22806e360e01b815260040160405180910390fd5b6106c5878703611143565b8152670de0b6b3a76400006106de6103a1828c8c611178565b61012083018190528b5182916106f49190612215565b8c606001516107039190612234565b61070d919061228a565b6020808401919091528b015161012083015113156107f757808b6020015183610120015161073b9190612215565b826107468782612263565b8e608001516107559190612234565b61075f919061228a565b6107699190612234565b610773919061228a565b604083015260208b0151610120830151829161078e91612215565b828d60e001518e608001516107a39190612234565b6107ad919061228a565b6107b79190612234565b6107c1919061228a565b82602001516107d09190612263565b6060830152815160e08c01516107e69190612234565b6107f09085612263565b9350610858565b6108205f828d604001518561012001516108119190612215565b8e60a001516104799190612234565b604083015260208201516060830152815160e08c0151610855915f916108469190612234565b6108509087612215565b6111f5565b93505b808261012001518c60c0015161086e9190612234565b610878919061228a565b60a0830181905261088a9086906111f5565b945081604001518561089c9190612263565b6080830152815160608301516108b29190612234565b82608001516108c19190612263565b60c083015260a08201516080830151128015906108e657508160a001518260c0015112155b1561092257815160c083015160808401516002929161090491612263565b61090e9190612234565b610918919061228a565b60e0830152610a2c565b8160a00151826080015112801561094057508160a001518260c00151125b1561095657815160a08301516109189190612234565b8160a0015182608001511215801561097557508160a001518260c00151125b156109d0576002826060015160028460a0015185608001516109979190612215565b6109a19190612474565b6109ab919061228a565b6109b5919061228a565b825160a08401516109c69190612234565b6109189190612215565b6002826060015160028460a001518560c001516109ed9190612215565b6109f79190612474565b610a01919061228a565b610a0b919061228a565b825160a0840151610a1c9190612234565b610a269190612263565b60e08301525b81516020830151610a5491610a4091612234565b610a4a9087612263565b8360a001516111f5565b9450610a658a8a8460e00151611240565b835191975093505f90610a82908890610a7d90611203565b611385565b90975090508380610a905750805b15610a9c575f95505f94505b50505095509550955095915050565b335f8181526020819052604081209091908280610ad3610aca85611016565b89898942610580565b855460ff60e01b1916600160e01b1786559196509250905060016001606f1b038213610b1c5760016001606f1b03198212610b0e5781610b25565b60016001606f1b0319610b25565b60016001606f1b035b83546dffffffffffffffffffffffffffff19166001600160701b039190911617835560016001606f1b038113610b785760016001606f1b03198112610b6a5780610b81565b60016001606f1b0319610b81565b60016001606f1b035b83546001600160701b0391909116600160701b026dffffffffffffffffffffffffffff60701b1990911617909255509195945050505050565b6301e13380635dfc0f00670de0b6b3a76400005f80610bdd8460e0880135612234565b610bef61014088016101208901612482565b600d0b610bfc9190612263565b90505f83610c0e602089013582612215565b85610c198582612263565b610c279060808c0135612234565b610c31919061228a565b610c3b9190612234565b610c45919061228a565b90505f846040890135610c5b60a08b013561249d565b610c659190612234565b610c6f919061228a565b90505f85610c818160c08c0135612234565b610c8b919061228a565b90505f8688610c9b8c3583612215565b610ca99060608e0135612234565b610cb39190612234565b610cbd919061228a565b610cdb610cd26101208d016101008e01612482565b600d0b846111f5565b610ce59190612263565b90505f87898c35610cf960608f013561249d565b610d039190612234565b610d0d9190612234565b610d17919061228a565b9050610d238583612263565b96505f610d308583612263565b90505f610d3d8c8a612234565b905050505050505050505f82865f013584610d589190612215565b610d66906060890135612234565b610d70919061228a565b90505f838735610d8360608a013561249d565b610d8d9190612234565b610d97919061228a565b90505f84610da960208a013582612215565b86610dbc60e08c013560808d0135612234565b610dc6919061228a565b610dd09190612234565b610dda919061228a565b610de49084612263565b9050815f60028089610df9866108508761249d565b610e039190612234565b610e0d9190612474565b610e17919061228a565b600289610e248983612234565b610e2e9190612234565b610e38919061228a565b610e429190612263565b5050505050505050505050565b5f5f836001600160a01b0316639ef2fda06040518163ffffffff1660e01b8152600401606060405180830381865afa158015610e8d573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610eb191906122cd565b9050610edb610ebf85611016565b82516020840151604085015167ffffffffffffffff1687610636565b979650505050505050565b6001600160a01b038116610f0d57604051639fabe1c160e01b815260040160405180910390fd5b6001546001600160a01b031615610f365760405162dc149f60e41b815260040160405180910390fd5b600180546001600160a01b0319166001600160a01b0383169081179091556040517f908408e307fc569b417f6cbec5d5a06f44a0a505ac0479b47d421a4b2fd6a1e6905f90a250565b5f5f836001600160a01b0316639ef2fda06040518163ffffffff1660e01b8152600401606060405180830381865afa158015610fbd573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610fe191906122cd565b905061100b610fef85611016565b82516020840151604085015167ffffffffffffffff1687610580565b509095945050505050565b6110686040518061014001604052805f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f600d0b81526020015f600d0b81525090565b6001600160a01b038281165f908152602081815260409182902082516060810184529054600d81810b8352600160701b8204900b92820192909252600160e01b90910460ff1615158183015260015482516330fe427560e21b815292519193169163c3f909d4916004808301926101409291908290030181865afa1580156110f2573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061111691906124c2565b915080604001511561113d578051600d90810b6101008401526020820151900b6101208301525b50919050565b5f6001600160ff1b038211156111745760405163123baf0360e11b8152600481018390526024015b60405180910390fd5b5090565b5f821580611184575081155b8061118d575083155b1561119957505f6111d5565b6111a38383612202565b6111ae855f19612202565b11156111d2576111c08285855f6113b8565b9050838111156111cd5750825b6111d5565b50825b9392505050565b5f8183126111ea57816111ec565b825b90505b92915050565b5f8183136111ea57816111ec565b5f5f82121561117457604051635467221960e11b81526004810183905260240161116b565b5f68056bc75e2d631000008083116111ef57826111d5565b5f5f5f6799e8e8e3d5303681841261126857690de0b6b3a7640000000092506001915061129f565b670de0b6b3a764000061127a856113fa565b6112849190612215565b90505f8113611293575f61129c565b61129c81611203565b92505b5f8587116112ad57856112af565b865b90507612725dd1d243aba0e75fe645cc4873f9e65afe688c928e81106112dd575f600193509350505061137d565b8386025f8190036112f05750505061137d565b86858281611300576113006121da565b0414158061133157507612725dd1d243aba0e75fe645cc4873f9e65afe688c928e829003670de0b6b3a76400008204115b1561137957867612725dd1d243aba0e75fe645cc4873f9e65afe688c928e839003670de0b6b3a76400000281611369576113696121da565b0494506001935061137d92505050565b5050505b935093915050565b5f8080611398846502e24d16b5a86122b6565b90508085116113a857845f6113ac565b8060015b92509250509250929050565b5f6113e56113c583611450565b80156113e057505f84806113db576113db6121da565b868809115b151590565b6113f086868661147c565b6105779190612554565b5f68023f2fa8f6da5b9d311982121561141457505f919050565b6804cf46d8192b672ecc8212611428575f5ffd5b6714057b7ef767814f82026111d5670de0b6b3a76400006706f05b59d3b20000830105611539565b5f600282600381111561146557611465612567565b61146f919061257b565b60ff166001149050919050565b5f838302815f1985870982811083820303915050805f036114b0578382816114a6576114a66121da565b04925050506111d5565b8084116114ce576114ce84156114c75760116115bb565b60126115bb565b5f848688095f868103871696879004966002600389028118808a02820302808a02820302808a02820302808a02820302808a02820302808a02909103029181900381900460010186841190950394909402919094039290920491909117919091029150509392505050565b5f5f82121561158a5768033dd1780914b971141982121561155b57505f919050565b611566825f03611539565b6ec097ce7bc90715b34b9f100000000081611583576115836121da565b0592915050565b6806f05b59d3b2000000821261159e575f5ffd5b670de0b6b3a7640000608083901b046111d5816115cc565b919050565b634e487b715f52806020526024601cfd5b6001607f1b818116156115f05770016a09e667f3bcc908b2fb1366ea957d3e0260801c5b6001607e1b821615611613577001306fe0a31b7152de8d5a46305c85eded0260801c5b6001607d1b821615611636577001172b83c7d517adcdf7c8c50eb14a79200260801c5b6001607c1b8216156116595770010b5586cf9890f6298b92b71842a983640260801c5b6001607b1b82161561167c577001059b0d31585743ae7c548eb68ca417fe0260801c5b6001607a1b82161561169f57700102c9a3e778060ee6f7caca4f7a29bde90260801c5b600160791b8216156116c25770010163da9fb33356d84a66ae336dcdfa400260801c5b600160781b8216156116e557700100b1afa5abcbed6129ab13ec11dc95440260801c5b600160771b8216156117085770010058c86da1c09ea1ff19d294cf2f679c0260801c5b600160761b82161561172b577001002c605e2e8cec506d21bfc89a23a0110260801c5b600160751b82161561174e57700100162f3904051fa128bca9c55c31e5e00260801c5b600160741b821615611771577001000b175effdc76ba38e31671ca9397260260801c5b600160731b82161561179457700100058ba01fb9f96d6cacd4b180917c3e0260801c5b600160721b8216156117b75770010002c5cc37da9491d0985c348c68e7b40260801c5b600160711b8216156117da577001000162e525ee054754457d59952920270260801c5b600160701b8216156117fd5770010000b17255775c040618bf4a4ade83fd0260801c5b6001606f1b821615611820577001000058b91b5bc9ae2eed81e9b7d4cfac0260801c5b6001606e1b82161561184357700100002c5c89d5ec6ca4d7c8acc017b7ca0260801c5b6001606d1b8216156118665770010000162e43f4f831060e02d839a9d16d0260801c5b6001606c1b82161561188957700100000b1721bcfc99d9f890ea069117630260801c5b6001606b1b8216156118ac5770010000058b90cf1e6d97f9ca14dbcc16290260801c5b6001606a1b8216156118cf577001000002c5c863b73f016468f6bac5ca2c0260801c5b600160691b8216156118f257700100000162e430e5a18f6119e3c02282a60260801c5b600160681b821615611915577001000000b1721835514b86e6d96efd1bff0260801c5b600160671b82161561193857700100000058b90c0b48c6be5df846c5b2f00260801c5b600160661b82161561195b5770010000002c5c8601cc6b9e94213c72737b0260801c5b600160651b82161561197e577001000000162e42fff037df38aa2b219f070260801c5b600160641b8216156119a15770010000000b17217fba9c739aa5819f44fa0260801c5b600160631b8216156119c4577001000000058b90bfcdee5acd3c1cedc8240260801c5b600160621b8216156119e757700100000002c5c85fe31f35a6a30da1be510260801c5b600160611b821615611a0a5770010000000162e42ff0999ce3541b9fffd00260801c5b600160601b821615611a2d57700100000000b17217f80f4ef5aadda455540260801c5b6001605f1b821615611a505770010000000058b90bfbf8479bd5a81b51ae0260801c5b6001605e1b821615611a73577001000000002c5c85fdf84bd62ae30a74cd0260801c5b6001605d1b821615611a9657700100000000162e42fefb2fed257559bdaa0260801c5b6001605c1b821615611ab9577001000000000b17217f7d5a7716bba4a9af0260801c5b6001605b1b821615611adc57700100000000058b90bfbe9ddbac5e109ccf0260801c5b6001605a1b821615611aff5770010000000002c5c85fdf4b15de6f17eb0e0260801c5b600160591b821615611b22577001000000000162e42fefa494f1478fde050260801c5b600160581b821615611b455770010000000000b17217f7d20cf927c8e94d0260801c5b600160571b821615611b68577001000000000058b90bfbe8f71cb4e4b33e0260801c5b600160561b821615611b8b57700100000000002c5c85fdf477b662b269460260801c5b600160551b821615611bae5770010000000000162e42fefa3ae53369388d0260801c5b600160541b821615611bd157700100000000000b17217f7d1d351a389d410260801c5b600160531b821615611bf45770010000000000058b90bfbe8e8b2d3d4edf0260801c5b600160521b821615611c17577001000000000002c5c85fdf4741bea6e77f0260801c5b600160511b821615611c3a57700100000000000162e42fefa39fe95583c30260801c5b600160501b821615611c5d577001000000000000b17217f7d1cfb72b45e30260801c5b6980000000000000000000821615611c8657700100000000000058b90bfbe8e7cc35c3f20260801c5b6940000000000000000000821615611caf5770010000000000002c5c85fdf473e242ea390260801c5b6920000000000000000000821615611cd8577001000000000000162e42fefa39f02b772c0260801c5b6910000000000000000000821615611d015770010000000000000b17217f7d1cf7d83c1a0260801c5b6908000000000000000000821615611d2a577001000000000000058b90bfbe8e7bdcbe2e0260801c5b6904000000000000000000821615611d5357700100000000000002c5c85fdf473dea871f0260801c5b6902000000000000000000821615611d7c5770010000000000000162e42fefa39ef44d920260801c5b6901000000000000000000821615611da557700100000000000000b17217f7d1cf79e9490260801c5b68800000000000000000821615611dcd5770010000000000000058b90bfbe8e7bce5450260801c5b68400000000000000000821615611df5577001000000000000002c5c85fdf473de6eca0260801c5b68200000000000000000821615611e1d57700100000000000000162e42fefa39ef366f0260801c5b68100000000000000000821615611e45577001000000000000000b17217f7d1cf79afa0260801c5b68080000000000000000821615611e6d57700100000000000000058b90bfbe8e7bcd6e0260801c5b68040000000000000000821615611e955770010000000000000002c5c85fdf473de6b30260801c5b68020000000000000000821615611ebd577001000000000000000162e42fefa39ef3590260801c5b68010000000000000000821615611ee55770010000000000000000b17217f7d1cf79ac0260801c5b6001608083901c011b6111ef81670de0b6b3a7640000600160801b5f80805f19858709858702925082811083820303915050805f03611f34575f8411611f29575f5ffd5b5082900490506111d5565b808411611f3f575f5ffd5b5f8486880960026001871981018816978890046003810283188082028403028082028403028082028403028082028403028082028403029081029092039091025f889003889004909101858311909403939093029303949094049190911702949350505050565b604051610140810167ffffffffffffffff81118282101715611fd657634e487b7160e01b5f52604160045260245ffd5b60405290565b80600d0b8114611fea575f5ffd5b50565b80356115b681611fdc565b5f5f5f5f5f8587036101c081121561200e575f5ffd5b61014081121561201c575f5ffd5b50612025611fa6565b863581526020808801359082015260408088013590820152606080880135908201526080808801359082015260a0808801359082015260c0808801359082015260e0808801359082015261207c6101008801611fed565b61010082015261208f6101208801611fed565b6101208201529761014087013597506101608701359661018081013596506101a00135945092505050565b80356001600160a01b03811681146115b6575f5ffd5b5f5f604083850312156120e1575f5ffd5b6120ea836120ba565b946020939093013593505050565b5f5f5f6060848603121561210a575f5ffd5b505081359360208301359350604090920135919050565b5f610140828403128015612133575f5ffd5b509092915050565b5f6020828403121561214b575f5ffd5b6111ec826120ba565b5f61014082019050825182526020830151602083015260408301516040830152606083015160608301526080830151608083015260a083015160a083015260c083015160c083015260e083015160e08301526101008301516121bc610100840182600d0b9052565b506101208301516121d3610120840182600d0b9052565b5092915050565b634e487b7160e01b5f52601260045260245ffd5b634e487b7160e01b5f52601160045260245ffd5b5f82612210576122106121da565b500490565b8181035f8312801583831316838312821617156121d3576121d36121ee565b8082025f8212600160ff1b8414161561224f5761224f6121ee565b81810583148215176111ef576111ef6121ee565b8082018281125f831280158216821582161715612282576122826121ee565b505092915050565b5f82612298576122986121da565b600160ff1b82145f19841416156122b1576122b16121ee565b500590565b80820281158282048414176111ef576111ef6121ee565b5f60608284031280156122de575f5ffd5b506040516060810167ffffffffffffffff8111828210171561230e57634e487b7160e01b5f52604160045260245ffd5b6040908152835182526020808501519083015283015167ffffffffffffffff81168114612339575f5ffd5b60408201529392505050565b80825b600185111561237f57808604811115612363576123636121ee565b600185161561237157908102905b60019490941c938002612348565b94509492505050565b5f82801561239d57600181146123a7576123b0565b60019150506111ef565b829150506111ef565b50816123bd57505f6111ef565b5060015f82138082146123d55780156123f45761240e565b6001600160ff1b038390048311156123ef576123ef6121ee565b61240e565b6001600160ff1b0383900583121561240e5761240e6121ee565b508083161561241a5750805b6124336001600160ff1b03600185901c84800284612345565b5f82136001600160ff1b0382900483111615612451576124516121ee565b5f8212600160ff1b8290058312161561246c5761246c6121ee565b029392505050565b5f6111ec60ff841683612388565b5f60208284031215612492575f5ffd5b81356111d581611fdc565b5f600160ff1b82016124b1576124b16121ee565b505f0390565b80516115b681611fdc565b5f6101408284031280156124d4575f5ffd5b506124dd611fa6565b825181526020808401519082015260408084015190820152606080840151908201526080808401519082015260a0808401519082015260c0808401519082015260e0808401519082015261253461010084016124b7565b61010082015261254761012084016124b7565b6101208201529392505050565b808201808211156111ef576111ef6121ee565b634e487b7160e01b5f52602160045260245ffd5b5f60ff83168061258d5761258d6121da565b8060ff8416069150509291505056fea2646970667358221220d7b6b02fc4ba1b9ecf6e028607ba403b8c84a73f45b53e3019b16034818d561164736f6c634300081c0033

Deployed Bytecode

0x608060405234801561000f575f5ffd5b5060043610610060575f3560e01c80631e75db16146100645780632864e091146100a85780636bcc8216146100d057806379c682c1146100ed578063d465018a1461011d578063f92d641814610132575b5f5ffd5b61008b7f0000000000000000000000002d21e190dbf96b487f8bd26ab0cf919127dc733a81565b6040516001600160a01b0390911681526020015b60405180910390f35b61008b6100b63660046105b1565b5f602081905290815260409020546001600160a01b031681565b6100df670de0b6b3a764000081565b60405190815260200161009f565b6101006100fb3660046105c8565b610145565b604080519283526001600160a01b0390911660208301520161009f565b61013061012b3660046105c8565b610290565b005b6100df6101403660046105c8565b6104d0565b5f5f610150836104d0565b5f818152602081905260409020549092506001600160a01b03169050801561017757915091565b61018083610290565b5f8360405161018e906105a4565b61019891906105f8565b604051809103905ff0801580156101b1573d5f5f3e3d5ffd5b5090506101dd7f0000000000000000000000002d21e190dbf96b487f8bd26ab0cf919127dc733a6104ff565b60405163189acdbd60e31b81526001600160a01b0383811660048301529193509083169063c4d66de8906024015f604051808303815f87803b158015610221575f5ffd5b505af1158015610233573d5f5f3e3d5ffd5b5050505f8481526020819052604080822080546001600160a01b0319166001600160a01b038716908117909155905190925085917f7a56c031e2e076b9c466d347a09b8bc9458baafdcfc59a33dfffb06f37bbc54291a350915091565b670de0b6b3a76400005f82351380156102a95750813581135b6102c6576040516313e9c00360e21b815260040160405180910390fd5b813560208301351380156102dd5750808260200135125b6102fa576040516339bda99160e11b815260040160405180910390fd5b5f8260400135138015610311575081356040830135125b61032e57604051635c65494d60e01b815260040160405180910390fd5b5f826060013512156103535760405163fe06781560e01b815260040160405180910390fd5b5f82608001351215610378576040516320d12cb560e21b815260040160405180910390fd5b5f8260a0013512156103a0576040516001627ddb5960e01b0319815260040160405180910390fd5b5f8260c0013512156103c557604051634e435a2160e01b815260040160405180910390fd5b5f8260e0013512156103ea576040516378a8371160e01b815260040160405180910390fd5b5f6103fd61012084016101008501610689565b600d0b121561041f576040516330eecc6b60e21b815260040160405180910390fd5b5f61043261014084016101208501610689565b600d0b121561045457604051630266493760e31b815260040160405180910390fd5b60405163167c93eb60e31b81526001600160a01b037f0000000000000000000000002d21e190dbf96b487f8bd26ab0cf919127dc733a169063b3e49f58906104a09085906004016105f8565b5f6040518083038186803b1580156104b6575f5ffd5b505afa1580156104c8573d5f5f3e3d5ffd5b505050505050565b5f816040516020016104e291906105f8565b604051602081830303815290604052805190602001209050919050565b5f61050a825f610510565b92915050565b5f8147101561053f5760405163cf47918160e01b81524760048201526024810183905260440160405180910390fd5b6e5af43d82803e903d91602b57fd5bf360205282601152763d602d80600a3d3981f3363d3d373d3d3d363d730000008360881c175f526037600983f090506001600160a01b03811661050a5760405163b06ebf3d60e01b815260040160405180910390fd5b6104b9806106aa83390190565b5f602082840312156105c1575f5ffd5b5035919050565b5f6101408284031280156105da575f5ffd5b509092915050565b8035600d81900b81146105f3575f5ffd5b919050565b813581526020808301359082015260408083013590820152606080830135908201526080808301359082015260a0808301359082015260c0808301359082015260e08083013590820152610140810161065461010084016105e2565b610664610100840182600d0b9052565b5061067261012084016105e2565b610682610120840182600d0b9052565b5092915050565b5f60208284031215610699575f5ffd5b6106a2826105e2565b939250505056fe6101c0604052348015610010575f5ffd5b506040516104b93803806104b983398101604081905261002f916100dd565b80516080908152602082015160a0908152604083015160c0908152606084015160e0908152928401516101009081529184015161012090815290840151610140529183015161016052820151600d90810b61018052910151900b6101a05261016f565b60405161014081016001600160401b03811182821017156100c157634e487b7160e01b5f52604160045260245ffd5b60405290565b8051600d81900b81146100d8575f5ffd5b919050565b5f6101408284031280156100ef575f5ffd5b506100f8610092565b825181526020808401519082015260408084015190820152606080840151908201526080808401519082015260a0808401519082015260c0808401519082015260e0808401519082015261014f61010084016100c7565b61010082015261016261012084016100c7565b6101208201529392505050565b60805160a05160c05160e05161010051610120516101405161016051610180516101a0516102de6101db5f395f6101f801525f6101cc01525f6101a601525f61018001525f61015a01525f61013401525f61010e01525f60e801525f60c201525f609f01526102de5ff3fe608060405234801561000f575f5ffd5b5060043610610029575f3560e01c8063c3f909d41461002d575b5f5ffd5b61003561004b565b6040516100429190610222565b60405180910390f35b61009d6040518061014001604052805f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f600d0b81526020015f600d0b81525090565b7f000000000000000000000000000000000000000000000000000000000000000081527f000000000000000000000000000000000000000000000000000000000000000060208201527f000000000000000000000000000000000000000000000000000000000000000060408201527f000000000000000000000000000000000000000000000000000000000000000060608201527f000000000000000000000000000000000000000000000000000000000000000060808201527f000000000000000000000000000000000000000000000000000000000000000060a08201527f000000000000000000000000000000000000000000000000000000000000000060c08201527f000000000000000000000000000000000000000000000000000000000000000060e08201527f0000000000000000000000000000000000000000000000000000000000000000600d90810b6101008301527f0000000000000000000000000000000000000000000000000000000000000000900b61012082015290565b5f61014082019050825182526020830151602083015260408301516040830152606083015160608301526080830151608083015260a083015160a083015260c083015160c083015260e083015160e083015261010083015161028a610100840182600d0b9052565b506101208301516102a1610120840182600d0b9052565b509291505056fea2646970667358221220b115e739af79140490d56798607b39258eac5f9c54365bedb6b20f53dfb5988564736f6c634300081c0033a2646970667358221220ceb8a55682ed92de14904915ad9e25d76a6488bc9aa1df5fe9dcf669c73163e864736f6c634300081c0033

Block Transaction Gas Used Reward
view all blocks produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.