Overview
TokenID
230
Total Transfers
-
Market
Onchain Market Cap
-
Circulating Supply Market Cap
-
Other Info
Token Contract
Loading...
Loading
Loading...
Loading
Loading...
Loading
Contract Source Code Verified (Exact Match)
Contract Name:
Chibbles
Compiler Version
v0.8.26+commit.8a97fa7a
Optimization Enabled:
Yes with 9999 runs
Other Settings:
paris EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT /* /$$ /$$ /$$$$$$$ /$$$$$$ /$$ /$$ /$$ /$$ /$$ /$$$$$$ /$$$$$$$ /$$$$$$$ | $$ /$$/| $$__ $$ /$$__ $$| $$ /$ | $$| $$$ | $$ | $$ /$$__ $$| $$__ $$ /$$__ $$ | $$ /$$/ | $$ \ $$| $$ \ $$| $$ /$$$| $$| $$$$| $$ | $$ | $$ \ $$| $$ \ $$| $$ \__/ | $$$$$/ | $$$$$$$/| $$ | $$| $$/$$ $$ $$| $$ $$ $$ | $$ | $$$$$$$$| $$$$$$$ | $$$$$$ | $$ $$ | $$__ $$| $$ | $$| $$$$_ $$$$| $$ $$$$ | $$ | $$__ $$| $$__ $$ \____ $$ | $$\ $$ | $$ \ $$| $$ | $$| $$$/ \ $$$| $$\ $$$ | $$ | $$ | $$| $$ \ $$ /$$ \ $$ | $$ \ $$| $$ | $$| $$$$$$/| $$/ \ $$| $$ \ $$ | $$$$$$$$| $$ | $$| $$$$$$$/| $$$$$$/ |__/ \__/|__/ |__/ \______/ |__/ \__/|__/ \__/ |________/|__/ |__/|_______/ \______/ krownlabs.app x.com/krownlabs discord.gg/KTU4krfhrG */ pragma solidity ^0.8.20; import "@openzeppelin/contracts/token/ERC721/extensions/ERC721Enumerable.sol"; import "@openzeppelin/contracts/access/Ownable.sol"; import "@openzeppelin/contracts/utils/ReentrancyGuard.sol"; import "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol"; import "@openzeppelin/contracts/utils/Strings.sol"; import "@openzeppelin/contracts/interfaces/IERC2981.sol"; contract Chibbles is ERC721Enumerable, Ownable, ReentrancyGuard, IERC2981 { using Strings for uint256; bytes32 public root; uint256 public maxSupply = 1000; uint256 public constant TEAM_RESERVE = 10; uint256 public teamMinted = 0; uint256 private currentTokenId; string public baseURI; string public notRevealedUri = "ipfs://QmYUuwLoiRb8woXwJCCsr1gvbr8E21KuxRtmVBmnH1tZz7/hidden.json"; string public baseExtension = ".json"; bool public paused = false; bool public revealed = false; bool public presaleM = false; bool public publicM = false; uint96 private royaltyFee; address private royaltyRecipient; // Track total mints per wallet (combining presale and public) mapping(address => uint256) public totalMinted; event TeamMint(address indexed to, uint256 amount); constructor( string memory uri, bytes32 merkleroot, address initialOwner ) ERC721("Chibbles", "CHIB") Ownable(initialOwner) ReentrancyGuard() { root = merkleroot; setBaseURI(uri); royaltyRecipient = initialOwner; royaltyFee = 500; } // Team mint function function teamMint(uint256 _amount) external onlyOwner { require(_amount > 0, "Amount must be greater than 0"); require(teamMinted + _amount <= TEAM_RESERVE, "Exceeds team allocation"); require(currentTokenId + _amount <= maxSupply, "Would exceed max supply"); for (uint256 i = 0; i < _amount; i++) { currentTokenId++; _safeMint(msg.sender, currentTokenId); } teamMinted += _amount; emit TeamMint(msg.sender, _amount); } function setBaseURI(string memory _tokenBaseURI) public onlyOwner { baseURI = _tokenBaseURI; } function setNotRevealedURI(string memory _notRevealedURI) public onlyOwner { notRevealedUri = _notRevealedURI; } function setBaseExtension(string memory _newBaseExtension) public onlyOwner { baseExtension = _newBaseExtension; } function _baseURI() internal view override returns (string memory) { return baseURI; } function reveal() public onlyOwner { revealed = true; } function setMerkleRoot(bytes32 merkleroot) onlyOwner public { root = merkleroot; } modifier onlyAccounts () { require(msg.sender == tx.origin, "Not allowed origin"); _; } modifier isValidMerkleProof(bytes32[] calldata _proof) { require(MerkleProof.verify( _proof, root, keccak256(abi.encodePacked(msg.sender)) ) == true, "Not allowed origin"); _; } modifier canMint() { require(totalMinted[msg.sender] == 0, "Already minted maximum allowed"); _; } function togglePause() public onlyOwner { paused = !paused; } function togglePresale() public onlyOwner { presaleM = !presaleM; } function togglePublicSale() public onlyOwner { publicM = !publicM; } function presaleMint(bytes32[] calldata _proof) external isValidMerkleProof(_proof) onlyAccounts canMint { require(presaleM, "Presale is OFF"); require(!paused, "Contract is paused"); require( currentTokenId + 1 <= maxSupply - (TEAM_RESERVE - teamMinted), "Max supply exceeded" ); mintInternal(); } function publicSaleMint() external onlyAccounts canMint { require(publicM, "Public sale is OFF"); require(!paused, "Contract is paused"); require( currentTokenId + 1 <= maxSupply - (TEAM_RESERVE - teamMinted), "Max supply exceeded" ); mintInternal(); } function mintInternal() internal nonReentrant { currentTokenId++; totalMinted[msg.sender] += 1; _safeMint(msg.sender, currentTokenId); } function tokenURI(uint256 tokenId) public view virtual override returns (string memory) { require(_ownerOf(tokenId) != address(0), "Token does not exist"); if (!revealed) { return notRevealedUri; } string memory baseUri = _baseURI(); return bytes(baseUri).length > 0 ? string(abi.encodePacked(baseUri, tokenId.toString(), baseExtension)) : ""; } function withdraw() public onlyOwner { uint256 balance = address(this).balance; (bool success, ) = payable(owner()).call{value: balance}(""); require(success, "Transfer failed"); } function setRoyaltyInfo(address _recipient, uint96 _royaltyFeeBps) public onlyOwner { require(_royaltyFeeBps <= 1000, "Royalty fee cannot exceed 10%"); royaltyRecipient = _recipient; royaltyFee = _royaltyFeeBps; } function royaltyInfo(uint256 _tokenId, uint256 _salePrice) external view override returns (address receiver, uint256 royaltyAmount) { require(_ownerOf(_tokenId) != address(0), "Token does not exist"); return (royaltyRecipient, (_salePrice * royaltyFee) / 10000); } function supportsInterface(bytes4 interfaceId) public view override(ERC721Enumerable, IERC165) returns (bool) { return interfaceId == type(IERC2981).interfaceId || super.supportsInterface(interfaceId); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol) pragma solidity ^0.8.20; import {Context} from "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * The initial owner is set to the address provided by the deployer. This can * later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; /** * @dev The caller account is not authorized to perform an operation. */ error OwnableUnauthorizedAccount(address account); /** * @dev The owner is not a valid owner account. (eg. `address(0)`) */ error OwnableInvalidOwner(address owner); event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the address provided by the deployer as the initial owner. */ constructor(address initialOwner) { if (initialOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(initialOwner); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { if (owner() != _msgSender()) { revert OwnableUnauthorizedAccount(_msgSender()); } } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { if (newOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol) pragma solidity ^0.8.20; /** * @dev Standard ERC-20 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens. */ interface IERC20Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC20InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC20InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers. * @param spender Address that may be allowed to operate on tokens without being their owner. * @param allowance Amount of tokens a `spender` is allowed to operate with. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC20InvalidApprover(address approver); /** * @dev Indicates a failure with the `spender` to be approved. Used in approvals. * @param spender Address that may be allowed to operate on tokens without being their owner. */ error ERC20InvalidSpender(address spender); } /** * @dev Standard ERC-721 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens. */ interface IERC721Errors { /** * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20. * Used in balance queries. * @param owner Address of the current owner of a token. */ error ERC721InvalidOwner(address owner); /** * @dev Indicates a `tokenId` whose `owner` is the zero address. * @param tokenId Identifier number of a token. */ error ERC721NonexistentToken(uint256 tokenId); /** * @dev Indicates an error related to the ownership over a particular token. Used in transfers. * @param sender Address whose tokens are being transferred. * @param tokenId Identifier number of a token. * @param owner Address of the current owner of a token. */ error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC721InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC721InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param tokenId Identifier number of a token. */ error ERC721InsufficientApproval(address operator, uint256 tokenId); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC721InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC721InvalidOperator(address operator); } /** * @dev Standard ERC-1155 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens. */ interface IERC1155Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. * @param tokenId Identifier number of a token. */ error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC1155InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC1155InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param owner Address of the current owner of a token. */ error ERC1155MissingApprovalForAll(address operator, address owner); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC1155InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC1155InvalidOperator(address operator); /** * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation. * Used in batch transfers. * @param idsLength Length of the array of token identifiers * @param valuesLength Length of the array of token amounts */ error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC2981.sol) pragma solidity ^0.8.20; import {IERC165} from "../utils/introspection/IERC165.sol"; /** * @dev Interface for the NFT Royalty Standard. * * A standardized way to retrieve royalty payment information for non-fungible tokens (NFTs) to enable universal * support for royalty payments across all NFT marketplaces and ecosystem participants. */ interface IERC2981 is IERC165 { /** * @dev Returns how much royalty is owed and to whom, based on a sale price that may be denominated in any unit of * exchange. The royalty amount is denominated and should be paid in that same unit of exchange. * * NOTE: ERC-2981 allows setting the royalty to 100% of the price. In that case all the price would be sent to the * royalty receiver and 0 tokens to the seller. Contracts dealing with royalty should consider empty transfers. */ function royaltyInfo( uint256 tokenId, uint256 salePrice ) external view returns (address receiver, uint256 royaltyAmount); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/ERC721.sol) pragma solidity ^0.8.20; import {IERC721} from "./IERC721.sol"; import {IERC721Metadata} from "./extensions/IERC721Metadata.sol"; import {ERC721Utils} from "./utils/ERC721Utils.sol"; import {Context} from "../../utils/Context.sol"; import {Strings} from "../../utils/Strings.sol"; import {IERC165, ERC165} from "../../utils/introspection/ERC165.sol"; import {IERC721Errors} from "../../interfaces/draft-IERC6093.sol"; /** * @dev Implementation of https://eips.ethereum.org/EIPS/eip-721[ERC-721] Non-Fungible Token Standard, including * the Metadata extension, but not including the Enumerable extension, which is available separately as * {ERC721Enumerable}. */ abstract contract ERC721 is Context, ERC165, IERC721, IERC721Metadata, IERC721Errors { using Strings for uint256; // Token name string private _name; // Token symbol string private _symbol; mapping(uint256 tokenId => address) private _owners; mapping(address owner => uint256) private _balances; mapping(uint256 tokenId => address) private _tokenApprovals; mapping(address owner => mapping(address operator => bool)) private _operatorApprovals; /** * @dev Initializes the contract by setting a `name` and a `symbol` to the token collection. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) { return interfaceId == type(IERC721).interfaceId || interfaceId == type(IERC721Metadata).interfaceId || super.supportsInterface(interfaceId); } /** * @dev See {IERC721-balanceOf}. */ function balanceOf(address owner) public view virtual returns (uint256) { if (owner == address(0)) { revert ERC721InvalidOwner(address(0)); } return _balances[owner]; } /** * @dev See {IERC721-ownerOf}. */ function ownerOf(uint256 tokenId) public view virtual returns (address) { return _requireOwned(tokenId); } /** * @dev See {IERC721Metadata-name}. */ function name() public view virtual returns (string memory) { return _name; } /** * @dev See {IERC721Metadata-symbol}. */ function symbol() public view virtual returns (string memory) { return _symbol; } /** * @dev See {IERC721Metadata-tokenURI}. */ function tokenURI(uint256 tokenId) public view virtual returns (string memory) { _requireOwned(tokenId); string memory baseURI = _baseURI(); return bytes(baseURI).length > 0 ? string.concat(baseURI, tokenId.toString()) : ""; } /** * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each * token will be the concatenation of the `baseURI` and the `tokenId`. Empty * by default, can be overridden in child contracts. */ function _baseURI() internal view virtual returns (string memory) { return ""; } /** * @dev See {IERC721-approve}. */ function approve(address to, uint256 tokenId) public virtual { _approve(to, tokenId, _msgSender()); } /** * @dev See {IERC721-getApproved}. */ function getApproved(uint256 tokenId) public view virtual returns (address) { _requireOwned(tokenId); return _getApproved(tokenId); } /** * @dev See {IERC721-setApprovalForAll}. */ function setApprovalForAll(address operator, bool approved) public virtual { _setApprovalForAll(_msgSender(), operator, approved); } /** * @dev See {IERC721-isApprovedForAll}. */ function isApprovedForAll(address owner, address operator) public view virtual returns (bool) { return _operatorApprovals[owner][operator]; } /** * @dev See {IERC721-transferFrom}. */ function transferFrom(address from, address to, uint256 tokenId) public virtual { if (to == address(0)) { revert ERC721InvalidReceiver(address(0)); } // Setting an "auth" arguments enables the `_isAuthorized` check which verifies that the token exists // (from != 0). Therefore, it is not needed to verify that the return value is not 0 here. address previousOwner = _update(to, tokenId, _msgSender()); if (previousOwner != from) { revert ERC721IncorrectOwner(from, tokenId, previousOwner); } } /** * @dev See {IERC721-safeTransferFrom}. */ function safeTransferFrom(address from, address to, uint256 tokenId) public { safeTransferFrom(from, to, tokenId, ""); } /** * @dev See {IERC721-safeTransferFrom}. */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory data) public virtual { transferFrom(from, to, tokenId); ERC721Utils.checkOnERC721Received(_msgSender(), from, to, tokenId, data); } /** * @dev Returns the owner of the `tokenId`. Does NOT revert if token doesn't exist * * IMPORTANT: Any overrides to this function that add ownership of tokens not tracked by the * core ERC-721 logic MUST be matched with the use of {_increaseBalance} to keep balances * consistent with ownership. The invariant to preserve is that for any address `a` the value returned by * `balanceOf(a)` must be equal to the number of tokens such that `_ownerOf(tokenId)` is `a`. */ function _ownerOf(uint256 tokenId) internal view virtual returns (address) { return _owners[tokenId]; } /** * @dev Returns the approved address for `tokenId`. Returns 0 if `tokenId` is not minted. */ function _getApproved(uint256 tokenId) internal view virtual returns (address) { return _tokenApprovals[tokenId]; } /** * @dev Returns whether `spender` is allowed to manage `owner`'s tokens, or `tokenId` in * particular (ignoring whether it is owned by `owner`). * * WARNING: This function assumes that `owner` is the actual owner of `tokenId` and does not verify this * assumption. */ function _isAuthorized(address owner, address spender, uint256 tokenId) internal view virtual returns (bool) { return spender != address(0) && (owner == spender || isApprovedForAll(owner, spender) || _getApproved(tokenId) == spender); } /** * @dev Checks if `spender` can operate on `tokenId`, assuming the provided `owner` is the actual owner. * Reverts if: * - `spender` does not have approval from `owner` for `tokenId`. * - `spender` does not have approval to manage all of `owner`'s assets. * * WARNING: This function assumes that `owner` is the actual owner of `tokenId` and does not verify this * assumption. */ function _checkAuthorized(address owner, address spender, uint256 tokenId) internal view virtual { if (!_isAuthorized(owner, spender, tokenId)) { if (owner == address(0)) { revert ERC721NonexistentToken(tokenId); } else { revert ERC721InsufficientApproval(spender, tokenId); } } } /** * @dev Unsafe write access to the balances, used by extensions that "mint" tokens using an {ownerOf} override. * * NOTE: the value is limited to type(uint128).max. This protect against _balance overflow. It is unrealistic that * a uint256 would ever overflow from increments when these increments are bounded to uint128 values. * * WARNING: Increasing an account's balance using this function tends to be paired with an override of the * {_ownerOf} function to resolve the ownership of the corresponding tokens so that balances and ownership * remain consistent with one another. */ function _increaseBalance(address account, uint128 value) internal virtual { unchecked { _balances[account] += value; } } /** * @dev Transfers `tokenId` from its current owner to `to`, or alternatively mints (or burns) if the current owner * (or `to`) is the zero address. Returns the owner of the `tokenId` before the update. * * The `auth` argument is optional. If the value passed is non 0, then this function will check that * `auth` is either the owner of the token, or approved to operate on the token (by the owner). * * Emits a {Transfer} event. * * NOTE: If overriding this function in a way that tracks balances, see also {_increaseBalance}. */ function _update(address to, uint256 tokenId, address auth) internal virtual returns (address) { address from = _ownerOf(tokenId); // Perform (optional) operator check if (auth != address(0)) { _checkAuthorized(from, auth, tokenId); } // Execute the update if (from != address(0)) { // Clear approval. No need to re-authorize or emit the Approval event _approve(address(0), tokenId, address(0), false); unchecked { _balances[from] -= 1; } } if (to != address(0)) { unchecked { _balances[to] += 1; } } _owners[tokenId] = to; emit Transfer(from, to, tokenId); return from; } /** * @dev Mints `tokenId` and transfers it to `to`. * * WARNING: Usage of this method is discouraged, use {_safeMint} whenever possible * * Requirements: * * - `tokenId` must not exist. * - `to` cannot be the zero address. * * Emits a {Transfer} event. */ function _mint(address to, uint256 tokenId) internal { if (to == address(0)) { revert ERC721InvalidReceiver(address(0)); } address previousOwner = _update(to, tokenId, address(0)); if (previousOwner != address(0)) { revert ERC721InvalidSender(address(0)); } } /** * @dev Mints `tokenId`, transfers it to `to` and checks for `to` acceptance. * * Requirements: * * - `tokenId` must not exist. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function _safeMint(address to, uint256 tokenId) internal { _safeMint(to, tokenId, ""); } /** * @dev Same as {xref-ERC721-_safeMint-address-uint256-}[`_safeMint`], with an additional `data` parameter which is * forwarded in {IERC721Receiver-onERC721Received} to contract recipients. */ function _safeMint(address to, uint256 tokenId, bytes memory data) internal virtual { _mint(to, tokenId); ERC721Utils.checkOnERC721Received(_msgSender(), address(0), to, tokenId, data); } /** * @dev Destroys `tokenId`. * The approval is cleared when the token is burned. * This is an internal function that does not check if the sender is authorized to operate on the token. * * Requirements: * * - `tokenId` must exist. * * Emits a {Transfer} event. */ function _burn(uint256 tokenId) internal { address previousOwner = _update(address(0), tokenId, address(0)); if (previousOwner == address(0)) { revert ERC721NonexistentToken(tokenId); } } /** * @dev Transfers `tokenId` from `from` to `to`. * As opposed to {transferFrom}, this imposes no restrictions on msg.sender. * * Requirements: * * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * * Emits a {Transfer} event. */ function _transfer(address from, address to, uint256 tokenId) internal { if (to == address(0)) { revert ERC721InvalidReceiver(address(0)); } address previousOwner = _update(to, tokenId, address(0)); if (previousOwner == address(0)) { revert ERC721NonexistentToken(tokenId); } else if (previousOwner != from) { revert ERC721IncorrectOwner(from, tokenId, previousOwner); } } /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking that contract recipients * are aware of the ERC-721 standard to prevent tokens from being forever locked. * * `data` is additional data, it has no specified format and it is sent in call to `to`. * * This internal function is like {safeTransferFrom} in the sense that it invokes * {IERC721Receiver-onERC721Received} on the receiver, and can be used to e.g. * implement alternative mechanisms to perform token transfer, such as signature-based. * * Requirements: * * - `tokenId` token must exist and be owned by `from`. * - `to` cannot be the zero address. * - `from` cannot be the zero address. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function _safeTransfer(address from, address to, uint256 tokenId) internal { _safeTransfer(from, to, tokenId, ""); } /** * @dev Same as {xref-ERC721-_safeTransfer-address-address-uint256-}[`_safeTransfer`], with an additional `data` parameter which is * forwarded in {IERC721Receiver-onERC721Received} to contract recipients. */ function _safeTransfer(address from, address to, uint256 tokenId, bytes memory data) internal virtual { _transfer(from, to, tokenId); ERC721Utils.checkOnERC721Received(_msgSender(), from, to, tokenId, data); } /** * @dev Approve `to` to operate on `tokenId` * * The `auth` argument is optional. If the value passed is non 0, then this function will check that `auth` is * either the owner of the token, or approved to operate on all tokens held by this owner. * * Emits an {Approval} event. * * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument. */ function _approve(address to, uint256 tokenId, address auth) internal { _approve(to, tokenId, auth, true); } /** * @dev Variant of `_approve` with an optional flag to enable or disable the {Approval} event. The event is not * emitted in the context of transfers. */ function _approve(address to, uint256 tokenId, address auth, bool emitEvent) internal virtual { // Avoid reading the owner unless necessary if (emitEvent || auth != address(0)) { address owner = _requireOwned(tokenId); // We do not use _isAuthorized because single-token approvals should not be able to call approve if (auth != address(0) && owner != auth && !isApprovedForAll(owner, auth)) { revert ERC721InvalidApprover(auth); } if (emitEvent) { emit Approval(owner, to, tokenId); } } _tokenApprovals[tokenId] = to; } /** * @dev Approve `operator` to operate on all of `owner` tokens * * Requirements: * - operator can't be the address zero. * * Emits an {ApprovalForAll} event. */ function _setApprovalForAll(address owner, address operator, bool approved) internal virtual { if (operator == address(0)) { revert ERC721InvalidOperator(operator); } _operatorApprovals[owner][operator] = approved; emit ApprovalForAll(owner, operator, approved); } /** * @dev Reverts if the `tokenId` doesn't have a current owner (it hasn't been minted, or it has been burned). * Returns the owner. * * Overrides to ownership logic should be done to {_ownerOf}. */ function _requireOwned(uint256 tokenId) internal view returns (address) { address owner = _ownerOf(tokenId); if (owner == address(0)) { revert ERC721NonexistentToken(tokenId); } return owner; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/extensions/ERC721Enumerable.sol) pragma solidity ^0.8.20; import {ERC721} from "../ERC721.sol"; import {IERC721Enumerable} from "./IERC721Enumerable.sol"; import {IERC165} from "../../../utils/introspection/ERC165.sol"; /** * @dev This implements an optional extension of {ERC721} defined in the ERC that adds enumerability * of all the token ids in the contract as well as all token ids owned by each account. * * CAUTION: {ERC721} extensions that implement custom `balanceOf` logic, such as {ERC721Consecutive}, * interfere with enumerability and should not be used together with {ERC721Enumerable}. */ abstract contract ERC721Enumerable is ERC721, IERC721Enumerable { mapping(address owner => mapping(uint256 index => uint256)) private _ownedTokens; mapping(uint256 tokenId => uint256) private _ownedTokensIndex; uint256[] private _allTokens; mapping(uint256 tokenId => uint256) private _allTokensIndex; /** * @dev An `owner`'s token query was out of bounds for `index`. * * NOTE: The owner being `address(0)` indicates a global out of bounds index. */ error ERC721OutOfBoundsIndex(address owner, uint256 index); /** * @dev Batch mint is not allowed. */ error ERC721EnumerableForbiddenBatchMint(); /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override(IERC165, ERC721) returns (bool) { return interfaceId == type(IERC721Enumerable).interfaceId || super.supportsInterface(interfaceId); } /** * @dev See {IERC721Enumerable-tokenOfOwnerByIndex}. */ function tokenOfOwnerByIndex(address owner, uint256 index) public view virtual returns (uint256) { if (index >= balanceOf(owner)) { revert ERC721OutOfBoundsIndex(owner, index); } return _ownedTokens[owner][index]; } /** * @dev See {IERC721Enumerable-totalSupply}. */ function totalSupply() public view virtual returns (uint256) { return _allTokens.length; } /** * @dev See {IERC721Enumerable-tokenByIndex}. */ function tokenByIndex(uint256 index) public view virtual returns (uint256) { if (index >= totalSupply()) { revert ERC721OutOfBoundsIndex(address(0), index); } return _allTokens[index]; } /** * @dev See {ERC721-_update}. */ function _update(address to, uint256 tokenId, address auth) internal virtual override returns (address) { address previousOwner = super._update(to, tokenId, auth); if (previousOwner == address(0)) { _addTokenToAllTokensEnumeration(tokenId); } else if (previousOwner != to) { _removeTokenFromOwnerEnumeration(previousOwner, tokenId); } if (to == address(0)) { _removeTokenFromAllTokensEnumeration(tokenId); } else if (previousOwner != to) { _addTokenToOwnerEnumeration(to, tokenId); } return previousOwner; } /** * @dev Private function to add a token to this extension's ownership-tracking data structures. * @param to address representing the new owner of the given token ID * @param tokenId uint256 ID of the token to be added to the tokens list of the given address */ function _addTokenToOwnerEnumeration(address to, uint256 tokenId) private { uint256 length = balanceOf(to) - 1; _ownedTokens[to][length] = tokenId; _ownedTokensIndex[tokenId] = length; } /** * @dev Private function to add a token to this extension's token tracking data structures. * @param tokenId uint256 ID of the token to be added to the tokens list */ function _addTokenToAllTokensEnumeration(uint256 tokenId) private { _allTokensIndex[tokenId] = _allTokens.length; _allTokens.push(tokenId); } /** * @dev Private function to remove a token from this extension's ownership-tracking data structures. Note that * while the token is not assigned a new owner, the `_ownedTokensIndex` mapping is _not_ updated: this allows for * gas optimizations e.g. when performing a transfer operation (avoiding double writes). * This has O(1) time complexity, but alters the order of the _ownedTokens array. * @param from address representing the previous owner of the given token ID * @param tokenId uint256 ID of the token to be removed from the tokens list of the given address */ function _removeTokenFromOwnerEnumeration(address from, uint256 tokenId) private { // To prevent a gap in from's tokens array, we store the last token in the index of the token to delete, and // then delete the last slot (swap and pop). uint256 lastTokenIndex = balanceOf(from); uint256 tokenIndex = _ownedTokensIndex[tokenId]; mapping(uint256 index => uint256) storage _ownedTokensByOwner = _ownedTokens[from]; // When the token to delete is the last token, the swap operation is unnecessary if (tokenIndex != lastTokenIndex) { uint256 lastTokenId = _ownedTokensByOwner[lastTokenIndex]; _ownedTokensByOwner[tokenIndex] = lastTokenId; // Move the last token to the slot of the to-delete token _ownedTokensIndex[lastTokenId] = tokenIndex; // Update the moved token's index } // This also deletes the contents at the last position of the array delete _ownedTokensIndex[tokenId]; delete _ownedTokensByOwner[lastTokenIndex]; } /** * @dev Private function to remove a token from this extension's token tracking data structures. * This has O(1) time complexity, but alters the order of the _allTokens array. * @param tokenId uint256 ID of the token to be removed from the tokens list */ function _removeTokenFromAllTokensEnumeration(uint256 tokenId) private { // To prevent a gap in the tokens array, we store the last token in the index of the token to delete, and // then delete the last slot (swap and pop). uint256 lastTokenIndex = _allTokens.length - 1; uint256 tokenIndex = _allTokensIndex[tokenId]; // When the token to delete is the last token, the swap operation is unnecessary. However, since this occurs so // rarely (when the last minted token is burnt) that we still do the swap here to avoid the gas cost of adding // an 'if' statement (like in _removeTokenFromOwnerEnumeration) uint256 lastTokenId = _allTokens[lastTokenIndex]; _allTokens[tokenIndex] = lastTokenId; // Move the last token to the slot of the to-delete token _allTokensIndex[lastTokenId] = tokenIndex; // Update the moved token's index // This also deletes the contents at the last position of the array delete _allTokensIndex[tokenId]; _allTokens.pop(); } /** * See {ERC721-_increaseBalance}. We need that to account tokens that were minted in batch */ function _increaseBalance(address account, uint128 amount) internal virtual override { if (amount > 0) { revert ERC721EnumerableForbiddenBatchMint(); } super._increaseBalance(account, amount); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/extensions/IERC721Enumerable.sol) pragma solidity ^0.8.20; import {IERC721} from "../IERC721.sol"; /** * @title ERC-721 Non-Fungible Token Standard, optional enumeration extension * @dev See https://eips.ethereum.org/EIPS/eip-721 */ interface IERC721Enumerable is IERC721 { /** * @dev Returns the total amount of tokens stored by the contract. */ function totalSupply() external view returns (uint256); /** * @dev Returns a token ID owned by `owner` at a given `index` of its token list. * Use along with {balanceOf} to enumerate all of ``owner``'s tokens. */ function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256); /** * @dev Returns a token ID at a given `index` of all the tokens stored by the contract. * Use along with {totalSupply} to enumerate all tokens. */ function tokenByIndex(uint256 index) external view returns (uint256); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/extensions/IERC721Metadata.sol) pragma solidity ^0.8.20; import {IERC721} from "../IERC721.sol"; /** * @title ERC-721 Non-Fungible Token Standard, optional metadata extension * @dev See https://eips.ethereum.org/EIPS/eip-721 */ interface IERC721Metadata is IERC721 { /** * @dev Returns the token collection name. */ function name() external view returns (string memory); /** * @dev Returns the token collection symbol. */ function symbol() external view returns (string memory); /** * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token. */ function tokenURI(uint256 tokenId) external view returns (string memory); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/IERC721.sol) pragma solidity ^0.8.20; import {IERC165} from "../../utils/introspection/IERC165.sol"; /** * @dev Required interface of an ERC-721 compliant contract. */ interface IERC721 is IERC165 { /** * @dev Emitted when `tokenId` token is transferred from `from` to `to`. */ event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. */ event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets. */ event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of tokens in ``owner``'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Safely transfers `tokenId` token from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon * a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external; /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients * are aware of the ERC-721 protocol to prevent tokens from being forever locked. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or * {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon * a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId) external; /** * @dev Transfers `tokenId` token from `from` to `to`. * * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC-721 * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must * understand this adds an external call which potentially creates a reentrancy vulnerability. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 tokenId) external; /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) external; /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the address zero. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool approved) external; /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) external view returns (address operator); /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll} */ function isApprovedForAll(address owner, address operator) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/IERC721Receiver.sol) pragma solidity ^0.8.20; /** * @title ERC-721 token receiver interface * @dev Interface for any contract that wants to support safeTransfers * from ERC-721 asset contracts. */ interface IERC721Receiver { /** * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom} * by `operator` from `from`, this function is called. * * It must return its Solidity selector to confirm the token transfer. * If any other value is returned or the interface is not implemented by the recipient, the transfer will be * reverted. * * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`. */ function onERC721Received( address operator, address from, uint256 tokenId, bytes calldata data ) external returns (bytes4); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/utils/ERC721Utils.sol) pragma solidity ^0.8.20; import {IERC721Receiver} from "../IERC721Receiver.sol"; import {IERC721Errors} from "../../../interfaces/draft-IERC6093.sol"; /** * @dev Library that provide common ERC-721 utility functions. * * See https://eips.ethereum.org/EIPS/eip-721[ERC-721]. * * _Available since v5.1._ */ library ERC721Utils { /** * @dev Performs an acceptance check for the provided `operator` by calling {IERC721-onERC721Received} * on the `to` address. The `operator` is generally the address that initiated the token transfer (i.e. `msg.sender`). * * The acceptance call is not executed and treated as a no-op if the target address doesn't contain code (i.e. an EOA). * Otherwise, the recipient must implement {IERC721Receiver-onERC721Received} and return the acceptance magic value to accept * the transfer. */ function checkOnERC721Received( address operator, address from, address to, uint256 tokenId, bytes memory data ) internal { if (to.code.length > 0) { try IERC721Receiver(to).onERC721Received(operator, from, tokenId, data) returns (bytes4 retval) { if (retval != IERC721Receiver.onERC721Received.selector) { // Token rejected revert IERC721Errors.ERC721InvalidReceiver(to); } } catch (bytes memory reason) { if (reason.length == 0) { // non-IERC721Receiver implementer revert IERC721Errors.ERC721InvalidReceiver(to); } else { assembly ("memory-safe") { revert(add(32, reason), mload(reason)) } } } } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/Hashes.sol) pragma solidity ^0.8.20; /** * @dev Library of standard hash functions. * * _Available since v5.1._ */ library Hashes { /** * @dev Commutative Keccak256 hash of a sorted pair of bytes32. Frequently used when working with merkle proofs. * * NOTE: Equivalent to the `standardNodeHash` in our https://github.com/OpenZeppelin/merkle-tree[JavaScript library]. */ function commutativeKeccak256(bytes32 a, bytes32 b) internal pure returns (bytes32) { return a < b ? _efficientKeccak256(a, b) : _efficientKeccak256(b, a); } /** * @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory. */ function _efficientKeccak256(bytes32 a, bytes32 b) private pure returns (bytes32 value) { assembly ("memory-safe") { mstore(0x00, a) mstore(0x20, b) value := keccak256(0x00, 0x40) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MerkleProof.sol) // This file was procedurally generated from scripts/generate/templates/MerkleProof.js. pragma solidity ^0.8.20; import {Hashes} from "./Hashes.sol"; /** * @dev These functions deal with verification of Merkle Tree proofs. * * The tree and the proofs can be generated using our * https://github.com/OpenZeppelin/merkle-tree[JavaScript library]. * You will find a quickstart guide in the readme. * * WARNING: You should avoid using leaf values that are 64 bytes long prior to * hashing, or use a hash function other than keccak256 for hashing leaves. * This is because the concatenation of a sorted pair of internal nodes in * the Merkle tree could be reinterpreted as a leaf value. * OpenZeppelin's JavaScript library generates Merkle trees that are safe * against this attack out of the box. * * IMPORTANT: Consider memory side-effects when using custom hashing functions * that access memory in an unsafe way. * * NOTE: This library supports proof verification for merkle trees built using * custom _commutative_ hashing functions (i.e. `H(a, b) == H(b, a)`). Proving * leaf inclusion in trees built using non-commutative hashing functions requires * additional logic that is not supported by this library. */ library MerkleProof { /** *@dev The multiproof provided is not valid. */ error MerkleProofInvalidMultiproof(); /** * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree * defined by `root`. For this, a `proof` must be provided, containing * sibling hashes on the branch from the leaf to the root of the tree. Each * pair of leaves and each pair of pre-images are assumed to be sorted. * * This version handles proofs in memory with the default hashing function. */ function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) { return processProof(proof, leaf) == root; } /** * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt * hash matches the root of the tree. When processing the proof, the pairs * of leaves & pre-images are assumed to be sorted. * * This version handles proofs in memory with the default hashing function. */ function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = Hashes.commutativeKeccak256(computedHash, proof[i]); } return computedHash; } /** * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree * defined by `root`. For this, a `proof` must be provided, containing * sibling hashes on the branch from the leaf to the root of the tree. Each * pair of leaves and each pair of pre-images are assumed to be sorted. * * This version handles proofs in memory with a custom hashing function. */ function verify( bytes32[] memory proof, bytes32 root, bytes32 leaf, function(bytes32, bytes32) view returns (bytes32) hasher ) internal view returns (bool) { return processProof(proof, leaf, hasher) == root; } /** * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt * hash matches the root of the tree. When processing the proof, the pairs * of leaves & pre-images are assumed to be sorted. * * This version handles proofs in memory with a custom hashing function. */ function processProof( bytes32[] memory proof, bytes32 leaf, function(bytes32, bytes32) view returns (bytes32) hasher ) internal view returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = hasher(computedHash, proof[i]); } return computedHash; } /** * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree * defined by `root`. For this, a `proof` must be provided, containing * sibling hashes on the branch from the leaf to the root of the tree. Each * pair of leaves and each pair of pre-images are assumed to be sorted. * * This version handles proofs in calldata with the default hashing function. */ function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) { return processProofCalldata(proof, leaf) == root; } /** * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt * hash matches the root of the tree. When processing the proof, the pairs * of leaves & pre-images are assumed to be sorted. * * This version handles proofs in calldata with the default hashing function. */ function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = Hashes.commutativeKeccak256(computedHash, proof[i]); } return computedHash; } /** * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree * defined by `root`. For this, a `proof` must be provided, containing * sibling hashes on the branch from the leaf to the root of the tree. Each * pair of leaves and each pair of pre-images are assumed to be sorted. * * This version handles proofs in calldata with a custom hashing function. */ function verifyCalldata( bytes32[] calldata proof, bytes32 root, bytes32 leaf, function(bytes32, bytes32) view returns (bytes32) hasher ) internal view returns (bool) { return processProofCalldata(proof, leaf, hasher) == root; } /** * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt * hash matches the root of the tree. When processing the proof, the pairs * of leaves & pre-images are assumed to be sorted. * * This version handles proofs in calldata with a custom hashing function. */ function processProofCalldata( bytes32[] calldata proof, bytes32 leaf, function(bytes32, bytes32) view returns (bytes32) hasher ) internal view returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = hasher(computedHash, proof[i]); } return computedHash; } /** * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}. * * This version handles multiproofs in memory with the default hashing function. * * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details. * * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`. * The `leaves` must be validated independently. See {processMultiProof}. */ function multiProofVerify( bytes32[] memory proof, bool[] memory proofFlags, bytes32 root, bytes32[] memory leaves ) internal pure returns (bool) { return processMultiProof(proof, proofFlags, leaves) == root; } /** * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false * respectively. * * This version handles multiproofs in memory with the default hashing function. * * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer). * * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op, * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not * validating the leaves elsewhere. */ function processMultiProof( bytes32[] memory proof, bool[] memory proofFlags, bytes32[] memory leaves ) internal pure returns (bytes32 merkleRoot) { // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of // the Merkle tree. uint256 leavesLen = leaves.length; uint256 proofFlagsLen = proofFlags.length; // Check proof validity. if (leavesLen + proof.length != proofFlagsLen + 1) { revert MerkleProofInvalidMultiproof(); } // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". bytes32[] memory hashes = new bytes32[](proofFlagsLen); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; // At each step, we compute the next hash using two values: // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we // get the next hash. // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the // `proof` array. for (uint256 i = 0; i < proofFlagsLen; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]) : proof[proofPos++]; hashes[i] = Hashes.commutativeKeccak256(a, b); } if (proofFlagsLen > 0) { if (proofPos != proof.length) { revert MerkleProofInvalidMultiproof(); } unchecked { return hashes[proofFlagsLen - 1]; } } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } /** * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}. * * This version handles multiproofs in memory with a custom hashing function. * * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details. * * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`. * The `leaves` must be validated independently. See {processMultiProof}. */ function multiProofVerify( bytes32[] memory proof, bool[] memory proofFlags, bytes32 root, bytes32[] memory leaves, function(bytes32, bytes32) view returns (bytes32) hasher ) internal view returns (bool) { return processMultiProof(proof, proofFlags, leaves, hasher) == root; } /** * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false * respectively. * * This version handles multiproofs in memory with a custom hashing function. * * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer). * * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op, * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not * validating the leaves elsewhere. */ function processMultiProof( bytes32[] memory proof, bool[] memory proofFlags, bytes32[] memory leaves, function(bytes32, bytes32) view returns (bytes32) hasher ) internal view returns (bytes32 merkleRoot) { // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of // the Merkle tree. uint256 leavesLen = leaves.length; uint256 proofFlagsLen = proofFlags.length; // Check proof validity. if (leavesLen + proof.length != proofFlagsLen + 1) { revert MerkleProofInvalidMultiproof(); } // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". bytes32[] memory hashes = new bytes32[](proofFlagsLen); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; // At each step, we compute the next hash using two values: // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we // get the next hash. // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the // `proof` array. for (uint256 i = 0; i < proofFlagsLen; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]) : proof[proofPos++]; hashes[i] = hasher(a, b); } if (proofFlagsLen > 0) { if (proofPos != proof.length) { revert MerkleProofInvalidMultiproof(); } unchecked { return hashes[proofFlagsLen - 1]; } } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } /** * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}. * * This version handles multiproofs in calldata with the default hashing function. * * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details. * * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`. * The `leaves` must be validated independently. See {processMultiProofCalldata}. */ function multiProofVerifyCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32 root, bytes32[] memory leaves ) internal pure returns (bool) { return processMultiProofCalldata(proof, proofFlags, leaves) == root; } /** * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false * respectively. * * This version handles multiproofs in calldata with the default hashing function. * * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer). * * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op, * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not * validating the leaves elsewhere. */ function processMultiProofCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32[] memory leaves ) internal pure returns (bytes32 merkleRoot) { // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of // the Merkle tree. uint256 leavesLen = leaves.length; uint256 proofFlagsLen = proofFlags.length; // Check proof validity. if (leavesLen + proof.length != proofFlagsLen + 1) { revert MerkleProofInvalidMultiproof(); } // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". bytes32[] memory hashes = new bytes32[](proofFlagsLen); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; // At each step, we compute the next hash using two values: // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we // get the next hash. // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the // `proof` array. for (uint256 i = 0; i < proofFlagsLen; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]) : proof[proofPos++]; hashes[i] = Hashes.commutativeKeccak256(a, b); } if (proofFlagsLen > 0) { if (proofPos != proof.length) { revert MerkleProofInvalidMultiproof(); } unchecked { return hashes[proofFlagsLen - 1]; } } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } /** * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}. * * This version handles multiproofs in calldata with a custom hashing function. * * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details. * * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`. * The `leaves` must be validated independently. See {processMultiProofCalldata}. */ function multiProofVerifyCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32 root, bytes32[] memory leaves, function(bytes32, bytes32) view returns (bytes32) hasher ) internal view returns (bool) { return processMultiProofCalldata(proof, proofFlags, leaves, hasher) == root; } /** * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false * respectively. * * This version handles multiproofs in calldata with a custom hashing function. * * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer). * * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op, * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not * validating the leaves elsewhere. */ function processMultiProofCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32[] memory leaves, function(bytes32, bytes32) view returns (bytes32) hasher ) internal view returns (bytes32 merkleRoot) { // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of // the Merkle tree. uint256 leavesLen = leaves.length; uint256 proofFlagsLen = proofFlags.length; // Check proof validity. if (leavesLen + proof.length != proofFlagsLen + 1) { revert MerkleProofInvalidMultiproof(); } // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". bytes32[] memory hashes = new bytes32[](proofFlagsLen); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; // At each step, we compute the next hash using two values: // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we // get the next hash. // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the // `proof` array. for (uint256 i = 0; i < proofFlagsLen; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]) : proof[proofPos++]; hashes[i] = hasher(a, b); } if (proofFlagsLen > 0) { if (proofPos != proof.length) { revert MerkleProofInvalidMultiproof(); } unchecked { return hashes[proofFlagsLen - 1]; } } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/ERC165.sol) pragma solidity ^0.8.20; import {IERC165} from "./IERC165.sol"; /** * @dev Implementation of the {IERC165} interface. * * Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check * for the additional interface id that will be supported. For example: * * ```solidity * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { * return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId); * } * ``` */ abstract contract ERC165 is IERC165 { /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) { return interfaceId == type(IERC165).interfaceId; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[ERC]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol) pragma solidity ^0.8.20; import {Panic} from "../Panic.sol"; import {SafeCast} from "./SafeCast.sol"; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an success flag (no overflow). */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow). */ function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow). */ function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a success flag (no division by zero). */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero). */ function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * SafeCast.toUint(condition)); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. Panic.panic(Panic.DIVISION_BY_ZERO); } // The following calculation ensures accurate ceiling division without overflow. // Since a is non-zero, (a - 1) / b will not overflow. // The largest possible result occurs when (a - 1) / b is type(uint256).max, // but the largest value we can obtain is type(uint256).max - 1, which happens // when a = type(uint256).max and b = 1. unchecked { return SafeCast.toUint(a > 0) * ((a - 1) / b + 1); } } /** * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2²⁵⁶ + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0. if (denominator <= prod1) { Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW)); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv ≡ 1 mod 2⁴. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2⁸ inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶ inverse *= 2 - denominator * inverse; // inverse mod 2³² inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴ inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸ inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶ // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @dev Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0); } /** * @dev Calculate the modular multiplicative inverse of a number in Z/nZ. * * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0. * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible. * * If the input value is not inversible, 0 is returned. * * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}. */ function invMod(uint256 a, uint256 n) internal pure returns (uint256) { unchecked { if (n == 0) return 0; // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version) // Used to compute integers x and y such that: ax + ny = gcd(a, n). // When the gcd is 1, then the inverse of a modulo n exists and it's x. // ax + ny = 1 // ax = 1 + (-y)n // ax ≡ 1 (mod n) # x is the inverse of a modulo n // If the remainder is 0 the gcd is n right away. uint256 remainder = a % n; uint256 gcd = n; // Therefore the initial coefficients are: // ax + ny = gcd(a, n) = n // 0a + 1n = n int256 x = 0; int256 y = 1; while (remainder != 0) { uint256 quotient = gcd / remainder; (gcd, remainder) = ( // The old remainder is the next gcd to try. remainder, // Compute the next remainder. // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd // where gcd is at most n (capped to type(uint256).max) gcd - remainder * quotient ); (x, y) = ( // Increment the coefficient of a. y, // Decrement the coefficient of n. // Can overflow, but the result is casted to uint256 so that the // next value of y is "wrapped around" to a value between 0 and n - 1. x - y * int256(quotient) ); } if (gcd != 1) return 0; // No inverse exists. return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative. } } /** * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`. * * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that * `a**(p-2)` is the modular multiplicative inverse of a in Fp. * * NOTE: this function does NOT check that `p` is a prime greater than `2`. */ function invModPrime(uint256 a, uint256 p) internal view returns (uint256) { unchecked { return Math.modExp(a, p - 2, p); } } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m) * * Requirements: * - modulus can't be zero * - underlying staticcall to precompile must succeed * * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make * sure the chain you're using it on supports the precompiled contract for modular exponentiation * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, * the underlying function will succeed given the lack of a revert, but the result may be incorrectly * interpreted as 0. */ function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) { (bool success, uint256 result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m). * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying * to operate modulo 0 or if the underlying precompile reverted. * * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack * of a revert, but the result may be incorrectly interpreted as 0. */ function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) { if (m == 0) return (false, 0); assembly ("memory-safe") { let ptr := mload(0x40) // | Offset | Content | Content (Hex) | // |-----------|------------|--------------------------------------------------------------------| // | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x60:0x7f | value of b | 0x<.............................................................b> | // | 0x80:0x9f | value of e | 0x<.............................................................e> | // | 0xa0:0xbf | value of m | 0x<.............................................................m> | mstore(ptr, 0x20) mstore(add(ptr, 0x20), 0x20) mstore(add(ptr, 0x40), 0x20) mstore(add(ptr, 0x60), b) mstore(add(ptr, 0x80), e) mstore(add(ptr, 0xa0), m) // Given the result < m, it's guaranteed to fit in 32 bytes, // so we can use the memory scratch space located at offset 0. success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20) result := mload(0x00) } } /** * @dev Variant of {modExp} that supports inputs of arbitrary length. */ function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) { (bool success, bytes memory result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Variant of {tryModExp} that supports inputs of arbitrary length. */ function tryModExp( bytes memory b, bytes memory e, bytes memory m ) internal view returns (bool success, bytes memory result) { if (_zeroBytes(m)) return (false, new bytes(0)); uint256 mLen = m.length; // Encode call args in result and move the free memory pointer result = abi.encodePacked(b.length, e.length, mLen, b, e, m); assembly ("memory-safe") { let dataPtr := add(result, 0x20) // Write result on top of args to avoid allocating extra memory. success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen) // Overwrite the length. // result.length > returndatasize() is guaranteed because returndatasize() == m.length mstore(result, mLen) // Set the memory pointer after the returned data. mstore(0x40, add(dataPtr, mLen)) } } /** * @dev Returns whether the provided byte array is zero. */ function _zeroBytes(bytes memory byteArray) private pure returns (bool) { for (uint256 i = 0; i < byteArray.length; ++i) { if (byteArray[i] != 0) { return false; } } return true; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * This method is based on Newton's method for computing square roots; the algorithm is restricted to only * using integer operations. */ function sqrt(uint256 a) internal pure returns (uint256) { unchecked { // Take care of easy edge cases when a == 0 or a == 1 if (a <= 1) { return a; } // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between // the current value as `ε_n = | x_n - sqrt(a) |`. // // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is // bigger than any uint256. // // By noticing that // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)` // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar // to the msb function. uint256 aa = a; uint256 xn = 1; if (aa >= (1 << 128)) { aa >>= 128; xn <<= 64; } if (aa >= (1 << 64)) { aa >>= 64; xn <<= 32; } if (aa >= (1 << 32)) { aa >>= 32; xn <<= 16; } if (aa >= (1 << 16)) { aa >>= 16; xn <<= 8; } if (aa >= (1 << 8)) { aa >>= 8; xn <<= 4; } if (aa >= (1 << 4)) { aa >>= 4; xn <<= 2; } if (aa >= (1 << 2)) { xn <<= 1; } // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1). // // We can refine our estimation by noticing that the middle of that interval minimizes the error. // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2). // This is going to be our x_0 (and ε_0) xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2) // From here, Newton's method give us: // x_{n+1} = (x_n + a / x_n) / 2 // // One should note that: // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a // = ((x_n² + a) / (2 * x_n))² - a // = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a // = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²) // = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²) // = (x_n² - a)² / (2 * x_n)² // = ((x_n² - a) / (2 * x_n))² // ≥ 0 // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n // // This gives us the proof of quadratic convergence of the sequence: // ε_{n+1} = | x_{n+1} - sqrt(a) | // = | (x_n + a / x_n) / 2 - sqrt(a) | // = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) | // = | (x_n - sqrt(a))² / (2 * x_n) | // = | ε_n² / (2 * x_n) | // = ε_n² / | (2 * x_n) | // // For the first iteration, we have a special case where x_0 is known: // ε_1 = ε_0² / | (2 * x_0) | // ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2))) // ≤ 2**(2*e-4) / (3 * 2**(e-1)) // ≤ 2**(e-3) / 3 // ≤ 2**(e-3-log2(3)) // ≤ 2**(e-4.5) // // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n: // ε_{n+1} = ε_n² / | (2 * x_n) | // ≤ (2**(e-k))² / (2 * 2**(e-1)) // ≤ 2**(2*e-2*k) / 2**e // ≤ 2**(e-2*k) xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5 xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9 xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18 xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36 xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72 // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either // sqrt(a) or sqrt(a) + 1. return xn - SafeCast.toUint(xn > a / xn); } } /** * @dev Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 exp; unchecked { exp = 128 * SafeCast.toUint(value > (1 << 128) - 1); value >>= exp; result += exp; exp = 64 * SafeCast.toUint(value > (1 << 64) - 1); value >>= exp; result += exp; exp = 32 * SafeCast.toUint(value > (1 << 32) - 1); value >>= exp; result += exp; exp = 16 * SafeCast.toUint(value > (1 << 16) - 1); value >>= exp; result += exp; exp = 8 * SafeCast.toUint(value > (1 << 8) - 1); value >>= exp; result += exp; exp = 4 * SafeCast.toUint(value > (1 << 4) - 1); value >>= exp; result += exp; exp = 2 * SafeCast.toUint(value > (1 << 2) - 1); value >>= exp; result += exp; result += SafeCast.toUint(value > 1); } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 isGt; unchecked { isGt = SafeCast.toUint(value > (1 << 128) - 1); value >>= isGt * 128; result += isGt * 16; isGt = SafeCast.toUint(value > (1 << 64) - 1); value >>= isGt * 64; result += isGt * 8; isGt = SafeCast.toUint(value > (1 << 32) - 1); value >>= isGt * 32; result += isGt * 4; isGt = SafeCast.toUint(value > (1 << 16) - 1); value >>= isGt * 16; result += isGt * 2; result += SafeCast.toUint(value > (1 << 8) - 1); } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol) // This file was procedurally generated from scripts/generate/templates/SafeCast.js. pragma solidity ^0.8.20; /** * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeCast { /** * @dev Value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value); /** * @dev An int value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedIntToUint(int256 value); /** * @dev Value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedIntDowncast(uint8 bits, int256 value); /** * @dev An uint value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedUintToInt(uint256 value); /** * @dev Returns the downcasted uint248 from uint256, reverting on * overflow (when the input is greater than largest uint248). * * Counterpart to Solidity's `uint248` operator. * * Requirements: * * - input must fit into 248 bits */ function toUint248(uint256 value) internal pure returns (uint248) { if (value > type(uint248).max) { revert SafeCastOverflowedUintDowncast(248, value); } return uint248(value); } /** * @dev Returns the downcasted uint240 from uint256, reverting on * overflow (when the input is greater than largest uint240). * * Counterpart to Solidity's `uint240` operator. * * Requirements: * * - input must fit into 240 bits */ function toUint240(uint256 value) internal pure returns (uint240) { if (value > type(uint240).max) { revert SafeCastOverflowedUintDowncast(240, value); } return uint240(value); } /** * @dev Returns the downcasted uint232 from uint256, reverting on * overflow (when the input is greater than largest uint232). * * Counterpart to Solidity's `uint232` operator. * * Requirements: * * - input must fit into 232 bits */ function toUint232(uint256 value) internal pure returns (uint232) { if (value > type(uint232).max) { revert SafeCastOverflowedUintDowncast(232, value); } return uint232(value); } /** * @dev Returns the downcasted uint224 from uint256, reverting on * overflow (when the input is greater than largest uint224). * * Counterpart to Solidity's `uint224` operator. * * Requirements: * * - input must fit into 224 bits */ function toUint224(uint256 value) internal pure returns (uint224) { if (value > type(uint224).max) { revert SafeCastOverflowedUintDowncast(224, value); } return uint224(value); } /** * @dev Returns the downcasted uint216 from uint256, reverting on * overflow (when the input is greater than largest uint216). * * Counterpart to Solidity's `uint216` operator. * * Requirements: * * - input must fit into 216 bits */ function toUint216(uint256 value) internal pure returns (uint216) { if (value > type(uint216).max) { revert SafeCastOverflowedUintDowncast(216, value); } return uint216(value); } /** * @dev Returns the downcasted uint208 from uint256, reverting on * overflow (when the input is greater than largest uint208). * * Counterpart to Solidity's `uint208` operator. * * Requirements: * * - input must fit into 208 bits */ function toUint208(uint256 value) internal pure returns (uint208) { if (value > type(uint208).max) { revert SafeCastOverflowedUintDowncast(208, value); } return uint208(value); } /** * @dev Returns the downcasted uint200 from uint256, reverting on * overflow (when the input is greater than largest uint200). * * Counterpart to Solidity's `uint200` operator. * * Requirements: * * - input must fit into 200 bits */ function toUint200(uint256 value) internal pure returns (uint200) { if (value > type(uint200).max) { revert SafeCastOverflowedUintDowncast(200, value); } return uint200(value); } /** * @dev Returns the downcasted uint192 from uint256, reverting on * overflow (when the input is greater than largest uint192). * * Counterpart to Solidity's `uint192` operator. * * Requirements: * * - input must fit into 192 bits */ function toUint192(uint256 value) internal pure returns (uint192) { if (value > type(uint192).max) { revert SafeCastOverflowedUintDowncast(192, value); } return uint192(value); } /** * @dev Returns the downcasted uint184 from uint256, reverting on * overflow (when the input is greater than largest uint184). * * Counterpart to Solidity's `uint184` operator. * * Requirements: * * - input must fit into 184 bits */ function toUint184(uint256 value) internal pure returns (uint184) { if (value > type(uint184).max) { revert SafeCastOverflowedUintDowncast(184, value); } return uint184(value); } /** * @dev Returns the downcasted uint176 from uint256, reverting on * overflow (when the input is greater than largest uint176). * * Counterpart to Solidity's `uint176` operator. * * Requirements: * * - input must fit into 176 bits */ function toUint176(uint256 value) internal pure returns (uint176) { if (value > type(uint176).max) { revert SafeCastOverflowedUintDowncast(176, value); } return uint176(value); } /** * @dev Returns the downcasted uint168 from uint256, reverting on * overflow (when the input is greater than largest uint168). * * Counterpart to Solidity's `uint168` operator. * * Requirements: * * - input must fit into 168 bits */ function toUint168(uint256 value) internal pure returns (uint168) { if (value > type(uint168).max) { revert SafeCastOverflowedUintDowncast(168, value); } return uint168(value); } /** * @dev Returns the downcasted uint160 from uint256, reverting on * overflow (when the input is greater than largest uint160). * * Counterpart to Solidity's `uint160` operator. * * Requirements: * * - input must fit into 160 bits */ function toUint160(uint256 value) internal pure returns (uint160) { if (value > type(uint160).max) { revert SafeCastOverflowedUintDowncast(160, value); } return uint160(value); } /** * @dev Returns the downcasted uint152 from uint256, reverting on * overflow (when the input is greater than largest uint152). * * Counterpart to Solidity's `uint152` operator. * * Requirements: * * - input must fit into 152 bits */ function toUint152(uint256 value) internal pure returns (uint152) { if (value > type(uint152).max) { revert SafeCastOverflowedUintDowncast(152, value); } return uint152(value); } /** * @dev Returns the downcasted uint144 from uint256, reverting on * overflow (when the input is greater than largest uint144). * * Counterpart to Solidity's `uint144` operator. * * Requirements: * * - input must fit into 144 bits */ function toUint144(uint256 value) internal pure returns (uint144) { if (value > type(uint144).max) { revert SafeCastOverflowedUintDowncast(144, value); } return uint144(value); } /** * @dev Returns the downcasted uint136 from uint256, reverting on * overflow (when the input is greater than largest uint136). * * Counterpart to Solidity's `uint136` operator. * * Requirements: * * - input must fit into 136 bits */ function toUint136(uint256 value) internal pure returns (uint136) { if (value > type(uint136).max) { revert SafeCastOverflowedUintDowncast(136, value); } return uint136(value); } /** * @dev Returns the downcasted uint128 from uint256, reverting on * overflow (when the input is greater than largest uint128). * * Counterpart to Solidity's `uint128` operator. * * Requirements: * * - input must fit into 128 bits */ function toUint128(uint256 value) internal pure returns (uint128) { if (value > type(uint128).max) { revert SafeCastOverflowedUintDowncast(128, value); } return uint128(value); } /** * @dev Returns the downcasted uint120 from uint256, reverting on * overflow (when the input is greater than largest uint120). * * Counterpart to Solidity's `uint120` operator. * * Requirements: * * - input must fit into 120 bits */ function toUint120(uint256 value) internal pure returns (uint120) { if (value > type(uint120).max) { revert SafeCastOverflowedUintDowncast(120, value); } return uint120(value); } /** * @dev Returns the downcasted uint112 from uint256, reverting on * overflow (when the input is greater than largest uint112). * * Counterpart to Solidity's `uint112` operator. * * Requirements: * * - input must fit into 112 bits */ function toUint112(uint256 value) internal pure returns (uint112) { if (value > type(uint112).max) { revert SafeCastOverflowedUintDowncast(112, value); } return uint112(value); } /** * @dev Returns the downcasted uint104 from uint256, reverting on * overflow (when the input is greater than largest uint104). * * Counterpart to Solidity's `uint104` operator. * * Requirements: * * - input must fit into 104 bits */ function toUint104(uint256 value) internal pure returns (uint104) { if (value > type(uint104).max) { revert SafeCastOverflowedUintDowncast(104, value); } return uint104(value); } /** * @dev Returns the downcasted uint96 from uint256, reverting on * overflow (when the input is greater than largest uint96). * * Counterpart to Solidity's `uint96` operator. * * Requirements: * * - input must fit into 96 bits */ function toUint96(uint256 value) internal pure returns (uint96) { if (value > type(uint96).max) { revert SafeCastOverflowedUintDowncast(96, value); } return uint96(value); } /** * @dev Returns the downcasted uint88 from uint256, reverting on * overflow (when the input is greater than largest uint88). * * Counterpart to Solidity's `uint88` operator. * * Requirements: * * - input must fit into 88 bits */ function toUint88(uint256 value) internal pure returns (uint88) { if (value > type(uint88).max) { revert SafeCastOverflowedUintDowncast(88, value); } return uint88(value); } /** * @dev Returns the downcasted uint80 from uint256, reverting on * overflow (when the input is greater than largest uint80). * * Counterpart to Solidity's `uint80` operator. * * Requirements: * * - input must fit into 80 bits */ function toUint80(uint256 value) internal pure returns (uint80) { if (value > type(uint80).max) { revert SafeCastOverflowedUintDowncast(80, value); } return uint80(value); } /** * @dev Returns the downcasted uint72 from uint256, reverting on * overflow (when the input is greater than largest uint72). * * Counterpart to Solidity's `uint72` operator. * * Requirements: * * - input must fit into 72 bits */ function toUint72(uint256 value) internal pure returns (uint72) { if (value > type(uint72).max) { revert SafeCastOverflowedUintDowncast(72, value); } return uint72(value); } /** * @dev Returns the downcasted uint64 from uint256, reverting on * overflow (when the input is greater than largest uint64). * * Counterpart to Solidity's `uint64` operator. * * Requirements: * * - input must fit into 64 bits */ function toUint64(uint256 value) internal pure returns (uint64) { if (value > type(uint64).max) { revert SafeCastOverflowedUintDowncast(64, value); } return uint64(value); } /** * @dev Returns the downcasted uint56 from uint256, reverting on * overflow (when the input is greater than largest uint56). * * Counterpart to Solidity's `uint56` operator. * * Requirements: * * - input must fit into 56 bits */ function toUint56(uint256 value) internal pure returns (uint56) { if (value > type(uint56).max) { revert SafeCastOverflowedUintDowncast(56, value); } return uint56(value); } /** * @dev Returns the downcasted uint48 from uint256, reverting on * overflow (when the input is greater than largest uint48). * * Counterpart to Solidity's `uint48` operator. * * Requirements: * * - input must fit into 48 bits */ function toUint48(uint256 value) internal pure returns (uint48) { if (value > type(uint48).max) { revert SafeCastOverflowedUintDowncast(48, value); } return uint48(value); } /** * @dev Returns the downcasted uint40 from uint256, reverting on * overflow (when the input is greater than largest uint40). * * Counterpart to Solidity's `uint40` operator. * * Requirements: * * - input must fit into 40 bits */ function toUint40(uint256 value) internal pure returns (uint40) { if (value > type(uint40).max) { revert SafeCastOverflowedUintDowncast(40, value); } return uint40(value); } /** * @dev Returns the downcasted uint32 from uint256, reverting on * overflow (when the input is greater than largest uint32). * * Counterpart to Solidity's `uint32` operator. * * Requirements: * * - input must fit into 32 bits */ function toUint32(uint256 value) internal pure returns (uint32) { if (value > type(uint32).max) { revert SafeCastOverflowedUintDowncast(32, value); } return uint32(value); } /** * @dev Returns the downcasted uint24 from uint256, reverting on * overflow (when the input is greater than largest uint24). * * Counterpart to Solidity's `uint24` operator. * * Requirements: * * - input must fit into 24 bits */ function toUint24(uint256 value) internal pure returns (uint24) { if (value > type(uint24).max) { revert SafeCastOverflowedUintDowncast(24, value); } return uint24(value); } /** * @dev Returns the downcasted uint16 from uint256, reverting on * overflow (when the input is greater than largest uint16). * * Counterpart to Solidity's `uint16` operator. * * Requirements: * * - input must fit into 16 bits */ function toUint16(uint256 value) internal pure returns (uint16) { if (value > type(uint16).max) { revert SafeCastOverflowedUintDowncast(16, value); } return uint16(value); } /** * @dev Returns the downcasted uint8 from uint256, reverting on * overflow (when the input is greater than largest uint8). * * Counterpart to Solidity's `uint8` operator. * * Requirements: * * - input must fit into 8 bits */ function toUint8(uint256 value) internal pure returns (uint8) { if (value > type(uint8).max) { revert SafeCastOverflowedUintDowncast(8, value); } return uint8(value); } /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. */ function toUint256(int256 value) internal pure returns (uint256) { if (value < 0) { revert SafeCastOverflowedIntToUint(value); } return uint256(value); } /** * @dev Returns the downcasted int248 from int256, reverting on * overflow (when the input is less than smallest int248 or * greater than largest int248). * * Counterpart to Solidity's `int248` operator. * * Requirements: * * - input must fit into 248 bits */ function toInt248(int256 value) internal pure returns (int248 downcasted) { downcasted = int248(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(248, value); } } /** * @dev Returns the downcasted int240 from int256, reverting on * overflow (when the input is less than smallest int240 or * greater than largest int240). * * Counterpart to Solidity's `int240` operator. * * Requirements: * * - input must fit into 240 bits */ function toInt240(int256 value) internal pure returns (int240 downcasted) { downcasted = int240(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(240, value); } } /** * @dev Returns the downcasted int232 from int256, reverting on * overflow (when the input is less than smallest int232 or * greater than largest int232). * * Counterpart to Solidity's `int232` operator. * * Requirements: * * - input must fit into 232 bits */ function toInt232(int256 value) internal pure returns (int232 downcasted) { downcasted = int232(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(232, value); } } /** * @dev Returns the downcasted int224 from int256, reverting on * overflow (when the input is less than smallest int224 or * greater than largest int224). * * Counterpart to Solidity's `int224` operator. * * Requirements: * * - input must fit into 224 bits */ function toInt224(int256 value) internal pure returns (int224 downcasted) { downcasted = int224(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(224, value); } } /** * @dev Returns the downcasted int216 from int256, reverting on * overflow (when the input is less than smallest int216 or * greater than largest int216). * * Counterpart to Solidity's `int216` operator. * * Requirements: * * - input must fit into 216 bits */ function toInt216(int256 value) internal pure returns (int216 downcasted) { downcasted = int216(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(216, value); } } /** * @dev Returns the downcasted int208 from int256, reverting on * overflow (when the input is less than smallest int208 or * greater than largest int208). * * Counterpart to Solidity's `int208` operator. * * Requirements: * * - input must fit into 208 bits */ function toInt208(int256 value) internal pure returns (int208 downcasted) { downcasted = int208(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(208, value); } } /** * @dev Returns the downcasted int200 from int256, reverting on * overflow (when the input is less than smallest int200 or * greater than largest int200). * * Counterpart to Solidity's `int200` operator. * * Requirements: * * - input must fit into 200 bits */ function toInt200(int256 value) internal pure returns (int200 downcasted) { downcasted = int200(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(200, value); } } /** * @dev Returns the downcasted int192 from int256, reverting on * overflow (when the input is less than smallest int192 or * greater than largest int192). * * Counterpart to Solidity's `int192` operator. * * Requirements: * * - input must fit into 192 bits */ function toInt192(int256 value) internal pure returns (int192 downcasted) { downcasted = int192(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(192, value); } } /** * @dev Returns the downcasted int184 from int256, reverting on * overflow (when the input is less than smallest int184 or * greater than largest int184). * * Counterpart to Solidity's `int184` operator. * * Requirements: * * - input must fit into 184 bits */ function toInt184(int256 value) internal pure returns (int184 downcasted) { downcasted = int184(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(184, value); } } /** * @dev Returns the downcasted int176 from int256, reverting on * overflow (when the input is less than smallest int176 or * greater than largest int176). * * Counterpart to Solidity's `int176` operator. * * Requirements: * * - input must fit into 176 bits */ function toInt176(int256 value) internal pure returns (int176 downcasted) { downcasted = int176(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(176, value); } } /** * @dev Returns the downcasted int168 from int256, reverting on * overflow (when the input is less than smallest int168 or * greater than largest int168). * * Counterpart to Solidity's `int168` operator. * * Requirements: * * - input must fit into 168 bits */ function toInt168(int256 value) internal pure returns (int168 downcasted) { downcasted = int168(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(168, value); } } /** * @dev Returns the downcasted int160 from int256, reverting on * overflow (when the input is less than smallest int160 or * greater than largest int160). * * Counterpart to Solidity's `int160` operator. * * Requirements: * * - input must fit into 160 bits */ function toInt160(int256 value) internal pure returns (int160 downcasted) { downcasted = int160(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(160, value); } } /** * @dev Returns the downcasted int152 from int256, reverting on * overflow (when the input is less than smallest int152 or * greater than largest int152). * * Counterpart to Solidity's `int152` operator. * * Requirements: * * - input must fit into 152 bits */ function toInt152(int256 value) internal pure returns (int152 downcasted) { downcasted = int152(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(152, value); } } /** * @dev Returns the downcasted int144 from int256, reverting on * overflow (when the input is less than smallest int144 or * greater than largest int144). * * Counterpart to Solidity's `int144` operator. * * Requirements: * * - input must fit into 144 bits */ function toInt144(int256 value) internal pure returns (int144 downcasted) { downcasted = int144(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(144, value); } } /** * @dev Returns the downcasted int136 from int256, reverting on * overflow (when the input is less than smallest int136 or * greater than largest int136). * * Counterpart to Solidity's `int136` operator. * * Requirements: * * - input must fit into 136 bits */ function toInt136(int256 value) internal pure returns (int136 downcasted) { downcasted = int136(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(136, value); } } /** * @dev Returns the downcasted int128 from int256, reverting on * overflow (when the input is less than smallest int128 or * greater than largest int128). * * Counterpart to Solidity's `int128` operator. * * Requirements: * * - input must fit into 128 bits */ function toInt128(int256 value) internal pure returns (int128 downcasted) { downcasted = int128(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(128, value); } } /** * @dev Returns the downcasted int120 from int256, reverting on * overflow (when the input is less than smallest int120 or * greater than largest int120). * * Counterpart to Solidity's `int120` operator. * * Requirements: * * - input must fit into 120 bits */ function toInt120(int256 value) internal pure returns (int120 downcasted) { downcasted = int120(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(120, value); } } /** * @dev Returns the downcasted int112 from int256, reverting on * overflow (when the input is less than smallest int112 or * greater than largest int112). * * Counterpart to Solidity's `int112` operator. * * Requirements: * * - input must fit into 112 bits */ function toInt112(int256 value) internal pure returns (int112 downcasted) { downcasted = int112(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(112, value); } } /** * @dev Returns the downcasted int104 from int256, reverting on * overflow (when the input is less than smallest int104 or * greater than largest int104). * * Counterpart to Solidity's `int104` operator. * * Requirements: * * - input must fit into 104 bits */ function toInt104(int256 value) internal pure returns (int104 downcasted) { downcasted = int104(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(104, value); } } /** * @dev Returns the downcasted int96 from int256, reverting on * overflow (when the input is less than smallest int96 or * greater than largest int96). * * Counterpart to Solidity's `int96` operator. * * Requirements: * * - input must fit into 96 bits */ function toInt96(int256 value) internal pure returns (int96 downcasted) { downcasted = int96(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(96, value); } } /** * @dev Returns the downcasted int88 from int256, reverting on * overflow (when the input is less than smallest int88 or * greater than largest int88). * * Counterpart to Solidity's `int88` operator. * * Requirements: * * - input must fit into 88 bits */ function toInt88(int256 value) internal pure returns (int88 downcasted) { downcasted = int88(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(88, value); } } /** * @dev Returns the downcasted int80 from int256, reverting on * overflow (when the input is less than smallest int80 or * greater than largest int80). * * Counterpart to Solidity's `int80` operator. * * Requirements: * * - input must fit into 80 bits */ function toInt80(int256 value) internal pure returns (int80 downcasted) { downcasted = int80(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(80, value); } } /** * @dev Returns the downcasted int72 from int256, reverting on * overflow (when the input is less than smallest int72 or * greater than largest int72). * * Counterpart to Solidity's `int72` operator. * * Requirements: * * - input must fit into 72 bits */ function toInt72(int256 value) internal pure returns (int72 downcasted) { downcasted = int72(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(72, value); } } /** * @dev Returns the downcasted int64 from int256, reverting on * overflow (when the input is less than smallest int64 or * greater than largest int64). * * Counterpart to Solidity's `int64` operator. * * Requirements: * * - input must fit into 64 bits */ function toInt64(int256 value) internal pure returns (int64 downcasted) { downcasted = int64(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(64, value); } } /** * @dev Returns the downcasted int56 from int256, reverting on * overflow (when the input is less than smallest int56 or * greater than largest int56). * * Counterpart to Solidity's `int56` operator. * * Requirements: * * - input must fit into 56 bits */ function toInt56(int256 value) internal pure returns (int56 downcasted) { downcasted = int56(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(56, value); } } /** * @dev Returns the downcasted int48 from int256, reverting on * overflow (when the input is less than smallest int48 or * greater than largest int48). * * Counterpart to Solidity's `int48` operator. * * Requirements: * * - input must fit into 48 bits */ function toInt48(int256 value) internal pure returns (int48 downcasted) { downcasted = int48(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(48, value); } } /** * @dev Returns the downcasted int40 from int256, reverting on * overflow (when the input is less than smallest int40 or * greater than largest int40). * * Counterpart to Solidity's `int40` operator. * * Requirements: * * - input must fit into 40 bits */ function toInt40(int256 value) internal pure returns (int40 downcasted) { downcasted = int40(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(40, value); } } /** * @dev Returns the downcasted int32 from int256, reverting on * overflow (when the input is less than smallest int32 or * greater than largest int32). * * Counterpart to Solidity's `int32` operator. * * Requirements: * * - input must fit into 32 bits */ function toInt32(int256 value) internal pure returns (int32 downcasted) { downcasted = int32(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(32, value); } } /** * @dev Returns the downcasted int24 from int256, reverting on * overflow (when the input is less than smallest int24 or * greater than largest int24). * * Counterpart to Solidity's `int24` operator. * * Requirements: * * - input must fit into 24 bits */ function toInt24(int256 value) internal pure returns (int24 downcasted) { downcasted = int24(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(24, value); } } /** * @dev Returns the downcasted int16 from int256, reverting on * overflow (when the input is less than smallest int16 or * greater than largest int16). * * Counterpart to Solidity's `int16` operator. * * Requirements: * * - input must fit into 16 bits */ function toInt16(int256 value) internal pure returns (int16 downcasted) { downcasted = int16(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(16, value); } } /** * @dev Returns the downcasted int8 from int256, reverting on * overflow (when the input is less than smallest int8 or * greater than largest int8). * * Counterpart to Solidity's `int8` operator. * * Requirements: * * - input must fit into 8 bits */ function toInt8(int256 value) internal pure returns (int8 downcasted) { downcasted = int8(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(8, value); } } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. */ function toInt256(uint256 value) internal pure returns (int256) { // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive if (value > uint256(type(int256).max)) { revert SafeCastOverflowedUintToInt(value); } return int256(value); } /** * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump. */ function toUint(bool b) internal pure returns (uint256 u) { assembly ("memory-safe") { u := iszero(iszero(b)) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.20; import {SafeCast} from "./SafeCast.sol"; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * int256(SafeCast.toUint(condition))); } } /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson. // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift, // taking advantage of the most significant (or "sign" bit) in two's complement representation. // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result, // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative). int256 mask = n >> 255; // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it. return uint256((n + mask) ^ mask); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol) pragma solidity ^0.8.20; /** * @dev Helper library for emitting standardized panic codes. * * ```solidity * contract Example { * using Panic for uint256; * * // Use any of the declared internal constants * function foo() { Panic.GENERIC.panic(); } * * // Alternatively * function foo() { Panic.panic(Panic.GENERIC); } * } * ``` * * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil]. * * _Available since v5.1._ */ // slither-disable-next-line unused-state library Panic { /// @dev generic / unspecified error uint256 internal constant GENERIC = 0x00; /// @dev used by the assert() builtin uint256 internal constant ASSERT = 0x01; /// @dev arithmetic underflow or overflow uint256 internal constant UNDER_OVERFLOW = 0x11; /// @dev division or modulo by zero uint256 internal constant DIVISION_BY_ZERO = 0x12; /// @dev enum conversion error uint256 internal constant ENUM_CONVERSION_ERROR = 0x21; /// @dev invalid encoding in storage uint256 internal constant STORAGE_ENCODING_ERROR = 0x22; /// @dev empty array pop uint256 internal constant EMPTY_ARRAY_POP = 0x31; /// @dev array out of bounds access uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32; /// @dev resource error (too large allocation or too large array) uint256 internal constant RESOURCE_ERROR = 0x41; /// @dev calling invalid internal function uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51; /// @dev Reverts with a panic code. Recommended to use with /// the internal constants with predefined codes. function panic(uint256 code) internal pure { assembly ("memory-safe") { mstore(0x00, 0x4e487b71) mstore(0x20, code) revert(0x1c, 0x24) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol) pragma solidity ^0.8.20; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at, * consider using {ReentrancyGuardTransient} instead. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant NOT_ENTERED = 1; uint256 private constant ENTERED = 2; uint256 private _status; /** * @dev Unauthorized reentrant call. */ error ReentrancyGuardReentrantCall(); constructor() { _status = NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { _nonReentrantBefore(); _; _nonReentrantAfter(); } function _nonReentrantBefore() private { // On the first call to nonReentrant, _status will be NOT_ENTERED if (_status == ENTERED) { revert ReentrancyGuardReentrantCall(); } // Any calls to nonReentrant after this point will fail _status = ENTERED; } function _nonReentrantAfter() private { // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = NOT_ENTERED; } /** * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a * `nonReentrant` function in the call stack. */ function _reentrancyGuardEntered() internal view returns (bool) { return _status == ENTERED; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Strings.sol) pragma solidity ^0.8.20; import {Math} from "./math/Math.sol"; import {SignedMath} from "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant HEX_DIGITS = "0123456789abcdef"; uint8 private constant ADDRESS_LENGTH = 20; /** * @dev The `value` string doesn't fit in the specified `length`. */ error StringsInsufficientHexLength(uint256 value, uint256 length); /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; assembly ("memory-safe") { ptr := add(buffer, add(32, length)) } while (true) { ptr--; assembly ("memory-safe") { mstore8(ptr, byte(mod(value, 10), HEX_DIGITS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toStringSigned(int256 value) internal pure returns (string memory) { return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { uint256 localValue = value; bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = HEX_DIGITS[localValue & 0xf]; localValue >>= 4; } if (localValue != 0) { revert StringsInsufficientHexLength(value, length); } return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal * representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH); } /** * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal * representation, according to EIP-55. */ function toChecksumHexString(address addr) internal pure returns (string memory) { bytes memory buffer = bytes(toHexString(addr)); // hash the hex part of buffer (skip length + 2 bytes, length 40) uint256 hashValue; assembly ("memory-safe") { hashValue := shr(96, keccak256(add(buffer, 0x22), 40)) } for (uint256 i = 41; i > 1; --i) { // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f) if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) { // case shift by xoring with 0x20 buffer[i] ^= 0x20; } hashValue >>= 4; } return string(buffer); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b)); } }
{ "optimizer": { "enabled": true, "runs": 9999 }, "evmVersion": "paris", "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"string","name":"uri","type":"string"},{"internalType":"bytes32","name":"merkleroot","type":"bytes32"},{"internalType":"address","name":"initialOwner","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"ERC721EnumerableForbiddenBatchMint","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"address","name":"owner","type":"address"}],"name":"ERC721IncorrectOwner","type":"error"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ERC721InsufficientApproval","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC721InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"operator","type":"address"}],"name":"ERC721InvalidOperator","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"ERC721InvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC721InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC721InvalidSender","type":"error"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ERC721NonexistentToken","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"uint256","name":"index","type":"uint256"}],"name":"ERC721OutOfBoundsIndex","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"approved","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":false,"internalType":"bool","name":"approved","type":"bool"}],"name":"ApprovalForAll","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"TeamMint","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"TEAM_RESERVE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"approve","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"baseExtension","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"baseURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"getApproved","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"operator","type":"address"}],"name":"isApprovedForAll","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"notRevealedUri","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ownerOf","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"presaleM","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32[]","name":"_proof","type":"bytes32[]"}],"name":"presaleMint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"publicM","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"publicSaleMint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"reveal","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"revealed","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"root","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_tokenId","type":"uint256"},{"internalType":"uint256","name":"_salePrice","type":"uint256"}],"name":"royaltyInfo","outputs":[{"internalType":"address","name":"receiver","type":"address"},{"internalType":"uint256","name":"royaltyAmount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"bool","name":"approved","type":"bool"}],"name":"setApprovalForAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"_newBaseExtension","type":"string"}],"name":"setBaseExtension","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"_tokenBaseURI","type":"string"}],"name":"setBaseURI","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"merkleroot","type":"bytes32"}],"name":"setMerkleRoot","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"_notRevealedURI","type":"string"}],"name":"setNotRevealedURI","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_recipient","type":"address"},{"internalType":"uint96","name":"_royaltyFeeBps","type":"uint96"}],"name":"setRoyaltyInfo","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"teamMint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"teamMinted","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"togglePause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"togglePresale","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"togglePublicSale","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"index","type":"uint256"}],"name":"tokenByIndex","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"uint256","name":"index","type":"uint256"}],"name":"tokenOfOwnerByIndex","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"tokenURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"totalMinted","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"transferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
6103e8600d556000600e5561010060405260416080818152906130f260a03960119061002b90826102b2565b50604080518082019091526005815264173539b7b760d91b602082015260129061005590826102b2565b506013805463ffffffff1916905534801561006f57600080fd5b5060405161313338038061313383398101604081905261008e9161038c565b806040518060400160405280600881526020016743686962626c657360c01b8152506040518060400160405280600481526020016321a424a160e11b81525081600090816100dc91906102b2565b5060016100e982826102b2565b5050506001600160a01b03811661011b57604051631e4fbdf760e01b8152600060048201526024015b60405180910390fd5b6101248161017a565b506001600b55600c829055610138836101cc565b601480546001600160a01b0319166001600160a01b0392909216919091179055505060138054600160201b600160801b0319166501f400000000179055610471565b600a80546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e090600090a35050565b6101d46101e4565b60106101e082826102b2565b5050565b600a546001600160a01b031633146102115760405163118cdaa760e01b8152336004820152602401610112565b565b634e487b7160e01b600052604160045260246000fd5b600181811c9082168061023d57607f821691505b60208210810361025d57634e487b7160e01b600052602260045260246000fd5b50919050565b601f8211156102ad57806000526020600020601f840160051c8101602085101561028a5750805b601f840160051c820191505b818110156102aa5760008155600101610296565b50505b505050565b81516001600160401b038111156102cb576102cb610213565b6102df816102d98454610229565b84610263565b6020601f82116001811461031357600083156102fb5750848201515b600019600385901b1c1916600184901b1784556102aa565b600084815260208120601f198516915b828110156103435787850151825560209485019460019092019101610323565b50848210156103615786840151600019600387901b60f8161c191681555b50505050600190811b01905550565b80516001600160a01b038116811461038757600080fd5b919050565b6000806000606084860312156103a157600080fd5b83516001600160401b038111156103b757600080fd5b8401601f810186136103c857600080fd5b80516001600160401b038111156103e1576103e1610213565b604051601f8201601f19908116603f011681016001600160401b038111828210171561040f5761040f610213565b60405281815282820160200188101561042757600080fd5b60005b828110156104465760208185018101518383018201520161042a565b5060006020928201830152908601519094509250610468905060408501610370565b90509250925092565b612c72806104806000396000f3fe608060405234801561001057600080fd5b50600436106102fe5760003560e01c806370a082311161019c578063c87b56dd116100ee578063e8b5498d11610097578063edc0c72c11610071578063edc0c72c14610600578063f2c4ce1e14610613578063f2fde38b1461062657600080fd5b8063e8b5498d146105b2578063e985e9c5146105bb578063ebf0c717146105f757600080fd5b8063da3ef23f116100c8578063da3ef23f1461058f578063e222c7f9146105a2578063e5408eae146105aa57600080fd5b8063c87b56dd1461056b578063d2eb86ee1461057e578063d5abeb011461058657600080fd5b8063a22cb46511610150578063b88d4fde1161012a578063b88d4fde14610548578063c4ae31681461055b578063c66828621461056357600080fd5b8063a22cb46514610519578063a45063c01461052c578063a475b5dd1461054057600080fd5b80637cb64759116101815780637cb64759146104ed5780638da5cb5b1461050057806395d89b411461051157600080fd5b806370a08231146104d2578063715018a6146104e557600080fd5b80632f745c59116102555780634f6ccce7116102095780635c975abb116101e35780635c975abb146104aa5780636352211e146104b75780636c0360eb146104ca57600080fd5b80634f6ccce714610472578063518302271461048557806355f804b31461049757600080fd5b8063343937431161023a578063343937431461044f5780633ccfd60b1461045757806342842e0e1461045f57600080fd5b80632f745c59146104295780632fbba1151461043c57600080fd5b8063081c8c44116102b757806318160ddd1161029157806318160ddd146103dc57806323b872dd146103e45780632a55205a146103f757600080fd5b8063081c8c44146103ae578063095ea7b3146103b65780631798d58b146103c957600080fd5b806302fa7c47116102e857806302fa7c471461035957806306fdde031461036e578063081812fc1461038357600080fd5b80623d47901461030357806301ffc9a714610336575b600080fd5b610323610311366004612451565b60156020526000908152604090205481565b6040519081526020015b60405180910390f35b61034961034436600461249a565b610639565b604051901515815260200161032d565b61036c6103673660046124b7565b610695565b005b610376610783565b60405161032d919061256d565b610396610391366004612580565b610815565b6040516001600160a01b03909116815260200161032d565b61037661083e565b61036c6103c4366004612599565b6108cc565b6013546103499062010000900460ff1681565b600854610323565b61036c6103f23660046125c3565b6108db565b61040a610405366004612600565b610998565b604080516001600160a01b03909316835260208301919091520161032d565b610323610437366004612599565b610a49565b61036c61044a366004612580565b610ac7565b61036c610c60565b61036c610ca3565b61036c61046d3660046125c3565b610d60565b610323610480366004612580565b610d80565b60135461034990610100900460ff1681565b61036c6104a53660046126e9565b610df2565b6013546103499060ff1681565b6103966104c5366004612580565b610e06565b610376610e11565b6103236104e0366004612451565b610e1e565b61036c610e7f565b61036c6104fb366004612580565b610e93565b600a546001600160a01b0316610396565b610376610ea0565b61036c610527366004612732565b610eaf565b601354610349906301000000900460ff1681565b61036c610eba565b61036c610556366004612763565b610ef0565b61036c610f08565b610376610f42565b610376610579366004612580565b610f4f565b61036c6110b6565b610323600d5481565b61036c61059d3660046126e9565b61128d565b61036c6112a1565b610323600a81565b610323600e5481565b6103496105c93660046127df565b6001600160a01b03918216600090815260056020908152604080832093909416825291909152205460ff1690565b610323600c5481565b61036c61060e366004612812565b6112e5565b61036c6106213660046126e9565b611596565b61036c610634366004612451565b6115aa565b60007fffffffff0000000000000000000000000000000000000000000000000000000082167f2a55205a00000000000000000000000000000000000000000000000000000000148061068f575061068f82611601565b92915050565b61069d611657565b6103e8816bffffffffffffffffffffffff1611156107025760405162461bcd60e51b815260206004820152601d60248201527f526f79616c7479206665652063616e6e6f74206578636565642031302500000060448201526064015b60405180910390fd5b601480546001600160a01b039093167fffffffffffffffffffffffff000000000000000000000000000000000000000090931692909217909155601380546bffffffffffffffffffffffff909216640100000000027fffffffffffffffffffffffffffffffff000000000000000000000000ffffffff909216919091179055565b60606000805461079290612889565b80601f01602080910402602001604051908101604052809291908181526020018280546107be90612889565b801561080b5780601f106107e05761010080835404028352916020019161080b565b820191906000526020600020905b8154815290600101906020018083116107ee57829003601f168201915b5050505050905090565b60006108208261169d565b506000828152600460205260409020546001600160a01b031661068f565b6011805461084b90612889565b80601f016020809104026020016040519081016040528092919081815260200182805461087790612889565b80156108c45780601f10610899576101008083540402835291602001916108c4565b820191906000526020600020905b8154815290600101906020018083116108a757829003601f168201915b505050505081565b6108d78282336116ef565b5050565b6001600160a01b03821661091e576040517f64a0ae92000000000000000000000000000000000000000000000000000000008152600060048201526024016106f9565b600061092b8383336116fc565b9050836001600160a01b0316816001600160a01b031614610992576040517f64283d7b0000000000000000000000000000000000000000000000000000000081526001600160a01b03808616600483015260248201849052821660448201526064016106f9565b50505050565b60008281526002602052604081205481906001600160a01b03166109fe5760405162461bcd60e51b815260206004820152601460248201527f546f6b656e20646f6573206e6f7420657869737400000000000000000000000060448201526064016106f9565b6014546013546001600160a01b039091169061271090610a349064010000000090046bffffffffffffffffffffffff168661290b565b610a3e9190612922565b915091509250929050565b6000610a5483610e1e565b8210610a9e576040517fa57d13dc0000000000000000000000000000000000000000000000000000000081526001600160a01b0384166004820152602481018390526044016106f9565b506001600160a01b03919091166000908152600660209081526040808320938352929052205490565b610acf611657565b60008111610b1f5760405162461bcd60e51b815260206004820152601d60248201527f416d6f756e74206d7573742062652067726561746572207468616e203000000060448201526064016106f9565b600a81600e54610b2f919061295d565b1115610b7d5760405162461bcd60e51b815260206004820152601760248201527f45786365656473207465616d20616c6c6f636174696f6e00000000000000000060448201526064016106f9565b600d5481600f54610b8e919061295d565b1115610bdc5760405162461bcd60e51b815260206004820152601760248201527f576f756c6420657863656564206d617820737570706c7900000000000000000060448201526064016106f9565b60005b81811015610c1057600f8054906000610bf783612970565b9190505550610c0833600f546117d1565b600101610bdf565b5080600e6000828254610c23919061295d565b909155505060405181815233907f5d3a6b0dd9fbc17e3d7180bed2fcb7c0002bb1f4729b285322cacde3f136aefd9060200160405180910390a250565b610c68611657565b601380547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00ffff8116620100009182900460ff1615909102179055565b610cab611657565b476000610cc0600a546001600160a01b031690565b6001600160a01b03168260405160006040518083038185875af1925050503d8060008114610d0a576040519150601f19603f3d011682016040523d82523d6000602084013e610d0f565b606091505b50509050806108d75760405162461bcd60e51b815260206004820152600f60248201527f5472616e73666572206661696c6564000000000000000000000000000000000060448201526064016106f9565b610d7b83838360405180602001604052806000815250610ef0565b505050565b6000610d8b60085490565b8210610dcd576040517fa57d13dc00000000000000000000000000000000000000000000000000000000815260006004820152602481018390526044016106f9565b60088281548110610de057610de061298a565b90600052602060002001549050919050565b610dfa611657565b60106108d78282612a00565b600061068f8261169d565b6010805461084b90612889565b60006001600160a01b038216610e63576040517f89c62b64000000000000000000000000000000000000000000000000000000008152600060048201526024016106f9565b506001600160a01b031660009081526003602052604090205490565b610e87611657565b610e9160006117eb565b565b610e9b611657565b600c55565b60606001805461079290612889565b6108d7338383611855565b610ec2611657565b601380547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00ff16610100179055565b610efb8484846108db565b610992338585858561192b565b610f10611657565b601380547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00811660ff90911615179055565b6012805461084b90612889565b6000818152600260205260409020546060906001600160a01b0316610fb65760405162461bcd60e51b815260206004820152601460248201527f546f6b656e20646f6573206e6f7420657869737400000000000000000000000060448201526064016106f9565b601354610100900460ff166110575760118054610fd290612889565b80601f0160208091040260200160405190810160405280929190818152602001828054610ffe90612889565b801561104b5780601f106110205761010080835404028352916020019161104b565b820191906000526020600020905b81548152906001019060200180831161102e57829003601f168201915b50505050509050919050565b6000611061611af0565b9050600081511161108157604051806020016040528060008152506110af565b8061108b84611aff565b601260405160200161109f93929190612add565b6040516020818303038152906040525b9392505050565b3332146111055760405162461bcd60e51b815260206004820152601260248201527f4e6f7420616c6c6f776564206f726967696e000000000000000000000000000060448201526064016106f9565b33600090815260156020526040902054156111625760405162461bcd60e51b815260206004820152601e60248201527f416c7265616479206d696e746564206d6178696d756d20616c6c6f776564000060448201526064016106f9565b6013546301000000900460ff166111bb5760405162461bcd60e51b815260206004820152601260248201527f5075626c69632073616c65206973204f4646000000000000000000000000000060448201526064016106f9565b60135460ff161561120e5760405162461bcd60e51b815260206004820152601260248201527f436f6e747261637420697320706175736564000000000000000000000000000060448201526064016106f9565b600e5461121c90600a612b9c565b600d546112299190612b9c565b600f5461123790600161295d565b11156112855760405162461bcd60e51b815260206004820152601360248201527f4d617820737570706c792065786365656465640000000000000000000000000060448201526064016106f9565b610e91611b9f565b611295611657565b60126108d78282612a00565b6112a9611657565b601380547fffffffffffffffffffffffffffffffffffffffffffffffffffffffff00ffffff811663010000009182900460ff1615909102179055565b818161136f82828080602002602001604051908101604052809392919081815260200183836020028082843760009201919091525050600c546040517fffffffffffffffffffffffffffffffffffffffff0000000000000000000000003360601b166020820152909250603401905060405160208183030381529060405280519060200120611bf9565b15156001146113c05760405162461bcd60e51b815260206004820152601260248201527f4e6f7420616c6c6f776564206f726967696e000000000000000000000000000060448201526064016106f9565b33321461140f5760405162461bcd60e51b815260206004820152601260248201527f4e6f7420616c6c6f776564206f726967696e000000000000000000000000000060448201526064016106f9565b336000908152601560205260409020541561146c5760405162461bcd60e51b815260206004820152601e60248201527f416c7265616479206d696e746564206d6178696d756d20616c6c6f776564000060448201526064016106f9565b60135462010000900460ff166114c45760405162461bcd60e51b815260206004820152600e60248201527f50726573616c65206973204f464600000000000000000000000000000000000060448201526064016106f9565b60135460ff16156115175760405162461bcd60e51b815260206004820152601260248201527f436f6e747261637420697320706175736564000000000000000000000000000060448201526064016106f9565b600e5461152590600a612b9c565b600d546115329190612b9c565b600f5461154090600161295d565b111561158e5760405162461bcd60e51b815260206004820152601360248201527f4d617820737570706c792065786365656465640000000000000000000000000060448201526064016106f9565b610992611b9f565b61159e611657565b60116108d78282612a00565b6115b2611657565b6001600160a01b0381166115f5576040517f1e4fbdf7000000000000000000000000000000000000000000000000000000008152600060048201526024016106f9565b6115fe816117eb565b50565b60007fffffffff0000000000000000000000000000000000000000000000000000000082167f780e9d6300000000000000000000000000000000000000000000000000000000148061068f575061068f82611c0f565b600a546001600160a01b03163314610e91576040517f118cdaa70000000000000000000000000000000000000000000000000000000081523360048201526024016106f9565b6000818152600260205260408120546001600160a01b03168061068f576040517f7e273289000000000000000000000000000000000000000000000000000000008152600481018490526024016106f9565b610d7b8383836001611cf2565b60008061170a858585611e48565b90506001600160a01b0381166117675761176284600880546000838152600960205260408120829055600182018355919091527ff3f7a9fe364faab93b216da50a3214154f22a0a2b415b23a84c8169e8b636ee30155565b61178a565b846001600160a01b0316816001600160a01b03161461178a5761178a8185611f59565b6001600160a01b0385166117a6576117a184611fda565b6117c9565b846001600160a01b0316816001600160a01b0316146117c9576117c98585612089565b949350505050565b6108d78282604051806020016040528060008152506120d9565b600a80546001600160a01b038381167fffffffffffffffffffffffff0000000000000000000000000000000000000000831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e090600090a35050565b6001600160a01b0382166118a0576040517f5b08ba180000000000000000000000000000000000000000000000000000000081526001600160a01b03831660048201526024016106f9565b6001600160a01b0383811660008181526005602090815260408083209487168084529482529182902080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff001686151590811790915591519182527f17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c31910160405180910390a3505050565b6001600160a01b0383163b15611ae9576040517f150b7a020000000000000000000000000000000000000000000000000000000081526001600160a01b0384169063150b7a0290611986908890889087908790600401612baf565b6020604051808303816000875af19250505080156119df575060408051601f3d9081017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe01682019092526119dc91810190612bf0565b60015b611a61573d808015611a0d576040519150601f19603f3d011682016040523d82523d6000602084013e611a12565b606091505b508051600003611a59576040517f64a0ae920000000000000000000000000000000000000000000000000000000081526001600160a01b03851660048201526024016106f9565b805181602001fd5b7fffffffff0000000000000000000000000000000000000000000000000000000081167f150b7a020000000000000000000000000000000000000000000000000000000014611ae7576040517f64a0ae920000000000000000000000000000000000000000000000000000000081526001600160a01b03851660048201526024016106f9565b505b5050505050565b60606010805461079290612889565b60606000611b0c836120f1565b600101905060008167ffffffffffffffff811115611b2c57611b2c612622565b6040519080825280601f01601f191660200182016040528015611b56576020820181803683370190505b5090508181016020015b600019017f3031323334353637383961626364656600000000000000000000000000000000600a86061a8153600a8504945084611b6057509392505050565b611ba76121d3565b600f8054906000611bb783612970565b9091555050336000908152601560205260408120805460019290611bdc90849061295d565b92505081905550611bef33600f546117d1565b610e916001600b55565b600082611c068584612216565b14949350505050565b60007fffffffff0000000000000000000000000000000000000000000000000000000082167f80ac58cd000000000000000000000000000000000000000000000000000000001480611ca257507fffffffff0000000000000000000000000000000000000000000000000000000082167f5b5e139f00000000000000000000000000000000000000000000000000000000145b8061068f57507f01ffc9a7000000000000000000000000000000000000000000000000000000007fffffffff0000000000000000000000000000000000000000000000000000000083161461068f565b8080611d0657506001600160a01b03821615155b15611e00576000611d168461169d565b90506001600160a01b03831615801590611d425750826001600160a01b0316816001600160a01b031614155b8015611d7457506001600160a01b0380821660009081526005602090815260408083209387168352929052205460ff16155b15611db6576040517fa9fbf51f0000000000000000000000000000000000000000000000000000000081526001600160a01b03841660048201526024016106f9565b8115611dfe5783856001600160a01b0316826001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92560405160405180910390a45b505b5050600090815260046020526040902080547fffffffffffffffffffffffff0000000000000000000000000000000000000000166001600160a01b0392909216919091179055565b6000828152600260205260408120546001600160a01b0390811690831615611e7557611e75818486612259565b6001600160a01b03811615611eb357611e92600085600080611cf2565b6001600160a01b038116600090815260036020526040902080546000190190555b6001600160a01b03851615611ee2576001600160a01b0385166000908152600360205260409020805460010190555b60008481526002602052604080822080547fffffffffffffffffffffffff0000000000000000000000000000000000000000166001600160a01b0389811691821790925591518793918516917fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef91a4949350505050565b6000611f6483610e1e565b6000838152600760209081526040808320546001600160a01b0388168452600690925290912091925090818314611fbb57600083815260208281526040808320548584528184208190558352600790915290208290555b6000938452600760209081526040808620869055938552525081205550565b600854600090611fec90600190612b9c565b600083815260096020526040812054600880549394509092849081106120145761201461298a565b9060005260206000200154905080600883815481106120355761203561298a565b600091825260208083209091019290925582815260099091526040808220849055858252812055600880548061206d5761206d612c0d565b6001900381819060005260206000200160009055905550505050565b6000600161209684610e1e565b6120a09190612b9c565b6001600160a01b039093166000908152600660209081526040808320868452825280832085905593825260079052919091209190915550565b6120e383836122ef565b610d7b33600085858561192b565b6000807a184f03e93ff9f4daa797ed6e38ed64bf6a1f010000000000000000831061213a577a184f03e93ff9f4daa797ed6e38ed64bf6a1f010000000000000000830492506040015b6d04ee2d6d415b85acef81000000008310612166576d04ee2d6d415b85acef8100000000830492506020015b662386f26fc10000831061218457662386f26fc10000830492506010015b6305f5e100831061219c576305f5e100830492506008015b61271083106121b057612710830492506004015b606483106121c2576064830492506002015b600a831061068f5760010192915050565b6002600b540361220f576040517f3ee5aeb500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6002600b55565b600081815b8451811015612251576122478286838151811061223a5761223a61298a565b6020026020010151612386565b915060010161221b565b509392505050565b6122648383836123b2565b610d7b576001600160a01b0383166122ab576040517f7e273289000000000000000000000000000000000000000000000000000000008152600481018290526024016106f9565b6040517f177e802f0000000000000000000000000000000000000000000000000000000081526001600160a01b0383166004820152602481018290526044016106f9565b6001600160a01b038216612332576040517f64a0ae92000000000000000000000000000000000000000000000000000000008152600060048201526024016106f9565b6000612340838360006116fc565b90506001600160a01b03811615610d7b576040517f73c6ac6e000000000000000000000000000000000000000000000000000000008152600060048201526024016106f9565b60008183106123a25760008281526020849052604090206110af565b5060009182526020526040902090565b60006001600160a01b038316158015906117c95750826001600160a01b0316846001600160a01b0316148061240c57506001600160a01b0380851660009081526005602090815260408083209387168352929052205460ff165b806117c95750506000908152600460205260409020546001600160a01b03908116911614919050565b80356001600160a01b038116811461244c57600080fd5b919050565b60006020828403121561246357600080fd5b6110af82612435565b7fffffffff00000000000000000000000000000000000000000000000000000000811681146115fe57600080fd5b6000602082840312156124ac57600080fd5b81356110af8161246c565b600080604083850312156124ca57600080fd5b6124d383612435565b915060208301356bffffffffffffffffffffffff811681146124f457600080fd5b809150509250929050565b60005b8381101561251a578181015183820152602001612502565b50506000910152565b6000815180845261253b8160208601602086016124ff565b601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0169290920160200192915050565b6020815260006110af6020830184612523565b60006020828403121561259257600080fd5b5035919050565b600080604083850312156125ac57600080fd5b6125b583612435565b946020939093013593505050565b6000806000606084860312156125d857600080fd5b6125e184612435565b92506125ef60208501612435565b929592945050506040919091013590565b6000806040838503121561261357600080fd5b50508035926020909101359150565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b60008067ffffffffffffffff84111561266c5761266c612622565b506040517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f85018116603f0116810181811067ffffffffffffffff821117156126b9576126b9612622565b6040528381529050808284018510156126d157600080fd5b83836020830137600060208583010152509392505050565b6000602082840312156126fb57600080fd5b813567ffffffffffffffff81111561271257600080fd5b8201601f8101841361272357600080fd5b6117c984823560208401612651565b6000806040838503121561274557600080fd5b61274e83612435565b9150602083013580151581146124f457600080fd5b6000806000806080858703121561277957600080fd5b61278285612435565b935061279060208601612435565b925060408501359150606085013567ffffffffffffffff8111156127b357600080fd5b8501601f810187136127c457600080fd5b6127d387823560208401612651565b91505092959194509250565b600080604083850312156127f257600080fd5b6127fb83612435565b915061280960208401612435565b90509250929050565b6000806020838503121561282557600080fd5b823567ffffffffffffffff81111561283c57600080fd5b8301601f8101851361284d57600080fd5b803567ffffffffffffffff81111561286457600080fd5b8560208260051b840101111561287957600080fd5b6020919091019590945092505050565b600181811c9082168061289d57607f821691505b6020821081036128d6577f4e487b7100000000000000000000000000000000000000000000000000000000600052602260045260246000fd5b50919050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b808202811582820484141761068f5761068f6128dc565b600082612958577f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b500490565b8082018082111561068f5761068f6128dc565b60006000198203612983576129836128dc565b5060010190565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b601f821115610d7b57806000526020600020601f840160051c810160208510156129e05750805b601f840160051c820191505b81811015611ae957600081556001016129ec565b815167ffffffffffffffff811115612a1a57612a1a612622565b612a2e81612a288454612889565b846129b9565b6020601f821160018114612a625760008315612a4a5750848201515b600019600385901b1c1916600184901b178455611ae9565b6000848152602081207fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08516915b82811015612ab05787850151825560209485019460019092019101612a90565b5084821015612ace5786840151600019600387901b60f8161c191681555b50505050600190811b01905550565b60008451612aef8184602089016124ff565b845190830190612b038183602089016124ff565b8454910190600090612b1481612889565b600182168015612b2b5760018114612b5e57612b8e565b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0083168552811515820285019350612b8e565b87600052602060002060005b83811015612b8657815487820152600190910190602001612b6a565b505081850193505b509198975050505050505050565b8181038181111561068f5761068f6128dc565b6001600160a01b03851681526001600160a01b0384166020820152826040820152608060608201526000612be66080830184612523565b9695505050505050565b600060208284031215612c0257600080fd5b81516110af8161246c565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603160045260246000fdfea26469706673582212203790564aca208f50bba0d865a9a5111172e76bbc871d5c03b8670e45b27a019664736f6c634300081a0033697066733a2f2f516d595575774c6f69526238776f58774a434373723167766272384532314b757852746d56426d6e4831745a7a372f68696464656e2e6a736f6e0000000000000000000000000000000000000000000000000000000000000060c60c249068b2dc84696edd370a733ad0e14b70dc99638be3ab7265a4d0f7543e000000000000000000000000c957215773a8b86c8d8bab235451e467caaf944c0000000000000000000000000000000000000000000000000000000000000043697066733a2f2f6261667962656968653777627a6e63756577657a64737273726771366f35336a3634346b6b7771773534793435656d6b746874346868797869776d2f0000000000000000000000000000000000000000000000000000000000
Deployed Bytecode
0x608060405234801561001057600080fd5b50600436106102fe5760003560e01c806370a082311161019c578063c87b56dd116100ee578063e8b5498d11610097578063edc0c72c11610071578063edc0c72c14610600578063f2c4ce1e14610613578063f2fde38b1461062657600080fd5b8063e8b5498d146105b2578063e985e9c5146105bb578063ebf0c717146105f757600080fd5b8063da3ef23f116100c8578063da3ef23f1461058f578063e222c7f9146105a2578063e5408eae146105aa57600080fd5b8063c87b56dd1461056b578063d2eb86ee1461057e578063d5abeb011461058657600080fd5b8063a22cb46511610150578063b88d4fde1161012a578063b88d4fde14610548578063c4ae31681461055b578063c66828621461056357600080fd5b8063a22cb46514610519578063a45063c01461052c578063a475b5dd1461054057600080fd5b80637cb64759116101815780637cb64759146104ed5780638da5cb5b1461050057806395d89b411461051157600080fd5b806370a08231146104d2578063715018a6146104e557600080fd5b80632f745c59116102555780634f6ccce7116102095780635c975abb116101e35780635c975abb146104aa5780636352211e146104b75780636c0360eb146104ca57600080fd5b80634f6ccce714610472578063518302271461048557806355f804b31461049757600080fd5b8063343937431161023a578063343937431461044f5780633ccfd60b1461045757806342842e0e1461045f57600080fd5b80632f745c59146104295780632fbba1151461043c57600080fd5b8063081c8c44116102b757806318160ddd1161029157806318160ddd146103dc57806323b872dd146103e45780632a55205a146103f757600080fd5b8063081c8c44146103ae578063095ea7b3146103b65780631798d58b146103c957600080fd5b806302fa7c47116102e857806302fa7c471461035957806306fdde031461036e578063081812fc1461038357600080fd5b80623d47901461030357806301ffc9a714610336575b600080fd5b610323610311366004612451565b60156020526000908152604090205481565b6040519081526020015b60405180910390f35b61034961034436600461249a565b610639565b604051901515815260200161032d565b61036c6103673660046124b7565b610695565b005b610376610783565b60405161032d919061256d565b610396610391366004612580565b610815565b6040516001600160a01b03909116815260200161032d565b61037661083e565b61036c6103c4366004612599565b6108cc565b6013546103499062010000900460ff1681565b600854610323565b61036c6103f23660046125c3565b6108db565b61040a610405366004612600565b610998565b604080516001600160a01b03909316835260208301919091520161032d565b610323610437366004612599565b610a49565b61036c61044a366004612580565b610ac7565b61036c610c60565b61036c610ca3565b61036c61046d3660046125c3565b610d60565b610323610480366004612580565b610d80565b60135461034990610100900460ff1681565b61036c6104a53660046126e9565b610df2565b6013546103499060ff1681565b6103966104c5366004612580565b610e06565b610376610e11565b6103236104e0366004612451565b610e1e565b61036c610e7f565b61036c6104fb366004612580565b610e93565b600a546001600160a01b0316610396565b610376610ea0565b61036c610527366004612732565b610eaf565b601354610349906301000000900460ff1681565b61036c610eba565b61036c610556366004612763565b610ef0565b61036c610f08565b610376610f42565b610376610579366004612580565b610f4f565b61036c6110b6565b610323600d5481565b61036c61059d3660046126e9565b61128d565b61036c6112a1565b610323600a81565b610323600e5481565b6103496105c93660046127df565b6001600160a01b03918216600090815260056020908152604080832093909416825291909152205460ff1690565b610323600c5481565b61036c61060e366004612812565b6112e5565b61036c6106213660046126e9565b611596565b61036c610634366004612451565b6115aa565b60007fffffffff0000000000000000000000000000000000000000000000000000000082167f2a55205a00000000000000000000000000000000000000000000000000000000148061068f575061068f82611601565b92915050565b61069d611657565b6103e8816bffffffffffffffffffffffff1611156107025760405162461bcd60e51b815260206004820152601d60248201527f526f79616c7479206665652063616e6e6f74206578636565642031302500000060448201526064015b60405180910390fd5b601480546001600160a01b039093167fffffffffffffffffffffffff000000000000000000000000000000000000000090931692909217909155601380546bffffffffffffffffffffffff909216640100000000027fffffffffffffffffffffffffffffffff000000000000000000000000ffffffff909216919091179055565b60606000805461079290612889565b80601f01602080910402602001604051908101604052809291908181526020018280546107be90612889565b801561080b5780601f106107e05761010080835404028352916020019161080b565b820191906000526020600020905b8154815290600101906020018083116107ee57829003601f168201915b5050505050905090565b60006108208261169d565b506000828152600460205260409020546001600160a01b031661068f565b6011805461084b90612889565b80601f016020809104026020016040519081016040528092919081815260200182805461087790612889565b80156108c45780601f10610899576101008083540402835291602001916108c4565b820191906000526020600020905b8154815290600101906020018083116108a757829003601f168201915b505050505081565b6108d78282336116ef565b5050565b6001600160a01b03821661091e576040517f64a0ae92000000000000000000000000000000000000000000000000000000008152600060048201526024016106f9565b600061092b8383336116fc565b9050836001600160a01b0316816001600160a01b031614610992576040517f64283d7b0000000000000000000000000000000000000000000000000000000081526001600160a01b03808616600483015260248201849052821660448201526064016106f9565b50505050565b60008281526002602052604081205481906001600160a01b03166109fe5760405162461bcd60e51b815260206004820152601460248201527f546f6b656e20646f6573206e6f7420657869737400000000000000000000000060448201526064016106f9565b6014546013546001600160a01b039091169061271090610a349064010000000090046bffffffffffffffffffffffff168661290b565b610a3e9190612922565b915091509250929050565b6000610a5483610e1e565b8210610a9e576040517fa57d13dc0000000000000000000000000000000000000000000000000000000081526001600160a01b0384166004820152602481018390526044016106f9565b506001600160a01b03919091166000908152600660209081526040808320938352929052205490565b610acf611657565b60008111610b1f5760405162461bcd60e51b815260206004820152601d60248201527f416d6f756e74206d7573742062652067726561746572207468616e203000000060448201526064016106f9565b600a81600e54610b2f919061295d565b1115610b7d5760405162461bcd60e51b815260206004820152601760248201527f45786365656473207465616d20616c6c6f636174696f6e00000000000000000060448201526064016106f9565b600d5481600f54610b8e919061295d565b1115610bdc5760405162461bcd60e51b815260206004820152601760248201527f576f756c6420657863656564206d617820737570706c7900000000000000000060448201526064016106f9565b60005b81811015610c1057600f8054906000610bf783612970565b9190505550610c0833600f546117d1565b600101610bdf565b5080600e6000828254610c23919061295d565b909155505060405181815233907f5d3a6b0dd9fbc17e3d7180bed2fcb7c0002bb1f4729b285322cacde3f136aefd9060200160405180910390a250565b610c68611657565b601380547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00ffff8116620100009182900460ff1615909102179055565b610cab611657565b476000610cc0600a546001600160a01b031690565b6001600160a01b03168260405160006040518083038185875af1925050503d8060008114610d0a576040519150601f19603f3d011682016040523d82523d6000602084013e610d0f565b606091505b50509050806108d75760405162461bcd60e51b815260206004820152600f60248201527f5472616e73666572206661696c6564000000000000000000000000000000000060448201526064016106f9565b610d7b83838360405180602001604052806000815250610ef0565b505050565b6000610d8b60085490565b8210610dcd576040517fa57d13dc00000000000000000000000000000000000000000000000000000000815260006004820152602481018390526044016106f9565b60088281548110610de057610de061298a565b90600052602060002001549050919050565b610dfa611657565b60106108d78282612a00565b600061068f8261169d565b6010805461084b90612889565b60006001600160a01b038216610e63576040517f89c62b64000000000000000000000000000000000000000000000000000000008152600060048201526024016106f9565b506001600160a01b031660009081526003602052604090205490565b610e87611657565b610e9160006117eb565b565b610e9b611657565b600c55565b60606001805461079290612889565b6108d7338383611855565b610ec2611657565b601380547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00ff16610100179055565b610efb8484846108db565b610992338585858561192b565b610f10611657565b601380547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00811660ff90911615179055565b6012805461084b90612889565b6000818152600260205260409020546060906001600160a01b0316610fb65760405162461bcd60e51b815260206004820152601460248201527f546f6b656e20646f6573206e6f7420657869737400000000000000000000000060448201526064016106f9565b601354610100900460ff166110575760118054610fd290612889565b80601f0160208091040260200160405190810160405280929190818152602001828054610ffe90612889565b801561104b5780601f106110205761010080835404028352916020019161104b565b820191906000526020600020905b81548152906001019060200180831161102e57829003601f168201915b50505050509050919050565b6000611061611af0565b9050600081511161108157604051806020016040528060008152506110af565b8061108b84611aff565b601260405160200161109f93929190612add565b6040516020818303038152906040525b9392505050565b3332146111055760405162461bcd60e51b815260206004820152601260248201527f4e6f7420616c6c6f776564206f726967696e000000000000000000000000000060448201526064016106f9565b33600090815260156020526040902054156111625760405162461bcd60e51b815260206004820152601e60248201527f416c7265616479206d696e746564206d6178696d756d20616c6c6f776564000060448201526064016106f9565b6013546301000000900460ff166111bb5760405162461bcd60e51b815260206004820152601260248201527f5075626c69632073616c65206973204f4646000000000000000000000000000060448201526064016106f9565b60135460ff161561120e5760405162461bcd60e51b815260206004820152601260248201527f436f6e747261637420697320706175736564000000000000000000000000000060448201526064016106f9565b600e5461121c90600a612b9c565b600d546112299190612b9c565b600f5461123790600161295d565b11156112855760405162461bcd60e51b815260206004820152601360248201527f4d617820737570706c792065786365656465640000000000000000000000000060448201526064016106f9565b610e91611b9f565b611295611657565b60126108d78282612a00565b6112a9611657565b601380547fffffffffffffffffffffffffffffffffffffffffffffffffffffffff00ffffff811663010000009182900460ff1615909102179055565b818161136f82828080602002602001604051908101604052809392919081815260200183836020028082843760009201919091525050600c546040517fffffffffffffffffffffffffffffffffffffffff0000000000000000000000003360601b166020820152909250603401905060405160208183030381529060405280519060200120611bf9565b15156001146113c05760405162461bcd60e51b815260206004820152601260248201527f4e6f7420616c6c6f776564206f726967696e000000000000000000000000000060448201526064016106f9565b33321461140f5760405162461bcd60e51b815260206004820152601260248201527f4e6f7420616c6c6f776564206f726967696e000000000000000000000000000060448201526064016106f9565b336000908152601560205260409020541561146c5760405162461bcd60e51b815260206004820152601e60248201527f416c7265616479206d696e746564206d6178696d756d20616c6c6f776564000060448201526064016106f9565b60135462010000900460ff166114c45760405162461bcd60e51b815260206004820152600e60248201527f50726573616c65206973204f464600000000000000000000000000000000000060448201526064016106f9565b60135460ff16156115175760405162461bcd60e51b815260206004820152601260248201527f436f6e747261637420697320706175736564000000000000000000000000000060448201526064016106f9565b600e5461152590600a612b9c565b600d546115329190612b9c565b600f5461154090600161295d565b111561158e5760405162461bcd60e51b815260206004820152601360248201527f4d617820737570706c792065786365656465640000000000000000000000000060448201526064016106f9565b610992611b9f565b61159e611657565b60116108d78282612a00565b6115b2611657565b6001600160a01b0381166115f5576040517f1e4fbdf7000000000000000000000000000000000000000000000000000000008152600060048201526024016106f9565b6115fe816117eb565b50565b60007fffffffff0000000000000000000000000000000000000000000000000000000082167f780e9d6300000000000000000000000000000000000000000000000000000000148061068f575061068f82611c0f565b600a546001600160a01b03163314610e91576040517f118cdaa70000000000000000000000000000000000000000000000000000000081523360048201526024016106f9565b6000818152600260205260408120546001600160a01b03168061068f576040517f7e273289000000000000000000000000000000000000000000000000000000008152600481018490526024016106f9565b610d7b8383836001611cf2565b60008061170a858585611e48565b90506001600160a01b0381166117675761176284600880546000838152600960205260408120829055600182018355919091527ff3f7a9fe364faab93b216da50a3214154f22a0a2b415b23a84c8169e8b636ee30155565b61178a565b846001600160a01b0316816001600160a01b03161461178a5761178a8185611f59565b6001600160a01b0385166117a6576117a184611fda565b6117c9565b846001600160a01b0316816001600160a01b0316146117c9576117c98585612089565b949350505050565b6108d78282604051806020016040528060008152506120d9565b600a80546001600160a01b038381167fffffffffffffffffffffffff0000000000000000000000000000000000000000831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e090600090a35050565b6001600160a01b0382166118a0576040517f5b08ba180000000000000000000000000000000000000000000000000000000081526001600160a01b03831660048201526024016106f9565b6001600160a01b0383811660008181526005602090815260408083209487168084529482529182902080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff001686151590811790915591519182527f17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c31910160405180910390a3505050565b6001600160a01b0383163b15611ae9576040517f150b7a020000000000000000000000000000000000000000000000000000000081526001600160a01b0384169063150b7a0290611986908890889087908790600401612baf565b6020604051808303816000875af19250505080156119df575060408051601f3d9081017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe01682019092526119dc91810190612bf0565b60015b611a61573d808015611a0d576040519150601f19603f3d011682016040523d82523d6000602084013e611a12565b606091505b508051600003611a59576040517f64a0ae920000000000000000000000000000000000000000000000000000000081526001600160a01b03851660048201526024016106f9565b805181602001fd5b7fffffffff0000000000000000000000000000000000000000000000000000000081167f150b7a020000000000000000000000000000000000000000000000000000000014611ae7576040517f64a0ae920000000000000000000000000000000000000000000000000000000081526001600160a01b03851660048201526024016106f9565b505b5050505050565b60606010805461079290612889565b60606000611b0c836120f1565b600101905060008167ffffffffffffffff811115611b2c57611b2c612622565b6040519080825280601f01601f191660200182016040528015611b56576020820181803683370190505b5090508181016020015b600019017f3031323334353637383961626364656600000000000000000000000000000000600a86061a8153600a8504945084611b6057509392505050565b611ba76121d3565b600f8054906000611bb783612970565b9091555050336000908152601560205260408120805460019290611bdc90849061295d565b92505081905550611bef33600f546117d1565b610e916001600b55565b600082611c068584612216565b14949350505050565b60007fffffffff0000000000000000000000000000000000000000000000000000000082167f80ac58cd000000000000000000000000000000000000000000000000000000001480611ca257507fffffffff0000000000000000000000000000000000000000000000000000000082167f5b5e139f00000000000000000000000000000000000000000000000000000000145b8061068f57507f01ffc9a7000000000000000000000000000000000000000000000000000000007fffffffff0000000000000000000000000000000000000000000000000000000083161461068f565b8080611d0657506001600160a01b03821615155b15611e00576000611d168461169d565b90506001600160a01b03831615801590611d425750826001600160a01b0316816001600160a01b031614155b8015611d7457506001600160a01b0380821660009081526005602090815260408083209387168352929052205460ff16155b15611db6576040517fa9fbf51f0000000000000000000000000000000000000000000000000000000081526001600160a01b03841660048201526024016106f9565b8115611dfe5783856001600160a01b0316826001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92560405160405180910390a45b505b5050600090815260046020526040902080547fffffffffffffffffffffffff0000000000000000000000000000000000000000166001600160a01b0392909216919091179055565b6000828152600260205260408120546001600160a01b0390811690831615611e7557611e75818486612259565b6001600160a01b03811615611eb357611e92600085600080611cf2565b6001600160a01b038116600090815260036020526040902080546000190190555b6001600160a01b03851615611ee2576001600160a01b0385166000908152600360205260409020805460010190555b60008481526002602052604080822080547fffffffffffffffffffffffff0000000000000000000000000000000000000000166001600160a01b0389811691821790925591518793918516917fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef91a4949350505050565b6000611f6483610e1e565b6000838152600760209081526040808320546001600160a01b0388168452600690925290912091925090818314611fbb57600083815260208281526040808320548584528184208190558352600790915290208290555b6000938452600760209081526040808620869055938552525081205550565b600854600090611fec90600190612b9c565b600083815260096020526040812054600880549394509092849081106120145761201461298a565b9060005260206000200154905080600883815481106120355761203561298a565b600091825260208083209091019290925582815260099091526040808220849055858252812055600880548061206d5761206d612c0d565b6001900381819060005260206000200160009055905550505050565b6000600161209684610e1e565b6120a09190612b9c565b6001600160a01b039093166000908152600660209081526040808320868452825280832085905593825260079052919091209190915550565b6120e383836122ef565b610d7b33600085858561192b565b6000807a184f03e93ff9f4daa797ed6e38ed64bf6a1f010000000000000000831061213a577a184f03e93ff9f4daa797ed6e38ed64bf6a1f010000000000000000830492506040015b6d04ee2d6d415b85acef81000000008310612166576d04ee2d6d415b85acef8100000000830492506020015b662386f26fc10000831061218457662386f26fc10000830492506010015b6305f5e100831061219c576305f5e100830492506008015b61271083106121b057612710830492506004015b606483106121c2576064830492506002015b600a831061068f5760010192915050565b6002600b540361220f576040517f3ee5aeb500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6002600b55565b600081815b8451811015612251576122478286838151811061223a5761223a61298a565b6020026020010151612386565b915060010161221b565b509392505050565b6122648383836123b2565b610d7b576001600160a01b0383166122ab576040517f7e273289000000000000000000000000000000000000000000000000000000008152600481018290526024016106f9565b6040517f177e802f0000000000000000000000000000000000000000000000000000000081526001600160a01b0383166004820152602481018290526044016106f9565b6001600160a01b038216612332576040517f64a0ae92000000000000000000000000000000000000000000000000000000008152600060048201526024016106f9565b6000612340838360006116fc565b90506001600160a01b03811615610d7b576040517f73c6ac6e000000000000000000000000000000000000000000000000000000008152600060048201526024016106f9565b60008183106123a25760008281526020849052604090206110af565b5060009182526020526040902090565b60006001600160a01b038316158015906117c95750826001600160a01b0316846001600160a01b0316148061240c57506001600160a01b0380851660009081526005602090815260408083209387168352929052205460ff165b806117c95750506000908152600460205260409020546001600160a01b03908116911614919050565b80356001600160a01b038116811461244c57600080fd5b919050565b60006020828403121561246357600080fd5b6110af82612435565b7fffffffff00000000000000000000000000000000000000000000000000000000811681146115fe57600080fd5b6000602082840312156124ac57600080fd5b81356110af8161246c565b600080604083850312156124ca57600080fd5b6124d383612435565b915060208301356bffffffffffffffffffffffff811681146124f457600080fd5b809150509250929050565b60005b8381101561251a578181015183820152602001612502565b50506000910152565b6000815180845261253b8160208601602086016124ff565b601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0169290920160200192915050565b6020815260006110af6020830184612523565b60006020828403121561259257600080fd5b5035919050565b600080604083850312156125ac57600080fd5b6125b583612435565b946020939093013593505050565b6000806000606084860312156125d857600080fd5b6125e184612435565b92506125ef60208501612435565b929592945050506040919091013590565b6000806040838503121561261357600080fd5b50508035926020909101359150565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b60008067ffffffffffffffff84111561266c5761266c612622565b506040517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f85018116603f0116810181811067ffffffffffffffff821117156126b9576126b9612622565b6040528381529050808284018510156126d157600080fd5b83836020830137600060208583010152509392505050565b6000602082840312156126fb57600080fd5b813567ffffffffffffffff81111561271257600080fd5b8201601f8101841361272357600080fd5b6117c984823560208401612651565b6000806040838503121561274557600080fd5b61274e83612435565b9150602083013580151581146124f457600080fd5b6000806000806080858703121561277957600080fd5b61278285612435565b935061279060208601612435565b925060408501359150606085013567ffffffffffffffff8111156127b357600080fd5b8501601f810187136127c457600080fd5b6127d387823560208401612651565b91505092959194509250565b600080604083850312156127f257600080fd5b6127fb83612435565b915061280960208401612435565b90509250929050565b6000806020838503121561282557600080fd5b823567ffffffffffffffff81111561283c57600080fd5b8301601f8101851361284d57600080fd5b803567ffffffffffffffff81111561286457600080fd5b8560208260051b840101111561287957600080fd5b6020919091019590945092505050565b600181811c9082168061289d57607f821691505b6020821081036128d6577f4e487b7100000000000000000000000000000000000000000000000000000000600052602260045260246000fd5b50919050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b808202811582820484141761068f5761068f6128dc565b600082612958577f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b500490565b8082018082111561068f5761068f6128dc565b60006000198203612983576129836128dc565b5060010190565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b601f821115610d7b57806000526020600020601f840160051c810160208510156129e05750805b601f840160051c820191505b81811015611ae957600081556001016129ec565b815167ffffffffffffffff811115612a1a57612a1a612622565b612a2e81612a288454612889565b846129b9565b6020601f821160018114612a625760008315612a4a5750848201515b600019600385901b1c1916600184901b178455611ae9565b6000848152602081207fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08516915b82811015612ab05787850151825560209485019460019092019101612a90565b5084821015612ace5786840151600019600387901b60f8161c191681555b50505050600190811b01905550565b60008451612aef8184602089016124ff565b845190830190612b038183602089016124ff565b8454910190600090612b1481612889565b600182168015612b2b5760018114612b5e57612b8e565b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0083168552811515820285019350612b8e565b87600052602060002060005b83811015612b8657815487820152600190910190602001612b6a565b505081850193505b509198975050505050505050565b8181038181111561068f5761068f6128dc565b6001600160a01b03851681526001600160a01b0384166020820152826040820152608060608201526000612be66080830184612523565b9695505050505050565b600060208284031215612c0257600080fd5b81516110af8161246c565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603160045260246000fdfea26469706673582212203790564aca208f50bba0d865a9a5111172e76bbc871d5c03b8670e45b27a019664736f6c634300081a0033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
0000000000000000000000000000000000000000000000000000000000000060c60c249068b2dc84696edd370a733ad0e14b70dc99638be3ab7265a4d0f7543e000000000000000000000000c957215773a8b86c8d8bab235451e467caaf944c0000000000000000000000000000000000000000000000000000000000000043697066733a2f2f6261667962656968653777627a6e63756577657a64737273726771366f35336a3634346b6b7771773534793435656d6b746874346868797869776d2f0000000000000000000000000000000000000000000000000000000000
-----Decoded View---------------
Arg [0] : uri (string): ipfs://bafybeihe7wbzncuewezdsrsrgq6o53j644kkwqw54y45emktht4hhyxiwm/
Arg [1] : merkleroot (bytes32): 0xc60c249068b2dc84696edd370a733ad0e14b70dc99638be3ab7265a4d0f7543e
Arg [2] : initialOwner (address): 0xC957215773A8B86c8d8Bab235451E467caaf944C
-----Encoded View---------------
7 Constructor Arguments found :
Arg [0] : 0000000000000000000000000000000000000000000000000000000000000060
Arg [1] : c60c249068b2dc84696edd370a733ad0e14b70dc99638be3ab7265a4d0f7543e
Arg [2] : 000000000000000000000000c957215773a8b86c8d8bab235451e467caaf944c
Arg [3] : 0000000000000000000000000000000000000000000000000000000000000043
Arg [4] : 697066733a2f2f6261667962656968653777627a6e63756577657a6473727372
Arg [5] : 6771366f35336a3634346b6b7771773534793435656d6b746874346868797869
Arg [6] : 776d2f0000000000000000000000000000000000000000000000000000000000
[ Download: CSV Export ]
A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.