ERC-20
Overview
Max Total Supply
1,000,000 RINGS
Holders
5
Market
Price
$0.00 @ 0.000000 S
Onchain Market Cap
$0.00
Circulating Supply Market Cap
-
Other Info
Token Contract (WITH 18 Decimals)
Balance
250,000 RINGSValue
$0.00Loading...
Loading
Loading...
Loading
Loading...
Loading
Contract Source Code Verified (Exact Match)
Contract Name:
ShadowToken
Compiler Version
v0.8.26+commit.8a97fa7a
Optimization Enabled:
Yes with 100 runs
Other Settings:
shanghai EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity ^0.8.26; import "@openzeppelin/contracts/utils/math/Math.sol"; import "@openzeppelin/contracts/access/Ownable.sol"; import "@openzeppelin/contracts/token/ERC20/ERC20.sol"; import "@openzeppelin/contracts/token/ERC20/extensions/ERC20Burnable.sol"; interface IShadowFactory { function createPair(address tokenA, address tokenB, bool stable) external returns (address pair); function getPair(address token0, address token1, bool stable) external view returns (address); } struct route { address from; address to; bool stable; } interface IShadowRouter { function swapExactTokensForETHSupportingFeeOnTransferTokens( uint amountIn, uint amountOutMin, route[] calldata routes, address to, uint deadline ) external; function factory() external view returns (address); function addLiquidityETH( address token, bool stable, uint amountTokenDesired, uint amountTokenMin, uint amountETHMin, address to, uint deadline ) external payable returns (uint amountToken, uint amountETH, uint liquidity); } contract ShadowToken is ERC20, ERC20Burnable, Ownable { using Math for uint256; uint8 private immutable _decimals; uint256 private immutable _maxTokenAmount; uint256 private immutable _airdropFees; mapping(uint256 => uint256) private _sellCount; IShadowRouter private immutable _shadowRouter; address public _shadowPair; // Changed from immutable to mutable address payable private immutable _taxCollectorAddress; address private immutable WETH; route[] private swapPath; address private immutable _routerAddress; bool private _isAddingLiq; bool public _tradingOpen; bool private _inSwap; event LiquidityAdded(uint256 amountToken, uint256 amountETH, uint256 liquidity); event LiquidityAdditionFailed(string reason); event TokensBurned(address indexed burner, uint256 amount); event EtherReceived(address sender, uint256 amount); event PairInitialized(address pair); error ZeroAmount(); error TradingNotOpen(); error ExceedsMaxTokenAmount(); error SellLimitReached(); error ETHTransferFailed(); error PairAlreadyInitialized(); modifier lockTheSwap { _inSwap = true; _; _inSwap = false; } constructor( string memory name_, string memory symbol_, uint8 decimals_, uint256 totalSupply_, uint256 maxTokenAmount_, uint256 airdropFees_, address payable taxCollectorAddress_, address routerAddress_ ) ERC20(name_, symbol_) Ownable(msg.sender) { _decimals = decimals_; _maxTokenAmount = maxTokenAmount_; _airdropFees = airdropFees_; _taxCollectorAddress = taxCollectorAddress_; _routerAddress = routerAddress_; _shadowRouter = IShadowRouter(routerAddress_); WETH = 0x039e2fB66102314Ce7b64Ce5Ce3E5183bc94aD38; // Verify this matches Router's WETH // _shadowPair is left uninitialized here (defaults to address(0)) swapPath.push(route({ from: address(this), to: WETH, stable: false })); _isAddingLiq = false; _mint(msg.sender, totalSupply_); } // Function to initialize the pair post-deployment function initializePair() external onlyOwner { if (_shadowPair != address(0)) revert PairAlreadyInitialized(); address factory = 0x2dA25E7446A70D7be65fd4c053948BEcAA6374c8; // Sonic PairFactory address token0 = address(this) < WETH ? address(this) : WETH; address token1 = address(this) < WETH ? WETH : address(this); _shadowPair = IShadowFactory(factory).getPair(token0, token1, false); if (_shadowPair == address(0)) { _shadowPair = IShadowFactory(factory).createPair(address(this), WETH, false); } emit PairInitialized(_shadowPair); } function enableTrading() external payable onlyOwner lockTheSwap { if (_tradingOpen) revert("Trading is already open"); if (_shadowPair == address(0)) revert("Pair not initialized"); uint256 contractBalance = balanceOf(address(this)); require(contractBalance > 0, "Contract has no tokens"); uint256 tokenForLiquidity = contractBalance - ((contractBalance * _airdropFees) / 100); _approve(address(this), address(_shadowRouter), contractBalance); _tradingOpen = true; _isAddingLiq = true; _addLiquidity(msg.value, tokenForLiquidity); _isAddingLiq = false; } function _addLiquidity(uint256 ethAmount, uint256 tokenAmount) private { if (tokenAmount == 0) revert ZeroAmount(); if (ethAmount == 0) revert ZeroAmount(); (uint256 amountToken, uint256 amountETH, uint256 liquidity) = _shadowRouter.addLiquidityETH{value: ethAmount}( address(this), false, tokenAmount, 0, 0, _msgSender(), block.timestamp + 1000 ); emit LiquidityAdded(amountToken, amountETH, liquidity); } function _update(address from, address to, uint256 amount) internal override { if (amount == 0) revert ZeroAmount(); if (from == address(0) || to == address(0)) { super._update(from, to, amount); return; } if (!_tradingOpen && from != owner() && to != owner()) revert TradingNotOpen(); if (from != owner() && from == _shadowPair && to != _routerAddress && to != address(this) && to != owner()) { if ((balanceOf(to) + amount) > _maxTokenAmount) { revert ExceedsMaxTokenAmount(); } } if (!_inSwap && to == _shadowPair && !_isAddingLiq) { _handleSell(amount); } super._update(from, to, amount); } function _handleSell(uint256 amount) private lockTheSwap { uint256 contractTokenBalance = balanceOf(address(this)); if (contractTokenBalance > 0) { if (_sellCount[block.number] >= 3) revert SellLimitReached(); uint256 swapAmount = amount.min(contractTokenBalance.min(_maxTokenAmount)); _swapAndTransferETH(swapAmount); unchecked { _sellCount[block.number]++; } } } function _swapAndTransferETH(uint256 tokenAmount) private lockTheSwap { swapTokensForEth(tokenAmount); uint256 ethBalance = address(this).balance; if (ethBalance > 0) { (bool success, ) = _taxCollectorAddress.call{value: ethBalance}(""); if (!success) revert ETHTransferFailed(); } } function swapTokensForEth(uint256 tokenAmount) private lockTheSwap { if (tokenAmount == 0) revert ZeroAmount(); _shadowRouter.swapExactTokensForETHSupportingFeeOnTransferTokens( tokenAmount, 0, swapPath, address(this), block.timestamp + 300 ); } function decimals() public view override returns (uint8) { return _decimals; } function maxTokenAmount() public view returns (uint256) { return _maxTokenAmount; } function burn(uint256 amount) public override { super.burn(amount); emit TokensBurned(_msgSender(), amount); } receive() external payable { emit EtherReceived(msg.sender, msg.value); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol) pragma solidity ^0.8.20; import {Context} from "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * The initial owner is set to the address provided by the deployer. This can * later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; /** * @dev The caller account is not authorized to perform an operation. */ error OwnableUnauthorizedAccount(address account); /** * @dev The owner is not a valid owner account. (eg. `address(0)`) */ error OwnableInvalidOwner(address owner); event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the address provided by the deployer as the initial owner. */ constructor(address initialOwner) { if (initialOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(initialOwner); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { if (owner() != _msgSender()) { revert OwnableUnauthorizedAccount(_msgSender()); } } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { if (newOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol) pragma solidity ^0.8.20; /** * @dev Standard ERC-20 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens. */ interface IERC20Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC20InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC20InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers. * @param spender Address that may be allowed to operate on tokens without being their owner. * @param allowance Amount of tokens a `spender` is allowed to operate with. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC20InvalidApprover(address approver); /** * @dev Indicates a failure with the `spender` to be approved. Used in approvals. * @param spender Address that may be allowed to operate on tokens without being their owner. */ error ERC20InvalidSpender(address spender); } /** * @dev Standard ERC-721 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens. */ interface IERC721Errors { /** * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20. * Used in balance queries. * @param owner Address of the current owner of a token. */ error ERC721InvalidOwner(address owner); /** * @dev Indicates a `tokenId` whose `owner` is the zero address. * @param tokenId Identifier number of a token. */ error ERC721NonexistentToken(uint256 tokenId); /** * @dev Indicates an error related to the ownership over a particular token. Used in transfers. * @param sender Address whose tokens are being transferred. * @param tokenId Identifier number of a token. * @param owner Address of the current owner of a token. */ error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC721InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC721InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param tokenId Identifier number of a token. */ error ERC721InsufficientApproval(address operator, uint256 tokenId); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC721InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC721InvalidOperator(address operator); } /** * @dev Standard ERC-1155 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens. */ interface IERC1155Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. * @param tokenId Identifier number of a token. */ error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC1155InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC1155InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param owner Address of the current owner of a token. */ error ERC1155MissingApprovalForAll(address operator, address owner); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC1155InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC1155InvalidOperator(address operator); /** * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation. * Used in batch transfers. * @param idsLength Length of the array of token identifiers * @param valuesLength Length of the array of token amounts */ error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.2.0) (token/ERC20/ERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "./IERC20.sol"; import {IERC20Metadata} from "./extensions/IERC20Metadata.sol"; import {Context} from "../../utils/Context.sol"; import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * * TIP: For a detailed writeup see our guide * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * The default value of {decimals} is 18. To change this, you should override * this function so it returns a different value. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC-20 * applications. */ abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors { mapping(address account => uint256) private _balances; mapping(address account => mapping(address spender => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; /** * @dev Sets the values for {name} and {symbol}. * * All two of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the default value returned by this function, unless * it's overridden. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `to` cannot be the zero address. * - the caller must have a balance of at least `value`. */ function transfer(address to, uint256 value) public virtual returns (bool) { address owner = _msgSender(); _transfer(owner, to, value); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on * `transferFrom`. This is semantically equivalent to an infinite approval. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 value) public virtual returns (bool) { address owner = _msgSender(); _approve(owner, spender, value); return true; } /** * @dev See {IERC20-transferFrom}. * * Skips emitting an {Approval} event indicating an allowance update. This is not * required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve]. * * NOTE: Does not update the allowance if the current allowance * is the maximum `uint256`. * * Requirements: * * - `from` and `to` cannot be the zero address. * - `from` must have a balance of at least `value`. * - the caller must have allowance for ``from``'s tokens of at least * `value`. */ function transferFrom(address from, address to, uint256 value) public virtual returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, value); _transfer(from, to, value); return true; } /** * @dev Moves a `value` amount of tokens from `from` to `to`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * NOTE: This function is not virtual, {_update} should be overridden instead. */ function _transfer(address from, address to, uint256 value) internal { if (from == address(0)) { revert ERC20InvalidSender(address(0)); } if (to == address(0)) { revert ERC20InvalidReceiver(address(0)); } _update(from, to, value); } /** * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from` * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding * this function. * * Emits a {Transfer} event. */ function _update(address from, address to, uint256 value) internal virtual { if (from == address(0)) { // Overflow check required: The rest of the code assumes that totalSupply never overflows _totalSupply += value; } else { uint256 fromBalance = _balances[from]; if (fromBalance < value) { revert ERC20InsufficientBalance(from, fromBalance, value); } unchecked { // Overflow not possible: value <= fromBalance <= totalSupply. _balances[from] = fromBalance - value; } } if (to == address(0)) { unchecked { // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply. _totalSupply -= value; } } else { unchecked { // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256. _balances[to] += value; } } emit Transfer(from, to, value); } /** * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0). * Relies on the `_update` mechanism * * Emits a {Transfer} event with `from` set to the zero address. * * NOTE: This function is not virtual, {_update} should be overridden instead. */ function _mint(address account, uint256 value) internal { if (account == address(0)) { revert ERC20InvalidReceiver(address(0)); } _update(address(0), account, value); } /** * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply. * Relies on the `_update` mechanism. * * Emits a {Transfer} event with `to` set to the zero address. * * NOTE: This function is not virtual, {_update} should be overridden instead */ function _burn(address account, uint256 value) internal { if (account == address(0)) { revert ERC20InvalidSender(address(0)); } _update(account, address(0), value); } /** * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. * * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument. */ function _approve(address owner, address spender, uint256 value) internal { _approve(owner, spender, value, true); } /** * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event. * * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any * `Approval` event during `transferFrom` operations. * * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to * true using the following override: * * ```solidity * function _approve(address owner, address spender, uint256 value, bool) internal virtual override { * super._approve(owner, spender, value, true); * } * ``` * * Requirements are the same as {_approve}. */ function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual { if (owner == address(0)) { revert ERC20InvalidApprover(address(0)); } if (spender == address(0)) { revert ERC20InvalidSpender(address(0)); } _allowances[owner][spender] = value; if (emitEvent) { emit Approval(owner, spender, value); } } /** * @dev Updates `owner` s allowance for `spender` based on spent `value`. * * Does not update the allowance value in case of infinite allowance. * Revert if not enough allowance is available. * * Does not emit an {Approval} event. */ function _spendAllowance(address owner, address spender, uint256 value) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance < type(uint256).max) { if (currentAllowance < value) { revert ERC20InsufficientAllowance(spender, currentAllowance, value); } unchecked { _approve(owner, spender, currentAllowance - value, false); } } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/ERC20Burnable.sol) pragma solidity ^0.8.20; import {ERC20} from "../ERC20.sol"; import {Context} from "../../../utils/Context.sol"; /** * @dev Extension of {ERC20} that allows token holders to destroy both their own * tokens and those that they have an allowance for, in a way that can be * recognized off-chain (via event analysis). */ abstract contract ERC20Burnable is Context, ERC20 { /** * @dev Destroys a `value` amount of tokens from the caller. * * See {ERC20-_burn}. */ function burn(uint256 value) public virtual { _burn(_msgSender(), value); } /** * @dev Destroys a `value` amount of tokens from `account`, deducting from * the caller's allowance. * * See {ERC20-_burn} and {ERC20-allowance}. * * Requirements: * * - the caller must have allowance for ``accounts``'s tokens of at least * `value`. */ function burnFrom(address account, uint256 value) public virtual { _spendAllowance(account, _msgSender(), value); _burn(account, value); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.20; import {IERC20} from "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC-20 standard. */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-20 standard as defined in the ERC. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol) pragma solidity ^0.8.20; import {Panic} from "../Panic.sol"; import {SafeCast} from "./SafeCast.sol"; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an success flag (no overflow). */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow). */ function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow). */ function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a success flag (no division by zero). */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero). */ function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * SafeCast.toUint(condition)); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. Panic.panic(Panic.DIVISION_BY_ZERO); } // The following calculation ensures accurate ceiling division without overflow. // Since a is non-zero, (a - 1) / b will not overflow. // The largest possible result occurs when (a - 1) / b is type(uint256).max, // but the largest value we can obtain is type(uint256).max - 1, which happens // when a = type(uint256).max and b = 1. unchecked { return SafeCast.toUint(a > 0) * ((a - 1) / b + 1); } } /** * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2²⁵⁶ + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0. if (denominator <= prod1) { Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW)); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv ≡ 1 mod 2⁴. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2⁸ inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶ inverse *= 2 - denominator * inverse; // inverse mod 2³² inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴ inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸ inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶ // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @dev Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0); } /** * @dev Calculate the modular multiplicative inverse of a number in Z/nZ. * * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0. * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible. * * If the input value is not inversible, 0 is returned. * * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}. */ function invMod(uint256 a, uint256 n) internal pure returns (uint256) { unchecked { if (n == 0) return 0; // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version) // Used to compute integers x and y such that: ax + ny = gcd(a, n). // When the gcd is 1, then the inverse of a modulo n exists and it's x. // ax + ny = 1 // ax = 1 + (-y)n // ax ≡ 1 (mod n) # x is the inverse of a modulo n // If the remainder is 0 the gcd is n right away. uint256 remainder = a % n; uint256 gcd = n; // Therefore the initial coefficients are: // ax + ny = gcd(a, n) = n // 0a + 1n = n int256 x = 0; int256 y = 1; while (remainder != 0) { uint256 quotient = gcd / remainder; (gcd, remainder) = ( // The old remainder is the next gcd to try. remainder, // Compute the next remainder. // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd // where gcd is at most n (capped to type(uint256).max) gcd - remainder * quotient ); (x, y) = ( // Increment the coefficient of a. y, // Decrement the coefficient of n. // Can overflow, but the result is casted to uint256 so that the // next value of y is "wrapped around" to a value between 0 and n - 1. x - y * int256(quotient) ); } if (gcd != 1) return 0; // No inverse exists. return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative. } } /** * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`. * * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that * `a**(p-2)` is the modular multiplicative inverse of a in Fp. * * NOTE: this function does NOT check that `p` is a prime greater than `2`. */ function invModPrime(uint256 a, uint256 p) internal view returns (uint256) { unchecked { return Math.modExp(a, p - 2, p); } } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m) * * Requirements: * - modulus can't be zero * - underlying staticcall to precompile must succeed * * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make * sure the chain you're using it on supports the precompiled contract for modular exponentiation * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, * the underlying function will succeed given the lack of a revert, but the result may be incorrectly * interpreted as 0. */ function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) { (bool success, uint256 result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m). * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying * to operate modulo 0 or if the underlying precompile reverted. * * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack * of a revert, but the result may be incorrectly interpreted as 0. */ function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) { if (m == 0) return (false, 0); assembly ("memory-safe") { let ptr := mload(0x40) // | Offset | Content | Content (Hex) | // |-----------|------------|--------------------------------------------------------------------| // | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x60:0x7f | value of b | 0x<.............................................................b> | // | 0x80:0x9f | value of e | 0x<.............................................................e> | // | 0xa0:0xbf | value of m | 0x<.............................................................m> | mstore(ptr, 0x20) mstore(add(ptr, 0x20), 0x20) mstore(add(ptr, 0x40), 0x20) mstore(add(ptr, 0x60), b) mstore(add(ptr, 0x80), e) mstore(add(ptr, 0xa0), m) // Given the result < m, it's guaranteed to fit in 32 bytes, // so we can use the memory scratch space located at offset 0. success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20) result := mload(0x00) } } /** * @dev Variant of {modExp} that supports inputs of arbitrary length. */ function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) { (bool success, bytes memory result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Variant of {tryModExp} that supports inputs of arbitrary length. */ function tryModExp( bytes memory b, bytes memory e, bytes memory m ) internal view returns (bool success, bytes memory result) { if (_zeroBytes(m)) return (false, new bytes(0)); uint256 mLen = m.length; // Encode call args in result and move the free memory pointer result = abi.encodePacked(b.length, e.length, mLen, b, e, m); assembly ("memory-safe") { let dataPtr := add(result, 0x20) // Write result on top of args to avoid allocating extra memory. success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen) // Overwrite the length. // result.length > returndatasize() is guaranteed because returndatasize() == m.length mstore(result, mLen) // Set the memory pointer after the returned data. mstore(0x40, add(dataPtr, mLen)) } } /** * @dev Returns whether the provided byte array is zero. */ function _zeroBytes(bytes memory byteArray) private pure returns (bool) { for (uint256 i = 0; i < byteArray.length; ++i) { if (byteArray[i] != 0) { return false; } } return true; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * This method is based on Newton's method for computing square roots; the algorithm is restricted to only * using integer operations. */ function sqrt(uint256 a) internal pure returns (uint256) { unchecked { // Take care of easy edge cases when a == 0 or a == 1 if (a <= 1) { return a; } // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between // the current value as `ε_n = | x_n - sqrt(a) |`. // // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is // bigger than any uint256. // // By noticing that // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)` // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar // to the msb function. uint256 aa = a; uint256 xn = 1; if (aa >= (1 << 128)) { aa >>= 128; xn <<= 64; } if (aa >= (1 << 64)) { aa >>= 64; xn <<= 32; } if (aa >= (1 << 32)) { aa >>= 32; xn <<= 16; } if (aa >= (1 << 16)) { aa >>= 16; xn <<= 8; } if (aa >= (1 << 8)) { aa >>= 8; xn <<= 4; } if (aa >= (1 << 4)) { aa >>= 4; xn <<= 2; } if (aa >= (1 << 2)) { xn <<= 1; } // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1). // // We can refine our estimation by noticing that the middle of that interval minimizes the error. // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2). // This is going to be our x_0 (and ε_0) xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2) // From here, Newton's method give us: // x_{n+1} = (x_n + a / x_n) / 2 // // One should note that: // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a // = ((x_n² + a) / (2 * x_n))² - a // = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a // = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²) // = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²) // = (x_n² - a)² / (2 * x_n)² // = ((x_n² - a) / (2 * x_n))² // ≥ 0 // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n // // This gives us the proof of quadratic convergence of the sequence: // ε_{n+1} = | x_{n+1} - sqrt(a) | // = | (x_n + a / x_n) / 2 - sqrt(a) | // = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) | // = | (x_n - sqrt(a))² / (2 * x_n) | // = | ε_n² / (2 * x_n) | // = ε_n² / | (2 * x_n) | // // For the first iteration, we have a special case where x_0 is known: // ε_1 = ε_0² / | (2 * x_0) | // ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2))) // ≤ 2**(2*e-4) / (3 * 2**(e-1)) // ≤ 2**(e-3) / 3 // ≤ 2**(e-3-log2(3)) // ≤ 2**(e-4.5) // // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n: // ε_{n+1} = ε_n² / | (2 * x_n) | // ≤ (2**(e-k))² / (2 * 2**(e-1)) // ≤ 2**(2*e-2*k) / 2**e // ≤ 2**(e-2*k) xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5 xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9 xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18 xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36 xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72 // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either // sqrt(a) or sqrt(a) + 1. return xn - SafeCast.toUint(xn > a / xn); } } /** * @dev Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 exp; unchecked { exp = 128 * SafeCast.toUint(value > (1 << 128) - 1); value >>= exp; result += exp; exp = 64 * SafeCast.toUint(value > (1 << 64) - 1); value >>= exp; result += exp; exp = 32 * SafeCast.toUint(value > (1 << 32) - 1); value >>= exp; result += exp; exp = 16 * SafeCast.toUint(value > (1 << 16) - 1); value >>= exp; result += exp; exp = 8 * SafeCast.toUint(value > (1 << 8) - 1); value >>= exp; result += exp; exp = 4 * SafeCast.toUint(value > (1 << 4) - 1); value >>= exp; result += exp; exp = 2 * SafeCast.toUint(value > (1 << 2) - 1); value >>= exp; result += exp; result += SafeCast.toUint(value > 1); } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 isGt; unchecked { isGt = SafeCast.toUint(value > (1 << 128) - 1); value >>= isGt * 128; result += isGt * 16; isGt = SafeCast.toUint(value > (1 << 64) - 1); value >>= isGt * 64; result += isGt * 8; isGt = SafeCast.toUint(value > (1 << 32) - 1); value >>= isGt * 32; result += isGt * 4; isGt = SafeCast.toUint(value > (1 << 16) - 1); value >>= isGt * 16; result += isGt * 2; result += SafeCast.toUint(value > (1 << 8) - 1); } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol) // This file was procedurally generated from scripts/generate/templates/SafeCast.js. pragma solidity ^0.8.20; /** * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeCast { /** * @dev Value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value); /** * @dev An int value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedIntToUint(int256 value); /** * @dev Value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedIntDowncast(uint8 bits, int256 value); /** * @dev An uint value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedUintToInt(uint256 value); /** * @dev Returns the downcasted uint248 from uint256, reverting on * overflow (when the input is greater than largest uint248). * * Counterpart to Solidity's `uint248` operator. * * Requirements: * * - input must fit into 248 bits */ function toUint248(uint256 value) internal pure returns (uint248) { if (value > type(uint248).max) { revert SafeCastOverflowedUintDowncast(248, value); } return uint248(value); } /** * @dev Returns the downcasted uint240 from uint256, reverting on * overflow (when the input is greater than largest uint240). * * Counterpart to Solidity's `uint240` operator. * * Requirements: * * - input must fit into 240 bits */ function toUint240(uint256 value) internal pure returns (uint240) { if (value > type(uint240).max) { revert SafeCastOverflowedUintDowncast(240, value); } return uint240(value); } /** * @dev Returns the downcasted uint232 from uint256, reverting on * overflow (when the input is greater than largest uint232). * * Counterpart to Solidity's `uint232` operator. * * Requirements: * * - input must fit into 232 bits */ function toUint232(uint256 value) internal pure returns (uint232) { if (value > type(uint232).max) { revert SafeCastOverflowedUintDowncast(232, value); } return uint232(value); } /** * @dev Returns the downcasted uint224 from uint256, reverting on * overflow (when the input is greater than largest uint224). * * Counterpart to Solidity's `uint224` operator. * * Requirements: * * - input must fit into 224 bits */ function toUint224(uint256 value) internal pure returns (uint224) { if (value > type(uint224).max) { revert SafeCastOverflowedUintDowncast(224, value); } return uint224(value); } /** * @dev Returns the downcasted uint216 from uint256, reverting on * overflow (when the input is greater than largest uint216). * * Counterpart to Solidity's `uint216` operator. * * Requirements: * * - input must fit into 216 bits */ function toUint216(uint256 value) internal pure returns (uint216) { if (value > type(uint216).max) { revert SafeCastOverflowedUintDowncast(216, value); } return uint216(value); } /** * @dev Returns the downcasted uint208 from uint256, reverting on * overflow (when the input is greater than largest uint208). * * Counterpart to Solidity's `uint208` operator. * * Requirements: * * - input must fit into 208 bits */ function toUint208(uint256 value) internal pure returns (uint208) { if (value > type(uint208).max) { revert SafeCastOverflowedUintDowncast(208, value); } return uint208(value); } /** * @dev Returns the downcasted uint200 from uint256, reverting on * overflow (when the input is greater than largest uint200). * * Counterpart to Solidity's `uint200` operator. * * Requirements: * * - input must fit into 200 bits */ function toUint200(uint256 value) internal pure returns (uint200) { if (value > type(uint200).max) { revert SafeCastOverflowedUintDowncast(200, value); } return uint200(value); } /** * @dev Returns the downcasted uint192 from uint256, reverting on * overflow (when the input is greater than largest uint192). * * Counterpart to Solidity's `uint192` operator. * * Requirements: * * - input must fit into 192 bits */ function toUint192(uint256 value) internal pure returns (uint192) { if (value > type(uint192).max) { revert SafeCastOverflowedUintDowncast(192, value); } return uint192(value); } /** * @dev Returns the downcasted uint184 from uint256, reverting on * overflow (when the input is greater than largest uint184). * * Counterpart to Solidity's `uint184` operator. * * Requirements: * * - input must fit into 184 bits */ function toUint184(uint256 value) internal pure returns (uint184) { if (value > type(uint184).max) { revert SafeCastOverflowedUintDowncast(184, value); } return uint184(value); } /** * @dev Returns the downcasted uint176 from uint256, reverting on * overflow (when the input is greater than largest uint176). * * Counterpart to Solidity's `uint176` operator. * * Requirements: * * - input must fit into 176 bits */ function toUint176(uint256 value) internal pure returns (uint176) { if (value > type(uint176).max) { revert SafeCastOverflowedUintDowncast(176, value); } return uint176(value); } /** * @dev Returns the downcasted uint168 from uint256, reverting on * overflow (when the input is greater than largest uint168). * * Counterpart to Solidity's `uint168` operator. * * Requirements: * * - input must fit into 168 bits */ function toUint168(uint256 value) internal pure returns (uint168) { if (value > type(uint168).max) { revert SafeCastOverflowedUintDowncast(168, value); } return uint168(value); } /** * @dev Returns the downcasted uint160 from uint256, reverting on * overflow (when the input is greater than largest uint160). * * Counterpart to Solidity's `uint160` operator. * * Requirements: * * - input must fit into 160 bits */ function toUint160(uint256 value) internal pure returns (uint160) { if (value > type(uint160).max) { revert SafeCastOverflowedUintDowncast(160, value); } return uint160(value); } /** * @dev Returns the downcasted uint152 from uint256, reverting on * overflow (when the input is greater than largest uint152). * * Counterpart to Solidity's `uint152` operator. * * Requirements: * * - input must fit into 152 bits */ function toUint152(uint256 value) internal pure returns (uint152) { if (value > type(uint152).max) { revert SafeCastOverflowedUintDowncast(152, value); } return uint152(value); } /** * @dev Returns the downcasted uint144 from uint256, reverting on * overflow (when the input is greater than largest uint144). * * Counterpart to Solidity's `uint144` operator. * * Requirements: * * - input must fit into 144 bits */ function toUint144(uint256 value) internal pure returns (uint144) { if (value > type(uint144).max) { revert SafeCastOverflowedUintDowncast(144, value); } return uint144(value); } /** * @dev Returns the downcasted uint136 from uint256, reverting on * overflow (when the input is greater than largest uint136). * * Counterpart to Solidity's `uint136` operator. * * Requirements: * * - input must fit into 136 bits */ function toUint136(uint256 value) internal pure returns (uint136) { if (value > type(uint136).max) { revert SafeCastOverflowedUintDowncast(136, value); } return uint136(value); } /** * @dev Returns the downcasted uint128 from uint256, reverting on * overflow (when the input is greater than largest uint128). * * Counterpart to Solidity's `uint128` operator. * * Requirements: * * - input must fit into 128 bits */ function toUint128(uint256 value) internal pure returns (uint128) { if (value > type(uint128).max) { revert SafeCastOverflowedUintDowncast(128, value); } return uint128(value); } /** * @dev Returns the downcasted uint120 from uint256, reverting on * overflow (when the input is greater than largest uint120). * * Counterpart to Solidity's `uint120` operator. * * Requirements: * * - input must fit into 120 bits */ function toUint120(uint256 value) internal pure returns (uint120) { if (value > type(uint120).max) { revert SafeCastOverflowedUintDowncast(120, value); } return uint120(value); } /** * @dev Returns the downcasted uint112 from uint256, reverting on * overflow (when the input is greater than largest uint112). * * Counterpart to Solidity's `uint112` operator. * * Requirements: * * - input must fit into 112 bits */ function toUint112(uint256 value) internal pure returns (uint112) { if (value > type(uint112).max) { revert SafeCastOverflowedUintDowncast(112, value); } return uint112(value); } /** * @dev Returns the downcasted uint104 from uint256, reverting on * overflow (when the input is greater than largest uint104). * * Counterpart to Solidity's `uint104` operator. * * Requirements: * * - input must fit into 104 bits */ function toUint104(uint256 value) internal pure returns (uint104) { if (value > type(uint104).max) { revert SafeCastOverflowedUintDowncast(104, value); } return uint104(value); } /** * @dev Returns the downcasted uint96 from uint256, reverting on * overflow (when the input is greater than largest uint96). * * Counterpart to Solidity's `uint96` operator. * * Requirements: * * - input must fit into 96 bits */ function toUint96(uint256 value) internal pure returns (uint96) { if (value > type(uint96).max) { revert SafeCastOverflowedUintDowncast(96, value); } return uint96(value); } /** * @dev Returns the downcasted uint88 from uint256, reverting on * overflow (when the input is greater than largest uint88). * * Counterpart to Solidity's `uint88` operator. * * Requirements: * * - input must fit into 88 bits */ function toUint88(uint256 value) internal pure returns (uint88) { if (value > type(uint88).max) { revert SafeCastOverflowedUintDowncast(88, value); } return uint88(value); } /** * @dev Returns the downcasted uint80 from uint256, reverting on * overflow (when the input is greater than largest uint80). * * Counterpart to Solidity's `uint80` operator. * * Requirements: * * - input must fit into 80 bits */ function toUint80(uint256 value) internal pure returns (uint80) { if (value > type(uint80).max) { revert SafeCastOverflowedUintDowncast(80, value); } return uint80(value); } /** * @dev Returns the downcasted uint72 from uint256, reverting on * overflow (when the input is greater than largest uint72). * * Counterpart to Solidity's `uint72` operator. * * Requirements: * * - input must fit into 72 bits */ function toUint72(uint256 value) internal pure returns (uint72) { if (value > type(uint72).max) { revert SafeCastOverflowedUintDowncast(72, value); } return uint72(value); } /** * @dev Returns the downcasted uint64 from uint256, reverting on * overflow (when the input is greater than largest uint64). * * Counterpart to Solidity's `uint64` operator. * * Requirements: * * - input must fit into 64 bits */ function toUint64(uint256 value) internal pure returns (uint64) { if (value > type(uint64).max) { revert SafeCastOverflowedUintDowncast(64, value); } return uint64(value); } /** * @dev Returns the downcasted uint56 from uint256, reverting on * overflow (when the input is greater than largest uint56). * * Counterpart to Solidity's `uint56` operator. * * Requirements: * * - input must fit into 56 bits */ function toUint56(uint256 value) internal pure returns (uint56) { if (value > type(uint56).max) { revert SafeCastOverflowedUintDowncast(56, value); } return uint56(value); } /** * @dev Returns the downcasted uint48 from uint256, reverting on * overflow (when the input is greater than largest uint48). * * Counterpart to Solidity's `uint48` operator. * * Requirements: * * - input must fit into 48 bits */ function toUint48(uint256 value) internal pure returns (uint48) { if (value > type(uint48).max) { revert SafeCastOverflowedUintDowncast(48, value); } return uint48(value); } /** * @dev Returns the downcasted uint40 from uint256, reverting on * overflow (when the input is greater than largest uint40). * * Counterpart to Solidity's `uint40` operator. * * Requirements: * * - input must fit into 40 bits */ function toUint40(uint256 value) internal pure returns (uint40) { if (value > type(uint40).max) { revert SafeCastOverflowedUintDowncast(40, value); } return uint40(value); } /** * @dev Returns the downcasted uint32 from uint256, reverting on * overflow (when the input is greater than largest uint32). * * Counterpart to Solidity's `uint32` operator. * * Requirements: * * - input must fit into 32 bits */ function toUint32(uint256 value) internal pure returns (uint32) { if (value > type(uint32).max) { revert SafeCastOverflowedUintDowncast(32, value); } return uint32(value); } /** * @dev Returns the downcasted uint24 from uint256, reverting on * overflow (when the input is greater than largest uint24). * * Counterpart to Solidity's `uint24` operator. * * Requirements: * * - input must fit into 24 bits */ function toUint24(uint256 value) internal pure returns (uint24) { if (value > type(uint24).max) { revert SafeCastOverflowedUintDowncast(24, value); } return uint24(value); } /** * @dev Returns the downcasted uint16 from uint256, reverting on * overflow (when the input is greater than largest uint16). * * Counterpart to Solidity's `uint16` operator. * * Requirements: * * - input must fit into 16 bits */ function toUint16(uint256 value) internal pure returns (uint16) { if (value > type(uint16).max) { revert SafeCastOverflowedUintDowncast(16, value); } return uint16(value); } /** * @dev Returns the downcasted uint8 from uint256, reverting on * overflow (when the input is greater than largest uint8). * * Counterpart to Solidity's `uint8` operator. * * Requirements: * * - input must fit into 8 bits */ function toUint8(uint256 value) internal pure returns (uint8) { if (value > type(uint8).max) { revert SafeCastOverflowedUintDowncast(8, value); } return uint8(value); } /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. */ function toUint256(int256 value) internal pure returns (uint256) { if (value < 0) { revert SafeCastOverflowedIntToUint(value); } return uint256(value); } /** * @dev Returns the downcasted int248 from int256, reverting on * overflow (when the input is less than smallest int248 or * greater than largest int248). * * Counterpart to Solidity's `int248` operator. * * Requirements: * * - input must fit into 248 bits */ function toInt248(int256 value) internal pure returns (int248 downcasted) { downcasted = int248(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(248, value); } } /** * @dev Returns the downcasted int240 from int256, reverting on * overflow (when the input is less than smallest int240 or * greater than largest int240). * * Counterpart to Solidity's `int240` operator. * * Requirements: * * - input must fit into 240 bits */ function toInt240(int256 value) internal pure returns (int240 downcasted) { downcasted = int240(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(240, value); } } /** * @dev Returns the downcasted int232 from int256, reverting on * overflow (when the input is less than smallest int232 or * greater than largest int232). * * Counterpart to Solidity's `int232` operator. * * Requirements: * * - input must fit into 232 bits */ function toInt232(int256 value) internal pure returns (int232 downcasted) { downcasted = int232(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(232, value); } } /** * @dev Returns the downcasted int224 from int256, reverting on * overflow (when the input is less than smallest int224 or * greater than largest int224). * * Counterpart to Solidity's `int224` operator. * * Requirements: * * - input must fit into 224 bits */ function toInt224(int256 value) internal pure returns (int224 downcasted) { downcasted = int224(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(224, value); } } /** * @dev Returns the downcasted int216 from int256, reverting on * overflow (when the input is less than smallest int216 or * greater than largest int216). * * Counterpart to Solidity's `int216` operator. * * Requirements: * * - input must fit into 216 bits */ function toInt216(int256 value) internal pure returns (int216 downcasted) { downcasted = int216(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(216, value); } } /** * @dev Returns the downcasted int208 from int256, reverting on * overflow (when the input is less than smallest int208 or * greater than largest int208). * * Counterpart to Solidity's `int208` operator. * * Requirements: * * - input must fit into 208 bits */ function toInt208(int256 value) internal pure returns (int208 downcasted) { downcasted = int208(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(208, value); } } /** * @dev Returns the downcasted int200 from int256, reverting on * overflow (when the input is less than smallest int200 or * greater than largest int200). * * Counterpart to Solidity's `int200` operator. * * Requirements: * * - input must fit into 200 bits */ function toInt200(int256 value) internal pure returns (int200 downcasted) { downcasted = int200(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(200, value); } } /** * @dev Returns the downcasted int192 from int256, reverting on * overflow (when the input is less than smallest int192 or * greater than largest int192). * * Counterpart to Solidity's `int192` operator. * * Requirements: * * - input must fit into 192 bits */ function toInt192(int256 value) internal pure returns (int192 downcasted) { downcasted = int192(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(192, value); } } /** * @dev Returns the downcasted int184 from int256, reverting on * overflow (when the input is less than smallest int184 or * greater than largest int184). * * Counterpart to Solidity's `int184` operator. * * Requirements: * * - input must fit into 184 bits */ function toInt184(int256 value) internal pure returns (int184 downcasted) { downcasted = int184(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(184, value); } } /** * @dev Returns the downcasted int176 from int256, reverting on * overflow (when the input is less than smallest int176 or * greater than largest int176). * * Counterpart to Solidity's `int176` operator. * * Requirements: * * - input must fit into 176 bits */ function toInt176(int256 value) internal pure returns (int176 downcasted) { downcasted = int176(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(176, value); } } /** * @dev Returns the downcasted int168 from int256, reverting on * overflow (when the input is less than smallest int168 or * greater than largest int168). * * Counterpart to Solidity's `int168` operator. * * Requirements: * * - input must fit into 168 bits */ function toInt168(int256 value) internal pure returns (int168 downcasted) { downcasted = int168(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(168, value); } } /** * @dev Returns the downcasted int160 from int256, reverting on * overflow (when the input is less than smallest int160 or * greater than largest int160). * * Counterpart to Solidity's `int160` operator. * * Requirements: * * - input must fit into 160 bits */ function toInt160(int256 value) internal pure returns (int160 downcasted) { downcasted = int160(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(160, value); } } /** * @dev Returns the downcasted int152 from int256, reverting on * overflow (when the input is less than smallest int152 or * greater than largest int152). * * Counterpart to Solidity's `int152` operator. * * Requirements: * * - input must fit into 152 bits */ function toInt152(int256 value) internal pure returns (int152 downcasted) { downcasted = int152(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(152, value); } } /** * @dev Returns the downcasted int144 from int256, reverting on * overflow (when the input is less than smallest int144 or * greater than largest int144). * * Counterpart to Solidity's `int144` operator. * * Requirements: * * - input must fit into 144 bits */ function toInt144(int256 value) internal pure returns (int144 downcasted) { downcasted = int144(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(144, value); } } /** * @dev Returns the downcasted int136 from int256, reverting on * overflow (when the input is less than smallest int136 or * greater than largest int136). * * Counterpart to Solidity's `int136` operator. * * Requirements: * * - input must fit into 136 bits */ function toInt136(int256 value) internal pure returns (int136 downcasted) { downcasted = int136(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(136, value); } } /** * @dev Returns the downcasted int128 from int256, reverting on * overflow (when the input is less than smallest int128 or * greater than largest int128). * * Counterpart to Solidity's `int128` operator. * * Requirements: * * - input must fit into 128 bits */ function toInt128(int256 value) internal pure returns (int128 downcasted) { downcasted = int128(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(128, value); } } /** * @dev Returns the downcasted int120 from int256, reverting on * overflow (when the input is less than smallest int120 or * greater than largest int120). * * Counterpart to Solidity's `int120` operator. * * Requirements: * * - input must fit into 120 bits */ function toInt120(int256 value) internal pure returns (int120 downcasted) { downcasted = int120(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(120, value); } } /** * @dev Returns the downcasted int112 from int256, reverting on * overflow (when the input is less than smallest int112 or * greater than largest int112). * * Counterpart to Solidity's `int112` operator. * * Requirements: * * - input must fit into 112 bits */ function toInt112(int256 value) internal pure returns (int112 downcasted) { downcasted = int112(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(112, value); } } /** * @dev Returns the downcasted int104 from int256, reverting on * overflow (when the input is less than smallest int104 or * greater than largest int104). * * Counterpart to Solidity's `int104` operator. * * Requirements: * * - input must fit into 104 bits */ function toInt104(int256 value) internal pure returns (int104 downcasted) { downcasted = int104(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(104, value); } } /** * @dev Returns the downcasted int96 from int256, reverting on * overflow (when the input is less than smallest int96 or * greater than largest int96). * * Counterpart to Solidity's `int96` operator. * * Requirements: * * - input must fit into 96 bits */ function toInt96(int256 value) internal pure returns (int96 downcasted) { downcasted = int96(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(96, value); } } /** * @dev Returns the downcasted int88 from int256, reverting on * overflow (when the input is less than smallest int88 or * greater than largest int88). * * Counterpart to Solidity's `int88` operator. * * Requirements: * * - input must fit into 88 bits */ function toInt88(int256 value) internal pure returns (int88 downcasted) { downcasted = int88(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(88, value); } } /** * @dev Returns the downcasted int80 from int256, reverting on * overflow (when the input is less than smallest int80 or * greater than largest int80). * * Counterpart to Solidity's `int80` operator. * * Requirements: * * - input must fit into 80 bits */ function toInt80(int256 value) internal pure returns (int80 downcasted) { downcasted = int80(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(80, value); } } /** * @dev Returns the downcasted int72 from int256, reverting on * overflow (when the input is less than smallest int72 or * greater than largest int72). * * Counterpart to Solidity's `int72` operator. * * Requirements: * * - input must fit into 72 bits */ function toInt72(int256 value) internal pure returns (int72 downcasted) { downcasted = int72(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(72, value); } } /** * @dev Returns the downcasted int64 from int256, reverting on * overflow (when the input is less than smallest int64 or * greater than largest int64). * * Counterpart to Solidity's `int64` operator. * * Requirements: * * - input must fit into 64 bits */ function toInt64(int256 value) internal pure returns (int64 downcasted) { downcasted = int64(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(64, value); } } /** * @dev Returns the downcasted int56 from int256, reverting on * overflow (when the input is less than smallest int56 or * greater than largest int56). * * Counterpart to Solidity's `int56` operator. * * Requirements: * * - input must fit into 56 bits */ function toInt56(int256 value) internal pure returns (int56 downcasted) { downcasted = int56(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(56, value); } } /** * @dev Returns the downcasted int48 from int256, reverting on * overflow (when the input is less than smallest int48 or * greater than largest int48). * * Counterpart to Solidity's `int48` operator. * * Requirements: * * - input must fit into 48 bits */ function toInt48(int256 value) internal pure returns (int48 downcasted) { downcasted = int48(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(48, value); } } /** * @dev Returns the downcasted int40 from int256, reverting on * overflow (when the input is less than smallest int40 or * greater than largest int40). * * Counterpart to Solidity's `int40` operator. * * Requirements: * * - input must fit into 40 bits */ function toInt40(int256 value) internal pure returns (int40 downcasted) { downcasted = int40(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(40, value); } } /** * @dev Returns the downcasted int32 from int256, reverting on * overflow (when the input is less than smallest int32 or * greater than largest int32). * * Counterpart to Solidity's `int32` operator. * * Requirements: * * - input must fit into 32 bits */ function toInt32(int256 value) internal pure returns (int32 downcasted) { downcasted = int32(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(32, value); } } /** * @dev Returns the downcasted int24 from int256, reverting on * overflow (when the input is less than smallest int24 or * greater than largest int24). * * Counterpart to Solidity's `int24` operator. * * Requirements: * * - input must fit into 24 bits */ function toInt24(int256 value) internal pure returns (int24 downcasted) { downcasted = int24(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(24, value); } } /** * @dev Returns the downcasted int16 from int256, reverting on * overflow (when the input is less than smallest int16 or * greater than largest int16). * * Counterpart to Solidity's `int16` operator. * * Requirements: * * - input must fit into 16 bits */ function toInt16(int256 value) internal pure returns (int16 downcasted) { downcasted = int16(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(16, value); } } /** * @dev Returns the downcasted int8 from int256, reverting on * overflow (when the input is less than smallest int8 or * greater than largest int8). * * Counterpart to Solidity's `int8` operator. * * Requirements: * * - input must fit into 8 bits */ function toInt8(int256 value) internal pure returns (int8 downcasted) { downcasted = int8(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(8, value); } } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. */ function toInt256(uint256 value) internal pure returns (int256) { // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive if (value > uint256(type(int256).max)) { revert SafeCastOverflowedUintToInt(value); } return int256(value); } /** * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump. */ function toUint(bool b) internal pure returns (uint256 u) { assembly ("memory-safe") { u := iszero(iszero(b)) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol) pragma solidity ^0.8.20; /** * @dev Helper library for emitting standardized panic codes. * * ```solidity * contract Example { * using Panic for uint256; * * // Use any of the declared internal constants * function foo() { Panic.GENERIC.panic(); } * * // Alternatively * function foo() { Panic.panic(Panic.GENERIC); } * } * ``` * * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil]. * * _Available since v5.1._ */ // slither-disable-next-line unused-state library Panic { /// @dev generic / unspecified error uint256 internal constant GENERIC = 0x00; /// @dev used by the assert() builtin uint256 internal constant ASSERT = 0x01; /// @dev arithmetic underflow or overflow uint256 internal constant UNDER_OVERFLOW = 0x11; /// @dev division or modulo by zero uint256 internal constant DIVISION_BY_ZERO = 0x12; /// @dev enum conversion error uint256 internal constant ENUM_CONVERSION_ERROR = 0x21; /// @dev invalid encoding in storage uint256 internal constant STORAGE_ENCODING_ERROR = 0x22; /// @dev empty array pop uint256 internal constant EMPTY_ARRAY_POP = 0x31; /// @dev array out of bounds access uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32; /// @dev resource error (too large allocation or too large array) uint256 internal constant RESOURCE_ERROR = 0x41; /// @dev calling invalid internal function uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51; /// @dev Reverts with a panic code. Recommended to use with /// the internal constants with predefined codes. function panic(uint256 code) internal pure { assembly ("memory-safe") { mstore(0x00, 0x4e487b71) mstore(0x20, code) revert(0x1c, 0x24) } } }
{ "evmVersion": "shanghai", "optimizer": { "enabled": true, "runs": 100 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"string","name":"name_","type":"string"},{"internalType":"string","name":"symbol_","type":"string"},{"internalType":"uint8","name":"decimals_","type":"uint8"},{"internalType":"uint256","name":"totalSupply_","type":"uint256"},{"internalType":"uint256","name":"maxTokenAmount_","type":"uint256"},{"internalType":"uint256","name":"airdropFees_","type":"uint256"},{"internalType":"address payable","name":"taxCollectorAddress_","type":"address"},{"internalType":"address","name":"routerAddress_","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"allowance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientAllowance","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC20InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC20InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC20InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"}],"name":"ERC20InvalidSpender","type":"error"},{"inputs":[],"name":"ETHTransferFailed","type":"error"},{"inputs":[],"name":"ExceedsMaxTokenAmount","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"PairAlreadyInitialized","type":"error"},{"inputs":[],"name":"SellLimitReached","type":"error"},{"inputs":[],"name":"TradingNotOpen","type":"error"},{"inputs":[],"name":"ZeroAmount","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"EtherReceived","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"amountToken","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amountETH","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"liquidity","type":"uint256"}],"name":"LiquidityAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"string","name":"reason","type":"string"}],"name":"LiquidityAdditionFailed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"pair","type":"address"}],"name":"PairInitialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"burner","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"TokensBurned","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"_shadowPair","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_tradingOpen","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"burn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"burnFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"enableTrading","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"initializePair","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"maxTokenAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]
Contract Creation Code
610160604052348015610010575f80fd5b5060405161217038038061217083398101604081905261002f916107ea565b338888600361003e8382610927565b50600461004b8282610927565b5050506001600160a01b03811661007c57604051631e4fbdf760e01b81525f60048201526024015b60405180910390fd5b610085816101a0565b5060ff861660805260a084905260c08390526001600160a01b038083166101005281811661014081905260e05273039e2fb66102314ce7b64ce5ce3e5183bc94ad386101209081526040805160608101825230815291518316602083019081525f918301828152600880546001810182559352925160029092027ff3f7a9fe364faab93b216da50a3214154f22a0a2b415b23a84c8169e8b636ee3810180549386166001600160a01b031990941693909317909255517ff3f7a9fe364faab93b216da50a3214154f22a0a2b415b23a84c8169e8b636ee4909101805492511515600160a01b026001600160a81b031990931691909316171790556009805460ff1916905561019333866101f1565b5050505050505050610a9d565b600580546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b6001600160a01b03821661021a5760405163ec442f0560e01b81525f6004820152602401610073565b6102255f8383610229565b5050565b805f0361024957604051631f2a200560e01b815260040160405180910390fd5b6001600160a01b038316158061026657506001600160a01b038216155b1561027b576102768383836103ee565b505050565b600954610100900460ff161580156102a157506005546001600160a01b03848116911614155b80156102bb57506005546001600160a01b03838116911614155b156102d95760405163e09f033160e01b815260040160405180910390fd5b6005546001600160a01b0384811691161480159061030457506007546001600160a01b038481169116145b80156103255750610140516001600160a01b0316826001600160a01b031614155b801561033a57506001600160a01b0382163014155b801561035457506005546001600160a01b03838116911614155b156103a45760a0518161037b846001600160a01b03165f9081526020819052604090205490565b61038591906109e1565b11156103a457604051632aedb11160e11b815260040160405180910390fd5b60095462010000900460ff161580156103ca57506007546001600160a01b038381169116145b80156103d9575060095460ff16155b156103e7576103e781610514565b6102768383835b6001600160a01b038316610418578060025f82825461040d91906109e1565b909155506104889050565b6001600160a01b0383165f908152602081905260409020548181101561046a5760405163391434e360e21b81526001600160a01b03851660048201526024810182905260448101839052606401610073565b6001600160a01b0384165f9081526020819052604090209082900390555b6001600160a01b0382166104a4576002805482900390556104c2565b6001600160a01b0382165f9081526020819052604090208054820190555b816001600160a01b0316836001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef8360405161050791815260200190565b60405180910390a3505050565b6009805462ff0000191662010000179055305f90815260208190526040812054905080156105a857435f9081526006602052604090205460031161056b5760405163bb9c3d2360e01b815260040160405180910390fd5b60a0515f906105869061057f9084906105b8565b84906105b8565b9050610591816105c8565b50435f908152600660205260409020805460010190555b50506009805462ff000019169055565b8082108183180281185b92915050565b6009805462ff00001916620100001790556105e28161066d565b4780156105a8575f610100516001600160a01b0316826040515f6040518083038185875af1925050503d805f8114610635576040519150601f19603f3d011682016040523d82523d5f602084013e61063a565b606091505b505090508061065c5760405163b12d13eb60e01b815260040160405180910390fd5b5050506009805462ff000019169055565b6009805462ff00001916620100001790555f81900361069f57604051631f2a200560e01b815260040160405180910390fd5b60e0516001600160a01b0316637af728c8825f6008306106c14261012c6109e1565b6040518663ffffffff1660e01b81526004016106e1959493929190610a00565b5f604051808303815f87803b1580156106f8575f80fd5b505af115801561070a573d5f803e3d5ffd5b50506009805462ff000019169055505050565b634e487b7160e01b5f52604160045260245ffd5b5f82601f830112610740575f80fd5b81516001600160401b038111156107595761075961071d565b604051601f8201601f19908116603f011681016001600160401b03811182821017156107875761078761071d565b60405281815283820160200185101561079e575f80fd5b5f5b828110156107bc576020818601810151838301820152016107a0565b505f918101602001919091529392505050565b80516001600160a01b03811681146107e5575f80fd5b919050565b5f805f805f805f80610100898b031215610802575f80fd5b88516001600160401b03811115610817575f80fd5b6108238b828c01610731565b60208b015190995090506001600160401b03811115610840575f80fd5b61084c8b828c01610731565b975050604089015160ff81168114610862575f80fd5b60608a015160808b015160a08c01519298509096509450925061088760c08a016107cf565b915061089560e08a016107cf565b90509295985092959890939650565b600181811c908216806108b857607f821691505b6020821081036108d657634e487b7160e01b5f52602260045260245ffd5b50919050565b601f82111561027657805f5260205f20601f840160051c810160208510156109015750805b601f840160051c820191505b81811015610920575f815560010161090d565b5050505050565b81516001600160401b038111156109405761094061071d565b6109548161094e84546108a4565b846108dc565b6020601f821160018114610986575f831561096f5750848201515b5f19600385901b1c1916600184901b178455610920565b5f84815260208120601f198516915b828110156109b55787850151825560209485019460019092019101610995565b50848210156109d257868401515f19600387901b60f8161c191681555b50505050600190811b01905550565b808201808211156105c257634e487b7160e01b5f52601160045260245ffd5b5f60a0820187835286602084015260a0604084015280865480835260c085019150875f5260205f2092505f5b81811015610a735783546001600160a01b039081168452600185810154918216602086015260a09190911c60ff161515604085015260029094019360609093019201610a2c565b50506001600160a01b03861660608501529150610a8d9050565b8260808301529695505050505050565b60805160a05160c05160e05161010051610120516101405161164a610b265f395f610e8001525f8181610509015281816105310152818161056401528181610592015261066d01525f61119401525f81816108e301528181610b91015261126e01525f6108a201525f81816102b701528181610ef6015261110101525f6101f0015261164a5ff3fe608060405260043610610104575f3560e01c806379cc67901161009d578063a9059cbb11610062578063a9059cbb14610310578063ac44faf01461032f578063cd52c7011461034e578063dd62ed3e1461036c578063f2fde38b1461038b575f80fd5b806379cc6790146102825780638a8c523c146102a15780638a926d0f146102a95780638da5cb5b146102db57806395d89b41146102fc575f80fd5b806306fdde0314610147578063095ea7b31461017157806318160ddd146101a057806323b872dd146101be578063313ce567146101dd57806342966c681461021a5780634fab9e4c1461023b57806370a082311461024f578063715018a61461026e575f80fd5b3661014357604080513381523460208201527f1e57e3bb474320be3d2c77138f75b7c3941292d647f5f9634e33a8e94e0e069b910160405180910390a1005b5f80fd5b348015610152575f80fd5b5061015b6103aa565b6040516101689190611300565b60405180910390f35b34801561017c575f80fd5b5061019061018b36600461135f565b61043a565b6040519015158152602001610168565b3480156101ab575f80fd5b506002545b604051908152602001610168565b3480156101c9575f80fd5b506101906101d8366004611389565b610453565b3480156101e8575f80fd5b5060405160ff7f0000000000000000000000000000000000000000000000000000000000000000168152602001610168565b348015610225575f80fd5b506102396102343660046113c7565b610476565b005b348015610246575f80fd5b506102396104b7565b34801561025a575f80fd5b506101b06102693660046113de565b610742565b348015610279575f80fd5b5061023961075c565b34801561028d575f80fd5b5061023961029c36600461135f565b61076f565b610239610788565b3480156102b4575f80fd5b507f00000000000000000000000000000000000000000000000000000000000000006101b0565b3480156102e6575f80fd5b506102ef610931565b60405161016891906113f9565b348015610307575f80fd5b5061015b610940565b34801561031b575f80fd5b5061019061032a36600461135f565b61094f565b34801561033a575f80fd5b506007546102ef906001600160a01b031681565b348015610359575f80fd5b5060095461019090610100900460ff1681565b348015610377575f80fd5b506101b061038636600461140d565b61095c565b348015610396575f80fd5b506102396103a53660046113de565b610986565b6060600380546103b990611444565b80601f01602080910402602001604051908101604052809291908181526020018280546103e590611444565b80156104305780601f1061040757610100808354040283529160200191610430565b820191905f5260205f20905b81548152906001019060200180831161041357829003601f168201915b5050505050905090565b5f336104478185856109c3565b60019150505b92915050565b5f336104608582856109d5565b61046b858585610a26565b506001949350505050565b61047f81610a83565b60405181815233907ffd38818f5291bf0bb3a2a48aadc06ba8757865d1dabd804585338aab3009dcb69060200160405180910390a250565b6104bf610a8d565b6007546001600160a01b0316156104e95760405163da3d382160e01b815260040160405180910390fd5b732da25e7446a70d7be65fd4c053948becaa6374c85f6001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000163010610555577f0000000000000000000000000000000000000000000000000000000000000000610557565b305b90505f6001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016301061059057306105b2565b7f00000000000000000000000000000000000000000000000000000000000000005b6040516306801cc360e41b81529091506001600160a01b03841690636801cc30906105e590859085905f9060040161147c565b602060405180830381865afa158015610600573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061062491906114a0565b600780546001600160a01b0319166001600160a01b039290921691821790556106f8576040516320b7f73960e21b81526001600160a01b038416906382dfdce4906106979030907f0000000000000000000000000000000000000000000000000000000000000000905f9060040161147c565b6020604051808303815f875af11580156106b3573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906106d791906114a0565b600780546001600160a01b0319166001600160a01b03929092169190911790555b6007546040517fbf808f2b0690671f1bcc64cdf60552cba2c1502960c704dd74273fbe552776af91610735916001600160a01b03909116906113f9565b60405180910390a1505050565b6001600160a01b03165f9081526020819052604090205490565b610764610a8d565b61076d5f610abf565b565b61077a8233836109d5565b6107848282610b10565b5050565b610790610a8d565b6009805462ff00001916620100001790819055610100900460ff16156107f75760405162461bcd60e51b81526020600482015260176024820152762a3930b234b7339034b99030b63932b0b23c9037b832b760491b60448201526064015b60405180910390fd5b6007546001600160a01b03166108465760405162461bcd60e51b815260206004820152601460248201527314185a5c881b9bdd081a5b9a5d1a585b1a5e995960621b60448201526064016107ee565b5f61085030610742565b90505f811161089a5760405162461bcd60e51b8152602060048201526016602482015275436f6e747261637420686173206e6f20746f6b656e7360501b60448201526064016107ee565b5f60646108c77f0000000000000000000000000000000000000000000000000000000000000000846114cf565b6108d191906114e6565b6108db9083611505565b9050610908307f0000000000000000000000000000000000000000000000000000000000000000846109c3565b6009805461ffff19166101011790556109213482610b44565b50506009805462ff00ff19169055565b6005546001600160a01b031690565b6060600480546103b990611444565b5f33610447818585610a26565b6001600160a01b039182165f90815260016020908152604080832093909416825291909152205490565b61098e610a8d565b6001600160a01b0381166109b7575f604051631e4fbdf760e01b81526004016107ee91906113f9565b6109c081610abf565b50565b6109d08383836001610cae565b505050565b5f6109e0848461095c565b90505f19811015610a205781811015610a1257828183604051637dc7a0d960e11b81526004016107ee93929190611518565b610a2084848484035f610cae565b50505050565b6001600160a01b038316610a4f575f604051634b637e8f60e11b81526004016107ee91906113f9565b6001600160a01b038216610a78575f60405163ec442f0560e01b81526004016107ee91906113f9565b6109d0838383610d80565b6109c03382610b10565b33610a96610931565b6001600160a01b03161461076d573360405163118cdaa760e01b81526004016107ee91906113f9565b600580546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b6001600160a01b038216610b39575f604051634b637e8f60e11b81526004016107ee91906113f9565b610784825f83610d80565b805f03610b6457604051631f2a200560e01b815260040160405180910390fd5b815f03610b8457604051631f2a200560e01b815260040160405180910390fd5b5f80806001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001663b7e0d4c086308488818033610bc9426103e8611539565b60405160e08a901b6001600160e01b03191681526001600160a01b039788166004820152951515602487015260448601949094526064850192909252608484015290921660a482015260c481019190915260e40160606040518083038185885af1158015610c39573d5f803e3d5ffd5b50505050506040513d601f19601f82011682018060405250810190610c5e919061154c565b604080518481526020810184905290810182905292955090935091507fd7f28048575eead8851d024ead087913957dfb4fd1a02b4d1573f5352a5a2be39060600160405180910390a15050505050565b6001600160a01b038416610cd7575f60405163e602df0560e01b81526004016107ee91906113f9565b6001600160a01b038316610d00575f604051634a1406b160e11b81526004016107ee91906113f9565b6001600160a01b038085165f9081526001602090815260408083209387168352929052208290558015610a2057826001600160a01b0316846001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92584604051610d7291815260200190565b60405180910390a350505050565b805f03610da057604051631f2a200560e01b815260040160405180910390fd5b6001600160a01b0383161580610dbd57506001600160a01b038216155b15610dcd576109d0838383610f92565b600954610100900460ff16158015610dfe5750610de8610931565b6001600160a01b0316836001600160a01b031614155b8015610e235750610e0d610931565b6001600160a01b0316826001600160a01b031614155b15610e415760405163e09f033160e01b815260040160405180910390fd5b610e49610931565b6001600160a01b0316836001600160a01b031614158015610e7757506007546001600160a01b038481169116145b8015610eb557507f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b031614155b8015610eca57506001600160a01b0382163014155b8015610eef5750610ed9610931565b6001600160a01b0316826001600160a01b031614155b15610f48577f000000000000000000000000000000000000000000000000000000000000000081610f1f84610742565b610f299190611539565b1115610f4857604051632aedb11160e11b815260040160405180910390fd5b60095462010000900460ff16158015610f6e57506007546001600160a01b038381169116145b8015610f7d575060095460ff16155b15610f8b57610f8b816110a5565b6109d08383835b6001600160a01b038316610fbc578060025f828254610fb19190611539565b909155506110199050565b6001600160a01b0383165f9081526020819052604090205481811015610ffb5783818360405163391434e360e21b81526004016107ee93929190611518565b6001600160a01b0384165f9081526020819052604090209082900390555b6001600160a01b03821661103557600280548290039055611053565b6001600160a01b0382165f9081526020819052604090208054820190555b816001600160a01b0316836001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef8360405161109891815260200190565b60405180910390a3505050565b6009805462ff00001916620100001790555f6110c030610742565b9050801561114e57435f908152600660205260409020546003116110f75760405163bb9c3d2360e01b815260040160405180910390fd5b5f61112c611125837f000000000000000000000000000000000000000000000000000000000000000061115e565b849061115e565b905061113781611170565b50435f908152600660205260409020805460010190555b50506009805462ff000019169055565b5f8282188284100282185b9392505050565b6009805462ff000019166201000017905561118a81611232565b47801561114e575f7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826040515f6040518083038185875af1925050503d805f81146111fa576040519150601f19603f3d011682016040523d82523d5f602084013e6111ff565b606091505b50509050806112215760405163b12d13eb60e01b815260040160405180910390fd5b5050506009805462ff000019169055565b6009805462ff00001916620100001790555f81900361126457604051631f2a200560e01b815260040160405180910390fd5b6001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016637af728c8825f6008306112a44261012c611539565b6040518663ffffffff1660e01b81526004016112c4959493929190611577565b5f604051808303815f87803b1580156112db575f80fd5b505af11580156112ed573d5f803e3d5ffd5b50506009805462ff000019169055505050565b602081525f82518060208401525f5b8181101561132c576020818601810151604086840101520161130f565b505f604082850101526040601f19601f83011684010191505092915050565b6001600160a01b03811681146109c0575f80fd5b5f8060408385031215611370575f80fd5b823561137b8161134b565b946020939093013593505050565b5f805f6060848603121561139b575f80fd5b83356113a68161134b565b925060208401356113b68161134b565b929592945050506040919091013590565b5f602082840312156113d7575f80fd5b5035919050565b5f602082840312156113ee575f80fd5b81356111698161134b565b6001600160a01b0391909116815260200190565b5f806040838503121561141e575f80fd5b82356114298161134b565b915060208301356114398161134b565b809150509250929050565b600181811c9082168061145857607f821691505b60208210810361147657634e487b7160e01b5f52602260045260245ffd5b50919050565b6001600160a01b039384168152919092166020820152901515604082015260600190565b5f602082840312156114b0575f80fd5b81516111698161134b565b634e487b7160e01b5f52601160045260245ffd5b808202811582820484141761044d5761044d6114bb565b5f8261150057634e487b7160e01b5f52601260045260245ffd5b500490565b8181038181111561044d5761044d6114bb565b6001600160a01b039390931683526020830191909152604082015260600190565b8082018082111561044d5761044d6114bb565b5f805f6060848603121561155e575f80fd5b5050815160208301516040909301519094929350919050565b5f60a0820187835286602084015260a0604084015280865480835260c085019150875f5260205f2092505f5b818110156115ea5783546001600160a01b039081168452600185810154918216602086015260a09190911c60ff1615156040850152600290940193606090930192016115a3565b50506001600160a01b038616606085015291506116049050565b826080830152969550505050505056fea264697066735822122086a54d88d8f642365ee8c03cb7937707efd6c56b62be5942ccf277d6b8717ec264736f6c634300081a003300000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000000140000000000000000000000000000000000000000000000000000000000000001200000000000000000000000000000000000000000000d3c21bcecceda100000000000000000000000000000000000000000000000000021e19e0c9bab240000000000000000000000000000000000000000000000000000000000000000000190000000000000000000000000e535c52e40e90745f27e3361a609e5b80cc76970000000000000000000000001d368773735ee1e678950b7a97bca2cafb330cdc000000000000000000000000000000000000000000000000000000000000000552494e4753000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000552494e4753000000000000000000000000000000000000000000000000000000
Deployed Bytecode
0x608060405260043610610104575f3560e01c806379cc67901161009d578063a9059cbb11610062578063a9059cbb14610310578063ac44faf01461032f578063cd52c7011461034e578063dd62ed3e1461036c578063f2fde38b1461038b575f80fd5b806379cc6790146102825780638a8c523c146102a15780638a926d0f146102a95780638da5cb5b146102db57806395d89b41146102fc575f80fd5b806306fdde0314610147578063095ea7b31461017157806318160ddd146101a057806323b872dd146101be578063313ce567146101dd57806342966c681461021a5780634fab9e4c1461023b57806370a082311461024f578063715018a61461026e575f80fd5b3661014357604080513381523460208201527f1e57e3bb474320be3d2c77138f75b7c3941292d647f5f9634e33a8e94e0e069b910160405180910390a1005b5f80fd5b348015610152575f80fd5b5061015b6103aa565b6040516101689190611300565b60405180910390f35b34801561017c575f80fd5b5061019061018b36600461135f565b61043a565b6040519015158152602001610168565b3480156101ab575f80fd5b506002545b604051908152602001610168565b3480156101c9575f80fd5b506101906101d8366004611389565b610453565b3480156101e8575f80fd5b5060405160ff7f0000000000000000000000000000000000000000000000000000000000000012168152602001610168565b348015610225575f80fd5b506102396102343660046113c7565b610476565b005b348015610246575f80fd5b506102396104b7565b34801561025a575f80fd5b506101b06102693660046113de565b610742565b348015610279575f80fd5b5061023961075c565b34801561028d575f80fd5b5061023961029c36600461135f565b61076f565b610239610788565b3480156102b4575f80fd5b507f00000000000000000000000000000000000000000000021e19e0c9bab24000006101b0565b3480156102e6575f80fd5b506102ef610931565b60405161016891906113f9565b348015610307575f80fd5b5061015b610940565b34801561031b575f80fd5b5061019061032a36600461135f565b61094f565b34801561033a575f80fd5b506007546102ef906001600160a01b031681565b348015610359575f80fd5b5060095461019090610100900460ff1681565b348015610377575f80fd5b506101b061038636600461140d565b61095c565b348015610396575f80fd5b506102396103a53660046113de565b610986565b6060600380546103b990611444565b80601f01602080910402602001604051908101604052809291908181526020018280546103e590611444565b80156104305780601f1061040757610100808354040283529160200191610430565b820191905f5260205f20905b81548152906001019060200180831161041357829003601f168201915b5050505050905090565b5f336104478185856109c3565b60019150505b92915050565b5f336104608582856109d5565b61046b858585610a26565b506001949350505050565b61047f81610a83565b60405181815233907ffd38818f5291bf0bb3a2a48aadc06ba8757865d1dabd804585338aab3009dcb69060200160405180910390a250565b6104bf610a8d565b6007546001600160a01b0316156104e95760405163da3d382160e01b815260040160405180910390fd5b732da25e7446a70d7be65fd4c053948becaa6374c85f6001600160a01b037f000000000000000000000000039e2fb66102314ce7b64ce5ce3e5183bc94ad38163010610555577f000000000000000000000000039e2fb66102314ce7b64ce5ce3e5183bc94ad38610557565b305b90505f6001600160a01b037f000000000000000000000000039e2fb66102314ce7b64ce5ce3e5183bc94ad3816301061059057306105b2565b7f000000000000000000000000039e2fb66102314ce7b64ce5ce3e5183bc94ad385b6040516306801cc360e41b81529091506001600160a01b03841690636801cc30906105e590859085905f9060040161147c565b602060405180830381865afa158015610600573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061062491906114a0565b600780546001600160a01b0319166001600160a01b039290921691821790556106f8576040516320b7f73960e21b81526001600160a01b038416906382dfdce4906106979030907f000000000000000000000000039e2fb66102314ce7b64ce5ce3e5183bc94ad38905f9060040161147c565b6020604051808303815f875af11580156106b3573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906106d791906114a0565b600780546001600160a01b0319166001600160a01b03929092169190911790555b6007546040517fbf808f2b0690671f1bcc64cdf60552cba2c1502960c704dd74273fbe552776af91610735916001600160a01b03909116906113f9565b60405180910390a1505050565b6001600160a01b03165f9081526020819052604090205490565b610764610a8d565b61076d5f610abf565b565b61077a8233836109d5565b6107848282610b10565b5050565b610790610a8d565b6009805462ff00001916620100001790819055610100900460ff16156107f75760405162461bcd60e51b81526020600482015260176024820152762a3930b234b7339034b99030b63932b0b23c9037b832b760491b60448201526064015b60405180910390fd5b6007546001600160a01b03166108465760405162461bcd60e51b815260206004820152601460248201527314185a5c881b9bdd081a5b9a5d1a585b1a5e995960621b60448201526064016107ee565b5f61085030610742565b90505f811161089a5760405162461bcd60e51b8152602060048201526016602482015275436f6e747261637420686173206e6f20746f6b656e7360501b60448201526064016107ee565b5f60646108c77f0000000000000000000000000000000000000000000000000000000000000019846114cf565b6108d191906114e6565b6108db9083611505565b9050610908307f0000000000000000000000001d368773735ee1e678950b7a97bca2cafb330cdc846109c3565b6009805461ffff19166101011790556109213482610b44565b50506009805462ff00ff19169055565b6005546001600160a01b031690565b6060600480546103b990611444565b5f33610447818585610a26565b6001600160a01b039182165f90815260016020908152604080832093909416825291909152205490565b61098e610a8d565b6001600160a01b0381166109b7575f604051631e4fbdf760e01b81526004016107ee91906113f9565b6109c081610abf565b50565b6109d08383836001610cae565b505050565b5f6109e0848461095c565b90505f19811015610a205781811015610a1257828183604051637dc7a0d960e11b81526004016107ee93929190611518565b610a2084848484035f610cae565b50505050565b6001600160a01b038316610a4f575f604051634b637e8f60e11b81526004016107ee91906113f9565b6001600160a01b038216610a78575f60405163ec442f0560e01b81526004016107ee91906113f9565b6109d0838383610d80565b6109c03382610b10565b33610a96610931565b6001600160a01b03161461076d573360405163118cdaa760e01b81526004016107ee91906113f9565b600580546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b6001600160a01b038216610b39575f604051634b637e8f60e11b81526004016107ee91906113f9565b610784825f83610d80565b805f03610b6457604051631f2a200560e01b815260040160405180910390fd5b815f03610b8457604051631f2a200560e01b815260040160405180910390fd5b5f80806001600160a01b037f0000000000000000000000001d368773735ee1e678950b7a97bca2cafb330cdc1663b7e0d4c086308488818033610bc9426103e8611539565b60405160e08a901b6001600160e01b03191681526001600160a01b039788166004820152951515602487015260448601949094526064850192909252608484015290921660a482015260c481019190915260e40160606040518083038185885af1158015610c39573d5f803e3d5ffd5b50505050506040513d601f19601f82011682018060405250810190610c5e919061154c565b604080518481526020810184905290810182905292955090935091507fd7f28048575eead8851d024ead087913957dfb4fd1a02b4d1573f5352a5a2be39060600160405180910390a15050505050565b6001600160a01b038416610cd7575f60405163e602df0560e01b81526004016107ee91906113f9565b6001600160a01b038316610d00575f604051634a1406b160e11b81526004016107ee91906113f9565b6001600160a01b038085165f9081526001602090815260408083209387168352929052208290558015610a2057826001600160a01b0316846001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92584604051610d7291815260200190565b60405180910390a350505050565b805f03610da057604051631f2a200560e01b815260040160405180910390fd5b6001600160a01b0383161580610dbd57506001600160a01b038216155b15610dcd576109d0838383610f92565b600954610100900460ff16158015610dfe5750610de8610931565b6001600160a01b0316836001600160a01b031614155b8015610e235750610e0d610931565b6001600160a01b0316826001600160a01b031614155b15610e415760405163e09f033160e01b815260040160405180910390fd5b610e49610931565b6001600160a01b0316836001600160a01b031614158015610e7757506007546001600160a01b038481169116145b8015610eb557507f0000000000000000000000001d368773735ee1e678950b7a97bca2cafb330cdc6001600160a01b0316826001600160a01b031614155b8015610eca57506001600160a01b0382163014155b8015610eef5750610ed9610931565b6001600160a01b0316826001600160a01b031614155b15610f48577f00000000000000000000000000000000000000000000021e19e0c9bab240000081610f1f84610742565b610f299190611539565b1115610f4857604051632aedb11160e11b815260040160405180910390fd5b60095462010000900460ff16158015610f6e57506007546001600160a01b038381169116145b8015610f7d575060095460ff16155b15610f8b57610f8b816110a5565b6109d08383835b6001600160a01b038316610fbc578060025f828254610fb19190611539565b909155506110199050565b6001600160a01b0383165f9081526020819052604090205481811015610ffb5783818360405163391434e360e21b81526004016107ee93929190611518565b6001600160a01b0384165f9081526020819052604090209082900390555b6001600160a01b03821661103557600280548290039055611053565b6001600160a01b0382165f9081526020819052604090208054820190555b816001600160a01b0316836001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef8360405161109891815260200190565b60405180910390a3505050565b6009805462ff00001916620100001790555f6110c030610742565b9050801561114e57435f908152600660205260409020546003116110f75760405163bb9c3d2360e01b815260040160405180910390fd5b5f61112c611125837f00000000000000000000000000000000000000000000021e19e0c9bab240000061115e565b849061115e565b905061113781611170565b50435f908152600660205260409020805460010190555b50506009805462ff000019169055565b5f8282188284100282185b9392505050565b6009805462ff000019166201000017905561118a81611232565b47801561114e575f7f0000000000000000000000000e535c52e40e90745f27e3361a609e5b80cc76976001600160a01b0316826040515f6040518083038185875af1925050503d805f81146111fa576040519150601f19603f3d011682016040523d82523d5f602084013e6111ff565b606091505b50509050806112215760405163b12d13eb60e01b815260040160405180910390fd5b5050506009805462ff000019169055565b6009805462ff00001916620100001790555f81900361126457604051631f2a200560e01b815260040160405180910390fd5b6001600160a01b037f0000000000000000000000001d368773735ee1e678950b7a97bca2cafb330cdc16637af728c8825f6008306112a44261012c611539565b6040518663ffffffff1660e01b81526004016112c4959493929190611577565b5f604051808303815f87803b1580156112db575f80fd5b505af11580156112ed573d5f803e3d5ffd5b50506009805462ff000019169055505050565b602081525f82518060208401525f5b8181101561132c576020818601810151604086840101520161130f565b505f604082850101526040601f19601f83011684010191505092915050565b6001600160a01b03811681146109c0575f80fd5b5f8060408385031215611370575f80fd5b823561137b8161134b565b946020939093013593505050565b5f805f6060848603121561139b575f80fd5b83356113a68161134b565b925060208401356113b68161134b565b929592945050506040919091013590565b5f602082840312156113d7575f80fd5b5035919050565b5f602082840312156113ee575f80fd5b81356111698161134b565b6001600160a01b0391909116815260200190565b5f806040838503121561141e575f80fd5b82356114298161134b565b915060208301356114398161134b565b809150509250929050565b600181811c9082168061145857607f821691505b60208210810361147657634e487b7160e01b5f52602260045260245ffd5b50919050565b6001600160a01b039384168152919092166020820152901515604082015260600190565b5f602082840312156114b0575f80fd5b81516111698161134b565b634e487b7160e01b5f52601160045260245ffd5b808202811582820484141761044d5761044d6114bb565b5f8261150057634e487b7160e01b5f52601260045260245ffd5b500490565b8181038181111561044d5761044d6114bb565b6001600160a01b039390931683526020830191909152604082015260600190565b8082018082111561044d5761044d6114bb565b5f805f6060848603121561155e575f80fd5b5050815160208301516040909301519094929350919050565b5f60a0820187835286602084015260a0604084015280865480835260c085019150875f5260205f2092505f5b818110156115ea5783546001600160a01b039081168452600185810154918216602086015260a09190911c60ff1615156040850152600290940193606090930192016115a3565b50506001600160a01b038616606085015291506116049050565b826080830152969550505050505056fea264697066735822122086a54d88d8f642365ee8c03cb7937707efd6c56b62be5942ccf277d6b8717ec264736f6c634300081a0033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
00000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000000140000000000000000000000000000000000000000000000000000000000000001200000000000000000000000000000000000000000000d3c21bcecceda100000000000000000000000000000000000000000000000000021e19e0c9bab240000000000000000000000000000000000000000000000000000000000000000000190000000000000000000000000e535c52e40e90745f27e3361a609e5b80cc76970000000000000000000000001d368773735ee1e678950b7a97bca2cafb330cdc000000000000000000000000000000000000000000000000000000000000000552494e4753000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000552494e4753000000000000000000000000000000000000000000000000000000
-----Decoded View---------------
Arg [0] : name_ (string): RINGS
Arg [1] : symbol_ (string): RINGS
Arg [2] : decimals_ (uint8): 18
Arg [3] : totalSupply_ (uint256): 1000000000000000000000000
Arg [4] : maxTokenAmount_ (uint256): 10000000000000000000000
Arg [5] : airdropFees_ (uint256): 25
Arg [6] : taxCollectorAddress_ (address): 0x0E535C52E40e90745f27e3361A609E5B80cc7697
Arg [7] : routerAddress_ (address): 0x1D368773735ee1E678950B7A97bcA2CafB330CDc
-----Encoded View---------------
12 Constructor Arguments found :
Arg [0] : 0000000000000000000000000000000000000000000000000000000000000100
Arg [1] : 0000000000000000000000000000000000000000000000000000000000000140
Arg [2] : 0000000000000000000000000000000000000000000000000000000000000012
Arg [3] : 00000000000000000000000000000000000000000000d3c21bcecceda1000000
Arg [4] : 00000000000000000000000000000000000000000000021e19e0c9bab2400000
Arg [5] : 0000000000000000000000000000000000000000000000000000000000000019
Arg [6] : 0000000000000000000000000e535c52e40e90745f27e3361a609e5b80cc7697
Arg [7] : 0000000000000000000000001d368773735ee1e678950b7a97bca2cafb330cdc
Arg [8] : 0000000000000000000000000000000000000000000000000000000000000005
Arg [9] : 52494e4753000000000000000000000000000000000000000000000000000000
Arg [10] : 0000000000000000000000000000000000000000000000000000000000000005
Arg [11] : 52494e4753000000000000000000000000000000000000000000000000000000
[ Download: CSV Export ]
[ Download: CSV Export ]
A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.