Token

Hello Sonic! (HSonic)

Overview

Max Total Supply

2,000.129326333436876447 HSonic

Holders

5

Market

Price

-

Onchain Market Cap

-

Circulating Supply Market Cap

-

Other Info

Token Contract (WITH 18 Decimals)

Filtered by Token Holder
Sonic: SFC contract (Proxy)
Balance
1,000 HSonic

Value
$0.00
0xfc00face00000000000000000000000000000000
Loading...
Loading
Loading...
Loading
Loading...
Loading

Click here to update the token information / general information

Contract Source Code Verified (Exact Match)

Contract Name:
HelloSonic

Compiler Version
v0.8.22+commit.4fc1097e

Optimization Enabled:
No with 200 runs

Other Settings:
default evmVersion, MIT license

Contract Source Code (Solidity)

/**
 *Submitted for verification at SonicScan.org on 2024-12-11
*/

// File: @openzeppelin/[email protected]/token/ERC20/IERC20.sol


// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

// File: @openzeppelin/[email protected]/token/ERC20/extensions/IERC20Metadata.sol


// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.20;


/**
 * @dev Interface for the optional metadata functions from the ERC-20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

// File: @openzeppelin/[email protected]/utils/Context.sol


// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// File: @openzeppelin/[email protected]/interfaces/draft-IERC6093.sol


// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;

/**
 * @dev Standard ERC-20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC-721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC-1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}

// File: @openzeppelin/[email protected]/token/ERC20/ERC20.sol


// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.20;





/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC-20
 * applications.
 */
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
    mapping(address account => uint256) private _balances;

    mapping(address account => mapping(address spender => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `value`.
     */
    function transfer(address to, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, value);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, value);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Skips emitting an {Approval} event indicating an allowance update. This is not
     * required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `value`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `value`.
     */
    function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, value);
        _transfer(from, to, value);
        return true;
    }

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _transfer(address from, address to, uint256 value) internal {
        if (from == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        if (to == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(from, to, value);
    }

    /**
     * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
     * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
     * this function.
     *
     * Emits a {Transfer} event.
     */
    function _update(address from, address to, uint256 value) internal virtual {
        if (from == address(0)) {
            // Overflow check required: The rest of the code assumes that totalSupply never overflows
            _totalSupply += value;
        } else {
            uint256 fromBalance = _balances[from];
            if (fromBalance < value) {
                revert ERC20InsufficientBalance(from, fromBalance, value);
            }
            unchecked {
                // Overflow not possible: value <= fromBalance <= totalSupply.
                _balances[from] = fromBalance - value;
            }
        }

        if (to == address(0)) {
            unchecked {
                // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                _totalSupply -= value;
            }
        } else {
            unchecked {
                // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                _balances[to] += value;
            }
        }

        emit Transfer(from, to, value);
    }

    /**
     * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
     * Relies on the `_update` mechanism
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _mint(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(address(0), account, value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
     * Relies on the `_update` mechanism.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead
     */
    function _burn(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        _update(account, address(0), value);
    }

    /**
     * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address owner, address spender, uint256 value) internal {
        _approve(owner, spender, value, true);
    }

    /**
     * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
     *
     * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
     * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
     * `Approval` event during `transferFrom` operations.
     *
     * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
     * true using the following override:
     *
     * ```solidity
     * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
     *     super._approve(owner, spender, value, true);
     * }
     * ```
     *
     * Requirements are the same as {_approve}.
     */
    function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
        if (owner == address(0)) {
            revert ERC20InvalidApprover(address(0));
        }
        if (spender == address(0)) {
            revert ERC20InvalidSpender(address(0));
        }
        _allowances[owner][spender] = value;
        if (emitEvent) {
            emit Approval(owner, spender, value);
        }
    }

    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `value`.
     *
     * Does not update the allowance value in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Does not emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            if (currentAllowance < value) {
                revert ERC20InsufficientAllowance(spender, currentAllowance, value);
            }
            unchecked {
                _approve(owner, spender, currentAllowance - value, false);
            }
        }
    }
}

// File: @openzeppelin/[email protected]/token/ERC20/extensions/ERC20Burnable.sol


// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/ERC20Burnable.sol)

pragma solidity ^0.8.20;



/**
 * @dev Extension of {ERC20} that allows token holders to destroy both their own
 * tokens and those that they have an allowance for, in a way that can be
 * recognized off-chain (via event analysis).
 */
abstract contract ERC20Burnable is Context, ERC20 {
    /**
     * @dev Destroys a `value` amount of tokens from the caller.
     *
     * See {ERC20-_burn}.
     */
    function burn(uint256 value) public virtual {
        _burn(_msgSender(), value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, deducting from
     * the caller's allowance.
     *
     * See {ERC20-_burn} and {ERC20-allowance}.
     *
     * Requirements:
     *
     * - the caller must have allowance for ``accounts``'s tokens of at least
     * `value`.
     */
    function burnFrom(address account, uint256 value) public virtual {
        _spendAllowance(account, _msgSender(), value);
        _burn(account, value);
    }
}

// File: @openzeppelin/[email protected]/token/ERC20/extensions/IERC20Permit.sol


// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

// File: @openzeppelin/[email protected]/utils/cryptography/ECDSA.sol


// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.20;

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS
    }

    /**
     * @dev The signature derives the `address(0)`.
     */
    error ECDSAInvalidSignature();

    /**
     * @dev The signature has an invalid length.
     */
    error ECDSAInvalidSignatureLength(uint256 length);

    /**
     * @dev The signature has an S value that is in the upper half order.
     */
    error ECDSAInvalidSignatureS(bytes32 s);

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
     * return address(0) without also returning an error description. Errors are documented using an enum (error type)
     * and a bytes32 providing additional information about the error.
     *
     * If no error is returned, then the address can be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     */
    function tryRecover(
        bytes32 hash,
        bytes memory signature
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            assembly ("memory-safe") {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
     */
    function tryRecover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        unchecked {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            // We do not check for an overflow here since the shift operation results in 0 or 1.
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS, s);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature, bytes32(0));
        }

        return (signer, RecoverError.NoError, bytes32(0));
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
     */
    function _throwError(RecoverError error, bytes32 errorArg) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert ECDSAInvalidSignature();
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert ECDSAInvalidSignatureLength(uint256(errorArg));
        } else if (error == RecoverError.InvalidSignatureS) {
            revert ECDSAInvalidSignatureS(errorArg);
        }
    }
}

// File: @openzeppelin/[email protected]/utils/Panic.sol


// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

// File: @openzeppelin/[email protected]/utils/math/SafeCast.sol


// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

// File: @openzeppelin/[email protected]/utils/math/Math.sol


// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;



/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
            // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2²⁵⁶ + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= prod1) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 exp;
        unchecked {
            exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
            value >>= exp;
            result += exp;

            exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
            value >>= exp;
            result += exp;

            exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
            value >>= exp;
            result += exp;

            exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
            value >>= exp;
            result += exp;

            exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
            value >>= exp;
            result += exp;

            exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
            value >>= exp;
            result += exp;

            exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
            value >>= exp;
            result += exp;

            result += SafeCast.toUint(value > 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 isGt;
        unchecked {
            isGt = SafeCast.toUint(value > (1 << 128) - 1);
            value >>= isGt * 128;
            result += isGt * 16;

            isGt = SafeCast.toUint(value > (1 << 64) - 1);
            value >>= isGt * 64;
            result += isGt * 8;

            isGt = SafeCast.toUint(value > (1 << 32) - 1);
            value >>= isGt * 32;
            result += isGt * 4;

            isGt = SafeCast.toUint(value > (1 << 16) - 1);
            value >>= isGt * 16;
            result += isGt * 2;

            result += SafeCast.toUint(value > (1 << 8) - 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

// File: @openzeppelin/[email protected]/utils/math/SignedMath.sol


// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;


/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
        }
    }

    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
            // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
            // taking advantage of the most significant (or "sign" bit) in two's complement representation.
            // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
            // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
            int256 mask = n >> 255;

            // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
            return uint256((n + mask) ^ mask);
        }
    }
}

// File: @openzeppelin/[email protected]/utils/Strings.sol


// OpenZeppelin Contracts (last updated v5.1.0) (utils/Strings.sol)

pragma solidity ^0.8.20;



/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            assembly ("memory-safe") {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                assembly ("memory-safe") {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
     * representation, according to EIP-55.
     */
    function toChecksumHexString(address addr) internal pure returns (string memory) {
        bytes memory buffer = bytes(toHexString(addr));

        // hash the hex part of buffer (skip length + 2 bytes, length 40)
        uint256 hashValue;
        assembly ("memory-safe") {
            hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
        }

        for (uint256 i = 41; i > 1; --i) {
            // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
            if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
                // case shift by xoring with 0x20
                buffer[i] ^= 0x20;
            }
            hashValue >>= 4;
        }
        return string(buffer);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

// File: @openzeppelin/[email protected]/utils/cryptography/MessageHashUtils.sol


// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MessageHashUtils.sol)

pragma solidity ^0.8.20;


/**
 * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
 *
 * The library provides methods for generating a hash of a message that conforms to the
 * https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
 * specifications.
 */
library MessageHashUtils {
    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing a bytes32 `messageHash` with
     * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
     * keccak256, although any bytes32 value can be safely used because the final digest will
     * be re-hashed.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
            mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
            digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing an arbitrary `message` with
     * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
        return
            keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
    }

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x00` (data with intended validator).
     *
     * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
     * `validator` address. Then hashing the result.
     *
     * See {ECDSA-recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked(hex"19_00", validator, data));
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`).
     *
     * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
     * `\x19\x01` and hashing the result. It corresponds to the hash signed by the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
     *
     * See {ECDSA-recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            mstore(ptr, hex"19_01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            digest := keccak256(ptr, 0x42)
        }
    }
}

// File: @openzeppelin/[email protected]/utils/StorageSlot.sol


// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC-1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(newImplementation.code.length > 0);
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {SlotDerivation}.
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct Int256Slot {
        int256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Int256Slot` with member `value` located at `slot`.
     */
    function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns a `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }
}

// File: @openzeppelin/[email protected]/utils/ShortStrings.sol


// OpenZeppelin Contracts (last updated v5.1.0) (utils/ShortStrings.sol)

pragma solidity ^0.8.20;


// | string  | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA   |
// | length  | 0x                                                              BB |
type ShortString is bytes32;

/**
 * @dev This library provides functions to convert short memory strings
 * into a `ShortString` type that can be used as an immutable variable.
 *
 * Strings of arbitrary length can be optimized using this library if
 * they are short enough (up to 31 bytes) by packing them with their
 * length (1 byte) in a single EVM word (32 bytes). Additionally, a
 * fallback mechanism can be used for every other case.
 *
 * Usage example:
 *
 * ```solidity
 * contract Named {
 *     using ShortStrings for *;
 *
 *     ShortString private immutable _name;
 *     string private _nameFallback;
 *
 *     constructor(string memory contractName) {
 *         _name = contractName.toShortStringWithFallback(_nameFallback);
 *     }
 *
 *     function name() external view returns (string memory) {
 *         return _name.toStringWithFallback(_nameFallback);
 *     }
 * }
 * ```
 */
library ShortStrings {
    // Used as an identifier for strings longer than 31 bytes.
    bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;

    error StringTooLong(string str);
    error InvalidShortString();

    /**
     * @dev Encode a string of at most 31 chars into a `ShortString`.
     *
     * This will trigger a `StringTooLong` error is the input string is too long.
     */
    function toShortString(string memory str) internal pure returns (ShortString) {
        bytes memory bstr = bytes(str);
        if (bstr.length > 31) {
            revert StringTooLong(str);
        }
        return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
    }

    /**
     * @dev Decode a `ShortString` back to a "normal" string.
     */
    function toString(ShortString sstr) internal pure returns (string memory) {
        uint256 len = byteLength(sstr);
        // using `new string(len)` would work locally but is not memory safe.
        string memory str = new string(32);
        assembly ("memory-safe") {
            mstore(str, len)
            mstore(add(str, 0x20), sstr)
        }
        return str;
    }

    /**
     * @dev Return the length of a `ShortString`.
     */
    function byteLength(ShortString sstr) internal pure returns (uint256) {
        uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
        if (result > 31) {
            revert InvalidShortString();
        }
        return result;
    }

    /**
     * @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
     */
    function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
        if (bytes(value).length < 32) {
            return toShortString(value);
        } else {
            StorageSlot.getStringSlot(store).value = value;
            return ShortString.wrap(FALLBACK_SENTINEL);
        }
    }

    /**
     * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
     */
    function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return toString(value);
        } else {
            return store;
        }
    }

    /**
     * @dev Return the length of a string that was encoded to `ShortString` or written to storage using
     * {setWithFallback}.
     *
     * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
     * actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
     */
    function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return byteLength(value);
        } else {
            return bytes(store).length;
        }
    }
}

// File: @openzeppelin/[email protected]/interfaces/IERC5267.sol


// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)

pragma solidity ^0.8.20;

interface IERC5267 {
    /**
     * @dev MAY be emitted to signal that the domain could have changed.
     */
    event EIP712DomainChanged();

    /**
     * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
     * signature.
     */
    function eip712Domain()
        external
        view
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        );
}

// File: @openzeppelin/[email protected]/utils/cryptography/EIP712.sol


// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/EIP712.sol)

pragma solidity ^0.8.20;




/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP-712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
 * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
 * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
 * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP-712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
 * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
 * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
 *
 * @custom:oz-upgrades-unsafe-allow state-variable-immutable
 */
abstract contract EIP712 is IERC5267 {
    using ShortStrings for *;

    bytes32 private constant TYPE_HASH =
        keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");

    // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
    // invalidate the cached domain separator if the chain id changes.
    bytes32 private immutable _cachedDomainSeparator;
    uint256 private immutable _cachedChainId;
    address private immutable _cachedThis;

    bytes32 private immutable _hashedName;
    bytes32 private immutable _hashedVersion;

    ShortString private immutable _name;
    ShortString private immutable _version;
    string private _nameFallback;
    string private _versionFallback;

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP-712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    constructor(string memory name, string memory version) {
        _name = name.toShortStringWithFallback(_nameFallback);
        _version = version.toShortStringWithFallback(_versionFallback);
        _hashedName = keccak256(bytes(name));
        _hashedVersion = keccak256(bytes(version));

        _cachedChainId = block.chainid;
        _cachedDomainSeparator = _buildDomainSeparator();
        _cachedThis = address(this);
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view returns (bytes32) {
        if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
            return _cachedDomainSeparator;
        } else {
            return _buildDomainSeparator();
        }
    }

    function _buildDomainSeparator() private view returns (bytes32) {
        return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
    }

    /**
     * @dev See {IERC-5267}.
     */
    function eip712Domain()
        public
        view
        virtual
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        )
    {
        return (
            hex"0f", // 01111
            _EIP712Name(),
            _EIP712Version(),
            block.chainid,
            address(this),
            bytes32(0),
            new uint256[](0)
        );
    }

    /**
     * @dev The name parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _name which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Name() internal view returns (string memory) {
        return _name.toStringWithFallback(_nameFallback);
    }

    /**
     * @dev The version parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _version which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Version() internal view returns (string memory) {
        return _version.toStringWithFallback(_versionFallback);
    }
}

// File: @openzeppelin/[email protected]/utils/Nonces.sol


// OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol)
pragma solidity ^0.8.20;

/**
 * @dev Provides tracking nonces for addresses. Nonces will only increment.
 */
abstract contract Nonces {
    /**
     * @dev The nonce used for an `account` is not the expected current nonce.
     */
    error InvalidAccountNonce(address account, uint256 currentNonce);

    mapping(address account => uint256) private _nonces;

    /**
     * @dev Returns the next unused nonce for an address.
     */
    function nonces(address owner) public view virtual returns (uint256) {
        return _nonces[owner];
    }

    /**
     * @dev Consumes a nonce.
     *
     * Returns the current value and increments nonce.
     */
    function _useNonce(address owner) internal virtual returns (uint256) {
        // For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be
        // decremented or reset. This guarantees that the nonce never overflows.
        unchecked {
            // It is important to do x++ and not ++x here.
            return _nonces[owner]++;
        }
    }

    /**
     * @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`.
     */
    function _useCheckedNonce(address owner, uint256 nonce) internal virtual {
        uint256 current = _useNonce(owner);
        if (nonce != current) {
            revert InvalidAccountNonce(owner, current);
        }
    }
}

// File: @openzeppelin/[email protected]/token/ERC20/extensions/ERC20Permit.sol


// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/ERC20Permit.sol)

pragma solidity ^0.8.20;






/**
 * @dev Implementation of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712, Nonces {
    bytes32 private constant PERMIT_TYPEHASH =
        keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");

    /**
     * @dev Permit deadline has expired.
     */
    error ERC2612ExpiredSignature(uint256 deadline);

    /**
     * @dev Mismatched signature.
     */
    error ERC2612InvalidSigner(address signer, address owner);

    /**
     * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
     *
     * It's a good idea to use the same `name` that is defined as the ERC-20 token name.
     */
    constructor(string memory name) EIP712(name, "1") {}

    /**
     * @inheritdoc IERC20Permit
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual {
        if (block.timestamp > deadline) {
            revert ERC2612ExpiredSignature(deadline);
        }

        bytes32 structHash = keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline));

        bytes32 hash = _hashTypedDataV4(structHash);

        address signer = ECDSA.recover(hash, v, r, s);
        if (signer != owner) {
            revert ERC2612InvalidSigner(signer, owner);
        }

        _approve(owner, spender, value);
    }

    /**
     * @inheritdoc IERC20Permit
     */
    function nonces(address owner) public view virtual override(IERC20Permit, Nonces) returns (uint256) {
        return super.nonces(owner);
    }

    /**
     * @inheritdoc IERC20Permit
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view virtual returns (bytes32) {
        return _domainSeparatorV4();
    }
}

// File: contract-7984321986.sol


// Compatible with OpenZeppelin Contracts ^5.0.0
pragma solidity ^0.8.22;




contract HelloSonic is ERC20, ERC20Burnable, ERC20Permit {
    constructor() ERC20("Hello Sonic!", "HSonic") ERC20Permit("Hello Sonic!") {
        _mint(msg.sender, 21000000 * 10 ** decimals());
    }
}

Contract Security Audit

Contract ABI

[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"ECDSAInvalidSignature","type":"error"},{"inputs":[{"internalType":"uint256","name":"length","type":"uint256"}],"name":"ECDSAInvalidSignatureLength","type":"error"},{"inputs":[{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"ECDSAInvalidSignatureS","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"allowance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientAllowance","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC20InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC20InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC20InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"}],"name":"ERC20InvalidSpender","type":"error"},{"inputs":[{"internalType":"uint256","name":"deadline","type":"uint256"}],"name":"ERC2612ExpiredSignature","type":"error"},{"inputs":[{"internalType":"address","name":"signer","type":"address"},{"internalType":"address","name":"owner","type":"address"}],"name":"ERC2612InvalidSigner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"currentNonce","type":"uint256"}],"name":"InvalidAccountNonce","type":"error"},{"inputs":[],"name":"InvalidShortString","type":"error"},{"inputs":[{"internalType":"string","name":"str","type":"string"}],"name":"StringTooLong","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[],"name":"EIP712DomainChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"DOMAIN_SEPARATOR","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"value","type":"uint256"}],"name":"burn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"burnFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"eip712Domain","outputs":[{"internalType":"bytes1","name":"fields","type":"bytes1"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"},{"internalType":"uint256","name":"chainId","type":"uint256"},{"internalType":"address","name":"verifyingContract","type":"address"},{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"uint256[]","name":"extensions","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"permit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"}]

61016060405234801562000011575f80fd5b506040518060400160405280600c81526020017f48656c6c6f20536f6e6963210000000000000000000000000000000000000000815250806040518060400160405280600181526020017f31000000000000000000000000000000000000000000000000000000000000008152506040518060400160405280600c81526020017f48656c6c6f20536f6e69632100000000000000000000000000000000000000008152506040518060400160405280600681526020017f48536f6e696300000000000000000000000000000000000000000000000000008152508160039081620000fc919062000846565b5080600490816200010e919062000846565b505050620001276005836200020860201b90919060201c565b6101208181525050620001456006826200020860201b90919060201c565b6101408181525050818051906020012060e08181525050808051906020012061010081815250504660a08181525050620001846200025d60201b60201c565b608081815250503073ffffffffffffffffffffffffffffffffffffffff1660c08173ffffffffffffffffffffffffffffffffffffffff16815250505050506200020233620001d7620002b960201b60201c565b600a620001e5919062000ab3565b6301406f40620001f6919062000b03565b620002c160201b60201c565b62000e0b565b5f6020835110156200022d5762000225836200034b60201b60201c565b905062000257565b826200023f83620003b560201b60201c565b5f0190816200024f919062000846565b5060ff5f1b90505b92915050565b5f7f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60e0516101005146306040516020016200029e95949392919062000bbb565b60405160208183030381529060405280519060200120905090565b5f6012905090565b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff160362000334575f6040517fec442f050000000000000000000000000000000000000000000000000000000081526004016200032b919062000c16565b60405180910390fd5b620003475f8383620003be60201b60201c565b5050565b5f80829050601f815111156200039a57826040517f305a27a900000000000000000000000000000000000000000000000000000000815260040162000391919062000cbb565b60405180910390fd5b805181620003a89062000d0c565b5f1c175f1b915050919050565b5f819050919050565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff160362000412578060025f82825462000405919062000d7b565b92505081905550620004e3565b5f805f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20549050818110156200049e578381836040517fe450d38c000000000000000000000000000000000000000000000000000000008152600401620004959392919062000db5565b60405180910390fd5b8181035f808673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2081905550505b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff16036200052c578060025f828254039250508190555062000576565b805f808473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f82825401925050819055505b8173ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef83604051620005d5919062000df0565b60405180910390a3505050565b5f81519050919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b5f60028204905060018216806200065e57607f821691505b60208210810362000674576200067362000619565b5b50919050565b5f819050815f5260205f209050919050565b5f6020601f8301049050919050565b5f82821b905092915050565b5f60088302620006d87fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff826200069b565b620006e486836200069b565b95508019841693508086168417925050509392505050565b5f819050919050565b5f819050919050565b5f6200072e620007286200072284620006fc565b62000705565b620006fc565b9050919050565b5f819050919050565b62000749836200070e565b62000761620007588262000735565b848454620006a7565b825550505050565b5f90565b6200077762000769565b620007848184846200073e565b505050565b5b81811015620007ab576200079f5f826200076d565b6001810190506200078a565b5050565b601f821115620007fa57620007c4816200067a565b620007cf846200068c565b81016020851015620007df578190505b620007f7620007ee856200068c565b83018262000789565b50505b505050565b5f82821c905092915050565b5f6200081c5f1984600802620007ff565b1980831691505092915050565b5f6200083683836200080b565b9150826002028217905092915050565b6200085182620005e2565b67ffffffffffffffff8111156200086d576200086c620005ec565b5b62000879825462000646565b62000886828285620007af565b5f60209050601f831160018114620008bc575f8415620008a7578287015190505b620008b3858262000829565b86555062000922565b601f198416620008cc866200067a565b5f5b82811015620008f557848901518255600182019150602085019450602081019050620008ce565b8683101562000915578489015162000911601f8916826200080b565b8355505b6001600288020188555050505b505050505050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f8160011c9050919050565b5f808291508390505b6001851115620009b4578086048111156200098c576200098b6200092a565b5b60018516156200099c5780820291505b8081029050620009ac8562000957565b94506200096c565b94509492505050565b5f82620009ce576001905062000aa0565b81620009dd575f905062000aa0565b8160018114620009f6576002811462000a015762000a37565b600191505062000aa0565b60ff84111562000a165762000a156200092a565b5b8360020a91508482111562000a305762000a2f6200092a565b5b5062000aa0565b5060208310610133831016604e8410600b841016171562000a715782820a90508381111562000a6b5762000a6a6200092a565b5b62000aa0565b62000a80848484600162000963565b9250905081840481111562000a9a5762000a996200092a565b5b81810290505b9392505050565b5f60ff82169050919050565b5f62000abf82620006fc565b915062000acc8362000aa7565b925062000afb7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8484620009bd565b905092915050565b5f62000b0f82620006fc565b915062000b1c83620006fc565b925082820262000b2c81620006fc565b9150828204841483151762000b465762000b456200092a565b5b5092915050565b5f819050919050565b62000b618162000b4d565b82525050565b62000b7281620006fc565b82525050565b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f62000ba38262000b78565b9050919050565b62000bb58162000b97565b82525050565b5f60a08201905062000bd05f83018862000b56565b62000bdf602083018762000b56565b62000bee604083018662000b56565b62000bfd606083018562000b67565b62000c0c608083018462000baa565b9695505050505050565b5f60208201905062000c2b5f83018462000baa565b92915050565b5f82825260208201905092915050565b5f5b8381101562000c6057808201518184015260208101905062000c43565b5f8484015250505050565b5f601f19601f8301169050919050565b5f62000c8782620005e2565b62000c93818562000c31565b935062000ca581856020860162000c41565b62000cb08162000c6b565b840191505092915050565b5f6020820190508181035f83015262000cd5818462000c7b565b905092915050565b5f81519050919050565b5f819050602082019050919050565b5f62000d03825162000b4d565b80915050919050565b5f62000d188262000cdd565b8262000d248462000ce7565b905062000d318162000cf6565b9250602082101562000d745762000d6f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff836020036008026200069b565b831692505b5050919050565b5f62000d8782620006fc565b915062000d9483620006fc565b925082820190508082111562000daf5762000dae6200092a565b5b92915050565b5f60608201905062000dca5f83018662000baa565b62000dd9602083018562000b67565b62000de8604083018462000b67565b949350505050565b5f60208201905062000e055f83018462000b67565b92915050565b60805160a05160c05160e051610100516101205161014051611caa62000e5d5f395f610b2601525f610aeb01525f61101f01525f610ffe01525f61096a01525f6109c001525f6109e90152611caa5ff3fe608060405234801561000f575f80fd5b50600436106100f3575f3560e01c806370a082311161009557806395d89b411161006457806395d89b411461028b578063a9059cbb146102a9578063d505accf146102d9578063dd62ed3e146102f5576100f3565b806370a08231146101eb57806379cc67901461021b5780637ecebe001461023757806384b0196e14610267576100f3565b806323b872dd116100d157806323b872dd14610163578063313ce567146101935780633644e515146101b157806342966c68146101cf576100f3565b806306fdde03146100f7578063095ea7b31461011557806318160ddd14610145575b5f80fd5b6100ff610325565b60405161010c91906114ef565b60405180910390f35b61012f600480360381019061012a91906115a0565b6103b5565b60405161013c91906115f8565b60405180910390f35b61014d6103d7565b60405161015a9190611620565b60405180910390f35b61017d60048036038101906101789190611639565b6103e0565b60405161018a91906115f8565b60405180910390f35b61019b61040e565b6040516101a891906116a4565b60405180910390f35b6101b9610416565b6040516101c691906116d5565b60405180910390f35b6101e960048036038101906101e491906116ee565b610424565b005b61020560048036038101906102009190611719565b610438565b6040516102129190611620565b60405180910390f35b610235600480360381019061023091906115a0565b61047d565b005b610251600480360381019061024c9190611719565b61049d565b60405161025e9190611620565b60405180910390f35b61026f6104ae565b6040516102829796959493929190611844565b60405180910390f35b610293610553565b6040516102a091906114ef565b60405180910390f35b6102c360048036038101906102be91906115a0565b6105e3565b6040516102d091906115f8565b60405180910390f35b6102f360048036038101906102ee919061191a565b610605565b005b61030f600480360381019061030a91906119b7565b61074a565b60405161031c9190611620565b60405180910390f35b60606003805461033490611a22565b80601f016020809104026020016040519081016040528092919081815260200182805461036090611a22565b80156103ab5780601f10610382576101008083540402835291602001916103ab565b820191905f5260205f20905b81548152906001019060200180831161038e57829003601f168201915b5050505050905090565b5f806103bf6107cc565b90506103cc8185856107d3565b600191505092915050565b5f600254905090565b5f806103ea6107cc565b90506103f78582856107e5565b610402858585610877565b60019150509392505050565b5f6012905090565b5f61041f610967565b905090565b61043561042f6107cc565b82610a1d565b50565b5f805f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20549050919050565b61048f826104896107cc565b836107e5565b6104998282610a1d565b5050565b5f6104a782610a9c565b9050919050565b5f6060805f805f60606104bf610ae2565b6104c7610b1d565b46305f801b5f67ffffffffffffffff8111156104e6576104e5611a52565b5b6040519080825280602002602001820160405280156105145781602001602082028036833780820191505090505b507f0f00000000000000000000000000000000000000000000000000000000000000959493929190965096509650965096509650965090919293949596565b60606004805461056290611a22565b80601f016020809104026020016040519081016040528092919081815260200182805461058e90611a22565b80156105d95780601f106105b0576101008083540402835291602001916105d9565b820191905f5260205f20905b8154815290600101906020018083116105bc57829003601f168201915b5050505050905090565b5f806105ed6107cc565b90506105fa818585610877565b600191505092915050565b8342111561064a57836040517f627913020000000000000000000000000000000000000000000000000000000081526004016106419190611620565b60405180910390fd5b5f7f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c98888886106788c610b58565b8960405160200161068e96959493929190611a7f565b6040516020818303038152906040528051906020012090505f6106b082610bab565b90505f6106bf82878787610bc4565b90508973ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff161461073357808a6040517f4b800e4600000000000000000000000000000000000000000000000000000000815260040161072a929190611ade565b60405180910390fd5b61073e8a8a8a6107d3565b50505050505050505050565b5f60015f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905092915050565b5f33905090565b6107e08383836001610bf2565b505050565b5f6107f0848461074a565b90507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff81146108715781811015610862578281836040517ffb8f41b200000000000000000000000000000000000000000000000000000000815260040161085993929190611b05565b60405180910390fd5b61087084848484035f610bf2565b5b50505050565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff16036108e7575f6040517f96c6fd1e0000000000000000000000000000000000000000000000000000000081526004016108de9190611b3a565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603610957575f6040517fec442f0500000000000000000000000000000000000000000000000000000000815260040161094e9190611b3a565b60405180910390fd5b610962838383610dc1565b505050565b5f7f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff163073ffffffffffffffffffffffffffffffffffffffff161480156109e257507f000000000000000000000000000000000000000000000000000000000000000046145b15610a0f577f00000000000000000000000000000000000000000000000000000000000000009050610a1a565b610a17610fda565b90505b90565b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603610a8d575f6040517f96c6fd1e000000000000000000000000000000000000000000000000000000008152600401610a849190611b3a565b60405180910390fd5b610a98825f83610dc1565b5050565b5f60075f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20549050919050565b6060610b1860057f000000000000000000000000000000000000000000000000000000000000000061106f90919063ffffffff16565b905090565b6060610b5360067f000000000000000000000000000000000000000000000000000000000000000061106f90919063ffffffff16565b905090565b5f60075f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f815480929190600101919050559050919050565b5f610bbd610bb7610967565b8361111c565b9050919050565b5f805f80610bd48888888861115c565b925092509250610be48282611243565b829350505050949350505050565b5f73ffffffffffffffffffffffffffffffffffffffff168473ffffffffffffffffffffffffffffffffffffffff1603610c62575f6040517fe602df05000000000000000000000000000000000000000000000000000000008152600401610c599190611b3a565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1603610cd2575f6040517f94280d62000000000000000000000000000000000000000000000000000000008152600401610cc99190611b3a565b60405180910390fd5b8160015f8673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055508015610dbb578273ffffffffffffffffffffffffffffffffffffffff168473ffffffffffffffffffffffffffffffffffffffff167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92584604051610db29190611620565b60405180910390a35b50505050565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1603610e11578060025f828254610e059190611b80565b92505081905550610edf565b5f805f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905081811015610e9a578381836040517fe450d38c000000000000000000000000000000000000000000000000000000008152600401610e9193929190611b05565b60405180910390fd5b8181035f808673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2081905550505b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603610f26578060025f8282540392505081905550610f70565b805f808473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f82825401925050819055505b8173ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef83604051610fcd9190611620565b60405180910390a3505050565b5f7f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f7f00000000000000000000000000000000000000000000000000000000000000007f00000000000000000000000000000000000000000000000000000000000000004630604051602001611054959493929190611bb3565b60405160208183030381529060405280519060200120905090565b606060ff5f1b831461108b57611084836113a5565b9050611116565b81805461109790611a22565b80601f01602080910402602001604051908101604052809291908181526020018280546110c390611a22565b801561110e5780601f106110e55761010080835404028352916020019161110e565b820191905f5260205f20905b8154815290600101906020018083116110f157829003601f168201915b505050505090505b92915050565b5f6040517f190100000000000000000000000000000000000000000000000000000000000081528360028201528260228201526042812091505092915050565b5f805f7f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0845f1c1115611198575f600385925092509250611239565b5f6001888888886040515f81526020016040526040516111bb9493929190611c04565b6020604051602081039080840390855afa1580156111db573d5f803e3d5ffd5b5050506020604051035190505f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff160361122c575f60015f801b93509350935050611239565b805f805f1b935093509350505b9450945094915050565b5f600381111561125657611255611c47565b5b82600381111561126957611268611c47565b5b03156113a1576001600381111561128357611282611c47565b5b82600381111561129657611295611c47565b5b036112cd576040517ff645eedf00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b600260038111156112e1576112e0611c47565b5b8260038111156112f4576112f3611c47565b5b0361133857805f1c6040517ffce698f700000000000000000000000000000000000000000000000000000000815260040161132f9190611620565b60405180910390fd5b60038081111561134b5761134a611c47565b5b82600381111561135e5761135d611c47565b5b036113a057806040517fd78bce0c00000000000000000000000000000000000000000000000000000000815260040161139791906116d5565b60405180910390fd5b5b5050565b60605f6113b183611417565b90505f602067ffffffffffffffff8111156113cf576113ce611a52565b5b6040519080825280601f01601f1916602001820160405280156114015781602001600182028036833780820191505090505b5090508181528360208201528092505050919050565b5f8060ff835f1c169050601f81111561145c576040517fb3512b0c00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b80915050919050565b5f81519050919050565b5f82825260208201905092915050565b5f5b8381101561149c578082015181840152602081019050611481565b5f8484015250505050565b5f601f19601f8301169050919050565b5f6114c182611465565b6114cb818561146f565b93506114db81856020860161147f565b6114e4816114a7565b840191505092915050565b5f6020820190508181035f83015261150781846114b7565b905092915050565b5f80fd5b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f61153c82611513565b9050919050565b61154c81611532565b8114611556575f80fd5b50565b5f8135905061156781611543565b92915050565b5f819050919050565b61157f8161156d565b8114611589575f80fd5b50565b5f8135905061159a81611576565b92915050565b5f80604083850312156115b6576115b561150f565b5b5f6115c385828601611559565b92505060206115d48582860161158c565b9150509250929050565b5f8115159050919050565b6115f2816115de565b82525050565b5f60208201905061160b5f8301846115e9565b92915050565b61161a8161156d565b82525050565b5f6020820190506116335f830184611611565b92915050565b5f805f606084860312156116505761164f61150f565b5b5f61165d86828701611559565b935050602061166e86828701611559565b925050604061167f8682870161158c565b9150509250925092565b5f60ff82169050919050565b61169e81611689565b82525050565b5f6020820190506116b75f830184611695565b92915050565b5f819050919050565b6116cf816116bd565b82525050565b5f6020820190506116e85f8301846116c6565b92915050565b5f602082840312156117035761170261150f565b5b5f6117108482850161158c565b91505092915050565b5f6020828403121561172e5761172d61150f565b5b5f61173b84828501611559565b91505092915050565b5f7fff0000000000000000000000000000000000000000000000000000000000000082169050919050565b61177881611744565b82525050565b61178781611532565b82525050565b5f81519050919050565b5f82825260208201905092915050565b5f819050602082019050919050565b6117bf8161156d565b82525050565b5f6117d083836117b6565b60208301905092915050565b5f602082019050919050565b5f6117f28261178d565b6117fc8185611797565b9350611807836117a7565b805f5b8381101561183757815161181e88826117c5565b9750611829836117dc565b92505060018101905061180a565b5085935050505092915050565b5f60e0820190506118575f83018a61176f565b818103602083015261186981896114b7565b9050818103604083015261187d81886114b7565b905061188c6060830187611611565b611899608083018661177e565b6118a660a08301856116c6565b81810360c08301526118b881846117e8565b905098975050505050505050565b6118cf81611689565b81146118d9575f80fd5b50565b5f813590506118ea816118c6565b92915050565b6118f9816116bd565b8114611903575f80fd5b50565b5f81359050611914816118f0565b92915050565b5f805f805f805f60e0888a0312156119355761193461150f565b5b5f6119428a828b01611559565b97505060206119538a828b01611559565b96505060406119648a828b0161158c565b95505060606119758a828b0161158c565b94505060806119868a828b016118dc565b93505060a06119978a828b01611906565b92505060c06119a88a828b01611906565b91505092959891949750929550565b5f80604083850312156119cd576119cc61150f565b5b5f6119da85828601611559565b92505060206119eb85828601611559565b9150509250929050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b5f6002820490506001821680611a3957607f821691505b602082108103611a4c57611a4b6119f5565b5b50919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b5f60c082019050611a925f8301896116c6565b611a9f602083018861177e565b611aac604083018761177e565b611ab96060830186611611565b611ac66080830185611611565b611ad360a0830184611611565b979650505050505050565b5f604082019050611af15f83018561177e565b611afe602083018461177e565b9392505050565b5f606082019050611b185f83018661177e565b611b256020830185611611565b611b326040830184611611565b949350505050565b5f602082019050611b4d5f83018461177e565b92915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f611b8a8261156d565b9150611b958361156d565b9250828201905080821115611bad57611bac611b53565b5b92915050565b5f60a082019050611bc65f8301886116c6565b611bd360208301876116c6565b611be060408301866116c6565b611bed6060830185611611565b611bfa608083018461177e565b9695505050505050565b5f608082019050611c175f8301876116c6565b611c246020830186611695565b611c3160408301856116c6565b611c3e60608301846116c6565b95945050505050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602160045260245ffdfea264697066735822122017dc0e67c261f19e4644c5a6032b069c23cf13755e42ccfd728ae2402a763f8a64736f6c63430008160033

Deployed Bytecode

0x608060405234801561000f575f80fd5b50600436106100f3575f3560e01c806370a082311161009557806395d89b411161006457806395d89b411461028b578063a9059cbb146102a9578063d505accf146102d9578063dd62ed3e146102f5576100f3565b806370a08231146101eb57806379cc67901461021b5780637ecebe001461023757806384b0196e14610267576100f3565b806323b872dd116100d157806323b872dd14610163578063313ce567146101935780633644e515146101b157806342966c68146101cf576100f3565b806306fdde03146100f7578063095ea7b31461011557806318160ddd14610145575b5f80fd5b6100ff610325565b60405161010c91906114ef565b60405180910390f35b61012f600480360381019061012a91906115a0565b6103b5565b60405161013c91906115f8565b60405180910390f35b61014d6103d7565b60405161015a9190611620565b60405180910390f35b61017d60048036038101906101789190611639565b6103e0565b60405161018a91906115f8565b60405180910390f35b61019b61040e565b6040516101a891906116a4565b60405180910390f35b6101b9610416565b6040516101c691906116d5565b60405180910390f35b6101e960048036038101906101e491906116ee565b610424565b005b61020560048036038101906102009190611719565b610438565b6040516102129190611620565b60405180910390f35b610235600480360381019061023091906115a0565b61047d565b005b610251600480360381019061024c9190611719565b61049d565b60405161025e9190611620565b60405180910390f35b61026f6104ae565b6040516102829796959493929190611844565b60405180910390f35b610293610553565b6040516102a091906114ef565b60405180910390f35b6102c360048036038101906102be91906115a0565b6105e3565b6040516102d091906115f8565b60405180910390f35b6102f360048036038101906102ee919061191a565b610605565b005b61030f600480360381019061030a91906119b7565b61074a565b60405161031c9190611620565b60405180910390f35b60606003805461033490611a22565b80601f016020809104026020016040519081016040528092919081815260200182805461036090611a22565b80156103ab5780601f10610382576101008083540402835291602001916103ab565b820191905f5260205f20905b81548152906001019060200180831161038e57829003601f168201915b5050505050905090565b5f806103bf6107cc565b90506103cc8185856107d3565b600191505092915050565b5f600254905090565b5f806103ea6107cc565b90506103f78582856107e5565b610402858585610877565b60019150509392505050565b5f6012905090565b5f61041f610967565b905090565b61043561042f6107cc565b82610a1d565b50565b5f805f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20549050919050565b61048f826104896107cc565b836107e5565b6104998282610a1d565b5050565b5f6104a782610a9c565b9050919050565b5f6060805f805f60606104bf610ae2565b6104c7610b1d565b46305f801b5f67ffffffffffffffff8111156104e6576104e5611a52565b5b6040519080825280602002602001820160405280156105145781602001602082028036833780820191505090505b507f0f00000000000000000000000000000000000000000000000000000000000000959493929190965096509650965096509650965090919293949596565b60606004805461056290611a22565b80601f016020809104026020016040519081016040528092919081815260200182805461058e90611a22565b80156105d95780601f106105b0576101008083540402835291602001916105d9565b820191905f5260205f20905b8154815290600101906020018083116105bc57829003601f168201915b5050505050905090565b5f806105ed6107cc565b90506105fa818585610877565b600191505092915050565b8342111561064a57836040517f627913020000000000000000000000000000000000000000000000000000000081526004016106419190611620565b60405180910390fd5b5f7f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c98888886106788c610b58565b8960405160200161068e96959493929190611a7f565b6040516020818303038152906040528051906020012090505f6106b082610bab565b90505f6106bf82878787610bc4565b90508973ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff161461073357808a6040517f4b800e4600000000000000000000000000000000000000000000000000000000815260040161072a929190611ade565b60405180910390fd5b61073e8a8a8a6107d3565b50505050505050505050565b5f60015f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905092915050565b5f33905090565b6107e08383836001610bf2565b505050565b5f6107f0848461074a565b90507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff81146108715781811015610862578281836040517ffb8f41b200000000000000000000000000000000000000000000000000000000815260040161085993929190611b05565b60405180910390fd5b61087084848484035f610bf2565b5b50505050565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff16036108e7575f6040517f96c6fd1e0000000000000000000000000000000000000000000000000000000081526004016108de9190611b3a565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603610957575f6040517fec442f0500000000000000000000000000000000000000000000000000000000815260040161094e9190611b3a565b60405180910390fd5b610962838383610dc1565b505050565b5f7f000000000000000000000000c9f0f4ee2627fc594d1552fc6f3dae7c27ad93b773ffffffffffffffffffffffffffffffffffffffff163073ffffffffffffffffffffffffffffffffffffffff161480156109e257507f000000000000000000000000000000000000000000000000000000000000009246145b15610a0f577f4af5f5dab6faee52b2fade4f4924063fa67b99b9253c2a38098f7bcc723a1dfd9050610a1a565b610a17610fda565b90505b90565b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603610a8d575f6040517f96c6fd1e000000000000000000000000000000000000000000000000000000008152600401610a849190611b3a565b60405180910390fd5b610a98825f83610dc1565b5050565b5f60075f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20549050919050565b6060610b1860057f48656c6c6f20536f6e696321000000000000000000000000000000000000000c61106f90919063ffffffff16565b905090565b6060610b5360067f310000000000000000000000000000000000000000000000000000000000000161106f90919063ffffffff16565b905090565b5f60075f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f815480929190600101919050559050919050565b5f610bbd610bb7610967565b8361111c565b9050919050565b5f805f80610bd48888888861115c565b925092509250610be48282611243565b829350505050949350505050565b5f73ffffffffffffffffffffffffffffffffffffffff168473ffffffffffffffffffffffffffffffffffffffff1603610c62575f6040517fe602df05000000000000000000000000000000000000000000000000000000008152600401610c599190611b3a565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1603610cd2575f6040517f94280d62000000000000000000000000000000000000000000000000000000008152600401610cc99190611b3a565b60405180910390fd5b8160015f8673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055508015610dbb578273ffffffffffffffffffffffffffffffffffffffff168473ffffffffffffffffffffffffffffffffffffffff167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92584604051610db29190611620565b60405180910390a35b50505050565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1603610e11578060025f828254610e059190611b80565b92505081905550610edf565b5f805f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905081811015610e9a578381836040517fe450d38c000000000000000000000000000000000000000000000000000000008152600401610e9193929190611b05565b60405180910390fd5b8181035f808673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2081905550505b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603610f26578060025f8282540392505081905550610f70565b805f808473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f82825401925050819055505b8173ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef83604051610fcd9190611620565b60405180910390a3505050565b5f7f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f7fb9b3fbfa5f90e302c47bb48f4cc49bdbca0175eb44143288362bcea41d34dab27fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc64630604051602001611054959493929190611bb3565b60405160208183030381529060405280519060200120905090565b606060ff5f1b831461108b57611084836113a5565b9050611116565b81805461109790611a22565b80601f01602080910402602001604051908101604052809291908181526020018280546110c390611a22565b801561110e5780601f106110e55761010080835404028352916020019161110e565b820191905f5260205f20905b8154815290600101906020018083116110f157829003601f168201915b505050505090505b92915050565b5f6040517f190100000000000000000000000000000000000000000000000000000000000081528360028201528260228201526042812091505092915050565b5f805f7f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0845f1c1115611198575f600385925092509250611239565b5f6001888888886040515f81526020016040526040516111bb9493929190611c04565b6020604051602081039080840390855afa1580156111db573d5f803e3d5ffd5b5050506020604051035190505f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff160361122c575f60015f801b93509350935050611239565b805f805f1b935093509350505b9450945094915050565b5f600381111561125657611255611c47565b5b82600381111561126957611268611c47565b5b03156113a1576001600381111561128357611282611c47565b5b82600381111561129657611295611c47565b5b036112cd576040517ff645eedf00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b600260038111156112e1576112e0611c47565b5b8260038111156112f4576112f3611c47565b5b0361133857805f1c6040517ffce698f700000000000000000000000000000000000000000000000000000000815260040161132f9190611620565b60405180910390fd5b60038081111561134b5761134a611c47565b5b82600381111561135e5761135d611c47565b5b036113a057806040517fd78bce0c00000000000000000000000000000000000000000000000000000000815260040161139791906116d5565b60405180910390fd5b5b5050565b60605f6113b183611417565b90505f602067ffffffffffffffff8111156113cf576113ce611a52565b5b6040519080825280601f01601f1916602001820160405280156114015781602001600182028036833780820191505090505b5090508181528360208201528092505050919050565b5f8060ff835f1c169050601f81111561145c576040517fb3512b0c00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b80915050919050565b5f81519050919050565b5f82825260208201905092915050565b5f5b8381101561149c578082015181840152602081019050611481565b5f8484015250505050565b5f601f19601f8301169050919050565b5f6114c182611465565b6114cb818561146f565b93506114db81856020860161147f565b6114e4816114a7565b840191505092915050565b5f6020820190508181035f83015261150781846114b7565b905092915050565b5f80fd5b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f61153c82611513565b9050919050565b61154c81611532565b8114611556575f80fd5b50565b5f8135905061156781611543565b92915050565b5f819050919050565b61157f8161156d565b8114611589575f80fd5b50565b5f8135905061159a81611576565b92915050565b5f80604083850312156115b6576115b561150f565b5b5f6115c385828601611559565b92505060206115d48582860161158c565b9150509250929050565b5f8115159050919050565b6115f2816115de565b82525050565b5f60208201905061160b5f8301846115e9565b92915050565b61161a8161156d565b82525050565b5f6020820190506116335f830184611611565b92915050565b5f805f606084860312156116505761164f61150f565b5b5f61165d86828701611559565b935050602061166e86828701611559565b925050604061167f8682870161158c565b9150509250925092565b5f60ff82169050919050565b61169e81611689565b82525050565b5f6020820190506116b75f830184611695565b92915050565b5f819050919050565b6116cf816116bd565b82525050565b5f6020820190506116e85f8301846116c6565b92915050565b5f602082840312156117035761170261150f565b5b5f6117108482850161158c565b91505092915050565b5f6020828403121561172e5761172d61150f565b5b5f61173b84828501611559565b91505092915050565b5f7fff0000000000000000000000000000000000000000000000000000000000000082169050919050565b61177881611744565b82525050565b61178781611532565b82525050565b5f81519050919050565b5f82825260208201905092915050565b5f819050602082019050919050565b6117bf8161156d565b82525050565b5f6117d083836117b6565b60208301905092915050565b5f602082019050919050565b5f6117f28261178d565b6117fc8185611797565b9350611807836117a7565b805f5b8381101561183757815161181e88826117c5565b9750611829836117dc565b92505060018101905061180a565b5085935050505092915050565b5f60e0820190506118575f83018a61176f565b818103602083015261186981896114b7565b9050818103604083015261187d81886114b7565b905061188c6060830187611611565b611899608083018661177e565b6118a660a08301856116c6565b81810360c08301526118b881846117e8565b905098975050505050505050565b6118cf81611689565b81146118d9575f80fd5b50565b5f813590506118ea816118c6565b92915050565b6118f9816116bd565b8114611903575f80fd5b50565b5f81359050611914816118f0565b92915050565b5f805f805f805f60e0888a0312156119355761193461150f565b5b5f6119428a828b01611559565b97505060206119538a828b01611559565b96505060406119648a828b0161158c565b95505060606119758a828b0161158c565b94505060806119868a828b016118dc565b93505060a06119978a828b01611906565b92505060c06119a88a828b01611906565b91505092959891949750929550565b5f80604083850312156119cd576119cc61150f565b5b5f6119da85828601611559565b92505060206119eb85828601611559565b9150509250929050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b5f6002820490506001821680611a3957607f821691505b602082108103611a4c57611a4b6119f5565b5b50919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b5f60c082019050611a925f8301896116c6565b611a9f602083018861177e565b611aac604083018761177e565b611ab96060830186611611565b611ac66080830185611611565b611ad360a0830184611611565b979650505050505050565b5f604082019050611af15f83018561177e565b611afe602083018461177e565b9392505050565b5f606082019050611b185f83018661177e565b611b256020830185611611565b611b326040830184611611565b949350505050565b5f602082019050611b4d5f83018461177e565b92915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f611b8a8261156d565b9150611b958361156d565b9250828201905080821115611bad57611bac611b53565b5b92915050565b5f60a082019050611bc65f8301886116c6565b611bd360208301876116c6565b611be060408301866116c6565b611bed6060830185611611565b611bfa608083018461177e565b9695505050505050565b5f608082019050611c175f8301876116c6565b611c246020830186611695565b611c3160408301856116c6565b611c3e60608301846116c6565b95945050505050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602160045260245ffdfea264697066735822122017dc0e67c261f19e4644c5a6032b069c23cf13755e42ccfd728ae2402a763f8a64736f6c63430008160033

Deployed Bytecode Sourcemap

133739:206:0:-:0;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;13035:91;;;:::i;:::-;;;;;;;:::i;:::-;;;;;;;;15328:190;;;;;;;;;;;;;:::i;:::-;;:::i;:::-;;;;;;;:::i;:::-;;;;;;;;14137:99;;;:::i;:::-;;;;;;;:::i;:::-;;;;;;;;16128:249;;;;;;;;;;;;;:::i;:::-;;:::i;:::-;;;;;;;:::i;:::-;;;;;;;;13988:84;;;:::i;:::-;;;;;;;:::i;:::-;;;;;;;;133496:114;;;:::i;:::-;;;;;;;:::i;:::-;;;;;;;;23014:89;;;;;;;;;;;;;:::i;:::-;;:::i;:::-;;14299:118;;;;;;;;;;;;;:::i;:::-;;:::i;:::-;;;;;;;:::i;:::-;;;;;;;;23432:161;;;;;;;;;;;;;:::i;:::-;;:::i;:::-;;133238:145;;;;;;;;;;;;;:::i;:::-;;:::i;:::-;;;;;;;:::i;:::-;;;;;;;;127882:580;;;:::i;:::-;;;;;;;;;;;;;:::i;:::-;;;;;;;;13245:95;;;:::i;:::-;;;;;;;:::i;:::-;;;;;;;;14622:182;;;;;;;;;;;;;:::i;:::-;;:::i;:::-;;;;;;;:::i;:::-;;;;;;;;132484:695;;;;;;;;;;;;;:::i;:::-;;:::i;:::-;;14867:142;;;;;;;;;;;;;:::i;:::-;;:::i;:::-;;;;;;;:::i;:::-;;;;;;;;13035:91;13080:13;13113:5;13106:12;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;13035:91;:::o;15328:190::-;15401:4;15418:13;15434:12;:10;:12::i;:::-;15418:28;;15457:31;15466:5;15473:7;15482:5;15457:8;:31::i;:::-;15506:4;15499:11;;;15328:190;;;;:::o;14137:99::-;14189:7;14216:12;;14209:19;;14137:99;:::o;16128:249::-;16215:4;16232:15;16250:12;:10;:12::i;:::-;16232:30;;16273:37;16289:4;16295:7;16304:5;16273:15;:37::i;:::-;16321:26;16331:4;16337:2;16341:5;16321:9;:26::i;:::-;16365:4;16358:11;;;16128:249;;;;;:::o;13988:84::-;14037:5;14062:2;14055:9;;13988:84;:::o;133496:114::-;133555:7;133582:20;:18;:20::i;:::-;133575:27;;133496:114;:::o;23014:89::-;23069:26;23075:12;:10;:12::i;:::-;23089:5;23069;:26::i;:::-;23014:89;:::o;14299:118::-;14364:7;14391:9;:18;14401:7;14391:18;;;;;;;;;;;;;;;;14384:25;;14299:118;;;:::o;23432:161::-;23508:45;23524:7;23533:12;:10;:12::i;:::-;23547:5;23508:15;:45::i;:::-;23564:21;23570:7;23579:5;23564;:21::i;:::-;23432:161;;:::o;133238:145::-;133329:7;133356:19;133369:5;133356:12;:19::i;:::-;133349:26;;133238:145;;;:::o;127882:580::-;127985:13;128013:18;128046:21;128082:15;128112:25;128152:12;128179:27;128287:13;:11;:13::i;:::-;128315:16;:14;:16::i;:::-;128346:13;128382:4;128410:1;128402:10;;128441:1;128427:16;;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;128234:220;;;;;;;;;;;;;;;;;;;;;127882:580;;;;;;;:::o;13245:95::-;13292:13;13325:7;13318:14;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;13245:95;:::o;14622:182::-;14691:4;14708:13;14724:12;:10;:12::i;:::-;14708:28;;14747:27;14757:5;14764:2;14768:5;14747:9;:27::i;:::-;14792:4;14785:11;;;14622:182;;;;:::o;132484:695::-;132714:8;132696:15;:26;132692:99;;;132770:8;132746:33;;;;;;;;;;;:::i;:::-;;;;;;;;132692:99;132803:18;131803:95;132862:5;132869:7;132878:5;132885:16;132895:5;132885:9;:16::i;:::-;132903:8;132834:78;;;;;;;;;;;;;:::i;:::-;;;;;;;;;;;;;132824:89;;;;;;132803:110;;132926:12;132941:28;132958:10;132941:16;:28::i;:::-;132926:43;;132982:14;132999:28;133013:4;133019:1;133022;133025;132999:13;:28::i;:::-;132982:45;;133052:5;133042:15;;:6;:15;;;133038:90;;133102:6;133110:5;133081:35;;;;;;;;;;;;:::i;:::-;;;;;;;;133038:90;133140:31;133149:5;133156:7;133165:5;133140:8;:31::i;:::-;132681:498;;;132484:695;;;;;;;:::o;14867:142::-;14947:7;14974:11;:18;14986:5;14974:18;;;;;;;;;;;;;;;:27;14993:7;14974:27;;;;;;;;;;;;;;;;14967:34;;14867:142;;;;:::o;4322:98::-;4375:7;4402:10;4395:17;;4322:98;:::o;20187:130::-;20272:37;20281:5;20288:7;20297:5;20304:4;20272:8;:37::i;:::-;20187:130;;;:::o;21919:487::-;22019:24;22046:25;22056:5;22063:7;22046:9;:25::i;:::-;22019:52;;22106:17;22086:16;:37;22082:317;;22163:5;22144:16;:24;22140:132;;;22223:7;22232:16;22250:5;22196:60;;;;;;;;;;;;;:::i;:::-;;;;;;;;22140:132;22315:57;22324:5;22331:7;22359:5;22340:16;:24;22366:5;22315:8;:57::i;:::-;22082:317;22008:398;21919:487;;;:::o;16762:308::-;16862:1;16846:18;;:4;:18;;;16842:88;;16915:1;16888:30;;;;;;;;;;;:::i;:::-;;;;;;;;16842:88;16958:1;16944:16;;:2;:16;;;16940:88;;17013:1;16984:32;;;;;;;;;;;:::i;:::-;;;;;;;;16940:88;17038:24;17046:4;17052:2;17056:5;17038:7;:24::i;:::-;16762:308;;;:::o;126549:268::-;126602:7;126643:11;126626:28;;126634:4;126626:28;;;:63;;;;;126675:14;126658:13;:31;126626:63;126622:188;;;126713:22;126706:29;;;;126622:188;126775:23;:21;:23::i;:::-;126768:30;;126549:268;;:::o;19423:211::-;19513:1;19494:21;;:7;:21;;;19490:91;;19566:1;19539:30;;;;;;;;;;;:::i;:::-;;;;;;;;19490:91;19591:35;19599:7;19616:1;19620:5;19591:7;:35::i;:::-;19423:211;;:::o;129982:109::-;130042:7;130069;:14;130077:5;130069:14;;;;;;;;;;;;;;;;130062:21;;129982:109;;;:::o;128791:128::-;128837:13;128870:41;128897:13;128870:5;:26;;:41;;;;:::i;:::-;128863:48;;128791:128;:::o;129254:137::-;129303:13;129336:47;129366:16;129336:8;:29;;:47;;;;:::i;:::-;129329:54;;129254:137;:::o;130212:402::-;130272:7;130579;:14;130587:5;130579:14;;;;;;;;;;;;;;;;:16;;;;;;;;;;;;130572:23;;130212:402;;;:::o;127648:178::-;127725:7;127752:66;127785:20;:18;:20::i;:::-;127807:10;127752:32;:66::i;:::-;127745:73;;127648:178;;;:::o;34634:264::-;34719:7;34740:17;34759:18;34779:16;34799:25;34810:4;34816:1;34819;34822;34799:10;:25::i;:::-;34739:85;;;;;;34835:28;34847:5;34854:8;34835:11;:28::i;:::-;34881:9;34874:16;;;;;34634:264;;;;;;:::o;21184:443::-;21314:1;21297:19;;:5;:19;;;21293:91;;21369:1;21340:32;;;;;;;;;;;:::i;:::-;;;;;;;;21293:91;21417:1;21398:21;;:7;:21;;;21394:92;;21471:1;21443:31;;;;;;;;;;;:::i;:::-;;;;;;;;21394:92;21526:5;21496:11;:18;21508:5;21496:18;;;;;;;;;;;;;;;:27;21515:7;21496:27;;;;;;;;;;;;;;;:35;;;;21546:9;21542:78;;;21593:7;21577:31;;21586:5;21577:31;;;21602:5;21577:31;;;;;;:::i;:::-;;;;;;;;21542:78;21184:443;;;;:::o;17394:1135::-;17500:1;17484:18;;:4;:18;;;17480:552;;17638:5;17622:12;;:21;;;;;;;:::i;:::-;;;;;;;;17480:552;;;17676:19;17698:9;:15;17708:4;17698:15;;;;;;;;;;;;;;;;17676:37;;17746:5;17732:11;:19;17728:117;;;17804:4;17810:11;17823:5;17779:50;;;;;;;;;;;;;:::i;:::-;;;;;;;;17728:117;18000:5;17986:11;:19;17968:9;:15;17978:4;17968:15;;;;;;;;;;;;;;;:37;;;;17661:371;17480:552;18062:1;18048:16;;:2;:16;;;18044:435;;18230:5;18214:12;;:21;;;;;;;;;;;18044:435;;;18447:5;18430:9;:13;18440:2;18430:13;;;;;;;;;;;;;;;;:22;;;;;;;;;;;18044:435;18511:2;18496:25;;18505:4;18496:25;;;18515:5;18496:25;;;;;;:::i;:::-;;;;;;;;17394:1135;;;:::o;126825:181::-;126880:7;124741:95;126939:11;126952:14;126968:13;126991:4;126917:80;;;;;;;;;;;;:::i;:::-;;;;;;;;;;;;;126907:91;;;;;;126900:98;;126825:181;:::o;121006:273::-;121100:13;118980:66;121159:17;;121149:5;121130:46;121126:146;;121200:15;121209:5;121200:8;:15::i;:::-;121193:22;;;;121126:146;121255:5;121248:12;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;121006:273;;;;;:::o;112814:382::-;112907:14;112991:4;112985:11;113022:10;113017:3;113010:23;113070:15;113063:4;113058:3;113054:14;113047:39;113123:10;113116:4;113111:3;113107:14;113100:34;113173:4;113168:3;113158:20;113148:30;;112959:230;112814:382;;;;:::o;32918:1577::-;33049:17;33068:16;33086:14;34013:66;34008:1;34000:10;;:79;33996:166;;;34112:1;34116:30;34148:1;34096:54;;;;;;;;33996:166;34259:14;34276:24;34286:4;34292:1;34295;34298;34276:24;;;;;;;;;;;;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;34259:41;;34333:1;34315:20;;:6;:20;;;34311:115;;34368:1;34372:29;34411:1;34403:10;;34352:62;;;;;;;;;34311:115;34446:6;34454:20;34484:1;34476:10;;34438:49;;;;;;;32918:1577;;;;;;;;;:::o;35036:542::-;35132:20;35123:29;;;;;;;;:::i;:::-;;:5;:29;;;;;;;;:::i;:::-;;;35119:452;35169:7;35119:452;35230:29;35221:38;;;;;;;;:::i;:::-;;:5;:38;;;;;;;;:::i;:::-;;;35217:354;;35283:23;;;;;;;;;;;;;;35217:354;35337:35;35328:44;;;;;;;;:::i;:::-;;:5;:44;;;;;;;;:::i;:::-;;;35324:247;;35432:8;35424:17;;35396:46;;;;;;;;;;;:::i;:::-;;;;;;;;35324:247;35473:30;35464:39;;;;;;;;:::i;:::-;;:5;:39;;;;;;;;:::i;:::-;;;35460:111;;35550:8;35527:32;;;;;;;;;;;:::i;:::-;;;;;;;;35460:111;35036:542;;;:::o;119689:387::-;119748:13;119774:11;119788:16;119799:4;119788:10;:16::i;:::-;119774:30;;119894:17;119925:2;119914:14;;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;119894:34;;119991:3;119986;119979:16;120032:4;120025;120020:3;120016:14;120009:28;120065:3;120058:10;;;;119689:387;;;:::o;120153:251::-;120214:7;120234:14;120287:4;120278;120251:33;;:40;120234:57;;120315:2;120306:6;:11;120302:71;;;120341:20;;;;;;;;;;;;;;120302:71;120390:6;120383:13;;;120153:251;;;:::o;7:99:1:-;59:6;93:5;87:12;77:22;;7:99;;;:::o;112:169::-;196:11;230:6;225:3;218:19;270:4;265:3;261:14;246:29;;112:169;;;;:::o;287:246::-;368:1;378:113;392:6;389:1;386:13;378:113;;;477:1;472:3;468:11;462:18;458:1;453:3;449:11;442:39;414:2;411:1;407:10;402:15;;378:113;;;525:1;516:6;511:3;507:16;500:27;349:184;287:246;;;:::o;539:102::-;580:6;631:2;627:7;622:2;615:5;611:14;607:28;597:38;;539:102;;;:::o;647:377::-;735:3;763:39;796:5;763:39;:::i;:::-;818:71;882:6;877:3;818:71;:::i;:::-;811:78;;898:65;956:6;951:3;944:4;937:5;933:16;898:65;:::i;:::-;988:29;1010:6;988:29;:::i;:::-;983:3;979:39;972:46;;739:285;647:377;;;;:::o;1030:313::-;1143:4;1181:2;1170:9;1166:18;1158:26;;1230:9;1224:4;1220:20;1216:1;1205:9;1201:17;1194:47;1258:78;1331:4;1322:6;1258:78;:::i;:::-;1250:86;;1030:313;;;;:::o;1430:117::-;1539:1;1536;1529:12;1676:126;1713:7;1753:42;1746:5;1742:54;1731:65;;1676:126;;;:::o;1808:96::-;1845:7;1874:24;1892:5;1874:24;:::i;:::-;1863:35;;1808:96;;;:::o;1910:122::-;1983:24;2001:5;1983:24;:::i;:::-;1976:5;1973:35;1963:63;;2022:1;2019;2012:12;1963:63;1910:122;:::o;2038:139::-;2084:5;2122:6;2109:20;2100:29;;2138:33;2165:5;2138:33;:::i;:::-;2038:139;;;;:::o;2183:77::-;2220:7;2249:5;2238:16;;2183:77;;;:::o;2266:122::-;2339:24;2357:5;2339:24;:::i;:::-;2332:5;2329:35;2319:63;;2378:1;2375;2368:12;2319:63;2266:122;:::o;2394:139::-;2440:5;2478:6;2465:20;2456:29;;2494:33;2521:5;2494:33;:::i;:::-;2394:139;;;;:::o;2539:474::-;2607:6;2615;2664:2;2652:9;2643:7;2639:23;2635:32;2632:119;;;2670:79;;:::i;:::-;2632:119;2790:1;2815:53;2860:7;2851:6;2840:9;2836:22;2815:53;:::i;:::-;2805:63;;2761:117;2917:2;2943:53;2988:7;2979:6;2968:9;2964:22;2943:53;:::i;:::-;2933:63;;2888:118;2539:474;;;;;:::o;3019:90::-;3053:7;3096:5;3089:13;3082:21;3071:32;;3019:90;;;:::o;3115:109::-;3196:21;3211:5;3196:21;:::i;:::-;3191:3;3184:34;3115:109;;:::o;3230:210::-;3317:4;3355:2;3344:9;3340:18;3332:26;;3368:65;3430:1;3419:9;3415:17;3406:6;3368:65;:::i;:::-;3230:210;;;;:::o;3446:118::-;3533:24;3551:5;3533:24;:::i;:::-;3528:3;3521:37;3446:118;;:::o;3570:222::-;3663:4;3701:2;3690:9;3686:18;3678:26;;3714:71;3782:1;3771:9;3767:17;3758:6;3714:71;:::i;:::-;3570:222;;;;:::o;3798:619::-;3875:6;3883;3891;3940:2;3928:9;3919:7;3915:23;3911:32;3908:119;;;3946:79;;:::i;:::-;3908:119;4066:1;4091:53;4136:7;4127:6;4116:9;4112:22;4091:53;:::i;:::-;4081:63;;4037:117;4193:2;4219:53;4264:7;4255:6;4244:9;4240:22;4219:53;:::i;:::-;4209:63;;4164:118;4321:2;4347:53;4392:7;4383:6;4372:9;4368:22;4347:53;:::i;:::-;4337:63;;4292:118;3798:619;;;;;:::o;4423:86::-;4458:7;4498:4;4491:5;4487:16;4476:27;;4423:86;;;:::o;4515:112::-;4598:22;4614:5;4598:22;:::i;:::-;4593:3;4586:35;4515:112;;:::o;4633:214::-;4722:4;4760:2;4749:9;4745:18;4737:26;;4773:67;4837:1;4826:9;4822:17;4813:6;4773:67;:::i;:::-;4633:214;;;;:::o;4853:77::-;4890:7;4919:5;4908:16;;4853:77;;;:::o;4936:118::-;5023:24;5041:5;5023:24;:::i;:::-;5018:3;5011:37;4936:118;;:::o;5060:222::-;5153:4;5191:2;5180:9;5176:18;5168:26;;5204:71;5272:1;5261:9;5257:17;5248:6;5204:71;:::i;:::-;5060:222;;;;:::o;5288:329::-;5347:6;5396:2;5384:9;5375:7;5371:23;5367:32;5364:119;;;5402:79;;:::i;:::-;5364:119;5522:1;5547:53;5592:7;5583:6;5572:9;5568:22;5547:53;:::i;:::-;5537:63;;5493:117;5288:329;;;;:::o;5623:::-;5682:6;5731:2;5719:9;5710:7;5706:23;5702:32;5699:119;;;5737:79;;:::i;:::-;5699:119;5857:1;5882:53;5927:7;5918:6;5907:9;5903:22;5882:53;:::i;:::-;5872:63;;5828:117;5623:329;;;;:::o;5958:149::-;5994:7;6034:66;6027:5;6023:78;6012:89;;5958:149;;;:::o;6113:115::-;6198:23;6215:5;6198:23;:::i;:::-;6193:3;6186:36;6113:115;;:::o;6234:118::-;6321:24;6339:5;6321:24;:::i;:::-;6316:3;6309:37;6234:118;;:::o;6358:114::-;6425:6;6459:5;6453:12;6443:22;;6358:114;;;:::o;6478:184::-;6577:11;6611:6;6606:3;6599:19;6651:4;6646:3;6642:14;6627:29;;6478:184;;;;:::o;6668:132::-;6735:4;6758:3;6750:11;;6788:4;6783:3;6779:14;6771:22;;6668:132;;;:::o;6806:108::-;6883:24;6901:5;6883:24;:::i;:::-;6878:3;6871:37;6806:108;;:::o;6920:179::-;6989:10;7010:46;7052:3;7044:6;7010:46;:::i;:::-;7088:4;7083:3;7079:14;7065:28;;6920:179;;;;:::o;7105:113::-;7175:4;7207;7202:3;7198:14;7190:22;;7105:113;;;:::o;7254:732::-;7373:3;7402:54;7450:5;7402:54;:::i;:::-;7472:86;7551:6;7546:3;7472:86;:::i;:::-;7465:93;;7582:56;7632:5;7582:56;:::i;:::-;7661:7;7692:1;7677:284;7702:6;7699:1;7696:13;7677:284;;;7778:6;7772:13;7805:63;7864:3;7849:13;7805:63;:::i;:::-;7798:70;;7891:60;7944:6;7891:60;:::i;:::-;7881:70;;7737:224;7724:1;7721;7717:9;7712:14;;7677:284;;;7681:14;7977:3;7970:10;;7378:608;;;7254:732;;;;:::o;7992:1215::-;8341:4;8379:3;8368:9;8364:19;8356:27;;8393:69;8459:1;8448:9;8444:17;8435:6;8393:69;:::i;:::-;8509:9;8503:4;8499:20;8494:2;8483:9;8479:18;8472:48;8537:78;8610:4;8601:6;8537:78;:::i;:::-;8529:86;;8662:9;8656:4;8652:20;8647:2;8636:9;8632:18;8625:48;8690:78;8763:4;8754:6;8690:78;:::i;:::-;8682:86;;8778:72;8846:2;8835:9;8831:18;8822:6;8778:72;:::i;:::-;8860:73;8928:3;8917:9;8913:19;8904:6;8860:73;:::i;:::-;8943;9011:3;9000:9;8996:19;8987:6;8943:73;:::i;:::-;9064:9;9058:4;9054:20;9048:3;9037:9;9033:19;9026:49;9092:108;9195:4;9186:6;9092:108;:::i;:::-;9084:116;;7992:1215;;;;;;;;;;:::o;9213:118::-;9284:22;9300:5;9284:22;:::i;:::-;9277:5;9274:33;9264:61;;9321:1;9318;9311:12;9264:61;9213:118;:::o;9337:135::-;9381:5;9419:6;9406:20;9397:29;;9435:31;9460:5;9435:31;:::i;:::-;9337:135;;;;:::o;9478:122::-;9551:24;9569:5;9551:24;:::i;:::-;9544:5;9541:35;9531:63;;9590:1;9587;9580:12;9531:63;9478:122;:::o;9606:139::-;9652:5;9690:6;9677:20;9668:29;;9706:33;9733:5;9706:33;:::i;:::-;9606:139;;;;:::o;9751:1199::-;9862:6;9870;9878;9886;9894;9902;9910;9959:3;9947:9;9938:7;9934:23;9930:33;9927:120;;;9966:79;;:::i;:::-;9927:120;10086:1;10111:53;10156:7;10147:6;10136:9;10132:22;10111:53;:::i;:::-;10101:63;;10057:117;10213:2;10239:53;10284:7;10275:6;10264:9;10260:22;10239:53;:::i;:::-;10229:63;;10184:118;10341:2;10367:53;10412:7;10403:6;10392:9;10388:22;10367:53;:::i;:::-;10357:63;;10312:118;10469:2;10495:53;10540:7;10531:6;10520:9;10516:22;10495:53;:::i;:::-;10485:63;;10440:118;10597:3;10624:51;10667:7;10658:6;10647:9;10643:22;10624:51;:::i;:::-;10614:61;;10568:117;10724:3;10751:53;10796:7;10787:6;10776:9;10772:22;10751:53;:::i;:::-;10741:63;;10695:119;10853:3;10880:53;10925:7;10916:6;10905:9;10901:22;10880:53;:::i;:::-;10870:63;;10824:119;9751:1199;;;;;;;;;;:::o;10956:474::-;11024:6;11032;11081:2;11069:9;11060:7;11056:23;11052:32;11049:119;;;11087:79;;:::i;:::-;11049:119;11207:1;11232:53;11277:7;11268:6;11257:9;11253:22;11232:53;:::i;:::-;11222:63;;11178:117;11334:2;11360:53;11405:7;11396:6;11385:9;11381:22;11360:53;:::i;:::-;11350:63;;11305:118;10956:474;;;;;:::o;11436:180::-;11484:77;11481:1;11474:88;11581:4;11578:1;11571:15;11605:4;11602:1;11595:15;11622:320;11666:6;11703:1;11697:4;11693:12;11683:22;;11750:1;11744:4;11740:12;11771:18;11761:81;;11827:4;11819:6;11815:17;11805:27;;11761:81;11889:2;11881:6;11878:14;11858:18;11855:38;11852:84;;11908:18;;:::i;:::-;11852:84;11673:269;11622:320;;;:::o;11948:180::-;11996:77;11993:1;11986:88;12093:4;12090:1;12083:15;12117:4;12114:1;12107:15;12134:775;12367:4;12405:3;12394:9;12390:19;12382:27;;12419:71;12487:1;12476:9;12472:17;12463:6;12419:71;:::i;:::-;12500:72;12568:2;12557:9;12553:18;12544:6;12500:72;:::i;:::-;12582;12650:2;12639:9;12635:18;12626:6;12582:72;:::i;:::-;12664;12732:2;12721:9;12717:18;12708:6;12664:72;:::i;:::-;12746:73;12814:3;12803:9;12799:19;12790:6;12746:73;:::i;:::-;12829;12897:3;12886:9;12882:19;12873:6;12829:73;:::i;:::-;12134:775;;;;;;;;;:::o;12915:332::-;13036:4;13074:2;13063:9;13059:18;13051:26;;13087:71;13155:1;13144:9;13140:17;13131:6;13087:71;:::i;:::-;13168:72;13236:2;13225:9;13221:18;13212:6;13168:72;:::i;:::-;12915:332;;;;;:::o;13253:442::-;13402:4;13440:2;13429:9;13425:18;13417:26;;13453:71;13521:1;13510:9;13506:17;13497:6;13453:71;:::i;:::-;13534:72;13602:2;13591:9;13587:18;13578:6;13534:72;:::i;:::-;13616;13684:2;13673:9;13669:18;13660:6;13616:72;:::i;:::-;13253:442;;;;;;:::o;13701:222::-;13794:4;13832:2;13821:9;13817:18;13809:26;;13845:71;13913:1;13902:9;13898:17;13889:6;13845:71;:::i;:::-;13701:222;;;;:::o;13929:180::-;13977:77;13974:1;13967:88;14074:4;14071:1;14064:15;14098:4;14095:1;14088:15;14115:191;14155:3;14174:20;14192:1;14174:20;:::i;:::-;14169:25;;14208:20;14226:1;14208:20;:::i;:::-;14203:25;;14251:1;14248;14244:9;14237:16;;14272:3;14269:1;14266:10;14263:36;;;14279:18;;:::i;:::-;14263:36;14115:191;;;;:::o;14312:664::-;14517:4;14555:3;14544:9;14540:19;14532:27;;14569:71;14637:1;14626:9;14622:17;14613:6;14569:71;:::i;:::-;14650:72;14718:2;14707:9;14703:18;14694:6;14650:72;:::i;:::-;14732;14800:2;14789:9;14785:18;14776:6;14732:72;:::i;:::-;14814;14882:2;14871:9;14867:18;14858:6;14814:72;:::i;:::-;14896:73;14964:3;14953:9;14949:19;14940:6;14896:73;:::i;:::-;14312:664;;;;;;;;:::o;14982:545::-;15155:4;15193:3;15182:9;15178:19;15170:27;;15207:71;15275:1;15264:9;15260:17;15251:6;15207:71;:::i;:::-;15288:68;15352:2;15341:9;15337:18;15328:6;15288:68;:::i;:::-;15366:72;15434:2;15423:9;15419:18;15410:6;15366:72;:::i;:::-;15448;15516:2;15505:9;15501:18;15492:6;15448:72;:::i;:::-;14982:545;;;;;;;:::o;15533:180::-;15581:77;15578:1;15571:88;15678:4;15675:1;15668:15;15702:4;15699:1;15692:15

Swarm Source

ipfs://17dc0e67c261f19e4644c5a6032b069c23cf13755e42ccfd728ae2402a763f8a
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.