ERC-20
Overview
Max Total Supply
1,000,000,000 WAV
Holders
18
Total Transfers
-
Market
Price
$0.00 @ 0.000000 S
Onchain Market Cap
$0.00
Circulating Supply Market Cap
-
Other Info
Token Contract (WITH 18 Decimals)
Loading...
Loading
Loading...
Loading
Loading...
Loading
Contract Source Code Verified (Exact Match)
Contract Name:
Waves
Compiler Version
v0.8.28+commit.7893614a
Contract Source Code (Solidity)
/** *Submitted for verification at SonicScan.org on 2025-01-03 */ // SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-20 standard as defined in the ERC. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); } // File: @openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.20; /** * @dev Interface for the optional metadata functions from the ERC-20 standard. */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); } // File: @openzeppelin/contracts/utils/Context.sol // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } } // File: @openzeppelin/contracts/interfaces/draft-IERC6093.sol // OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol) pragma solidity ^0.8.20; /** * @dev Standard ERC-20 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens. */ interface IERC20Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC20InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC20InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers. * @param spender Address that may be allowed to operate on tokens without being their owner. * @param allowance Amount of tokens a `spender` is allowed to operate with. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC20InvalidApprover(address approver); /** * @dev Indicates a failure with the `spender` to be approved. Used in approvals. * @param spender Address that may be allowed to operate on tokens without being their owner. */ error ERC20InvalidSpender(address spender); } /** * @dev Standard ERC-721 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens. */ interface IERC721Errors { /** * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20. * Used in balance queries. * @param owner Address of the current owner of a token. */ error ERC721InvalidOwner(address owner); /** * @dev Indicates a `tokenId` whose `owner` is the zero address. * @param tokenId Identifier number of a token. */ error ERC721NonexistentToken(uint256 tokenId); /** * @dev Indicates an error related to the ownership over a particular token. Used in transfers. * @param sender Address whose tokens are being transferred. * @param tokenId Identifier number of a token. * @param owner Address of the current owner of a token. */ error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC721InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC721InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param tokenId Identifier number of a token. */ error ERC721InsufficientApproval(address operator, uint256 tokenId); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC721InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC721InvalidOperator(address operator); } /** * @dev Standard ERC-1155 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens. */ interface IERC1155Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. * @param tokenId Identifier number of a token. */ error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC1155InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC1155InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param owner Address of the current owner of a token. */ error ERC1155MissingApprovalForAll(address operator, address owner); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC1155InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC1155InvalidOperator(address operator); /** * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation. * Used in batch transfers. * @param idsLength Length of the array of token identifiers * @param valuesLength Length of the array of token amounts */ error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength); } // File: @openzeppelin/contracts/token/ERC20/ERC20.sol // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/ERC20.sol) pragma solidity ^0.8.20; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * * TIP: For a detailed writeup see our guide * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * The default value of {decimals} is 18. To change this, you should override * this function so it returns a different value. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC-20 * applications. */ abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors { mapping(address account => uint256) private _balances; mapping(address account => mapping(address spender => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; /** * @dev Sets the values for {name} and {symbol}. * * All two of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the default value returned by this function, unless * it's overridden. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `to` cannot be the zero address. * - the caller must have a balance of at least `value`. */ function transfer(address to, uint256 value) public virtual returns (bool) { address owner = _msgSender(); _transfer(owner, to, value); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on * `transferFrom`. This is semantically equivalent to an infinite approval. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 value) public virtual returns (bool) { address owner = _msgSender(); _approve(owner, spender, value); return true; } /** * @dev See {IERC20-transferFrom}. * * Skips emitting an {Approval} event indicating an allowance update. This is not * required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve]. * * NOTE: Does not update the allowance if the current allowance * is the maximum `uint256`. * * Requirements: * * - `from` and `to` cannot be the zero address. * - `from` must have a balance of at least `value`. * - the caller must have allowance for ``from``'s tokens of at least * `value`. */ function transferFrom(address from, address to, uint256 value) public virtual returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, value); _transfer(from, to, value); return true; } /** * @dev Moves a `value` amount of tokens from `from` to `to`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * NOTE: This function is not virtual, {_update} should be overridden instead. */ function _transfer(address from, address to, uint256 value) internal { if (from == address(0)) { revert ERC20InvalidSender(address(0)); } if (to == address(0)) { revert ERC20InvalidReceiver(address(0)); } _update(from, to, value); } /** * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from` * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding * this function. * * Emits a {Transfer} event. */ function _update(address from, address to, uint256 value) internal virtual { if (from == address(0)) { // Overflow check required: The rest of the code assumes that totalSupply never overflows _totalSupply += value; } else { uint256 fromBalance = _balances[from]; if (fromBalance < value) { revert ERC20InsufficientBalance(from, fromBalance, value); } unchecked { // Overflow not possible: value <= fromBalance <= totalSupply. _balances[from] = fromBalance - value; } } if (to == address(0)) { unchecked { // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply. _totalSupply -= value; } } else { unchecked { // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256. _balances[to] += value; } } emit Transfer(from, to, value); } /** * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0). * Relies on the `_update` mechanism * * Emits a {Transfer} event with `from` set to the zero address. * * NOTE: This function is not virtual, {_update} should be overridden instead. */ function _mint(address account, uint256 value) internal { if (account == address(0)) { revert ERC20InvalidReceiver(address(0)); } _update(address(0), account, value); } /** * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply. * Relies on the `_update` mechanism. * * Emits a {Transfer} event with `to` set to the zero address. * * NOTE: This function is not virtual, {_update} should be overridden instead */ function _burn(address account, uint256 value) internal { if (account == address(0)) { revert ERC20InvalidSender(address(0)); } _update(account, address(0), value); } /** * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. * * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument. */ function _approve(address owner, address spender, uint256 value) internal { _approve(owner, spender, value, true); } /** * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event. * * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any * `Approval` event during `transferFrom` operations. * * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to * true using the following override: * * ```solidity * function _approve(address owner, address spender, uint256 value, bool) internal virtual override { * super._approve(owner, spender, value, true); * } * ``` * * Requirements are the same as {_approve}. */ function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual { if (owner == address(0)) { revert ERC20InvalidApprover(address(0)); } if (spender == address(0)) { revert ERC20InvalidSpender(address(0)); } _allowances[owner][spender] = value; if (emitEvent) { emit Approval(owner, spender, value); } } /** * @dev Updates `owner` s allowance for `spender` based on spent `value`. * * Does not update the allowance value in case of infinite allowance. * Revert if not enough allowance is available. * * Does not emit an {Approval} event. */ function _spendAllowance(address owner, address spender, uint256 value) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance != type(uint256).max) { if (currentAllowance < value) { revert ERC20InsufficientAllowance(spender, currentAllowance, value); } unchecked { _approve(owner, spender, currentAllowance - value, false); } } } } // File: @openzeppelin/contracts/token/ERC20/extensions/IERC20Permit.sol // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Permit.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[ERC-2612]. * * Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. * * ==== Security Considerations * * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be * considered as an intention to spend the allowance in any specific way. The second is that because permits have * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be * generally recommended is: * * ```solidity * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public { * try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {} * doThing(..., value); * } * * function doThing(..., uint256 value) public { * token.safeTransferFrom(msg.sender, address(this), value); * ... * } * ``` * * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also * {SafeERC20-safeTransferFrom}). * * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so * contracts should have entry points that don't rely on permit. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. * * CAUTION: See Security Considerations above. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); } // File: @openzeppelin/contracts/utils/cryptography/ECDSA.sol // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.20; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS } /** * @dev The signature derives the `address(0)`. */ error ECDSAInvalidSignature(); /** * @dev The signature has an invalid length. */ error ECDSAInvalidSignatureLength(uint256 length); /** * @dev The signature has an S value that is in the upper half order. */ error ECDSAInvalidSignatureS(bytes32 s); /** * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not * return address(0) without also returning an error description. Errors are documented using an enum (error type) * and a bytes32 providing additional information about the error. * * If no error is returned, then the address can be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] */ function tryRecover( bytes32 hash, bytes memory signature ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. assembly ("memory-safe") { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length)); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures] */ function tryRecover( bytes32 hash, bytes32 r, bytes32 vs ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) { unchecked { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); // We do not check for an overflow here since the shift operation results in 0 or 1. uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. */ function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. */ function tryRecover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS, s); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature, bytes32(0)); } return (signer, RecoverError.NoError, bytes32(0)); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s); _throwError(error, errorArg); return recovered; } /** * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided. */ function _throwError(RecoverError error, bytes32 errorArg) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert ECDSAInvalidSignature(); } else if (error == RecoverError.InvalidSignatureLength) { revert ECDSAInvalidSignatureLength(uint256(errorArg)); } else if (error == RecoverError.InvalidSignatureS) { revert ECDSAInvalidSignatureS(errorArg); } } } // File: @openzeppelin/contracts/utils/Panic.sol // OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol) pragma solidity ^0.8.20; /** * @dev Helper library for emitting standardized panic codes. * * ```solidity * contract Example { * using Panic for uint256; * * // Use any of the declared internal constants * function foo() { Panic.GENERIC.panic(); } * * // Alternatively * function foo() { Panic.panic(Panic.GENERIC); } * } * ``` * * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil]. * * _Available since v5.1._ */ // slither-disable-next-line unused-state library Panic { /// @dev generic / unspecified error uint256 internal constant GENERIC = 0x00; /// @dev used by the assert() builtin uint256 internal constant ASSERT = 0x01; /// @dev arithmetic underflow or overflow uint256 internal constant UNDER_OVERFLOW = 0x11; /// @dev division or modulo by zero uint256 internal constant DIVISION_BY_ZERO = 0x12; /// @dev enum conversion error uint256 internal constant ENUM_CONVERSION_ERROR = 0x21; /// @dev invalid encoding in storage uint256 internal constant STORAGE_ENCODING_ERROR = 0x22; /// @dev empty array pop uint256 internal constant EMPTY_ARRAY_POP = 0x31; /// @dev array out of bounds access uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32; /// @dev resource error (too large allocation or too large array) uint256 internal constant RESOURCE_ERROR = 0x41; /// @dev calling invalid internal function uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51; /// @dev Reverts with a panic code. Recommended to use with /// the internal constants with predefined codes. function panic(uint256 code) internal pure { assembly ("memory-safe") { mstore(0x00, 0x4e487b71) mstore(0x20, code) revert(0x1c, 0x24) } } } // File: @openzeppelin/contracts/utils/math/SafeCast.sol // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol) // This file was procedurally generated from scripts/generate/templates/SafeCast.js. pragma solidity ^0.8.20; /** * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeCast { /** * @dev Value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value); /** * @dev An int value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedIntToUint(int256 value); /** * @dev Value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedIntDowncast(uint8 bits, int256 value); /** * @dev An uint value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedUintToInt(uint256 value); /** * @dev Returns the downcasted uint248 from uint256, reverting on * overflow (when the input is greater than largest uint248). * * Counterpart to Solidity's `uint248` operator. * * Requirements: * * - input must fit into 248 bits */ function toUint248(uint256 value) internal pure returns (uint248) { if (value > type(uint248).max) { revert SafeCastOverflowedUintDowncast(248, value); } return uint248(value); } /** * @dev Returns the downcasted uint240 from uint256, reverting on * overflow (when the input is greater than largest uint240). * * Counterpart to Solidity's `uint240` operator. * * Requirements: * * - input must fit into 240 bits */ function toUint240(uint256 value) internal pure returns (uint240) { if (value > type(uint240).max) { revert SafeCastOverflowedUintDowncast(240, value); } return uint240(value); } /** * @dev Returns the downcasted uint232 from uint256, reverting on * overflow (when the input is greater than largest uint232). * * Counterpart to Solidity's `uint232` operator. * * Requirements: * * - input must fit into 232 bits */ function toUint232(uint256 value) internal pure returns (uint232) { if (value > type(uint232).max) { revert SafeCastOverflowedUintDowncast(232, value); } return uint232(value); } /** * @dev Returns the downcasted uint224 from uint256, reverting on * overflow (when the input is greater than largest uint224). * * Counterpart to Solidity's `uint224` operator. * * Requirements: * * - input must fit into 224 bits */ function toUint224(uint256 value) internal pure returns (uint224) { if (value > type(uint224).max) { revert SafeCastOverflowedUintDowncast(224, value); } return uint224(value); } /** * @dev Returns the downcasted uint216 from uint256, reverting on * overflow (when the input is greater than largest uint216). * * Counterpart to Solidity's `uint216` operator. * * Requirements: * * - input must fit into 216 bits */ function toUint216(uint256 value) internal pure returns (uint216) { if (value > type(uint216).max) { revert SafeCastOverflowedUintDowncast(216, value); } return uint216(value); } /** * @dev Returns the downcasted uint208 from uint256, reverting on * overflow (when the input is greater than largest uint208). * * Counterpart to Solidity's `uint208` operator. * * Requirements: * * - input must fit into 208 bits */ function toUint208(uint256 value) internal pure returns (uint208) { if (value > type(uint208).max) { revert SafeCastOverflowedUintDowncast(208, value); } return uint208(value); } /** * @dev Returns the downcasted uint200 from uint256, reverting on * overflow (when the input is greater than largest uint200). * * Counterpart to Solidity's `uint200` operator. * * Requirements: * * - input must fit into 200 bits */ function toUint200(uint256 value) internal pure returns (uint200) { if (value > type(uint200).max) { revert SafeCastOverflowedUintDowncast(200, value); } return uint200(value); } /** * @dev Returns the downcasted uint192 from uint256, reverting on * overflow (when the input is greater than largest uint192). * * Counterpart to Solidity's `uint192` operator. * * Requirements: * * - input must fit into 192 bits */ function toUint192(uint256 value) internal pure returns (uint192) { if (value > type(uint192).max) { revert SafeCastOverflowedUintDowncast(192, value); } return uint192(value); } /** * @dev Returns the downcasted uint184 from uint256, reverting on * overflow (when the input is greater than largest uint184). * * Counterpart to Solidity's `uint184` operator. * * Requirements: * * - input must fit into 184 bits */ function toUint184(uint256 value) internal pure returns (uint184) { if (value > type(uint184).max) { revert SafeCastOverflowedUintDowncast(184, value); } return uint184(value); } /** * @dev Returns the downcasted uint176 from uint256, reverting on * overflow (when the input is greater than largest uint176). * * Counterpart to Solidity's `uint176` operator. * * Requirements: * * - input must fit into 176 bits */ function toUint176(uint256 value) internal pure returns (uint176) { if (value > type(uint176).max) { revert SafeCastOverflowedUintDowncast(176, value); } return uint176(value); } /** * @dev Returns the downcasted uint168 from uint256, reverting on * overflow (when the input is greater than largest uint168). * * Counterpart to Solidity's `uint168` operator. * * Requirements: * * - input must fit into 168 bits */ function toUint168(uint256 value) internal pure returns (uint168) { if (value > type(uint168).max) { revert SafeCastOverflowedUintDowncast(168, value); } return uint168(value); } /** * @dev Returns the downcasted uint160 from uint256, reverting on * overflow (when the input is greater than largest uint160). * * Counterpart to Solidity's `uint160` operator. * * Requirements: * * - input must fit into 160 bits */ function toUint160(uint256 value) internal pure returns (uint160) { if (value > type(uint160).max) { revert SafeCastOverflowedUintDowncast(160, value); } return uint160(value); } /** * @dev Returns the downcasted uint152 from uint256, reverting on * overflow (when the input is greater than largest uint152). * * Counterpart to Solidity's `uint152` operator. * * Requirements: * * - input must fit into 152 bits */ function toUint152(uint256 value) internal pure returns (uint152) { if (value > type(uint152).max) { revert SafeCastOverflowedUintDowncast(152, value); } return uint152(value); } /** * @dev Returns the downcasted uint144 from uint256, reverting on * overflow (when the input is greater than largest uint144). * * Counterpart to Solidity's `uint144` operator. * * Requirements: * * - input must fit into 144 bits */ function toUint144(uint256 value) internal pure returns (uint144) { if (value > type(uint144).max) { revert SafeCastOverflowedUintDowncast(144, value); } return uint144(value); } /** * @dev Returns the downcasted uint136 from uint256, reverting on * overflow (when the input is greater than largest uint136). * * Counterpart to Solidity's `uint136` operator. * * Requirements: * * - input must fit into 136 bits */ function toUint136(uint256 value) internal pure returns (uint136) { if (value > type(uint136).max) { revert SafeCastOverflowedUintDowncast(136, value); } return uint136(value); } /** * @dev Returns the downcasted uint128 from uint256, reverting on * overflow (when the input is greater than largest uint128). * * Counterpart to Solidity's `uint128` operator. * * Requirements: * * - input must fit into 128 bits */ function toUint128(uint256 value) internal pure returns (uint128) { if (value > type(uint128).max) { revert SafeCastOverflowedUintDowncast(128, value); } return uint128(value); } /** * @dev Returns the downcasted uint120 from uint256, reverting on * overflow (when the input is greater than largest uint120). * * Counterpart to Solidity's `uint120` operator. * * Requirements: * * - input must fit into 120 bits */ function toUint120(uint256 value) internal pure returns (uint120) { if (value > type(uint120).max) { revert SafeCastOverflowedUintDowncast(120, value); } return uint120(value); } /** * @dev Returns the downcasted uint112 from uint256, reverting on * overflow (when the input is greater than largest uint112). * * Counterpart to Solidity's `uint112` operator. * * Requirements: * * - input must fit into 112 bits */ function toUint112(uint256 value) internal pure returns (uint112) { if (value > type(uint112).max) { revert SafeCastOverflowedUintDowncast(112, value); } return uint112(value); } /** * @dev Returns the downcasted uint104 from uint256, reverting on * overflow (when the input is greater than largest uint104). * * Counterpart to Solidity's `uint104` operator. * * Requirements: * * - input must fit into 104 bits */ function toUint104(uint256 value) internal pure returns (uint104) { if (value > type(uint104).max) { revert SafeCastOverflowedUintDowncast(104, value); } return uint104(value); } /** * @dev Returns the downcasted uint96 from uint256, reverting on * overflow (when the input is greater than largest uint96). * * Counterpart to Solidity's `uint96` operator. * * Requirements: * * - input must fit into 96 bits */ function toUint96(uint256 value) internal pure returns (uint96) { if (value > type(uint96).max) { revert SafeCastOverflowedUintDowncast(96, value); } return uint96(value); } /** * @dev Returns the downcasted uint88 from uint256, reverting on * overflow (when the input is greater than largest uint88). * * Counterpart to Solidity's `uint88` operator. * * Requirements: * * - input must fit into 88 bits */ function toUint88(uint256 value) internal pure returns (uint88) { if (value > type(uint88).max) { revert SafeCastOverflowedUintDowncast(88, value); } return uint88(value); } /** * @dev Returns the downcasted uint80 from uint256, reverting on * overflow (when the input is greater than largest uint80). * * Counterpart to Solidity's `uint80` operator. * * Requirements: * * - input must fit into 80 bits */ function toUint80(uint256 value) internal pure returns (uint80) { if (value > type(uint80).max) { revert SafeCastOverflowedUintDowncast(80, value); } return uint80(value); } /** * @dev Returns the downcasted uint72 from uint256, reverting on * overflow (when the input is greater than largest uint72). * * Counterpart to Solidity's `uint72` operator. * * Requirements: * * - input must fit into 72 bits */ function toUint72(uint256 value) internal pure returns (uint72) { if (value > type(uint72).max) { revert SafeCastOverflowedUintDowncast(72, value); } return uint72(value); } /** * @dev Returns the downcasted uint64 from uint256, reverting on * overflow (when the input is greater than largest uint64). * * Counterpart to Solidity's `uint64` operator. * * Requirements: * * - input must fit into 64 bits */ function toUint64(uint256 value) internal pure returns (uint64) { if (value > type(uint64).max) { revert SafeCastOverflowedUintDowncast(64, value); } return uint64(value); } /** * @dev Returns the downcasted uint56 from uint256, reverting on * overflow (when the input is greater than largest uint56). * * Counterpart to Solidity's `uint56` operator. * * Requirements: * * - input must fit into 56 bits */ function toUint56(uint256 value) internal pure returns (uint56) { if (value > type(uint56).max) { revert SafeCastOverflowedUintDowncast(56, value); } return uint56(value); } /** * @dev Returns the downcasted uint48 from uint256, reverting on * overflow (when the input is greater than largest uint48). * * Counterpart to Solidity's `uint48` operator. * * Requirements: * * - input must fit into 48 bits */ function toUint48(uint256 value) internal pure returns (uint48) { if (value > type(uint48).max) { revert SafeCastOverflowedUintDowncast(48, value); } return uint48(value); } /** * @dev Returns the downcasted uint40 from uint256, reverting on * overflow (when the input is greater than largest uint40). * * Counterpart to Solidity's `uint40` operator. * * Requirements: * * - input must fit into 40 bits */ function toUint40(uint256 value) internal pure returns (uint40) { if (value > type(uint40).max) { revert SafeCastOverflowedUintDowncast(40, value); } return uint40(value); } /** * @dev Returns the downcasted uint32 from uint256, reverting on * overflow (when the input is greater than largest uint32). * * Counterpart to Solidity's `uint32` operator. * * Requirements: * * - input must fit into 32 bits */ function toUint32(uint256 value) internal pure returns (uint32) { if (value > type(uint32).max) { revert SafeCastOverflowedUintDowncast(32, value); } return uint32(value); } /** * @dev Returns the downcasted uint24 from uint256, reverting on * overflow (when the input is greater than largest uint24). * * Counterpart to Solidity's `uint24` operator. * * Requirements: * * - input must fit into 24 bits */ function toUint24(uint256 value) internal pure returns (uint24) { if (value > type(uint24).max) { revert SafeCastOverflowedUintDowncast(24, value); } return uint24(value); } /** * @dev Returns the downcasted uint16 from uint256, reverting on * overflow (when the input is greater than largest uint16). * * Counterpart to Solidity's `uint16` operator. * * Requirements: * * - input must fit into 16 bits */ function toUint16(uint256 value) internal pure returns (uint16) { if (value > type(uint16).max) { revert SafeCastOverflowedUintDowncast(16, value); } return uint16(value); } /** * @dev Returns the downcasted uint8 from uint256, reverting on * overflow (when the input is greater than largest uint8). * * Counterpart to Solidity's `uint8` operator. * * Requirements: * * - input must fit into 8 bits */ function toUint8(uint256 value) internal pure returns (uint8) { if (value > type(uint8).max) { revert SafeCastOverflowedUintDowncast(8, value); } return uint8(value); } /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. */ function toUint256(int256 value) internal pure returns (uint256) { if (value < 0) { revert SafeCastOverflowedIntToUint(value); } return uint256(value); } /** * @dev Returns the downcasted int248 from int256, reverting on * overflow (when the input is less than smallest int248 or * greater than largest int248). * * Counterpart to Solidity's `int248` operator. * * Requirements: * * - input must fit into 248 bits */ function toInt248(int256 value) internal pure returns (int248 downcasted) { downcasted = int248(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(248, value); } } /** * @dev Returns the downcasted int240 from int256, reverting on * overflow (when the input is less than smallest int240 or * greater than largest int240). * * Counterpart to Solidity's `int240` operator. * * Requirements: * * - input must fit into 240 bits */ function toInt240(int256 value) internal pure returns (int240 downcasted) { downcasted = int240(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(240, value); } } /** * @dev Returns the downcasted int232 from int256, reverting on * overflow (when the input is less than smallest int232 or * greater than largest int232). * * Counterpart to Solidity's `int232` operator. * * Requirements: * * - input must fit into 232 bits */ function toInt232(int256 value) internal pure returns (int232 downcasted) { downcasted = int232(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(232, value); } } /** * @dev Returns the downcasted int224 from int256, reverting on * overflow (when the input is less than smallest int224 or * greater than largest int224). * * Counterpart to Solidity's `int224` operator. * * Requirements: * * - input must fit into 224 bits */ function toInt224(int256 value) internal pure returns (int224 downcasted) { downcasted = int224(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(224, value); } } /** * @dev Returns the downcasted int216 from int256, reverting on * overflow (when the input is less than smallest int216 or * greater than largest int216). * * Counterpart to Solidity's `int216` operator. * * Requirements: * * - input must fit into 216 bits */ function toInt216(int256 value) internal pure returns (int216 downcasted) { downcasted = int216(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(216, value); } } /** * @dev Returns the downcasted int208 from int256, reverting on * overflow (when the input is less than smallest int208 or * greater than largest int208). * * Counterpart to Solidity's `int208` operator. * * Requirements: * * - input must fit into 208 bits */ function toInt208(int256 value) internal pure returns (int208 downcasted) { downcasted = int208(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(208, value); } } /** * @dev Returns the downcasted int200 from int256, reverting on * overflow (when the input is less than smallest int200 or * greater than largest int200). * * Counterpart to Solidity's `int200` operator. * * Requirements: * * - input must fit into 200 bits */ function toInt200(int256 value) internal pure returns (int200 downcasted) { downcasted = int200(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(200, value); } } /** * @dev Returns the downcasted int192 from int256, reverting on * overflow (when the input is less than smallest int192 or * greater than largest int192). * * Counterpart to Solidity's `int192` operator. * * Requirements: * * - input must fit into 192 bits */ function toInt192(int256 value) internal pure returns (int192 downcasted) { downcasted = int192(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(192, value); } } /** * @dev Returns the downcasted int184 from int256, reverting on * overflow (when the input is less than smallest int184 or * greater than largest int184). * * Counterpart to Solidity's `int184` operator. * * Requirements: * * - input must fit into 184 bits */ function toInt184(int256 value) internal pure returns (int184 downcasted) { downcasted = int184(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(184, value); } } /** * @dev Returns the downcasted int176 from int256, reverting on * overflow (when the input is less than smallest int176 or * greater than largest int176). * * Counterpart to Solidity's `int176` operator. * * Requirements: * * - input must fit into 176 bits */ function toInt176(int256 value) internal pure returns (int176 downcasted) { downcasted = int176(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(176, value); } } /** * @dev Returns the downcasted int168 from int256, reverting on * overflow (when the input is less than smallest int168 or * greater than largest int168). * * Counterpart to Solidity's `int168` operator. * * Requirements: * * - input must fit into 168 bits */ function toInt168(int256 value) internal pure returns (int168 downcasted) { downcasted = int168(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(168, value); } } /** * @dev Returns the downcasted int160 from int256, reverting on * overflow (when the input is less than smallest int160 or * greater than largest int160). * * Counterpart to Solidity's `int160` operator. * * Requirements: * * - input must fit into 160 bits */ function toInt160(int256 value) internal pure returns (int160 downcasted) { downcasted = int160(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(160, value); } } /** * @dev Returns the downcasted int152 from int256, reverting on * overflow (when the input is less than smallest int152 or * greater than largest int152). * * Counterpart to Solidity's `int152` operator. * * Requirements: * * - input must fit into 152 bits */ function toInt152(int256 value) internal pure returns (int152 downcasted) { downcasted = int152(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(152, value); } } /** * @dev Returns the downcasted int144 from int256, reverting on * overflow (when the input is less than smallest int144 or * greater than largest int144). * * Counterpart to Solidity's `int144` operator. * * Requirements: * * - input must fit into 144 bits */ function toInt144(int256 value) internal pure returns (int144 downcasted) { downcasted = int144(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(144, value); } } /** * @dev Returns the downcasted int136 from int256, reverting on * overflow (when the input is less than smallest int136 or * greater than largest int136). * * Counterpart to Solidity's `int136` operator. * * Requirements: * * - input must fit into 136 bits */ function toInt136(int256 value) internal pure returns (int136 downcasted) { downcasted = int136(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(136, value); } } /** * @dev Returns the downcasted int128 from int256, reverting on * overflow (when the input is less than smallest int128 or * greater than largest int128). * * Counterpart to Solidity's `int128` operator. * * Requirements: * * - input must fit into 128 bits */ function toInt128(int256 value) internal pure returns (int128 downcasted) { downcasted = int128(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(128, value); } } /** * @dev Returns the downcasted int120 from int256, reverting on * overflow (when the input is less than smallest int120 or * greater than largest int120). * * Counterpart to Solidity's `int120` operator. * * Requirements: * * - input must fit into 120 bits */ function toInt120(int256 value) internal pure returns (int120 downcasted) { downcasted = int120(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(120, value); } } /** * @dev Returns the downcasted int112 from int256, reverting on * overflow (when the input is less than smallest int112 or * greater than largest int112). * * Counterpart to Solidity's `int112` operator. * * Requirements: * * - input must fit into 112 bits */ function toInt112(int256 value) internal pure returns (int112 downcasted) { downcasted = int112(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(112, value); } } /** * @dev Returns the downcasted int104 from int256, reverting on * overflow (when the input is less than smallest int104 or * greater than largest int104). * * Counterpart to Solidity's `int104` operator. * * Requirements: * * - input must fit into 104 bits */ function toInt104(int256 value) internal pure returns (int104 downcasted) { downcasted = int104(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(104, value); } } /** * @dev Returns the downcasted int96 from int256, reverting on * overflow (when the input is less than smallest int96 or * greater than largest int96). * * Counterpart to Solidity's `int96` operator. * * Requirements: * * - input must fit into 96 bits */ function toInt96(int256 value) internal pure returns (int96 downcasted) { downcasted = int96(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(96, value); } } /** * @dev Returns the downcasted int88 from int256, reverting on * overflow (when the input is less than smallest int88 or * greater than largest int88). * * Counterpart to Solidity's `int88` operator. * * Requirements: * * - input must fit into 88 bits */ function toInt88(int256 value) internal pure returns (int88 downcasted) { downcasted = int88(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(88, value); } } /** * @dev Returns the downcasted int80 from int256, reverting on * overflow (when the input is less than smallest int80 or * greater than largest int80). * * Counterpart to Solidity's `int80` operator. * * Requirements: * * - input must fit into 80 bits */ function toInt80(int256 value) internal pure returns (int80 downcasted) { downcasted = int80(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(80, value); } } /** * @dev Returns the downcasted int72 from int256, reverting on * overflow (when the input is less than smallest int72 or * greater than largest int72). * * Counterpart to Solidity's `int72` operator. * * Requirements: * * - input must fit into 72 bits */ function toInt72(int256 value) internal pure returns (int72 downcasted) { downcasted = int72(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(72, value); } } /** * @dev Returns the downcasted int64 from int256, reverting on * overflow (when the input is less than smallest int64 or * greater than largest int64). * * Counterpart to Solidity's `int64` operator. * * Requirements: * * - input must fit into 64 bits */ function toInt64(int256 value) internal pure returns (int64 downcasted) { downcasted = int64(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(64, value); } } /** * @dev Returns the downcasted int56 from int256, reverting on * overflow (when the input is less than smallest int56 or * greater than largest int56). * * Counterpart to Solidity's `int56` operator. * * Requirements: * * - input must fit into 56 bits */ function toInt56(int256 value) internal pure returns (int56 downcasted) { downcasted = int56(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(56, value); } } /** * @dev Returns the downcasted int48 from int256, reverting on * overflow (when the input is less than smallest int48 or * greater than largest int48). * * Counterpart to Solidity's `int48` operator. * * Requirements: * * - input must fit into 48 bits */ function toInt48(int256 value) internal pure returns (int48 downcasted) { downcasted = int48(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(48, value); } } /** * @dev Returns the downcasted int40 from int256, reverting on * overflow (when the input is less than smallest int40 or * greater than largest int40). * * Counterpart to Solidity's `int40` operator. * * Requirements: * * - input must fit into 40 bits */ function toInt40(int256 value) internal pure returns (int40 downcasted) { downcasted = int40(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(40, value); } } /** * @dev Returns the downcasted int32 from int256, reverting on * overflow (when the input is less than smallest int32 or * greater than largest int32). * * Counterpart to Solidity's `int32` operator. * * Requirements: * * - input must fit into 32 bits */ function toInt32(int256 value) internal pure returns (int32 downcasted) { downcasted = int32(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(32, value); } } /** * @dev Returns the downcasted int24 from int256, reverting on * overflow (when the input is less than smallest int24 or * greater than largest int24). * * Counterpart to Solidity's `int24` operator. * * Requirements: * * - input must fit into 24 bits */ function toInt24(int256 value) internal pure returns (int24 downcasted) { downcasted = int24(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(24, value); } } /** * @dev Returns the downcasted int16 from int256, reverting on * overflow (when the input is less than smallest int16 or * greater than largest int16). * * Counterpart to Solidity's `int16` operator. * * Requirements: * * - input must fit into 16 bits */ function toInt16(int256 value) internal pure returns (int16 downcasted) { downcasted = int16(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(16, value); } } /** * @dev Returns the downcasted int8 from int256, reverting on * overflow (when the input is less than smallest int8 or * greater than largest int8). * * Counterpart to Solidity's `int8` operator. * * Requirements: * * - input must fit into 8 bits */ function toInt8(int256 value) internal pure returns (int8 downcasted) { downcasted = int8(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(8, value); } } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. */ function toInt256(uint256 value) internal pure returns (int256) { // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive if (value > uint256(type(int256).max)) { revert SafeCastOverflowedUintToInt(value); } return int256(value); } /** * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump. */ function toUint(bool b) internal pure returns (uint256 u) { assembly ("memory-safe") { u := iszero(iszero(b)) } } } // File: @openzeppelin/contracts/utils/math/Math.sol // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol) pragma solidity ^0.8.20; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an success flag (no overflow). */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow). */ function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow). */ function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a success flag (no division by zero). */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero). */ function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * SafeCast.toUint(condition)); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. Panic.panic(Panic.DIVISION_BY_ZERO); } // The following calculation ensures accurate ceiling division without overflow. // Since a is non-zero, (a - 1) / b will not overflow. // The largest possible result occurs when (a - 1) / b is type(uint256).max, // but the largest value we can obtain is type(uint256).max - 1, which happens // when a = type(uint256).max and b = 1. unchecked { return SafeCast.toUint(a > 0) * ((a - 1) / b + 1); } } /** * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2²⁵⁶ + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0. if (denominator <= prod1) { Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW)); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv ≡ 1 mod 2⁴. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2⁸ inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶ inverse *= 2 - denominator * inverse; // inverse mod 2³² inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴ inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸ inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶ // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @dev Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0); } /** * @dev Calculate the modular multiplicative inverse of a number in Z/nZ. * * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0. * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible. * * If the input value is not inversible, 0 is returned. * * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}. */ function invMod(uint256 a, uint256 n) internal pure returns (uint256) { unchecked { if (n == 0) return 0; // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version) // Used to compute integers x and y such that: ax + ny = gcd(a, n). // When the gcd is 1, then the inverse of a modulo n exists and it's x. // ax + ny = 1 // ax = 1 + (-y)n // ax ≡ 1 (mod n) # x is the inverse of a modulo n // If the remainder is 0 the gcd is n right away. uint256 remainder = a % n; uint256 gcd = n; // Therefore the initial coefficients are: // ax + ny = gcd(a, n) = n // 0a + 1n = n int256 x = 0; int256 y = 1; while (remainder != 0) { uint256 quotient = gcd / remainder; (gcd, remainder) = ( // The old remainder is the next gcd to try. remainder, // Compute the next remainder. // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd // where gcd is at most n (capped to type(uint256).max) gcd - remainder * quotient ); (x, y) = ( // Increment the coefficient of a. y, // Decrement the coefficient of n. // Can overflow, but the result is casted to uint256 so that the // next value of y is "wrapped around" to a value between 0 and n - 1. x - y * int256(quotient) ); } if (gcd != 1) return 0; // No inverse exists. return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative. } } /** * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`. * * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that * `a**(p-2)` is the modular multiplicative inverse of a in Fp. * * NOTE: this function does NOT check that `p` is a prime greater than `2`. */ function invModPrime(uint256 a, uint256 p) internal view returns (uint256) { unchecked { return Math.modExp(a, p - 2, p); } } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m) * * Requirements: * - modulus can't be zero * - underlying staticcall to precompile must succeed * * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make * sure the chain you're using it on supports the precompiled contract for modular exponentiation * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, * the underlying function will succeed given the lack of a revert, but the result may be incorrectly * interpreted as 0. */ function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) { (bool success, uint256 result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m). * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying * to operate modulo 0 or if the underlying precompile reverted. * * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack * of a revert, but the result may be incorrectly interpreted as 0. */ function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) { if (m == 0) return (false, 0); assembly ("memory-safe") { let ptr := mload(0x40) // | Offset | Content | Content (Hex) | // |-----------|------------|--------------------------------------------------------------------| // | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x60:0x7f | value of b | 0x<.............................................................b> | // | 0x80:0x9f | value of e | 0x<.............................................................e> | // | 0xa0:0xbf | value of m | 0x<.............................................................m> | mstore(ptr, 0x20) mstore(add(ptr, 0x20), 0x20) mstore(add(ptr, 0x40), 0x20) mstore(add(ptr, 0x60), b) mstore(add(ptr, 0x80), e) mstore(add(ptr, 0xa0), m) // Given the result < m, it's guaranteed to fit in 32 bytes, // so we can use the memory scratch space located at offset 0. success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20) result := mload(0x00) } } /** * @dev Variant of {modExp} that supports inputs of arbitrary length. */ function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) { (bool success, bytes memory result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Variant of {tryModExp} that supports inputs of arbitrary length. */ function tryModExp( bytes memory b, bytes memory e, bytes memory m ) internal view returns (bool success, bytes memory result) { if (_zeroBytes(m)) return (false, new bytes(0)); uint256 mLen = m.length; // Encode call args in result and move the free memory pointer result = abi.encodePacked(b.length, e.length, mLen, b, e, m); assembly ("memory-safe") { let dataPtr := add(result, 0x20) // Write result on top of args to avoid allocating extra memory. success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen) // Overwrite the length. // result.length > returndatasize() is guaranteed because returndatasize() == m.length mstore(result, mLen) // Set the memory pointer after the returned data. mstore(0x40, add(dataPtr, mLen)) } } /** * @dev Returns whether the provided byte array is zero. */ function _zeroBytes(bytes memory byteArray) private pure returns (bool) { for (uint256 i = 0; i < byteArray.length; ++i) { if (byteArray[i] != 0) { return false; } } return true; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * This method is based on Newton's method for computing square roots; the algorithm is restricted to only * using integer operations. */ function sqrt(uint256 a) internal pure returns (uint256) { unchecked { // Take care of easy edge cases when a == 0 or a == 1 if (a <= 1) { return a; } // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between // the current value as `ε_n = | x_n - sqrt(a) |`. // // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is // bigger than any uint256. // // By noticing that // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)` // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar // to the msb function. uint256 aa = a; uint256 xn = 1; if (aa >= (1 << 128)) { aa >>= 128; xn <<= 64; } if (aa >= (1 << 64)) { aa >>= 64; xn <<= 32; } if (aa >= (1 << 32)) { aa >>= 32; xn <<= 16; } if (aa >= (1 << 16)) { aa >>= 16; xn <<= 8; } if (aa >= (1 << 8)) { aa >>= 8; xn <<= 4; } if (aa >= (1 << 4)) { aa >>= 4; xn <<= 2; } if (aa >= (1 << 2)) { xn <<= 1; } // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1). // // We can refine our estimation by noticing that the middle of that interval minimizes the error. // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2). // This is going to be our x_0 (and ε_0) xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2) // From here, Newton's method give us: // x_{n+1} = (x_n + a / x_n) / 2 // // One should note that: // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a // = ((x_n² + a) / (2 * x_n))² - a // = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a // = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²) // = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²) // = (x_n² - a)² / (2 * x_n)² // = ((x_n² - a) / (2 * x_n))² // ≥ 0 // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n // // This gives us the proof of quadratic convergence of the sequence: // ε_{n+1} = | x_{n+1} - sqrt(a) | // = | (x_n + a / x_n) / 2 - sqrt(a) | // = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) | // = | (x_n - sqrt(a))² / (2 * x_n) | // = | ε_n² / (2 * x_n) | // = ε_n² / | (2 * x_n) | // // For the first iteration, we have a special case where x_0 is known: // ε_1 = ε_0² / | (2 * x_0) | // ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2))) // ≤ 2**(2*e-4) / (3 * 2**(e-1)) // ≤ 2**(e-3) / 3 // ≤ 2**(e-3-log2(3)) // ≤ 2**(e-4.5) // // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n: // ε_{n+1} = ε_n² / | (2 * x_n) | // ≤ (2**(e-k))² / (2 * 2**(e-1)) // ≤ 2**(2*e-2*k) / 2**e // ≤ 2**(e-2*k) xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5 xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9 xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18 xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36 xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72 // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either // sqrt(a) or sqrt(a) + 1. return xn - SafeCast.toUint(xn > a / xn); } } /** * @dev Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 exp; unchecked { exp = 128 * SafeCast.toUint(value > (1 << 128) - 1); value >>= exp; result += exp; exp = 64 * SafeCast.toUint(value > (1 << 64) - 1); value >>= exp; result += exp; exp = 32 * SafeCast.toUint(value > (1 << 32) - 1); value >>= exp; result += exp; exp = 16 * SafeCast.toUint(value > (1 << 16) - 1); value >>= exp; result += exp; exp = 8 * SafeCast.toUint(value > (1 << 8) - 1); value >>= exp; result += exp; exp = 4 * SafeCast.toUint(value > (1 << 4) - 1); value >>= exp; result += exp; exp = 2 * SafeCast.toUint(value > (1 << 2) - 1); value >>= exp; result += exp; result += SafeCast.toUint(value > 1); } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 isGt; unchecked { isGt = SafeCast.toUint(value > (1 << 128) - 1); value >>= isGt * 128; result += isGt * 16; isGt = SafeCast.toUint(value > (1 << 64) - 1); value >>= isGt * 64; result += isGt * 8; isGt = SafeCast.toUint(value > (1 << 32) - 1); value >>= isGt * 32; result += isGt * 4; isGt = SafeCast.toUint(value > (1 << 16) - 1); value >>= isGt * 16; result += isGt * 2; result += SafeCast.toUint(value > (1 << 8) - 1); } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } } // File: @openzeppelin/contracts/utils/math/SignedMath.sol // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.20; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * int256(SafeCast.toUint(condition))); } } /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson. // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift, // taking advantage of the most significant (or "sign" bit) in two's complement representation. // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result, // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative). int256 mask = n >> 255; // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it. return uint256((n + mask) ^ mask); } } } // File: @openzeppelin/contracts/utils/Strings.sol // OpenZeppelin Contracts (last updated v5.1.0) (utils/Strings.sol) pragma solidity ^0.8.20; /** * @dev String operations. */ library Strings { bytes16 private constant HEX_DIGITS = "0123456789abcdef"; uint8 private constant ADDRESS_LENGTH = 20; /** * @dev The `value` string doesn't fit in the specified `length`. */ error StringsInsufficientHexLength(uint256 value, uint256 length); /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; assembly ("memory-safe") { ptr := add(buffer, add(32, length)) } while (true) { ptr--; assembly ("memory-safe") { mstore8(ptr, byte(mod(value, 10), HEX_DIGITS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toStringSigned(int256 value) internal pure returns (string memory) { return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { uint256 localValue = value; bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = HEX_DIGITS[localValue & 0xf]; localValue >>= 4; } if (localValue != 0) { revert StringsInsufficientHexLength(value, length); } return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal * representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH); } /** * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal * representation, according to EIP-55. */ function toChecksumHexString(address addr) internal pure returns (string memory) { bytes memory buffer = bytes(toHexString(addr)); // hash the hex part of buffer (skip length + 2 bytes, length 40) uint256 hashValue; assembly ("memory-safe") { hashValue := shr(96, keccak256(add(buffer, 0x22), 40)) } for (uint256 i = 41; i > 1; --i) { // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f) if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) { // case shift by xoring with 0x20 buffer[i] ^= 0x20; } hashValue >>= 4; } return string(buffer); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b)); } } // File: @openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MessageHashUtils.sol) pragma solidity ^0.8.20; /** * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing. * * The library provides methods for generating a hash of a message that conforms to the * https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712] * specifications. */ library MessageHashUtils { /** * @dev Returns the keccak256 digest of an ERC-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing a bytes32 `messageHash` with * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with * keccak256, although any bytes32 value can be safely used because the final digest will * be re-hashed. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) { assembly ("memory-safe") { mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20) } } /** * @dev Returns the keccak256 digest of an ERC-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing an arbitrary `message` with * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) { return keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message)); } /** * @dev Returns the keccak256 digest of an ERC-191 signed data with version * `0x00` (data with intended validator). * * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended * `validator` address. Then hashing the result. * * See {ECDSA-recover}. */ function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) { return keccak256(abi.encodePacked(hex"19_00", validator, data)); } /** * @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`). * * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with * `\x19\x01` and hashing the result. It corresponds to the hash signed by the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712. * * See {ECDSA-recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) { assembly ("memory-safe") { let ptr := mload(0x40) mstore(ptr, hex"19_01") mstore(add(ptr, 0x02), domainSeparator) mstore(add(ptr, 0x22), structHash) digest := keccak256(ptr, 0x42) } } } // File: @openzeppelin/contracts/utils/StorageSlot.sol // OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol) // This file was procedurally generated from scripts/generate/templates/StorageSlot.js. pragma solidity ^0.8.20; /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC-1967 implementation slot: * ```solidity * contract ERC1967 { * // Define the slot. Alternatively, use the SlotDerivation library to derive the slot. * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(newImplementation.code.length > 0); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` * * TIP: Consider using this library along with {SlotDerivation}. */ library StorageSlot { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } struct Int256Slot { int256 value; } struct StringSlot { string value; } struct BytesSlot { bytes value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `Int256Slot` with member `value` located at `slot`. */ function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `StringSlot` with member `value` located at `slot`. */ function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns an `StringSlot` representation of the string storage pointer `store`. */ function getStringSlot(string storage store) internal pure returns (StringSlot storage r) { assembly ("memory-safe") { r.slot := store.slot } } /** * @dev Returns a `BytesSlot` with member `value` located at `slot`. */ function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`. */ function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) { assembly ("memory-safe") { r.slot := store.slot } } } // File: @openzeppelin/contracts/utils/ShortStrings.sol // OpenZeppelin Contracts (last updated v5.1.0) (utils/ShortStrings.sol) pragma solidity ^0.8.20; // | string | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA | // | length | 0x BB | type ShortString is bytes32; /** * @dev This library provides functions to convert short memory strings * into a `ShortString` type that can be used as an immutable variable. * * Strings of arbitrary length can be optimized using this library if * they are short enough (up to 31 bytes) by packing them with their * length (1 byte) in a single EVM word (32 bytes). Additionally, a * fallback mechanism can be used for every other case. * * Usage example: * * ```solidity * contract Named { * using ShortStrings for *; * * ShortString private immutable _name; * string private _nameFallback; * * constructor(string memory contractName) { * _name = contractName.toShortStringWithFallback(_nameFallback); * } * * function name() external view returns (string memory) { * return _name.toStringWithFallback(_nameFallback); * } * } * ``` */ library ShortStrings { // Used as an identifier for strings longer than 31 bytes. bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF; error StringTooLong(string str); error InvalidShortString(); /** * @dev Encode a string of at most 31 chars into a `ShortString`. * * This will trigger a `StringTooLong` error is the input string is too long. */ function toShortString(string memory str) internal pure returns (ShortString) { bytes memory bstr = bytes(str); if (bstr.length > 31) { revert StringTooLong(str); } return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length)); } /** * @dev Decode a `ShortString` back to a "normal" string. */ function toString(ShortString sstr) internal pure returns (string memory) { uint256 len = byteLength(sstr); // using `new string(len)` would work locally but is not memory safe. string memory str = new string(32); assembly ("memory-safe") { mstore(str, len) mstore(add(str, 0x20), sstr) } return str; } /** * @dev Return the length of a `ShortString`. */ function byteLength(ShortString sstr) internal pure returns (uint256) { uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF; if (result > 31) { revert InvalidShortString(); } return result; } /** * @dev Encode a string into a `ShortString`, or write it to storage if it is too long. */ function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) { if (bytes(value).length < 32) { return toShortString(value); } else { StorageSlot.getStringSlot(store).value = value; return ShortString.wrap(FALLBACK_SENTINEL); } } /** * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}. */ function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) { if (ShortString.unwrap(value) != FALLBACK_SENTINEL) { return toString(value); } else { return store; } } /** * @dev Return the length of a string that was encoded to `ShortString` or written to storage using * {setWithFallback}. * * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of * actual characters as the UTF-8 encoding of a single character can span over multiple bytes. */ function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) { if (ShortString.unwrap(value) != FALLBACK_SENTINEL) { return byteLength(value); } else { return bytes(store).length; } } } // File: @openzeppelin/contracts/interfaces/IERC5267.sol // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol) pragma solidity ^0.8.20; interface IERC5267 { /** * @dev MAY be emitted to signal that the domain could have changed. */ event EIP712DomainChanged(); /** * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712 * signature. */ function eip712Domain() external view returns ( bytes1 fields, string memory name, string memory version, uint256 chainId, address verifyingContract, bytes32 salt, uint256[] memory extensions ); } // File: @openzeppelin/contracts/utils/cryptography/EIP712.sol // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/EIP712.sol) pragma solidity ^0.8.20; /** * @dev https://eips.ethereum.org/EIPS/eip-712[EIP-712] is a standard for hashing and signing of typed structured data. * * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`. * * This contract implements the EIP-712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA * ({_hashTypedDataV4}). * * The implementation of the domain separator was designed to be as efficient as possible while still properly updating * the chain id to protect against replay attacks on an eventual fork of the chain. * * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask]. * * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the * separator from the immutable values, which is cheaper than accessing a cached version in cold storage. * * @custom:oz-upgrades-unsafe-allow state-variable-immutable */ abstract contract EIP712 is IERC5267 { using ShortStrings for *; bytes32 private constant TYPE_HASH = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"); // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to // invalidate the cached domain separator if the chain id changes. bytes32 private immutable _cachedDomainSeparator; uint256 private immutable _cachedChainId; address private immutable _cachedThis; bytes32 private immutable _hashedName; bytes32 private immutable _hashedVersion; ShortString private immutable _name; ShortString private immutable _version; string private _nameFallback; string private _versionFallback; /** * @dev Initializes the domain separator and parameter caches. * * The meaning of `name` and `version` is specified in * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP-712]: * * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol. * - `version`: the current major version of the signing domain. * * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart * contract upgrade]. */ constructor(string memory name, string memory version) { _name = name.toShortStringWithFallback(_nameFallback); _version = version.toShortStringWithFallback(_versionFallback); _hashedName = keccak256(bytes(name)); _hashedVersion = keccak256(bytes(version)); _cachedChainId = block.chainid; _cachedDomainSeparator = _buildDomainSeparator(); _cachedThis = address(this); } /** * @dev Returns the domain separator for the current chain. */ function _domainSeparatorV4() internal view returns (bytes32) { if (address(this) == _cachedThis && block.chainid == _cachedChainId) { return _cachedDomainSeparator; } else { return _buildDomainSeparator(); } } function _buildDomainSeparator() private view returns (bytes32) { return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this))); } /** * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this * function returns the hash of the fully encoded EIP712 message for this domain. * * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example: * * ```solidity * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode( * keccak256("Mail(address to,string contents)"), * mailTo, * keccak256(bytes(mailContents)) * ))); * address signer = ECDSA.recover(digest, signature); * ``` */ function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) { return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash); } /** * @dev See {IERC-5267}. */ function eip712Domain() public view virtual returns ( bytes1 fields, string memory name, string memory version, uint256 chainId, address verifyingContract, bytes32 salt, uint256[] memory extensions ) { return ( hex"0f", // 01111 _EIP712Name(), _EIP712Version(), block.chainid, address(this), bytes32(0), new uint256[](0) ); } /** * @dev The name parameter for the EIP712 domain. * * NOTE: By default this function reads _name which is an immutable value. * It only reads from storage if necessary (in case the value is too large to fit in a ShortString). */ // solhint-disable-next-line func-name-mixedcase function _EIP712Name() internal view returns (string memory) { return _name.toStringWithFallback(_nameFallback); } /** * @dev The version parameter for the EIP712 domain. * * NOTE: By default this function reads _version which is an immutable value. * It only reads from storage if necessary (in case the value is too large to fit in a ShortString). */ // solhint-disable-next-line func-name-mixedcase function _EIP712Version() internal view returns (string memory) { return _version.toStringWithFallback(_versionFallback); } } // File: @openzeppelin/contracts/utils/Nonces.sol // OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol) pragma solidity ^0.8.20; /** * @dev Provides tracking nonces for addresses. Nonces will only increment. */ abstract contract Nonces { /** * @dev The nonce used for an `account` is not the expected current nonce. */ error InvalidAccountNonce(address account, uint256 currentNonce); mapping(address account => uint256) private _nonces; /** * @dev Returns the next unused nonce for an address. */ function nonces(address owner) public view virtual returns (uint256) { return _nonces[owner]; } /** * @dev Consumes a nonce. * * Returns the current value and increments nonce. */ function _useNonce(address owner) internal virtual returns (uint256) { // For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be // decremented or reset. This guarantees that the nonce never overflows. unchecked { // It is important to do x++ and not ++x here. return _nonces[owner]++; } } /** * @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`. */ function _useCheckedNonce(address owner, uint256 nonce) internal virtual { uint256 current = _useNonce(owner); if (nonce != current) { revert InvalidAccountNonce(owner, current); } } } // File: @openzeppelin/contracts/token/ERC20/extensions/ERC20Permit.sol // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/ERC20Permit.sol) pragma solidity ^0.8.20; /** * @dev Implementation of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[ERC-2612]. * * Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712, Nonces { bytes32 private constant PERMIT_TYPEHASH = keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"); /** * @dev Permit deadline has expired. */ error ERC2612ExpiredSignature(uint256 deadline); /** * @dev Mismatched signature. */ error ERC2612InvalidSigner(address signer, address owner); /** * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`. * * It's a good idea to use the same `name` that is defined as the ERC-20 token name. */ constructor(string memory name) EIP712(name, "1") {} /** * @inheritdoc IERC20Permit */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) public virtual { if (block.timestamp > deadline) { revert ERC2612ExpiredSignature(deadline); } bytes32 structHash = keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline)); bytes32 hash = _hashTypedDataV4(structHash); address signer = ECDSA.recover(hash, v, r, s); if (signer != owner) { revert ERC2612InvalidSigner(signer, owner); } _approve(owner, spender, value); } /** * @inheritdoc IERC20Permit */ function nonces(address owner) public view virtual override(IERC20Permit, Nonces) returns (uint256) { return super.nonces(owner); } /** * @inheritdoc IERC20Permit */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view virtual returns (bytes32) { return _domainSeparatorV4(); } } // File: contracts/MyToken.sol pragma solidity ^0.8.20; contract Waves is ERC20, ERC20Permit { constructor() ERC20("Waves", "WAV") ERC20Permit("Waves") { _mint(msg.sender, 1000000000 * 10 ** decimals()); } }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"ECDSAInvalidSignature","type":"error"},{"inputs":[{"internalType":"uint256","name":"length","type":"uint256"}],"name":"ECDSAInvalidSignatureLength","type":"error"},{"inputs":[{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"ECDSAInvalidSignatureS","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"allowance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientAllowance","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC20InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC20InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC20InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"}],"name":"ERC20InvalidSpender","type":"error"},{"inputs":[{"internalType":"uint256","name":"deadline","type":"uint256"}],"name":"ERC2612ExpiredSignature","type":"error"},{"inputs":[{"internalType":"address","name":"signer","type":"address"},{"internalType":"address","name":"owner","type":"address"}],"name":"ERC2612InvalidSigner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"currentNonce","type":"uint256"}],"name":"InvalidAccountNonce","type":"error"},{"inputs":[],"name":"InvalidShortString","type":"error"},{"inputs":[{"internalType":"string","name":"str","type":"string"}],"name":"StringTooLong","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[],"name":"EIP712DomainChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"DOMAIN_SEPARATOR","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"eip712Domain","outputs":[{"internalType":"bytes1","name":"fields","type":"bytes1"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"},{"internalType":"uint256","name":"chainId","type":"uint256"},{"internalType":"address","name":"verifyingContract","type":"address"},{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"uint256[]","name":"extensions","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"permit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
610160604052348015610010575f5ffd5b506040518060400160405280600581526020017f5761766573000000000000000000000000000000000000000000000000000000815250806040518060400160405280600181526020017f31000000000000000000000000000000000000000000000000000000000000008152506040518060400160405280600581526020017f57617665730000000000000000000000000000000000000000000000000000008152506040518060400160405280600381526020017f574156000000000000000000000000000000000000000000000000000000000081525081600390816100f991906107ec565b50806004908161010991906107ec565b5050506101206005836101f460201b90919060201c565b610120818152505061013c6006826101f460201b90919060201c565b6101408181525050818051906020012060e08181525050808051906020012061010081815250504660a0818152505061017961024160201b60201c565b608081815250503073ffffffffffffffffffffffffffffffffffffffff1660c08173ffffffffffffffffffffffffffffffffffffffff16815250505050506101ef336101c961029b60201b60201c565b600a6101d59190610a23565b633b9aca006101e49190610a6d565b6102a360201b60201c565b610d18565b5f6020835110156102155761020e8361032860201b60201c565b905061023b565b826102258361038d60201b60201c565b5f01908161023391906107ec565b5060ff5f1b90505b92915050565b5f7f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60e051610100514630604051602001610280959493929190610b14565b60405160208183030381529060405280519060200120905090565b5f6012905090565b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603610313575f6040517fec442f0500000000000000000000000000000000000000000000000000000000815260040161030a9190610b65565b60405180910390fd5b6103245f838361039660201b60201c565b5050565b5f5f829050601f8151111561037457826040517f305a27a900000000000000000000000000000000000000000000000000000000815260040161036b9190610be4565b60405180910390fd5b80518161038090610c31565b5f1c175f1b915050919050565b5f819050919050565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff16036103e6578060025f8282546103da9190610c97565b925050819055506104b4565b5f5f5f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205490508181101561046f578381836040517fe450d38c00000000000000000000000000000000000000000000000000000000815260040161046693929190610cca565b60405180910390fd5b8181035f5f8673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2081905550505b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff16036104fb578060025f8282540392505081905550610545565b805f5f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f82825401925050819055505b8173ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef836040516105a29190610cff565b60405180910390a3505050565b5f81519050919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b5f600282049050600182168061062a57607f821691505b60208210810361063d5761063c6105e6565b5b50919050565b5f819050815f5260205f209050919050565b5f6020601f8301049050919050565b5f82821b905092915050565b5f6008830261069f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff82610664565b6106a98683610664565b95508019841693508086168417925050509392505050565b5f819050919050565b5f819050919050565b5f6106ed6106e86106e3846106c1565b6106ca565b6106c1565b9050919050565b5f819050919050565b610706836106d3565b61071a610712826106f4565b848454610670565b825550505050565b5f5f905090565b610731610722565b61073c8184846106fd565b505050565b5b8181101561075f576107545f82610729565b600181019050610742565b5050565b601f8211156107a45761077581610643565b61077e84610655565b8101602085101561078d578190505b6107a161079985610655565b830182610741565b50505b505050565b5f82821c905092915050565b5f6107c45f19846008026107a9565b1980831691505092915050565b5f6107dc83836107b5565b9150826002028217905092915050565b6107f5826105af565b67ffffffffffffffff81111561080e5761080d6105b9565b5b6108188254610613565b610823828285610763565b5f60209050601f831160018114610854575f8415610842578287015190505b61084c85826107d1565b8655506108b3565b601f19841661086286610643565b5f5b8281101561088957848901518255600182019150602085019450602081019050610864565b868310156108a657848901516108a2601f8916826107b5565b8355505b6001600288020188555050505b505050505050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f8160011c9050919050565b5f5f8291508390505b600185111561093d57808604811115610919576109186108bb565b5b60018516156109285780820291505b8081029050610936856108e8565b94506108fd565b94509492505050565b5f826109555760019050610a10565b81610962575f9050610a10565b81600181146109785760028114610982576109b1565b6001915050610a10565b60ff841115610994576109936108bb565b5b8360020a9150848211156109ab576109aa6108bb565b5b50610a10565b5060208310610133831016604e8410600b84101617156109e65782820a9050838111156109e1576109e06108bb565b5b610a10565b6109f384848460016108f4565b92509050818404811115610a0a57610a096108bb565b5b81810290505b9392505050565b5f60ff82169050919050565b5f610a2d826106c1565b9150610a3883610a17565b9250610a657fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8484610946565b905092915050565b5f610a77826106c1565b9150610a82836106c1565b9250828202610a90816106c1565b91508282048414831517610aa757610aa66108bb565b5b5092915050565b5f819050919050565b610ac081610aae565b82525050565b610acf816106c1565b82525050565b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f610afe82610ad5565b9050919050565b610b0e81610af4565b82525050565b5f60a082019050610b275f830188610ab7565b610b346020830187610ab7565b610b416040830186610ab7565b610b4e6060830185610ac6565b610b5b6080830184610b05565b9695505050505050565b5f602082019050610b785f830184610b05565b92915050565b5f82825260208201905092915050565b8281835e5f83830152505050565b5f601f19601f8301169050919050565b5f610bb6826105af565b610bc08185610b7e565b9350610bd0818560208601610b8e565b610bd981610b9c565b840191505092915050565b5f6020820190508181035f830152610bfc8184610bac565b905092915050565b5f81519050919050565b5f819050602082019050919050565b5f610c288251610aae565b80915050919050565b5f610c3b82610c04565b82610c4584610c0e565b9050610c5081610c1d565b92506020821015610c9057610c8b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff83602003600802610664565b831692505b5050919050565b5f610ca1826106c1565b9150610cac836106c1565b9250828201905080821115610cc457610cc36108bb565b5b92915050565b5f606082019050610cdd5f830186610b05565b610cea6020830185610ac6565b610cf76040830184610ac6565b949350505050565b5f602082019050610d125f830184610ac6565b92915050565b60805160a05160c05160e051610100516101205161014051611b54610d695f395f610a1501525f6109da01525f610f0e01525f610eed01525f6108d801525f61092e01525f6109570152611b545ff3fe608060405234801561000f575f5ffd5b50600436106100cd575f3560e01c806370a082311161008a57806395d89b411161006457806395d89b411461022d578063a9059cbb1461024b578063d505accf1461027b578063dd62ed3e14610297576100cd565b806370a08231146101a95780637ecebe00146101d957806384b0196e14610209576100cd565b806306fdde03146100d1578063095ea7b3146100ef57806318160ddd1461011f57806323b872dd1461013d578063313ce5671461016d5780633644e5151461018b575b5f5ffd5b6100d96102c7565b6040516100e691906113c4565b60405180910390f35b61010960048036038101906101049190611475565b610357565b60405161011691906114cd565b60405180910390f35b610127610379565b60405161013491906114f5565b60405180910390f35b6101576004803603810190610152919061150e565b610382565b60405161016491906114cd565b60405180910390f35b6101756103b0565b6040516101829190611579565b60405180910390f35b6101936103b8565b6040516101a091906115aa565b60405180910390f35b6101c360048036038101906101be91906115c3565b6103c6565b6040516101d091906114f5565b60405180910390f35b6101f360048036038101906101ee91906115c3565b61040b565b60405161020091906114f5565b60405180910390f35b61021161041c565b60405161022497969594939291906116ee565b60405180910390f35b6102356104c1565b60405161024291906113c4565b60405180910390f35b61026560048036038101906102609190611475565b610551565b60405161027291906114cd565b60405180910390f35b610295600480360381019061029091906117c4565b610573565b005b6102b160048036038101906102ac9190611861565b6106b8565b6040516102be91906114f5565b60405180910390f35b6060600380546102d6906118cc565b80601f0160208091040260200160405190810160405280929190818152602001828054610302906118cc565b801561034d5780601f106103245761010080835404028352916020019161034d565b820191905f5260205f20905b81548152906001019060200180831161033057829003601f168201915b5050505050905090565b5f5f61036161073a565b905061036e818585610741565b600191505092915050565b5f600254905090565b5f5f61038c61073a565b9050610399858285610753565b6103a48585856107e5565b60019150509392505050565b5f6012905090565b5f6103c16108d5565b905090565b5f5f5f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20549050919050565b5f6104158261098b565b9050919050565b5f6060805f5f5f606061042d6109d1565b610435610a0c565b46305f5f1b5f67ffffffffffffffff811115610454576104536118fc565b5b6040519080825280602002602001820160405280156104825781602001602082028036833780820191505090505b507f0f00000000000000000000000000000000000000000000000000000000000000959493929190965096509650965096509650965090919293949596565b6060600480546104d0906118cc565b80601f01602080910402602001604051908101604052809291908181526020018280546104fc906118cc565b80156105475780601f1061051e57610100808354040283529160200191610547565b820191905f5260205f20905b81548152906001019060200180831161052a57829003601f168201915b5050505050905090565b5f5f61055b61073a565b90506105688185856107e5565b600191505092915050565b834211156105b857836040517f627913020000000000000000000000000000000000000000000000000000000081526004016105af91906114f5565b60405180910390fd5b5f7f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c98888886105e68c610a47565b896040516020016105fc96959493929190611929565b6040516020818303038152906040528051906020012090505f61061e82610a9a565b90505f61062d82878787610ab3565b90508973ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff16146106a157808a6040517f4b800e46000000000000000000000000000000000000000000000000000000008152600401610698929190611988565b60405180910390fd5b6106ac8a8a8a610741565b50505050505050505050565b5f60015f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905092915050565b5f33905090565b61074e8383836001610ae1565b505050565b5f61075e84846106b8565b90507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff81146107df57818110156107d0578281836040517ffb8f41b20000000000000000000000000000000000000000000000000000000081526004016107c7939291906119af565b60405180910390fd5b6107de84848484035f610ae1565b5b50505050565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1603610855575f6040517f96c6fd1e00000000000000000000000000000000000000000000000000000000815260040161084c91906119e4565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff16036108c5575f6040517fec442f050000000000000000000000000000000000000000000000000000000081526004016108bc91906119e4565b60405180910390fd5b6108d0838383610cb0565b505050565b5f7f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff163073ffffffffffffffffffffffffffffffffffffffff1614801561095057507f000000000000000000000000000000000000000000000000000000000000000046145b1561097d577f00000000000000000000000000000000000000000000000000000000000000009050610988565b610985610ec9565b90505b90565b5f60075f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20549050919050565b6060610a0760057f0000000000000000000000000000000000000000000000000000000000000000610f5e90919063ffffffff16565b905090565b6060610a4260067f0000000000000000000000000000000000000000000000000000000000000000610f5e90919063ffffffff16565b905090565b5f60075f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f815480929190600101919050559050919050565b5f610aac610aa66108d5565b8361100b565b9050919050565b5f5f5f5f610ac38888888861104b565b925092509250610ad38282611132565b829350505050949350505050565b5f73ffffffffffffffffffffffffffffffffffffffff168473ffffffffffffffffffffffffffffffffffffffff1603610b51575f6040517fe602df05000000000000000000000000000000000000000000000000000000008152600401610b4891906119e4565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1603610bc1575f6040517f94280d62000000000000000000000000000000000000000000000000000000008152600401610bb891906119e4565b60405180910390fd5b8160015f8673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055508015610caa578273ffffffffffffffffffffffffffffffffffffffff168473ffffffffffffffffffffffffffffffffffffffff167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92584604051610ca191906114f5565b60405180910390a35b50505050565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1603610d00578060025f828254610cf49190611a2a565b92505081905550610dce565b5f5f5f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905081811015610d89578381836040517fe450d38c000000000000000000000000000000000000000000000000000000008152600401610d80939291906119af565b60405180910390fd5b8181035f5f8673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2081905550505b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603610e15578060025f8282540392505081905550610e5f565b805f5f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f82825401925050819055505b8173ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef83604051610ebc91906114f5565b60405180910390a3505050565b5f7f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f7f00000000000000000000000000000000000000000000000000000000000000007f00000000000000000000000000000000000000000000000000000000000000004630604051602001610f43959493929190611a5d565b60405160208183030381529060405280519060200120905090565b606060ff5f1b8314610f7a57610f7383611294565b9050611005565b818054610f86906118cc565b80601f0160208091040260200160405190810160405280929190818152602001828054610fb2906118cc565b8015610ffd5780601f10610fd457610100808354040283529160200191610ffd565b820191905f5260205f20905b815481529060010190602001808311610fe057829003601f168201915b505050505090505b92915050565b5f6040517f190100000000000000000000000000000000000000000000000000000000000081528360028201528260228201526042812091505092915050565b5f5f5f7f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0845f1c1115611087575f600385925092509250611128565b5f6001888888886040515f81526020016040526040516110aa9493929190611aae565b6020604051602081039080840390855afa1580156110ca573d5f5f3e3d5ffd5b5050506020604051035190505f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff160361111b575f60015f5f1b93509350935050611128565b805f5f5f1b935093509350505b9450945094915050565b5f600381111561114557611144611af1565b5b82600381111561115857611157611af1565b5b0315611290576001600381111561117257611171611af1565b5b82600381111561118557611184611af1565b5b036111bc576040517ff645eedf00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b600260038111156111d0576111cf611af1565b5b8260038111156111e3576111e2611af1565b5b0361122757805f1c6040517ffce698f700000000000000000000000000000000000000000000000000000000815260040161121e91906114f5565b60405180910390fd5b60038081111561123a57611239611af1565b5b82600381111561124d5761124c611af1565b5b0361128f57806040517fd78bce0c00000000000000000000000000000000000000000000000000000000815260040161128691906115aa565b60405180910390fd5b5b5050565b60605f6112a083611306565b90505f602067ffffffffffffffff8111156112be576112bd6118fc565b5b6040519080825280601f01601f1916602001820160405280156112f05781602001600182028036833780820191505090505b5090508181528360208201528092505050919050565b5f5f60ff835f1c169050601f81111561134b576040517fb3512b0c00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b80915050919050565b5f81519050919050565b5f82825260208201905092915050565b8281835e5f83830152505050565b5f601f19601f8301169050919050565b5f61139682611354565b6113a0818561135e565b93506113b081856020860161136e565b6113b98161137c565b840191505092915050565b5f6020820190508181035f8301526113dc818461138c565b905092915050565b5f5ffd5b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f611411826113e8565b9050919050565b61142181611407565b811461142b575f5ffd5b50565b5f8135905061143c81611418565b92915050565b5f819050919050565b61145481611442565b811461145e575f5ffd5b50565b5f8135905061146f8161144b565b92915050565b5f5f6040838503121561148b5761148a6113e4565b5b5f6114988582860161142e565b92505060206114a985828601611461565b9150509250929050565b5f8115159050919050565b6114c7816114b3565b82525050565b5f6020820190506114e05f8301846114be565b92915050565b6114ef81611442565b82525050565b5f6020820190506115085f8301846114e6565b92915050565b5f5f5f60608486031215611525576115246113e4565b5b5f6115328682870161142e565b93505060206115438682870161142e565b925050604061155486828701611461565b9150509250925092565b5f60ff82169050919050565b6115738161155e565b82525050565b5f60208201905061158c5f83018461156a565b92915050565b5f819050919050565b6115a481611592565b82525050565b5f6020820190506115bd5f83018461159b565b92915050565b5f602082840312156115d8576115d76113e4565b5b5f6115e58482850161142e565b91505092915050565b5f7fff0000000000000000000000000000000000000000000000000000000000000082169050919050565b611622816115ee565b82525050565b61163181611407565b82525050565b5f81519050919050565b5f82825260208201905092915050565b5f819050602082019050919050565b61166981611442565b82525050565b5f61167a8383611660565b60208301905092915050565b5f602082019050919050565b5f61169c82611637565b6116a68185611641565b93506116b183611651565b805f5b838110156116e15781516116c8888261166f565b97506116d383611686565b9250506001810190506116b4565b5085935050505092915050565b5f60e0820190506117015f83018a611619565b8181036020830152611713818961138c565b90508181036040830152611727818861138c565b905061173660608301876114e6565b6117436080830186611628565b61175060a083018561159b565b81810360c08301526117628184611692565b905098975050505050505050565b6117798161155e565b8114611783575f5ffd5b50565b5f8135905061179481611770565b92915050565b6117a381611592565b81146117ad575f5ffd5b50565b5f813590506117be8161179a565b92915050565b5f5f5f5f5f5f5f60e0888a0312156117df576117de6113e4565b5b5f6117ec8a828b0161142e565b97505060206117fd8a828b0161142e565b965050604061180e8a828b01611461565b955050606061181f8a828b01611461565b94505060806118308a828b01611786565b93505060a06118418a828b016117b0565b92505060c06118528a828b016117b0565b91505092959891949750929550565b5f5f60408385031215611877576118766113e4565b5b5f6118848582860161142e565b92505060206118958582860161142e565b9150509250929050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b5f60028204905060018216806118e357607f821691505b6020821081036118f6576118f561189f565b5b50919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b5f60c08201905061193c5f83018961159b565b6119496020830188611628565b6119566040830187611628565b61196360608301866114e6565b61197060808301856114e6565b61197d60a08301846114e6565b979650505050505050565b5f60408201905061199b5f830185611628565b6119a86020830184611628565b9392505050565b5f6060820190506119c25f830186611628565b6119cf60208301856114e6565b6119dc60408301846114e6565b949350505050565b5f6020820190506119f75f830184611628565b92915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f611a3482611442565b9150611a3f83611442565b9250828201905080821115611a5757611a566119fd565b5b92915050565b5f60a082019050611a705f83018861159b565b611a7d602083018761159b565b611a8a604083018661159b565b611a9760608301856114e6565b611aa46080830184611628565b9695505050505050565b5f608082019050611ac15f83018761159b565b611ace602083018661156a565b611adb604083018561159b565b611ae8606083018461159b565b95945050505050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602160045260245ffdfea264697066735822122005dae7b5e5b9f5274b5c92a6d241536503b466e79c82f2b1de01dab747bd4a0c64736f6c634300081c0033
Deployed Bytecode
0x608060405234801561000f575f5ffd5b50600436106100cd575f3560e01c806370a082311161008a57806395d89b411161006457806395d89b411461022d578063a9059cbb1461024b578063d505accf1461027b578063dd62ed3e14610297576100cd565b806370a08231146101a95780637ecebe00146101d957806384b0196e14610209576100cd565b806306fdde03146100d1578063095ea7b3146100ef57806318160ddd1461011f57806323b872dd1461013d578063313ce5671461016d5780633644e5151461018b575b5f5ffd5b6100d96102c7565b6040516100e691906113c4565b60405180910390f35b61010960048036038101906101049190611475565b610357565b60405161011691906114cd565b60405180910390f35b610127610379565b60405161013491906114f5565b60405180910390f35b6101576004803603810190610152919061150e565b610382565b60405161016491906114cd565b60405180910390f35b6101756103b0565b6040516101829190611579565b60405180910390f35b6101936103b8565b6040516101a091906115aa565b60405180910390f35b6101c360048036038101906101be91906115c3565b6103c6565b6040516101d091906114f5565b60405180910390f35b6101f360048036038101906101ee91906115c3565b61040b565b60405161020091906114f5565b60405180910390f35b61021161041c565b60405161022497969594939291906116ee565b60405180910390f35b6102356104c1565b60405161024291906113c4565b60405180910390f35b61026560048036038101906102609190611475565b610551565b60405161027291906114cd565b60405180910390f35b610295600480360381019061029091906117c4565b610573565b005b6102b160048036038101906102ac9190611861565b6106b8565b6040516102be91906114f5565b60405180910390f35b6060600380546102d6906118cc565b80601f0160208091040260200160405190810160405280929190818152602001828054610302906118cc565b801561034d5780601f106103245761010080835404028352916020019161034d565b820191905f5260205f20905b81548152906001019060200180831161033057829003601f168201915b5050505050905090565b5f5f61036161073a565b905061036e818585610741565b600191505092915050565b5f600254905090565b5f5f61038c61073a565b9050610399858285610753565b6103a48585856107e5565b60019150509392505050565b5f6012905090565b5f6103c16108d5565b905090565b5f5f5f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20549050919050565b5f6104158261098b565b9050919050565b5f6060805f5f5f606061042d6109d1565b610435610a0c565b46305f5f1b5f67ffffffffffffffff811115610454576104536118fc565b5b6040519080825280602002602001820160405280156104825781602001602082028036833780820191505090505b507f0f00000000000000000000000000000000000000000000000000000000000000959493929190965096509650965096509650965090919293949596565b6060600480546104d0906118cc565b80601f01602080910402602001604051908101604052809291908181526020018280546104fc906118cc565b80156105475780601f1061051e57610100808354040283529160200191610547565b820191905f5260205f20905b81548152906001019060200180831161052a57829003601f168201915b5050505050905090565b5f5f61055b61073a565b90506105688185856107e5565b600191505092915050565b834211156105b857836040517f627913020000000000000000000000000000000000000000000000000000000081526004016105af91906114f5565b60405180910390fd5b5f7f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c98888886105e68c610a47565b896040516020016105fc96959493929190611929565b6040516020818303038152906040528051906020012090505f61061e82610a9a565b90505f61062d82878787610ab3565b90508973ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff16146106a157808a6040517f4b800e46000000000000000000000000000000000000000000000000000000008152600401610698929190611988565b60405180910390fd5b6106ac8a8a8a610741565b50505050505050505050565b5f60015f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905092915050565b5f33905090565b61074e8383836001610ae1565b505050565b5f61075e84846106b8565b90507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff81146107df57818110156107d0578281836040517ffb8f41b20000000000000000000000000000000000000000000000000000000081526004016107c7939291906119af565b60405180910390fd5b6107de84848484035f610ae1565b5b50505050565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1603610855575f6040517f96c6fd1e00000000000000000000000000000000000000000000000000000000815260040161084c91906119e4565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff16036108c5575f6040517fec442f050000000000000000000000000000000000000000000000000000000081526004016108bc91906119e4565b60405180910390fd5b6108d0838383610cb0565b505050565b5f7f000000000000000000000000ca7f35e9209d90769b65bc4984efb7d7ce02225973ffffffffffffffffffffffffffffffffffffffff163073ffffffffffffffffffffffffffffffffffffffff1614801561095057507f000000000000000000000000000000000000000000000000000000000000009246145b1561097d577f791cf82ad5504a8c2933bdab94127f6a1d3bff4f15b5487c4768ddf6752bba2d9050610988565b610985610ec9565b90505b90565b5f60075f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20549050919050565b6060610a0760057f5761766573000000000000000000000000000000000000000000000000000005610f5e90919063ffffffff16565b905090565b6060610a4260067f3100000000000000000000000000000000000000000000000000000000000001610f5e90919063ffffffff16565b905090565b5f60075f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f815480929190600101919050559050919050565b5f610aac610aa66108d5565b8361100b565b9050919050565b5f5f5f5f610ac38888888861104b565b925092509250610ad38282611132565b829350505050949350505050565b5f73ffffffffffffffffffffffffffffffffffffffff168473ffffffffffffffffffffffffffffffffffffffff1603610b51575f6040517fe602df05000000000000000000000000000000000000000000000000000000008152600401610b4891906119e4565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1603610bc1575f6040517f94280d62000000000000000000000000000000000000000000000000000000008152600401610bb891906119e4565b60405180910390fd5b8160015f8673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055508015610caa578273ffffffffffffffffffffffffffffffffffffffff168473ffffffffffffffffffffffffffffffffffffffff167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92584604051610ca191906114f5565b60405180910390a35b50505050565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1603610d00578060025f828254610cf49190611a2a565b92505081905550610dce565b5f5f5f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905081811015610d89578381836040517fe450d38c000000000000000000000000000000000000000000000000000000008152600401610d80939291906119af565b60405180910390fd5b8181035f5f8673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2081905550505b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603610e15578060025f8282540392505081905550610e5f565b805f5f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f82825401925050819055505b8173ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef83604051610ebc91906114f5565b60405180910390a3505050565b5f7f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f7f3f4e8d360a255d8b6d452e8197aa4eea6c2e102e0a735349071c1f520423fabf7fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc64630604051602001610f43959493929190611a5d565b60405160208183030381529060405280519060200120905090565b606060ff5f1b8314610f7a57610f7383611294565b9050611005565b818054610f86906118cc565b80601f0160208091040260200160405190810160405280929190818152602001828054610fb2906118cc565b8015610ffd5780601f10610fd457610100808354040283529160200191610ffd565b820191905f5260205f20905b815481529060010190602001808311610fe057829003601f168201915b505050505090505b92915050565b5f6040517f190100000000000000000000000000000000000000000000000000000000000081528360028201528260228201526042812091505092915050565b5f5f5f7f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0845f1c1115611087575f600385925092509250611128565b5f6001888888886040515f81526020016040526040516110aa9493929190611aae565b6020604051602081039080840390855afa1580156110ca573d5f5f3e3d5ffd5b5050506020604051035190505f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff160361111b575f60015f5f1b93509350935050611128565b805f5f5f1b935093509350505b9450945094915050565b5f600381111561114557611144611af1565b5b82600381111561115857611157611af1565b5b0315611290576001600381111561117257611171611af1565b5b82600381111561118557611184611af1565b5b036111bc576040517ff645eedf00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b600260038111156111d0576111cf611af1565b5b8260038111156111e3576111e2611af1565b5b0361122757805f1c6040517ffce698f700000000000000000000000000000000000000000000000000000000815260040161121e91906114f5565b60405180910390fd5b60038081111561123a57611239611af1565b5b82600381111561124d5761124c611af1565b5b0361128f57806040517fd78bce0c00000000000000000000000000000000000000000000000000000000815260040161128691906115aa565b60405180910390fd5b5b5050565b60605f6112a083611306565b90505f602067ffffffffffffffff8111156112be576112bd6118fc565b5b6040519080825280601f01601f1916602001820160405280156112f05781602001600182028036833780820191505090505b5090508181528360208201528092505050919050565b5f5f60ff835f1c169050601f81111561134b576040517fb3512b0c00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b80915050919050565b5f81519050919050565b5f82825260208201905092915050565b8281835e5f83830152505050565b5f601f19601f8301169050919050565b5f61139682611354565b6113a0818561135e565b93506113b081856020860161136e565b6113b98161137c565b840191505092915050565b5f6020820190508181035f8301526113dc818461138c565b905092915050565b5f5ffd5b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f611411826113e8565b9050919050565b61142181611407565b811461142b575f5ffd5b50565b5f8135905061143c81611418565b92915050565b5f819050919050565b61145481611442565b811461145e575f5ffd5b50565b5f8135905061146f8161144b565b92915050565b5f5f6040838503121561148b5761148a6113e4565b5b5f6114988582860161142e565b92505060206114a985828601611461565b9150509250929050565b5f8115159050919050565b6114c7816114b3565b82525050565b5f6020820190506114e05f8301846114be565b92915050565b6114ef81611442565b82525050565b5f6020820190506115085f8301846114e6565b92915050565b5f5f5f60608486031215611525576115246113e4565b5b5f6115328682870161142e565b93505060206115438682870161142e565b925050604061155486828701611461565b9150509250925092565b5f60ff82169050919050565b6115738161155e565b82525050565b5f60208201905061158c5f83018461156a565b92915050565b5f819050919050565b6115a481611592565b82525050565b5f6020820190506115bd5f83018461159b565b92915050565b5f602082840312156115d8576115d76113e4565b5b5f6115e58482850161142e565b91505092915050565b5f7fff0000000000000000000000000000000000000000000000000000000000000082169050919050565b611622816115ee565b82525050565b61163181611407565b82525050565b5f81519050919050565b5f82825260208201905092915050565b5f819050602082019050919050565b61166981611442565b82525050565b5f61167a8383611660565b60208301905092915050565b5f602082019050919050565b5f61169c82611637565b6116a68185611641565b93506116b183611651565b805f5b838110156116e15781516116c8888261166f565b97506116d383611686565b9250506001810190506116b4565b5085935050505092915050565b5f60e0820190506117015f83018a611619565b8181036020830152611713818961138c565b90508181036040830152611727818861138c565b905061173660608301876114e6565b6117436080830186611628565b61175060a083018561159b565b81810360c08301526117628184611692565b905098975050505050505050565b6117798161155e565b8114611783575f5ffd5b50565b5f8135905061179481611770565b92915050565b6117a381611592565b81146117ad575f5ffd5b50565b5f813590506117be8161179a565b92915050565b5f5f5f5f5f5f5f60e0888a0312156117df576117de6113e4565b5b5f6117ec8a828b0161142e565b97505060206117fd8a828b0161142e565b965050604061180e8a828b01611461565b955050606061181f8a828b01611461565b94505060806118308a828b01611786565b93505060a06118418a828b016117b0565b92505060c06118528a828b016117b0565b91505092959891949750929550565b5f5f60408385031215611877576118766113e4565b5b5f6118848582860161142e565b92505060206118958582860161142e565b9150509250929050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b5f60028204905060018216806118e357607f821691505b6020821081036118f6576118f561189f565b5b50919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b5f60c08201905061193c5f83018961159b565b6119496020830188611628565b6119566040830187611628565b61196360608301866114e6565b61197060808301856114e6565b61197d60a08301846114e6565b979650505050505050565b5f60408201905061199b5f830185611628565b6119a86020830184611628565b9392505050565b5f6060820190506119c25f830186611628565b6119cf60208301856114e6565b6119dc60408301846114e6565b949350505050565b5f6020820190506119f75f830184611628565b92915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f611a3482611442565b9150611a3f83611442565b9250828201905080821115611a5757611a566119fd565b5b92915050565b5f60a082019050611a705f83018861159b565b611a7d602083018761159b565b611a8a604083018661159b565b611a9760608301856114e6565b611aa46080830184611628565b9695505050505050565b5f608082019050611ac15f83018761159b565b611ace602083018661156a565b611adb604083018561159b565b611ae8606083018461159b565b95945050505050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602160045260245ffdfea264697066735822122005dae7b5e5b9f5274b5c92a6d241536503b466e79c82f2b1de01dab747bd4a0c64736f6c634300081c0033
Deployed Bytecode Sourcemap
132356:171:0:-:0;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;12977:91;;;:::i;:::-;;;;;;;:::i;:::-;;;;;;;;15270:190;;;;;;;;;;;;;:::i;:::-;;:::i;:::-;;;;;;;:::i;:::-;;;;;;;;14079:99;;;:::i;:::-;;;;;;;:::i;:::-;;;;;;;;16070:249;;;;;;;;;;;;;:::i;:::-;;:::i;:::-;;;;;;;:::i;:::-;;;;;;;;13930:84;;;:::i;:::-;;;;;;;:::i;:::-;;;;;;;;132167:114;;;:::i;:::-;;;;;;;:::i;:::-;;;;;;;;14241:118;;;;;;;;;;;;;:::i;:::-;;:::i;:::-;;;;;;;:::i;:::-;;;;;;;;131909:145;;;;;;;;;;;;;:::i;:::-;;:::i;:::-;;;;;;;:::i;:::-;;;;;;;;126565:580;;;:::i;:::-;;;;;;;;;;;;;:::i;:::-;;;;;;;;13187:95;;;:::i;:::-;;;;;;;:::i;:::-;;;;;;;;14564:182;;;;;;;;;;;;;:::i;:::-;;:::i;:::-;;;;;;;:::i;:::-;;;;;;;;131155:695;;;;;;;;;;;;;:::i;:::-;;:::i;:::-;;14809:142;;;;;;;;;;;;;:::i;:::-;;:::i;:::-;;;;;;;:::i;:::-;;;;;;;;12977:91;13022:13;13055:5;13048:12;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;12977:91;:::o;15270:190::-;15343:4;15360:13;15376:12;:10;:12::i;:::-;15360:28;;15399:31;15408:5;15415:7;15424:5;15399:8;:31::i;:::-;15448:4;15441:11;;;15270:190;;;;:::o;14079:99::-;14131:7;14158:12;;14151:19;;14079:99;:::o;16070:249::-;16157:4;16174:15;16192:12;:10;:12::i;:::-;16174:30;;16215:37;16231:4;16237:7;16246:5;16215:15;:37::i;:::-;16263:26;16273:4;16279:2;16283:5;16263:9;:26::i;:::-;16307:4;16300:11;;;16070:249;;;;;:::o;13930:84::-;13979:5;14004:2;13997:9;;13930:84;:::o;132167:114::-;132226:7;132253:20;:18;:20::i;:::-;132246:27;;132167:114;:::o;14241:118::-;14306:7;14333:9;:18;14343:7;14333:18;;;;;;;;;;;;;;;;14326:25;;14241:118;;;:::o;131909:145::-;132000:7;132027:19;132040:5;132027:12;:19::i;:::-;132020:26;;131909:145;;;:::o;126565:580::-;126668:13;126696:18;126729:21;126765:15;126795:25;126835:12;126862:27;126970:13;:11;:13::i;:::-;126998:16;:14;:16::i;:::-;127029:13;127065:4;127093:1;127085:10;;127124:1;127110:16;;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;126917:220;;;;;;;;;;;;;;;;;;;;;126565:580;;;;;;;:::o;13187:95::-;13234:13;13267:7;13260:14;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;13187:95;:::o;14564:182::-;14633:4;14650:13;14666:12;:10;:12::i;:::-;14650:28;;14689:27;14699:5;14706:2;14710:5;14689:9;:27::i;:::-;14734:4;14727:11;;;14564:182;;;;:::o;131155:695::-;131385:8;131367:15;:26;131363:99;;;131441:8;131417:33;;;;;;;;;;;:::i;:::-;;;;;;;;131363:99;131474:18;130474:95;131533:5;131540:7;131549:5;131556:16;131566:5;131556:9;:16::i;:::-;131574:8;131505:78;;;;;;;;;;;;;:::i;:::-;;;;;;;;;;;;;131495:89;;;;;;131474:110;;131597:12;131612:28;131629:10;131612:16;:28::i;:::-;131597:43;;131653:14;131670:28;131684:4;131690:1;131693;131696;131670:13;:28::i;:::-;131653:45;;131723:5;131713:15;;:6;:15;;;131709:90;;131773:6;131781:5;131752:35;;;;;;;;;;;;:::i;:::-;;;;;;;;131709:90;131811:31;131820:5;131827:7;131836:5;131811:8;:31::i;:::-;131352:498;;;131155:695;;;;;;;:::o;14809:142::-;14889:7;14916:11;:18;14928:5;14916:18;;;;;;;;;;;;;;;:27;14935:7;14916:27;;;;;;;;;;;;;;;;14909:34;;14809:142;;;;:::o;4276:98::-;4329:7;4356:10;4349:17;;4276:98;:::o;20129:130::-;20214:37;20223:5;20230:7;20239:5;20246:4;20214:8;:37::i;:::-;20129:130;;;:::o;21861:487::-;21961:24;21988:25;21998:5;22005:7;21988:9;:25::i;:::-;21961:52;;22048:17;22028:16;:37;22024:317;;22105:5;22086:16;:24;22082:132;;;22165:7;22174:16;22192:5;22138:60;;;;;;;;;;;;;:::i;:::-;;;;;;;;22082:132;22257:57;22266:5;22273:7;22301:5;22282:16;:24;22308:5;22257:8;:57::i;:::-;22024:317;21950:398;21861:487;;;:::o;16704:308::-;16804:1;16788:18;;:4;:18;;;16784:88;;16857:1;16830:30;;;;;;;;;;;:::i;:::-;;;;;;;;16784:88;16900:1;16886:16;;:2;:16;;;16882:88;;16955:1;16926:32;;;;;;;;;;;:::i;:::-;;;;;;;;16882:88;16980:24;16988:4;16994:2;16998:5;16980:7;:24::i;:::-;16704:308;;;:::o;125232:268::-;125285:7;125326:11;125309:28;;125317:4;125309:28;;;:63;;;;;125358:14;125341:13;:31;125309:63;125305:188;;;125396:22;125389:29;;;;125305:188;125458:23;:21;:23::i;:::-;125451:30;;125232:268;;:::o;128659:109::-;128719:7;128746;:14;128754:5;128746:14;;;;;;;;;;;;;;;;128739:21;;128659:109;;;:::o;127474:128::-;127520:13;127553:41;127580:13;127553:5;:26;;:41;;;;:::i;:::-;127546:48;;127474:128;:::o;127937:137::-;127986:13;128019:47;128049:16;128019:8;:29;;:47;;;;:::i;:::-;128012:54;;127937:137;:::o;128889:402::-;128949:7;129256;:14;129264:5;129256:14;;;;;;;;;;;;;;;;:16;;;;;;;;;;;;129249:23;;128889:402;;;:::o;126331:178::-;126408:7;126435:66;126468:20;:18;:20::i;:::-;126490:10;126435:32;:66::i;:::-;126428:73;;126331:178;;;:::o;33377:264::-;33462:7;33483:17;33502:18;33522:16;33542:25;33553:4;33559:1;33562;33565;33542:10;:25::i;:::-;33482:85;;;;;;33578:28;33590:5;33597:8;33578:11;:28::i;:::-;33624:9;33617:16;;;;;33377:264;;;;;;:::o;21126:443::-;21256:1;21239:19;;:5;:19;;;21235:91;;21311:1;21282:32;;;;;;;;;;;:::i;:::-;;;;;;;;21235:91;21359:1;21340:21;;:7;:21;;;21336:92;;21413:1;21385:31;;;;;;;;;;;:::i;:::-;;;;;;;;21336:92;21468:5;21438:11;:18;21450:5;21438:18;;;;;;;;;;;;;;;:27;21457:7;21438:27;;;;;;;;;;;;;;;:35;;;;21488:9;21484:78;;;21535:7;21519:31;;21528:5;21519:31;;;21544:5;21519:31;;;;;;:::i;:::-;;;;;;;;21484:78;21126:443;;;;:::o;17336:1135::-;17442:1;17426:18;;:4;:18;;;17422:552;;17580:5;17564:12;;:21;;;;;;;:::i;:::-;;;;;;;;17422:552;;;17618:19;17640:9;:15;17650:4;17640:15;;;;;;;;;;;;;;;;17618:37;;17688:5;17674:11;:19;17670:117;;;17746:4;17752:11;17765:5;17721:50;;;;;;;;;;;;;:::i;:::-;;;;;;;;17670:117;17942:5;17928:11;:19;17910:9;:15;17920:4;17910:15;;;;;;;;;;;;;;;:37;;;;17603:371;17422:552;18004:1;17990:16;;:2;:16;;;17986:435;;18172:5;18156:12;;:21;;;;;;;;;;;17986:435;;;18389:5;18372:9;:13;18382:2;18372:13;;;;;;;;;;;;;;;;:22;;;;;;;;;;;17986:435;18453:2;18438:25;;18447:4;18438:25;;;18457:5;18438:25;;;;;;:::i;:::-;;;;;;;;17336:1135;;;:::o;125508:181::-;125563:7;123424:95;125622:11;125635:14;125651:13;125674:4;125600:80;;;;;;;;;;;;:::i;:::-;;;;;;;;;;;;;125590:91;;;;;;125583:98;;125508:181;:::o;119701:273::-;119795:13;117675:66;119854:17;;119844:5;119825:46;119821:146;;119895:15;119904:5;119895:8;:15::i;:::-;119888:22;;;;119821:146;119950:5;119943:12;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;119701:273;;;;;:::o;111521:382::-;111614:14;111698:4;111692:11;111729:10;111724:3;111717:23;111777:15;111770:4;111765:3;111761:14;111754:39;111830:10;111823:4;111818:3;111814:14;111807:34;111880:4;111875:3;111865:20;111855:30;;111666:230;111521:382;;;;:::o;31661:1577::-;31792:17;31811:16;31829:14;32756:66;32751:1;32743:10;;:79;32739:166;;;32855:1;32859:30;32891:1;32839:54;;;;;;;;32739:166;33002:14;33019:24;33029:4;33035:1;33038;33041;33019:24;;;;;;;;;;;;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;33002:41;;33076:1;33058:20;;:6;:20;;;33054:115;;33111:1;33115:29;33154:1;33146:10;;33095:62;;;;;;;;;33054:115;33189:6;33197:20;33227:1;33219:10;;33181:49;;;;;;;31661:1577;;;;;;;;;:::o;33779:542::-;33875:20;33866:29;;;;;;;;:::i;:::-;;:5;:29;;;;;;;;:::i;:::-;;;33862:452;33912:7;33862:452;33973:29;33964:38;;;;;;;;:::i;:::-;;:5;:38;;;;;;;;:::i;:::-;;;33960:354;;34026:23;;;;;;;;;;;;;;33960:354;34080:35;34071:44;;;;;;;;:::i;:::-;;:5;:44;;;;;;;;:::i;:::-;;;34067:247;;34175:8;34167:17;;34139:46;;;;;;;;;;;:::i;:::-;;;;;;;;34067:247;34216:30;34207:39;;;;;;;;:::i;:::-;;:5;:39;;;;;;;;:::i;:::-;;;34203:111;;34293:8;34270:32;;;;;;;;;;;:::i;:::-;;;;;;;;34203:111;33779:542;;;:::o;118384:387::-;118443:13;118469:11;118483:16;118494:4;118483:10;:16::i;:::-;118469:30;;118589:17;118620:2;118609:14;;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;118589:34;;118686:3;118681;118674:16;118727:4;118720;118715:3;118711:14;118704:28;118760:3;118753:10;;;;118384:387;;;:::o;118848:251::-;118909:7;118929:14;118982:4;118973;118946:33;;:40;118929:57;;119010:2;119001:6;:11;118997:71;;;119036:20;;;;;;;;;;;;;;118997:71;119085:6;119078:13;;;118848:251;;;:::o;7:99:1:-;59:6;93:5;87:12;77:22;;7:99;;;:::o;112:169::-;196:11;230:6;225:3;218:19;270:4;265:3;261:14;246:29;;112:169;;;;:::o;287:139::-;376:6;371:3;366;360:23;417:1;408:6;403:3;399:16;392:27;287:139;;;:::o;432:102::-;473:6;524:2;520:7;515:2;508:5;504:14;500:28;490:38;;432:102;;;:::o;540:377::-;628:3;656:39;689:5;656:39;:::i;:::-;711:71;775:6;770:3;711:71;:::i;:::-;704:78;;791:65;849:6;844:3;837:4;830:5;826:16;791:65;:::i;:::-;881:29;903:6;881:29;:::i;:::-;876:3;872:39;865:46;;632:285;540:377;;;;:::o;923:313::-;1036:4;1074:2;1063:9;1059:18;1051:26;;1123:9;1117:4;1113:20;1109:1;1098:9;1094:17;1087:47;1151:78;1224:4;1215:6;1151:78;:::i;:::-;1143:86;;923:313;;;;:::o;1323:117::-;1432:1;1429;1422:12;1569:126;1606:7;1646:42;1639:5;1635:54;1624:65;;1569:126;;;:::o;1701:96::-;1738:7;1767:24;1785:5;1767:24;:::i;:::-;1756:35;;1701:96;;;:::o;1803:122::-;1876:24;1894:5;1876:24;:::i;:::-;1869:5;1866:35;1856:63;;1915:1;1912;1905:12;1856:63;1803:122;:::o;1931:139::-;1977:5;2015:6;2002:20;1993:29;;2031:33;2058:5;2031:33;:::i;:::-;1931:139;;;;:::o;2076:77::-;2113:7;2142:5;2131:16;;2076:77;;;:::o;2159:122::-;2232:24;2250:5;2232:24;:::i;:::-;2225:5;2222:35;2212:63;;2271:1;2268;2261:12;2212:63;2159:122;:::o;2287:139::-;2333:5;2371:6;2358:20;2349:29;;2387:33;2414:5;2387:33;:::i;:::-;2287:139;;;;:::o;2432:474::-;2500:6;2508;2557:2;2545:9;2536:7;2532:23;2528:32;2525:119;;;2563:79;;:::i;:::-;2525:119;2683:1;2708:53;2753:7;2744:6;2733:9;2729:22;2708:53;:::i;:::-;2698:63;;2654:117;2810:2;2836:53;2881:7;2872:6;2861:9;2857:22;2836:53;:::i;:::-;2826:63;;2781:118;2432:474;;;;;:::o;2912:90::-;2946:7;2989:5;2982:13;2975:21;2964:32;;2912:90;;;:::o;3008:109::-;3089:21;3104:5;3089:21;:::i;:::-;3084:3;3077:34;3008:109;;:::o;3123:210::-;3210:4;3248:2;3237:9;3233:18;3225:26;;3261:65;3323:1;3312:9;3308:17;3299:6;3261:65;:::i;:::-;3123:210;;;;:::o;3339:118::-;3426:24;3444:5;3426:24;:::i;:::-;3421:3;3414:37;3339:118;;:::o;3463:222::-;3556:4;3594:2;3583:9;3579:18;3571:26;;3607:71;3675:1;3664:9;3660:17;3651:6;3607:71;:::i;:::-;3463:222;;;;:::o;3691:619::-;3768:6;3776;3784;3833:2;3821:9;3812:7;3808:23;3804:32;3801:119;;;3839:79;;:::i;:::-;3801:119;3959:1;3984:53;4029:7;4020:6;4009:9;4005:22;3984:53;:::i;:::-;3974:63;;3930:117;4086:2;4112:53;4157:7;4148:6;4137:9;4133:22;4112:53;:::i;:::-;4102:63;;4057:118;4214:2;4240:53;4285:7;4276:6;4265:9;4261:22;4240:53;:::i;:::-;4230:63;;4185:118;3691:619;;;;;:::o;4316:86::-;4351:7;4391:4;4384:5;4380:16;4369:27;;4316:86;;;:::o;4408:112::-;4491:22;4507:5;4491:22;:::i;:::-;4486:3;4479:35;4408:112;;:::o;4526:214::-;4615:4;4653:2;4642:9;4638:18;4630:26;;4666:67;4730:1;4719:9;4715:17;4706:6;4666:67;:::i;:::-;4526:214;;;;:::o;4746:77::-;4783:7;4812:5;4801:16;;4746:77;;;:::o;4829:118::-;4916:24;4934:5;4916:24;:::i;:::-;4911:3;4904:37;4829:118;;:::o;4953:222::-;5046:4;5084:2;5073:9;5069:18;5061:26;;5097:71;5165:1;5154:9;5150:17;5141:6;5097:71;:::i;:::-;4953:222;;;;:::o;5181:329::-;5240:6;5289:2;5277:9;5268:7;5264:23;5260:32;5257:119;;;5295:79;;:::i;:::-;5257:119;5415:1;5440:53;5485:7;5476:6;5465:9;5461:22;5440:53;:::i;:::-;5430:63;;5386:117;5181:329;;;;:::o;5516:149::-;5552:7;5592:66;5585:5;5581:78;5570:89;;5516:149;;;:::o;5671:115::-;5756:23;5773:5;5756:23;:::i;:::-;5751:3;5744:36;5671:115;;:::o;5792:118::-;5879:24;5897:5;5879:24;:::i;:::-;5874:3;5867:37;5792:118;;:::o;5916:114::-;5983:6;6017:5;6011:12;6001:22;;5916:114;;;:::o;6036:184::-;6135:11;6169:6;6164:3;6157:19;6209:4;6204:3;6200:14;6185:29;;6036:184;;;;:::o;6226:132::-;6293:4;6316:3;6308:11;;6346:4;6341:3;6337:14;6329:22;;6226:132;;;:::o;6364:108::-;6441:24;6459:5;6441:24;:::i;:::-;6436:3;6429:37;6364:108;;:::o;6478:179::-;6547:10;6568:46;6610:3;6602:6;6568:46;:::i;:::-;6646:4;6641:3;6637:14;6623:28;;6478:179;;;;:::o;6663:113::-;6733:4;6765;6760:3;6756:14;6748:22;;6663:113;;;:::o;6812:732::-;6931:3;6960:54;7008:5;6960:54;:::i;:::-;7030:86;7109:6;7104:3;7030:86;:::i;:::-;7023:93;;7140:56;7190:5;7140:56;:::i;:::-;7219:7;7250:1;7235:284;7260:6;7257:1;7254:13;7235:284;;;7336:6;7330:13;7363:63;7422:3;7407:13;7363:63;:::i;:::-;7356:70;;7449:60;7502:6;7449:60;:::i;:::-;7439:70;;7295:224;7282:1;7279;7275:9;7270:14;;7235:284;;;7239:14;7535:3;7528:10;;6936:608;;;6812:732;;;;:::o;7550:1215::-;7899:4;7937:3;7926:9;7922:19;7914:27;;7951:69;8017:1;8006:9;8002:17;7993:6;7951:69;:::i;:::-;8067:9;8061:4;8057:20;8052:2;8041:9;8037:18;8030:48;8095:78;8168:4;8159:6;8095:78;:::i;:::-;8087:86;;8220:9;8214:4;8210:20;8205:2;8194:9;8190:18;8183:48;8248:78;8321:4;8312:6;8248:78;:::i;:::-;8240:86;;8336:72;8404:2;8393:9;8389:18;8380:6;8336:72;:::i;:::-;8418:73;8486:3;8475:9;8471:19;8462:6;8418:73;:::i;:::-;8501;8569:3;8558:9;8554:19;8545:6;8501:73;:::i;:::-;8622:9;8616:4;8612:20;8606:3;8595:9;8591:19;8584:49;8650:108;8753:4;8744:6;8650:108;:::i;:::-;8642:116;;7550:1215;;;;;;;;;;:::o;8771:118::-;8842:22;8858:5;8842:22;:::i;:::-;8835:5;8832:33;8822:61;;8879:1;8876;8869:12;8822:61;8771:118;:::o;8895:135::-;8939:5;8977:6;8964:20;8955:29;;8993:31;9018:5;8993:31;:::i;:::-;8895:135;;;;:::o;9036:122::-;9109:24;9127:5;9109:24;:::i;:::-;9102:5;9099:35;9089:63;;9148:1;9145;9138:12;9089:63;9036:122;:::o;9164:139::-;9210:5;9248:6;9235:20;9226:29;;9264:33;9291:5;9264:33;:::i;:::-;9164:139;;;;:::o;9309:1199::-;9420:6;9428;9436;9444;9452;9460;9468;9517:3;9505:9;9496:7;9492:23;9488:33;9485:120;;;9524:79;;:::i;:::-;9485:120;9644:1;9669:53;9714:7;9705:6;9694:9;9690:22;9669:53;:::i;:::-;9659:63;;9615:117;9771:2;9797:53;9842:7;9833:6;9822:9;9818:22;9797:53;:::i;:::-;9787:63;;9742:118;9899:2;9925:53;9970:7;9961:6;9950:9;9946:22;9925:53;:::i;:::-;9915:63;;9870:118;10027:2;10053:53;10098:7;10089:6;10078:9;10074:22;10053:53;:::i;:::-;10043:63;;9998:118;10155:3;10182:51;10225:7;10216:6;10205:9;10201:22;10182:51;:::i;:::-;10172:61;;10126:117;10282:3;10309:53;10354:7;10345:6;10334:9;10330:22;10309:53;:::i;:::-;10299:63;;10253:119;10411:3;10438:53;10483:7;10474:6;10463:9;10459:22;10438:53;:::i;:::-;10428:63;;10382:119;9309:1199;;;;;;;;;;:::o;10514:474::-;10582:6;10590;10639:2;10627:9;10618:7;10614:23;10610:32;10607:119;;;10645:79;;:::i;:::-;10607:119;10765:1;10790:53;10835:7;10826:6;10815:9;10811:22;10790:53;:::i;:::-;10780:63;;10736:117;10892:2;10918:53;10963:7;10954:6;10943:9;10939:22;10918:53;:::i;:::-;10908:63;;10863:118;10514:474;;;;;:::o;10994:180::-;11042:77;11039:1;11032:88;11139:4;11136:1;11129:15;11163:4;11160:1;11153:15;11180:320;11224:6;11261:1;11255:4;11251:12;11241:22;;11308:1;11302:4;11298:12;11329:18;11319:81;;11385:4;11377:6;11373:17;11363:27;;11319:81;11447:2;11439:6;11436:14;11416:18;11413:38;11410:84;;11466:18;;:::i;:::-;11410:84;11231:269;11180:320;;;:::o;11506:180::-;11554:77;11551:1;11544:88;11651:4;11648:1;11641:15;11675:4;11672:1;11665:15;11692:775;11925:4;11963:3;11952:9;11948:19;11940:27;;11977:71;12045:1;12034:9;12030:17;12021:6;11977:71;:::i;:::-;12058:72;12126:2;12115:9;12111:18;12102:6;12058:72;:::i;:::-;12140;12208:2;12197:9;12193:18;12184:6;12140:72;:::i;:::-;12222;12290:2;12279:9;12275:18;12266:6;12222:72;:::i;:::-;12304:73;12372:3;12361:9;12357:19;12348:6;12304:73;:::i;:::-;12387;12455:3;12444:9;12440:19;12431:6;12387:73;:::i;:::-;11692:775;;;;;;;;;:::o;12473:332::-;12594:4;12632:2;12621:9;12617:18;12609:26;;12645:71;12713:1;12702:9;12698:17;12689:6;12645:71;:::i;:::-;12726:72;12794:2;12783:9;12779:18;12770:6;12726:72;:::i;:::-;12473:332;;;;;:::o;12811:442::-;12960:4;12998:2;12987:9;12983:18;12975:26;;13011:71;13079:1;13068:9;13064:17;13055:6;13011:71;:::i;:::-;13092:72;13160:2;13149:9;13145:18;13136:6;13092:72;:::i;:::-;13174;13242:2;13231:9;13227:18;13218:6;13174:72;:::i;:::-;12811:442;;;;;;:::o;13259:222::-;13352:4;13390:2;13379:9;13375:18;13367:26;;13403:71;13471:1;13460:9;13456:17;13447:6;13403:71;:::i;:::-;13259:222;;;;:::o;13487:180::-;13535:77;13532:1;13525:88;13632:4;13629:1;13622:15;13656:4;13653:1;13646:15;13673:191;13713:3;13732:20;13750:1;13732:20;:::i;:::-;13727:25;;13766:20;13784:1;13766:20;:::i;:::-;13761:25;;13809:1;13806;13802:9;13795:16;;13830:3;13827:1;13824:10;13821:36;;;13837:18;;:::i;:::-;13821:36;13673:191;;;;:::o;13870:664::-;14075:4;14113:3;14102:9;14098:19;14090:27;;14127:71;14195:1;14184:9;14180:17;14171:6;14127:71;:::i;:::-;14208:72;14276:2;14265:9;14261:18;14252:6;14208:72;:::i;:::-;14290;14358:2;14347:9;14343:18;14334:6;14290:72;:::i;:::-;14372;14440:2;14429:9;14425:18;14416:6;14372:72;:::i;:::-;14454:73;14522:3;14511:9;14507:19;14498:6;14454:73;:::i;:::-;13870:664;;;;;;;;:::o;14540:545::-;14713:4;14751:3;14740:9;14736:19;14728:27;;14765:71;14833:1;14822:9;14818:17;14809:6;14765:71;:::i;:::-;14846:68;14910:2;14899:9;14895:18;14886:6;14846:68;:::i;:::-;14924:72;14992:2;14981:9;14977:18;14968:6;14924:72;:::i;:::-;15006;15074:2;15063:9;15059:18;15050:6;15006:72;:::i;:::-;14540:545;;;;;;;:::o;15091:180::-;15139:77;15136:1;15129:88;15236:4;15233:1;15226:15;15260:4;15257:1;15250:15
Swarm Source
ipfs://05dae7b5e5b9f5274b5c92a6d241536503b466e79c82f2b1de01dab747bd4a0c
[ Download: CSV Export ]
[ Download: CSV Export ]
A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.