Overview
S Balance
0 S
S Value
$0.00More Info
Private Name Tags
ContractCreator
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Latest 19 internal transactions
Parent Transaction Hash | Block | From | To | |||
---|---|---|---|---|---|---|
5782113 | 5 days ago | Contract Creation | 0 S | |||
5782113 | 5 days ago | Contract Creation | 0 S | |||
5705296 | 6 days ago | Contract Creation | 0 S | |||
5705296 | 6 days ago | Contract Creation | 0 S | |||
5573855 | 7 days ago | Contract Creation | 0 S | |||
5573855 | 7 days ago | Contract Creation | 0 S | |||
5149851 | 11 days ago | Contract Creation | 0 S | |||
5149851 | 11 days ago | Contract Creation | 0 S | |||
5149851 | 11 days ago | Contract Creation | 0 S | |||
5149851 | 11 days ago | Contract Creation | 0 S | |||
4292531 | 17 days ago | Contract Creation | 0 S | |||
4292531 | 17 days ago | Contract Creation | 0 S | |||
4292531 | 17 days ago | Contract Creation | 0 S | |||
4292531 | 17 days ago | Contract Creation | 0 S | |||
4238816 | 18 days ago | Contract Creation | 0 S | |||
4238816 | 18 days ago | Contract Creation | 0 S | |||
2857048 | 27 days ago | Contract Creation | 0 S | |||
2857048 | 27 days ago | Contract Creation | 0 S | |||
2672166 | 29 days ago | Contract Creation | 0 S |
Loading...
Loading
This contract may be a proxy contract. Click on More Options and select Is this a proxy? to confirm and enable the "Read as Proxy" & "Write as Proxy" tabs.
Contract Source Code Verified (Exact Match)
Contract Name:
InterestRateModelV2Factory
Compiler Version
v0.8.28+commit.7893614a
Optimization Enabled:
Yes with 200 runs
Other Settings:
cancun EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.28; import {Clones} from "openzeppelin5/proxy/Clones.sol"; import {InterestRateModelV2} from "./InterestRateModelV2.sol"; import {IInterestRateModel} from "../interfaces/IInterestRateModel.sol"; import {IInterestRateModelV2} from "../interfaces/IInterestRateModelV2.sol"; import {IInterestRateModelV2Factory} from "../interfaces/IInterestRateModelV2Factory.sol"; import {InterestRateModelV2Config} from "./InterestRateModelV2Config.sol"; /// @title InterestRateModelV2Factory /// @dev It creates InterestRateModelV2Config. contract InterestRateModelV2Factory is IInterestRateModelV2Factory { /// @dev DP is 18 decimal points used for integer calculations uint256 public constant DP = 1e18; /// @dev IRM contract implementation address to clone address public immutable IRM; /// Config hash is determine by initial configuration, the logic is the same, so config is the only difference /// that's why we can use it as ID, at the same time we can detect duplicated and save gas by reusing same config /// multiple times mapping(bytes32 configHash => IInterestRateModelV2) public irmByConfigHash; constructor() { IRM = address(new InterestRateModelV2()); } /// @inheritdoc IInterestRateModelV2Factory function create(IInterestRateModelV2.Config calldata _config) external virtual returns (bytes32 configHash, IInterestRateModelV2 irm) { configHash = hashConfig(_config); irm = irmByConfigHash[configHash]; if (address(irm) != address(0)) { return (configHash, irm); } verifyConfig(_config); address configContract = address(new InterestRateModelV2Config(_config)); irm = IInterestRateModelV2(Clones.clone(IRM)); IInterestRateModel(address(irm)).initialize(configContract); irmByConfigHash[configHash] = irm; emit NewInterestRateModelV2(configHash, irm); } /// @inheritdoc IInterestRateModelV2Factory // solhint-disable-next-line code-complexity function verifyConfig(IInterestRateModelV2.Config calldata _config) public view virtual { int256 dp = int256(DP); require(_config.uopt > 0 && _config.uopt < dp, IInterestRateModelV2.InvalidUopt()); require(_config.ucrit > _config.uopt && _config.ucrit < dp, IInterestRateModelV2.InvalidUcrit()); require(_config.ulow > 0 && _config.ulow < _config.uopt, IInterestRateModelV2.InvalidUlow()); require(_config.ki >= 0, IInterestRateModelV2.InvalidKi()); require(_config.kcrit >= 0, IInterestRateModelV2.InvalidKcrit()); require(_config.klow >= 0, IInterestRateModelV2.InvalidKlow()); require(_config.klin >= 0, IInterestRateModelV2.InvalidKlin()); require(_config.beta >= 0, IInterestRateModelV2.InvalidBeta()); require(_config.ri >= 0, IInterestRateModelV2.InvalidRi()); require(_config.Tcrit >= 0, IInterestRateModelV2.InvalidTcrit()); // overflow check InterestRateModelV2(IRM).configOverflowCheck(_config); } /// @inheritdoc IInterestRateModelV2Factory function hashConfig(IInterestRateModelV2.Config calldata _config) public pure virtual returns (bytes32 configId) { configId = keccak256(abi.encode(_config)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/Clones.sol) pragma solidity ^0.8.20; import {Errors} from "../utils/Errors.sol"; /** * @dev https://eips.ethereum.org/EIPS/eip-1167[ERC-1167] is a standard for * deploying minimal proxy contracts, also known as "clones". * * > To simply and cheaply clone contract functionality in an immutable way, this standard specifies * > a minimal bytecode implementation that delegates all calls to a known, fixed address. * * The library includes functions to deploy a proxy using either `create` (traditional deployment) or `create2` * (salted deterministic deployment). It also includes functions to predict the addresses of clones deployed using the * deterministic method. */ library Clones { /** * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`. * * This function uses the create opcode, which should never revert. */ function clone(address implementation) internal returns (address instance) { return clone(implementation, 0); } /** * @dev Same as {xref-Clones-clone-address-}[clone], but with a `value` parameter to send native currency * to the new contract. * * NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory) * to always have enough balance for new deployments. Consider exposing this function under a payable method. */ function clone(address implementation, uint256 value) internal returns (address instance) { if (address(this).balance < value) { revert Errors.InsufficientBalance(address(this).balance, value); } /// @solidity memory-safe-assembly assembly { // Stores the bytecode after address mstore(0x20, 0x5af43d82803e903d91602b57fd5bf3) // implementation address mstore(0x11, implementation) // Packs the first 3 bytes of the `implementation` address with the bytecode before the address. mstore(0x00, or(shr(0x88, implementation), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000)) instance := create(value, 0x09, 0x37) } if (instance == address(0)) { revert Errors.FailedDeployment(); } } /** * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`. * * This function uses the create2 opcode and a `salt` to deterministically deploy * the clone. Using the same `implementation` and `salt` multiple time will revert, since * the clones cannot be deployed twice at the same address. */ function cloneDeterministic(address implementation, bytes32 salt) internal returns (address instance) { return cloneDeterministic(implementation, salt, 0); } /** * @dev Same as {xref-Clones-cloneDeterministic-address-bytes32-}[cloneDeterministic], but with * a `value` parameter to send native currency to the new contract. * * NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory) * to always have enough balance for new deployments. Consider exposing this function under a payable method. */ function cloneDeterministic( address implementation, bytes32 salt, uint256 value ) internal returns (address instance) { if (address(this).balance < value) { revert Errors.InsufficientBalance(address(this).balance, value); } /// @solidity memory-safe-assembly assembly { // Stores the bytecode after address mstore(0x20, 0x5af43d82803e903d91602b57fd5bf3) // implementation address mstore(0x11, implementation) // Packs the first 3 bytes of the `implementation` address with the bytecode before the address. mstore(0x00, or(shr(0x88, implementation), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000)) instance := create2(value, 0x09, 0x37, salt) } if (instance == address(0)) { revert Errors.FailedDeployment(); } } /** * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}. */ function predictDeterministicAddress( address implementation, bytes32 salt, address deployer ) internal pure returns (address predicted) { /// @solidity memory-safe-assembly assembly { let ptr := mload(0x40) mstore(add(ptr, 0x38), deployer) mstore(add(ptr, 0x24), 0x5af43d82803e903d91602b57fd5bf3ff) mstore(add(ptr, 0x14), implementation) mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73) mstore(add(ptr, 0x58), salt) mstore(add(ptr, 0x78), keccak256(add(ptr, 0x0c), 0x37)) predicted := keccak256(add(ptr, 0x43), 0x55) } } /** * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}. */ function predictDeterministicAddress( address implementation, bytes32 salt ) internal view returns (address predicted) { return predictDeterministicAddress(implementation, salt, address(this)); } }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.28; import {SafeCast} from "openzeppelin5/utils/math/SafeCast.sol"; import {PRBMathSD59x18} from "../lib/PRBMathSD59x18.sol"; import {SiloMathLib} from "../lib/SiloMathLib.sol"; import {ISilo} from "../interfaces/ISilo.sol"; import {IInterestRateModel} from "../interfaces/IInterestRateModel.sol"; import {IInterestRateModelV2} from "../interfaces/IInterestRateModelV2.sol"; import {IInterestRateModelV2Config} from "../interfaces/IInterestRateModelV2Config.sol"; // solhint-disable func-name-mixedcase /// @title InterestRateModelV2 /// @notice This model is for one silo/asset set. So one silo need to have as many IRMs as many assets it holds. /// @dev Model stores some Silo specific data. If model is replaced, it needs to set proper config after redeployment /// for seamless service. Please refer to separate litepaper about model for design details. /// Difference between original `InterestRateModel` is that we made methods to be `virtual` and : /// if (_config.ki < 0) revert InvalidKi(); --- was ... <= 0 // if (_config.kcrit < 0) revert InvalidKcrit(); --- was ... <= 0 /// @custom:security-contact [email protected] contract InterestRateModelV2 is IInterestRateModel, IInterestRateModelV2 { using PRBMathSD59x18 for int256; using SafeCast for int256; using SafeCast for uint256; struct LocalVarsRCur { int256 T; int256 u; int256 DP; int256 rp; int256 rlin; int256 ri; bool overflow; } struct LocalVarsRComp { int256 T; int256 slopei; int256 rp; int256 slope; int256 r0; int256 rlin; int256 r1; int256 x; int256 rlin1; int256 u; } /// @dev DP is 18 decimal points used for integer calculations uint256 internal constant _DP = 1e18; /// @dev maximum value of compound interest the model will return uint256 public constant RCOMP_MAX = (2**16) * 1e18; /// @dev maximum value of X for which, RCOMP_MAX should be returned. If x > X_MAX => exp(x) > RCOMP_MAX. /// X_MAX = ln(RCOMP_MAX + 1) int256 public constant X_MAX = 11090370147631773313; /// @dev maximum allowed amount for accruedInterest, totalDeposits and totalBorrowedAmount /// after adding compounded interest. If rcomp cause this values to overflow, rcomp is reduced. /// 196 bits max allowed for an asset amounts because the multiplication product with /// decimal points (10^18) should not cause an overflow. 196 < log2(2^256 / 10^18) => ~196.2 /// there is another case, for which we need to limit asset amount, we multiply it by rcomp /// 2^196 > (max(uitn256) / RCOMP_MAX), so as a limit we need to use: `max(uitn256) / RCOMP_MAX` uint256 public constant ASSET_DATA_OVERFLOW_LIMIT = type(uint256).max / RCOMP_MAX; /// @dev Each Silo setup is stored separately in mapping. We will write to this mapping based on the msg.sender. /// Silo => IInterestRateModelV2.Setup mapping (address silo => Setup) public getSetup; /// @dev Config for the model IInterestRateModelV2Config public irmConfig; /// @notice Emitted on config init /// @param config config struct for asset in Silo event Initialized(address indexed config); /// @inheritdoc IInterestRateModel function initialize(address _irmConfig) external virtual { require(_irmConfig != address(0), AddressZero()); require(address(irmConfig) == address(0), AlreadyInitialized()); irmConfig = IInterestRateModelV2Config(_irmConfig); emit Initialized(_irmConfig); } /// @inheritdoc IInterestRateModel function getCompoundInterestRateAndUpdate( uint256 _collateralAssets, uint256 _debtAssets, uint256 _interestRateTimestamp ) external virtual override returns (uint256 rcomp) { // assume that caller is Silo address silo = msg.sender; Setup storage currentSetup = getSetup[silo]; int256 ri; int256 Tcrit; (rcomp, ri, Tcrit) = calculateCompoundInterestRate( getConfig(silo), _collateralAssets, _debtAssets, _interestRateTimestamp, block.timestamp ); currentSetup.initialized = true; currentSetup.ri = ri > type(int112).max ? type(int112).max : ri < type(int112).min ? type(int112).min : int112(ri); currentSetup.Tcrit = Tcrit > type(int112).max ? type(int112).max : Tcrit < type(int112).min ? type(int112).min : int112(Tcrit); } /// @inheritdoc IInterestRateModel function decimals() external view virtual returns (uint256) { return 18; } /// @inheritdoc IInterestRateModel function getCompoundInterestRate(address _silo, uint256 _blockTimestamp) external view virtual override returns (uint256 rcomp) { ISilo.UtilizationData memory data = ISilo(_silo).utilizationData(); (rcomp,,) = calculateCompoundInterestRate( getConfig(_silo), data.collateralAssets, data.debtAssets, data.interestRateTimestamp, _blockTimestamp ); } /// @inheritdoc IInterestRateModelV2 function overflowDetected(address _silo, uint256 _blockTimestamp) external view virtual override returns (bool overflow) { ISilo.UtilizationData memory data = ISilo(_silo).utilizationData(); (,,,overflow) = calculateCompoundInterestRateWithOverflowDetection( getConfig(_silo), data.collateralAssets, data.debtAssets, data.interestRateTimestamp, _blockTimestamp ); } /// @inheritdoc IInterestRateModel function getCurrentInterestRate(address _silo, uint256 _blockTimestamp) external view virtual override returns (uint256 rcur) { ISilo.UtilizationData memory data = ISilo(_silo).utilizationData(); rcur = calculateCurrentInterestRate( getConfig(_silo), data.collateralAssets, data.debtAssets, data.interestRateTimestamp, _blockTimestamp ); } function getConfig(address _silo) public view virtual returns (Config memory fullConfig) { Setup memory siloSetup = getSetup[_silo]; fullConfig = irmConfig.getConfig(); // if initialized, read ri and Tcrit from storage. Otherwise use config values. if (siloSetup.initialized) { fullConfig.ri = siloSetup.ri; fullConfig.Tcrit = siloSetup.Tcrit; } } /// @inheritdoc IInterestRateModelV2 function calculateCurrentInterestRate( Config memory _c, uint256 _totalDeposits, uint256 _totalBorrowAmount, uint256 _interestRateTimestamp, uint256 _blockTimestamp ) public pure virtual returns (uint256 rcur) { require(_interestRateTimestamp <= _blockTimestamp, InvalidTimestamps()); LocalVarsRCur memory _l = LocalVarsRCur(0,0,0,0,0,0,false); // struct for local vars to avoid "Stack too deep" (,,,_l.overflow) = calculateCompoundInterestRateWithOverflowDetection( _c, _totalDeposits, _totalBorrowAmount, _interestRateTimestamp, _blockTimestamp ); if (_l.overflow) { return 0; } // There can't be an underflow in the subtraction because of the previous check unchecked { // T := t1 - t0 # length of time period in seconds _l.T = (_blockTimestamp - _interestRateTimestamp).toInt256(); } _l.u = SiloMathLib.calculateUtilization(_DP, _totalDeposits, _totalBorrowAmount).toInt256(); _l.DP = int256(_DP); if (_l.u > _c.ucrit) { // rp := kcrit *(1 + Tcrit + beta *T)*( u0 - ucrit ) _l.rp = _c.kcrit * (_l.DP + _c.Tcrit + _c.beta * _l.T) / _l.DP * (_l.u - _c.ucrit) / _l.DP; } else { // rp := min (0, klow * (u0 - ulow )) _l.rp = _min(0, _c.klow * (_l.u - _c.ulow) / _l.DP); } // rlin := klin * u0 # lower bound between t0 and t1 _l.rlin = _c.klin * _l.u / _l.DP; // ri := max(ri , rlin ) _l.ri = _max(_c.ri, _l.rlin); // ri := max(ri + ki * (u0 - uopt ) * T, rlin ) _l.ri = _max(_l.ri + _c.ki * (_l.u - _c.uopt) * _l.T / _l.DP, _l.rlin); // rcur := max (ri + rp , rlin ) # current per second interest rate rcur = (_max(_l.ri + _l.rp, _l.rlin)).toUint256(); rcur *= 365 days; return _currentInterestRateCAP(rcur); } /// @inheritdoc IInterestRateModelV2 function calculateCompoundInterestRate( Config memory _c, uint256 _totalDeposits, uint256 _totalBorrowAmount, uint256 _interestRateTimestamp, uint256 _blockTimestamp ) public pure virtual override returns ( uint256 rcomp, int256 ri, int256 Tcrit ) { (rcomp, ri, Tcrit,) = calculateCompoundInterestRateWithOverflowDetection( _c, _totalDeposits, _totalBorrowAmount, _interestRateTimestamp, _blockTimestamp ); } /// @inheritdoc IInterestRateModelV2 function calculateCompoundInterestRateWithOverflowDetection( // solhint-disable-line function-max-lines Config memory _c, uint256 _totalDeposits, uint256 _totalBorrowAmount, uint256 _interestRateTimestamp, uint256 _blockTimestamp ) public pure virtual returns ( uint256 rcomp, int256 ri, int256 Tcrit, bool overflow ) { ri = _c.ri; Tcrit = _c.Tcrit; // struct for local vars to avoid "Stack too deep" LocalVarsRComp memory _l = LocalVarsRComp(0,0,0,0,0,0,0,0,0,0); require(_interestRateTimestamp <= _blockTimestamp, InvalidTimestamps()); // There can't be an underflow in the subtraction because of the previous check unchecked { // length of time period in seconds _l.T = (_blockTimestamp - _interestRateTimestamp).toInt256(); } int256 decimalPoints = int256(_DP); _l.u = SiloMathLib.calculateUtilization(_DP, _totalDeposits, _totalBorrowAmount).toInt256(); // slopei := ki * (u0 - uopt ) _l.slopei = _c.ki * (_l.u - _c.uopt) / decimalPoints; if (_l.u > _c.ucrit) { // rp := kcrit * (1 + Tcrit) * (u0 - ucrit ) _l.rp = _c.kcrit * (decimalPoints + Tcrit) / decimalPoints * (_l.u - _c.ucrit) / decimalPoints; // slope := slopei + kcrit * beta * (u0 - ucrit ) _l.slope = _l.slopei + _c.kcrit * _c.beta / decimalPoints * (_l.u - _c.ucrit) / decimalPoints; // Tcrit := Tcrit + beta * T Tcrit = Tcrit + _c.beta * _l.T; } else { // rp := min (0, klow * (u0 - ulow )) _l.rp = _min(0, _c.klow * (_l.u - _c.ulow) / decimalPoints); // slope := slopei _l.slope = _l.slopei; // Tcrit := max (0, Tcrit - beta * T) Tcrit = _max(0, Tcrit - _c.beta * _l.T); } // rlin := klin * u0 # lower bound between t0 and t1 _l.rlin = _c.klin * _l.u / decimalPoints; // ri := max(ri , rlin ) ri = _max(ri , _l.rlin); // r0 := ri + rp # interest rate at t0 ignoring lower bound _l.r0 = ri + _l.rp; // r1 := r0 + slope *T # what interest rate would be at t1 ignoring lower bound _l.r1 = _l.r0 + _l.slope * _l.T; // Calculating the compound interest if (_l.r0 >= _l.rlin && _l.r1 >= _l.rlin) { // lower bound isn’t activated // rcomp := exp (( r0 + r1) * T / 2) - 1 _l.x = (_l.r0 + _l.r1) * _l.T / 2; } else if (_l.r0 < _l.rlin && _l.r1 < _l.rlin) { // lower bound is active during the whole time // rcomp := exp( rlin * T) - 1 _l.x = _l.rlin * _l.T; } else if (_l.r0 >= _l.rlin && _l.r1 < _l.rlin) { // lower bound is active after some time // rcomp := exp( rlin *T - (r0 - rlin )^2/ slope /2) - 1 _l.x = _l.rlin * _l.T - (_l.r0 - _l.rlin)**2 / _l.slope / 2; } else { // lower bound is active before some time // rcomp := exp( rlin *T + (r1 - rlin )^2/ slope /2) - 1 _l.x = _l.rlin * _l.T + (_l.r1 - _l.rlin)**2 / _l.slope / 2; } // ri := max(ri + slopei * T, rlin ) ri = _max(ri + _l.slopei * _l.T, _l.rlin); // Checking for the overflow below. In case of the overflow, ri and Tcrit will be set back to zeros. Rcomp is // calculated to not make an overflow in totalBorrowedAmount, totalDeposits. (rcomp, overflow) = _calculateRComp(_totalDeposits, _totalBorrowAmount, _l.x); // if we got a limit for rcomp, we reset Tcrit and Ri model parameters to zeros // Resetting parameters will make IR drop from 10k%/year to 100% per year and it will start growing again. // If we don’t reset, we will have to wait ~2 weeks to make IR drop (low utilization ratio required). // So zeroing parameters is a only hope for a market to get well again, otherwise it will be almost impossible. bool capApplied; (rcomp, capApplied) = _compoundInterestRateCAP(rcomp, _l.T.toUint256()); if (overflow || capApplied) { ri = 0; Tcrit = 0; } } /// @dev this method is to detect possible overflow in math for provided config in next 50 years function configOverflowCheck(IInterestRateModelV2.Config calldata _config) external pure virtual { int256 YEAR = 365 days; int256 MAX_TIME = 50 * 365 days; int256 DP = int256(_DP); int256 rcur_max; { int256 Tcrit_max = _config.Tcrit + _config.beta * MAX_TIME; int256 rp_max = _config.kcrit * (DP + Tcrit_max) / DP * (DP - _config.ucrit) / DP; int256 rp_min = -_config.klow * _config.ulow / DP; int256 rlin_max = _config.klin * DP / DP; int256 ri_max = _max(_config.ri, rlin_max) +_config.ki * (DP - _config.uopt) * MAX_TIME / DP; int256 ri_min = -_config.ki * _config.uopt * MAX_TIME / DP; rcur_max = ri_max + rp_max; int256 rcur_min = ri_min + rp_min; int256 rcur_ann_max = rcur_max * YEAR; } { int256 slopei_max = _config.ki * (DP - _config.uopt) / DP; int256 slopei_min = - _config.ki * _config.uopt / DP; int256 slope_max = slopei_max + _config.kcrit * _config.beta / DP * (DP - _config.ucrit) / DP; int256 slope_min = slopei_min; int256 x_max = rcur_max * 2 * MAX_TIME / 2 + (_max(slope_max, -slope_min) * MAX_TIME)**2 / 2; } } /// @dev checks for the overflow in rcomp calculations, accruedInterest, totalDeposits and totalBorrowedAmount. /// In case of the overflow, rcomp is reduced to make totalDeposits and totalBorrowedAmount <= 2**196. function _calculateRComp( uint256 _totalDeposits, uint256 _totalBorrowAmount, int256 _x ) internal pure virtual returns (uint256 rcomp, bool overflow) { int256 rcompSigned; if (_x >= X_MAX) { rcomp = RCOMP_MAX; // overflow, but not return now. It counts as an overflow to reset model parameters, // but later on we can get overflow worse. overflow = true; } else { rcompSigned = _x.exp() - int256(_DP); rcomp = rcompSigned > 0 ? rcompSigned.toUint256() : 0; } unchecked { // maxAmount = max(_totalDeposits, _totalBorrowAmount) to see // if any of this variables overflow in result. uint256 maxAmount = _totalDeposits > _totalBorrowAmount ? _totalDeposits : _totalBorrowAmount; if (maxAmount >= ASSET_DATA_OVERFLOW_LIMIT) { return (0, true); } uint256 rcompMulTBA = rcomp * _totalBorrowAmount; if (rcompMulTBA == 0) { return (rcomp, overflow); } if ( rcompMulTBA / rcomp != _totalBorrowAmount || rcompMulTBA / _DP > ASSET_DATA_OVERFLOW_LIMIT - maxAmount ) { rcomp = (ASSET_DATA_OVERFLOW_LIMIT - maxAmount) * _DP / _totalBorrowAmount; return (rcomp, true); } } } /// @dev Returns the largest of two numbers function _max(int256 a, int256 b) internal pure virtual returns (int256) { return a > b ? a : b; } /// @dev Returns the smallest of two numbers function _min(int256 a, int256 b) internal pure virtual returns (int256) { return a < b ? a : b; } /// @dev in order to keep methods pure and bee able to deploy easily new caps, /// that method with hardcoded CAP was created /// @notice limit for compounding interest rcomp := RCOMP_CAP * _l.T. /// The limit is simple. Let’s threat our interest rate model as the black box. And for past _l.T time we got /// a value for rcomp. We need to provide the top limit this value to take into account the limit for current /// interest. Let’s imagine, if we had maximum allowed interest for _l.T. `RCOMP_CAP * _l.T` will be the value of /// rcomp in this case, which will serve as the limit. /// If we got this limit, we should make Tcrit and Ri equal to zero, otherwise there is a low probability of the /// market going back below the limit. function _compoundInterestRateCAP(uint256 _rcomp, uint256 _t) internal pure virtual returns (uint256 updatedRcomp, bool capApplied) { // uint256 cap = 10**20 / (365 * 24 * 3600); // this is per-second rate because _l.T is in seconds. uint256 cap = 3170979198376 * _t; return _rcomp > cap ? (cap, true) : (_rcomp, false); } /// @notice limit for rcur - RCUR_CAP (FE/integrations, does not affect our protocol). /// This is the limit for current interest rate, we picked 10k% of interest per year. Interest rate model is working /// as expected before that threshold and simply sets the maximum value in case of limit. /// 10k% is a really significant threshold, which will mean the death of market in most of cases. /// Before 10k% interest rate can be good for certain market conditions. /// We don’t read the current interest rate in our protocol, because we care only about the interest we compounded /// over the past time since the last update. It is used in UI and other protocols integrations, /// for example investing strategies. function _currentInterestRateCAP(uint256 _rcur) internal pure virtual returns (uint256) { uint256 cap = 1e20; // 10**20; this is 10,000% APR in the 18-decimals format. return _rcur > cap ? cap : _rcur; } }
// SPDX-License-Identifier: MIT pragma solidity >=0.5.0; interface IInterestRateModel { event InterestRateModelError(); /// @dev Sets config address for all Silos that will use this model /// @param _irmConfig address of IRM config contract function initialize(address _irmConfig) external; /// @dev get compound interest rate and update model storage for current block.timestamp /// @param _collateralAssets total silo collateral assets /// @param _debtAssets total silo debt assets /// @param _interestRateTimestamp last IRM timestamp /// @return rcomp compounded interest rate from last update until now (1e18 == 100%) function getCompoundInterestRateAndUpdate( uint256 _collateralAssets, uint256 _debtAssets, uint256 _interestRateTimestamp ) external returns (uint256 rcomp); /// @dev get compound interest rate /// @param _silo address of Silo for which interest rate should be calculated /// @param _blockTimestamp current block timestamp /// @return rcomp compounded interest rate from last update until now (1e18 == 100%) function getCompoundInterestRate(address _silo, uint256 _blockTimestamp) external view returns (uint256 rcomp); /// @dev get current annual interest rate /// @param _silo address of Silo for which interest rate should be calculated /// @param _blockTimestamp current block timestamp /// @return rcur current annual interest rate (1e18 == 100%) function getCurrentInterestRate(address _silo, uint256 _blockTimestamp) external view returns (uint256 rcur); /// @dev returns decimal points used by model function decimals() external view returns (uint256); }
// SPDX-License-Identifier: MIT pragma solidity >=0.5.0; import {IInterestRateModelV2Config} from "./IInterestRateModelV2Config.sol"; interface IInterestRateModelV2 { struct Config { // uopt ∈ (0, 1) – optimal utilization; int256 uopt; // ucrit ∈ (uopt, 1) – threshold of large utilization; int256 ucrit; // ulow ∈ (0, uopt) – threshold of low utilization int256 ulow; // ki > 0 – integrator gain int256 ki; // kcrit > 0 – proportional gain for large utilization int256 kcrit; // klow ≥ 0 – proportional gain for low utilization int256 klow; // klin ≥ 0 – coefficient of the lower linear bound int256 klin; // beta ≥ 0 - a scaling factor int256 beta; // ri ≥ 0 – initial value of the integrator int112 ri; // Tcrit ≥ 0 - initial value of the time during which the utilization exceeds the critical value int112 Tcrit; } struct Setup { // ri ≥ 0 – the integrator int112 ri; // Tcrit ≥ 0 - the time during which the utilization exceeds the critical value int112 Tcrit; // flag that informs if setup is initialized bool initialized; } /* solhint-enable */ error AddressZero(); error DeployConfigFirst(); error AlreadyInitialized(); error InvalidBeta(); error InvalidKcrit(); error InvalidKi(); error InvalidKlin(); error InvalidKlow(); error InvalidTcrit(); error InvalidTimestamps(); error InvalidUcrit(); error InvalidUlow(); error InvalidUopt(); error InvalidRi(); /// @dev Get config for given asset in a Silo. /// @param _silo Silo address for which config should be set /// @return Config struct for asset in Silo function getConfig(address _silo) external view returns (Config memory); /// @notice get the flag to detect rcomp restriction (zero current interest) due to overflow /// overflow boolean flag to detect rcomp restriction function overflowDetected(address _silo, uint256 _blockTimestamp) external view returns (bool overflow); /// @dev pure function that calculates current annual interest rate /// @param _c configuration object, IInterestRateModel.Config /// @param _totalBorrowAmount current total borrows for asset /// @param _totalDeposits current total deposits for asset /// @param _interestRateTimestamp timestamp of last interest rate update /// @param _blockTimestamp current block timestamp /// @return rcur current annual interest rate (1e18 == 100%) function calculateCurrentInterestRate( Config calldata _c, uint256 _totalDeposits, uint256 _totalBorrowAmount, uint256 _interestRateTimestamp, uint256 _blockTimestamp ) external pure returns (uint256 rcur); /// @dev pure function that calculates interest rate based on raw input data /// @param _c configuration object, IInterestRateModel.Config /// @param _totalBorrowAmount current total borrows for asset /// @param _totalDeposits current total deposits for asset /// @param _interestRateTimestamp timestamp of last interest rate update /// @param _blockTimestamp current block timestamp /// @return rcomp compounded interest rate from last update until now (1e18 == 100%) /// @return ri current integral part of the rate /// @return Tcrit time during which the utilization exceeds the critical value /// @return overflow boolean flag to detect rcomp restriction function calculateCompoundInterestRateWithOverflowDetection( Config memory _c, uint256 _totalDeposits, uint256 _totalBorrowAmount, uint256 _interestRateTimestamp, uint256 _blockTimestamp ) external pure returns ( uint256 rcomp, int256 ri, int256 Tcrit, bool overflow ); /// @dev pure function that calculates interest rate based on raw input data /// @param _c configuration object, IInterestRateModel.Config /// @param _totalBorrowAmount current total borrows for asset /// @param _totalDeposits current total deposits for asset /// @param _interestRateTimestamp timestamp of last interest rate update /// @param _blockTimestamp current block timestamp /// @return rcomp compounded interest rate from last update until now (1e18 == 100%) /// @return ri current integral part of the rate /// @return Tcrit time during which the utilization exceeds the critical value function calculateCompoundInterestRate( Config memory _c, uint256 _totalDeposits, uint256 _totalBorrowAmount, uint256 _interestRateTimestamp, uint256 _blockTimestamp ) external pure returns (uint256 rcomp, int256 ri, int256 Tcrit); }
// SPDX-License-Identifier: MIT pragma solidity >=0.5.0; import {IInterestRateModelV2} from "./IInterestRateModelV2.sol"; interface IInterestRateModelV2Factory { /// @dev config hash and IRM should be easily accessible directly from oracle contract event NewInterestRateModelV2(bytes32 indexed configHash, IInterestRateModelV2 indexed irm); /// @dev verifies config and creates IRM config contract /// @notice it can be used in separate tx eg config can be prepared before it will be used for Silo creation /// @param _config IRM configuration /// @return configHash the hashed config used as a key for IRM contract /// @return irm deployed (or existing one, depends on the config) contract address function create(IInterestRateModelV2.Config calldata _config) external returns (bytes32 configHash, IInterestRateModelV2 irm); /// @dev DP is 18 decimal points used for integer calculations // solhint-disable-next-line func-name-mixedcase function DP() external view returns (uint256); /// @dev verifies if config has correct values for a model, throws on invalid `_config` /// @param _config config that will ve verified function verifyConfig(IInterestRateModelV2.Config calldata _config) external view; /// @dev hashes IRM config /// @param _config IRM config /// @return configId hash of `_config` function hashConfig(IInterestRateModelV2.Config calldata _config) external pure returns (bytes32 configId); }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.28; import {IInterestRateModelV2Config} from "../interfaces/IInterestRateModelV2Config.sol"; import {IInterestRateModelV2} from "../interfaces/IInterestRateModelV2.sol"; /// @title InterestRateModelV2Config /// @notice Please never deploy config manually, always use factory, because factory does necessary checks. contract InterestRateModelV2Config is IInterestRateModelV2Config { // uopt ∈ (0, 1) – optimal utilization; int256 internal immutable _UOPT; // ucrit ∈ (uopt, 1) – threshold of large utilization; int256 internal immutable _UCRIT; // ulow ∈ (0, uopt) – threshold of low utilization int256 internal immutable _ULOW; // ki > 0 – integrator gain int256 internal immutable _KI; // kcrit > 0 – proportional gain for large utilization int256 internal immutable _KCRIT; // klow ≥ 0 – proportional gain for low utilization int256 internal immutable _KLOW; // klin ≥ 0 – coefficient of the lower linear bound int256 internal immutable _KLIN; // beta ≥ 0 - a scaling factor int256 internal immutable _BETA; // initial value for ri, ri ≥ 0 – initial value of the integrator int112 internal immutable _RI; // initial value for Tcrit, Tcrit ≥ 0 - the time during which the utilization exceeds the critical value int112 internal immutable _TCRIT; constructor(IInterestRateModelV2.Config memory _config) { _UOPT = _config.uopt; _UCRIT = _config.ucrit; _ULOW = _config.ulow; _KI = _config.ki; _KCRIT = _config.kcrit; _KLOW = _config.klow; _KLIN = _config.klin; _BETA = _config.beta; _RI = _config.ri; _TCRIT = _config.Tcrit; } /// @inheritdoc IInterestRateModelV2Config function getConfig() external view virtual returns (IInterestRateModelV2.Config memory config) { config.uopt = _UOPT; config.ucrit = _UCRIT; config.ulow = _ULOW; config.ki = _KI; config.kcrit = _KCRIT; config.klow = _KLOW; config.klin = _KLIN; config.beta = _BETA; config.ri = _RI; config.Tcrit = _TCRIT; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.20; /** * @dev Collection of common custom errors used in multiple contracts * * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library. * It is recommended to avoid relying on the error API for critical functionality. */ library Errors { /** * @dev The ETH balance of the account is not enough to perform the operation. */ error InsufficientBalance(uint256 balance, uint256 needed); /** * @dev A call to an address target failed. The target may have reverted. */ error FailedCall(); /** * @dev The deployment failed. */ error FailedDeployment(); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol) // This file was procedurally generated from scripts/generate/templates/SafeCast.js. pragma solidity ^0.8.20; /** * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeCast { /** * @dev Value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value); /** * @dev An int value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedIntToUint(int256 value); /** * @dev Value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedIntDowncast(uint8 bits, int256 value); /** * @dev An uint value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedUintToInt(uint256 value); /** * @dev Returns the downcasted uint248 from uint256, reverting on * overflow (when the input is greater than largest uint248). * * Counterpart to Solidity's `uint248` operator. * * Requirements: * * - input must fit into 248 bits */ function toUint248(uint256 value) internal pure returns (uint248) { if (value > type(uint248).max) { revert SafeCastOverflowedUintDowncast(248, value); } return uint248(value); } /** * @dev Returns the downcasted uint240 from uint256, reverting on * overflow (when the input is greater than largest uint240). * * Counterpart to Solidity's `uint240` operator. * * Requirements: * * - input must fit into 240 bits */ function toUint240(uint256 value) internal pure returns (uint240) { if (value > type(uint240).max) { revert SafeCastOverflowedUintDowncast(240, value); } return uint240(value); } /** * @dev Returns the downcasted uint232 from uint256, reverting on * overflow (when the input is greater than largest uint232). * * Counterpart to Solidity's `uint232` operator. * * Requirements: * * - input must fit into 232 bits */ function toUint232(uint256 value) internal pure returns (uint232) { if (value > type(uint232).max) { revert SafeCastOverflowedUintDowncast(232, value); } return uint232(value); } /** * @dev Returns the downcasted uint224 from uint256, reverting on * overflow (when the input is greater than largest uint224). * * Counterpart to Solidity's `uint224` operator. * * Requirements: * * - input must fit into 224 bits */ function toUint224(uint256 value) internal pure returns (uint224) { if (value > type(uint224).max) { revert SafeCastOverflowedUintDowncast(224, value); } return uint224(value); } /** * @dev Returns the downcasted uint216 from uint256, reverting on * overflow (when the input is greater than largest uint216). * * Counterpart to Solidity's `uint216` operator. * * Requirements: * * - input must fit into 216 bits */ function toUint216(uint256 value) internal pure returns (uint216) { if (value > type(uint216).max) { revert SafeCastOverflowedUintDowncast(216, value); } return uint216(value); } /** * @dev Returns the downcasted uint208 from uint256, reverting on * overflow (when the input is greater than largest uint208). * * Counterpart to Solidity's `uint208` operator. * * Requirements: * * - input must fit into 208 bits */ function toUint208(uint256 value) internal pure returns (uint208) { if (value > type(uint208).max) { revert SafeCastOverflowedUintDowncast(208, value); } return uint208(value); } /** * @dev Returns the downcasted uint200 from uint256, reverting on * overflow (when the input is greater than largest uint200). * * Counterpart to Solidity's `uint200` operator. * * Requirements: * * - input must fit into 200 bits */ function toUint200(uint256 value) internal pure returns (uint200) { if (value > type(uint200).max) { revert SafeCastOverflowedUintDowncast(200, value); } return uint200(value); } /** * @dev Returns the downcasted uint192 from uint256, reverting on * overflow (when the input is greater than largest uint192). * * Counterpart to Solidity's `uint192` operator. * * Requirements: * * - input must fit into 192 bits */ function toUint192(uint256 value) internal pure returns (uint192) { if (value > type(uint192).max) { revert SafeCastOverflowedUintDowncast(192, value); } return uint192(value); } /** * @dev Returns the downcasted uint184 from uint256, reverting on * overflow (when the input is greater than largest uint184). * * Counterpart to Solidity's `uint184` operator. * * Requirements: * * - input must fit into 184 bits */ function toUint184(uint256 value) internal pure returns (uint184) { if (value > type(uint184).max) { revert SafeCastOverflowedUintDowncast(184, value); } return uint184(value); } /** * @dev Returns the downcasted uint176 from uint256, reverting on * overflow (when the input is greater than largest uint176). * * Counterpart to Solidity's `uint176` operator. * * Requirements: * * - input must fit into 176 bits */ function toUint176(uint256 value) internal pure returns (uint176) { if (value > type(uint176).max) { revert SafeCastOverflowedUintDowncast(176, value); } return uint176(value); } /** * @dev Returns the downcasted uint168 from uint256, reverting on * overflow (when the input is greater than largest uint168). * * Counterpart to Solidity's `uint168` operator. * * Requirements: * * - input must fit into 168 bits */ function toUint168(uint256 value) internal pure returns (uint168) { if (value > type(uint168).max) { revert SafeCastOverflowedUintDowncast(168, value); } return uint168(value); } /** * @dev Returns the downcasted uint160 from uint256, reverting on * overflow (when the input is greater than largest uint160). * * Counterpart to Solidity's `uint160` operator. * * Requirements: * * - input must fit into 160 bits */ function toUint160(uint256 value) internal pure returns (uint160) { if (value > type(uint160).max) { revert SafeCastOverflowedUintDowncast(160, value); } return uint160(value); } /** * @dev Returns the downcasted uint152 from uint256, reverting on * overflow (when the input is greater than largest uint152). * * Counterpart to Solidity's `uint152` operator. * * Requirements: * * - input must fit into 152 bits */ function toUint152(uint256 value) internal pure returns (uint152) { if (value > type(uint152).max) { revert SafeCastOverflowedUintDowncast(152, value); } return uint152(value); } /** * @dev Returns the downcasted uint144 from uint256, reverting on * overflow (when the input is greater than largest uint144). * * Counterpart to Solidity's `uint144` operator. * * Requirements: * * - input must fit into 144 bits */ function toUint144(uint256 value) internal pure returns (uint144) { if (value > type(uint144).max) { revert SafeCastOverflowedUintDowncast(144, value); } return uint144(value); } /** * @dev Returns the downcasted uint136 from uint256, reverting on * overflow (when the input is greater than largest uint136). * * Counterpart to Solidity's `uint136` operator. * * Requirements: * * - input must fit into 136 bits */ function toUint136(uint256 value) internal pure returns (uint136) { if (value > type(uint136).max) { revert SafeCastOverflowedUintDowncast(136, value); } return uint136(value); } /** * @dev Returns the downcasted uint128 from uint256, reverting on * overflow (when the input is greater than largest uint128). * * Counterpart to Solidity's `uint128` operator. * * Requirements: * * - input must fit into 128 bits */ function toUint128(uint256 value) internal pure returns (uint128) { if (value > type(uint128).max) { revert SafeCastOverflowedUintDowncast(128, value); } return uint128(value); } /** * @dev Returns the downcasted uint120 from uint256, reverting on * overflow (when the input is greater than largest uint120). * * Counterpart to Solidity's `uint120` operator. * * Requirements: * * - input must fit into 120 bits */ function toUint120(uint256 value) internal pure returns (uint120) { if (value > type(uint120).max) { revert SafeCastOverflowedUintDowncast(120, value); } return uint120(value); } /** * @dev Returns the downcasted uint112 from uint256, reverting on * overflow (when the input is greater than largest uint112). * * Counterpart to Solidity's `uint112` operator. * * Requirements: * * - input must fit into 112 bits */ function toUint112(uint256 value) internal pure returns (uint112) { if (value > type(uint112).max) { revert SafeCastOverflowedUintDowncast(112, value); } return uint112(value); } /** * @dev Returns the downcasted uint104 from uint256, reverting on * overflow (when the input is greater than largest uint104). * * Counterpart to Solidity's `uint104` operator. * * Requirements: * * - input must fit into 104 bits */ function toUint104(uint256 value) internal pure returns (uint104) { if (value > type(uint104).max) { revert SafeCastOverflowedUintDowncast(104, value); } return uint104(value); } /** * @dev Returns the downcasted uint96 from uint256, reverting on * overflow (when the input is greater than largest uint96). * * Counterpart to Solidity's `uint96` operator. * * Requirements: * * - input must fit into 96 bits */ function toUint96(uint256 value) internal pure returns (uint96) { if (value > type(uint96).max) { revert SafeCastOverflowedUintDowncast(96, value); } return uint96(value); } /** * @dev Returns the downcasted uint88 from uint256, reverting on * overflow (when the input is greater than largest uint88). * * Counterpart to Solidity's `uint88` operator. * * Requirements: * * - input must fit into 88 bits */ function toUint88(uint256 value) internal pure returns (uint88) { if (value > type(uint88).max) { revert SafeCastOverflowedUintDowncast(88, value); } return uint88(value); } /** * @dev Returns the downcasted uint80 from uint256, reverting on * overflow (when the input is greater than largest uint80). * * Counterpart to Solidity's `uint80` operator. * * Requirements: * * - input must fit into 80 bits */ function toUint80(uint256 value) internal pure returns (uint80) { if (value > type(uint80).max) { revert SafeCastOverflowedUintDowncast(80, value); } return uint80(value); } /** * @dev Returns the downcasted uint72 from uint256, reverting on * overflow (when the input is greater than largest uint72). * * Counterpart to Solidity's `uint72` operator. * * Requirements: * * - input must fit into 72 bits */ function toUint72(uint256 value) internal pure returns (uint72) { if (value > type(uint72).max) { revert SafeCastOverflowedUintDowncast(72, value); } return uint72(value); } /** * @dev Returns the downcasted uint64 from uint256, reverting on * overflow (when the input is greater than largest uint64). * * Counterpart to Solidity's `uint64` operator. * * Requirements: * * - input must fit into 64 bits */ function toUint64(uint256 value) internal pure returns (uint64) { if (value > type(uint64).max) { revert SafeCastOverflowedUintDowncast(64, value); } return uint64(value); } /** * @dev Returns the downcasted uint56 from uint256, reverting on * overflow (when the input is greater than largest uint56). * * Counterpart to Solidity's `uint56` operator. * * Requirements: * * - input must fit into 56 bits */ function toUint56(uint256 value) internal pure returns (uint56) { if (value > type(uint56).max) { revert SafeCastOverflowedUintDowncast(56, value); } return uint56(value); } /** * @dev Returns the downcasted uint48 from uint256, reverting on * overflow (when the input is greater than largest uint48). * * Counterpart to Solidity's `uint48` operator. * * Requirements: * * - input must fit into 48 bits */ function toUint48(uint256 value) internal pure returns (uint48) { if (value > type(uint48).max) { revert SafeCastOverflowedUintDowncast(48, value); } return uint48(value); } /** * @dev Returns the downcasted uint40 from uint256, reverting on * overflow (when the input is greater than largest uint40). * * Counterpart to Solidity's `uint40` operator. * * Requirements: * * - input must fit into 40 bits */ function toUint40(uint256 value) internal pure returns (uint40) { if (value > type(uint40).max) { revert SafeCastOverflowedUintDowncast(40, value); } return uint40(value); } /** * @dev Returns the downcasted uint32 from uint256, reverting on * overflow (when the input is greater than largest uint32). * * Counterpart to Solidity's `uint32` operator. * * Requirements: * * - input must fit into 32 bits */ function toUint32(uint256 value) internal pure returns (uint32) { if (value > type(uint32).max) { revert SafeCastOverflowedUintDowncast(32, value); } return uint32(value); } /** * @dev Returns the downcasted uint24 from uint256, reverting on * overflow (when the input is greater than largest uint24). * * Counterpart to Solidity's `uint24` operator. * * Requirements: * * - input must fit into 24 bits */ function toUint24(uint256 value) internal pure returns (uint24) { if (value > type(uint24).max) { revert SafeCastOverflowedUintDowncast(24, value); } return uint24(value); } /** * @dev Returns the downcasted uint16 from uint256, reverting on * overflow (when the input is greater than largest uint16). * * Counterpart to Solidity's `uint16` operator. * * Requirements: * * - input must fit into 16 bits */ function toUint16(uint256 value) internal pure returns (uint16) { if (value > type(uint16).max) { revert SafeCastOverflowedUintDowncast(16, value); } return uint16(value); } /** * @dev Returns the downcasted uint8 from uint256, reverting on * overflow (when the input is greater than largest uint8). * * Counterpart to Solidity's `uint8` operator. * * Requirements: * * - input must fit into 8 bits */ function toUint8(uint256 value) internal pure returns (uint8) { if (value > type(uint8).max) { revert SafeCastOverflowedUintDowncast(8, value); } return uint8(value); } /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. */ function toUint256(int256 value) internal pure returns (uint256) { if (value < 0) { revert SafeCastOverflowedIntToUint(value); } return uint256(value); } /** * @dev Returns the downcasted int248 from int256, reverting on * overflow (when the input is less than smallest int248 or * greater than largest int248). * * Counterpart to Solidity's `int248` operator. * * Requirements: * * - input must fit into 248 bits */ function toInt248(int256 value) internal pure returns (int248 downcasted) { downcasted = int248(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(248, value); } } /** * @dev Returns the downcasted int240 from int256, reverting on * overflow (when the input is less than smallest int240 or * greater than largest int240). * * Counterpart to Solidity's `int240` operator. * * Requirements: * * - input must fit into 240 bits */ function toInt240(int256 value) internal pure returns (int240 downcasted) { downcasted = int240(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(240, value); } } /** * @dev Returns the downcasted int232 from int256, reverting on * overflow (when the input is less than smallest int232 or * greater than largest int232). * * Counterpart to Solidity's `int232` operator. * * Requirements: * * - input must fit into 232 bits */ function toInt232(int256 value) internal pure returns (int232 downcasted) { downcasted = int232(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(232, value); } } /** * @dev Returns the downcasted int224 from int256, reverting on * overflow (when the input is less than smallest int224 or * greater than largest int224). * * Counterpart to Solidity's `int224` operator. * * Requirements: * * - input must fit into 224 bits */ function toInt224(int256 value) internal pure returns (int224 downcasted) { downcasted = int224(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(224, value); } } /** * @dev Returns the downcasted int216 from int256, reverting on * overflow (when the input is less than smallest int216 or * greater than largest int216). * * Counterpart to Solidity's `int216` operator. * * Requirements: * * - input must fit into 216 bits */ function toInt216(int256 value) internal pure returns (int216 downcasted) { downcasted = int216(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(216, value); } } /** * @dev Returns the downcasted int208 from int256, reverting on * overflow (when the input is less than smallest int208 or * greater than largest int208). * * Counterpart to Solidity's `int208` operator. * * Requirements: * * - input must fit into 208 bits */ function toInt208(int256 value) internal pure returns (int208 downcasted) { downcasted = int208(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(208, value); } } /** * @dev Returns the downcasted int200 from int256, reverting on * overflow (when the input is less than smallest int200 or * greater than largest int200). * * Counterpart to Solidity's `int200` operator. * * Requirements: * * - input must fit into 200 bits */ function toInt200(int256 value) internal pure returns (int200 downcasted) { downcasted = int200(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(200, value); } } /** * @dev Returns the downcasted int192 from int256, reverting on * overflow (when the input is less than smallest int192 or * greater than largest int192). * * Counterpart to Solidity's `int192` operator. * * Requirements: * * - input must fit into 192 bits */ function toInt192(int256 value) internal pure returns (int192 downcasted) { downcasted = int192(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(192, value); } } /** * @dev Returns the downcasted int184 from int256, reverting on * overflow (when the input is less than smallest int184 or * greater than largest int184). * * Counterpart to Solidity's `int184` operator. * * Requirements: * * - input must fit into 184 bits */ function toInt184(int256 value) internal pure returns (int184 downcasted) { downcasted = int184(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(184, value); } } /** * @dev Returns the downcasted int176 from int256, reverting on * overflow (when the input is less than smallest int176 or * greater than largest int176). * * Counterpart to Solidity's `int176` operator. * * Requirements: * * - input must fit into 176 bits */ function toInt176(int256 value) internal pure returns (int176 downcasted) { downcasted = int176(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(176, value); } } /** * @dev Returns the downcasted int168 from int256, reverting on * overflow (when the input is less than smallest int168 or * greater than largest int168). * * Counterpart to Solidity's `int168` operator. * * Requirements: * * - input must fit into 168 bits */ function toInt168(int256 value) internal pure returns (int168 downcasted) { downcasted = int168(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(168, value); } } /** * @dev Returns the downcasted int160 from int256, reverting on * overflow (when the input is less than smallest int160 or * greater than largest int160). * * Counterpart to Solidity's `int160` operator. * * Requirements: * * - input must fit into 160 bits */ function toInt160(int256 value) internal pure returns (int160 downcasted) { downcasted = int160(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(160, value); } } /** * @dev Returns the downcasted int152 from int256, reverting on * overflow (when the input is less than smallest int152 or * greater than largest int152). * * Counterpart to Solidity's `int152` operator. * * Requirements: * * - input must fit into 152 bits */ function toInt152(int256 value) internal pure returns (int152 downcasted) { downcasted = int152(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(152, value); } } /** * @dev Returns the downcasted int144 from int256, reverting on * overflow (when the input is less than smallest int144 or * greater than largest int144). * * Counterpart to Solidity's `int144` operator. * * Requirements: * * - input must fit into 144 bits */ function toInt144(int256 value) internal pure returns (int144 downcasted) { downcasted = int144(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(144, value); } } /** * @dev Returns the downcasted int136 from int256, reverting on * overflow (when the input is less than smallest int136 or * greater than largest int136). * * Counterpart to Solidity's `int136` operator. * * Requirements: * * - input must fit into 136 bits */ function toInt136(int256 value) internal pure returns (int136 downcasted) { downcasted = int136(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(136, value); } } /** * @dev Returns the downcasted int128 from int256, reverting on * overflow (when the input is less than smallest int128 or * greater than largest int128). * * Counterpart to Solidity's `int128` operator. * * Requirements: * * - input must fit into 128 bits */ function toInt128(int256 value) internal pure returns (int128 downcasted) { downcasted = int128(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(128, value); } } /** * @dev Returns the downcasted int120 from int256, reverting on * overflow (when the input is less than smallest int120 or * greater than largest int120). * * Counterpart to Solidity's `int120` operator. * * Requirements: * * - input must fit into 120 bits */ function toInt120(int256 value) internal pure returns (int120 downcasted) { downcasted = int120(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(120, value); } } /** * @dev Returns the downcasted int112 from int256, reverting on * overflow (when the input is less than smallest int112 or * greater than largest int112). * * Counterpart to Solidity's `int112` operator. * * Requirements: * * - input must fit into 112 bits */ function toInt112(int256 value) internal pure returns (int112 downcasted) { downcasted = int112(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(112, value); } } /** * @dev Returns the downcasted int104 from int256, reverting on * overflow (when the input is less than smallest int104 or * greater than largest int104). * * Counterpart to Solidity's `int104` operator. * * Requirements: * * - input must fit into 104 bits */ function toInt104(int256 value) internal pure returns (int104 downcasted) { downcasted = int104(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(104, value); } } /** * @dev Returns the downcasted int96 from int256, reverting on * overflow (when the input is less than smallest int96 or * greater than largest int96). * * Counterpart to Solidity's `int96` operator. * * Requirements: * * - input must fit into 96 bits */ function toInt96(int256 value) internal pure returns (int96 downcasted) { downcasted = int96(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(96, value); } } /** * @dev Returns the downcasted int88 from int256, reverting on * overflow (when the input is less than smallest int88 or * greater than largest int88). * * Counterpart to Solidity's `int88` operator. * * Requirements: * * - input must fit into 88 bits */ function toInt88(int256 value) internal pure returns (int88 downcasted) { downcasted = int88(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(88, value); } } /** * @dev Returns the downcasted int80 from int256, reverting on * overflow (when the input is less than smallest int80 or * greater than largest int80). * * Counterpart to Solidity's `int80` operator. * * Requirements: * * - input must fit into 80 bits */ function toInt80(int256 value) internal pure returns (int80 downcasted) { downcasted = int80(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(80, value); } } /** * @dev Returns the downcasted int72 from int256, reverting on * overflow (when the input is less than smallest int72 or * greater than largest int72). * * Counterpart to Solidity's `int72` operator. * * Requirements: * * - input must fit into 72 bits */ function toInt72(int256 value) internal pure returns (int72 downcasted) { downcasted = int72(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(72, value); } } /** * @dev Returns the downcasted int64 from int256, reverting on * overflow (when the input is less than smallest int64 or * greater than largest int64). * * Counterpart to Solidity's `int64` operator. * * Requirements: * * - input must fit into 64 bits */ function toInt64(int256 value) internal pure returns (int64 downcasted) { downcasted = int64(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(64, value); } } /** * @dev Returns the downcasted int56 from int256, reverting on * overflow (when the input is less than smallest int56 or * greater than largest int56). * * Counterpart to Solidity's `int56` operator. * * Requirements: * * - input must fit into 56 bits */ function toInt56(int256 value) internal pure returns (int56 downcasted) { downcasted = int56(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(56, value); } } /** * @dev Returns the downcasted int48 from int256, reverting on * overflow (when the input is less than smallest int48 or * greater than largest int48). * * Counterpart to Solidity's `int48` operator. * * Requirements: * * - input must fit into 48 bits */ function toInt48(int256 value) internal pure returns (int48 downcasted) { downcasted = int48(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(48, value); } } /** * @dev Returns the downcasted int40 from int256, reverting on * overflow (when the input is less than smallest int40 or * greater than largest int40). * * Counterpart to Solidity's `int40` operator. * * Requirements: * * - input must fit into 40 bits */ function toInt40(int256 value) internal pure returns (int40 downcasted) { downcasted = int40(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(40, value); } } /** * @dev Returns the downcasted int32 from int256, reverting on * overflow (when the input is less than smallest int32 or * greater than largest int32). * * Counterpart to Solidity's `int32` operator. * * Requirements: * * - input must fit into 32 bits */ function toInt32(int256 value) internal pure returns (int32 downcasted) { downcasted = int32(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(32, value); } } /** * @dev Returns the downcasted int24 from int256, reverting on * overflow (when the input is less than smallest int24 or * greater than largest int24). * * Counterpart to Solidity's `int24` operator. * * Requirements: * * - input must fit into 24 bits */ function toInt24(int256 value) internal pure returns (int24 downcasted) { downcasted = int24(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(24, value); } } /** * @dev Returns the downcasted int16 from int256, reverting on * overflow (when the input is less than smallest int16 or * greater than largest int16). * * Counterpart to Solidity's `int16` operator. * * Requirements: * * - input must fit into 16 bits */ function toInt16(int256 value) internal pure returns (int16 downcasted) { downcasted = int16(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(16, value); } } /** * @dev Returns the downcasted int8 from int256, reverting on * overflow (when the input is less than smallest int8 or * greater than largest int8). * * Counterpart to Solidity's `int8` operator. * * Requirements: * * - input must fit into 8 bits */ function toInt8(int256 value) internal pure returns (int8 downcasted) { downcasted = int8(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(8, value); } } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. */ function toInt256(uint256 value) internal pure returns (int256) { // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive if (value > uint256(type(int256).max)) { revert SafeCastOverflowedUintToInt(value); } return int256(value); } /** * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump. */ function toUint(bool b) internal pure returns (uint256 u) { /// @solidity memory-safe-assembly assembly { u := iszero(iszero(b)) } } }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.28; import {PRBMathCommon} from "./PRBMathCommon.sol"; /* solhint-disable */ /// @title PRBMathSD59x18 /// @author Paul Razvan Berg /// @notice Smart contract library for advanced fixed-point math. It works with int256 numbers considered to have 18 /// trailing decimals. We call this number representation signed 59.18-decimal fixed-point, since the numbers can have /// a sign and there can be up to 59 digits in the integer part and up to 18 decimals in the fractional part. The numbers /// are bound by the minimum and the maximum values permitted by the Solidity type int256. library PRBMathSD59x18 { /// @dev log2(e) as a signed 59.18-decimal fixed-point number. int256 internal constant _LOG2_E = 1442695040888963407; /// @dev Half the SCALE number. int256 internal constant _HALF_SCALE = 5e17; /// @dev The maximum value a signed 59.18-decimal fixed-point number can have. int256 internal constant _MAX_SD59x18 = 57896044618658097711785492504343953926634992332820282019728792003956564819967; /// @dev How many trailing decimals can be represented. int256 internal constant _SCALE = 1e18; /// INTERNAL FUNCTIONS /// /// @notice Calculates the natural exponent of x. /// /// @dev Based on the insight that e^x = 2^(x * log2(e)). /// /// Requirements: /// - All from "log2". /// - x must be less than 88722839111672999628. /// /// @param x The exponent as a signed 59.18-decimal fixed-point number. /// @return result The result as a signed 59.18-decimal fixed-point number. function exp(int256 x) internal pure returns (int256 result) { // Without this check, the value passed to "exp2" would be less than -59794705707972522261. if (x < -41446531673892822322) { return 0; } // Without this check, the value passed to "exp2" would be greater than 128e18. require(x < 88722839111672999628); // Do the fixed-point multiplication inline to save gas. unchecked { int256 doubleScaleProduct = x * _LOG2_E; result = exp2((doubleScaleProduct + _HALF_SCALE) / _SCALE); } } /// @notice Calculates the binary exponent of x using the binary fraction method. /// /// @dev See https://ethereum.stackexchange.com/q/79903/24693. /// /// Requirements: /// - x must be 128e18 or less. /// - The result must fit within MAX_SD59x18. /// /// Caveats: /// - For any x less than -59794705707972522261, the result is zero. /// /// @param x The exponent as a signed 59.18-decimal fixed-point number. /// @return result The result as a signed 59.18-decimal fixed-point number. function exp2(int256 x) internal pure returns (int256 result) { // This works because 2^-x = 1/2^x. if (x < 0) { // 2**59.794705707972522262 is the maximum number whose inverse does not equal zero. if (x < -59794705707972522261) { return 0; } // Do the fixed-point inversion inline to save gas. The numerator is SCALE * SCALE. unchecked { result = 1e36 / exp2(-x); } return result; } else { // 2**128 doesn't fit within the 128.128-bit fixed-point representation. require(x < 128e18); unchecked { // Convert x to the 128.128-bit fixed-point format. uint256 x128x128 = (uint256(x) << 128) / uint256(_SCALE); // Safe to convert the result to int256 directly because the maximum input allowed is 128e18. result = int256(PRBMathCommon.exp2(x128x128)); } } } } /* solhint-enable */
// SPDX-License-Identifier: BUSL-1.1 pragma solidity ^0.8.28; import {Math} from "openzeppelin5/utils/math/Math.sol"; import {Rounding} from "../lib/Rounding.sol"; import {ISilo} from "../interfaces/ISilo.sol"; library SiloMathLib { using Math for uint256; uint256 internal constant _PRECISION_DECIMALS = 1e18; uint256 internal constant _DECIMALS_OFFSET = 3; /// @dev this is constant version of openzeppelin5/contracts/token/ERC20/extensions/ERC4626._decimalsOffset uint256 internal constant _DECIMALS_OFFSET_POW = 10 ** _DECIMALS_OFFSET; /// @notice Returns available liquidity to be borrowed /// @dev Accrued interest is entirely added to `debtAssets` but only part of it is added to `collateralAssets`. The /// difference is DAO's and deployer's cut. That means DAO's and deployer's cut is not considered a borrowable /// liquidity. function liquidity(uint256 _collateralAssets, uint256 _debtAssets) internal pure returns (uint256 liquidAssets) { unchecked { // we checked the underflow liquidAssets = _debtAssets > _collateralAssets ? 0 : _collateralAssets - _debtAssets; } } /// @notice Calculate collateral assets with accrued interest and associated fees /// @param _collateralAssets The total amount of collateral assets /// @param _debtAssets The total amount of debt assets /// @param _rcomp Compound interest rate for debt /// @param _daoFee The fee (in 18 decimals points) to be taken for the DAO /// @param _deployerFee The fee (in 18 decimals points) to be taken for the deployer /// @return collateralAssetsWithInterest The total collateral assets including the accrued interest /// @return debtAssetsWithInterest The debt assets with accrued interest /// @return daoAndDeployerRevenue Total fees amount to be split between DAO and deployer /// @return accruedInterest The total accrued interest function getCollateralAmountsWithInterest( uint256 _collateralAssets, uint256 _debtAssets, uint256 _rcomp, uint256 _daoFee, uint256 _deployerFee ) internal pure returns ( uint256 collateralAssetsWithInterest, uint256 debtAssetsWithInterest, uint256 daoAndDeployerRevenue, uint256 accruedInterest ) { (debtAssetsWithInterest, accruedInterest) = getDebtAmountsWithInterest(_debtAssets, _rcomp); uint256 fees; // _daoFee and _deployerFee are expected to be less than 1e18, so we will not overflow unchecked { fees = _daoFee + _deployerFee; } daoAndDeployerRevenue = mulDivOverflow(accruedInterest, fees, _PRECISION_DECIMALS); // we will not underflow because daoAndDeployerRevenue is chunk of accruedInterest uint256 collateralInterest = accruedInterest - daoAndDeployerRevenue; // save to uncheck because variable can not be more than max uint256 cap = type(uint256).max - _collateralAssets; if (cap < collateralInterest) { // avoid overflow on interest collateralInterest = cap; } // safe to uncheck because of cap unchecked { collateralAssetsWithInterest = _collateralAssets + collateralInterest; } } /// @notice Calculate the debt assets with accrued interest, it should never revert with over/under flow /// @param _totalDebtAssets The total amount of debt assets before accrued interest /// @param _rcomp Compound interest rate for the debt in 18 decimal precision /// @return debtAssetsWithInterest The debt assets including the accrued interest /// @return accruedInterest The total amount of interest accrued on the debt assets function getDebtAmountsWithInterest(uint256 _totalDebtAssets, uint256 _rcomp) internal pure returns (uint256 debtAssetsWithInterest, uint256 accruedInterest) { if (_totalDebtAssets == 0 || _rcomp == 0) { return (_totalDebtAssets, 0); } accruedInterest = mulDivOverflow(_totalDebtAssets, _rcomp, _PRECISION_DECIMALS); unchecked { // We intentionally allow overflow here, to prevent transaction revert due to interest calculation. debtAssetsWithInterest = _totalDebtAssets + accruedInterest; // If overflow occurs, we skip accruing interest. if (debtAssetsWithInterest < _totalDebtAssets) { debtAssetsWithInterest = _totalDebtAssets; accruedInterest = 0; } } } /// @notice Calculates fraction between borrowed and deposited amount of tokens denominated in percentage /// @dev It assumes `_dp` = 100%. /// @param _dp decimal points used by model /// @param _collateralAssets current total deposits for assets /// @param _debtAssets current total borrows for assets /// @return utilization value, capped to 100% /// Limiting utilization ratio by 100% max will allows us to perform better interest rate computations /// and should not affect any other part of protocol. It is possible to go over 100% only when bad debt. function calculateUtilization(uint256 _dp, uint256 _collateralAssets, uint256 _debtAssets) internal pure returns (uint256 utilization) { if (_collateralAssets == 0 || _debtAssets == 0 || _dp == 0) return 0; /* how to prevent overflow on: _debtAssets.mulDiv(_dp, _collateralAssets, Rounding.ACCRUED_INTEREST): 1. max > _debtAssets * _dp / _collateralAssets 2. max / _dp > _debtAssets / _collateralAssets */ if (type(uint256).max / _dp > _debtAssets / _collateralAssets) { utilization = _debtAssets.mulDiv(_dp, _collateralAssets, Rounding.ACCRUED_INTEREST); // cap at 100% if (utilization > _dp) utilization = _dp; } else { // we have overflow utilization = _dp; } } function convertToAssetsOrToShares( uint256 _assets, uint256 _shares, uint256 _totalAssets, uint256 _totalShares, Math.Rounding _roundingToAssets, Math.Rounding _roundingToShares, ISilo.AssetType _assetType ) internal pure returns (uint256 assets, uint256 shares) { if (_assets == 0) { require(_shares != 0, ISilo.InputZeroShares()); shares = _shares; assets = convertToAssets(_shares, _totalAssets, _totalShares, _roundingToAssets, _assetType); require(assets != 0, ISilo.ReturnZeroAssets()); } else if (_shares == 0) { shares = convertToShares(_assets, _totalAssets, _totalShares, _roundingToShares, _assetType); assets = _assets; require(shares != 0, ISilo.ReturnZeroShares()); } else { revert ISilo.InputCanBeAssetsOrShares(); } } /// @dev Math for collateral is exact copy of /// openzeppelin5/contracts/token/ERC20/extensions/ERC4626._convertToShares function convertToShares( uint256 _assets, uint256 _totalAssets, uint256 _totalShares, Math.Rounding _rounding, ISilo.AssetType _assetType ) internal pure returns (uint256 shares) { (uint256 totalShares, uint256 totalAssets) = _commonConvertTo(_totalAssets, _totalShares, _assetType); // initially, in case of debt, if silo is empty we return shares==assets // for collateral, this will never be the case, because we are adding `+1` and offset in `_commonConvertTo` if (totalShares == 0) return _assets; shares = _assets.mulDiv(totalShares, totalAssets, _rounding); } /// @dev Math for collateral is exact copy of /// openzeppelin5/contracts/token/ERC20/extensions/ERC4626._convertToAssets function convertToAssets( uint256 _shares, uint256 _totalAssets, uint256 _totalShares, Math.Rounding _rounding, ISilo.AssetType _assetType ) internal pure returns (uint256 assets) { (uint256 totalShares, uint256 totalAssets) = _commonConvertTo(_totalAssets, _totalShares, _assetType); // initially, in case of debt, if silo is empty we return shares==assets // for collateral, this will never be the case, because of `+1` in line above if (totalShares == 0) return _shares; assets = _shares.mulDiv(totalAssets, totalShares, _rounding); } /// @param _collateralMaxLtv maxLTV in 18 decimals that is set for debt asset /// @param _sumOfBorrowerCollateralValue borrower total collateral value (including protected) /// @param _borrowerDebtValue total value of borrower debt /// @return maxBorrowValue max borrow value yet available for borrower function calculateMaxBorrowValue( uint256 _collateralMaxLtv, uint256 _sumOfBorrowerCollateralValue, uint256 _borrowerDebtValue ) internal pure returns (uint256 maxBorrowValue) { if (_sumOfBorrowerCollateralValue == 0) { return 0; } uint256 maxDebtValue = _sumOfBorrowerCollateralValue.mulDiv( _collateralMaxLtv, _PRECISION_DECIMALS, Rounding.MAX_BORROW_VALUE ); unchecked { // we will not underflow because we checking `maxDebtValue > _borrowerDebtValue` maxBorrowValue = maxDebtValue > _borrowerDebtValue ? maxDebtValue - _borrowerDebtValue : 0; } } /// @notice Calculate the maximum assets a borrower can withdraw without breaching the liquidation threshold /// @param _sumOfCollateralsValue The combined value of collateral and protected assets of the borrower /// @param _debtValue The total debt value of the borrower /// @param _lt The liquidation threshold in 18 decimal points /// @param _borrowerCollateralAssets The borrower's collateral assets before the withdrawal /// @param _borrowerProtectedAssets The borrower's protected assets before the withdrawal /// @return maxAssets The maximum assets the borrower can safely withdraw function calculateMaxAssetsToWithdraw( uint256 _sumOfCollateralsValue, uint256 _debtValue, uint256 _lt, uint256 _borrowerCollateralAssets, uint256 _borrowerProtectedAssets ) internal pure returns (uint256 maxAssets) { if (_sumOfCollateralsValue == 0) return 0; if (_debtValue == 0) return _sumOfCollateralsValue; if (_lt == 0) return 0; // using Rounding.LT (up) to have highest collateralValue that we have to leave for user to stay solvent uint256 minimumCollateralValue = _debtValue.mulDiv(_PRECISION_DECIMALS, _lt, Rounding.LTV); // if we over LT, we can not withdraw if (_sumOfCollateralsValue <= minimumCollateralValue) { return 0; } uint256 spareCollateralValue; // safe because we checked `if (_sumOfCollateralsValue <= minimumCollateralValue)` unchecked { spareCollateralValue = _sumOfCollateralsValue - minimumCollateralValue; } maxAssets = (_borrowerProtectedAssets + _borrowerCollateralAssets) .mulDiv(spareCollateralValue, _sumOfCollateralsValue, Rounding.MAX_WITHDRAW_TO_ASSETS); } /// @notice Determines the maximum number of assets and corresponding shares a borrower can safely withdraw /// @param _maxAssets The calculated limit on how many assets can be withdrawn without breaching the liquidation /// threshold /// @param _borrowerCollateralAssets Amount of collateral assets currently held by the borrower /// @param _borrowerProtectedAssets Amount of protected assets currently held by the borrower /// @param _collateralType Specifies whether the asset is of type Collateral or Protected /// @param _totalAssets The entire quantity of assets available in the system for withdrawal /// @param _assetTypeShareTokenTotalSupply Total supply of share tokens for the specified asset type /// @param _liquidity Current liquidity in the system for the asset type /// @return assets Maximum assets the borrower can withdraw /// @return shares Corresponding number of shares for the derived `assets` amount function maxWithdrawToAssetsAndShares( uint256 _maxAssets, uint256 _borrowerCollateralAssets, uint256 _borrowerProtectedAssets, ISilo.CollateralType _collateralType, uint256 _totalAssets, uint256 _assetTypeShareTokenTotalSupply, uint256 _liquidity ) internal pure returns (uint256 assets, uint256 shares) { if (_maxAssets == 0) return (0, 0); if (_assetTypeShareTokenTotalSupply == 0) return (0, 0); if (_collateralType == ISilo.CollateralType.Collateral) { assets = _maxAssets > _borrowerCollateralAssets ? _borrowerCollateralAssets : _maxAssets; if (assets > _liquidity) { assets = _liquidity; } } else { assets = _maxAssets > _borrowerProtectedAssets ? _borrowerProtectedAssets : _maxAssets; } shares = SiloMathLib.convertToShares( assets, _totalAssets, _assetTypeShareTokenTotalSupply, Rounding.MAX_WITHDRAW_TO_SHARES, ISilo.AssetType(uint256(_collateralType)) ); } /// @dev executed `_a * _b / _c`, reverts on _c == 0 /// @return mulDivResult on overflow returns 0 function mulDivOverflow(uint256 _a, uint256 _b, uint256 _c) internal pure returns (uint256 mulDivResult) { if (_a == 0) return (0); unchecked { // we have to uncheck to detect overflow mulDivResult = _a * _b; if (mulDivResult / _a != _b) return 0; mulDivResult /= _c; } } /// @dev Debt calculations should not lower the result. Debt is a liability so protocol should not take any for /// itself. It should return actual result and round it up. function _commonConvertTo( uint256 _totalAssets, uint256 _totalShares, ISilo.AssetType _assetType ) private pure returns (uint256 totalShares, uint256 totalAssets) { if (_totalShares == 0) { // silo is empty and we have dust to redistribute: this can only happen when everyone exits silo // this case can happen only for collateral, because for collateral we rounding in favorite of protocol // by resetting totalAssets, the dust that we have will go to first depositor and we starts from clean state _totalAssets = 0; } (totalShares, totalAssets) = _assetType == ISilo.AssetType.Debt ? (_totalShares, _totalAssets) : (_totalShares + _DECIMALS_OFFSET_POW, _totalAssets + 1); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.5.0; import {IERC4626, IERC20, IERC20Metadata} from "openzeppelin5/interfaces/IERC4626.sol"; import {IERC3156FlashLender} from "./IERC3156FlashLender.sol"; import {ISiloConfig} from "./ISiloConfig.sol"; import {ISiloFactory} from "./ISiloFactory.sol"; import {IHookReceiver} from "./IHookReceiver.sol"; // solhint-disable ordering interface ISilo is IERC20, IERC4626, IERC3156FlashLender { /// @dev Interest accrual happens on each deposit/withdraw/borrow/repay. View methods work on storage that might be /// outdate. Some calculations require accrued interest to return current state of Silo. This struct is used /// to make a decision inside functions if interest should be accrued in memory to work on updated values. enum AccrueInterestInMemory { No, Yes } /// @dev Silo has two separate oracles for solvency and maxLtv calculations. MaxLtv oracle is optional. Solvency /// oracle can also be optional if asset is used as denominator in Silo config. For example, in ETH/USDC Silo /// one could setup only solvency oracle for ETH that returns price in USDC. Then USDC does not need an oracle /// because it's used as denominator for ETH and it's "price" can be assume as 1. enum OracleType { Solvency, MaxLtv } /// @dev There are 3 types of accounting in the system: for non-borrowable collateral deposit called "protected", /// for borrowable collateral deposit called "collateral" and for borrowed tokens called "debt". System does /// identical calculations for each type of accounting but it uses different data. To avoid code duplication /// this enum is used to decide which data should be read. enum AssetType { Protected, // default Collateral, Debt } /// @dev There are 2 types of accounting in the system: for non-borrowable collateral deposit called "protected" and /// for borrowable collateral deposit called "collateral". System does /// identical calculations for each type of accounting but it uses different data. To avoid code duplication /// this enum is used to decide which data should be read. enum CollateralType { Protected, // default Collateral } /// @dev Types of calls that can be made by the hook receiver on behalf of Silo via `callOnBehalfOfSilo` fn enum CallType { Call, // default Delegatecall } /// @param _assets Amount of assets the user wishes to withdraw. Use 0 if shares are provided. /// @param _shares Shares the user wishes to burn in exchange for the withdrawal. Use 0 if assets are provided. /// @param _receiver Address receiving the withdrawn assets /// @param _owner Address of the owner of the shares being burned /// @param _spender Address executing the withdrawal; may be different than `_owner` if an allowance was set /// @param _collateralType Type of the asset being withdrawn (Collateral or Protected) struct WithdrawArgs { uint256 assets; uint256 shares; address receiver; address owner; address spender; ISilo.CollateralType collateralType; } /// @param assets Number of assets the borrower intends to borrow. Use 0 if shares are provided. /// @param shares Number of shares corresponding to the assets that the borrower intends to borrow. Use 0 if /// assets are provided. /// @param receiver Address that will receive the borrowed assets /// @param borrower The user who is borrowing the assets struct BorrowArgs { uint256 assets; uint256 shares; address receiver; address borrower; } /// @param shares Amount of shares the user wishes to transit. /// @param owner owner of the shares after transition. /// @param transitionFrom type of collateral that will be transitioned. struct TransitionCollateralArgs { uint256 shares; address owner; ISilo.CollateralType transitionFrom; } struct UtilizationData { /// @dev COLLATERAL: Amount of asset token that has been deposited to Silo plus interest earned by depositors. /// It also includes token amount that has been borrowed. uint256 collateralAssets; /// @dev DEBT: Amount of asset token that has been borrowed plus accrued interest. uint256 debtAssets; /// @dev timestamp of the last interest accrual uint64 interestRateTimestamp; } struct SiloStorage { /// @param daoAndDeployerRevenue Current amount of assets (fees) accrued by DAO and Deployer /// but not yet withdrawn uint192 daoAndDeployerRevenue; /// @dev timestamp of the last interest accrual uint64 interestRateTimestamp; /// @dev silo is just for one asset, /// but this one asset can be of three types: mapping key is uint256(AssetType), so we store `assets` by type. /// Assets based on type: /// - PROTECTED COLLATERAL: Amount of asset token that has been deposited to Silo that can be ONLY used /// as collateral. These deposits do NOT earn interest and CANNOT be borrowed. /// - COLLATERAL: Amount of asset token that has been deposited to Silo plus interest earned by depositors. /// It also includes token amount that has been borrowed. /// - DEBT: Amount of asset token that has been borrowed plus accrued interest. /// `totalAssets` can have outdated value (without interest), if you doing view call (of off-chain call) /// please use getters eg `getCollateralAssets()` to fetch value that includes interest. mapping(AssetType assetType => uint256 assets) totalAssets; } /// @notice Emitted on protected deposit /// @param sender wallet address that deposited asset /// @param owner wallet address that received shares in Silo /// @param assets amount of asset that was deposited /// @param shares amount of shares that was minted event DepositProtected(address indexed sender, address indexed owner, uint256 assets, uint256 shares); /// @notice Emitted on protected withdraw /// @param sender wallet address that sent transaction /// @param receiver wallet address that received asset /// @param owner wallet address that owned asset /// @param assets amount of asset that was withdrew /// @param shares amount of shares that was burn event WithdrawProtected( address indexed sender, address indexed receiver, address indexed owner, uint256 assets, uint256 shares ); /// @notice Emitted on borrow /// @param sender wallet address that sent transaction /// @param receiver wallet address that received asset /// @param owner wallet address that owes assets /// @param assets amount of asset that was borrowed /// @param shares amount of shares that was minted event Borrow( address indexed sender, address indexed receiver, address indexed owner, uint256 assets, uint256 shares ); /// @notice Emitted on repayment /// @param sender wallet address that repaid asset /// @param owner wallet address that owed asset /// @param assets amount of asset that was repaid /// @param shares amount of shares that was burn event Repay(address indexed sender, address indexed owner, uint256 assets, uint256 shares); /// @notice emitted only when collateral has been switched to other one event CollateralTypeChanged(address indexed borrower); event HooksUpdated(uint24 hooksBefore, uint24 hooksAfter); event AccruedInterest(uint256 hooksBefore); event FlashLoan(uint256 amount); event WithdrawnFeed(uint256 daoFees, uint256 deployerFees); error Unsupported(); error NothingToWithdraw(); error NotEnoughLiquidity(); error NotSolvent(); error BorrowNotPossible(); error EarnedZero(); error FlashloanFailed(); error AboveMaxLtv(); error SiloInitialized(); error OnlyHookReceiver(); error NoLiquidity(); error InputCanBeAssetsOrShares(); error CollateralSiloAlreadySet(); error RepayTooHigh(); error ZeroAmount(); error InputZeroShares(); error ReturnZeroAssets(); error ReturnZeroShares(); /// @return siloFactory The associated factory of the silo function factory() external view returns (ISiloFactory siloFactory); /// @notice Method for HookReceiver only to call on behalf of Silo /// @param _target address of the contract to call /// @param _value amount of ETH to send /// @param _callType type of the call (Call or Delegatecall) /// @param _input calldata for the call function callOnBehalfOfSilo(address _target, uint256 _value, CallType _callType, bytes calldata _input) external payable returns (bool success, bytes memory result); /// @notice Initialize Silo /// @param _siloConfig address of ISiloConfig with full config for this Silo function initialize(ISiloConfig _siloConfig) external; /// @notice Update hooks configuration for Silo /// @dev This function must be called after the hooks configuration is changed in the hook receiver function updateHooks() external; /// @notice Fetches the silo configuration contract /// @return siloConfig Address of the configuration contract associated with the silo function config() external view returns (ISiloConfig siloConfig); /// @notice Fetches the utilization data of the silo used by IRM function utilizationData() external view returns (UtilizationData memory utilizationData); /// @notice Fetches the real (available to borrow) liquidity in the silo, it does include interest /// @return liquidity The amount of liquidity function getLiquidity() external view returns (uint256 liquidity); /// @notice Determines if a borrower is solvent /// @param _borrower Address of the borrower to check for solvency /// @return True if the borrower is solvent, otherwise false function isSolvent(address _borrower) external view returns (bool); /// @notice Retrieves the raw total amount of assets based on provided type (direct storage access) function getTotalAssetsStorage(AssetType _assetType) external view returns (uint256); /// @notice Direct storage access to silo storage /// @dev See struct `SiloStorage` for more details function getSiloStorage() external view returns ( uint192 daoAndDeployerRevenue, uint64 interestRateTimestamp, uint256 protectedAssets, uint256 collateralAssets, uint256 debtAssets ); /// @notice Retrieves the total amount of collateral (borrowable) assets with interest /// @return totalCollateralAssets The total amount of assets of type 'Collateral' function getCollateralAssets() external view returns (uint256 totalCollateralAssets); /// @notice Retrieves the total amount of debt assets with interest /// @return totalDebtAssets The total amount of assets of type 'Debt' function getDebtAssets() external view returns (uint256 totalDebtAssets); /// @notice Retrieves the total amounts of collateral and protected (non-borrowable) assets /// @return totalCollateralAssets The total amount of assets of type 'Collateral' /// @return totalProtectedAssets The total amount of protected (non-borrowable) assets function getCollateralAndProtectedTotalsStorage() external view returns (uint256 totalCollateralAssets, uint256 totalProtectedAssets); /// @notice Retrieves the total amounts of collateral and debt assets /// @return totalCollateralAssets The total amount of assets of type 'Collateral' /// @return totalDebtAssets The total amount of debt assets of type 'Debt' function getCollateralAndDebtTotalsStorage() external view returns (uint256 totalCollateralAssets, uint256 totalDebtAssets); /// @notice Implements IERC4626.convertToShares for each asset type function convertToShares(uint256 _assets, AssetType _assetType) external view returns (uint256 shares); /// @notice Implements IERC4626.convertToAssets for each asset type function convertToAssets(uint256 _shares, AssetType _assetType) external view returns (uint256 assets); /// @notice Implements IERC4626.previewDeposit for protected (non-borrowable) collateral and collateral /// @dev Reverts for debt asset type function previewDeposit(uint256 _assets, CollateralType _collateralType) external view returns (uint256 shares); /// @notice Implements IERC4626.deposit for protected (non-borrowable) collateral and collateral /// @dev Reverts for debt asset type function deposit(uint256 _assets, address _receiver, CollateralType _collateralType) external returns (uint256 shares); /// @notice Implements IERC4626.previewMint for protected (non-borrowable) collateral and collateral /// @dev Reverts for debt asset type function previewMint(uint256 _shares, CollateralType _collateralType) external view returns (uint256 assets); /// @notice Implements IERC4626.mint for protected (non-borrowable) collateral and collateral /// @dev Reverts for debt asset type function mint(uint256 _shares, address _receiver, CollateralType _collateralType) external returns (uint256 assets); /// @notice Implements IERC4626.maxWithdraw for protected (non-borrowable) collateral and collateral /// @dev Reverts for debt asset type function maxWithdraw(address _owner, CollateralType _collateralType) external view returns (uint256 maxAssets); /// @notice Implements IERC4626.previewWithdraw for protected (non-borrowable) collateral and collateral /// @dev Reverts for debt asset type function previewWithdraw(uint256 _assets, CollateralType _collateralType) external view returns (uint256 shares); /// @notice Implements IERC4626.withdraw for protected (non-borrowable) collateral and collateral /// @dev Reverts for debt asset type function withdraw(uint256 _assets, address _receiver, address _owner, CollateralType _collateralType) external returns (uint256 shares); /// @notice Implements IERC4626.maxRedeem for protected (non-borrowable) collateral and collateral /// @dev Reverts for debt asset type function maxRedeem(address _owner, CollateralType _collateralType) external view returns (uint256 maxShares); /// @notice Implements IERC4626.previewRedeem for protected (non-borrowable) collateral and collateral /// @dev Reverts for debt asset type function previewRedeem(uint256 _shares, CollateralType _collateralType) external view returns (uint256 assets); /// @notice Implements IERC4626.redeem for protected (non-borrowable) collateral and collateral /// @dev Reverts for debt asset type function redeem(uint256 _shares, address _receiver, address _owner, CollateralType _collateralType) external returns (uint256 assets); /// @notice Calculates the maximum amount of assets that can be borrowed by the given address /// @param _borrower Address of the potential borrower /// @return maxAssets Maximum amount of assets that the borrower can borrow, this value is underestimated /// That means, in some cases when you borrow maxAssets, you will be able to borrow again eg. up to 2wei /// Reason for underestimation is to return value that will not cause borrow revert function maxBorrow(address _borrower) external view returns (uint256 maxAssets); /// @notice Previews the amount of shares equivalent to the given asset amount for borrowing /// @param _assets Amount of assets to preview the equivalent shares for /// @return shares Amount of shares equivalent to the provided asset amount function previewBorrow(uint256 _assets) external view returns (uint256 shares); /// @notice Allows an address to borrow a specified amount of assets /// @param _assets Amount of assets to borrow /// @param _receiver Address receiving the borrowed assets /// @param _borrower Address responsible for the borrowed assets /// @return shares Amount of shares equivalent to the borrowed assets function borrow(uint256 _assets, address _receiver, address _borrower) external returns (uint256 shares); /// @notice Calculates the maximum amount of shares that can be borrowed by the given address /// @param _borrower Address of the potential borrower /// @return maxShares Maximum number of shares that the borrower can borrow function maxBorrowShares(address _borrower) external view returns (uint256 maxShares); /// @notice Previews the amount of assets equivalent to the given share amount for borrowing /// @param _shares Amount of shares to preview the equivalent assets for /// @return assets Amount of assets equivalent to the provided share amount function previewBorrowShares(uint256 _shares) external view returns (uint256 assets); /// @notice Calculates the maximum amount of assets that can be borrowed by the given address /// @param _borrower Address of the potential borrower /// @return maxAssets Maximum amount of assets that the borrower can borrow, this value is underestimated /// That means, in some cases when you borrow maxAssets, you will be able to borrow again eg. up to 2wei /// Reason for underestimation is to return value that will not cause borrow revert function maxBorrowSameAsset(address _borrower) external view returns (uint256 maxAssets); /// @notice Allows an address to borrow a specified amount of assets that will be back up with deposit made with the /// same asset /// @param _assets Amount of assets to borrow /// @param _receiver Address receiving the borrowed assets /// @param _borrower Address responsible for the borrowed assets /// @return shares Amount of shares equivalent to the borrowed assets function borrowSameAsset(uint256 _assets, address _receiver, address _borrower) external returns (uint256 shares); /// @notice Allows a user to borrow assets based on the provided share amount /// @param _shares Amount of shares to borrow against /// @param _receiver Address to receive the borrowed assets /// @param _borrower Address responsible for the borrowed assets /// @return assets Amount of assets borrowed function borrowShares(uint256 _shares, address _receiver, address _borrower) external returns (uint256 assets); /// @notice Calculates the maximum amount an address can repay based on their debt shares /// @param _borrower Address of the borrower /// @return assets Maximum amount of assets the borrower can repay function maxRepay(address _borrower) external view returns (uint256 assets); /// @notice Provides an estimation of the number of shares equivalent to a given asset amount for repayment /// @param _assets Amount of assets to be repaid /// @return shares Estimated number of shares equivalent to the provided asset amount function previewRepay(uint256 _assets) external view returns (uint256 shares); /// @notice Repays a given asset amount and returns the equivalent number of shares /// @param _assets Amount of assets to be repaid /// @param _borrower Address of the borrower whose debt is being repaid /// @return shares The equivalent number of shares for the provided asset amount function repay(uint256 _assets, address _borrower) external returns (uint256 shares); /// @notice Calculates the maximum number of shares that can be repaid for a given borrower /// @param _borrower Address of the borrower /// @return shares The maximum number of shares that can be repaid for the borrower function maxRepayShares(address _borrower) external view returns (uint256 shares); /// @notice Provides a preview of the equivalent assets for a given number of shares to repay /// @param _shares Number of shares to preview repayment for /// @return assets Equivalent assets for the provided shares function previewRepayShares(uint256 _shares) external view returns (uint256 assets); /// @notice Allows a user to repay a loan using shares instead of assets /// @param _shares The number of shares the borrower wants to repay with /// @param _borrower The address of the borrower for whom to repay the loan /// @return assets The equivalent assets amount for the provided shares function repayShares(uint256 _shares, address _borrower) external returns (uint256 assets); /// @notice Transitions assets between borrowable (collateral) and non-borrowable (protected) states /// @dev This function allows assets to move between collateral and protected (non-borrowable) states without /// leaving the protocol /// @param _shares Amount of shares to be transitioned /// @param _owner Owner of the assets being transitioned /// @param _transitionFrom Specifies if the transition is from collateral or protected assets /// @return assets Amount of assets transitioned function transitionCollateral(uint256 _shares, address _owner, CollateralType _transitionFrom) external returns (uint256 assets); /// @notice Switches the collateral silo to this silo /// @dev Revert if the collateral silo is already set function switchCollateralToThisSilo() external; /// @notice Accrues interest for the asset and returns the accrued interest amount /// @return accruedInterest The total interest accrued during this operation function accrueInterest() external returns (uint256 accruedInterest); /// @notice only for SiloConfig function accrueInterestForConfig( address _interestRateModel, uint256 _daoFee, uint256 _deployerFee ) external; /// @notice Withdraws earned fees and distributes them to the DAO and deployer fee receivers function withdrawFees() external; }
// SPDX-License-Identifier: MIT pragma solidity >=0.5.0; import {IInterestRateModelV2} from "./IInterestRateModelV2.sol"; interface IInterestRateModelV2Config { /// @return config returns immutable IRM configuration that is present in contract function getConfig() external view returns (IInterestRateModelV2.Config memory config); }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.28; /* solhint-disable */ /// @dev Common mathematical functions used in both PRBMathSD59x18 and PRBMathUD60x18. Note that this shared library /// does not always assume the signed 59.18-decimal fixed-point or the unsigned 60.18-decimal fixed-point // representation. When it does not, it is annotated in the function's NatSpec documentation. /// @author Paul Razvan Berg library PRBMathCommon { /// @dev How many trailing decimals can be represented. uint256 internal constant _SCALE = 1e18; /// @notice Calculates the binary exponent of x using the binary fraction method. /// @dev Uses 128.128-bit fixed-point numbers - it is the most efficient way. /// @param x The exponent as an unsigned 128.128-bit fixed-point number. /// @return result The result as an unsigned 60x18 decimal fixed-point number. function exp2(uint256 x) internal pure returns (uint256 result) { unchecked { // Start from 0.5 in the 128.128-bit fixed-point format. We need to use uint256 because the intermediary // may get very close to 2^256, which doesn't fit in int256. result = 0x80000000000000000000000000000000; // Multiply the result by root(2, 2^-i) when the bit at debt i is 1. None of the intermediary results overflows // because the initial result is 2^127 and all magic factors are less than 2^129. if (x & 0x80000000000000000000000000000000 > 0) result = (result * 0x16A09E667F3BCC908B2FB1366EA957D3E) >> 128; if (x & 0x40000000000000000000000000000000 > 0) result = (result * 0x1306FE0A31B7152DE8D5A46305C85EDED) >> 128; if (x & 0x20000000000000000000000000000000 > 0) result = (result * 0x1172B83C7D517ADCDF7C8C50EB14A7920) >> 128; if (x & 0x10000000000000000000000000000000 > 0) result = (result * 0x10B5586CF9890F6298B92B71842A98364) >> 128; if (x & 0x8000000000000000000000000000000 > 0) result = (result * 0x1059B0D31585743AE7C548EB68CA417FE) >> 128; if (x & 0x4000000000000000000000000000000 > 0) result = (result * 0x102C9A3E778060EE6F7CACA4F7A29BDE9) >> 128; if (x & 0x2000000000000000000000000000000 > 0) result = (result * 0x10163DA9FB33356D84A66AE336DCDFA40) >> 128; if (x & 0x1000000000000000000000000000000 > 0) result = (result * 0x100B1AFA5ABCBED6129AB13EC11DC9544) >> 128; if (x & 0x800000000000000000000000000000 > 0) result = (result * 0x10058C86DA1C09EA1FF19D294CF2F679C) >> 128; if (x & 0x400000000000000000000000000000 > 0) result = (result * 0x1002C605E2E8CEC506D21BFC89A23A011) >> 128; if (x & 0x200000000000000000000000000000 > 0) result = (result * 0x100162F3904051FA128BCA9C55C31E5E0) >> 128; if (x & 0x100000000000000000000000000000 > 0) result = (result * 0x1000B175EFFDC76BA38E31671CA939726) >> 128; if (x & 0x80000000000000000000000000000 > 0) result = (result * 0x100058BA01FB9F96D6CACD4B180917C3E) >> 128; if (x & 0x40000000000000000000000000000 > 0) result = (result * 0x10002C5CC37DA9491D0985C348C68E7B4) >> 128; if (x & 0x20000000000000000000000000000 > 0) result = (result * 0x1000162E525EE054754457D5995292027) >> 128; if (x & 0x10000000000000000000000000000 > 0) result = (result * 0x10000B17255775C040618BF4A4ADE83FD) >> 128; if (x & 0x8000000000000000000000000000 > 0) result = (result * 0x1000058B91B5BC9AE2EED81E9B7D4CFAC) >> 128; if (x & 0x4000000000000000000000000000 > 0) result = (result * 0x100002C5C89D5EC6CA4D7C8ACC017B7CA) >> 128; if (x & 0x2000000000000000000000000000 > 0) result = (result * 0x10000162E43F4F831060E02D839A9D16D) >> 128; if (x & 0x1000000000000000000000000000 > 0) result = (result * 0x100000B1721BCFC99D9F890EA06911763) >> 128; if (x & 0x800000000000000000000000000 > 0) result = (result * 0x10000058B90CF1E6D97F9CA14DBCC1629) >> 128; if (x & 0x400000000000000000000000000 > 0) result = (result * 0x1000002C5C863B73F016468F6BAC5CA2C) >> 128; if (x & 0x200000000000000000000000000 > 0) result = (result * 0x100000162E430E5A18F6119E3C02282A6) >> 128; if (x & 0x100000000000000000000000000 > 0) result = (result * 0x1000000B1721835514B86E6D96EFD1BFF) >> 128; if (x & 0x80000000000000000000000000 > 0) result = (result * 0x100000058B90C0B48C6BE5DF846C5B2F0) >> 128; if (x & 0x40000000000000000000000000 > 0) result = (result * 0x10000002C5C8601CC6B9E94213C72737B) >> 128; if (x & 0x20000000000000000000000000 > 0) result = (result * 0x1000000162E42FFF037DF38AA2B219F07) >> 128; if (x & 0x10000000000000000000000000 > 0) result = (result * 0x10000000B17217FBA9C739AA5819F44FA) >> 128; if (x & 0x8000000000000000000000000 > 0) result = (result * 0x1000000058B90BFCDEE5ACD3C1CEDC824) >> 128; if (x & 0x4000000000000000000000000 > 0) result = (result * 0x100000002C5C85FE31F35A6A30DA1BE51) >> 128; if (x & 0x2000000000000000000000000 > 0) result = (result * 0x10000000162E42FF0999CE3541B9FFFD0) >> 128; if (x & 0x1000000000000000000000000 > 0) result = (result * 0x100000000B17217F80F4EF5AADDA45554) >> 128; if (x & 0x800000000000000000000000 > 0) result = (result * 0x10000000058B90BFBF8479BD5A81B51AE) >> 128; if (x & 0x400000000000000000000000 > 0) result = (result * 0x1000000002C5C85FDF84BD62AE30A74CD) >> 128; if (x & 0x200000000000000000000000 > 0) result = (result * 0x100000000162E42FEFB2FED257559BDAA) >> 128; if (x & 0x100000000000000000000000 > 0) result = (result * 0x1000000000B17217F7D5A7716BBA4A9AF) >> 128; if (x & 0x80000000000000000000000 > 0) result = (result * 0x100000000058B90BFBE9DDBAC5E109CCF) >> 128; if (x & 0x40000000000000000000000 > 0) result = (result * 0x10000000002C5C85FDF4B15DE6F17EB0E) >> 128; if (x & 0x20000000000000000000000 > 0) result = (result * 0x1000000000162E42FEFA494F1478FDE05) >> 128; if (x & 0x10000000000000000000000 > 0) result = (result * 0x10000000000B17217F7D20CF927C8E94D) >> 128; if (x & 0x8000000000000000000000 > 0) result = (result * 0x1000000000058B90BFBE8F71CB4E4B33E) >> 128; if (x & 0x4000000000000000000000 > 0) result = (result * 0x100000000002C5C85FDF477B662B26946) >> 128; if (x & 0x2000000000000000000000 > 0) result = (result * 0x10000000000162E42FEFA3AE53369388D) >> 128; if (x & 0x1000000000000000000000 > 0) result = (result * 0x100000000000B17217F7D1D351A389D41) >> 128; if (x & 0x800000000000000000000 > 0) result = (result * 0x10000000000058B90BFBE8E8B2D3D4EDF) >> 128; if (x & 0x400000000000000000000 > 0) result = (result * 0x1000000000002C5C85FDF4741BEA6E77F) >> 128; if (x & 0x200000000000000000000 > 0) result = (result * 0x100000000000162E42FEFA39FE95583C3) >> 128; if (x & 0x100000000000000000000 > 0) result = (result * 0x1000000000000B17217F7D1CFB72B45E3) >> 128; if (x & 0x80000000000000000000 > 0) result = (result * 0x100000000000058B90BFBE8E7CC35C3F2) >> 128; if (x & 0x40000000000000000000 > 0) result = (result * 0x10000000000002C5C85FDF473E242EA39) >> 128; if (x & 0x20000000000000000000 > 0) result = (result * 0x1000000000000162E42FEFA39F02B772C) >> 128; if (x & 0x10000000000000000000 > 0) result = (result * 0x10000000000000B17217F7D1CF7D83C1A) >> 128; if (x & 0x8000000000000000000 > 0) result = (result * 0x1000000000000058B90BFBE8E7BDCBE2E) >> 128; if (x & 0x4000000000000000000 > 0) result = (result * 0x100000000000002C5C85FDF473DEA871F) >> 128; if (x & 0x2000000000000000000 > 0) result = (result * 0x10000000000000162E42FEFA39EF44D92) >> 128; if (x & 0x1000000000000000000 > 0) result = (result * 0x100000000000000B17217F7D1CF79E949) >> 128; if (x & 0x800000000000000000 > 0) result = (result * 0x10000000000000058B90BFBE8E7BCE545) >> 128; if (x & 0x400000000000000000 > 0) result = (result * 0x1000000000000002C5C85FDF473DE6ECA) >> 128; if (x & 0x200000000000000000 > 0) result = (result * 0x100000000000000162E42FEFA39EF366F) >> 128; if (x & 0x100000000000000000 > 0) result = (result * 0x1000000000000000B17217F7D1CF79AFA) >> 128; if (x & 0x80000000000000000 > 0) result = (result * 0x100000000000000058B90BFBE8E7BCD6E) >> 128; if (x & 0x40000000000000000 > 0) result = (result * 0x10000000000000002C5C85FDF473DE6B3) >> 128; if (x & 0x20000000000000000 > 0) result = (result * 0x1000000000000000162E42FEFA39EF359) >> 128; if (x & 0x10000000000000000 > 0) result = (result * 0x10000000000000000B17217F7D1CF79AC) >> 128; // Multiply the result by the integer part 2^n + 1. We have to shift by one bit extra because we have already divided // by two when we set the result equal to 0.5 above. result = result << ((x >> 128) + 1); // Convert the result to the signed 60.18-decimal fixed-point format. result = PRBMathCommon.mulDiv(result, 1e18, 2**128); } } /// @notice Calculates floor(x*y÷denominator) with full precision. /// /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv. /// /// Requirements: /// - The denominator cannot be zero. /// - The result must fit within uint256. /// /// Caveats: /// - This function does not work with fixed-point numbers. /// /// @param x The multiplicand as an uint256. /// @param y The multiplier as an uint256. /// @param denominator The divisor as an uint256. /// @return result The result as an uint256. function mulDiv( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 result) { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2**256 and mod 2**256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2**256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division if (prod1 == 0) { require(denominator > 0); assembly { result := div(prod0, denominator) } return result; } // Make sure the result is less than 2**256. Also prevents denominator == 0. require(denominator > prod1); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. unchecked { // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 lpotdod = denominator & (~denominator + 1); assembly { // Divide denominator by lpotdod. denominator := div(denominator, lpotdod) // Divide [prod1 prod0] by lpotdod. prod0 := div(prod0, lpotdod) // Flip lpotdod such that it is 2**256 / lpotdod. If lpotdod is zero, then it becomes one. lpotdod := add(div(sub(0, lpotdod), lpotdod), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * lpotdod; // Invert denominator mod 2**256. Now that denominator is an odd number, it has an inverse modulo 2**256 such // that denominator * inv = 1 mod 2**256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2**4 uint256 inverse = (3 * denominator) ^ 2; // Now use Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2**8 inverse *= 2 - denominator * inverse; // inverse mod 2**16 inverse *= 2 - denominator * inverse; // inverse mod 2**32 inverse *= 2 - denominator * inverse; // inverse mod 2**64 inverse *= 2 - denominator * inverse; // inverse mod 2**128 inverse *= 2 - denominator * inverse; // inverse mod 2**256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2**256. Since the preconditions guarantee that the outcome is // less than 2**256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } } /* solhint-enable */
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol) pragma solidity ^0.8.20; import {Panic} from "../Panic.sol"; import {SafeCast} from "./SafeCast.sol"; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an success flag (no overflow). */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow). */ function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow). */ function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a success flag (no division by zero). */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero). */ function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. Panic.panic(Panic.DIVISION_BY_ZERO); } // The following calculation ensures accurate ceiling division without overflow. // Since a is non-zero, (a - 1) / b will not overflow. // The largest possible result occurs when (a - 1) / b is type(uint256).max, // but the largest value we can obtain is type(uint256).max - 1, which happens // when a = type(uint256).max and b = 1. unchecked { return a == 0 ? 0 : (a - 1) / b + 1; } } /** * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2²⁵⁶ + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0. if (denominator <= prod1) { Panic.panic(denominator == 0 ? Panic.DIVISION_BY_ZERO : Panic.UNDER_OVERFLOW); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv ≡ 1 mod 2⁴. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2⁸ inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶ inverse *= 2 - denominator * inverse; // inverse mod 2³² inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴ inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸ inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶ // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @dev Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0); } /** * @dev Calculate the modular multiplicative inverse of a number in Z/nZ. * * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, expect 0. * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible. * * If the input value is not inversible, 0 is returned. * * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Ferma's little theorem and get the * inverse using `Math.modExp(a, n - 2, n)`. */ function invMod(uint256 a, uint256 n) internal pure returns (uint256) { unchecked { if (n == 0) return 0; // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version) // Used to compute integers x and y such that: ax + ny = gcd(a, n). // When the gcd is 1, then the inverse of a modulo n exists and it's x. // ax + ny = 1 // ax = 1 + (-y)n // ax ≡ 1 (mod n) # x is the inverse of a modulo n // If the remainder is 0 the gcd is n right away. uint256 remainder = a % n; uint256 gcd = n; // Therefore the initial coefficients are: // ax + ny = gcd(a, n) = n // 0a + 1n = n int256 x = 0; int256 y = 1; while (remainder != 0) { uint256 quotient = gcd / remainder; (gcd, remainder) = ( // The old remainder is the next gcd to try. remainder, // Compute the next remainder. // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd // where gcd is at most n (capped to type(uint256).max) gcd - remainder * quotient ); (x, y) = ( // Increment the coefficient of a. y, // Decrement the coefficient of n. // Can overflow, but the result is casted to uint256 so that the // next value of y is "wrapped around" to a value between 0 and n - 1. x - y * int256(quotient) ); } if (gcd != 1) return 0; // No inverse exists. return x < 0 ? (n - uint256(-x)) : uint256(x); // Wrap the result if it's negative. } } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m) * * Requirements: * - modulus can't be zero * - underlying staticcall to precompile must succeed * * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make * sure the chain you're using it on supports the precompiled contract for modular exponentiation * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, * the underlying function will succeed given the lack of a revert, but the result may be incorrectly * interpreted as 0. */ function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) { (bool success, uint256 result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m). * It includes a success flag indicating if the operation succeeded. Operation will be marked has failed if trying * to operate modulo 0 or if the underlying precompile reverted. * * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack * of a revert, but the result may be incorrectly interpreted as 0. */ function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) { if (m == 0) return (false, 0); /// @solidity memory-safe-assembly assembly { let ptr := mload(0x40) // | Offset | Content | Content (Hex) | // |-----------|------------|--------------------------------------------------------------------| // | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x60:0x7f | value of b | 0x<.............................................................b> | // | 0x80:0x9f | value of e | 0x<.............................................................e> | // | 0xa0:0xbf | value of m | 0x<.............................................................m> | mstore(ptr, 0x20) mstore(add(ptr, 0x20), 0x20) mstore(add(ptr, 0x40), 0x20) mstore(add(ptr, 0x60), b) mstore(add(ptr, 0x80), e) mstore(add(ptr, 0xa0), m) // Given the result < m, it's guaranteed to fit in 32 bytes, // so we can use the memory scratch space located at offset 0. success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20) result := mload(0x00) } } /** * @dev Variant of {modExp} that supports inputs of arbitrary length. */ function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) { (bool success, bytes memory result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Variant of {tryModExp} that supports inputs of arbitrary length. */ function tryModExp( bytes memory b, bytes memory e, bytes memory m ) internal view returns (bool success, bytes memory result) { if (_zeroBytes(m)) return (false, new bytes(0)); uint256 mLen = m.length; // Encode call args in result and move the free memory pointer result = abi.encodePacked(b.length, e.length, mLen, b, e, m); /// @solidity memory-safe-assembly assembly { let dataPtr := add(result, 0x20) // Write result on top of args to avoid allocating extra memory. success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen) // Overwrite the length. // result.length > returndatasize() is guaranteed because returndatasize() == m.length mstore(result, mLen) // Set the memory pointer after the returned data. mstore(0x40, add(dataPtr, mLen)) } } /** * @dev Returns whether the provided byte array is zero. */ function _zeroBytes(bytes memory byteArray) private pure returns (bool) { for (uint256 i = 0; i < byteArray.length; ++i) { if (byteArray[i] != 0) { return false; } } return true; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * This method is based on Newton's method for computing square roots; the algorithm is restricted to only * using integer operations. */ function sqrt(uint256 a) internal pure returns (uint256) { unchecked { // Take care of easy edge cases when a == 0 or a == 1 if (a <= 1) { return a; } // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between // the current value as `ε_n = | x_n - sqrt(a) |`. // // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is // bigger than any uint256. // // By noticing that // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)` // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar // to the msb function. uint256 aa = a; uint256 xn = 1; if (aa >= (1 << 128)) { aa >>= 128; xn <<= 64; } if (aa >= (1 << 64)) { aa >>= 64; xn <<= 32; } if (aa >= (1 << 32)) { aa >>= 32; xn <<= 16; } if (aa >= (1 << 16)) { aa >>= 16; xn <<= 8; } if (aa >= (1 << 8)) { aa >>= 8; xn <<= 4; } if (aa >= (1 << 4)) { aa >>= 4; xn <<= 2; } if (aa >= (1 << 2)) { xn <<= 1; } // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1). // // We can refine our estimation by noticing that the middle of that interval minimizes the error. // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2). // This is going to be our x_0 (and ε_0) xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2) // From here, Newton's method give us: // x_{n+1} = (x_n + a / x_n) / 2 // // One should note that: // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a // = ((x_n² + a) / (2 * x_n))² - a // = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a // = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²) // = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²) // = (x_n² - a)² / (2 * x_n)² // = ((x_n² - a) / (2 * x_n))² // ≥ 0 // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n // // This gives us the proof of quadratic convergence of the sequence: // ε_{n+1} = | x_{n+1} - sqrt(a) | // = | (x_n + a / x_n) / 2 - sqrt(a) | // = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) | // = | (x_n - sqrt(a))² / (2 * x_n) | // = | ε_n² / (2 * x_n) | // = ε_n² / | (2 * x_n) | // // For the first iteration, we have a special case where x_0 is known: // ε_1 = ε_0² / | (2 * x_0) | // ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2))) // ≤ 2**(2*e-4) / (3 * 2**(e-1)) // ≤ 2**(e-3) / 3 // ≤ 2**(e-3-log2(3)) // ≤ 2**(e-4.5) // // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n: // ε_{n+1} = ε_n² / | (2 * x_n) | // ≤ (2**(e-k))² / (2 * 2**(e-1)) // ≤ 2**(2*e-2*k) / 2**e // ≤ 2**(e-2*k) xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5 xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9 xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18 xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36 xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72 // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either // sqrt(a) or sqrt(a) + 1. return xn - SafeCast.toUint(xn > a / xn); } } /** * @dev Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 exp; unchecked { exp = 128 * SafeCast.toUint(value > (1 << 128) - 1); value >>= exp; result += exp; exp = 64 * SafeCast.toUint(value > (1 << 64) - 1); value >>= exp; result += exp; exp = 32 * SafeCast.toUint(value > (1 << 32) - 1); value >>= exp; result += exp; exp = 16 * SafeCast.toUint(value > (1 << 16) - 1); value >>= exp; result += exp; exp = 8 * SafeCast.toUint(value > (1 << 8) - 1); value >>= exp; result += exp; exp = 4 * SafeCast.toUint(value > (1 << 4) - 1); value >>= exp; result += exp; exp = 2 * SafeCast.toUint(value > (1 << 2) - 1); value >>= exp; result += exp; result += SafeCast.toUint(value > 1); } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 isGt; unchecked { isGt = SafeCast.toUint(value > (1 << 128) - 1); value >>= isGt * 128; result += isGt * 16; isGt = SafeCast.toUint(value > (1 << 64) - 1); value >>= isGt * 64; result += isGt * 8; isGt = SafeCast.toUint(value > (1 << 32) - 1); value >>= isGt * 32; result += isGt * 4; isGt = SafeCast.toUint(value > (1 << 16) - 1); value >>= isGt * 16; result += isGt * 2; result += SafeCast.toUint(value > (1 << 8) - 1); } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.28; import {Math} from "openzeppelin5/utils/math/Math.sol"; // solhint-disable private-vars-leading-underscore library Rounding { Math.Rounding internal constant UP = (Math.Rounding.Ceil); Math.Rounding internal constant DOWN = (Math.Rounding.Floor); Math.Rounding internal constant DEBT_TO_ASSETS = (Math.Rounding.Ceil); // COLLATERAL_TO_ASSETS is used to calculate borrower collateral (so we want to round down) Math.Rounding internal constant COLLATERAL_TO_ASSETS = (Math.Rounding.Floor); // why DEPOSIT_TO_ASSETS is Up if COLLATERAL_TO_ASSETS is Down? // DEPOSIT_TO_ASSETS is used for preview deposit and deposit, based on provided shares we want to pull "more" tokens // so we rounding up, "token flow" is in different direction than for COLLATERAL_TO_ASSETS, that's why // different rounding policy Math.Rounding internal constant DEPOSIT_TO_ASSETS = (Math.Rounding.Ceil); Math.Rounding internal constant DEPOSIT_TO_SHARES = (Math.Rounding.Floor); Math.Rounding internal constant BORROW_TO_ASSETS = (Math.Rounding.Floor); Math.Rounding internal constant BORROW_TO_SHARES = (Math.Rounding.Ceil); Math.Rounding internal constant MAX_BORROW_TO_ASSETS = (Math.Rounding.Floor); Math.Rounding internal constant MAX_BORROW_TO_SHARES = (Math.Rounding.Floor); Math.Rounding internal constant MAX_BORROW_VALUE = (Math.Rounding.Floor); Math.Rounding internal constant REPAY_TO_ASSETS = (Math.Rounding.Ceil); Math.Rounding internal constant REPAY_TO_SHARES = (Math.Rounding.Floor); Math.Rounding internal constant MAX_REPAY_TO_ASSETS = (Math.Rounding.Ceil); Math.Rounding internal constant WITHDRAW_TO_ASSETS = (Math.Rounding.Floor); Math.Rounding internal constant WITHDRAW_TO_SHARES = (Math.Rounding.Ceil); Math.Rounding internal constant MAX_WITHDRAW_TO_ASSETS = (Math.Rounding.Floor); Math.Rounding internal constant MAX_WITHDRAW_TO_SHARES = (Math.Rounding.Floor); Math.Rounding internal constant LIQUIDATE_TO_SHARES = (Math.Rounding.Floor); Math.Rounding internal constant LTV = (Math.Rounding.Ceil); Math.Rounding internal constant ACCRUED_INTEREST = (Math.Rounding.Floor); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC4626.sol) pragma solidity ^0.8.20; import {IERC20} from "../token/ERC20/IERC20.sol"; import {IERC20Metadata} from "../token/ERC20/extensions/IERC20Metadata.sol"; /** * @dev Interface of the ERC-4626 "Tokenized Vault Standard", as defined in * https://eips.ethereum.org/EIPS/eip-4626[ERC-4626]. */ interface IERC4626 is IERC20, IERC20Metadata { event Deposit(address indexed sender, address indexed owner, uint256 assets, uint256 shares); event Withdraw( address indexed sender, address indexed receiver, address indexed owner, uint256 assets, uint256 shares ); /** * @dev Returns the address of the underlying token used for the Vault for accounting, depositing, and withdrawing. * * - MUST be an ERC-20 token contract. * - MUST NOT revert. */ function asset() external view returns (address assetTokenAddress); /** * @dev Returns the total amount of the underlying asset that is “managed” by Vault. * * - SHOULD include any compounding that occurs from yield. * - MUST be inclusive of any fees that are charged against assets in the Vault. * - MUST NOT revert. */ function totalAssets() external view returns (uint256 totalManagedAssets); /** * @dev Returns the amount of shares that the Vault would exchange for the amount of assets provided, in an ideal * scenario where all the conditions are met. * * - MUST NOT be inclusive of any fees that are charged against assets in the Vault. * - MUST NOT show any variations depending on the caller. * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange. * - MUST NOT revert. * * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and * from. */ function convertToShares(uint256 assets) external view returns (uint256 shares); /** * @dev Returns the amount of assets that the Vault would exchange for the amount of shares provided, in an ideal * scenario where all the conditions are met. * * - MUST NOT be inclusive of any fees that are charged against assets in the Vault. * - MUST NOT show any variations depending on the caller. * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange. * - MUST NOT revert. * * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and * from. */ function convertToAssets(uint256 shares) external view returns (uint256 assets); /** * @dev Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver, * through a deposit call. * * - MUST return a limited value if receiver is subject to some deposit limit. * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of assets that may be deposited. * - MUST NOT revert. */ function maxDeposit(address receiver) external view returns (uint256 maxAssets); /** * @dev Allows an on-chain or off-chain user to simulate the effects of their deposit at the current block, given * current on-chain conditions. * * - MUST return as close to and no more than the exact amount of Vault shares that would be minted in a deposit * call in the same transaction. I.e. deposit should return the same or more shares as previewDeposit if called * in the same transaction. * - MUST NOT account for deposit limits like those returned from maxDeposit and should always act as though the * deposit would be accepted, regardless if the user has enough tokens approved, etc. * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees. * - MUST NOT revert. * * NOTE: any unfavorable discrepancy between convertToShares and previewDeposit SHOULD be considered slippage in * share price or some other type of condition, meaning the depositor will lose assets by depositing. */ function previewDeposit(uint256 assets) external view returns (uint256 shares); /** * @dev Mints shares Vault shares to receiver by depositing exactly amount of underlying tokens. * * - MUST emit the Deposit event. * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the * deposit execution, and are accounted for during deposit. * - MUST revert if all of assets cannot be deposited (due to deposit limit being reached, slippage, the user not * approving enough underlying tokens to the Vault contract, etc). * * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token. */ function deposit(uint256 assets, address receiver) external returns (uint256 shares); /** * @dev Returns the maximum amount of the Vault shares that can be minted for the receiver, through a mint call. * - MUST return a limited value if receiver is subject to some mint limit. * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of shares that may be minted. * - MUST NOT revert. */ function maxMint(address receiver) external view returns (uint256 maxShares); /** * @dev Allows an on-chain or off-chain user to simulate the effects of their mint at the current block, given * current on-chain conditions. * * - MUST return as close to and no fewer than the exact amount of assets that would be deposited in a mint call * in the same transaction. I.e. mint should return the same or fewer assets as previewMint if called in the * same transaction. * - MUST NOT account for mint limits like those returned from maxMint and should always act as though the mint * would be accepted, regardless if the user has enough tokens approved, etc. * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees. * - MUST NOT revert. * * NOTE: any unfavorable discrepancy between convertToAssets and previewMint SHOULD be considered slippage in * share price or some other type of condition, meaning the depositor will lose assets by minting. */ function previewMint(uint256 shares) external view returns (uint256 assets); /** * @dev Mints exactly shares Vault shares to receiver by depositing amount of underlying tokens. * * - MUST emit the Deposit event. * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the mint * execution, and are accounted for during mint. * - MUST revert if all of shares cannot be minted (due to deposit limit being reached, slippage, the user not * approving enough underlying tokens to the Vault contract, etc). * * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token. */ function mint(uint256 shares, address receiver) external returns (uint256 assets); /** * @dev Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the * Vault, through a withdraw call. * * - MUST return a limited value if owner is subject to some withdrawal limit or timelock. * - MUST NOT revert. */ function maxWithdraw(address owner) external view returns (uint256 maxAssets); /** * @dev Allows an on-chain or off-chain user to simulate the effects of their withdrawal at the current block, * given current on-chain conditions. * * - MUST return as close to and no fewer than the exact amount of Vault shares that would be burned in a withdraw * call in the same transaction. I.e. withdraw should return the same or fewer shares as previewWithdraw if * called * in the same transaction. * - MUST NOT account for withdrawal limits like those returned from maxWithdraw and should always act as though * the withdrawal would be accepted, regardless if the user has enough shares, etc. * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees. * - MUST NOT revert. * * NOTE: any unfavorable discrepancy between convertToShares and previewWithdraw SHOULD be considered slippage in * share price or some other type of condition, meaning the depositor will lose assets by depositing. */ function previewWithdraw(uint256 assets) external view returns (uint256 shares); /** * @dev Burns shares from owner and sends exactly assets of underlying tokens to receiver. * * - MUST emit the Withdraw event. * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the * withdraw execution, and are accounted for during withdraw. * - MUST revert if all of assets cannot be withdrawn (due to withdrawal limit being reached, slippage, the owner * not having enough shares, etc). * * Note that some implementations will require pre-requesting to the Vault before a withdrawal may be performed. * Those methods should be performed separately. */ function withdraw(uint256 assets, address receiver, address owner) external returns (uint256 shares); /** * @dev Returns the maximum amount of Vault shares that can be redeemed from the owner balance in the Vault, * through a redeem call. * * - MUST return a limited value if owner is subject to some withdrawal limit or timelock. * - MUST return balanceOf(owner) if owner is not subject to any withdrawal limit or timelock. * - MUST NOT revert. */ function maxRedeem(address owner) external view returns (uint256 maxShares); /** * @dev Allows an on-chain or off-chain user to simulate the effects of their redeemption at the current block, * given current on-chain conditions. * * - MUST return as close to and no more than the exact amount of assets that would be withdrawn in a redeem call * in the same transaction. I.e. redeem should return the same or more assets as previewRedeem if called in the * same transaction. * - MUST NOT account for redemption limits like those returned from maxRedeem and should always act as though the * redemption would be accepted, regardless if the user has enough shares, etc. * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees. * - MUST NOT revert. * * NOTE: any unfavorable discrepancy between convertToAssets and previewRedeem SHOULD be considered slippage in * share price or some other type of condition, meaning the depositor will lose assets by redeeming. */ function previewRedeem(uint256 shares) external view returns (uint256 assets); /** * @dev Burns exactly shares from owner and sends assets of underlying tokens to receiver. * * - MUST emit the Withdraw event. * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the * redeem execution, and are accounted for during redeem. * - MUST revert if all of shares cannot be redeemed (due to withdrawal limit being reached, slippage, the owner * not having enough shares, etc). * * NOTE: some implementations will require pre-requesting to the Vault before a withdrawal may be performed. * Those methods should be performed separately. */ function redeem(uint256 shares, address receiver, address owner) external returns (uint256 assets); }
// SPDX-License-Identifier: MIT pragma solidity >=0.5.0; import {IERC3156FlashBorrower} from "./IERC3156FlashBorrower.sol"; /// @notice https://eips.ethereum.org/EIPS/eip-3156 interface IERC3156FlashLender { /// @notice Protected deposits are not available for a flash loan. /// During the execution of the flashloan, Silo methods are not taking into consideration the fact, /// that some (or all) tokens were transferred as flashloan, therefore some methods can return invalid state /// eg. maxWithdraw can return amount that are not available to withdraw during flashlon. /// @dev Initiate a flash loan. /// @param _receiver The receiver of the tokens in the loan, and the receiver of the callback. /// @param _token The loan currency. /// @param _amount The amount of tokens lent. /// @param _data Arbitrary data structure, intended to contain user-defined parameters. function flashLoan(IERC3156FlashBorrower _receiver, address _token, uint256 _amount, bytes calldata _data) external returns (bool); /// @dev The amount of currency available to be lent. /// @param _token The loan currency. /// @return The amount of `token` that can be borrowed. function maxFlashLoan(address _token) external view returns (uint256); /// @dev The fee to be charged for a given loan. /// @param _token The loan currency. /// @param _amount The amount of tokens lent. /// @return The amount of `token` to be charged for the loan, on top of the returned principal. function flashFee(address _token, uint256 _amount) external view returns (uint256); }
// SPDX-License-Identifier: MIT pragma solidity >=0.5.0; import {ISilo} from "./ISilo.sol"; import {ICrossReentrancyGuard} from "./ICrossReentrancyGuard.sol"; interface ISiloConfig is ICrossReentrancyGuard { struct InitData { /// @notice Can be address zero if deployer fees are not to be collected. If deployer address is zero then /// deployer fee must be zero as well. Deployer will be minted an NFT that gives the right to claim deployer /// fees. NFT can be transferred with the right to claim. address deployer; /// @notice Address of the hook receiver called on every before/after action on Silo. Hook contract also /// implements liquidation logic and veSilo gauge connection. address hookReceiver; /// @notice Deployer's fee in 18 decimals points. Deployer will earn this fee based on the interest earned /// by the Silo. Max deployer fee is set by the DAO. At deployment it is 15%. uint256 deployerFee; /// @notice DAO's fee in 18 decimals points. DAO will earn this fee based on the interest earned /// by the Silo. Acceptable fee range fee is set by the DAO. Default at deployment is 5% - 50%. uint256 daoFee; /// @notice Address of the first token address token0; /// @notice Address of the solvency oracle. Solvency oracle is used to calculate LTV when deciding if borrower /// is solvent or should be liquidated. Solvency oracle is optional and if not set price of 1 will be assumed. address solvencyOracle0; /// @notice Address of the maxLtv oracle. Max LTV oracle is used to calculate LTV when deciding if borrower /// can borrow given amount of assets. Max LTV oracle is optional and if not set it defaults to solvency /// oracle. If neither is set price of 1 will be assumed. address maxLtvOracle0; /// @notice Address of the interest rate model address interestRateModel0; /// @notice Maximum LTV for first token. maxLTV is in 18 decimals points and is used to determine, if borrower /// can borrow given amount of assets. MaxLtv is in 18 decimals points. MaxLtv must be lower or equal to LT. uint256 maxLtv0; /// @notice Liquidation threshold for first token. LT is used to calculate solvency. LT is in 18 decimals /// points. LT must not be lower than maxLTV. uint256 lt0; /// @notice minimal acceptable LTV after liquidation, in 18 decimals points uint256 liquidationTargetLtv0; /// @notice Liquidation fee for the first token in 18 decimals points. Liquidation fee is what liquidator earns /// for repaying insolvent loan. uint256 liquidationFee0; /// @notice Flashloan fee sets the cost of taking a flashloan in 18 decimals points uint256 flashloanFee0; /// @notice Indicates if a beforeQuote on oracle contract should be called before quoting price bool callBeforeQuote0; /// @notice Address of the second token address token1; /// @notice Address of the solvency oracle. Solvency oracle is used to calculate LTV when deciding if borrower /// is solvent or should be liquidated. Solvency oracle is optional and if not set price of 1 will be assumed. address solvencyOracle1; /// @notice Address of the maxLtv oracle. Max LTV oracle is used to calculate LTV when deciding if borrower /// can borrow given amount of assets. Max LTV oracle is optional and if not set it defaults to solvency /// oracle. If neither is set price of 1 will be assumed. address maxLtvOracle1; /// @notice Address of the interest rate model address interestRateModel1; /// @notice Maximum LTV for first token. maxLTV is in 18 decimals points and is used to determine, /// if borrower can borrow given amount of assets. maxLtv is in 18 decimals points uint256 maxLtv1; /// @notice Liquidation threshold for first token. LT is used to calculate solvency. LT is in 18 decimals points uint256 lt1; /// @notice minimal acceptable LTV after liquidation, in 18 decimals points uint256 liquidationTargetLtv1; /// @notice Liquidation fee is what liquidator earns for repaying insolvent loan. uint256 liquidationFee1; /// @notice Flashloan fee sets the cost of taking a flashloan in 18 decimals points uint256 flashloanFee1; /// @notice Indicates if a beforeQuote on oracle contract should be called before quoting price bool callBeforeQuote1; } struct ConfigData { uint256 daoFee; uint256 deployerFee; address silo; address token; address protectedShareToken; address collateralShareToken; address debtShareToken; address solvencyOracle; address maxLtvOracle; address interestRateModel; uint256 maxLtv; uint256 lt; uint256 liquidationTargetLtv; uint256 liquidationFee; uint256 flashloanFee; address hookReceiver; bool callBeforeQuote; } struct DepositConfig { address silo; address token; address collateralShareToken; address protectedShareToken; uint256 daoFee; uint256 deployerFee; address interestRateModel; } error OnlySilo(); error OnlySiloOrTokenOrHookReceiver(); error WrongSilo(); error OnlyDebtShareToken(); error DebtExistInOtherSilo(); error FeeTooHigh(); /// @dev It should be called on debt transfer (debt share token transfer). /// In the case if the`_recipient` doesn't have configured a collateral silo, /// it will be set to the collateral silo of the `_sender`. /// @param _sender sender address /// @param _recipient recipient address function onDebtTransfer(address _sender, address _recipient) external; /// @notice Set collateral silo. /// @dev Revert if msg.sender is not a SILO_0 or SILO_1. /// @dev Always set collateral silo the same as msg.sender. /// @param _borrower borrower address function setThisSiloAsCollateralSilo(address _borrower) external; /// @notice Set collateral silo /// @dev Revert if msg.sender is not a SILO_0 or SILO_1. /// @dev Always set collateral silo opposite to the msg.sender. /// @param _borrower borrower address function setOtherSiloAsCollateralSilo(address _borrower) external; /// @notice Accrue interest for the silo /// @param _silo silo for which accrue interest function accrueInterestForSilo(address _silo) external; /// @notice Accrue interest for both silos (SILO_0 and SILO_1 in a config) function accrueInterestForBothSilos() external; /// @notice Retrieves the collateral silo for a specific borrower. /// @dev As a user can deposit into `Silo0` and `Silo1`, this property specifies which Silo /// will be used as collateral for the debt. Later on, it will be used for max LTV and solvency checks. /// After being set, the collateral silo is never set to `address(0)` again but such getters as /// `getConfigsForSolvency`, `getConfigsForBorrow`, `getConfigsForWithdraw` will return empty /// collateral silo config if borrower doesn't have debt. /// /// In the SiloConfig collateral silo is set by the following functions: /// `onDebtTransfer` - only if the recipient doesn't have collateral silo set (inherits it from the sender) /// This function is called on debt share token transfer (debt transfer). /// `setThisSiloAsCollateralSilo` - sets the same silo as the one that calls the function. /// `setOtherSiloAsCollateralSilo` - sets the opposite silo as collateral from the one that calls the function. /// /// In the Silo collateral silo is set by the following functions: /// `borrow` - always sets opposite silo as collateral. /// If Silo0 borrows, then Silo1 will be collateral and vice versa. /// `borrowSameAsset` - always sets the same silo as collateral. /// `switchCollateralToThisSilo` - always sets the same silo as collateral. /// @param _borrower The address of the borrower for which the collateral silo is being retrieved /// @return collateralSilo The address of the collateral silo for the specified borrower function borrowerCollateralSilo(address _borrower) external view returns (address collateralSilo); /// @notice Retrieves the silo ID /// @dev Each silo is assigned a unique ID. ERC-721 token is minted with identical ID to deployer. /// An owner of that token receives the deployer fees. /// @return siloId The ID of the silo function SILO_ID() external view returns (uint256 siloId); // solhint-disable-line func-name-mixedcase /// @notice Retrieves the addresses of the two silos /// @return silo0 The address of the first silo /// @return silo1 The address of the second silo function getSilos() external view returns (address silo0, address silo1); /// @notice Retrieves the asset associated with a specific silo /// @dev This function reverts for incorrect silo address input /// @param _silo The address of the silo for which the associated asset is being retrieved /// @return asset The address of the asset associated with the specified silo function getAssetForSilo(address _silo) external view returns (address asset); /// @notice Verifies if the borrower has debt in other silo by checking the debt share token balance /// @param _thisSilo The address of the silo in respect of which the debt is checked /// @param _borrower The address of the borrower for which the debt is checked /// @return hasDebt true if the borrower has debt in other silo function hasDebtInOtherSilo(address _thisSilo, address _borrower) external view returns (bool hasDebt); /// @notice Retrieves the debt silo associated with a specific borrower /// @dev This function reverts if debt present in two silo (should not happen) /// @param _borrower The address of the borrower for which the debt silo is being retrieved function getDebtSilo(address _borrower) external view returns (address debtSilo); /// @notice Retrieves configuration data for both silos. First config is for the silo that is asking for configs. /// @param borrower borrower address for which debtConfig will be returned /// @return collateralConfig The configuration data for collateral silo (empty if there is no debt). /// @return debtConfig The configuration data for debt silo (empty if there is no debt). function getConfigsForSolvency(address borrower) external view returns (ConfigData memory collateralConfig, ConfigData memory debtConfig); /// @notice Retrieves configuration data for a specific silo /// @dev This function reverts for incorrect silo address input. /// @param _silo The address of the silo for which configuration data is being retrieved /// @return config The configuration data for the specified silo function getConfig(address _silo) external view returns (ConfigData memory config); /// @notice Retrieves configuration data for a specific silo for withdraw fn. /// @dev This function reverts for incorrect silo address input. /// @param _silo The address of the silo for which configuration data is being retrieved /// @return depositConfig The configuration data for the specified silo (always config for `_silo`) /// @return collateralConfig The configuration data for the collateral silo (empty if there is no debt) /// @return debtConfig The configuration data for the debt silo (empty if there is no debt) function getConfigsForWithdraw(address _silo, address _borrower) external view returns ( DepositConfig memory depositConfig, ConfigData memory collateralConfig, ConfigData memory debtConfig ); /// @notice Retrieves configuration data for a specific silo for borrow fn. /// @dev This function reverts for incorrect silo address input. /// @param _debtSilo The address of the silo for which configuration data is being retrieved /// @return collateralConfig The configuration data for the collateral silo (always other than `_debtSilo`) /// @return debtConfig The configuration data for the debt silo (always config for `_debtSilo`) function getConfigsForBorrow(address _debtSilo) external view returns (ConfigData memory collateralConfig, ConfigData memory debtConfig); /// @notice Retrieves fee-related information for a specific silo /// @dev This function reverts for incorrect silo address input /// @param _silo The address of the silo for which fee-related information is being retrieved. /// @return daoFee The DAO fee percentage in 18 decimals points. /// @return deployerFee The deployer fee percentage in 18 decimals points. /// @return flashloanFee The flashloan fee percentage in 18 decimals points. /// @return asset The address of the asset associated with the specified silo. function getFeesWithAsset(address _silo) external view returns (uint256 daoFee, uint256 deployerFee, uint256 flashloanFee, address asset); /// @notice Retrieves share tokens associated with a specific silo /// @dev This function reverts for incorrect silo address input /// @param _silo The address of the silo for which share tokens are being retrieved /// @return protectedShareToken The address of the protected (non-borrowable) share token /// @return collateralShareToken The address of the collateral share token /// @return debtShareToken The address of the debt share token function getShareTokens(address _silo) external view returns (address protectedShareToken, address collateralShareToken, address debtShareToken); /// @notice Retrieves the share token and the silo token associated with a specific silo /// @param _silo The address of the silo for which the share token and silo token are being retrieved /// @param _collateralType The type of collateral /// @return shareToken The address of the share token (collateral or protected collateral) /// @return asset The address of the silo token function getCollateralShareTokenAndAsset(address _silo, ISilo.CollateralType _collateralType) external view returns (address shareToken, address asset); /// @notice Retrieves the share token and the silo token associated with a specific silo /// @param _silo The address of the silo for which the share token and silo token are being retrieved /// @return shareToken The address of the share token (debt) /// @return asset The address of the silo token function getDebtShareTokenAndAsset(address _silo) external view returns (address shareToken, address asset); }
// SPDX-License-Identifier: MIT pragma solidity >=0.5.0; import {IERC721} from "openzeppelin5/interfaces/IERC721.sol"; import {ISiloConfig} from "./ISiloConfig.sol"; interface ISiloFactory is IERC721 { struct Range { uint128 min; uint128 max; } /// @notice Emitted on the creation of a Silo. /// @param implementation Address of the Silo implementation. /// @param token0 Address of the first Silo token. /// @param token1 Address of the second Silo token. /// @param silo0 Address of the first Silo. /// @param silo1 Address of the second Silo. /// @param siloConfig Address of the SiloConfig. event NewSilo( address indexed implementation, address indexed token0, address indexed token1, address silo0, address silo1, address siloConfig ); event BaseURI(string newBaseURI); /// @notice Emitted on the update of DAO fee. /// @param minDaoFee Value of the new minimal DAO fee. /// @param maxDaoFee Value of the new maximal DAO fee. event DaoFeeChanged(uint128 minDaoFee, uint128 maxDaoFee); /// @notice Emitted on the update of max deployer fee. /// @param maxDeployerFee Value of the new max deployer fee. event MaxDeployerFeeChanged(uint256 maxDeployerFee); /// @notice Emitted on the update of max flashloan fee. /// @param maxFlashloanFee Value of the new max flashloan fee. event MaxFlashloanFeeChanged(uint256 maxFlashloanFee); /// @notice Emitted on the update of max liquidation fee. /// @param maxLiquidationFee Value of the new max liquidation fee. event MaxLiquidationFeeChanged(uint256 maxLiquidationFee); /// @notice Emitted on the change of DAO fee receiver. /// @param daoFeeReceiver Address of the new DAO fee receiver. event DaoFeeReceiverChanged(address daoFeeReceiver); error MissingHookReceiver(); error ZeroAddress(); error DaoFeeReceiverZeroAddress(); error EmptyToken0(); error EmptyToken1(); error MaxFeeExceeded(); error InvalidFeeRange(); error SameAsset(); error SameRange(); error InvalidIrm(); error InvalidMaxLtv(); error InvalidLt(); error InvalidDeployer(); error DaoMinRangeExceeded(); error DaoMaxRangeExceeded(); error MaxDeployerFeeExceeded(); error MaxFlashloanFeeExceeded(); error MaxLiquidationFeeExceeded(); error InvalidCallBeforeQuote(); error OracleMisconfiguration(); error InvalidQuoteToken(); error HookIsZeroAddress(); error LiquidationTargetLtvTooHigh(); /// @notice Create a new Silo. /// @param _initData Silo initialization data. /// @param _siloConfig Silo configuration. /// @param _siloImpl Address of the `Silo` implementation. /// @param _shareProtectedCollateralTokenImpl Address of the `ShareProtectedCollateralToken` implementation. /// @param _shareDebtTokenImpl Address of the `ShareDebtToken` implementation. function createSilo( ISiloConfig.InitData memory _initData, ISiloConfig _siloConfig, address _siloImpl, address _shareProtectedCollateralTokenImpl, address _shareDebtTokenImpl ) external; /// @notice NFT ownership represents the deployer fee receiver for the each Silo ID. After burning, /// the deployer fee is sent to the DAO. Burning doesn't affect Silo's behavior. It is only about fee distribution. /// @param _siloIdToBurn silo ID to burn. function burn(uint256 _siloIdToBurn) external; /// @notice Update the value of DAO fee. Updated value will be used only for a new Silos. /// Previously deployed SiloConfigs are immutable. /// @param _minFee Value of the new DAO minimal fee. /// @param _maxFee Value of the new DAO maximal fee. function setDaoFee(uint128 _minFee, uint128 _maxFee) external; /// @notice Set the new DAO fee receiver. /// @param _newDaoFeeReceiver Address of the new DAO fee receiver. function setDaoFeeReceiver(address _newDaoFeeReceiver) external; /// @notice Update the value of max deployer fee. Updated value will be used only for a new Silos max deployer /// fee validation. Previously deployed SiloConfigs are immutable. /// @param _newMaxDeployerFee Value of the new max deployer fee. function setMaxDeployerFee(uint256 _newMaxDeployerFee) external; /// @notice Update the value of max flashloan fee. Updated value will be used only for a new Silos max flashloan /// fee validation. Previously deployed SiloConfigs are immutable. /// @param _newMaxFlashloanFee Value of the new max flashloan fee. function setMaxFlashloanFee(uint256 _newMaxFlashloanFee) external; /// @notice Update the value of max liquidation fee. Updated value will be used only for a new Silos max /// liquidation fee validation. Previously deployed SiloConfigs are immutable. /// @param _newMaxLiquidationFee Value of the new max liquidation fee. function setMaxLiquidationFee(uint256 _newMaxLiquidationFee) external; /// @notice Update the base URI. /// @param _newBaseURI Value of the new base URI. function setBaseURI(string calldata _newBaseURI) external; /// @notice Acceptable DAO fee range for new Silos. Denominated in 18 decimals points. 1e18 == 100%. function daoFeeRange() external view returns (Range memory); /// @notice Max deployer fee for a new Silos. Denominated in 18 decimals points. 1e18 == 100%. function maxDeployerFee() external view returns (uint256); /// @notice Max flashloan fee for a new Silos. Denominated in 18 decimals points. 1e18 == 100%. function maxFlashloanFee() external view returns (uint256); /// @notice Max liquidation fee for a new Silos. Denominated in 18 decimals points. 1e18 == 100%. function maxLiquidationFee() external view returns (uint256); /// @notice The recipient of DAO fees. function daoFeeReceiver() external view returns (address); /// @notice Get SiloConfig address by Silo id. function idToSiloConfig(uint256 _id) external view returns (address); /// @notice Do not use this method to check if silo is secure. Anyone can deploy silo with any configuration /// and implementation. Most critical part of verification would be to check who deployed it. /// @dev True if the address was deployed using SiloFactory. function isSilo(address _silo) external view returns (bool); /// @notice Id of a next Silo to be deployed. This is an ID of non-existing Silo outside of createSilo /// function call. ID of a first Silo is 1. function getNextSiloId() external view returns (uint256); /// @notice Get the DAO and deployer fee receivers for a particular Silo address. /// @param _silo Silo address. /// @return dao DAO fee receiver. /// @return deployer Deployer fee receiver. function getFeeReceivers(address _silo) external view returns (address dao, address deployer); /// @notice Validate InitData for a new Silo. Config will be checked for the fee limits, missing parameters. /// @param _initData Silo init data. function validateSiloInitData(ISiloConfig.InitData memory _initData) external view returns (bool); }
// SPDX-License-Identifier: MIT pragma solidity >=0.5.0; import {ISiloConfig} from "./ISiloConfig.sol"; interface IHookReceiver { struct HookConfig { uint24 hooksBefore; uint24 hooksAfter; } event HookConfigured(address silo, uint24 hooksBefore, uint24 hooksAfter); /// @notice Initialize a hook receiver /// @param _siloConfig Silo configuration with all the details about the silo /// @param _data Data to initialize the hook receiver (if needed) function initialize(ISiloConfig _siloConfig, bytes calldata _data) external; /// @notice state of Silo before action, can be also without interest, if you need them, call silo.accrueInterest() function beforeAction(address _silo, uint256 _action, bytes calldata _input) external; function afterAction(address _silo, uint256 _action, bytes calldata _inputAndOutput) external; /// @notice return hooksBefore and hooksAfter configuration function hookReceiverConfig(address _silo) external view returns (uint24 hooksBefore, uint24 hooksAfter); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.20; /** * @dev Helper library for emitting standardized panic codes. * * ```solidity * contract Example { * using Panic for uint256; * * // Use any of the declared internal constants * function foo() { Panic.GENERIC.panic(); } * * // Alternatively * function foo() { Panic.panic(Panic.GENERIC); } * } * ``` * * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil]. */ // slither-disable-next-line unused-state library Panic { /// @dev generic / unspecified error uint256 internal constant GENERIC = 0x00; /// @dev used by the assert() builtin uint256 internal constant ASSERT = 0x01; /// @dev arithmetic underflow or overflow uint256 internal constant UNDER_OVERFLOW = 0x11; /// @dev division or modulo by zero uint256 internal constant DIVISION_BY_ZERO = 0x12; /// @dev enum conversion error uint256 internal constant ENUM_CONVERSION_ERROR = 0x21; /// @dev invalid encoding in storage uint256 internal constant STORAGE_ENCODING_ERROR = 0x22; /// @dev empty array pop uint256 internal constant EMPTY_ARRAY_POP = 0x31; /// @dev array out of bounds access uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32; /// @dev resource error (too large allocation or too large array) uint256 internal constant RESOURCE_ERROR = 0x41; /// @dev calling invalid internal function uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51; /// @dev Reverts with a panic code. Recommended to use with /// the internal constants with predefined codes. function panic(uint256 code) internal pure { /// @solidity memory-safe-assembly assembly { mstore(0x00, 0x4e487b71) mstore(0x20, code) revert(0x1c, 0x24) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-20 standard as defined in the ERC. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.20; import {IERC20} from "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC-20 standard. */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT pragma solidity >=0.5.0; interface IERC3156FlashBorrower { /// @notice During the execution of the flashloan, Silo methods are not taking into consideration the fact, /// that some (or all) tokens were transferred as flashloan, therefore some methods can return invalid state /// eg. maxWithdraw can return amount that are not available to withdraw during flashlon. /// @dev Receive a flash loan. /// @param _initiator The initiator of the loan. /// @param _token The loan currency. /// @param _amount The amount of tokens lent. /// @param _fee The additional amount of tokens to repay. /// @param _data Arbitrary data structure, intended to contain user-defined parameters. /// @return The keccak256 hash of "ERC3156FlashBorrower.onFlashLoan" function onFlashLoan(address _initiator, address _token, uint256 _amount, uint256 _fee, bytes calldata _data) external returns (bytes32); }
// SPDX-License-Identifier: MIT pragma solidity >=0.5.0; interface ICrossReentrancyGuard { error CrossReentrantCall(); error CrossReentrancyNotActive(); /// @notice only silo method for cross Silo reentrancy function turnOnReentrancyProtection() external; /// @notice only silo method for cross Silo reentrancy function turnOffReentrancyProtection() external; /// @notice view method for checking cross Silo reentrancy flag /// @return entered true if the reentrancy guard is currently set to "entered", which indicates there is a /// `nonReentrant` function in the call stack. function reentrancyGuardEntered() external view returns (bool entered); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC721.sol) pragma solidity ^0.8.20; import {IERC721} from "../token/ERC721/IERC721.sol";
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/IERC721.sol) pragma solidity ^0.8.20; import {IERC165} from "../../utils/introspection/IERC165.sol"; /** * @dev Required interface of an ERC-721 compliant contract. */ interface IERC721 is IERC165 { /** * @dev Emitted when `tokenId` token is transferred from `from` to `to`. */ event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. */ event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets. */ event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of tokens in ``owner``'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Safely transfers `tokenId` token from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon * a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external; /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients * are aware of the ERC-721 protocol to prevent tokens from being forever locked. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or * {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon * a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId) external; /** * @dev Transfers `tokenId` token from `from` to `to`. * * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC-721 * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must * understand this adds an external call which potentially creates a reentrancy vulnerability. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 tokenId) external; /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) external; /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the address zero. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool approved) external; /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) external view returns (address operator); /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll} */ function isApprovedForAll(address owner, address operator) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[ERC]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
{ "remappings": [ "forge-std/=gitmodules/forge-std/src/", "silo-foundry-utils/=gitmodules/silo-foundry-utils/contracts/", "properties/=gitmodules/crytic/properties/contracts/", "silo-core/=silo-core/", "silo-oracles/=silo-oracles/", "silo-vaults/=silo-vaults/", "ve-silo/=ve-silo/", "@openzeppelin/=gitmodules/openzeppelin-contracts-5/contracts/", "morpho-blue/=gitmodules/morpho-blue/src/", "openzeppelin5/=gitmodules/openzeppelin-contracts-5/contracts/", "openzeppelin5-upgradeable/=gitmodules/openzeppelin-contracts-upgradeable-5/contracts/", "chainlink/=gitmodules/chainlink/contracts/src/", "chainlink-ccip/=gitmodules/chainlink-ccip/contracts/src/", "uniswap/=gitmodules/uniswap/", "@uniswap/v3-core/=gitmodules/uniswap/v3-core/", "balancer-labs/v2-solidity-utils/=external/balancer-v2-monorepo/pkg/solidity-utils/contracts/", "balancer-labs/v2-interfaces/=external/balancer-v2-monorepo/pkg/interfaces/contracts/", "balancer-labs/v2-liquidity-mining/=external/balancer-v2-monorepo/pkg/liquidity-mining/contracts/", "@balancer-labs/=node_modules/@balancer-labs/", "@ensdomains/=node_modules/@ensdomains/", "@openzeppelin/contracts-upgradeable/=gitmodules/openzeppelin-contracts-upgradeable-5/contracts/", "@openzeppelin/contracts/=gitmodules/openzeppelin-contracts-5/contracts/", "@solidity-parser/=node_modules/@solidity-parser/", "ERC4626/=gitmodules/crytic/properties/lib/ERC4626/contracts/", "crytic/=gitmodules/crytic/", "ds-test/=gitmodules/openzeppelin-contracts-5/lib/forge-std/lib/ds-test/src/", "erc4626-tests/=gitmodules/openzeppelin-contracts-5/lib/erc4626-tests/", "halmos-cheatcodes/=gitmodules/morpho-blue/lib/halmos-cheatcodes/src/", "hardhat/=node_modules/hardhat/", "openzeppelin-contracts-5/=gitmodules/openzeppelin-contracts-5/", "openzeppelin-contracts-upgradeable-5/=gitmodules/openzeppelin-contracts-upgradeable-5/", "openzeppelin-contracts/=gitmodules/openzeppelin-contracts-upgradeable-5/lib/openzeppelin-contracts/", "prettier-plugin-solidity/=node_modules/prettier-plugin-solidity/", "proposals/=node_modules/proposals/", "solmate/=gitmodules/crytic/properties/lib/solmate/src/" ], "optimizer": { "enabled": true, "runs": 200 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "ipfs", "appendCBOR": true }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "cancun", "viaIR": false, "libraries": { "silo-core/contracts/lib/Actions.sol": { "Actions": "0x393B19dFF84C806369f49F3d350d3cd90E63794A" }, "silo-core/contracts/lib/ShareCollateralTokenLib.sol": { "ShareCollateralTokenLib": "0xD57d3abE1ef81e9A4e15a991A81fB66ec5Ef30AF" }, "silo-core/contracts/lib/ShareTokenLib.sol": { "ShareTokenLib": "0x3a53E387f6567F0d4F04c754654Cfe5539d20A70" }, "silo-core/contracts/lib/SiloLendingLib.sol": { "SiloLendingLib": "0xBCAfe498Ec5cA2f6bD9276e65Ad2fbF7555B8379" }, "silo-core/contracts/lib/Views.sol": { "Views": "0x49De884BE1d5E523be4Df58ABF45881baE791808" } } }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"FailedDeployment","type":"error"},{"inputs":[{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"InsufficientBalance","type":"error"},{"inputs":[],"name":"InvalidBeta","type":"error"},{"inputs":[],"name":"InvalidKcrit","type":"error"},{"inputs":[],"name":"InvalidKi","type":"error"},{"inputs":[],"name":"InvalidKlin","type":"error"},{"inputs":[],"name":"InvalidKlow","type":"error"},{"inputs":[],"name":"InvalidRi","type":"error"},{"inputs":[],"name":"InvalidTcrit","type":"error"},{"inputs":[],"name":"InvalidUcrit","type":"error"},{"inputs":[],"name":"InvalidUlow","type":"error"},{"inputs":[],"name":"InvalidUopt","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"configHash","type":"bytes32"},{"indexed":true,"internalType":"contract IInterestRateModelV2","name":"irm","type":"address"}],"name":"NewInterestRateModelV2","type":"event"},{"inputs":[],"name":"DP","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"IRM","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"int256","name":"uopt","type":"int256"},{"internalType":"int256","name":"ucrit","type":"int256"},{"internalType":"int256","name":"ulow","type":"int256"},{"internalType":"int256","name":"ki","type":"int256"},{"internalType":"int256","name":"kcrit","type":"int256"},{"internalType":"int256","name":"klow","type":"int256"},{"internalType":"int256","name":"klin","type":"int256"},{"internalType":"int256","name":"beta","type":"int256"},{"internalType":"int112","name":"ri","type":"int112"},{"internalType":"int112","name":"Tcrit","type":"int112"}],"internalType":"struct IInterestRateModelV2.Config","name":"_config","type":"tuple"}],"name":"create","outputs":[{"internalType":"bytes32","name":"configHash","type":"bytes32"},{"internalType":"contract IInterestRateModelV2","name":"irm","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"int256","name":"uopt","type":"int256"},{"internalType":"int256","name":"ucrit","type":"int256"},{"internalType":"int256","name":"ulow","type":"int256"},{"internalType":"int256","name":"ki","type":"int256"},{"internalType":"int256","name":"kcrit","type":"int256"},{"internalType":"int256","name":"klow","type":"int256"},{"internalType":"int256","name":"klin","type":"int256"},{"internalType":"int256","name":"beta","type":"int256"},{"internalType":"int112","name":"ri","type":"int112"},{"internalType":"int112","name":"Tcrit","type":"int112"}],"internalType":"struct IInterestRateModelV2.Config","name":"_config","type":"tuple"}],"name":"hashConfig","outputs":[{"internalType":"bytes32","name":"configId","type":"bytes32"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"bytes32","name":"configHash","type":"bytes32"}],"name":"irmByConfigHash","outputs":[{"internalType":"contract IInterestRateModelV2","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"int256","name":"uopt","type":"int256"},{"internalType":"int256","name":"ucrit","type":"int256"},{"internalType":"int256","name":"ulow","type":"int256"},{"internalType":"int256","name":"ki","type":"int256"},{"internalType":"int256","name":"kcrit","type":"int256"},{"internalType":"int256","name":"klow","type":"int256"},{"internalType":"int256","name":"klin","type":"int256"},{"internalType":"int256","name":"beta","type":"int256"},{"internalType":"int112","name":"ri","type":"int112"},{"internalType":"int112","name":"Tcrit","type":"int112"}],"internalType":"struct IInterestRateModelV2.Config","name":"_config","type":"tuple"}],"name":"verifyConfig","outputs":[],"stateMutability":"view","type":"function"}]
Contract Creation Code
60a0604052348015600e575f5ffd5b506040516019906042565b604051809103905ff0801580156031573d5f5f3e3d5ffd5b506001600160a01b0316608052604f565b6125ee80610c0c83390190565b608051610b986100745f395f81816069015281816101b9015261046b0152610b985ff3fe608060405234801561000f575f5ffd5b5060043610610060575f3560e01c80631e75db16146100645780632864e091146100a85780636bcc8216146100d057806379c682c1146100ed578063d465018a1461011d578063f92d641814610132575b5f5ffd5b61008b7f000000000000000000000000000000000000000000000000000000000000000081565b6040516001600160a01b0390911681526020015b60405180910390f35b61008b6100b63660046105b1565b5f602081905290815260409020546001600160a01b031681565b6100df670de0b6b3a764000081565b60405190815260200161009f565b6101006100fb3660046105c8565b610145565b604080519283526001600160a01b0390911660208301520161009f565b61013061012b3660046105c8565b610290565b005b6100df6101403660046105c8565b6104d0565b5f5f610150836104d0565b5f818152602081905260409020549092506001600160a01b03169050801561017757915091565b61018083610290565b5f8360405161018e906105a4565b61019891906105f8565b604051809103905ff0801580156101b1573d5f5f3e3d5ffd5b5090506101dd7f00000000000000000000000000000000000000000000000000000000000000006104ff565b60405163189acdbd60e31b81526001600160a01b0383811660048301529193509083169063c4d66de8906024015f604051808303815f87803b158015610221575f5ffd5b505af1158015610233573d5f5f3e3d5ffd5b5050505f8481526020819052604080822080546001600160a01b0319166001600160a01b038716908117909155905190925085917f7a56c031e2e076b9c466d347a09b8bc9458baafdcfc59a33dfffb06f37bbc54291a350915091565b670de0b6b3a76400005f82351380156102a95750813581135b6102c6576040516313e9c00360e21b815260040160405180910390fd5b813560208301351380156102dd5750808260200135125b6102fa576040516339bda99160e11b815260040160405180910390fd5b5f8260400135138015610311575081356040830135125b61032e57604051635c65494d60e01b815260040160405180910390fd5b5f826060013512156103535760405163fe06781560e01b815260040160405180910390fd5b5f82608001351215610378576040516320d12cb560e21b815260040160405180910390fd5b5f8260a0013512156103a0576040516001627ddb5960e01b0319815260040160405180910390fd5b5f8260c0013512156103c557604051634e435a2160e01b815260040160405180910390fd5b5f8260e0013512156103ea576040516378a8371160e01b815260040160405180910390fd5b5f6103fd61012084016101008501610689565b600d0b121561041f576040516330eecc6b60e21b815260040160405180910390fd5b5f61043261014084016101208501610689565b600d0b121561045457604051630266493760e31b815260040160405180910390fd5b60405163167c93eb60e31b81526001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000169063b3e49f58906104a09085906004016105f8565b5f6040518083038186803b1580156104b6575f5ffd5b505afa1580156104c8573d5f5f3e3d5ffd5b505050505050565b5f816040516020016104e291906105f8565b604051602081830303815290604052805190602001209050919050565b5f61050a825f610510565b92915050565b5f8147101561053f5760405163cf47918160e01b81524760048201526024810183905260440160405180910390fd5b6e5af43d82803e903d91602b57fd5bf360205282601152763d602d80600a3d3981f3363d3d373d3d3d363d730000008360881c175f526037600983f090506001600160a01b03811661050a5760405163b06ebf3d60e01b815260040160405180910390fd5b6104b9806106aa83390190565b5f602082840312156105c1575f5ffd5b5035919050565b5f6101408284031280156105da575f5ffd5b509092915050565b8035600d81900b81146105f3575f5ffd5b919050565b813581526020808301359082015260408083013590820152606080830135908201526080808301359082015260a0808301359082015260c0808301359082015260e08083013590820152610140810161065461010084016105e2565b610664610100840182600d0b9052565b5061067261012084016105e2565b610682610120840182600d0b9052565b5092915050565b5f60208284031215610699575f5ffd5b6106a2826105e2565b939250505056fe6101c0604052348015610010575f5ffd5b506040516104b93803806104b983398101604081905261002f916100dd565b80516080908152602082015160a0908152604083015160c0908152606084015160e0908152928401516101009081529184015161012090815290840151610140529183015161016052820151600d90810b61018052910151900b6101a05261016f565b60405161014081016001600160401b03811182821017156100c157634e487b7160e01b5f52604160045260245ffd5b60405290565b8051600d81900b81146100d8575f5ffd5b919050565b5f6101408284031280156100ef575f5ffd5b506100f8610092565b825181526020808401519082015260408084015190820152606080840151908201526080808401519082015260a0808401519082015260c0808401519082015260e0808401519082015261014f61010084016100c7565b61010082015261016261012084016100c7565b6101208201529392505050565b60805160a05160c05160e05161010051610120516101405161016051610180516101a0516102de6101db5f395f6101f801525f6101cc01525f6101a601525f61018001525f61015a01525f61013401525f61010e01525f60e801525f60c201525f609f01526102de5ff3fe608060405234801561000f575f5ffd5b5060043610610029575f3560e01c8063c3f909d41461002d575b5f5ffd5b61003561004b565b6040516100429190610222565b60405180910390f35b61009d6040518061014001604052805f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f600d0b81526020015f600d0b81525090565b7f000000000000000000000000000000000000000000000000000000000000000081527f000000000000000000000000000000000000000000000000000000000000000060208201527f000000000000000000000000000000000000000000000000000000000000000060408201527f000000000000000000000000000000000000000000000000000000000000000060608201527f000000000000000000000000000000000000000000000000000000000000000060808201527f000000000000000000000000000000000000000000000000000000000000000060a08201527f000000000000000000000000000000000000000000000000000000000000000060c08201527f000000000000000000000000000000000000000000000000000000000000000060e08201527f0000000000000000000000000000000000000000000000000000000000000000600d90810b6101008301527f0000000000000000000000000000000000000000000000000000000000000000900b61012082015290565b5f61014082019050825182526020830151602083015260408301516040830152606083015160608301526080830151608083015260a083015160a083015260c083015160c083015260e083015160e083015261010083015161028a610100840182600d0b9052565b506101208301516102a1610120840182600d0b9052565b509291505056fea2646970667358221220b115e739af79140490d56798607b39258eac5f9c54365bedb6b20f53dfb5988564736f6c634300081c0033a2646970667358221220ceb8a55682ed92de14904915ad9e25d76a6488bc9aa1df5fe9dcf669c73163e864736f6c634300081c00336080604052348015600e575f5ffd5b506125d28061001c5f395ff3fe608060405234801561000f575f5ffd5b50600436106100fb575f3560e01c806384de969a11610093578063c6c721b311610063578063c6c721b314610242578063cfdfcffa146102a1578063e076a551146102b4578063e48a5f7b146102c5575f5ffd5b806384de969a146101e4578063b3e49f58146101f7578063b78fec821461020c578063c4d66de81461022f575f5ffd5b80635c0e02a3116100ce5780635c0e02a31461015f57806364efe1771461018d57806367f37b56146101a057806381b51e0c146101d5575f5ffd5b8063109a006e146100ff578063313ce5671461011a5780634cacae5e146101215780634fa165e614610134575b5f5ffd5b6101076102e5565b6040519081526020015b60405180910390f35b6012610107565b61010761012f366004611ff8565b6102fd565b600154610147906001600160a01b031681565b6040516001600160a01b039091168152602001610111565b61017261016d366004611ff8565b610580565b60408051938452602084019290925290820152606001610111565b61010761019b3660046120d0565b6105a2565b6101b36101ae366004611ff8565b610636565b6040805194855260208501939093529183015215156060820152608001610111565b6101076799e8e8e3d530368181565b6101076101f23660046120f8565b610aab565b61020a610205366004612121565b610bba565b005b61021f61021a3660046120d0565b610e4f565b6040519015158152602001610111565b61020a61023d36600461213b565b610ee6565b61027c61025036600461213b565b5f60208190529081526040902054600d81810b91600160701b810490910b90600160e01b900460ff1683565b60408051600d94850b81529290930b6020830152151591810191909152606001610111565b6101076102af3660046120d0565b610f7f565b610107690de0b6b3a7640000000081565b6102d86102d336600461213b565b611016565b6040516101119190612154565b6102fa690de0b6b3a764000000005f19612202565b81565b5f8183111561031f5760405163d22806e360e01b815260040160405180910390fd5b5f6040518060e001604052805f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f151581525090506103648787878787610636565b15801560c0860152925061037e915050575f915050610577565b610389848403611143565b81526103a66103a1670de0b6b3a76400008888611178565b611143565b6020808301829052670de0b6b3a76400006040840152880151121561044d578060400151876020015182602001516103de9190612215565b6040830151835160e08b01516103f49190612234565b8a6101200151600d0b856040015161040c9190612263565b6104169190612263565b8a608001516104259190612234565b61042f919061228a565b6104399190612234565b610443919061228a565b606082015261048e565b6104885f82604001518960400151846020015161046a9190612215565b8a60a001516104799190612234565b610483919061228a565b6111dc565b60608201525b806040015181602001518860c001516104a79190612234565b6104b1919061228a565b608082018190526101008801516104ce91600d9190910b906111f5565b60a0820152604081015181518851602084015161052c9392916104f091612215565b8a606001516104ff9190612234565b6105099190612234565b610513919061228a565b8260a001516105229190612263565b82608001516111f5565b60a082018190526060820151610558916105539161054991612263565b83608001516111f5565b611203565b91506105686301e13380836122b6565b915061057382611228565b9150505b95945050505050565b5f5f5f6105908888888888610636565b50919a90995090975095505050505050565b5f5f836001600160a01b0316639ef2fda06040518163ffffffff1660e01b8152600401606060405180830381865afa1580156105e0573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061060491906122cd565b905061062e61061285611016565b82516020840151604085015167ffffffffffffffff16876102fd565b949350505050565b5f5f5f5f886101000151600d0b9250886101200151600d0b91505f6040518061014001604052805f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f8152509050858711156106ba5760405163d22806e360e01b815260040160405180910390fd5b6106c5878703611143565b8152670de0b6b3a76400006106de6103a1828c8c611178565b61012083018190528b5182916106f49190612215565b8c606001516107039190612234565b61070d919061228a565b6020808401919091528b015161012083015113156107f757808b6020015183610120015161073b9190612215565b826107468782612263565b8e608001516107559190612234565b61075f919061228a565b6107699190612234565b610773919061228a565b604083015260208b0151610120830151829161078e91612215565b828d60e001518e608001516107a39190612234565b6107ad919061228a565b6107b79190612234565b6107c1919061228a565b82602001516107d09190612263565b6060830152815160e08c01516107e69190612234565b6107f09085612263565b9350610858565b6108205f828d604001518561012001516108119190612215565b8e60a001516104799190612234565b604083015260208201516060830152815160e08c0151610855915f916108469190612234565b6108509087612215565b6111f5565b93505b808261012001518c60c0015161086e9190612234565b610878919061228a565b60a0830181905261088a9086906111f5565b945081604001518561089c9190612263565b6080830152815160608301516108b29190612234565b82608001516108c19190612263565b60c083015260a08201516080830151128015906108e657508160a001518260c0015112155b1561092257815160c083015160808401516002929161090491612263565b61090e9190612234565b610918919061228a565b60e0830152610a2c565b8160a00151826080015112801561094057508160a001518260c00151125b1561095657815160a08301516109189190612234565b8160a0015182608001511215801561097557508160a001518260c00151125b156109d0576002826060015160028460a0015185608001516109979190612215565b6109a19190612474565b6109ab919061228a565b6109b5919061228a565b825160a08401516109c69190612234565b6109189190612215565b6002826060015160028460a001518560c001516109ed9190612215565b6109f79190612474565b610a01919061228a565b610a0b919061228a565b825160a0840151610a1c9190612234565b610a269190612263565b60e08301525b81516020830151610a5491610a4091612234565b610a4a9087612263565b8360a001516111f5565b9450610a658a8a8460e00151611240565b835191975093505f90610a82908890610a7d90611203565b611385565b90975090508380610a905750805b15610a9c575f95505f94505b50505095509550955095915050565b335f8181526020819052604081209091908280610ad3610aca85611016565b89898942610580565b855460ff60e01b1916600160e01b1786559196509250905060016001606f1b038213610b1c5760016001606f1b03198212610b0e5781610b25565b60016001606f1b0319610b25565b60016001606f1b035b83546dffffffffffffffffffffffffffff19166001600160701b039190911617835560016001606f1b038113610b785760016001606f1b03198112610b6a5780610b81565b60016001606f1b0319610b81565b60016001606f1b035b83546001600160701b0391909116600160701b026dffffffffffffffffffffffffffff60701b1990911617909255509195945050505050565b6301e13380635dfc0f00670de0b6b3a76400005f80610bdd8460e0880135612234565b610bef61014088016101208901612482565b600d0b610bfc9190612263565b90505f83610c0e602089013582612215565b85610c198582612263565b610c279060808c0135612234565b610c31919061228a565b610c3b9190612234565b610c45919061228a565b90505f846040890135610c5b60a08b013561249d565b610c659190612234565b610c6f919061228a565b90505f85610c818160c08c0135612234565b610c8b919061228a565b90505f8688610c9b8c3583612215565b610ca99060608e0135612234565b610cb39190612234565b610cbd919061228a565b610cdb610cd26101208d016101008e01612482565b600d0b846111f5565b610ce59190612263565b90505f87898c35610cf960608f013561249d565b610d039190612234565b610d0d9190612234565b610d17919061228a565b9050610d238583612263565b96505f610d308583612263565b90505f610d3d8c8a612234565b905050505050505050505f82865f013584610d589190612215565b610d66906060890135612234565b610d70919061228a565b90505f838735610d8360608a013561249d565b610d8d9190612234565b610d97919061228a565b90505f84610da960208a013582612215565b86610dbc60e08c013560808d0135612234565b610dc6919061228a565b610dd09190612234565b610dda919061228a565b610de49084612263565b9050815f60028089610df9866108508761249d565b610e039190612234565b610e0d9190612474565b610e17919061228a565b600289610e248983612234565b610e2e9190612234565b610e38919061228a565b610e429190612263565b5050505050505050505050565b5f5f836001600160a01b0316639ef2fda06040518163ffffffff1660e01b8152600401606060405180830381865afa158015610e8d573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610eb191906122cd565b9050610edb610ebf85611016565b82516020840151604085015167ffffffffffffffff1687610636565b979650505050505050565b6001600160a01b038116610f0d57604051639fabe1c160e01b815260040160405180910390fd5b6001546001600160a01b031615610f365760405162dc149f60e41b815260040160405180910390fd5b600180546001600160a01b0319166001600160a01b0383169081179091556040517f908408e307fc569b417f6cbec5d5a06f44a0a505ac0479b47d421a4b2fd6a1e6905f90a250565b5f5f836001600160a01b0316639ef2fda06040518163ffffffff1660e01b8152600401606060405180830381865afa158015610fbd573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610fe191906122cd565b905061100b610fef85611016565b82516020840151604085015167ffffffffffffffff1687610580565b509095945050505050565b6110686040518061014001604052805f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f600d0b81526020015f600d0b81525090565b6001600160a01b038281165f908152602081815260409182902082516060810184529054600d81810b8352600160701b8204900b92820192909252600160e01b90910460ff1615158183015260015482516330fe427560e21b815292519193169163c3f909d4916004808301926101409291908290030181865afa1580156110f2573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061111691906124c2565b915080604001511561113d578051600d90810b6101008401526020820151900b6101208301525b50919050565b5f6001600160ff1b038211156111745760405163123baf0360e11b8152600481018390526024015b60405180910390fd5b5090565b5f821580611184575081155b8061118d575083155b1561119957505f6111d5565b6111a38383612202565b6111ae855f19612202565b11156111d2576111c08285855f6113b8565b9050838111156111cd5750825b6111d5565b50825b9392505050565b5f8183126111ea57816111ec565b825b90505b92915050565b5f8183136111ea57816111ec565b5f5f82121561117457604051635467221960e11b81526004810183905260240161116b565b5f68056bc75e2d631000008083116111ef57826111d5565b5f5f5f6799e8e8e3d5303681841261126857690de0b6b3a7640000000092506001915061129f565b670de0b6b3a764000061127a856113fa565b6112849190612215565b90505f8113611293575f61129c565b61129c81611203565b92505b5f8587116112ad57856112af565b865b90507612725dd1d243aba0e75fe645cc4873f9e65afe688c928e81106112dd575f600193509350505061137d565b8386025f8190036112f05750505061137d565b86858281611300576113006121da565b0414158061133157507612725dd1d243aba0e75fe645cc4873f9e65afe688c928e829003670de0b6b3a76400008204115b1561137957867612725dd1d243aba0e75fe645cc4873f9e65afe688c928e839003670de0b6b3a76400000281611369576113696121da565b0494506001935061137d92505050565b5050505b935093915050565b5f8080611398846502e24d16b5a86122b6565b90508085116113a857845f6113ac565b8060015b92509250509250929050565b5f6113e56113c583611450565b80156113e057505f84806113db576113db6121da565b868809115b151590565b6113f086868661147c565b6105779190612554565b5f68023f2fa8f6da5b9d311982121561141457505f919050565b6804cf46d8192b672ecc8212611428575f5ffd5b6714057b7ef767814f82026111d5670de0b6b3a76400006706f05b59d3b20000830105611539565b5f600282600381111561146557611465612567565b61146f919061257b565b60ff166001149050919050565b5f838302815f1985870982811083820303915050805f036114b0578382816114a6576114a66121da565b04925050506111d5565b8084116114ce576114ce84156114c75760116115bb565b60126115bb565b5f848688095f868103871696879004966002600389028118808a02820302808a02820302808a02820302808a02820302808a02820302808a02909103029181900381900460010186841190950394909402919094039290920491909117919091029150509392505050565b5f5f82121561158a5768033dd1780914b971141982121561155b57505f919050565b611566825f03611539565b6ec097ce7bc90715b34b9f100000000081611583576115836121da565b0592915050565b6806f05b59d3b2000000821261159e575f5ffd5b670de0b6b3a7640000608083901b046111d5816115cc565b919050565b634e487b715f52806020526024601cfd5b6001607f1b818116156115f05770016a09e667f3bcc908b2fb1366ea957d3e0260801c5b6001607e1b821615611613577001306fe0a31b7152de8d5a46305c85eded0260801c5b6001607d1b821615611636577001172b83c7d517adcdf7c8c50eb14a79200260801c5b6001607c1b8216156116595770010b5586cf9890f6298b92b71842a983640260801c5b6001607b1b82161561167c577001059b0d31585743ae7c548eb68ca417fe0260801c5b6001607a1b82161561169f57700102c9a3e778060ee6f7caca4f7a29bde90260801c5b600160791b8216156116c25770010163da9fb33356d84a66ae336dcdfa400260801c5b600160781b8216156116e557700100b1afa5abcbed6129ab13ec11dc95440260801c5b600160771b8216156117085770010058c86da1c09ea1ff19d294cf2f679c0260801c5b600160761b82161561172b577001002c605e2e8cec506d21bfc89a23a0110260801c5b600160751b82161561174e57700100162f3904051fa128bca9c55c31e5e00260801c5b600160741b821615611771577001000b175effdc76ba38e31671ca9397260260801c5b600160731b82161561179457700100058ba01fb9f96d6cacd4b180917c3e0260801c5b600160721b8216156117b75770010002c5cc37da9491d0985c348c68e7b40260801c5b600160711b8216156117da577001000162e525ee054754457d59952920270260801c5b600160701b8216156117fd5770010000b17255775c040618bf4a4ade83fd0260801c5b6001606f1b821615611820577001000058b91b5bc9ae2eed81e9b7d4cfac0260801c5b6001606e1b82161561184357700100002c5c89d5ec6ca4d7c8acc017b7ca0260801c5b6001606d1b8216156118665770010000162e43f4f831060e02d839a9d16d0260801c5b6001606c1b82161561188957700100000b1721bcfc99d9f890ea069117630260801c5b6001606b1b8216156118ac5770010000058b90cf1e6d97f9ca14dbcc16290260801c5b6001606a1b8216156118cf577001000002c5c863b73f016468f6bac5ca2c0260801c5b600160691b8216156118f257700100000162e430e5a18f6119e3c02282a60260801c5b600160681b821615611915577001000000b1721835514b86e6d96efd1bff0260801c5b600160671b82161561193857700100000058b90c0b48c6be5df846c5b2f00260801c5b600160661b82161561195b5770010000002c5c8601cc6b9e94213c72737b0260801c5b600160651b82161561197e577001000000162e42fff037df38aa2b219f070260801c5b600160641b8216156119a15770010000000b17217fba9c739aa5819f44fa0260801c5b600160631b8216156119c4577001000000058b90bfcdee5acd3c1cedc8240260801c5b600160621b8216156119e757700100000002c5c85fe31f35a6a30da1be510260801c5b600160611b821615611a0a5770010000000162e42ff0999ce3541b9fffd00260801c5b600160601b821615611a2d57700100000000b17217f80f4ef5aadda455540260801c5b6001605f1b821615611a505770010000000058b90bfbf8479bd5a81b51ae0260801c5b6001605e1b821615611a73577001000000002c5c85fdf84bd62ae30a74cd0260801c5b6001605d1b821615611a9657700100000000162e42fefb2fed257559bdaa0260801c5b6001605c1b821615611ab9577001000000000b17217f7d5a7716bba4a9af0260801c5b6001605b1b821615611adc57700100000000058b90bfbe9ddbac5e109ccf0260801c5b6001605a1b821615611aff5770010000000002c5c85fdf4b15de6f17eb0e0260801c5b600160591b821615611b22577001000000000162e42fefa494f1478fde050260801c5b600160581b821615611b455770010000000000b17217f7d20cf927c8e94d0260801c5b600160571b821615611b68577001000000000058b90bfbe8f71cb4e4b33e0260801c5b600160561b821615611b8b57700100000000002c5c85fdf477b662b269460260801c5b600160551b821615611bae5770010000000000162e42fefa3ae53369388d0260801c5b600160541b821615611bd157700100000000000b17217f7d1d351a389d410260801c5b600160531b821615611bf45770010000000000058b90bfbe8e8b2d3d4edf0260801c5b600160521b821615611c17577001000000000002c5c85fdf4741bea6e77f0260801c5b600160511b821615611c3a57700100000000000162e42fefa39fe95583c30260801c5b600160501b821615611c5d577001000000000000b17217f7d1cfb72b45e30260801c5b6980000000000000000000821615611c8657700100000000000058b90bfbe8e7cc35c3f20260801c5b6940000000000000000000821615611caf5770010000000000002c5c85fdf473e242ea390260801c5b6920000000000000000000821615611cd8577001000000000000162e42fefa39f02b772c0260801c5b6910000000000000000000821615611d015770010000000000000b17217f7d1cf7d83c1a0260801c5b6908000000000000000000821615611d2a577001000000000000058b90bfbe8e7bdcbe2e0260801c5b6904000000000000000000821615611d5357700100000000000002c5c85fdf473dea871f0260801c5b6902000000000000000000821615611d7c5770010000000000000162e42fefa39ef44d920260801c5b6901000000000000000000821615611da557700100000000000000b17217f7d1cf79e9490260801c5b68800000000000000000821615611dcd5770010000000000000058b90bfbe8e7bce5450260801c5b68400000000000000000821615611df5577001000000000000002c5c85fdf473de6eca0260801c5b68200000000000000000821615611e1d57700100000000000000162e42fefa39ef366f0260801c5b68100000000000000000821615611e45577001000000000000000b17217f7d1cf79afa0260801c5b68080000000000000000821615611e6d57700100000000000000058b90bfbe8e7bcd6e0260801c5b68040000000000000000821615611e955770010000000000000002c5c85fdf473de6b30260801c5b68020000000000000000821615611ebd577001000000000000000162e42fefa39ef3590260801c5b68010000000000000000821615611ee55770010000000000000000b17217f7d1cf79ac0260801c5b6001608083901c011b6111ef81670de0b6b3a7640000600160801b5f80805f19858709858702925082811083820303915050805f03611f34575f8411611f29575f5ffd5b5082900490506111d5565b808411611f3f575f5ffd5b5f8486880960026001871981018816978890046003810283188082028403028082028403028082028403028082028403028082028403029081029092039091025f889003889004909101858311909403939093029303949094049190911702949350505050565b604051610140810167ffffffffffffffff81118282101715611fd657634e487b7160e01b5f52604160045260245ffd5b60405290565b80600d0b8114611fea575f5ffd5b50565b80356115b681611fdc565b5f5f5f5f5f8587036101c081121561200e575f5ffd5b61014081121561201c575f5ffd5b50612025611fa6565b863581526020808801359082015260408088013590820152606080880135908201526080808801359082015260a0808801359082015260c0808801359082015260e0808801359082015261207c6101008801611fed565b61010082015261208f6101208801611fed565b6101208201529761014087013597506101608701359661018081013596506101a00135945092505050565b80356001600160a01b03811681146115b6575f5ffd5b5f5f604083850312156120e1575f5ffd5b6120ea836120ba565b946020939093013593505050565b5f5f5f6060848603121561210a575f5ffd5b505081359360208301359350604090920135919050565b5f610140828403128015612133575f5ffd5b509092915050565b5f6020828403121561214b575f5ffd5b6111ec826120ba565b5f61014082019050825182526020830151602083015260408301516040830152606083015160608301526080830151608083015260a083015160a083015260c083015160c083015260e083015160e08301526101008301516121bc610100840182600d0b9052565b506101208301516121d3610120840182600d0b9052565b5092915050565b634e487b7160e01b5f52601260045260245ffd5b634e487b7160e01b5f52601160045260245ffd5b5f82612210576122106121da565b500490565b8181035f8312801583831316838312821617156121d3576121d36121ee565b8082025f8212600160ff1b8414161561224f5761224f6121ee565b81810583148215176111ef576111ef6121ee565b8082018281125f831280158216821582161715612282576122826121ee565b505092915050565b5f82612298576122986121da565b600160ff1b82145f19841416156122b1576122b16121ee565b500590565b80820281158282048414176111ef576111ef6121ee565b5f60608284031280156122de575f5ffd5b506040516060810167ffffffffffffffff8111828210171561230e57634e487b7160e01b5f52604160045260245ffd5b6040908152835182526020808501519083015283015167ffffffffffffffff81168114612339575f5ffd5b60408201529392505050565b80825b600185111561237f57808604811115612363576123636121ee565b600185161561237157908102905b60019490941c938002612348565b94509492505050565b5f82801561239d57600181146123a7576123b0565b60019150506111ef565b829150506111ef565b50816123bd57505f6111ef565b5060015f82138082146123d55780156123f45761240e565b6001600160ff1b038390048311156123ef576123ef6121ee565b61240e565b6001600160ff1b0383900583121561240e5761240e6121ee565b508083161561241a5750805b6124336001600160ff1b03600185901c84800284612345565b5f82136001600160ff1b0382900483111615612451576124516121ee565b5f8212600160ff1b8290058312161561246c5761246c6121ee565b029392505050565b5f6111ec60ff841683612388565b5f60208284031215612492575f5ffd5b81356111d581611fdc565b5f600160ff1b82016124b1576124b16121ee565b505f0390565b80516115b681611fdc565b5f6101408284031280156124d4575f5ffd5b506124dd611fa6565b825181526020808401519082015260408084015190820152606080840151908201526080808401519082015260a0808401519082015260c0808401519082015260e0808401519082015261253461010084016124b7565b61010082015261254761012084016124b7565b6101208201529392505050565b808201808211156111ef576111ef6121ee565b634e487b7160e01b5f52602160045260245ffd5b5f60ff83168061258d5761258d6121da565b8060ff8416069150509291505056fea2646970667358221220d7b6b02fc4ba1b9ecf6e028607ba403b8c84a73f45b53e3019b16034818d561164736f6c634300081c0033
Deployed Bytecode
0x608060405234801561000f575f5ffd5b5060043610610060575f3560e01c80631e75db16146100645780632864e091146100a85780636bcc8216146100d057806379c682c1146100ed578063d465018a1461011d578063f92d641814610132575b5f5ffd5b61008b7f0000000000000000000000002d21e190dbf96b487f8bd26ab0cf919127dc733a81565b6040516001600160a01b0390911681526020015b60405180910390f35b61008b6100b63660046105b1565b5f602081905290815260409020546001600160a01b031681565b6100df670de0b6b3a764000081565b60405190815260200161009f565b6101006100fb3660046105c8565b610145565b604080519283526001600160a01b0390911660208301520161009f565b61013061012b3660046105c8565b610290565b005b6100df6101403660046105c8565b6104d0565b5f5f610150836104d0565b5f818152602081905260409020549092506001600160a01b03169050801561017757915091565b61018083610290565b5f8360405161018e906105a4565b61019891906105f8565b604051809103905ff0801580156101b1573d5f5f3e3d5ffd5b5090506101dd7f0000000000000000000000002d21e190dbf96b487f8bd26ab0cf919127dc733a6104ff565b60405163189acdbd60e31b81526001600160a01b0383811660048301529193509083169063c4d66de8906024015f604051808303815f87803b158015610221575f5ffd5b505af1158015610233573d5f5f3e3d5ffd5b5050505f8481526020819052604080822080546001600160a01b0319166001600160a01b038716908117909155905190925085917f7a56c031e2e076b9c466d347a09b8bc9458baafdcfc59a33dfffb06f37bbc54291a350915091565b670de0b6b3a76400005f82351380156102a95750813581135b6102c6576040516313e9c00360e21b815260040160405180910390fd5b813560208301351380156102dd5750808260200135125b6102fa576040516339bda99160e11b815260040160405180910390fd5b5f8260400135138015610311575081356040830135125b61032e57604051635c65494d60e01b815260040160405180910390fd5b5f826060013512156103535760405163fe06781560e01b815260040160405180910390fd5b5f82608001351215610378576040516320d12cb560e21b815260040160405180910390fd5b5f8260a0013512156103a0576040516001627ddb5960e01b0319815260040160405180910390fd5b5f8260c0013512156103c557604051634e435a2160e01b815260040160405180910390fd5b5f8260e0013512156103ea576040516378a8371160e01b815260040160405180910390fd5b5f6103fd61012084016101008501610689565b600d0b121561041f576040516330eecc6b60e21b815260040160405180910390fd5b5f61043261014084016101208501610689565b600d0b121561045457604051630266493760e31b815260040160405180910390fd5b60405163167c93eb60e31b81526001600160a01b037f0000000000000000000000002d21e190dbf96b487f8bd26ab0cf919127dc733a169063b3e49f58906104a09085906004016105f8565b5f6040518083038186803b1580156104b6575f5ffd5b505afa1580156104c8573d5f5f3e3d5ffd5b505050505050565b5f816040516020016104e291906105f8565b604051602081830303815290604052805190602001209050919050565b5f61050a825f610510565b92915050565b5f8147101561053f5760405163cf47918160e01b81524760048201526024810183905260440160405180910390fd5b6e5af43d82803e903d91602b57fd5bf360205282601152763d602d80600a3d3981f3363d3d373d3d3d363d730000008360881c175f526037600983f090506001600160a01b03811661050a5760405163b06ebf3d60e01b815260040160405180910390fd5b6104b9806106aa83390190565b5f602082840312156105c1575f5ffd5b5035919050565b5f6101408284031280156105da575f5ffd5b509092915050565b8035600d81900b81146105f3575f5ffd5b919050565b813581526020808301359082015260408083013590820152606080830135908201526080808301359082015260a0808301359082015260c0808301359082015260e08083013590820152610140810161065461010084016105e2565b610664610100840182600d0b9052565b5061067261012084016105e2565b610682610120840182600d0b9052565b5092915050565b5f60208284031215610699575f5ffd5b6106a2826105e2565b939250505056fe6101c0604052348015610010575f5ffd5b506040516104b93803806104b983398101604081905261002f916100dd565b80516080908152602082015160a0908152604083015160c0908152606084015160e0908152928401516101009081529184015161012090815290840151610140529183015161016052820151600d90810b61018052910151900b6101a05261016f565b60405161014081016001600160401b03811182821017156100c157634e487b7160e01b5f52604160045260245ffd5b60405290565b8051600d81900b81146100d8575f5ffd5b919050565b5f6101408284031280156100ef575f5ffd5b506100f8610092565b825181526020808401519082015260408084015190820152606080840151908201526080808401519082015260a0808401519082015260c0808401519082015260e0808401519082015261014f61010084016100c7565b61010082015261016261012084016100c7565b6101208201529392505050565b60805160a05160c05160e05161010051610120516101405161016051610180516101a0516102de6101db5f395f6101f801525f6101cc01525f6101a601525f61018001525f61015a01525f61013401525f61010e01525f60e801525f60c201525f609f01526102de5ff3fe608060405234801561000f575f5ffd5b5060043610610029575f3560e01c8063c3f909d41461002d575b5f5ffd5b61003561004b565b6040516100429190610222565b60405180910390f35b61009d6040518061014001604052805f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f600d0b81526020015f600d0b81525090565b7f000000000000000000000000000000000000000000000000000000000000000081527f000000000000000000000000000000000000000000000000000000000000000060208201527f000000000000000000000000000000000000000000000000000000000000000060408201527f000000000000000000000000000000000000000000000000000000000000000060608201527f000000000000000000000000000000000000000000000000000000000000000060808201527f000000000000000000000000000000000000000000000000000000000000000060a08201527f000000000000000000000000000000000000000000000000000000000000000060c08201527f000000000000000000000000000000000000000000000000000000000000000060e08201527f0000000000000000000000000000000000000000000000000000000000000000600d90810b6101008301527f0000000000000000000000000000000000000000000000000000000000000000900b61012082015290565b5f61014082019050825182526020830151602083015260408301516040830152606083015160608301526080830151608083015260a083015160a083015260c083015160c083015260e083015160e083015261010083015161028a610100840182600d0b9052565b506101208301516102a1610120840182600d0b9052565b509291505056fea2646970667358221220b115e739af79140490d56798607b39258eac5f9c54365bedb6b20f53dfb5988564736f6c634300081c0033a2646970667358221220ceb8a55682ed92de14904915ad9e25d76a6488bc9aa1df5fe9dcf669c73163e864736f6c634300081c0033
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.