S Price: $0.467292 (-9.36%)

Token

Overview

Max Total Supply

316,183.163171202768127084

Holders

17

Market

Price

$0.00 @ 0.000000 S

Onchain Market Cap

$0.00

Circulating Supply Market Cap

-

Other Info

Token Contract (WITH 18 Decimals)

Balance
0

Value
$0.00
0xf4bb7b8cf001338e24f305b033a76c5c3629cbe7
Loading...
Loading
Loading...
Loading
Loading...
Loading

Click here to update the token information / general information

Contract Source Code Verified (Exact Match)

Contract Name:
Pair

Compiler Version
v0.8.28+commit.7893614a

Optimization Enabled:
Yes with 1633 runs

Other Settings:
cancun EvmVersion
File 1 of 16 : Pair.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.26;

import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import {ReentrancyGuard} from "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import {IERC20Extended} from "./interfaces/IERC20Extended.sol";
import {UQ112x112} from "./libraries/UQ112x112.sol";
import {IPairCallee} from "./interfaces/IPairCallee.sol";
import {IPairFactory} from "./interfaces/IPairFactory.sol";
import {IPair} from "./interfaces/IPair.sol";

contract Pair is IPair, ERC20, ReentrancyGuard {
    using UQ112x112 for uint224;

    /// @dev Structure to capture time period obervations every 30 minutes, used for local oracles
    struct Observation {
        uint256 timestamp;
        uint256 reserve0Cumulative;
        uint256 reserve1Cumulative;
    }

    Observation[] public observations;

    uint256 internal _unlocked;

    /// @notice Capture oracle reading every 30 minutes
    uint256 constant periodSize = 1800;

    /// @notice min liquidity amount which is burned on creation
    uint256 public constant MINIMUM_LIQUIDITY = 10 ** 3;

    /// @notice legacy factory address
    address public immutable factory;
    /// @notice token0 in the pool
    address public token0;
    /// @notice token1 in the pool
    address public token1;
    /// @notice where the swap fees accrue to
    address public feeRecipient;

    /// @dev uses single storage slot, accessible via getReserves
    uint112 private reserve0;
    /// @dev uses single storage slot, accessible via getReserves
    uint112 private reserve1;
    /// @dev uses single storage slot, accessible via getReserves
    uint32 private blockTimestampLast;

    uint256 public reserve0CumulativeLast;
    uint256 public reserve1CumulativeLast;
    /// @dev reserve0 * reserve1, as of immediately after the most recent liquidity event
    uint256 public kLast;
    /// @dev the portion that goes to feeRecipient, rest goes to LPs. 100% of the fees goes to feeRecipient if it's set to 10000
    uint256 public feeSplit;
    uint256 public fee;

    uint256 internal decimals0;
    uint256 internal decimals1;
    /// @dev first MINIMUM_LIQUIDITY tokens are permanently locked
    uint256 internal constant MINIMUM_K = 10 ** 9;
    /// @dev 1m = 100%
    uint256 internal constant FEE_DENOM = 1_000_000;

    /// @notice whether the pool uses the xy(x^2 * y + y^2 * x) >= k swap curve
    bool public stable;

    string internal _name;
    string internal _symbol;
    constructor() ERC20("", "") {
        /// @dev initialize the factory address
        factory = msg.sender;
    }

    /// @inheritdoc IPair
    function initialize(
        address _token0,
        address _token1,
        bool _stable
    ) external {
        /// @dev prevent anyone other than the factory from calling
        require(msg.sender == factory, NOT_AUTHORIZED());
        token0 = _token0;
        token1 = _token1;

        string memory __name;
        string memory __symbol;
        stable = _stable;
        if (_stable) {
            __name = string(
                string.concat(
                    "Legacy Correlated- ",
                    IERC20Extended(token0).symbol(),
                    "/",
                    IERC20Extended(token1).symbol()
                )
            );
            __symbol = string(
                string.concat(
                    "cAMM-",
                    IERC20Extended(token0).symbol(),
                    "/",
                    IERC20Extended(token1).symbol()
                )
            );
        } else {
            __name = string(
                string.concat(
                    "Legacy Volatile- ",
                    IERC20Extended(token0).symbol(),
                    "/",
                    IERC20Extended(token1).symbol()
                )
            );
            __symbol = string(
                string.concat(
                    "vAMM-",
                    IERC20Extended(token0).symbol(),
                    "/",
                    IERC20Extended(token1).symbol()
                )
            );
        }

        _name = __name;
        _symbol = __symbol;

        observations.push(Observation(block.timestamp, 0, 0));

        decimals0 = 10 ** IERC20Extended(token0).decimals();
        decimals1 = 10 ** IERC20Extended(token1).decimals();
    }
    /// @inheritdoc IPair
    function getReserves()
        public
        view
        returns (
            uint112 _reserve0,
            uint112 _reserve1,
            uint32 _blockTimestampLast
        )
    {
        _reserve0 = reserve0;
        _reserve1 = reserve1;
        _blockTimestampLast = blockTimestampLast;
    }

    function _safeTransfer(address token, address to, uint256 value) private {
        require(token.code.length > 0);
        (bool success, bytes memory data) = token.call(
            abi.encodeCall(IERC20Extended.transfer, (to, value))
        );
        if (!(success && (data.length == 0 || abi.decode(data, (bool))))) {
            revert STF();
        }
    }

    /// @dev update reserves and, on the first call per block, reserve accumulators
    function _update(
        uint256 balance0,
        uint256 balance1,
        uint112 _reserve0,
        uint112 _reserve1
    ) private {
        /// @dev ensure no overflow
        require(
            balance0 <= type(uint112).max && balance1 <= type(uint112).max,
            OVERFLOW()
        );
        /// @dev store blockstamp
        uint256 blockTimestamp = block.timestamp;
        /// @dev declare
        uint256 timeElapsed;

        /// @dev overflow is desired
        unchecked {
            /// @dev time elapsed since the last update
            timeElapsed = blockTimestamp - uint256(blockTimestampLast);
            /// @dev if timeElapsed is gt 0 and the reserves are not 0
            if (timeElapsed > 0 && _reserve0 != 0 && _reserve1 != 0) {
                /// @dev update the cumulatives
                reserve0CumulativeLast += _reserve0 * timeElapsed;
                reserve1CumulativeLast += _reserve1 * timeElapsed;
            }
        }
        /// @dev fetch the last observation
        Observation memory _point = lastObservation();
        /// @dev compare the last observation with current timestamp, if greater than 30 minutes, record a new event
        timeElapsed = blockTimestamp - _point.timestamp;
        /// @dev if > the periodSize (usually 30m twap)
        if (timeElapsed > periodSize) {
            observations.push(
                Observation(
                    blockTimestamp,
                    reserve0CumulativeLast,
                    reserve1CumulativeLast
                )
            );
        }

        reserve0 = uint112(balance0);
        reserve1 = uint112(balance1);
        blockTimestampLast = uint32(blockTimestamp);
        emit Sync(reserve0, reserve1);
    }

    /// @dev if fee is on, mint liquidity up to the entire growth in sqrt(k)
    function _mintFee(
        uint112 _reserve0,
        uint112 _reserve1
    ) private returns (bool feeOn) {
        /// @dev gas savings
        address _feeRecipient = feeRecipient;
        /// @dev gas savings
        uint256 _kLast = kLast;
        /// @dev we define fee being on as the existence of the fee recipient
        feeOn = _feeRecipient != address(0);
        /// @dev if there are any fees not going to LP providers
        if (feeOn) {
            /// @dev portion of fees that go to feeRecipient
            uint256 _feeSplit = feeSplit;
            /// @dev if the reserve calculation is not 0
            if (_kLast != 0) {
                /// @dev if a stableswap/correlated pair with curve: xy(x^2y + y^2x) >= k
                if (stable) {
                    /// @dev fetch current k value
                    uint256 k = _k(_reserve0, _reserve1);
                    /// @dev if k is greater than the _kLast variable
                    if (k > _kLast) {
                        uint256 fourthRoot_e18 = Math.sqrt(
                            Math.mulDiv(Math.sqrt(_kLast), 1e36, Math.sqrt(k))
                        );

                        uint256 numerator = _feeSplit *
                            (1e18 - fourthRoot_e18) *
                            1e18;
                        uint256 denominator = ((10_000 * 1e18) -
                            (_feeSplit * (1e18 - fourthRoot_e18)));

                        /// @dev new liquidity to be minted
                        uint256 feeAsLiquidity = (totalSupply() * numerator) /
                            denominator /
                            1e18;

                        if (feeAsLiquidity > 0) {
                            _mint(_feeRecipient, feeAsLiquidity);
                        }
                    }
                }
                /// @dev if !stable
                else {
                    uint256 rootK = Math.sqrt(
                        _k(uint256(_reserve0), uint256(_reserve1))
                    );
                    uint256 rootKLast = Math.sqrt(_kLast);
                    if (rootK > rootKLast) {
                        /// @dev calculate fee amounts to send
                        uint256 diffK = rootK - rootKLast;
                        uint256 dueToProtocol = (diffK * _feeSplit) / 10_000;
                        uint256 dueToLp = rootKLast + diffK - dueToProtocol;

                        /// @dev new liquidity to be minted
                        /// @dev n = s*P/d
                        uint256 feeAsLiquidity = (totalSupply() *
                            dueToProtocol) / dueToLp;

                        if (feeAsLiquidity > 0) {
                            _mint(_feeRecipient, feeAsLiquidity);
                        }
                    }
                }
            }
        }
        /// @dev if !feeOn
        else if (_kLast != 0) {
            /// @dev update kLast to reflect reserves
            kLast = _k(reserve0, reserve1);
        }
    }
    /// @inheritdoc IPair
    /// @dev this low-level function should be called from a contract which performs important safety checks
    function mint(
        address to
    ) external nonReentrant returns (uint256 liquidity) {
        /// @dev gas savings
        (uint112 _reserve0, uint112 _reserve1, ) = getReserves();
        uint256 balance0 = IERC20Extended(token0).balanceOf(address(this));
        uint256 balance1 = IERC20Extended(token1).balanceOf(address(this));
        uint256 amount0 = balance0 - _reserve0;
        uint256 amount1 = balance1 - _reserve1;

        bool feeOn = _mintFee(_reserve0, _reserve1);
        /// @dev gas savings, must be defined here since totalSupply can update in _mintFee
        uint256 _totalSupply = totalSupply();
        if (_totalSupply == 0) {
            liquidity = Math.sqrt(amount0 * amount1) - MINIMUM_LIQUIDITY;
            /// @dev permanently lock the first MINIMUM_LIQUIDITY tokens
            _mint(address(0xdead), MINIMUM_LIQUIDITY);
            if (stable) {
                require(_k(amount0, amount1) >= MINIMUM_K, K());
                require(
                    ((amount0 * 1e18) / decimals0 ==
                        (amount1 * 1e18) / decimals1),
                    UNSTABLE_RATIO()
                );
            }
        } else {
            liquidity = Math.min(
                (amount0 * _totalSupply) / _reserve0,
                (amount1 * _totalSupply) / _reserve1
            );
        }
        require(liquidity != 0, ILM());
        _mint(to, liquidity);

        _update(balance0, balance1, _reserve0, _reserve1);
        /// @dev reserve0 and reserve1 are up-to-date
        if (feeOn) kLast = _k(uint256(reserve0), uint256(reserve1));
        emit Mint(msg.sender, amount0, amount1);
    }
    /// @inheritdoc IPair
    /// @dev this low-level function should be called from a contract which performs important safety checks
    function burn(
        address to
    ) external nonReentrant returns (uint256 amount0, uint256 amount1) {
        /// @dev gas savings
        (uint112 _reserve0, uint112 _reserve1, ) = getReserves();
        /// @dev gas savings
        address _token0 = token0;
        /// @dev gas savings
        address _token1 = token1;
        uint256 balance0 = IERC20Extended(_token0).balanceOf(address(this));
        uint256 balance1 = IERC20Extended(_token1).balanceOf(address(this));
        /// @dev fetch the balance of the liquidity of the Pair
        uint256 liquidity = balanceOf(address(this));
        /// @dev attempt to mint fees and calculate if feeOn is active
        bool feeOn = _mintFee(_reserve0, _reserve1);
        /// @dev gas savings, must be defined here since totalSupply can update in _mintFee
        uint256 _totalSupply = totalSupply();
        /// @dev using balances ensures pro-rata distribution
        amount0 = (liquidity * balance0) / _totalSupply;
        /// @dev using balances ensures pro-rata distribution
        amount1 = (liquidity * balance1) / _totalSupply;
        /// @dev require the amounts are not zero, else it's insufficient liquidity burned and revert
        require(amount0 != 0 && amount1 != 0, ILB());
        /// @dev burn the liquidity tokens
        _burn(address(this), liquidity);
        /// @dev safe transfer the two underlying tokens (incase of tax tokens etc)
        _safeTransfer(_token0, to, amount0);
        _safeTransfer(_token1, to, amount1);
        /// @dev fetch updated balances
        balance0 = IERC20Extended(_token0).balanceOf(address(this));
        balance1 = IERC20Extended(_token1).balanceOf(address(this));
        /// @dev update with the new balances
        _update(balance0, balance1, _reserve0, _reserve1);
        /// @dev reserve0 and reserve1 are up-to-date
        if (feeOn) kLast = _k(reserve0, reserve1);
        emit Burn(msg.sender, amount0, amount1, to);
    }
    /// @inheritdoc IPair
    /// @dev this low-level function should be called from a contract which performs important safety checks
    function swap(
        uint256 amount0Out,
        uint256 amount1Out,
        address to,
        bytes calldata data
    ) external nonReentrant {
        /// @dev require at least one is not 0, else revert for Insufficient Output Amount
        require(amount0Out != 0 || amount1Out != 0, IOA());

        /// @dev gas savings
        (uint112 _reserve0, uint112 _reserve1, ) = getReserves();
        /// @dev ensure there is enough liquidity for the swap
        require(amount0Out < _reserve0 && amount1Out < _reserve1, IL());
        /// @dev gas savings
        address _token0 = token0;
        address _token1 = token1;

        require(to != _token0 && to != _token1, IT());
        /// @dev optimistically transfer tokens
        if (amount0Out > 0) _safeTransfer(_token0, to, amount0Out);
        /// @dev optimistically transfer tokens
        if (amount1Out > 0) _safeTransfer(_token1, to, amount1Out);
        if (data.length > 0)
            IPairCallee(to).hook(msg.sender, amount0Out, amount1Out, data);
        uint256 balance0 = IERC20Extended(_token0).balanceOf(address(this));
        uint256 balance1 = IERC20Extended(_token1).balanceOf(address(this));

        uint256 amount0In;
        uint256 amount1In;
        unchecked {
            amount0In = balance0 > _reserve0 - amount0Out
                ? balance0 - (_reserve0 - amount0Out)
                : 0;
            amount1In = balance1 > _reserve1 - amount1Out
                ? balance1 - (_reserve1 - amount1Out)
                : 0;
        }
        require(amount0In != 0 || amount1In != 0, IIA());

        /// @dev FEE_DENOM as the denominator invariant for calculating swap fees
        uint256 balance0Adjusted = balance0 - ((amount0In * fee) / FEE_DENOM);
        uint256 balance1Adjusted = balance1 - ((amount1In * fee) / FEE_DENOM);

        require(
            _k(balance0Adjusted, balance1Adjusted) >=
                _k(uint256(_reserve0), uint256(_reserve1)),
            K()
        );

        _update(balance0, balance1, _reserve0, _reserve1);
        emit Swap(msg.sender, amount0In, amount1In, amount0Out, amount1Out, to);
    }

    /// @inheritdoc IPair
    function skim(address to) external nonReentrant {
        /// @dev if skim disabled, revert
        /// @dev by default it is disabled as it uses a mapping in the pair factory contract
        require((IPairFactory(factory).skimEnabled(address(this))), SD());
        /// @dev gas savings
        address _token0 = token0;
        /// @dev gas savings
        address _token1 = token1;
        _safeTransfer(
            _token0,
            to,
            IERC20Extended(_token0).balanceOf(address(this)) - reserve0
        );
        _safeTransfer(
            _token1,
            to,
            IERC20Extended(_token1).balanceOf(address(this)) - reserve1
        );
    }

    /// @inheritdoc IPair
    function sync() external nonReentrant {
        /// @dev update the reserves to match balances
        _update(
            IERC20Extended(token0).balanceOf(address(this)),
            IERC20Extended(token1).balanceOf(address(this)),
            reserve0,
            reserve1
        );
    }
    /// @inheritdoc IPair
    function setFeeRecipient(address _feeRecipient) external {
        /// @dev gate to the PairFactory
        require(msg.sender == factory, NOT_AUTHORIZED());
        feeRecipient = _feeRecipient;
    }
    /// @inheritdoc IPair
    function setFeeSplit(uint256 _feeSplit) external {
        /// @dev gate to the PairFactory
        require(msg.sender == factory, NOT_AUTHORIZED());
        feeSplit = _feeSplit;
    }
    /// @inheritdoc IPair
    function setFee(uint256 _fee) external {
        /// @dev gate to the PairFactory
        require(msg.sender == factory, NOT_AUTHORIZED());
        fee = _fee;
    }
    /// @inheritdoc IPair
    function mintFee() external nonReentrant {
        /// @dev fetch the current public reserves
        uint112 _reserve0 = reserve0;
        uint112 _reserve1 = reserve1;
        /// @dev mint the accumulated fees
        bool feeOn = _mintFee(_reserve0, _reserve1);
        /// @dev if minting was successful
        if (feeOn) kLast = _k(uint256(_reserve0), uint256(_reserve1));
    }

    function _k(uint256 x, uint256 y) internal view returns (uint256) {
        if (stable) {
            uint256 _x = (x * 10 ** 18) / decimals0;
            uint256 _y = (y * 10 ** 18) / decimals1;
            uint256 _a = (_x * _y) / 10 ** 18;
            uint256 _b = ((_x * _x) / 10 ** 18 + (_y * _y) / 10 ** 18);
            /// @dev x3y+y3x >= k
            return (_a * _b) / 10 ** 18;
        } else {
            /// @dev xy >= k
            return x * y;
        }
    }

    function _f(uint256 x0, uint256 y) internal pure returns (uint256) {
        return
            (x0 * ((((y * y) / 1e18) * y) / 1e18)) /
            1e18 +
            (((((x0 * x0) / 1e18) * x0) / 1e18) * y) /
            1e18;
    }

    function _d(uint256 x0, uint256 y) internal pure returns (uint256) {
        return
            (3 * x0 * ((y * y) / 1e18)) /
            1e18 +
            ((((x0 * x0) / 1e18) * x0) / 1e18);
    }

    function _get_y(
        uint256 x0,
        uint256 xy,
        uint256 y
    ) internal pure returns (uint256) {
        for (uint256 i = 0; i < 255; ++i) {
            uint256 y_prev = y;
            uint256 k = _f(x0, y);
            if (k < xy) {
                uint256 dy = ((xy - k) * 1e18) / _d(x0, y);
                y = y + dy;
            } else {
                uint256 dy = ((k - xy) * 1e18) / _d(x0, y);
                y = y - dy;
            }
            if (y > y_prev) {
                if (y - y_prev <= 1) {
                    return y;
                }
            } else {
                if (y_prev - y <= 1) {
                    return y;
                }
            }
        }
        return y;
    }
    /// @inheritdoc IPair
    function getAmountOut(
        uint256 amountIn,
        address tokenIn
    ) external view returns (uint256) {
        (uint256 _reserve0, uint256 _reserve1) = (reserve0, reserve1);
        /// @dev remove fee from amount received
        amountIn -= (amountIn * fee) / FEE_DENOM;

        return _getAmountOut(amountIn, tokenIn, _reserve0, _reserve1) - 1;
    }

    function _getAmountOut(
        uint256 amountIn,
        address tokenIn,
        uint256 _reserve0,
        uint256 _reserve1
    ) internal view returns (uint256) {
        if (stable) {
            uint256 xy = _k(_reserve0, _reserve1);
            _reserve0 = (_reserve0 * 1e18) / decimals0;
            _reserve1 = (_reserve1 * 1e18) / decimals1;
            (uint256 reserveA, uint256 reserveB) = tokenIn == token0
                ? (_reserve0, _reserve1)
                : (_reserve1, _reserve0);
            amountIn = tokenIn == token0
                ? (amountIn * 1e18) / decimals0
                : (amountIn * 1e18) / decimals1;
            uint256 y = reserveB - _get_y(amountIn + reserveA, xy, reserveB);
            return (y * (tokenIn == token0 ? decimals1 : decimals0)) / 1e18;
        } else {
            (uint256 reserveA, uint256 reserveB) = tokenIn == token0
                ? (_reserve0, _reserve1)
                : (_reserve1, _reserve0);
            return (amountIn * reserveB) / (reserveA + amountIn);
        }
    }

    function metadata()
        external
        view
        returns (
            uint256 _decimals0,
            uint256 _decimals1,
            uint256 _reserve0,
            uint256 _reserve1,
            bool _stable,
            address _token0,
            address _token1
        )
    {
        return (
            decimals0,
            decimals1,
            reserve0,
            reserve1,
            stable,
            token0,
            token1
        );
    }

    function observationLength() external view returns (uint256) {
        return observations.length;
    }

    function lastObservation() public view returns (Observation memory) {
        return observations[observations.length - 1];
    }

    /// @dev produces the cumulative price using counterfactuals to save gas and avoid a call to sync.
    function currentCumulativePrices()
        public
        view
        returns (
            uint256 reserve0Cumulative,
            uint256 reserve1Cumulative,
            uint256 blockTimestamp
        )
    {
        blockTimestamp = block.timestamp;
        reserve0Cumulative = reserve0CumulativeLast;
        reserve1Cumulative = reserve1CumulativeLast;

        /// @dev if time has elapsed since the last update on the pair, mock the accumulated price values
        (
            uint112 _reserve0,
            uint112 _reserve1,
            uint32 _blockTimestampLast
        ) = getReserves();
        if (_blockTimestampLast != uint32(blockTimestamp)) {
            /// @dev subtraction overflow is desired
            uint256 timeElapsed = blockTimestamp - uint256(_blockTimestampLast);
            reserve0Cumulative += _reserve0 * timeElapsed;
            reserve1Cumulative += _reserve1 * timeElapsed;
        }
    }

    /// @dev gives the current twap price measured from amountIn * tokenIn gives amountOut
    function current(
        address tokenIn,
        uint256 amountIn
    ) external view returns (uint256 amountOut) {
        Observation memory _observation = lastObservation();
        (
            uint256 reserve0Cumulative,
            uint256 reserve1Cumulative,

        ) = currentCumulativePrices();
        if (block.timestamp == _observation.timestamp) {
            _observation = observations[observations.length - 2];
        }

        uint256 timeElapsed = block.timestamp - _observation.timestamp;
        uint256 _reserve0 = (reserve0Cumulative -
            _observation.reserve0Cumulative) / timeElapsed;
        uint256 _reserve1 = (reserve1Cumulative -
            _observation.reserve1Cumulative) / timeElapsed;
        amountOut = _getAmountOut(amountIn, tokenIn, _reserve0, _reserve1);
    }

    /// @dev as per `current`, however allows user configured granularity, up to the full window size
    function quote(
        address tokenIn,
        uint256 amountIn,
        uint256 granularity
    ) external view returns (uint256 amountOut) {
        uint256[] memory _prices = sample(tokenIn, amountIn, granularity, 1);
        uint256 priceAverageCumulative;
        for (uint256 i = 0; i < _prices.length; ++i) {
            priceAverageCumulative += _prices[i];
        }
        return priceAverageCumulative / granularity;
    }

    /// @dev returns a memory set of twap prices
    function prices(
        address tokenIn,
        uint256 amountIn,
        uint256 points
    ) external view returns (uint256[] memory) {
        return sample(tokenIn, amountIn, points, 1);
    }

    function sample(
        address tokenIn,
        uint256 amountIn,
        uint256 points,
        uint256 window
    ) public view returns (uint256[] memory) {
        uint256[] memory _prices = new uint256[](points);

        uint256 length = observations.length - 1;
        uint256 i = length - (points * window);
        uint256 nextIndex = 0;
        uint256 index = 0;

        for (; i < length; i += window) {
            nextIndex = i + window;
            uint256 timeElapsed = observations[nextIndex].timestamp -
                observations[i].timestamp;
            uint256 _reserve0 = (observations[nextIndex].reserve0Cumulative -
                observations[i].reserve0Cumulative) / timeElapsed;
            uint256 _reserve1 = (observations[nextIndex].reserve1Cumulative -
                observations[i].reserve1Cumulative) / timeElapsed;
            _prices[index] = _getAmountOut(
                amountIn,
                tokenIn,
                _reserve0,
                _reserve1
            );
            /// @dev index < length; length cannot overflow
            unchecked {
                index = index + 1;
            }
        }
        return _prices;
    }
}

File 2 of 16 : ERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC-20
 * applications.
 */
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
    mapping(address account => uint256) private _balances;

    mapping(address account => mapping(address spender => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `value`.
     */
    function transfer(address to, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, value);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, value);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Skips emitting an {Approval} event indicating an allowance update. This is not
     * required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `value`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `value`.
     */
    function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, value);
        _transfer(from, to, value);
        return true;
    }

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _transfer(address from, address to, uint256 value) internal {
        if (from == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        if (to == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(from, to, value);
    }

    /**
     * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
     * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
     * this function.
     *
     * Emits a {Transfer} event.
     */
    function _update(address from, address to, uint256 value) internal virtual {
        if (from == address(0)) {
            // Overflow check required: The rest of the code assumes that totalSupply never overflows
            _totalSupply += value;
        } else {
            uint256 fromBalance = _balances[from];
            if (fromBalance < value) {
                revert ERC20InsufficientBalance(from, fromBalance, value);
            }
            unchecked {
                // Overflow not possible: value <= fromBalance <= totalSupply.
                _balances[from] = fromBalance - value;
            }
        }

        if (to == address(0)) {
            unchecked {
                // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                _totalSupply -= value;
            }
        } else {
            unchecked {
                // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                _balances[to] += value;
            }
        }

        emit Transfer(from, to, value);
    }

    /**
     * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
     * Relies on the `_update` mechanism
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _mint(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(address(0), account, value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
     * Relies on the `_update` mechanism.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead
     */
    function _burn(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        _update(account, address(0), value);
    }

    /**
     * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address owner, address spender, uint256 value) internal {
        _approve(owner, spender, value, true);
    }

    /**
     * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
     *
     * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
     * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
     * `Approval` event during `transferFrom` operations.
     *
     * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
     * true using the following override:
     *
     * ```solidity
     * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
     *     super._approve(owner, spender, value, true);
     * }
     * ```
     *
     * Requirements are the same as {_approve}.
     */
    function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
        if (owner == address(0)) {
            revert ERC20InvalidApprover(address(0));
        }
        if (spender == address(0)) {
            revert ERC20InvalidSpender(address(0));
        }
        _allowances[owner][spender] = value;
        if (emitEvent) {
            emit Approval(owner, spender, value);
        }
    }

    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `value`.
     *
     * Does not update the allowance value in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Does not emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            if (currentAllowance < value) {
                revert ERC20InsufficientAllowance(spender, currentAllowance, value);
            }
            unchecked {
                _approve(owner, spender, currentAllowance - value, false);
            }
        }
    }
}

File 3 of 16 : ReentrancyGuard.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol)

pragma solidity ^0.8.20;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
 * consider using {ReentrancyGuardTransient} instead.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant NOT_ENTERED = 1;
    uint256 private constant ENTERED = 2;

    uint256 private _status;

    /**
     * @dev Unauthorized reentrant call.
     */
    error ReentrancyGuardReentrantCall();

    constructor() {
        _status = NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be NOT_ENTERED
        if (_status == ENTERED) {
            revert ReentrancyGuardReentrantCall();
        }

        // Any calls to nonReentrant after this point will fail
        _status = ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == ENTERED;
    }
}

File 4 of 16 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
            // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2²⁵⁶ + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= prod1) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 exp;
        unchecked {
            exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
            value >>= exp;
            result += exp;

            exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
            value >>= exp;
            result += exp;

            exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
            value >>= exp;
            result += exp;

            exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
            value >>= exp;
            result += exp;

            exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
            value >>= exp;
            result += exp;

            exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
            value >>= exp;
            result += exp;

            exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
            value >>= exp;
            result += exp;

            result += SafeCast.toUint(value > 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 isGt;
        unchecked {
            isGt = SafeCast.toUint(value > (1 << 128) - 1);
            value >>= isGt * 128;
            result += isGt * 16;

            isGt = SafeCast.toUint(value > (1 << 64) - 1);
            value >>= isGt * 64;
            result += isGt * 8;

            isGt = SafeCast.toUint(value > (1 << 32) - 1);
            value >>= isGt * 32;
            result += isGt * 4;

            isGt = SafeCast.toUint(value > (1 << 16) - 1);
            value >>= isGt * 16;
            result += isGt * 2;

            result += SafeCast.toUint(value > (1 << 8) - 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 5 of 16 : IERC20Extended.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.26;

import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import {IERC20Permit} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Permit.sol";

interface IERC20Extended is IERC20, IERC20Metadata, IERC20Permit {
    function mint(address account, uint256 amount) external;

    function burn(uint256 amount) external;

    function transfer(address to, uint256 value) external returns (bool);

    function transferFrom(
        address from,
        address to,
        uint256 value
    ) external returns (bool);

    function burnFrom(address account, uint256 value) external;
}

File 6 of 16 : UQ112x112.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.26;

// a library for handling binary fixed point numbers (https://en.wikipedia.org/wiki/Q_(number_format))

// range: [0, 2**112 - 1]
// resolution: 1 / 2**112

library UQ112x112 {
    uint224 constant Q112 = 2 ** 112;

    // encode a uint112 as a UQ112x112
    function encode(uint112 y) internal pure returns (uint224 z) {
        unchecked {
            z = uint224(y) * Q112; // never overflows
        }
    }

    // divide a UQ112x112 by a uint112, returning a UQ112x112
    function uqdiv(uint224 x, uint112 y) internal pure returns (uint224 z) {
        unchecked {
            z = x / uint224(y);
        }
    }
}

File 7 of 16 : IPairCallee.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.26;

interface IPairCallee {
    function hook(
        address sender,
        uint256 amount0,
        uint256 amount1,
        bytes calldata data
    ) external;
}

File 8 of 16 : IPairFactory.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.26;

interface IPairFactory {
    error FEE_TOO_HIGH();
    error ZERO_FEE();
    /// @dev invalid assortment
    error IA();
    /// @dev zero address
    error ZA();
    /// @dev pair exists
    error PE();
    error NOT_AUTHORIZED();
    error INVALID_FEE_SPLIT();

    event PairCreated(
        address indexed token0,
        address indexed token1,
        address pair,
        uint256
    );

    event SetFee(uint256 indexed fee);

    event SetPairFee(address indexed pair, uint256 indexed fee);

    event SetFeeSplit(uint256 indexed _feeSplit);

    event SetPairFeeSplit(address indexed pair, uint256 indexed _feeSplit);

    event SkimStatus(address indexed _pair, bool indexed _status);

    event NewTreasury(address indexed _caller, address indexed _newTreasury);

    event FeeSplitWhenNoGauge(address indexed _caller, bool indexed _status);

    event SetFeeRecipient(address indexed pair, address indexed feeRecipient);

    /// @notice returns the total length of legacy pairs
    /// @return _length the length
    function allPairsLength() external view returns (uint256 _length);

    /// @notice calculates if the address is a legacy pair
    /// @param pair the address to check
    /// @return _boolean the bool return
    function isPair(address pair) external view returns (bool _boolean);

    /// @notice calculates the pairCodeHash
    /// @return _hash the pair code hash
    function pairCodeHash() external view returns (bytes32 _hash);

    /// @param tokenA address of tokenA
    /// @param tokenB address of tokenB
    /// @param stable whether it uses the stable curve
    /// @return _pair the address of the pair
    function getPair(
        address tokenA,
        address tokenB,
        bool stable
    ) external view returns (address _pair);

    /// @notice creates a new legacy pair
    /// @param tokenA address of tokenA
    /// @param tokenB address of tokenB
    /// @param stable whether it uses the stable curve
    /// @return pair the address of the created pair
    function createPair(
        address tokenA,
        address tokenB,
        bool stable
    ) external returns (address pair);

    /// @notice the address of the voter
    /// @return _voter the address of the voter
    function voter() external view returns (address _voter);

    /// @notice returns the address of a pair based on the index
    /// @param _index the index to check for a pair
    /// @return _pair the address of the pair at the index
    function allPairs(uint256 _index) external view returns (address _pair);

    /// @notice the swap fee of a pair
    /// @param _pair the address of the pair
    /// @return _fee the fee
    function pairFee(address _pair) external view returns (uint256 _fee);

    /// @notice the split of fees
    /// @return _split the feeSplit
    function feeSplit() external view returns (uint256 _split);

    /// @notice sets the swap fee for a pair
    /// @param _pair the address of the pair
    /// @param _fee the fee for the pair
    function setPairFee(address _pair, uint256 _fee) external;

    /// @notice set the swap fees of the pair
    /// @param _fee the fee, scaled to MAX 10% of 100_000
    function setFee(uint256 _fee) external;

    /// @notice the address for the treasury
    /// @return _treasury address of the treasury
    function treasury() external view returns (address _treasury);

    /// @notice sets the pairFees contract
    /// @param _pair the address of the pair
    /// @param _pairFees the address of the new Pair Fees
    function setFeeRecipient(address _pair, address _pairFees) external;

    /// @notice sets the feeSplit for a pair
    /// @param _pair the address of the pair
    /// @param _feeSplit the feeSplit
    function setPairFeeSplit(address _pair, uint256 _feeSplit) external;

    /// @notice whether there is feeSplit when there's no gauge
    /// @return _boolean whether there is a feesplit when no gauge
    function feeSplitWhenNoGauge() external view returns (bool _boolean);

    /// @notice whether a pair can be skimmed
    /// @param _pair the pair address
    /// @return _boolean whether skim is enabled
    function skimEnabled(address _pair) external view returns (bool _boolean);

    /// @notice set whether skim is enabled for a specific pair
    function setSkimEnabled(address _pair, bool _status) external;

    /// @notice sets a new treasury address
    /// @param _treasury the new treasury address
    function setTreasury(address _treasury) external;

    /// @notice set whether there should be a feesplit without gauges
    /// @param status whether enabled or not
    function setFeeSplitWhenNoGauge(bool status) external;

    /// @notice sets the feesSplit globally
    /// @param _feeSplit the fee split
    function setFeeSplit(uint256 _feeSplit) external;
}

File 9 of 16 : IPair.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.26;

interface IPair {
    error NOT_AUTHORIZED();
    error UNSTABLE_RATIO();
    /// @dev safe transfer failed
    error STF();
    error OVERFLOW();
    /// @dev skim disabled
    error SD();
    /// @dev insufficient liquidity minted
    error ILM();
    /// @dev insufficient liquidity burned
    error ILB();
    /// @dev insufficient output amount
    error IOA();
    /// @dev insufficient input amount
    error IIA();
    error IL();
    error IT();
    error K();

    event Mint(address indexed sender, uint256 amount0, uint256 amount1);
    event Burn(
        address indexed sender,
        uint256 amount0,
        uint256 amount1,
        address indexed to
    );
    event Swap(
        address indexed sender,
        uint256 amount0In,
        uint256 amount1In,
        uint256 amount0Out,
        uint256 amount1Out,
        address indexed to
    );
    event Sync(uint112 reserve0, uint112 reserve1);

    /// @notice initialize the pool, called only once programatically
    function initialize(
        address _token0,
        address _token1,
        bool _stable
    ) external;

    /// @notice calculate the current reserves of the pool and their last 'seen' timestamp
    /// @return _reserve0 amount of token0 in reserves
    /// @return _reserve1 amount of token1 in reserves
    /// @return _blockTimestampLast the timestamp when the pool was last updated
    function getReserves()
        external
        view
        returns (
            uint112 _reserve0,
            uint112 _reserve1,
            uint32 _blockTimestampLast
        );

    /// @notice mint the pair tokens (LPs)
    /// @param to where to mint the LP tokens to
    /// @return liquidity amount of LP tokens to mint
    function mint(address to) external returns (uint256 liquidity);

    /// @notice burn the pair tokens (LPs)
    /// @param to where to send the underlying
    /// @return amount0 amount of amount0
    /// @return amount1 amount of amount1
    function burn(
        address to
    ) external returns (uint256 amount0, uint256 amount1);

    /// @notice direct swap through the pool
    function swap(
        uint256 amount0Out,
        uint256 amount1Out,
        address to,
        bytes calldata data
    ) external;

    /// @notice force balances to match reserves, can be used to harvest rebases from rebasing tokens or other external factors
    /// @param to where to send the excess tokens to
    function skim(address to) external;

    /// @notice force reserves to match balances, prevents skim excess if skim is enabled
    function sync() external;

    /// @notice set the pair fees contract address
    function setFeeRecipient(address _pairFees) external;

    /// @notice set the feesplit variable
    function setFeeSplit(uint256 _feeSplit) external;

    /// @notice sets the swap fee of the pair
    /// @dev max of 10_000 (10%)
    /// @param _fee the fee
    function setFee(uint256 _fee) external;

    /// @notice 'mint' the fees as LP tokens
    /// @dev this is used for protocol/voter fees
    function mintFee() external;

    /// @notice calculates the amount of tokens to receive post swap
    /// @param amountIn the token amount
    /// @param tokenIn the address of the token
    function getAmountOut(
        uint256 amountIn,
        address tokenIn
    ) external view returns (uint256 amountOut);

    /// @notice returns various metadata about the pair
    function metadata()
        external
        view
        returns (
            uint256 _decimals0,
            uint256 _decimals1,
            uint256 _reserve0,
            uint256 _reserve1,
            bool _stable,
            address _token0,
            address _token1
        );

    /// @notice returns the feeSplit of the pair
    function feeSplit() external view returns (uint256);

    /// @notice returns the fee of the pair
    function fee() external view returns (uint256);

    /// @notice returns the feeRecipient of the pair
    function feeRecipient() external view returns (address);

}

File 10 of 16 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

File 11 of 16 : IERC20Metadata.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC-20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

File 12 of 16 : Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

File 13 of 16 : draft-IERC6093.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;

/**
 * @dev Standard ERC-20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC-721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC-1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}

File 14 of 16 : Panic.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

File 15 of 16 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

File 16 of 16 : IERC20Permit.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

Settings
{
  "remappings": [
    "@openzeppelin-contracts-5.1.0/=dependencies/@openzeppelin-contracts-5.1.0/",
    "@openzeppelin-contracts-upgradeable-5.1.0/=dependencies/@openzeppelin-contracts-upgradeable-5.1.0/",
    "@forge-std-1.9.4/=dependencies/forge-std-1.9.4/",
    "@layerzerolabs/=node_modules/@layerzerolabs/",
    "@layerzerolabs/lz-evm-protocol-v2/=node_modules/@layerzerolabs/lz-evm-protocol-v2/",
    "@openzeppelin-contracts-upgradeable/=dependencies/@openzeppelin-contracts-upgradeable-5.1.0/",
    "@openzeppelin-contracts/contracts/=dependencies/@openzeppelin-contracts-5.1.0/",
    "@openzeppelin/contracts/=dependencies/@openzeppelin-contracts-5.1.0/",
    "erc4626-tests/=dependencies/erc4626-property-tests-1.0/",
    "forge-std/=dependencies/forge-std-1.9.4/src/",
    "permit2/=lib/permit2/",
    "@openzeppelin-3.4.2/=node_modules/@openzeppelin-3.4.2/",
    "@openzeppelin-contracts-5.1.0/=dependencies/@openzeppelin-contracts-5.1.0/",
    "@openzeppelin-contracts-upgradeable-5.1.0/=dependencies/@openzeppelin-contracts-upgradeable-5.1.0/",
    "@uniswap/=node_modules/@uniswap/",
    "base64-sol/=node_modules/base64-sol/",
    "ds-test/=node_modules/ds-test/",
    "erc4626-property-tests-1.0/=dependencies/erc4626-property-tests-1.0/",
    "eth-gas-reporter/=node_modules/eth-gas-reporter/",
    "forge-std-1.9.4/=dependencies/forge-std-1.9.4/src/",
    "hardhat/=node_modules/hardhat/",
    "solidity-bytes-utils/=node_modules/solidity-bytes-utils/",
    "solmate/=node_modules/solmate/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 1633
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "cancun",
  "viaIR": true,
  "libraries": {}
}

Contract Security Audit

Contract ABI

[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"allowance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientAllowance","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC20InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC20InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC20InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"}],"name":"ERC20InvalidSpender","type":"error"},{"inputs":[],"name":"IIA","type":"error"},{"inputs":[],"name":"IL","type":"error"},{"inputs":[],"name":"ILB","type":"error"},{"inputs":[],"name":"ILM","type":"error"},{"inputs":[],"name":"IOA","type":"error"},{"inputs":[],"name":"IT","type":"error"},{"inputs":[],"name":"K","type":"error"},{"inputs":[],"name":"NOT_AUTHORIZED","type":"error"},{"inputs":[],"name":"OVERFLOW","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[],"name":"SD","type":"error"},{"inputs":[],"name":"STF","type":"error"},{"inputs":[],"name":"UNSTABLE_RATIO","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount0","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount1","type":"uint256"},{"indexed":true,"internalType":"address","name":"to","type":"address"}],"name":"Burn","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount0","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount1","type":"uint256"}],"name":"Mint","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount0In","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount1In","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount0Out","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount1Out","type":"uint256"},{"indexed":true,"internalType":"address","name":"to","type":"address"}],"name":"Swap","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint112","name":"reserve0","type":"uint112"},{"indexed":false,"internalType":"uint112","name":"reserve1","type":"uint112"}],"name":"Sync","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"MINIMUM_LIQUIDITY","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"}],"name":"burn","outputs":[{"internalType":"uint256","name":"amount0","type":"uint256"},{"internalType":"uint256","name":"amount1","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"tokenIn","type":"address"},{"internalType":"uint256","name":"amountIn","type":"uint256"}],"name":"current","outputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"currentCumulativePrices","outputs":[{"internalType":"uint256","name":"reserve0Cumulative","type":"uint256"},{"internalType":"uint256","name":"reserve1Cumulative","type":"uint256"},{"internalType":"uint256","name":"blockTimestamp","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"factory","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"fee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"feeRecipient","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"feeSplit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amountIn","type":"uint256"},{"internalType":"address","name":"tokenIn","type":"address"}],"name":"getAmountOut","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getReserves","outputs":[{"internalType":"uint112","name":"_reserve0","type":"uint112"},{"internalType":"uint112","name":"_reserve1","type":"uint112"},{"internalType":"uint32","name":"_blockTimestampLast","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_token0","type":"address"},{"internalType":"address","name":"_token1","type":"address"},{"internalType":"bool","name":"_stable","type":"bool"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"kLast","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lastObservation","outputs":[{"components":[{"internalType":"uint256","name":"timestamp","type":"uint256"},{"internalType":"uint256","name":"reserve0Cumulative","type":"uint256"},{"internalType":"uint256","name":"reserve1Cumulative","type":"uint256"}],"internalType":"struct Pair.Observation","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"metadata","outputs":[{"internalType":"uint256","name":"_decimals0","type":"uint256"},{"internalType":"uint256","name":"_decimals1","type":"uint256"},{"internalType":"uint256","name":"_reserve0","type":"uint256"},{"internalType":"uint256","name":"_reserve1","type":"uint256"},{"internalType":"bool","name":"_stable","type":"bool"},{"internalType":"address","name":"_token0","type":"address"},{"internalType":"address","name":"_token1","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"}],"name":"mint","outputs":[{"internalType":"uint256","name":"liquidity","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"mintFee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"observationLength","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"observations","outputs":[{"internalType":"uint256","name":"timestamp","type":"uint256"},{"internalType":"uint256","name":"reserve0Cumulative","type":"uint256"},{"internalType":"uint256","name":"reserve1Cumulative","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"tokenIn","type":"address"},{"internalType":"uint256","name":"amountIn","type":"uint256"},{"internalType":"uint256","name":"points","type":"uint256"}],"name":"prices","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"tokenIn","type":"address"},{"internalType":"uint256","name":"amountIn","type":"uint256"},{"internalType":"uint256","name":"granularity","type":"uint256"}],"name":"quote","outputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"reserve0CumulativeLast","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"reserve1CumulativeLast","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"tokenIn","type":"address"},{"internalType":"uint256","name":"amountIn","type":"uint256"},{"internalType":"uint256","name":"points","type":"uint256"},{"internalType":"uint256","name":"window","type":"uint256"}],"name":"sample","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_fee","type":"uint256"}],"name":"setFee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_feeRecipient","type":"address"}],"name":"setFeeRecipient","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_feeSplit","type":"uint256"}],"name":"setFeeSplit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"}],"name":"skim","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"stable","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount0Out","type":"uint256"},{"internalType":"uint256","name":"amount1Out","type":"uint256"},{"internalType":"address","name":"to","type":"address"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"swap","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"sync","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"token0","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"token1","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"}]

60a0604052346102f9576100116102fd565b6100196102fd565b81516001600160401b03811161020c57600354600181811c911680156102ef575b60208210146101ee57601f811161028c575b50602092601f821160011461022b57928192935f92610220575b50508160011b915f199060031b1c1916176003555b80516001600160401b03811161020c57600454600181811c91168015610202575b60208210146101ee57601f811161018b575b50602091601f821160011461012b579181925f92610120575b50508160011b915f199060031b1c1916176004555b6001600555336080526040516135cb908161032082396080518181816103d30152818161046e01528181610d6f01528181610dcd01528181610e8b015261197a0152f35b015190505f806100c7565b601f1982169260045f52805f20915f5b8581106101735750836001951061015b575b505050811b016004556100dc565b01515f1960f88460031b161c191690555f808061014d565b9192602060018192868501518155019401920161013b565b60045f527f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b601f830160051c810191602084106101e4575b601f0160051c01905b8181106101d957506100ae565b5f81556001016101cc565b90915081906101c3565b634e487b7160e01b5f52602260045260245ffd5b90607f169061009c565b634e487b7160e01b5f52604160045260245ffd5b015190505f80610066565b601f1982169360035f52805f20915f5b868110610274575083600195961061025c575b505050811b0160035561007b565b01515f1960f88460031b161c191690555f808061024e565b9192602060018192868501518155019401920161023b565b60035f527fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b601f830160051c810191602084106102e5575b601f0160051c01905b8181106102da575061004c565b5f81556001016102cd565b90915081906102c4565b90607f169061003a565b5f80fd5b60405190602082016001600160401b0381118382101761020c576040525f825256fe60806040526004361015610011575f80fd5b5f5f3560e01c8063022c0d9f146120a057806306fdde0314611ff95780630902f1ac14611f9b578063095ea7b314611ef25780630dfe168114611ecb57806313345fe114611d9057806313966db514611d3957806318160ddd14611d1b5780631df8c71714611ce257806322be3de114611cbf57806323b872dd14611bbe578063252c09d714611b65578063313ce56714611b49578063392f37e914611ad65780634690484014611aaf578063517b3f82146119ee5780635881c475146119c75780636373ea69146119a957806369fe0e2d1461195e5780636a627842146115fc57806370a08231146115c55780637464fc3d146115a757806389afcb44146111fe5780638a7b8cf2146111c757806395d89b41146110e85780639e8cc04b1461108e578063a9059cbb1461105c578063ba9a7a561461103f578063bc25cf7714610e2d578063bf944dbc14610e0f578063c245febc14610df1578063c45a015514610dad578063cd962a0614610d53578063d21220a714610d2c578063dd62ed3e14610cde578063ddca3f4314610cc0578063e4bbb5a814610432578063e74b981b146103af578063ebeb31db14610391578063f140a35a146103115763fff6cae9146101dd575f80fd5b3461030e578060031936011261030e576101f56129fb565b602460206001600160a01b0360085416604051928380926370a0823160e01b82523060048301525afa80156103035782906102d0575b6024915060206001600160a01b0360095416604051938480926370a0823160e01b82523060048301525afa9081156102c557839161028b575b6102839250600b54916001600160701b03808460701c16931691612bde565b600160055580f35b90506020823d6020116102bd575b816102a66020938361261c565b810103126102b957610283915190610264565b5f80fd5b3d9150610299565b6040513d85823e3d90fd5b506020813d6020116102fb575b816102ea6020938361261c565b810103126102b9576024905161022b565b3d91506102dd565b6040513d84823e3d90fd5b80fd5b503461030e57604036600319011261030e57610366600435610331612519565b90600b54916103616001600160701b03808560701c16941692620f424061035a6010548361263e565b0490612683565b612d5c565b5f1981019190821161037d57602082604051908152f35b80634e487b7160e01b602492526011600452fd5b503461030e578060031936011261030e576020600654604051908152f35b503461030e57602036600319011261030e576103c9612503565b6001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000163303610423576001600160a01b031673ffffffffffffffffffffffffffffffffffffffff19600a541617600a5580f35b600482633d83866f60e01b8152fd5b503461030e57606036600319011261030e5761044c612503565b90610455612519565b9160443580151591828203610cbc576001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000163303610cad576001600160a01b03809116948573ffffffffffffffffffffffffffffffffffffffff19600854161760085516918273ffffffffffffffffffffffffffffffffffffffff19600954161760095560ff8019601354169116176013555f14610ac8576040516395d89b4160e01b81528281600481875afa9081156102c5578391610aae575b506040516395d89b4160e01b81528381600481865afa908115610aa3576105ae600160049460336020899681968891610a89575b506040519687947f4c656761637920436f7272656c617465642d2000000000000000000000000000828701528051918291018587015e840190602f60f81b84830152805192839101603483015e010185838201520301601f19810183528261261c565b94604051928380926395d89b4160e01b82525afa9081156102c55783908192610a6c575b5060049192604051928380926395d89b4160e01b82525afa9081156102c557602092602584610668946001948891610a4a575b506040519687947f63414d4d2d000000000000000000000000000000000000000000000000000000828701528051918291018587015e840190602f60f81b84830152805192839101602683015e010185838201520301601f19810183528261261c565b905b825167ffffffffffffffff811161090a57610686601454612690565b601f81116109a9575b506020601f82116001146109295782939482939261091e575b50508160011b915f199060031b1c1916176014555b815167ffffffffffffffff811161090a576106d9601554612690565b601f8111610869575b50602092601f82116001146107ea579282938293926107df575b50508160011b915f199060031b1c1916176015555b610734604051610720816125ec565b428152826020820152826040820152612968565b600460206001600160a01b03600854166040519283809263313ce56760e01b82525afa80156103035761076e9183916107b0575b506129ea565b601155600460206001600160a01b03600954166040519283809263313ce56760e01b82525afa8015610303576107aa9183916107b057506129ea565b60125580f35b6107d2915060203d6020116107d8575b6107ca818361261c565b8101906129d1565b5f610768565b503d6107c0565b015190505f806106fc565b60158352601f198216937f55f448fdea98c4d29eb340757ef0a66cd03dbb9538908a6a81d96026b71ec47591845b8681106108515750836001959610610839575b505050811b01601555610711565b01515f1960f88460031b161c191690555f808061082b565b91926020600181928685015181550194019201610818565b60158352601f820160051c7f55f448fdea98c4d29eb340757ef0a66cd03dbb9538908a6a81d96026b71ec4750190602083106108e2575b601f0160051c7f55f448fdea98c4d29eb340757ef0a66cd03dbb9538908a6a81d96026b71ec47501905b8181106108d757506106e2565b8381556001016108ca565b7f55f448fdea98c4d29eb340757ef0a66cd03dbb9538908a6a81d96026b71ec47591506108a0565b602482634e487b7160e01b81526041600452fd5b015190505f806106a8565b601483527fce6d7b5282bd9a3661ae061feed1dbda4e52ab073b1f9285be6e155d9c38d4ec90601f198316845b81811061099157509583600195969710610979575b505050811b016014556106bd565b01515f1960f88460031b161c191690555f808061096b565b9192602060018192868b015181550194019201610956565b60148352601f820160051c7fce6d7b5282bd9a3661ae061feed1dbda4e52ab073b1f9285be6e155d9c38d4ec019060208310610a22575b601f0160051c7fce6d7b5282bd9a3661ae061feed1dbda4e52ab073b1f9285be6e155d9c38d4ec01905b818110610a17575061068f565b838155600101610a0a565b7fce6d7b5282bd9a3661ae061feed1dbda4e52ab073b1f9285be6e155d9c38d4ec91506109e0565b610a6691503d808a833e610a5e818361261c565b810190612905565b5f610605565b60049250610a83903d8084833e610a5e818361261c565b916105d2565b610a9d91503d808a833e610a5e818361261c565b5f61054b565b6040513d86823e3d90fd5b610ac291503d8085833e610a5e818361261c565b5f610517565b6040516395d89b4160e01b81528281600481875afa9081156102c5578391610c93575b506040516395d89b4160e01b81528381600481865afa908115610aa357610b82600160049460316020899681968891610c79575b506040519687947f4c656761637920566f6c6174696c652d20000000000000000000000000000000828701528051918291018587015e840190602f60f81b84830152805192839101603283015e010185838201520301601f19810183528261261c565b94604051928380926395d89b4160e01b82525afa9081156102c55783908192610c5c575b5060049192604051928380926395d89b4160e01b82525afa9081156102c557602092602584610c3c946001948891610c42575b506040519687947f76414d4d2d000000000000000000000000000000000000000000000000000000828701528051918291018587015e840190602f60f81b84830152805192839101602683015e010185838201520301601f19810183528261261c565b9061066a565b610c5691503d808a833e610a5e818361261c565b5f610bd9565b60049250610c73903d8084833e610a5e818361261c565b91610ba6565b610c8d91503d808a833e610a5e818361261c565b5f610b1f565b610ca791503d8085833e610a5e818361261c565b5f610aeb565b600484633d83866f60e01b8152fd5b8380fd5b503461030e578060031936011261030e576020601054604051908152f35b503461030e57604036600319011261030e576001600160a01b036040610d02612503565b9282610d0c612519565b9416815260016020522091165f52602052602060405f2054604051908152f35b503461030e578060031936011261030e5760206001600160a01b0360095416604051908152f35b503461030e57602036600319011261030e576001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000163303610d9e57600435600f5580f35b80633d83866f60e01b60049252fd5b503461030e578060031936011261030e5760206040516001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000168152f35b503461030e578060031936011261030e576020600d54604051908152f35b503461030e578060031936011261030e576020600c54604051908152f35b503461030e57602036600319011261030e57610e47612503565b610e4f6129fb565b6040517fd2b663840000000000000000000000000000000000000000000000000000000081523060048201526020816024816001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000165afa9081156102c5578391611010575b5015610fe8576001600160a01b03600854166001600160a01b036009541690604051906370a0823160e01b8252306004830152602082602481845afa918215610fdd5784908693610fa5575b50610f21610f27936001600160701b03600b541690612683565b91612a34565b604051916370a0823160e01b8352306004840152602083602481855afa928315610aa3578493610f6f575b50610f21610283936001600160701b03600b5460701c1690612683565b92506020833d602011610f9d575b81610f8a6020938361261c565b810103126102b957915191610f21610f52565b3d9150610f7d565b9250506020823d602011610fd5575b81610fc16020938361261c565b810103126102b95790519083610f21610f07565b3d9150610fb4565b6040513d87823e3d90fd5b6004827f384002a2000000000000000000000000000000000000000000000000000000008152fd5b611032915060203d602011611038575b61102a818361261c565b8101906128d1565b5f610ebb565b503d611020565b503461030e578060031936011261030e5760206040516103e88152f35b503461030e57604036600319011261030e57611083611079612503565b60243590336130cc565b602060405160018152f35b503461030e576110aa6110a0366125c2565b9291908391612701565b825b81518410156110d4576110cc6001916110c586856126ed565b51906126e0565b9301926110ac565b6110e083602092612665565b604051908152f35b503461030e578060031936011261030e5760405190806004549061110b82612690565b80855291600181169081156111a05750600114611143575b61113f846111338186038261261c565b6040519182918261252f565b0390f35b600481527f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b939250905b8082106111865750909150810160200161113382611123565b91926001816020925483858801015201910190929161116d565b60ff191660208087019190915292151560051b850190920192506111339150839050611123565b503461030e578060031936011261030e5760606111e261289b565b6040805191805183526020810151602084015201516040820152f35b503461030e57602036600319011261030e57611218612503565b6112206129fb565b611245600b546001600160701b038116916001600160701b038260701c169160e01c90565b509290916001600160a01b0360085416916001600160a01b036009541694604051916370a0823160e01b8352306004840152602083602481885afa92831561159a578193611566575b50604051966370a0823160e01b8852306004890152602088602481845afa95861561030357879883989761152f575b50308352826020526112f96112ed6112ed6112f26112e08860408920549c612ee9565b986002549384918d61263e565b612665565b9a8a61263e565b9688151580611526575b156114fe5730156114eb573084528360205260408420548181106114d2579184826020936024969530845283865203604083205580600254036002556040519081527fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef843092a36113758a8983612a34565b611380898985612a34565b604051938480926370a0823160e01b82523060048301525afa9182156102c557839261149d575b506020602491604051928380926370a0823160e01b82523060048301525afa9283156114915792611456575b50966113e29291604098612bde565b611433575b6001600160a01b0384519184835283602084015216907fdccd412f0b1252819cb1fd330b93224ca42612892bb3f4f789976e6d81936496853392a3600160055582519182526020820152f35b61144e600b546001600160701b03808260701c169116612b29565b600e556113e7565b929150966020833d602011611489575b816114736020938361261c565b810103126102b9579151919690919060406113d3565b3d9150611466565b604051903d90823e3d90fd5b9091506020813d6020116114ca575b816114b96020938361261c565b810103126102b957519060206113a7565b3d91506114ac565b63391434e360e21b855230600452602452604452606483fd5b602484634b637e8f60e11b815280600452fd5b6004847f42a0889c000000000000000000000000000000000000000000000000000000008152fd5b50871515611303565b965096506020863d60201161155e575b8161154c6020938361261c565b810103126102b957879551965f6112bd565b3d915061153f565b9092506020813d602011611592575b816115826020938361261c565b810103126102b95751915f61128e565b3d9150611575565b50604051903d90823e3d90fd5b503461030e578060031936011261030e576020600e54604051908152f35b503461030e57602036600319011261030e5760406020916001600160a01b036115ec612503565b1681528083522054604051908152f35b503461030e57602036600319011261030e57602490611619612503565b6116216129fb565b611646600b546001600160701b038116916001600160701b038260701c169160e01c90565b5093909160206001600160a01b0360085416604051938480926370a0823160e01b82523060048301525afa918215610aa3578492611929575b506024919260206001600160a01b0360095416604051948580926370a0823160e01b82523060048301525afa928315610fdd5785936118f5575b506001600160701b038116926116cf8486612683565b946001600160701b038816936116e58584612683565b95876116f18b87612ee9565b966002549283155f146118cb57505061171491508761170f9161263e565b6131a2565b6103e71981019081116118b757976117306103e861dead6134e7565b60ff601354166117e7575b88156117bf57509161175a93916117558960209b956132db565b612bde565b61179c575b604051918252838201527f4c209b5fc8ad50758f13e2e1088ba56a560dff690a1c6fef26394f4c03821c4f60403392a26001600555604051908152f35b6117b7600b546001600160701b03808260701c169116612b29565b600e5561175f565b807fad69186f0000000000000000000000000000000000000000000000000000000060049252fd5b633b9aca006117f6888a612b29565b106118a857670de0b6b3a76400008802888104670de0b6b3a764000014891517156118945760115461182791612665565b670de0b6b3a76400008802888104670de0b6b3a764000014891517156118805760125461185391612665565b1461173b57807fde5011e80000000000000000000000000000000000000000000000000000000060049252fd5b602483634e487b7160e01b81526011600452fd5b602482634e487b7160e01b81526011600452fd5b8063a932492f60e01b60049252fd5b602489634e487b7160e01b81526011600452fd5b6118df6112ed916112ed866118e69661263e565b938a61263e565b9081808210911802189761173b565b9092506020813d602011611921575b816119116020938361261c565b810103126102b95751915f6116b9565b3d9150611904565b91506020823d602011611956575b816119446020938361261c565b810103126102b957602491519161167f565b3d9150611937565b503461030e57602036600319011261030e576001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000163303610d9e5760043560105580f35b503461030e578060031936011261030e576020600f54604051908152f35b503461030e5761113f6119e26119dc366125c2565b91612701565b60405191829182612559565b503461030e57604036600319011261030e57611a08612503565b90611a1161289b565b90611a1a6127ed565b509183514214611a66575b60206110e08686611a5d6112ed6112ed896040611a548b611a47885142612683565b9586918c8a015190612683565b95015190612683565b91602435612d5c565b600654919350600119820191821161037d575091611a5d6112ed6112ed602096946040611a54611aa1611a9b6110e09a612592565b50612873565b985050509496505050611a25565b503461030e578060031936011261030e5760206001600160a01b03600a5416604051908152f35b503461030e578060031936011261030e5760e0601154601254600b5460ff601354166001600160701b036001600160a01b0360085416926001600160a01b0360095416946040519687526020870152818116604087015260701c1660608501521515608084015260a083015260c0820152f35b503461030e578060031936011261030e57602060405160128152f35b503461030e57602036600319011261030e57600435600654811015611bba57611b8d90612592565b50805461113f60026001840154930154604051938493846040919493926060820195825260208201520152565b5080fd5b503461030e57606036600319011261030e57611bd8612503565b611be0612519565b604435916001600160a01b0381168085526001602052604085206001600160a01b0333165f5260205260405f2054905f198203611c24575b505061108393506130cc565b848210611c8b578015611c78573315611c65578560409161108397526001602052206001600160a01b0333165f526020528360405f20910390555f80611c18565b602486634a1406b160e11b815280600452fd5b60248663e602df0560e01b815280600452fd5b60648686847ffb8f41b200000000000000000000000000000000000000000000000000000000835233600452602452604452fd5b503461030e578060031936011261030e57602060ff601354166040519015158152f35b503461030e578060031936011261030e5761113f611cfe6127ed565b604080519384526020840192909252908201529081906060820190565b503461030e578060031936011261030e576020600254604051908152f35b503461030e578060031936011261030e57611d526129fb565b600b546001600160701b038082169160701c16611d6f8183612ee9565b611d7d575b82600160055580f35b611d8691612b29565b600e555f80611d74565b503461030e57608036600319011261030e57611daa612503565b9060643590604435602435611dbe826126c8565b94611dcc604051968761261c565b828652601f19611ddb846126c8565b013660208801376006545f19810193908411611eb757611e0186611e079296959661263e565b85612683565b925b848410611e1e576040518061113f8982612559565b856001611eb192611e9f611e3284896126e0565b611e97611e54611e4183612592565b5054611e4c8c612592565b505490612683565b6112ed8b6002611e7f81611e8e611e88876112ed8e611e728d612592565b5001548f611e7f8a612592565b50015490612683565b98612592565b50015492612592565b908789612d5c565b611ea9828c6126ed565b5201946126e0565b92611e09565b602485634e487b7160e01b81526011600452fd5b503461030e578060031936011261030e5760206001600160a01b0360085416604051908152f35b503461030e57604036600319011261030e57611f0c612503565b602435903315611f88576001600160a01b0316918215611f7557604090338152600160205220825f526020528060405f20556040519081527f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92560203392a3602060405160018152f35b80634a1406b160e11b6024925280600452fd5b60248363e602df0560e01b815280600452fd5b503461030e578060031936011261030e5760606001600160701b0363ffffffff611fe0600b546001600160701b038116916001600160701b038260701c169160e01c90565b9193908160405195168552166020840152166040820152f35b503461030e578060031936011261030e5760405190806003549061201c82612690565b80855291600181169081156111a057506001146120435761113f846111338186038261261c565b600381527fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b939250905b8082106120865750909150810160200161113382611123565b91926001816020925483858801015201910190929161206d565b50346102b95760803660031901126102b957604435906001600160a01b0382166024356004358285036102b95760643567ffffffffffffffff81116102b957366023820112156102b95780600401359067ffffffffffffffff82116102b95736602483830101116102b9576121136129fb565b821590811580926124fa575b156124d257612149600b546001600160701b038116916001600160701b038260701c169160e01c90565b509290916001600160701b03831694858710806124c0575b15612498576001600160a01b03600854169a6001600160a01b0360095416938c8b14158061248e575b156124665788828e92612455575b5050508880612444575b50508061239a575b505060206024979899604051988980926370a0823160e01b82523060048301525afa96871561235a578997612365575b506020602491604051928380926370a0823160e01b82523060048301525afa90811561235a578991612328575b5084840380881115612320578703965b6001600160701b0384169487860380841115612318578303955b891580159061230f575b156122e7576122849061227e8b612278620f424061227161226a82612263601054809761263e565b048a612683565b938d61263e565b0488612683565b90612b29565b92612b29565b116122d85790612295939291612bde565b6040519384526020840152604083015260608201527fd78ad95fa46c994b6551d0da85fc275fe613ce37657fb8d5e3d130840159d82260803392a3600160055580f35b60048a63a932492f60e01b8152fd5b60048c7fba0b951e000000000000000000000000000000000000000000000000000000008152fd5b5086151561223b565b508a95612231565b508896612217565b90506020813d602011612352575b816123436020938361261c565b810103126102b957515f612207565b3d9150612336565b6040513d8b823e3d90fd5b9096506020813d602011612392575b816123816020938361261c565b810103126102b957519560206121da565b3d9150612374565b883b156102b9578760a488835f94602460405197889687957f9a7bff790000000000000000000000000000000000000000000000000000000087523360048801528387015260448601526080606486015282608486015201848401378181018301859052601f01601f19168101030181838c5af180156124395761241f575b806121aa565b60249798505f61242e9161261c565b60205f989750612419565b6040513d5f823e3d90fd5b61244e9185612a34565b5f886121a2565b61245e92612a34565b8b8882612198565b7fa8fa826d000000000000000000000000000000000000000000000000000000005f5260045ffd5b50848b141561218a565b7f083ff6a1000000000000000000000000000000000000000000000000000000005f5260045ffd5b506001600160701b0385168810612161565b7fbfe3b102000000000000000000000000000000000000000000000000000000005f5260045ffd5b5084151561211f565b600435906001600160a01b03821682036102b957565b602435906001600160a01b03821682036102b957565b602060409281835280519182918282860152018484015e5f828201840152601f01601f1916010190565b60206040818301928281528451809452019201905f5b81811061257c5750505090565b825184526020938401939092019160010161256f565b6006548110156125ae5760065f52600360205f20910201905f90565b634e487b7160e01b5f52603260045260245ffd5b60609060031901126102b9576004356001600160a01b03811681036102b957906024359060443590565b6060810190811067ffffffffffffffff82111761260857604052565b634e487b7160e01b5f52604160045260245ffd5b90601f8019910116810190811067ffffffffffffffff82111761260857604052565b8181029291811591840414171561265157565b634e487b7160e01b5f52601160045260245ffd5b811561266f570490565b634e487b7160e01b5f52601260045260245ffd5b9190820391821161265157565b90600182811c921680156126be575b60208310146126aa57565b634e487b7160e01b5f52602260045260245ffd5b91607f169161269f565b67ffffffffffffffff81116126085760051b60200190565b9190820180921161265157565b80518210156125ae5760209160051b010190565b61270a836126c8565b92612718604051948561261c565b808452601f19612727826126c8565b013660208601376006545f1981019190821161265157801581800460011417156126515761275790829492612683565b905f5b84831061276957505050505090565b6001830190818411612651576127cf826127c761279561278a600196612592565b5054611e4c89612592565b6112ed60026127b96127b3846112ed8d8c611e7f81611e8e8d612592565b95612592565b5001546002611e7f8b612592565b908786612d5c565b6127d982896126ed565b52019160018101809111612651579161275a565b4290600c5491600d549163ffffffff612821600b546001600160701b038116916001600160701b038260701c169160e01c90565b9092164263ffffffff16810361283657505050565b6001600160701b03612869612870959794986128636128639561285a859642612683565b9586911661263e565b906126e0565b971661263e565b91565b90604051612880816125ec565b60406002829480548452600181015460208501520154910152565b5f604080516128a9816125ec565b82815282602082015201526006545f19810190811161265157611a9b6128ce91612592565b90565b908160209103126102b9575180151581036102b95790565b67ffffffffffffffff811161260857601f01601f191660200190565b6020818303126102b95780519067ffffffffffffffff82116102b9570181601f820112156102b957805190612939826128e9565b92612947604051948561261c565b828452602083830101116102b957815f9260208093018386015e8301015290565b6006546801000000000000000081101561260857600181016006556006548110156125ae5760065f526003027ff652222313e28459528d920b65115c16c04f3efc82aaedc97be59f3f377c0d3f0190604081600292518455602081015160018501550151910155565b908160209103126102b9575160ff811681036102b95790565b60ff16604d811161265157600a0a90565b600260055414612a0c576002600555565b7f3ee5aeb5000000000000000000000000000000000000000000000000000000005f5260045ffd5b919091803b156102b9575f92838093604051906001600160a01b0360208301947fa9059cbb000000000000000000000000000000000000000000000000000000008652166024830152604482015260448152612a9160648261261c565b51925af13d15612b22573d612aa5816128e9565b90612ab3604051928361261c565b81523d5f602083013e5b81612af3575b5015612acb57565b7f817275ab000000000000000000000000000000000000000000000000000000005f5260045ffd5b8051801592508215612b08575b50505f612ac3565b612b1b92506020809183010191016128d1565b5f80612b00565b6060612abd565b60135460ff1615612bd457670de0b6b3a7640000810290808204670de0b6b3a7640000149015171561265157601154612b6191612665565b90670de0b6b3a7640000810290808204670de0b6b3a7640000149015171561265157670de0b6b3a764000091612bca612ba0612bd09360125490612665565b84612bc381612bbb81612bb3868961263e565b04968061263e565b04928061263e565b04906126e0565b9061263e565b0490565b906128ce9161263e565b91926001600160701b0383111580612d4b575b15612d23576001600160701b0360409381927f1c411e9a96e071241c2f21f7726b17ae89e3cab4c78be50e062b03a9fffbbad196600b5460e01c918242039242141580612d18575b80612d0d575b612cef575b505050610708612c5c612c5561289b565b5142612683565b11612cc4575b1691827bffffffffffffffffffffffffffff00000000000000000000000000007fffffffff000000000000000000000000000000000000000000000000000000004260e01b169260701b16171780600b55835192835260701c166020820152a1565b612cea600c54600d54875191612cd9836125ec565b428352602083015287820152612968565b612c62565b828580931602600c5401600c551602600d5401600d555f8080612c44565b508481161515612c3f565b508482161515612c39565b7f95a5c7f9000000000000000000000000000000000000000000000000000000005f5260045ffd5b506001600160701b03821115612bf1565b9291909160ff601354165f14612ea557612d768183612b29565b91670de0b6b3a7640000810290808204670de0b6b3a7640000149015171561265157612da56011548092612665565b92670de0b6b3a7640000830292808404670de0b6b3a7640000149015171561265157612dd46012548094612665565b946001600160a01b03806008541691161493845f14612ea057945b8415612e5d57670de0b6b3a7640000870296808804670de0b6b3a7640000149015171561265157612e4281612e4893612e3d612bd099612e3888670de0b6b3a76400009d612665565b6126e0565b6132f4565b90612683565b9215612e5557509061263e565b90509061263e565b670de0b6b3a7640000870296808804670de0b6b3a7640000149015171561265157612e4281612e4893612e3d612bd099612e3889670de0b6b3a76400009d612665565b612def565b9091926128ce936001600160a01b0380600854169116145f14612edc57612ed0612ed6925b8261263e565b926126e0565b90612665565b612ed0612ed69293612eca565b91906001600160a01b03600a541690600e549382151594855f146130a257600f549181612f19575b50505050505b565b60135460ff1615613016576001600160701b0380612f3b939495169116612b29565b90808211612f53575b505050505b5f80808080612f11565b612f7291612f6c612f6661170f936131a2565b916131a2565b9061341e565b670de0b6b3a76400000390670de0b6b3a7640000821161265157612f96828261263e565b91670de0b6b3a7640000830292808404670de0b6b3a7640000149015171561265157612fc19161263e565b69021e19e0c9bab2400000039069021e19e0c9bab2400000821161265157670de0b6b3a7640000916112ed612ff89260025461263e565b0480613006575b8080612f44565b61300f916132db565b5f80612fff565b61170f613033916001600160701b03806130399597169116612b29565b926131a2565b80831161304a575b50505050612f49565b61307c8161307761271061306e6130676112ed9661308599612683565b968761263e565b049485926126e0565b612683565b9160025461263e565b80613092575b8080613041565b61309b916132db565b5f8061308b565b925050506130ac57565b6130c7600b546001600160701b03808260701c169116612b29565b600e55565b6001600160a01b031690811561318f576001600160a01b031691821561316357815f525f60205260405f205481811061314a57817fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef92602092855f525f84520360405f2055845f525f825260405f20818154019055604051908152a3565b8263391434e360e21b5f5260045260245260445260645ffd5b7fec442f05000000000000000000000000000000000000000000000000000000005f525f60045260245ffd5b634b637e8f60e11b5f525f60045260245ffd5b60018111156128ce578060017001000000000000000000000000000000008310156132c5575b600482680100000000000000006132779410156132b8575b6401000000008110156132ab575b6201000081101561329e575b610100811015613292575b6010811015613286575b101561327e575b60030260011c6132268184612665565b0160011c6132348184612665565b0160011c6132428184612665565b0160011c6132508184612665565b0160011c61325e8184612665565b0160011c61326c8184612665565b0160011c8092612665565b8111900390565b60011b613216565b811c9160021b9161320f565b60081c91811b91613205565b60101c9160081b916131fa565b60201c9160101b916131ee565b60401c9160201b916131e0565b5050608081901c680100000000000000006131c8565b906001600160a01b0382161561316357612f17916134e7565b905f5b60ff81106133055750505090565b83613350670de0b6b3a76400006133328161332b8582613325828061263e565b0461263e565b048761263e565b04670de0b6b3a7640000612bc384826133258a82613325828061263e565b83808210156133da579061336391612683565b670de0b6b3a7640000810290808204670de0b6b3a76400001490151715612651578161286361339892612ed660019589613554565b945b85818111156133c357906133ad91612683565b11156133bd576001905b016132f7565b50505090565b6133cc91612683565b11156133bd576001906133b7565b6133e391612683565b670de0b6b3a7640000810290808204670de0b6b3a764000014901517156126515781612e4261341892612ed660019589613554565b9461339a565b906ec097ce7bc90715b34b9f10000000008202905f196ec097ce7bc90715b34b9f10000000008409928280851094039380850394146134db57838211156134c3576ec097ce7bc90715b34b9f1000000000829109815f0382168092046002816003021880820260020302808202600203028082026002030280820260020302808202600203028091026002030293600183805f03040190848311900302920304170290565b50634e487b715f52156003026011186020526024601cfd5b50906128ce9250612665565b7fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef60206001600160a01b035f93613520866002546126e0565b60025516938415841461353f5780600254036002555b604051908152a3565b84845283825260408420818154019055613536565b8060030260038104820361265157612bc3670de0b6b3a7640000613588819382613581886128ce9961263e565b049061263e565b049282613325828061263e56fea264697066735822122085f7e6129e4054acb7a9f7db9d22ada0f4dc074e356061eba1f6a8a7eee64eaf64736f6c634300081c0033

Deployed Bytecode

0x60806040526004361015610011575f80fd5b5f5f3560e01c8063022c0d9f146120a057806306fdde0314611ff95780630902f1ac14611f9b578063095ea7b314611ef25780630dfe168114611ecb57806313345fe114611d9057806313966db514611d3957806318160ddd14611d1b5780631df8c71714611ce257806322be3de114611cbf57806323b872dd14611bbe578063252c09d714611b65578063313ce56714611b49578063392f37e914611ad65780634690484014611aaf578063517b3f82146119ee5780635881c475146119c75780636373ea69146119a957806369fe0e2d1461195e5780636a627842146115fc57806370a08231146115c55780637464fc3d146115a757806389afcb44146111fe5780638a7b8cf2146111c757806395d89b41146110e85780639e8cc04b1461108e578063a9059cbb1461105c578063ba9a7a561461103f578063bc25cf7714610e2d578063bf944dbc14610e0f578063c245febc14610df1578063c45a015514610dad578063cd962a0614610d53578063d21220a714610d2c578063dd62ed3e14610cde578063ddca3f4314610cc0578063e4bbb5a814610432578063e74b981b146103af578063ebeb31db14610391578063f140a35a146103115763fff6cae9146101dd575f80fd5b3461030e578060031936011261030e576101f56129fb565b602460206001600160a01b0360085416604051928380926370a0823160e01b82523060048301525afa80156103035782906102d0575b6024915060206001600160a01b0360095416604051938480926370a0823160e01b82523060048301525afa9081156102c557839161028b575b6102839250600b54916001600160701b03808460701c16931691612bde565b600160055580f35b90506020823d6020116102bd575b816102a66020938361261c565b810103126102b957610283915190610264565b5f80fd5b3d9150610299565b6040513d85823e3d90fd5b506020813d6020116102fb575b816102ea6020938361261c565b810103126102b9576024905161022b565b3d91506102dd565b6040513d84823e3d90fd5b80fd5b503461030e57604036600319011261030e57610366600435610331612519565b90600b54916103616001600160701b03808560701c16941692620f424061035a6010548361263e565b0490612683565b612d5c565b5f1981019190821161037d57602082604051908152f35b80634e487b7160e01b602492526011600452fd5b503461030e578060031936011261030e576020600654604051908152f35b503461030e57602036600319011261030e576103c9612503565b6001600160a01b037f0000000000000000000000002da25e7446a70d7be65fd4c053948becaa6374c8163303610423576001600160a01b031673ffffffffffffffffffffffffffffffffffffffff19600a541617600a5580f35b600482633d83866f60e01b8152fd5b503461030e57606036600319011261030e5761044c612503565b90610455612519565b9160443580151591828203610cbc576001600160a01b037f0000000000000000000000002da25e7446a70d7be65fd4c053948becaa6374c8163303610cad576001600160a01b03809116948573ffffffffffffffffffffffffffffffffffffffff19600854161760085516918273ffffffffffffffffffffffffffffffffffffffff19600954161760095560ff8019601354169116176013555f14610ac8576040516395d89b4160e01b81528281600481875afa9081156102c5578391610aae575b506040516395d89b4160e01b81528381600481865afa908115610aa3576105ae600160049460336020899681968891610a89575b506040519687947f4c656761637920436f7272656c617465642d2000000000000000000000000000828701528051918291018587015e840190602f60f81b84830152805192839101603483015e010185838201520301601f19810183528261261c565b94604051928380926395d89b4160e01b82525afa9081156102c55783908192610a6c575b5060049192604051928380926395d89b4160e01b82525afa9081156102c557602092602584610668946001948891610a4a575b506040519687947f63414d4d2d000000000000000000000000000000000000000000000000000000828701528051918291018587015e840190602f60f81b84830152805192839101602683015e010185838201520301601f19810183528261261c565b905b825167ffffffffffffffff811161090a57610686601454612690565b601f81116109a9575b506020601f82116001146109295782939482939261091e575b50508160011b915f199060031b1c1916176014555b815167ffffffffffffffff811161090a576106d9601554612690565b601f8111610869575b50602092601f82116001146107ea579282938293926107df575b50508160011b915f199060031b1c1916176015555b610734604051610720816125ec565b428152826020820152826040820152612968565b600460206001600160a01b03600854166040519283809263313ce56760e01b82525afa80156103035761076e9183916107b0575b506129ea565b601155600460206001600160a01b03600954166040519283809263313ce56760e01b82525afa8015610303576107aa9183916107b057506129ea565b60125580f35b6107d2915060203d6020116107d8575b6107ca818361261c565b8101906129d1565b5f610768565b503d6107c0565b015190505f806106fc565b60158352601f198216937f55f448fdea98c4d29eb340757ef0a66cd03dbb9538908a6a81d96026b71ec47591845b8681106108515750836001959610610839575b505050811b01601555610711565b01515f1960f88460031b161c191690555f808061082b565b91926020600181928685015181550194019201610818565b60158352601f820160051c7f55f448fdea98c4d29eb340757ef0a66cd03dbb9538908a6a81d96026b71ec4750190602083106108e2575b601f0160051c7f55f448fdea98c4d29eb340757ef0a66cd03dbb9538908a6a81d96026b71ec47501905b8181106108d757506106e2565b8381556001016108ca565b7f55f448fdea98c4d29eb340757ef0a66cd03dbb9538908a6a81d96026b71ec47591506108a0565b602482634e487b7160e01b81526041600452fd5b015190505f806106a8565b601483527fce6d7b5282bd9a3661ae061feed1dbda4e52ab073b1f9285be6e155d9c38d4ec90601f198316845b81811061099157509583600195969710610979575b505050811b016014556106bd565b01515f1960f88460031b161c191690555f808061096b565b9192602060018192868b015181550194019201610956565b60148352601f820160051c7fce6d7b5282bd9a3661ae061feed1dbda4e52ab073b1f9285be6e155d9c38d4ec019060208310610a22575b601f0160051c7fce6d7b5282bd9a3661ae061feed1dbda4e52ab073b1f9285be6e155d9c38d4ec01905b818110610a17575061068f565b838155600101610a0a565b7fce6d7b5282bd9a3661ae061feed1dbda4e52ab073b1f9285be6e155d9c38d4ec91506109e0565b610a6691503d808a833e610a5e818361261c565b810190612905565b5f610605565b60049250610a83903d8084833e610a5e818361261c565b916105d2565b610a9d91503d808a833e610a5e818361261c565b5f61054b565b6040513d86823e3d90fd5b610ac291503d8085833e610a5e818361261c565b5f610517565b6040516395d89b4160e01b81528281600481875afa9081156102c5578391610c93575b506040516395d89b4160e01b81528381600481865afa908115610aa357610b82600160049460316020899681968891610c79575b506040519687947f4c656761637920566f6c6174696c652d20000000000000000000000000000000828701528051918291018587015e840190602f60f81b84830152805192839101603283015e010185838201520301601f19810183528261261c565b94604051928380926395d89b4160e01b82525afa9081156102c55783908192610c5c575b5060049192604051928380926395d89b4160e01b82525afa9081156102c557602092602584610c3c946001948891610c42575b506040519687947f76414d4d2d000000000000000000000000000000000000000000000000000000828701528051918291018587015e840190602f60f81b84830152805192839101602683015e010185838201520301601f19810183528261261c565b9061066a565b610c5691503d808a833e610a5e818361261c565b5f610bd9565b60049250610c73903d8084833e610a5e818361261c565b91610ba6565b610c8d91503d808a833e610a5e818361261c565b5f610b1f565b610ca791503d8085833e610a5e818361261c565b5f610aeb565b600484633d83866f60e01b8152fd5b8380fd5b503461030e578060031936011261030e576020601054604051908152f35b503461030e57604036600319011261030e576001600160a01b036040610d02612503565b9282610d0c612519565b9416815260016020522091165f52602052602060405f2054604051908152f35b503461030e578060031936011261030e5760206001600160a01b0360095416604051908152f35b503461030e57602036600319011261030e576001600160a01b037f0000000000000000000000002da25e7446a70d7be65fd4c053948becaa6374c8163303610d9e57600435600f5580f35b80633d83866f60e01b60049252fd5b503461030e578060031936011261030e5760206040516001600160a01b037f0000000000000000000000002da25e7446a70d7be65fd4c053948becaa6374c8168152f35b503461030e578060031936011261030e576020600d54604051908152f35b503461030e578060031936011261030e576020600c54604051908152f35b503461030e57602036600319011261030e57610e47612503565b610e4f6129fb565b6040517fd2b663840000000000000000000000000000000000000000000000000000000081523060048201526020816024816001600160a01b037f0000000000000000000000002da25e7446a70d7be65fd4c053948becaa6374c8165afa9081156102c5578391611010575b5015610fe8576001600160a01b03600854166001600160a01b036009541690604051906370a0823160e01b8252306004830152602082602481845afa918215610fdd5784908693610fa5575b50610f21610f27936001600160701b03600b541690612683565b91612a34565b604051916370a0823160e01b8352306004840152602083602481855afa928315610aa3578493610f6f575b50610f21610283936001600160701b03600b5460701c1690612683565b92506020833d602011610f9d575b81610f8a6020938361261c565b810103126102b957915191610f21610f52565b3d9150610f7d565b9250506020823d602011610fd5575b81610fc16020938361261c565b810103126102b95790519083610f21610f07565b3d9150610fb4565b6040513d87823e3d90fd5b6004827f384002a2000000000000000000000000000000000000000000000000000000008152fd5b611032915060203d602011611038575b61102a818361261c565b8101906128d1565b5f610ebb565b503d611020565b503461030e578060031936011261030e5760206040516103e88152f35b503461030e57604036600319011261030e57611083611079612503565b60243590336130cc565b602060405160018152f35b503461030e576110aa6110a0366125c2565b9291908391612701565b825b81518410156110d4576110cc6001916110c586856126ed565b51906126e0565b9301926110ac565b6110e083602092612665565b604051908152f35b503461030e578060031936011261030e5760405190806004549061110b82612690565b80855291600181169081156111a05750600114611143575b61113f846111338186038261261c565b6040519182918261252f565b0390f35b600481527f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b939250905b8082106111865750909150810160200161113382611123565b91926001816020925483858801015201910190929161116d565b60ff191660208087019190915292151560051b850190920192506111339150839050611123565b503461030e578060031936011261030e5760606111e261289b565b6040805191805183526020810151602084015201516040820152f35b503461030e57602036600319011261030e57611218612503565b6112206129fb565b611245600b546001600160701b038116916001600160701b038260701c169160e01c90565b509290916001600160a01b0360085416916001600160a01b036009541694604051916370a0823160e01b8352306004840152602083602481885afa92831561159a578193611566575b50604051966370a0823160e01b8852306004890152602088602481845afa95861561030357879883989761152f575b50308352826020526112f96112ed6112ed6112f26112e08860408920549c612ee9565b986002549384918d61263e565b612665565b9a8a61263e565b9688151580611526575b156114fe5730156114eb573084528360205260408420548181106114d2579184826020936024969530845283865203604083205580600254036002556040519081527fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef843092a36113758a8983612a34565b611380898985612a34565b604051938480926370a0823160e01b82523060048301525afa9182156102c557839261149d575b506020602491604051928380926370a0823160e01b82523060048301525afa9283156114915792611456575b50966113e29291604098612bde565b611433575b6001600160a01b0384519184835283602084015216907fdccd412f0b1252819cb1fd330b93224ca42612892bb3f4f789976e6d81936496853392a3600160055582519182526020820152f35b61144e600b546001600160701b03808260701c169116612b29565b600e556113e7565b929150966020833d602011611489575b816114736020938361261c565b810103126102b9579151919690919060406113d3565b3d9150611466565b604051903d90823e3d90fd5b9091506020813d6020116114ca575b816114b96020938361261c565b810103126102b957519060206113a7565b3d91506114ac565b63391434e360e21b855230600452602452604452606483fd5b602484634b637e8f60e11b815280600452fd5b6004847f42a0889c000000000000000000000000000000000000000000000000000000008152fd5b50871515611303565b965096506020863d60201161155e575b8161154c6020938361261c565b810103126102b957879551965f6112bd565b3d915061153f565b9092506020813d602011611592575b816115826020938361261c565b810103126102b95751915f61128e565b3d9150611575565b50604051903d90823e3d90fd5b503461030e578060031936011261030e576020600e54604051908152f35b503461030e57602036600319011261030e5760406020916001600160a01b036115ec612503565b1681528083522054604051908152f35b503461030e57602036600319011261030e57602490611619612503565b6116216129fb565b611646600b546001600160701b038116916001600160701b038260701c169160e01c90565b5093909160206001600160a01b0360085416604051938480926370a0823160e01b82523060048301525afa918215610aa3578492611929575b506024919260206001600160a01b0360095416604051948580926370a0823160e01b82523060048301525afa928315610fdd5785936118f5575b506001600160701b038116926116cf8486612683565b946001600160701b038816936116e58584612683565b95876116f18b87612ee9565b966002549283155f146118cb57505061171491508761170f9161263e565b6131a2565b6103e71981019081116118b757976117306103e861dead6134e7565b60ff601354166117e7575b88156117bf57509161175a93916117558960209b956132db565b612bde565b61179c575b604051918252838201527f4c209b5fc8ad50758f13e2e1088ba56a560dff690a1c6fef26394f4c03821c4f60403392a26001600555604051908152f35b6117b7600b546001600160701b03808260701c169116612b29565b600e5561175f565b807fad69186f0000000000000000000000000000000000000000000000000000000060049252fd5b633b9aca006117f6888a612b29565b106118a857670de0b6b3a76400008802888104670de0b6b3a764000014891517156118945760115461182791612665565b670de0b6b3a76400008802888104670de0b6b3a764000014891517156118805760125461185391612665565b1461173b57807fde5011e80000000000000000000000000000000000000000000000000000000060049252fd5b602483634e487b7160e01b81526011600452fd5b602482634e487b7160e01b81526011600452fd5b8063a932492f60e01b60049252fd5b602489634e487b7160e01b81526011600452fd5b6118df6112ed916112ed866118e69661263e565b938a61263e565b9081808210911802189761173b565b9092506020813d602011611921575b816119116020938361261c565b810103126102b95751915f6116b9565b3d9150611904565b91506020823d602011611956575b816119446020938361261c565b810103126102b957602491519161167f565b3d9150611937565b503461030e57602036600319011261030e576001600160a01b037f0000000000000000000000002da25e7446a70d7be65fd4c053948becaa6374c8163303610d9e5760043560105580f35b503461030e578060031936011261030e576020600f54604051908152f35b503461030e5761113f6119e26119dc366125c2565b91612701565b60405191829182612559565b503461030e57604036600319011261030e57611a08612503565b90611a1161289b565b90611a1a6127ed565b509183514214611a66575b60206110e08686611a5d6112ed6112ed896040611a548b611a47885142612683565b9586918c8a015190612683565b95015190612683565b91602435612d5c565b600654919350600119820191821161037d575091611a5d6112ed6112ed602096946040611a54611aa1611a9b6110e09a612592565b50612873565b985050509496505050611a25565b503461030e578060031936011261030e5760206001600160a01b03600a5416604051908152f35b503461030e578060031936011261030e5760e0601154601254600b5460ff601354166001600160701b036001600160a01b0360085416926001600160a01b0360095416946040519687526020870152818116604087015260701c1660608501521515608084015260a083015260c0820152f35b503461030e578060031936011261030e57602060405160128152f35b503461030e57602036600319011261030e57600435600654811015611bba57611b8d90612592565b50805461113f60026001840154930154604051938493846040919493926060820195825260208201520152565b5080fd5b503461030e57606036600319011261030e57611bd8612503565b611be0612519565b604435916001600160a01b0381168085526001602052604085206001600160a01b0333165f5260205260405f2054905f198203611c24575b505061108393506130cc565b848210611c8b578015611c78573315611c65578560409161108397526001602052206001600160a01b0333165f526020528360405f20910390555f80611c18565b602486634a1406b160e11b815280600452fd5b60248663e602df0560e01b815280600452fd5b60648686847ffb8f41b200000000000000000000000000000000000000000000000000000000835233600452602452604452fd5b503461030e578060031936011261030e57602060ff601354166040519015158152f35b503461030e578060031936011261030e5761113f611cfe6127ed565b604080519384526020840192909252908201529081906060820190565b503461030e578060031936011261030e576020600254604051908152f35b503461030e578060031936011261030e57611d526129fb565b600b546001600160701b038082169160701c16611d6f8183612ee9565b611d7d575b82600160055580f35b611d8691612b29565b600e555f80611d74565b503461030e57608036600319011261030e57611daa612503565b9060643590604435602435611dbe826126c8565b94611dcc604051968761261c565b828652601f19611ddb846126c8565b013660208801376006545f19810193908411611eb757611e0186611e079296959661263e565b85612683565b925b848410611e1e576040518061113f8982612559565b856001611eb192611e9f611e3284896126e0565b611e97611e54611e4183612592565b5054611e4c8c612592565b505490612683565b6112ed8b6002611e7f81611e8e611e88876112ed8e611e728d612592565b5001548f611e7f8a612592565b50015490612683565b98612592565b50015492612592565b908789612d5c565b611ea9828c6126ed565b5201946126e0565b92611e09565b602485634e487b7160e01b81526011600452fd5b503461030e578060031936011261030e5760206001600160a01b0360085416604051908152f35b503461030e57604036600319011261030e57611f0c612503565b602435903315611f88576001600160a01b0316918215611f7557604090338152600160205220825f526020528060405f20556040519081527f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92560203392a3602060405160018152f35b80634a1406b160e11b6024925280600452fd5b60248363e602df0560e01b815280600452fd5b503461030e578060031936011261030e5760606001600160701b0363ffffffff611fe0600b546001600160701b038116916001600160701b038260701c169160e01c90565b9193908160405195168552166020840152166040820152f35b503461030e578060031936011261030e5760405190806003549061201c82612690565b80855291600181169081156111a057506001146120435761113f846111338186038261261c565b600381527fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b939250905b8082106120865750909150810160200161113382611123565b91926001816020925483858801015201910190929161206d565b50346102b95760803660031901126102b957604435906001600160a01b0382166024356004358285036102b95760643567ffffffffffffffff81116102b957366023820112156102b95780600401359067ffffffffffffffff82116102b95736602483830101116102b9576121136129fb565b821590811580926124fa575b156124d257612149600b546001600160701b038116916001600160701b038260701c169160e01c90565b509290916001600160701b03831694858710806124c0575b15612498576001600160a01b03600854169a6001600160a01b0360095416938c8b14158061248e575b156124665788828e92612455575b5050508880612444575b50508061239a575b505060206024979899604051988980926370a0823160e01b82523060048301525afa96871561235a578997612365575b506020602491604051928380926370a0823160e01b82523060048301525afa90811561235a578991612328575b5084840380881115612320578703965b6001600160701b0384169487860380841115612318578303955b891580159061230f575b156122e7576122849061227e8b612278620f424061227161226a82612263601054809761263e565b048a612683565b938d61263e565b0488612683565b90612b29565b92612b29565b116122d85790612295939291612bde565b6040519384526020840152604083015260608201527fd78ad95fa46c994b6551d0da85fc275fe613ce37657fb8d5e3d130840159d82260803392a3600160055580f35b60048a63a932492f60e01b8152fd5b60048c7fba0b951e000000000000000000000000000000000000000000000000000000008152fd5b5086151561223b565b508a95612231565b508896612217565b90506020813d602011612352575b816123436020938361261c565b810103126102b957515f612207565b3d9150612336565b6040513d8b823e3d90fd5b9096506020813d602011612392575b816123816020938361261c565b810103126102b957519560206121da565b3d9150612374565b883b156102b9578760a488835f94602460405197889687957f9a7bff790000000000000000000000000000000000000000000000000000000087523360048801528387015260448601526080606486015282608486015201848401378181018301859052601f01601f19168101030181838c5af180156124395761241f575b806121aa565b60249798505f61242e9161261c565b60205f989750612419565b6040513d5f823e3d90fd5b61244e9185612a34565b5f886121a2565b61245e92612a34565b8b8882612198565b7fa8fa826d000000000000000000000000000000000000000000000000000000005f5260045ffd5b50848b141561218a565b7f083ff6a1000000000000000000000000000000000000000000000000000000005f5260045ffd5b506001600160701b0385168810612161565b7fbfe3b102000000000000000000000000000000000000000000000000000000005f5260045ffd5b5084151561211f565b600435906001600160a01b03821682036102b957565b602435906001600160a01b03821682036102b957565b602060409281835280519182918282860152018484015e5f828201840152601f01601f1916010190565b60206040818301928281528451809452019201905f5b81811061257c5750505090565b825184526020938401939092019160010161256f565b6006548110156125ae5760065f52600360205f20910201905f90565b634e487b7160e01b5f52603260045260245ffd5b60609060031901126102b9576004356001600160a01b03811681036102b957906024359060443590565b6060810190811067ffffffffffffffff82111761260857604052565b634e487b7160e01b5f52604160045260245ffd5b90601f8019910116810190811067ffffffffffffffff82111761260857604052565b8181029291811591840414171561265157565b634e487b7160e01b5f52601160045260245ffd5b811561266f570490565b634e487b7160e01b5f52601260045260245ffd5b9190820391821161265157565b90600182811c921680156126be575b60208310146126aa57565b634e487b7160e01b5f52602260045260245ffd5b91607f169161269f565b67ffffffffffffffff81116126085760051b60200190565b9190820180921161265157565b80518210156125ae5760209160051b010190565b61270a836126c8565b92612718604051948561261c565b808452601f19612727826126c8565b013660208601376006545f1981019190821161265157801581800460011417156126515761275790829492612683565b905f5b84831061276957505050505090565b6001830190818411612651576127cf826127c761279561278a600196612592565b5054611e4c89612592565b6112ed60026127b96127b3846112ed8d8c611e7f81611e8e8d612592565b95612592565b5001546002611e7f8b612592565b908786612d5c565b6127d982896126ed565b52019160018101809111612651579161275a565b4290600c5491600d549163ffffffff612821600b546001600160701b038116916001600160701b038260701c169160e01c90565b9092164263ffffffff16810361283657505050565b6001600160701b03612869612870959794986128636128639561285a859642612683565b9586911661263e565b906126e0565b971661263e565b91565b90604051612880816125ec565b60406002829480548452600181015460208501520154910152565b5f604080516128a9816125ec565b82815282602082015201526006545f19810190811161265157611a9b6128ce91612592565b90565b908160209103126102b9575180151581036102b95790565b67ffffffffffffffff811161260857601f01601f191660200190565b6020818303126102b95780519067ffffffffffffffff82116102b9570181601f820112156102b957805190612939826128e9565b92612947604051948561261c565b828452602083830101116102b957815f9260208093018386015e8301015290565b6006546801000000000000000081101561260857600181016006556006548110156125ae5760065f526003027ff652222313e28459528d920b65115c16c04f3efc82aaedc97be59f3f377c0d3f0190604081600292518455602081015160018501550151910155565b908160209103126102b9575160ff811681036102b95790565b60ff16604d811161265157600a0a90565b600260055414612a0c576002600555565b7f3ee5aeb5000000000000000000000000000000000000000000000000000000005f5260045ffd5b919091803b156102b9575f92838093604051906001600160a01b0360208301947fa9059cbb000000000000000000000000000000000000000000000000000000008652166024830152604482015260448152612a9160648261261c565b51925af13d15612b22573d612aa5816128e9565b90612ab3604051928361261c565b81523d5f602083013e5b81612af3575b5015612acb57565b7f817275ab000000000000000000000000000000000000000000000000000000005f5260045ffd5b8051801592508215612b08575b50505f612ac3565b612b1b92506020809183010191016128d1565b5f80612b00565b6060612abd565b60135460ff1615612bd457670de0b6b3a7640000810290808204670de0b6b3a7640000149015171561265157601154612b6191612665565b90670de0b6b3a7640000810290808204670de0b6b3a7640000149015171561265157670de0b6b3a764000091612bca612ba0612bd09360125490612665565b84612bc381612bbb81612bb3868961263e565b04968061263e565b04928061263e565b04906126e0565b9061263e565b0490565b906128ce9161263e565b91926001600160701b0383111580612d4b575b15612d23576001600160701b0360409381927f1c411e9a96e071241c2f21f7726b17ae89e3cab4c78be50e062b03a9fffbbad196600b5460e01c918242039242141580612d18575b80612d0d575b612cef575b505050610708612c5c612c5561289b565b5142612683565b11612cc4575b1691827bffffffffffffffffffffffffffff00000000000000000000000000007fffffffff000000000000000000000000000000000000000000000000000000004260e01b169260701b16171780600b55835192835260701c166020820152a1565b612cea600c54600d54875191612cd9836125ec565b428352602083015287820152612968565b612c62565b828580931602600c5401600c551602600d5401600d555f8080612c44565b508481161515612c3f565b508482161515612c39565b7f95a5c7f9000000000000000000000000000000000000000000000000000000005f5260045ffd5b506001600160701b03821115612bf1565b9291909160ff601354165f14612ea557612d768183612b29565b91670de0b6b3a7640000810290808204670de0b6b3a7640000149015171561265157612da56011548092612665565b92670de0b6b3a7640000830292808404670de0b6b3a7640000149015171561265157612dd46012548094612665565b946001600160a01b03806008541691161493845f14612ea057945b8415612e5d57670de0b6b3a7640000870296808804670de0b6b3a7640000149015171561265157612e4281612e4893612e3d612bd099612e3888670de0b6b3a76400009d612665565b6126e0565b6132f4565b90612683565b9215612e5557509061263e565b90509061263e565b670de0b6b3a7640000870296808804670de0b6b3a7640000149015171561265157612e4281612e4893612e3d612bd099612e3889670de0b6b3a76400009d612665565b612def565b9091926128ce936001600160a01b0380600854169116145f14612edc57612ed0612ed6925b8261263e565b926126e0565b90612665565b612ed0612ed69293612eca565b91906001600160a01b03600a541690600e549382151594855f146130a257600f549181612f19575b50505050505b565b60135460ff1615613016576001600160701b0380612f3b939495169116612b29565b90808211612f53575b505050505b5f80808080612f11565b612f7291612f6c612f6661170f936131a2565b916131a2565b9061341e565b670de0b6b3a76400000390670de0b6b3a7640000821161265157612f96828261263e565b91670de0b6b3a7640000830292808404670de0b6b3a7640000149015171561265157612fc19161263e565b69021e19e0c9bab2400000039069021e19e0c9bab2400000821161265157670de0b6b3a7640000916112ed612ff89260025461263e565b0480613006575b8080612f44565b61300f916132db565b5f80612fff565b61170f613033916001600160701b03806130399597169116612b29565b926131a2565b80831161304a575b50505050612f49565b61307c8161307761271061306e6130676112ed9661308599612683565b968761263e565b049485926126e0565b612683565b9160025461263e565b80613092575b8080613041565b61309b916132db565b5f8061308b565b925050506130ac57565b6130c7600b546001600160701b03808260701c169116612b29565b600e55565b6001600160a01b031690811561318f576001600160a01b031691821561316357815f525f60205260405f205481811061314a57817fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef92602092855f525f84520360405f2055845f525f825260405f20818154019055604051908152a3565b8263391434e360e21b5f5260045260245260445260645ffd5b7fec442f05000000000000000000000000000000000000000000000000000000005f525f60045260245ffd5b634b637e8f60e11b5f525f60045260245ffd5b60018111156128ce578060017001000000000000000000000000000000008310156132c5575b600482680100000000000000006132779410156132b8575b6401000000008110156132ab575b6201000081101561329e575b610100811015613292575b6010811015613286575b101561327e575b60030260011c6132268184612665565b0160011c6132348184612665565b0160011c6132428184612665565b0160011c6132508184612665565b0160011c61325e8184612665565b0160011c61326c8184612665565b0160011c8092612665565b8111900390565b60011b613216565b811c9160021b9161320f565b60081c91811b91613205565b60101c9160081b916131fa565b60201c9160101b916131ee565b60401c9160201b916131e0565b5050608081901c680100000000000000006131c8565b906001600160a01b0382161561316357612f17916134e7565b905f5b60ff81106133055750505090565b83613350670de0b6b3a76400006133328161332b8582613325828061263e565b0461263e565b048761263e565b04670de0b6b3a7640000612bc384826133258a82613325828061263e565b83808210156133da579061336391612683565b670de0b6b3a7640000810290808204670de0b6b3a76400001490151715612651578161286361339892612ed660019589613554565b945b85818111156133c357906133ad91612683565b11156133bd576001905b016132f7565b50505090565b6133cc91612683565b11156133bd576001906133b7565b6133e391612683565b670de0b6b3a7640000810290808204670de0b6b3a764000014901517156126515781612e4261341892612ed660019589613554565b9461339a565b906ec097ce7bc90715b34b9f10000000008202905f196ec097ce7bc90715b34b9f10000000008409928280851094039380850394146134db57838211156134c3576ec097ce7bc90715b34b9f1000000000829109815f0382168092046002816003021880820260020302808202600203028082026002030280820260020302808202600203028091026002030293600183805f03040190848311900302920304170290565b50634e487b715f52156003026011186020526024601cfd5b50906128ce9250612665565b7fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef60206001600160a01b035f93613520866002546126e0565b60025516938415841461353f5780600254036002555b604051908152a3565b84845283825260408420818154019055613536565b8060030260038104820361265157612bc3670de0b6b3a7640000613588819382613581886128ce9961263e565b049061263e565b049282613325828061263e56fea264697066735822122085f7e6129e4054acb7a9f7db9d22ada0f4dc074e356061eba1f6a8a7eee64eaf64736f6c634300081c0033

[ Download: CSV Export  ]
[ Download: CSV Export  ]

A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.