S Price: $0.728492 (-9.79%)

Token

RINGS (RINGS)

Overview

Max Total Supply

1,000,000 RINGS

Holders

5

Market

Price

$0.00 @ 0.000000 S

Onchain Market Cap

$0.00

Circulating Supply Market Cap

-

Other Info

Token Contract (WITH 18 Decimals)

Balance
0.000000000000267584 RINGS

Value
$0.00
0x2ecF95Db62EB946CF6D8ACE0B20cC49db43FB30E
Loading...
Loading
Loading...
Loading
Loading...
Loading

Click here to update the token information / general information

Contract Source Code Verified (Exact Match)

Contract Name:
ShadowToken

Compiler Version
v0.8.26+commit.8a97fa7a

Optimization Enabled:
Yes with 100 runs

Other Settings:
shanghai EvmVersion
File 1 of 11 : ShadowToken.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.26;

import "@openzeppelin/contracts/utils/math/Math.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "@openzeppelin/contracts/token/ERC20/extensions/ERC20Burnable.sol";

interface IShadowFactory {
    function createPair(address tokenA, address tokenB, bool stable) external returns (address pair);
    function getPair(address token0, address token1, bool stable) external view returns (address);
}

    struct route {
        address from;
        address to;
        bool stable;
    }

interface IShadowRouter {
    function swapExactTokensForETHSupportingFeeOnTransferTokens(
        uint amountIn,
        uint amountOutMin,
        route[] calldata routes,
        address to,
        uint deadline
    ) external;

    function factory() external view returns (address);

    function addLiquidityETH(
        address token,
        bool stable,
        uint amountTokenDesired,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline
    ) external payable returns (uint amountToken, uint amountETH, uint liquidity);
}

contract ShadowToken is ERC20, ERC20Burnable, Ownable {
    using Math for uint256;

    uint8 private immutable _decimals;
    uint256 private immutable _maxTokenAmount;
    uint256 private immutable _airdropFees;

    mapping(uint256 => uint256) private _sellCount;

    IShadowRouter private immutable _shadowRouter;
    address public _shadowPair; // Changed from immutable to mutable

    address payable private immutable _taxCollectorAddress;
    address private immutable WETH;
    route[] private swapPath;
    address private immutable _routerAddress;

    bool private _isAddingLiq;
    bool public _tradingOpen;
    bool private _inSwap;

    event LiquidityAdded(uint256 amountToken, uint256 amountETH, uint256 liquidity);
    event LiquidityAdditionFailed(string reason);
    event TokensBurned(address indexed burner, uint256 amount);
    event EtherReceived(address sender, uint256 amount);
    event PairInitialized(address pair);

    error ZeroAmount();
    error TradingNotOpen();
    error ExceedsMaxTokenAmount();
    error SellLimitReached();
    error ETHTransferFailed();
    error PairAlreadyInitialized();

    modifier lockTheSwap {
        _inSwap = true;
        _;
        _inSwap = false;
    }

    constructor(
        string memory name_,
        string memory symbol_,
        uint8 decimals_,
        uint256 totalSupply_,
        uint256 maxTokenAmount_,
        uint256 airdropFees_,
        address payable taxCollectorAddress_,
        address routerAddress_
    ) ERC20(name_, symbol_) Ownable(msg.sender) {
        _decimals = decimals_;
        _maxTokenAmount = maxTokenAmount_;
        _airdropFees = airdropFees_;
        _taxCollectorAddress = taxCollectorAddress_;
        _routerAddress = routerAddress_;

        _shadowRouter = IShadowRouter(routerAddress_);
        WETH = 0x039e2fB66102314Ce7b64Ce5Ce3E5183bc94aD38; // Verify this matches Router's WETH

        // _shadowPair is left uninitialized here (defaults to address(0))

        swapPath.push(route({
            from: address(this),
            to: WETH,
            stable: false
        }));

        _isAddingLiq = false;

        _mint(msg.sender, totalSupply_);
    }

    // Function to initialize the pair post-deployment
    function initializePair() external onlyOwner {
        if (_shadowPair != address(0)) revert PairAlreadyInitialized();

        address factory = 0x2dA25E7446A70D7be65fd4c053948BEcAA6374c8; // Sonic PairFactory
        address token0 = address(this) < WETH ? address(this) : WETH;
        address token1 = address(this) < WETH ? WETH : address(this);
        _shadowPair = IShadowFactory(factory).getPair(token0, token1, false);
        if (_shadowPair == address(0)) {
            _shadowPair = IShadowFactory(factory).createPair(address(this), WETH, false);
        }

        emit PairInitialized(_shadowPair);
    }

    function enableTrading() external payable onlyOwner lockTheSwap {
        if (_tradingOpen) revert("Trading is already open");
        if (_shadowPair == address(0)) revert("Pair not initialized");

        uint256 contractBalance = balanceOf(address(this));
        require(contractBalance > 0, "Contract has no tokens");

        uint256 tokenForLiquidity = contractBalance - ((contractBalance * _airdropFees) / 100);
        _approve(address(this), address(_shadowRouter), contractBalance);
        _tradingOpen = true;
        _isAddingLiq = true;
        _addLiquidity(msg.value, tokenForLiquidity);
        _isAddingLiq = false;
    }

    function _addLiquidity(uint256 ethAmount, uint256 tokenAmount) private {
        if (tokenAmount == 0) revert ZeroAmount();
        if (ethAmount == 0) revert ZeroAmount();
        (uint256 amountToken, uint256 amountETH, uint256 liquidity) = _shadowRouter.addLiquidityETH{value: ethAmount}(
            address(this),
            false,
            tokenAmount,
            0,
            0,
            _msgSender(),
            block.timestamp + 1000
        );
        emit LiquidityAdded(amountToken, amountETH, liquidity);
    }

    function _update(address from, address to, uint256 amount) internal override {
        if (amount == 0) revert ZeroAmount();
        if (from == address(0) || to == address(0)) {
            super._update(from, to, amount);
            return;
        }
        if (!_tradingOpen && from != owner() && to != owner()) revert TradingNotOpen();
        if (from != owner() &&
        from == _shadowPair &&
        to != _routerAddress &&
        to != address(this) &&
            to != owner()) {
            if ((balanceOf(to) + amount) > _maxTokenAmount) {
                revert ExceedsMaxTokenAmount();
            }
        }
        if (!_inSwap && to == _shadowPair && !_isAddingLiq) {
            _handleSell(amount);
        }
        super._update(from, to, amount);
    }

    function _handleSell(uint256 amount) private lockTheSwap {
        uint256 contractTokenBalance = balanceOf(address(this));
        if (contractTokenBalance > 0) {
            if (_sellCount[block.number] >= 3) revert SellLimitReached();
            uint256 swapAmount = amount.min(contractTokenBalance.min(_maxTokenAmount));
            _swapAndTransferETH(swapAmount);
            unchecked { _sellCount[block.number]++; }
        }
    }

    function _swapAndTransferETH(uint256 tokenAmount) private lockTheSwap {
        swapTokensForEth(tokenAmount);
        uint256 ethBalance = address(this).balance;
        if (ethBalance > 0) {
            (bool success, ) = _taxCollectorAddress.call{value: ethBalance}("");
            if (!success) revert ETHTransferFailed();
        }
    }

    function swapTokensForEth(uint256 tokenAmount) private lockTheSwap {
        if (tokenAmount == 0) revert ZeroAmount();
        _shadowRouter.swapExactTokensForETHSupportingFeeOnTransferTokens(
            tokenAmount,
            0,
            swapPath,
            address(this),
            block.timestamp + 300
        );
    }

    function decimals() public view override returns (uint8) {
        return _decimals;
    }

    function maxTokenAmount() public view returns (uint256) {
        return _maxTokenAmount;
    }

    function burn(uint256 amount) public override {
        super.burn(amount);
        emit TokensBurned(_msgSender(), amount);
    }

    receive() external payable {
        emit EtherReceived(msg.sender, msg.value);
    }
}

File 2 of 11 : Ownable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

File 3 of 11 : draft-IERC6093.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;

/**
 * @dev Standard ERC-20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC-721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC-1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}

File 4 of 11 : ERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC-20
 * applications.
 */
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
    mapping(address account => uint256) private _balances;

    mapping(address account => mapping(address spender => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `value`.
     */
    function transfer(address to, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, value);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, value);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Skips emitting an {Approval} event indicating an allowance update. This is not
     * required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `value`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `value`.
     */
    function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, value);
        _transfer(from, to, value);
        return true;
    }

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _transfer(address from, address to, uint256 value) internal {
        if (from == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        if (to == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(from, to, value);
    }

    /**
     * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
     * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
     * this function.
     *
     * Emits a {Transfer} event.
     */
    function _update(address from, address to, uint256 value) internal virtual {
        if (from == address(0)) {
            // Overflow check required: The rest of the code assumes that totalSupply never overflows
            _totalSupply += value;
        } else {
            uint256 fromBalance = _balances[from];
            if (fromBalance < value) {
                revert ERC20InsufficientBalance(from, fromBalance, value);
            }
            unchecked {
                // Overflow not possible: value <= fromBalance <= totalSupply.
                _balances[from] = fromBalance - value;
            }
        }

        if (to == address(0)) {
            unchecked {
                // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                _totalSupply -= value;
            }
        } else {
            unchecked {
                // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                _balances[to] += value;
            }
        }

        emit Transfer(from, to, value);
    }

    /**
     * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
     * Relies on the `_update` mechanism
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _mint(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(address(0), account, value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
     * Relies on the `_update` mechanism.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead
     */
    function _burn(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        _update(account, address(0), value);
    }

    /**
     * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address owner, address spender, uint256 value) internal {
        _approve(owner, spender, value, true);
    }

    /**
     * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
     *
     * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
     * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
     * `Approval` event during `transferFrom` operations.
     *
     * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
     * true using the following override:
     *
     * ```solidity
     * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
     *     super._approve(owner, spender, value, true);
     * }
     * ```
     *
     * Requirements are the same as {_approve}.
     */
    function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
        if (owner == address(0)) {
            revert ERC20InvalidApprover(address(0));
        }
        if (spender == address(0)) {
            revert ERC20InvalidSpender(address(0));
        }
        _allowances[owner][spender] = value;
        if (emitEvent) {
            emit Approval(owner, spender, value);
        }
    }

    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `value`.
     *
     * Does not update the allowance value in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Does not emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance < type(uint256).max) {
            if (currentAllowance < value) {
                revert ERC20InsufficientAllowance(spender, currentAllowance, value);
            }
            unchecked {
                _approve(owner, spender, currentAllowance - value, false);
            }
        }
    }
}

File 5 of 11 : ERC20Burnable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/ERC20Burnable.sol)

pragma solidity ^0.8.20;

import {ERC20} from "../ERC20.sol";
import {Context} from "../../../utils/Context.sol";

/**
 * @dev Extension of {ERC20} that allows token holders to destroy both their own
 * tokens and those that they have an allowance for, in a way that can be
 * recognized off-chain (via event analysis).
 */
abstract contract ERC20Burnable is Context, ERC20 {
    /**
     * @dev Destroys a `value` amount of tokens from the caller.
     *
     * See {ERC20-_burn}.
     */
    function burn(uint256 value) public virtual {
        _burn(_msgSender(), value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, deducting from
     * the caller's allowance.
     *
     * See {ERC20-_burn} and {ERC20-allowance}.
     *
     * Requirements:
     *
     * - the caller must have allowance for ``accounts``'s tokens of at least
     * `value`.
     */
    function burnFrom(address account, uint256 value) public virtual {
        _spendAllowance(account, _msgSender(), value);
        _burn(account, value);
    }
}

File 6 of 11 : IERC20Metadata.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC-20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

File 7 of 11 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

File 8 of 11 : Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

File 9 of 11 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
            // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2²⁵⁶ + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= prod1) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 exp;
        unchecked {
            exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
            value >>= exp;
            result += exp;

            exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
            value >>= exp;
            result += exp;

            exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
            value >>= exp;
            result += exp;

            exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
            value >>= exp;
            result += exp;

            exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
            value >>= exp;
            result += exp;

            exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
            value >>= exp;
            result += exp;

            exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
            value >>= exp;
            result += exp;

            result += SafeCast.toUint(value > 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 isGt;
        unchecked {
            isGt = SafeCast.toUint(value > (1 << 128) - 1);
            value >>= isGt * 128;
            result += isGt * 16;

            isGt = SafeCast.toUint(value > (1 << 64) - 1);
            value >>= isGt * 64;
            result += isGt * 8;

            isGt = SafeCast.toUint(value > (1 << 32) - 1);
            value >>= isGt * 32;
            result += isGt * 4;

            isGt = SafeCast.toUint(value > (1 << 16) - 1);
            value >>= isGt * 16;
            result += isGt * 2;

            result += SafeCast.toUint(value > (1 << 8) - 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 10 of 11 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

File 11 of 11 : Panic.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

Settings
{
  "evmVersion": "shanghai",
  "optimizer": {
    "enabled": true,
    "runs": 100
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "libraries": {}
}

Contract Security Audit

Contract ABI

[{"inputs":[{"internalType":"string","name":"name_","type":"string"},{"internalType":"string","name":"symbol_","type":"string"},{"internalType":"uint8","name":"decimals_","type":"uint8"},{"internalType":"uint256","name":"totalSupply_","type":"uint256"},{"internalType":"uint256","name":"maxTokenAmount_","type":"uint256"},{"internalType":"uint256","name":"airdropFees_","type":"uint256"},{"internalType":"address payable","name":"taxCollectorAddress_","type":"address"},{"internalType":"address","name":"routerAddress_","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"allowance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientAllowance","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC20InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC20InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC20InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"}],"name":"ERC20InvalidSpender","type":"error"},{"inputs":[],"name":"ETHTransferFailed","type":"error"},{"inputs":[],"name":"ExceedsMaxTokenAmount","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"PairAlreadyInitialized","type":"error"},{"inputs":[],"name":"SellLimitReached","type":"error"},{"inputs":[],"name":"TradingNotOpen","type":"error"},{"inputs":[],"name":"ZeroAmount","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"EtherReceived","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"amountToken","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amountETH","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"liquidity","type":"uint256"}],"name":"LiquidityAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"string","name":"reason","type":"string"}],"name":"LiquidityAdditionFailed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"pair","type":"address"}],"name":"PairInitialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"burner","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"TokensBurned","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"_shadowPair","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_tradingOpen","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"burn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"burnFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"enableTrading","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"initializePair","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"maxTokenAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]

610160604052348015610010575f80fd5b5060405161217038038061217083398101604081905261002f916107ea565b338888600361003e8382610927565b50600461004b8282610927565b5050506001600160a01b03811661007c57604051631e4fbdf760e01b81525f60048201526024015b60405180910390fd5b610085816101a0565b5060ff861660805260a084905260c08390526001600160a01b038083166101005281811661014081905260e05273039e2fb66102314ce7b64ce5ce3e5183bc94ad386101209081526040805160608101825230815291518316602083019081525f918301828152600880546001810182559352925160029092027ff3f7a9fe364faab93b216da50a3214154f22a0a2b415b23a84c8169e8b636ee3810180549386166001600160a01b031990941693909317909255517ff3f7a9fe364faab93b216da50a3214154f22a0a2b415b23a84c8169e8b636ee4909101805492511515600160a01b026001600160a81b031990931691909316171790556009805460ff1916905561019333866101f1565b5050505050505050610a9d565b600580546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b6001600160a01b03821661021a5760405163ec442f0560e01b81525f6004820152602401610073565b6102255f8383610229565b5050565b805f0361024957604051631f2a200560e01b815260040160405180910390fd5b6001600160a01b038316158061026657506001600160a01b038216155b1561027b576102768383836103ee565b505050565b600954610100900460ff161580156102a157506005546001600160a01b03848116911614155b80156102bb57506005546001600160a01b03838116911614155b156102d95760405163e09f033160e01b815260040160405180910390fd5b6005546001600160a01b0384811691161480159061030457506007546001600160a01b038481169116145b80156103255750610140516001600160a01b0316826001600160a01b031614155b801561033a57506001600160a01b0382163014155b801561035457506005546001600160a01b03838116911614155b156103a45760a0518161037b846001600160a01b03165f9081526020819052604090205490565b61038591906109e1565b11156103a457604051632aedb11160e11b815260040160405180910390fd5b60095462010000900460ff161580156103ca57506007546001600160a01b038381169116145b80156103d9575060095460ff16155b156103e7576103e781610514565b6102768383835b6001600160a01b038316610418578060025f82825461040d91906109e1565b909155506104889050565b6001600160a01b0383165f908152602081905260409020548181101561046a5760405163391434e360e21b81526001600160a01b03851660048201526024810182905260448101839052606401610073565b6001600160a01b0384165f9081526020819052604090209082900390555b6001600160a01b0382166104a4576002805482900390556104c2565b6001600160a01b0382165f9081526020819052604090208054820190555b816001600160a01b0316836001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef8360405161050791815260200190565b60405180910390a3505050565b6009805462ff0000191662010000179055305f90815260208190526040812054905080156105a857435f9081526006602052604090205460031161056b5760405163bb9c3d2360e01b815260040160405180910390fd5b60a0515f906105869061057f9084906105b8565b84906105b8565b9050610591816105c8565b50435f908152600660205260409020805460010190555b50506009805462ff000019169055565b8082108183180281185b92915050565b6009805462ff00001916620100001790556105e28161066d565b4780156105a8575f610100516001600160a01b0316826040515f6040518083038185875af1925050503d805f8114610635576040519150601f19603f3d011682016040523d82523d5f602084013e61063a565b606091505b505090508061065c5760405163b12d13eb60e01b815260040160405180910390fd5b5050506009805462ff000019169055565b6009805462ff00001916620100001790555f81900361069f57604051631f2a200560e01b815260040160405180910390fd5b60e0516001600160a01b0316637af728c8825f6008306106c14261012c6109e1565b6040518663ffffffff1660e01b81526004016106e1959493929190610a00565b5f604051808303815f87803b1580156106f8575f80fd5b505af115801561070a573d5f803e3d5ffd5b50506009805462ff000019169055505050565b634e487b7160e01b5f52604160045260245ffd5b5f82601f830112610740575f80fd5b81516001600160401b038111156107595761075961071d565b604051601f8201601f19908116603f011681016001600160401b03811182821017156107875761078761071d565b60405281815283820160200185101561079e575f80fd5b5f5b828110156107bc576020818601810151838301820152016107a0565b505f918101602001919091529392505050565b80516001600160a01b03811681146107e5575f80fd5b919050565b5f805f805f805f80610100898b031215610802575f80fd5b88516001600160401b03811115610817575f80fd5b6108238b828c01610731565b60208b015190995090506001600160401b03811115610840575f80fd5b61084c8b828c01610731565b975050604089015160ff81168114610862575f80fd5b60608a015160808b015160a08c01519298509096509450925061088760c08a016107cf565b915061089560e08a016107cf565b90509295985092959890939650565b600181811c908216806108b857607f821691505b6020821081036108d657634e487b7160e01b5f52602260045260245ffd5b50919050565b601f82111561027657805f5260205f20601f840160051c810160208510156109015750805b601f840160051c820191505b81811015610920575f815560010161090d565b5050505050565b81516001600160401b038111156109405761094061071d565b6109548161094e84546108a4565b846108dc565b6020601f821160018114610986575f831561096f5750848201515b5f19600385901b1c1916600184901b178455610920565b5f84815260208120601f198516915b828110156109b55787850151825560209485019460019092019101610995565b50848210156109d257868401515f19600387901b60f8161c191681555b50505050600190811b01905550565b808201808211156105c257634e487b7160e01b5f52601160045260245ffd5b5f60a0820187835286602084015260a0604084015280865480835260c085019150875f5260205f2092505f5b81811015610a735783546001600160a01b039081168452600185810154918216602086015260a09190911c60ff161515604085015260029094019360609093019201610a2c565b50506001600160a01b03861660608501529150610a8d9050565b8260808301529695505050505050565b60805160a05160c05160e05161010051610120516101405161164a610b265f395f610e8001525f8181610509015281816105310152818161056401528181610592015261066d01525f61119401525f81816108e301528181610b91015261126e01525f6108a201525f81816102b701528181610ef6015261110101525f6101f0015261164a5ff3fe608060405260043610610104575f3560e01c806379cc67901161009d578063a9059cbb11610062578063a9059cbb14610310578063ac44faf01461032f578063cd52c7011461034e578063dd62ed3e1461036c578063f2fde38b1461038b575f80fd5b806379cc6790146102825780638a8c523c146102a15780638a926d0f146102a95780638da5cb5b146102db57806395d89b41146102fc575f80fd5b806306fdde0314610147578063095ea7b31461017157806318160ddd146101a057806323b872dd146101be578063313ce567146101dd57806342966c681461021a5780634fab9e4c1461023b57806370a082311461024f578063715018a61461026e575f80fd5b3661014357604080513381523460208201527f1e57e3bb474320be3d2c77138f75b7c3941292d647f5f9634e33a8e94e0e069b910160405180910390a1005b5f80fd5b348015610152575f80fd5b5061015b6103aa565b6040516101689190611300565b60405180910390f35b34801561017c575f80fd5b5061019061018b36600461135f565b61043a565b6040519015158152602001610168565b3480156101ab575f80fd5b506002545b604051908152602001610168565b3480156101c9575f80fd5b506101906101d8366004611389565b610453565b3480156101e8575f80fd5b5060405160ff7f0000000000000000000000000000000000000000000000000000000000000000168152602001610168565b348015610225575f80fd5b506102396102343660046113c7565b610476565b005b348015610246575f80fd5b506102396104b7565b34801561025a575f80fd5b506101b06102693660046113de565b610742565b348015610279575f80fd5b5061023961075c565b34801561028d575f80fd5b5061023961029c36600461135f565b61076f565b610239610788565b3480156102b4575f80fd5b507f00000000000000000000000000000000000000000000000000000000000000006101b0565b3480156102e6575f80fd5b506102ef610931565b60405161016891906113f9565b348015610307575f80fd5b5061015b610940565b34801561031b575f80fd5b5061019061032a36600461135f565b61094f565b34801561033a575f80fd5b506007546102ef906001600160a01b031681565b348015610359575f80fd5b5060095461019090610100900460ff1681565b348015610377575f80fd5b506101b061038636600461140d565b61095c565b348015610396575f80fd5b506102396103a53660046113de565b610986565b6060600380546103b990611444565b80601f01602080910402602001604051908101604052809291908181526020018280546103e590611444565b80156104305780601f1061040757610100808354040283529160200191610430565b820191905f5260205f20905b81548152906001019060200180831161041357829003601f168201915b5050505050905090565b5f336104478185856109c3565b60019150505b92915050565b5f336104608582856109d5565b61046b858585610a26565b506001949350505050565b61047f81610a83565b60405181815233907ffd38818f5291bf0bb3a2a48aadc06ba8757865d1dabd804585338aab3009dcb69060200160405180910390a250565b6104bf610a8d565b6007546001600160a01b0316156104e95760405163da3d382160e01b815260040160405180910390fd5b732da25e7446a70d7be65fd4c053948becaa6374c85f6001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000163010610555577f0000000000000000000000000000000000000000000000000000000000000000610557565b305b90505f6001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016301061059057306105b2565b7f00000000000000000000000000000000000000000000000000000000000000005b6040516306801cc360e41b81529091506001600160a01b03841690636801cc30906105e590859085905f9060040161147c565b602060405180830381865afa158015610600573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061062491906114a0565b600780546001600160a01b0319166001600160a01b039290921691821790556106f8576040516320b7f73960e21b81526001600160a01b038416906382dfdce4906106979030907f0000000000000000000000000000000000000000000000000000000000000000905f9060040161147c565b6020604051808303815f875af11580156106b3573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906106d791906114a0565b600780546001600160a01b0319166001600160a01b03929092169190911790555b6007546040517fbf808f2b0690671f1bcc64cdf60552cba2c1502960c704dd74273fbe552776af91610735916001600160a01b03909116906113f9565b60405180910390a1505050565b6001600160a01b03165f9081526020819052604090205490565b610764610a8d565b61076d5f610abf565b565b61077a8233836109d5565b6107848282610b10565b5050565b610790610a8d565b6009805462ff00001916620100001790819055610100900460ff16156107f75760405162461bcd60e51b81526020600482015260176024820152762a3930b234b7339034b99030b63932b0b23c9037b832b760491b60448201526064015b60405180910390fd5b6007546001600160a01b03166108465760405162461bcd60e51b815260206004820152601460248201527314185a5c881b9bdd081a5b9a5d1a585b1a5e995960621b60448201526064016107ee565b5f61085030610742565b90505f811161089a5760405162461bcd60e51b8152602060048201526016602482015275436f6e747261637420686173206e6f20746f6b656e7360501b60448201526064016107ee565b5f60646108c77f0000000000000000000000000000000000000000000000000000000000000000846114cf565b6108d191906114e6565b6108db9083611505565b9050610908307f0000000000000000000000000000000000000000000000000000000000000000846109c3565b6009805461ffff19166101011790556109213482610b44565b50506009805462ff00ff19169055565b6005546001600160a01b031690565b6060600480546103b990611444565b5f33610447818585610a26565b6001600160a01b039182165f90815260016020908152604080832093909416825291909152205490565b61098e610a8d565b6001600160a01b0381166109b7575f604051631e4fbdf760e01b81526004016107ee91906113f9565b6109c081610abf565b50565b6109d08383836001610cae565b505050565b5f6109e0848461095c565b90505f19811015610a205781811015610a1257828183604051637dc7a0d960e11b81526004016107ee93929190611518565b610a2084848484035f610cae565b50505050565b6001600160a01b038316610a4f575f604051634b637e8f60e11b81526004016107ee91906113f9565b6001600160a01b038216610a78575f60405163ec442f0560e01b81526004016107ee91906113f9565b6109d0838383610d80565b6109c03382610b10565b33610a96610931565b6001600160a01b03161461076d573360405163118cdaa760e01b81526004016107ee91906113f9565b600580546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b6001600160a01b038216610b39575f604051634b637e8f60e11b81526004016107ee91906113f9565b610784825f83610d80565b805f03610b6457604051631f2a200560e01b815260040160405180910390fd5b815f03610b8457604051631f2a200560e01b815260040160405180910390fd5b5f80806001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001663b7e0d4c086308488818033610bc9426103e8611539565b60405160e08a901b6001600160e01b03191681526001600160a01b039788166004820152951515602487015260448601949094526064850192909252608484015290921660a482015260c481019190915260e40160606040518083038185885af1158015610c39573d5f803e3d5ffd5b50505050506040513d601f19601f82011682018060405250810190610c5e919061154c565b604080518481526020810184905290810182905292955090935091507fd7f28048575eead8851d024ead087913957dfb4fd1a02b4d1573f5352a5a2be39060600160405180910390a15050505050565b6001600160a01b038416610cd7575f60405163e602df0560e01b81526004016107ee91906113f9565b6001600160a01b038316610d00575f604051634a1406b160e11b81526004016107ee91906113f9565b6001600160a01b038085165f9081526001602090815260408083209387168352929052208290558015610a2057826001600160a01b0316846001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92584604051610d7291815260200190565b60405180910390a350505050565b805f03610da057604051631f2a200560e01b815260040160405180910390fd5b6001600160a01b0383161580610dbd57506001600160a01b038216155b15610dcd576109d0838383610f92565b600954610100900460ff16158015610dfe5750610de8610931565b6001600160a01b0316836001600160a01b031614155b8015610e235750610e0d610931565b6001600160a01b0316826001600160a01b031614155b15610e415760405163e09f033160e01b815260040160405180910390fd5b610e49610931565b6001600160a01b0316836001600160a01b031614158015610e7757506007546001600160a01b038481169116145b8015610eb557507f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b031614155b8015610eca57506001600160a01b0382163014155b8015610eef5750610ed9610931565b6001600160a01b0316826001600160a01b031614155b15610f48577f000000000000000000000000000000000000000000000000000000000000000081610f1f84610742565b610f299190611539565b1115610f4857604051632aedb11160e11b815260040160405180910390fd5b60095462010000900460ff16158015610f6e57506007546001600160a01b038381169116145b8015610f7d575060095460ff16155b15610f8b57610f8b816110a5565b6109d08383835b6001600160a01b038316610fbc578060025f828254610fb19190611539565b909155506110199050565b6001600160a01b0383165f9081526020819052604090205481811015610ffb5783818360405163391434e360e21b81526004016107ee93929190611518565b6001600160a01b0384165f9081526020819052604090209082900390555b6001600160a01b03821661103557600280548290039055611053565b6001600160a01b0382165f9081526020819052604090208054820190555b816001600160a01b0316836001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef8360405161109891815260200190565b60405180910390a3505050565b6009805462ff00001916620100001790555f6110c030610742565b9050801561114e57435f908152600660205260409020546003116110f75760405163bb9c3d2360e01b815260040160405180910390fd5b5f61112c611125837f000000000000000000000000000000000000000000000000000000000000000061115e565b849061115e565b905061113781611170565b50435f908152600660205260409020805460010190555b50506009805462ff000019169055565b5f8282188284100282185b9392505050565b6009805462ff000019166201000017905561118a81611232565b47801561114e575f7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826040515f6040518083038185875af1925050503d805f81146111fa576040519150601f19603f3d011682016040523d82523d5f602084013e6111ff565b606091505b50509050806112215760405163b12d13eb60e01b815260040160405180910390fd5b5050506009805462ff000019169055565b6009805462ff00001916620100001790555f81900361126457604051631f2a200560e01b815260040160405180910390fd5b6001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016637af728c8825f6008306112a44261012c611539565b6040518663ffffffff1660e01b81526004016112c4959493929190611577565b5f604051808303815f87803b1580156112db575f80fd5b505af11580156112ed573d5f803e3d5ffd5b50506009805462ff000019169055505050565b602081525f82518060208401525f5b8181101561132c576020818601810151604086840101520161130f565b505f604082850101526040601f19601f83011684010191505092915050565b6001600160a01b03811681146109c0575f80fd5b5f8060408385031215611370575f80fd5b823561137b8161134b565b946020939093013593505050565b5f805f6060848603121561139b575f80fd5b83356113a68161134b565b925060208401356113b68161134b565b929592945050506040919091013590565b5f602082840312156113d7575f80fd5b5035919050565b5f602082840312156113ee575f80fd5b81356111698161134b565b6001600160a01b0391909116815260200190565b5f806040838503121561141e575f80fd5b82356114298161134b565b915060208301356114398161134b565b809150509250929050565b600181811c9082168061145857607f821691505b60208210810361147657634e487b7160e01b5f52602260045260245ffd5b50919050565b6001600160a01b039384168152919092166020820152901515604082015260600190565b5f602082840312156114b0575f80fd5b81516111698161134b565b634e487b7160e01b5f52601160045260245ffd5b808202811582820484141761044d5761044d6114bb565b5f8261150057634e487b7160e01b5f52601260045260245ffd5b500490565b8181038181111561044d5761044d6114bb565b6001600160a01b039390931683526020830191909152604082015260600190565b8082018082111561044d5761044d6114bb565b5f805f6060848603121561155e575f80fd5b5050815160208301516040909301519094929350919050565b5f60a0820187835286602084015260a0604084015280865480835260c085019150875f5260205f2092505f5b818110156115ea5783546001600160a01b039081168452600185810154918216602086015260a09190911c60ff1615156040850152600290940193606090930192016115a3565b50506001600160a01b038616606085015291506116049050565b826080830152969550505050505056fea264697066735822122086a54d88d8f642365ee8c03cb7937707efd6c56b62be5942ccf277d6b8717ec264736f6c634300081a003300000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000000140000000000000000000000000000000000000000000000000000000000000001200000000000000000000000000000000000000000000d3c21bcecceda100000000000000000000000000000000000000000000000000021e19e0c9bab240000000000000000000000000000000000000000000000000000000000000000000190000000000000000000000000e535c52e40e90745f27e3361a609e5b80cc76970000000000000000000000001d368773735ee1e678950b7a97bca2cafb330cdc000000000000000000000000000000000000000000000000000000000000000552494e4753000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000552494e4753000000000000000000000000000000000000000000000000000000

Deployed Bytecode

0x608060405260043610610104575f3560e01c806379cc67901161009d578063a9059cbb11610062578063a9059cbb14610310578063ac44faf01461032f578063cd52c7011461034e578063dd62ed3e1461036c578063f2fde38b1461038b575f80fd5b806379cc6790146102825780638a8c523c146102a15780638a926d0f146102a95780638da5cb5b146102db57806395d89b41146102fc575f80fd5b806306fdde0314610147578063095ea7b31461017157806318160ddd146101a057806323b872dd146101be578063313ce567146101dd57806342966c681461021a5780634fab9e4c1461023b57806370a082311461024f578063715018a61461026e575f80fd5b3661014357604080513381523460208201527f1e57e3bb474320be3d2c77138f75b7c3941292d647f5f9634e33a8e94e0e069b910160405180910390a1005b5f80fd5b348015610152575f80fd5b5061015b6103aa565b6040516101689190611300565b60405180910390f35b34801561017c575f80fd5b5061019061018b36600461135f565b61043a565b6040519015158152602001610168565b3480156101ab575f80fd5b506002545b604051908152602001610168565b3480156101c9575f80fd5b506101906101d8366004611389565b610453565b3480156101e8575f80fd5b5060405160ff7f0000000000000000000000000000000000000000000000000000000000000012168152602001610168565b348015610225575f80fd5b506102396102343660046113c7565b610476565b005b348015610246575f80fd5b506102396104b7565b34801561025a575f80fd5b506101b06102693660046113de565b610742565b348015610279575f80fd5b5061023961075c565b34801561028d575f80fd5b5061023961029c36600461135f565b61076f565b610239610788565b3480156102b4575f80fd5b507f00000000000000000000000000000000000000000000021e19e0c9bab24000006101b0565b3480156102e6575f80fd5b506102ef610931565b60405161016891906113f9565b348015610307575f80fd5b5061015b610940565b34801561031b575f80fd5b5061019061032a36600461135f565b61094f565b34801561033a575f80fd5b506007546102ef906001600160a01b031681565b348015610359575f80fd5b5060095461019090610100900460ff1681565b348015610377575f80fd5b506101b061038636600461140d565b61095c565b348015610396575f80fd5b506102396103a53660046113de565b610986565b6060600380546103b990611444565b80601f01602080910402602001604051908101604052809291908181526020018280546103e590611444565b80156104305780601f1061040757610100808354040283529160200191610430565b820191905f5260205f20905b81548152906001019060200180831161041357829003601f168201915b5050505050905090565b5f336104478185856109c3565b60019150505b92915050565b5f336104608582856109d5565b61046b858585610a26565b506001949350505050565b61047f81610a83565b60405181815233907ffd38818f5291bf0bb3a2a48aadc06ba8757865d1dabd804585338aab3009dcb69060200160405180910390a250565b6104bf610a8d565b6007546001600160a01b0316156104e95760405163da3d382160e01b815260040160405180910390fd5b732da25e7446a70d7be65fd4c053948becaa6374c85f6001600160a01b037f000000000000000000000000039e2fb66102314ce7b64ce5ce3e5183bc94ad38163010610555577f000000000000000000000000039e2fb66102314ce7b64ce5ce3e5183bc94ad38610557565b305b90505f6001600160a01b037f000000000000000000000000039e2fb66102314ce7b64ce5ce3e5183bc94ad3816301061059057306105b2565b7f000000000000000000000000039e2fb66102314ce7b64ce5ce3e5183bc94ad385b6040516306801cc360e41b81529091506001600160a01b03841690636801cc30906105e590859085905f9060040161147c565b602060405180830381865afa158015610600573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061062491906114a0565b600780546001600160a01b0319166001600160a01b039290921691821790556106f8576040516320b7f73960e21b81526001600160a01b038416906382dfdce4906106979030907f000000000000000000000000039e2fb66102314ce7b64ce5ce3e5183bc94ad38905f9060040161147c565b6020604051808303815f875af11580156106b3573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906106d791906114a0565b600780546001600160a01b0319166001600160a01b03929092169190911790555b6007546040517fbf808f2b0690671f1bcc64cdf60552cba2c1502960c704dd74273fbe552776af91610735916001600160a01b03909116906113f9565b60405180910390a1505050565b6001600160a01b03165f9081526020819052604090205490565b610764610a8d565b61076d5f610abf565b565b61077a8233836109d5565b6107848282610b10565b5050565b610790610a8d565b6009805462ff00001916620100001790819055610100900460ff16156107f75760405162461bcd60e51b81526020600482015260176024820152762a3930b234b7339034b99030b63932b0b23c9037b832b760491b60448201526064015b60405180910390fd5b6007546001600160a01b03166108465760405162461bcd60e51b815260206004820152601460248201527314185a5c881b9bdd081a5b9a5d1a585b1a5e995960621b60448201526064016107ee565b5f61085030610742565b90505f811161089a5760405162461bcd60e51b8152602060048201526016602482015275436f6e747261637420686173206e6f20746f6b656e7360501b60448201526064016107ee565b5f60646108c77f0000000000000000000000000000000000000000000000000000000000000019846114cf565b6108d191906114e6565b6108db9083611505565b9050610908307f0000000000000000000000001d368773735ee1e678950b7a97bca2cafb330cdc846109c3565b6009805461ffff19166101011790556109213482610b44565b50506009805462ff00ff19169055565b6005546001600160a01b031690565b6060600480546103b990611444565b5f33610447818585610a26565b6001600160a01b039182165f90815260016020908152604080832093909416825291909152205490565b61098e610a8d565b6001600160a01b0381166109b7575f604051631e4fbdf760e01b81526004016107ee91906113f9565b6109c081610abf565b50565b6109d08383836001610cae565b505050565b5f6109e0848461095c565b90505f19811015610a205781811015610a1257828183604051637dc7a0d960e11b81526004016107ee93929190611518565b610a2084848484035f610cae565b50505050565b6001600160a01b038316610a4f575f604051634b637e8f60e11b81526004016107ee91906113f9565b6001600160a01b038216610a78575f60405163ec442f0560e01b81526004016107ee91906113f9565b6109d0838383610d80565b6109c03382610b10565b33610a96610931565b6001600160a01b03161461076d573360405163118cdaa760e01b81526004016107ee91906113f9565b600580546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b6001600160a01b038216610b39575f604051634b637e8f60e11b81526004016107ee91906113f9565b610784825f83610d80565b805f03610b6457604051631f2a200560e01b815260040160405180910390fd5b815f03610b8457604051631f2a200560e01b815260040160405180910390fd5b5f80806001600160a01b037f0000000000000000000000001d368773735ee1e678950b7a97bca2cafb330cdc1663b7e0d4c086308488818033610bc9426103e8611539565b60405160e08a901b6001600160e01b03191681526001600160a01b039788166004820152951515602487015260448601949094526064850192909252608484015290921660a482015260c481019190915260e40160606040518083038185885af1158015610c39573d5f803e3d5ffd5b50505050506040513d601f19601f82011682018060405250810190610c5e919061154c565b604080518481526020810184905290810182905292955090935091507fd7f28048575eead8851d024ead087913957dfb4fd1a02b4d1573f5352a5a2be39060600160405180910390a15050505050565b6001600160a01b038416610cd7575f60405163e602df0560e01b81526004016107ee91906113f9565b6001600160a01b038316610d00575f604051634a1406b160e11b81526004016107ee91906113f9565b6001600160a01b038085165f9081526001602090815260408083209387168352929052208290558015610a2057826001600160a01b0316846001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92584604051610d7291815260200190565b60405180910390a350505050565b805f03610da057604051631f2a200560e01b815260040160405180910390fd5b6001600160a01b0383161580610dbd57506001600160a01b038216155b15610dcd576109d0838383610f92565b600954610100900460ff16158015610dfe5750610de8610931565b6001600160a01b0316836001600160a01b031614155b8015610e235750610e0d610931565b6001600160a01b0316826001600160a01b031614155b15610e415760405163e09f033160e01b815260040160405180910390fd5b610e49610931565b6001600160a01b0316836001600160a01b031614158015610e7757506007546001600160a01b038481169116145b8015610eb557507f0000000000000000000000001d368773735ee1e678950b7a97bca2cafb330cdc6001600160a01b0316826001600160a01b031614155b8015610eca57506001600160a01b0382163014155b8015610eef5750610ed9610931565b6001600160a01b0316826001600160a01b031614155b15610f48577f00000000000000000000000000000000000000000000021e19e0c9bab240000081610f1f84610742565b610f299190611539565b1115610f4857604051632aedb11160e11b815260040160405180910390fd5b60095462010000900460ff16158015610f6e57506007546001600160a01b038381169116145b8015610f7d575060095460ff16155b15610f8b57610f8b816110a5565b6109d08383835b6001600160a01b038316610fbc578060025f828254610fb19190611539565b909155506110199050565b6001600160a01b0383165f9081526020819052604090205481811015610ffb5783818360405163391434e360e21b81526004016107ee93929190611518565b6001600160a01b0384165f9081526020819052604090209082900390555b6001600160a01b03821661103557600280548290039055611053565b6001600160a01b0382165f9081526020819052604090208054820190555b816001600160a01b0316836001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef8360405161109891815260200190565b60405180910390a3505050565b6009805462ff00001916620100001790555f6110c030610742565b9050801561114e57435f908152600660205260409020546003116110f75760405163bb9c3d2360e01b815260040160405180910390fd5b5f61112c611125837f00000000000000000000000000000000000000000000021e19e0c9bab240000061115e565b849061115e565b905061113781611170565b50435f908152600660205260409020805460010190555b50506009805462ff000019169055565b5f8282188284100282185b9392505050565b6009805462ff000019166201000017905561118a81611232565b47801561114e575f7f0000000000000000000000000e535c52e40e90745f27e3361a609e5b80cc76976001600160a01b0316826040515f6040518083038185875af1925050503d805f81146111fa576040519150601f19603f3d011682016040523d82523d5f602084013e6111ff565b606091505b50509050806112215760405163b12d13eb60e01b815260040160405180910390fd5b5050506009805462ff000019169055565b6009805462ff00001916620100001790555f81900361126457604051631f2a200560e01b815260040160405180910390fd5b6001600160a01b037f0000000000000000000000001d368773735ee1e678950b7a97bca2cafb330cdc16637af728c8825f6008306112a44261012c611539565b6040518663ffffffff1660e01b81526004016112c4959493929190611577565b5f604051808303815f87803b1580156112db575f80fd5b505af11580156112ed573d5f803e3d5ffd5b50506009805462ff000019169055505050565b602081525f82518060208401525f5b8181101561132c576020818601810151604086840101520161130f565b505f604082850101526040601f19601f83011684010191505092915050565b6001600160a01b03811681146109c0575f80fd5b5f8060408385031215611370575f80fd5b823561137b8161134b565b946020939093013593505050565b5f805f6060848603121561139b575f80fd5b83356113a68161134b565b925060208401356113b68161134b565b929592945050506040919091013590565b5f602082840312156113d7575f80fd5b5035919050565b5f602082840312156113ee575f80fd5b81356111698161134b565b6001600160a01b0391909116815260200190565b5f806040838503121561141e575f80fd5b82356114298161134b565b915060208301356114398161134b565b809150509250929050565b600181811c9082168061145857607f821691505b60208210810361147657634e487b7160e01b5f52602260045260245ffd5b50919050565b6001600160a01b039384168152919092166020820152901515604082015260600190565b5f602082840312156114b0575f80fd5b81516111698161134b565b634e487b7160e01b5f52601160045260245ffd5b808202811582820484141761044d5761044d6114bb565b5f8261150057634e487b7160e01b5f52601260045260245ffd5b500490565b8181038181111561044d5761044d6114bb565b6001600160a01b039390931683526020830191909152604082015260600190565b8082018082111561044d5761044d6114bb565b5f805f6060848603121561155e575f80fd5b5050815160208301516040909301519094929350919050565b5f60a0820187835286602084015260a0604084015280865480835260c085019150875f5260205f2092505f5b818110156115ea5783546001600160a01b039081168452600185810154918216602086015260a09190911c60ff1615156040850152600290940193606090930192016115a3565b50506001600160a01b038616606085015291506116049050565b826080830152969550505050505056fea264697066735822122086a54d88d8f642365ee8c03cb7937707efd6c56b62be5942ccf277d6b8717ec264736f6c634300081a0033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

00000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000000140000000000000000000000000000000000000000000000000000000000000001200000000000000000000000000000000000000000000d3c21bcecceda100000000000000000000000000000000000000000000000000021e19e0c9bab240000000000000000000000000000000000000000000000000000000000000000000190000000000000000000000000e535c52e40e90745f27e3361a609e5b80cc76970000000000000000000000001d368773735ee1e678950b7a97bca2cafb330cdc000000000000000000000000000000000000000000000000000000000000000552494e4753000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000552494e4753000000000000000000000000000000000000000000000000000000

-----Decoded View---------------
Arg [0] : name_ (string): RINGS
Arg [1] : symbol_ (string): RINGS
Arg [2] : decimals_ (uint8): 18
Arg [3] : totalSupply_ (uint256): 1000000000000000000000000
Arg [4] : maxTokenAmount_ (uint256): 10000000000000000000000
Arg [5] : airdropFees_ (uint256): 25
Arg [6] : taxCollectorAddress_ (address): 0x0E535C52E40e90745f27e3361A609E5B80cc7697
Arg [7] : routerAddress_ (address): 0x1D368773735ee1E678950B7A97bcA2CafB330CDc

-----Encoded View---------------
12 Constructor Arguments found :
Arg [0] : 0000000000000000000000000000000000000000000000000000000000000100
Arg [1] : 0000000000000000000000000000000000000000000000000000000000000140
Arg [2] : 0000000000000000000000000000000000000000000000000000000000000012
Arg [3] : 00000000000000000000000000000000000000000000d3c21bcecceda1000000
Arg [4] : 00000000000000000000000000000000000000000000021e19e0c9bab2400000
Arg [5] : 0000000000000000000000000000000000000000000000000000000000000019
Arg [6] : 0000000000000000000000000e535c52e40e90745f27e3361a609e5b80cc7697
Arg [7] : 0000000000000000000000001d368773735ee1e678950b7a97bca2cafb330cdc
Arg [8] : 0000000000000000000000000000000000000000000000000000000000000005
Arg [9] : 52494e4753000000000000000000000000000000000000000000000000000000
Arg [10] : 0000000000000000000000000000000000000000000000000000000000000005
Arg [11] : 52494e4753000000000000000000000000000000000000000000000000000000


[ Download: CSV Export  ]
[ Download: CSV Export  ]

A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.