ERC-20
Overview
Max Total Supply
8,816,493.955115726050291491697 bstS-3
Holders
159
Market
Price
$0.00 @ 0.000000 S
Onchain Market Cap
$0.00
Circulating Supply Market Cap
-
Other Info
Token Contract (WITH 21 Decimals)
Loading...
Loading
Loading...
Loading
Loading...
Loading
Minimal Proxy Contract for 0x85b0273b0b415f9e28b9ce820240f4aa097f2a29
Contract Name:
Silo
Compiler Version
v0.8.28+commit.7893614a
Optimization Enabled:
Yes with 200 runs
Other Settings:
cancun EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.28; import {SafeERC20} from "openzeppelin5/token/ERC20/utils/SafeERC20.sol"; import {IERC20} from "openzeppelin5/token/ERC20/IERC20.sol"; import {ISilo, IERC4626, IERC3156FlashLender} from "./interfaces/ISilo.sol"; import {IShareToken} from "./interfaces/IShareToken.sol"; import {IERC3156FlashBorrower} from "./interfaces/IERC3156FlashBorrower.sol"; import {ISiloConfig} from "./interfaces/ISiloConfig.sol"; import {ISiloFactory} from "./interfaces/ISiloFactory.sol"; import {ShareCollateralToken} from "./utils/ShareCollateralToken.sol"; import {Actions} from "./lib/Actions.sol"; import {Views} from "./lib/Views.sol"; import {SiloStdLib} from "./lib/SiloStdLib.sol"; import {SiloLendingLib} from "./lib/SiloLendingLib.sol"; import {SiloERC4626Lib} from "./lib/SiloERC4626Lib.sol"; import {SiloMathLib} from "./lib/SiloMathLib.sol"; import {Rounding} from "./lib/Rounding.sol"; import {Hook} from "./lib/Hook.sol"; import {ShareTokenLib} from "./lib/ShareTokenLib.sol"; import {SiloStorageLib} from "./lib/SiloStorageLib.sol"; // Keep ERC4626 ordering // solhint-disable ordering /// @title Silo vault with lending and borrowing functionality /// @notice Silo is a ERC4626-compatible vault that allows users to deposit collateral and borrow debt. This contract /// is deployed twice for each asset for two-asset lending markets. /// Version: 2.0.0 contract Silo is ISilo, ShareCollateralToken { using SafeERC20 for IERC20; ISiloFactory public immutable factory; /// @custom:oz-upgrades-unsafe-allow constructor constructor(ISiloFactory _siloFactory) { factory = _siloFactory; } /// @dev Silo is not designed to work with ether, but it can act as a middleware /// between any third-party contract and hook receiver. So, this is the responsibility /// of the hook receiver developer to handle it if needed. receive() external payable {} /// @inheritdoc IShareToken function silo() external view virtual override returns (ISilo) { return this; } /// @inheritdoc ISilo function callOnBehalfOfSilo(address _target, uint256 _value, CallType _callType, bytes calldata _input) external virtual payable returns (bool success, bytes memory result) { (success, result) = Actions.callOnBehalfOfSilo(_target, _value, _callType, _input); } /// @inheritdoc ISilo function initialize(ISiloConfig _config) external virtual { // silo initialization address hookReceiver = Actions.initialize(_config); // silo (vault) share token initialization _shareTokenInitialize(this, hookReceiver, uint24(Hook.COLLATERAL_TOKEN)); } /// @inheritdoc ISilo function updateHooks() external virtual { (uint24 hooksBefore, uint24 hooksAfter) = Actions.updateHooks(); emit HooksUpdated(hooksBefore, hooksAfter); } /// @inheritdoc ISilo function config() external view virtual returns (ISiloConfig siloConfig) { siloConfig = ShareTokenLib.siloConfig(); } /// @inheritdoc ISilo function utilizationData() external view virtual returns (UtilizationData memory) { return Views.utilizationData(); } /// @inheritdoc ISilo function getLiquidity() external view virtual returns (uint256 liquidity) { return SiloLendingLib.getLiquidity(ShareTokenLib.siloConfig()); } /// @inheritdoc ISilo function isSolvent(address _borrower) external view virtual returns (bool) { return Views.isSolvent(_borrower); } /// @inheritdoc ISilo function getTotalAssetsStorage(AssetType _assetType) external view virtual returns (uint256 totalAssetsByType) { totalAssetsByType = SiloStorageLib.getSiloStorage().totalAssets[_assetType]; } /// @inheritdoc ISilo function getSiloStorage() external view virtual returns ( uint192 daoAndDeployerRevenue, uint64 interestRateTimestamp, uint256 protectedAssets, uint256 collateralAssets, uint256 debtAssets ) { return Views.getSiloStorage(); } /// @inheritdoc ISilo function getCollateralAssets() external view virtual returns (uint256 totalCollateralAssets) { totalCollateralAssets = _totalAssets(); } /// @inheritdoc ISilo function getDebtAssets() external view virtual returns (uint256 totalDebtAssets) { totalDebtAssets = Views.getDebtAssets(); } /// @inheritdoc ISilo function getCollateralAndProtectedTotalsStorage() external view virtual returns (uint256 totalCollateralAssets, uint256 totalProtectedAssets) { (totalCollateralAssets, totalProtectedAssets) = Views.getCollateralAndProtectedAssets(); } /// @inheritdoc ISilo function getCollateralAndDebtTotalsStorage() external view virtual returns (uint256 totalCollateralAssets, uint256 totalDebtAssets) { (totalCollateralAssets, totalDebtAssets) = Views.getCollateralAndDebtAssets(); } // ERC4626 /// @inheritdoc IERC4626 function asset() external view virtual returns (address assetTokenAddress) { return ShareTokenLib.siloConfig().getAssetForSilo(address(this)); } /// @inheritdoc IERC4626 function totalAssets() external view virtual returns (uint256 totalManagedAssets) { totalManagedAssets = _totalAssets(); } /// @inheritdoc IERC4626 /// @dev For protected (non-borrowable) collateral and debt, use: /// `convertToShares(uint256 _assets, AssetType _assetType)` with `AssetType.Protected` or `AssetType.Debt` function convertToShares(uint256 _assets) external view virtual returns (uint256 shares) { shares = _convertToShares(_assets, AssetType.Collateral); } /// @inheritdoc IERC4626 /// @dev For protected (non-borrowable) collateral and debt, use: /// `convertToAssets(uint256 _shares, AssetType _assetType)` with `AssetType.Protected` or `AssetType.Debt` function convertToAssets(uint256 _shares) external view virtual returns (uint256 assets) { assets = _convertToAssets(_shares, AssetType.Collateral); } /// @inheritdoc IERC4626 function maxDeposit(address /* _receiver */) external pure virtual returns (uint256 maxAssets) { maxAssets = SiloERC4626Lib._VIRTUAL_DEPOSIT_LIMIT; } /// @inheritdoc IERC4626 function previewDeposit(uint256 _assets) external view virtual returns (uint256 shares) { return _previewDeposit(_assets, CollateralType.Collateral); } /// @inheritdoc IERC4626 function deposit(uint256 _assets, address _receiver) external virtual returns (uint256 shares) { (, shares) = _deposit(_assets, 0 /* shares */, _receiver, CollateralType.Collateral); } /// @inheritdoc IERC4626 function maxMint(address /* _receiver */) external view virtual returns (uint256 maxShares) { return SiloERC4626Lib._VIRTUAL_DEPOSIT_LIMIT; } /// @inheritdoc IERC4626 function previewMint(uint256 _shares) external view virtual returns (uint256 assets) { return _previewMint(_shares, CollateralType.Collateral); } /// @inheritdoc IERC4626 function mint(uint256 _shares, address _receiver) external virtual returns (uint256 assets) { (assets,) = _deposit({ _assets: 0, _shares: _shares, _receiver: _receiver, _collateralType: CollateralType.Collateral }); } /// @inheritdoc IERC4626 function maxWithdraw(address _owner) external view virtual returns (uint256 maxAssets) { (maxAssets,) = _maxWithdraw(_owner, CollateralType.Collateral); } /// @inheritdoc IERC4626 function previewWithdraw(uint256 _assets) external view virtual returns (uint256 shares) { return _previewWithdraw(_assets, CollateralType.Collateral); } /// @inheritdoc IERC4626 function withdraw(uint256 _assets, address _receiver, address _owner) external virtual returns (uint256 shares) { (, shares) = _withdraw({ _assets: _assets, _shares: 0, _receiver: _receiver, _owner: _owner, _spender: msg.sender, _collateralType: CollateralType.Collateral }); } /// @inheritdoc IERC4626 function maxRedeem(address _owner) external view virtual returns (uint256 maxShares) { (, maxShares) = _maxWithdraw(_owner, CollateralType.Collateral); } /// @inheritdoc IERC4626 function previewRedeem(uint256 _shares) external view virtual returns (uint256 assets) { return _previewRedeem(_shares, CollateralType.Collateral); } /// @inheritdoc IERC4626 function redeem(uint256 _shares, address _receiver, address _owner) external virtual returns (uint256 assets) { (assets,) = _withdraw({ _assets: 0, _shares: _shares, _receiver: _receiver, _owner: _owner, _spender: msg.sender, _collateralType: CollateralType.Collateral }); } /// @inheritdoc ISilo function convertToShares(uint256 _assets, AssetType _assetType) external view virtual returns (uint256 shares) { shares = _convertToShares(_assets, _assetType); } /// @inheritdoc ISilo function convertToAssets(uint256 _shares, AssetType _assetType) external view virtual returns (uint256 assets) { assets = _convertToAssets(_shares, _assetType); } /// @inheritdoc ISilo function previewDeposit(uint256 _assets, CollateralType _collateralType) external view virtual returns (uint256 shares) { return _previewDeposit(_assets, _collateralType); } /// @inheritdoc ISilo function deposit(uint256 _assets, address _receiver, CollateralType _collateralType) external virtual returns (uint256 shares) { (, shares) = _deposit({ _assets: _assets, _shares: 0, _receiver: _receiver, _collateralType: _collateralType }); } /// @inheritdoc ISilo function previewMint(uint256 _shares, CollateralType _collateralType) external view virtual returns (uint256 assets) { return _previewMint(_shares, _collateralType); } /// @inheritdoc ISilo function mint(uint256 _shares, address _receiver, CollateralType _collateralType) external virtual returns (uint256 assets) { (assets,) = _deposit({ _assets: 0, _shares: _shares, _receiver: _receiver, _collateralType: _collateralType }); } /// @inheritdoc ISilo function maxWithdraw(address _owner, CollateralType _collateralType) external view virtual returns (uint256 maxAssets) { (maxAssets,) = _maxWithdraw(_owner, _collateralType); } /// @inheritdoc ISilo function previewWithdraw(uint256 _assets, CollateralType _collateralType) external view virtual returns (uint256 shares) { return _previewWithdraw(_assets, _collateralType); } /// @inheritdoc ISilo function withdraw(uint256 _assets, address _receiver, address _owner, CollateralType _collateralType) external virtual returns (uint256 shares) { (, shares) = _withdraw({ _assets: _assets, _shares: 0, _receiver: _receiver, _owner: _owner, _spender: msg.sender, _collateralType: _collateralType }); } /// @inheritdoc ISilo function maxRedeem(address _owner, CollateralType _collateralType) external view virtual returns (uint256 maxShares) { (, maxShares) = _maxWithdraw(_owner, _collateralType); } /// @inheritdoc ISilo function previewRedeem(uint256 _shares, CollateralType _collateralType) external view virtual returns (uint256 assets) { return _previewRedeem(_shares, _collateralType); } /// @inheritdoc ISilo function redeem(uint256 _shares, address _receiver, address _owner, CollateralType _collateralType) external virtual returns (uint256 assets) { (assets,) = _withdraw({ _assets: 0, _shares: _shares, _receiver: _receiver, _owner: _owner, _spender: msg.sender, _collateralType: _collateralType }); } /// @inheritdoc ISilo function maxBorrow(address _borrower) external view virtual returns (uint256 maxAssets) { (maxAssets,) = Views.maxBorrow({_borrower: _borrower, _sameAsset: false}); } /// @inheritdoc ISilo function previewBorrow(uint256 _assets) external view virtual returns (uint256 shares) { ( uint256 totalSiloAssets, uint256 totalShares ) = SiloStdLib.getTotalAssetsAndTotalSharesWithInterest(ShareTokenLib.getConfig(), AssetType.Debt); return SiloMathLib.convertToShares( _assets, totalSiloAssets, totalShares, Rounding.BORROW_TO_SHARES, AssetType.Debt ); } /// @inheritdoc ISilo function borrow(uint256 _assets, address _receiver, address _borrower) external virtual returns (uint256 shares) { uint256 assets; (assets, shares) = Actions.borrow( BorrowArgs({ assets: _assets, shares: 0, receiver: _receiver, borrower: _borrower }) ); emit Borrow(msg.sender, _receiver, _borrower, assets, shares); } /// @inheritdoc ISilo function maxBorrowShares(address _borrower) external view virtual returns (uint256 maxShares) { (,maxShares) = Views.maxBorrow({_borrower: _borrower, _sameAsset: false}); } /// @inheritdoc ISilo function previewBorrowShares(uint256 _shares) external view virtual returns (uint256 assets) { ( uint256 totalSiloAssets, uint256 totalShares ) = SiloStdLib.getTotalAssetsAndTotalSharesWithInterest(ShareTokenLib.getConfig(), AssetType.Debt); return SiloMathLib.convertToAssets( _shares, totalSiloAssets, totalShares, Rounding.BORROW_TO_ASSETS, AssetType.Debt ); } /// @inheritdoc ISilo function borrowShares(uint256 _shares, address _receiver, address _borrower) external virtual returns (uint256 assets) { uint256 shares; (assets, shares) = Actions.borrow( BorrowArgs({ assets: 0, shares: _shares, receiver: _receiver, borrower: _borrower }) ); emit Borrow(msg.sender, _receiver, _borrower, assets, shares); } /// @inheritdoc ISilo function maxBorrowSameAsset(address _borrower) external view virtual returns (uint256 maxAssets) { (maxAssets,) = Views.maxBorrow({_borrower: _borrower, _sameAsset: true}); } /// @inheritdoc ISilo function borrowSameAsset(uint256 _assets, address _receiver, address _borrower) external virtual returns (uint256 shares) { uint256 assets; (assets, shares) = Actions.borrowSameAsset( BorrowArgs({ assets: _assets, shares: 0, receiver: _receiver, borrower: _borrower }) ); emit Borrow(msg.sender, _receiver, _borrower, assets, shares); } /// @inheritdoc ISilo function transitionCollateral( uint256 _shares, address _owner, CollateralType _transitionFrom ) external virtual returns (uint256 assets) { uint256 toShares; (assets, toShares) = Actions.transitionCollateral( TransitionCollateralArgs({ shares: _shares, owner: _owner, transitionFrom: _transitionFrom }) ); if (_transitionFrom == CollateralType.Collateral) { emit Withdraw(msg.sender, _owner, _owner, assets, _shares); emit DepositProtected(msg.sender, _owner, assets, toShares); } else { emit WithdrawProtected(msg.sender, _owner, _owner, assets, _shares); emit Deposit(msg.sender, _owner, assets, toShares); } } /// @inheritdoc ISilo function switchCollateralToThisSilo() external virtual { Actions.switchCollateralToThisSilo(); emit CollateralTypeChanged(msg.sender); } /// @inheritdoc ISilo function maxRepay(address _borrower) external view virtual returns (uint256 assets) { assets = Views.maxRepay(_borrower); } /// @inheritdoc ISilo function previewRepay(uint256 _assets) external view virtual returns (uint256 shares) { ( uint256 totalSiloAssets, uint256 totalShares ) = SiloStdLib.getTotalAssetsAndTotalSharesWithInterest(ShareTokenLib.getConfig(), AssetType.Debt); return SiloMathLib.convertToShares( _assets, totalSiloAssets, totalShares, Rounding.REPAY_TO_SHARES, AssetType.Debt ); } /// @inheritdoc ISilo function repay(uint256 _assets, address _borrower) external virtual returns (uint256 shares) { uint256 assets; (assets, shares) = Actions.repay({ _assets: _assets, _shares: 0, _borrower: _borrower, _repayer: msg.sender }); emit Repay(msg.sender, _borrower, assets, shares); } /// @inheritdoc ISilo function maxRepayShares(address _borrower) external view virtual returns (uint256 shares) { (address debtShareToken,) = _getSiloConfig().getDebtShareTokenAndAsset(address(this)); shares = IShareToken(debtShareToken).balanceOf(_borrower); } /// @inheritdoc ISilo function previewRepayShares(uint256 _shares) external view virtual returns (uint256 assets) { ( uint256 totalSiloAssets, uint256 totalShares ) = SiloStdLib.getTotalAssetsAndTotalSharesWithInterest(ShareTokenLib.getConfig(), AssetType.Debt); return SiloMathLib.convertToAssets( _shares, totalSiloAssets, totalShares, Rounding.REPAY_TO_ASSETS, AssetType.Debt ); } /// @inheritdoc ISilo function repayShares(uint256 _shares, address _borrower) external virtual returns (uint256 assets) { uint256 shares; (assets, shares) = Actions.repay({ _assets: 0, _shares: _shares, _borrower: _borrower, _repayer: msg.sender }); emit Repay(msg.sender, _borrower, assets, shares); } /// @inheritdoc IERC3156FlashLender function maxFlashLoan(address _token) external view virtual returns (uint256 maxLoan) { maxLoan = Views.maxFlashLoan(_token); } /// @inheritdoc IERC3156FlashLender function flashFee(address _token, uint256 _amount) external view virtual returns (uint256 fee) { fee = Views.flashFee(_token, _amount); } /// @inheritdoc IERC3156FlashLender function flashLoan(IERC3156FlashBorrower _receiver, address _token, uint256 _amount, bytes calldata _data) external virtual returns (bool success) { success = Actions.flashLoan(_receiver, _token, _amount, _data); if (success) emit FlashLoan(_amount); } /// @inheritdoc ISilo function accrueInterest() external virtual returns (uint256 accruedInterest) { accruedInterest = _accrueInterest(); } /// @inheritdoc ISilo function accrueInterestForConfig(address _interestRateModel, uint256 _daoFee, uint256 _deployerFee) external virtual { require(msg.sender == address(ShareTokenLib.siloConfig()), OnlySiloConfig()); _accrueInterestForAsset(_interestRateModel, _daoFee, _deployerFee); } /// @inheritdoc ISilo function withdrawFees() external virtual { _accrueInterest(); (uint256 daoFees, uint256 deployerFees) = Actions.withdrawFees(this); emit WithdrawnFeed(daoFees, deployerFees); } function _totalAssets() internal view virtual returns (uint256 totalManagedAssets) { (totalManagedAssets,) = SiloStdLib.getTotalAssetsAndTotalSharesWithInterest( ShareTokenLib.getConfig(), AssetType.Collateral ); } function _convertToAssets(uint256 _shares, AssetType _assetType) internal view virtual returns (uint256 assets) { ( uint256 totalSiloAssets, uint256 totalShares ) = SiloStdLib.getTotalAssetsAndTotalSharesWithInterest(ShareTokenLib.getConfig(), _assetType); assets = SiloMathLib.convertToAssets( _shares, totalSiloAssets, totalShares, _assetType == AssetType.Debt ? Rounding.BORROW_TO_ASSETS : Rounding.DEPOSIT_TO_ASSETS, _assetType ); } function _convertToShares(uint256 _assets, AssetType _assetType) internal view virtual returns (uint256 shares) { ( uint256 totalSiloAssets, uint256 totalShares ) = SiloStdLib.getTotalAssetsAndTotalSharesWithInterest(ShareTokenLib.getConfig(), _assetType); shares = SiloMathLib.convertToShares( _assets, totalSiloAssets, totalShares, _assetType == AssetType.Debt ? Rounding.BORROW_TO_SHARES : Rounding.DEPOSIT_TO_SHARES, _assetType ); } function _deposit( uint256 _assets, uint256 _shares, address _receiver, ISilo.CollateralType _collateralType ) internal virtual returns (uint256 assets, uint256 shares) { ( assets, shares ) = Actions.deposit(_assets, _shares, _receiver, _collateralType); if (_collateralType == CollateralType.Collateral) { emit Deposit(msg.sender, _receiver, assets, shares); } else { emit DepositProtected(msg.sender, _receiver, assets, shares); } } function _withdraw( uint256 _assets, uint256 _shares, address _receiver, address _owner, address _spender, ISilo.CollateralType _collateralType ) internal virtual returns (uint256 assets, uint256 shares) { (assets, shares) = Actions.withdraw( WithdrawArgs({ assets: _assets, shares: _shares, receiver: _receiver, owner: _owner, spender: _spender, collateralType: _collateralType }) ); if (_collateralType == CollateralType.Collateral) { emit Withdraw(msg.sender, _receiver, _owner, assets, shares); } else { emit WithdrawProtected(msg.sender, _receiver, _owner, assets, shares); } } function _previewMint(uint256 _shares, CollateralType _collateralType) internal view virtual returns (uint256 assets) { ISilo.AssetType assetType = AssetType(uint256(_collateralType)); ( uint256 totalSiloAssets, uint256 totalShares ) = SiloStdLib.getTotalAssetsAndTotalSharesWithInterest(ShareTokenLib.getConfig(), assetType); return SiloMathLib.convertToAssets( _shares, totalSiloAssets, totalShares, Rounding.DEPOSIT_TO_ASSETS, assetType ); } function _previewDeposit(uint256 _assets, CollateralType _collateralType) internal view virtual returns (uint256 shares) { ISilo.AssetType assetType = AssetType(uint256(_collateralType)); (uint256 totalSiloAssets, uint256 totalShares) = SiloStdLib.getTotalAssetsAndTotalSharesWithInterest( ShareTokenLib.getConfig(), assetType ); return SiloMathLib.convertToShares( _assets, totalSiloAssets, totalShares, Rounding.DEPOSIT_TO_SHARES, assetType ); } function _previewRedeem( uint256 _shares, CollateralType _collateralType ) internal view virtual returns (uint256 assets) { ISilo.AssetType assetType = AssetType(uint256(_collateralType)); (uint256 totalSiloAssets, uint256 totalShares) = SiloStdLib.getTotalAssetsAndTotalSharesWithInterest( ShareTokenLib.getConfig(), assetType ); return SiloMathLib.convertToAssets( _shares, totalSiloAssets, totalShares, Rounding.WITHDRAW_TO_ASSETS, assetType ); } function _previewWithdraw( uint256 _assets, ISilo.CollateralType _collateralType ) internal view virtual returns (uint256 shares) { ISilo.AssetType assetType = AssetType(uint256(_collateralType)); (uint256 totalSiloAssets, uint256 totalShares) = SiloStdLib.getTotalAssetsAndTotalSharesWithInterest( ShareTokenLib.getConfig(), assetType ); return SiloMathLib.convertToShares( _assets, totalSiloAssets, totalShares, Rounding.WITHDRAW_TO_SHARES, assetType ); } function _maxWithdraw(address _owner, ISilo.CollateralType _collateralType) internal view virtual returns (uint256 assets, uint256 shares) { return Views.maxWithdraw(_owner, _collateralType); } function _accrueInterest() internal virtual returns (uint256 accruedInterest) { ISiloConfig.ConfigData memory cfg = ShareTokenLib.getConfig(); accruedInterest = _accrueInterestForAsset(cfg.interestRateModel, cfg.daoFee, cfg.deployerFee); } function _accrueInterestForAsset( address _interestRateModel, uint256 _daoFee, uint256 _deployerFee ) internal virtual returns (uint256 accruedInterest) { accruedInterest = SiloLendingLib.accrueInterestForAsset(_interestRateModel, _daoFee, _deployerFee); if (accruedInterest != 0) emit AccruedInterest(accruedInterest); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "../IERC20.sol"; import {IERC1363} from "../../../interfaces/IERC1363.sol"; import {Address} from "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC-20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; /** * @dev An operation with an ERC-20 token failed. */ error SafeERC20FailedOperation(address token); /** * @dev Indicates a failed `decreaseAllowance` request. */ error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease); /** * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value))); } /** * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful. */ function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value))); } /** * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 oldAllowance = token.allowance(address(this), spender); forceApprove(token, spender, oldAllowance + value); } /** * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no * value, non-reverting calls are assumed to be successful. */ function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal { unchecked { uint256 currentAllowance = token.allowance(address(this), spender); if (currentAllowance < requestedDecrease) { revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease); } forceApprove(token, spender, currentAllowance - requestedDecrease); } } /** * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval * to be set to zero before setting it to a non-zero value, such as USDT. */ function forceApprove(IERC20 token, address spender, uint256 value) internal { bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value)); if (!_callOptionalReturnBool(token, approvalCall)) { _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0))); _callOptionalReturn(token, approvalCall); } } /** * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when * targeting contracts. * * Reverts if the returned value is other than `true`. */ function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal { if (to.code.length == 0) { safeTransfer(token, to, value); } else if (!token.transferAndCall(to, value, data)) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when * targeting contracts. * * Reverts if the returned value is other than `true`. */ function transferFromAndCallRelaxed( IERC1363 token, address from, address to, uint256 value, bytes memory data ) internal { if (to.code.length == 0) { safeTransferFrom(token, from, to, value); } else if (!token.transferFromAndCall(from, to, value, data)) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when * targeting contracts. * * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}. * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall} * once without retrying, and relies on the returned value to be true. * * Reverts if the returned value is other than `true`. */ function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal { if (to.code.length == 0) { forceApprove(token, to, value); } else if (!token.approveAndCall(to, value, data)) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data); if (returndata.length != 0 && !abi.decode(returndata, (bool))) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead. */ function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false // and not revert is the subcall reverts. (bool success, bytes memory returndata) = address(token).call(data); return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-20 standard as defined in the ERC. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); }
// SPDX-License-Identifier: MIT pragma solidity >=0.5.0; import {IERC4626, IERC20, IERC20Metadata} from "openzeppelin5/interfaces/IERC4626.sol"; import {IERC3156FlashLender} from "./IERC3156FlashLender.sol"; import {ISiloConfig} from "./ISiloConfig.sol"; import {ISiloFactory} from "./ISiloFactory.sol"; import {IHookReceiver} from "./IHookReceiver.sol"; // solhint-disable ordering interface ISilo is IERC20, IERC4626, IERC3156FlashLender { /// @dev Interest accrual happens on each deposit/withdraw/borrow/repay. View methods work on storage that might be /// outdate. Some calculations require accrued interest to return current state of Silo. This struct is used /// to make a decision inside functions if interest should be accrued in memory to work on updated values. enum AccrueInterestInMemory { No, Yes } /// @dev Silo has two separate oracles for solvency and maxLtv calculations. MaxLtv oracle is optional. Solvency /// oracle can also be optional if asset is used as denominator in Silo config. For example, in ETH/USDC Silo /// one could setup only solvency oracle for ETH that returns price in USDC. Then USDC does not need an oracle /// because it's used as denominator for ETH and it's "price" can be assume as 1. enum OracleType { Solvency, MaxLtv } /// @dev There are 3 types of accounting in the system: for non-borrowable collateral deposit called "protected", /// for borrowable collateral deposit called "collateral" and for borrowed tokens called "debt". System does /// identical calculations for each type of accounting but it uses different data. To avoid code duplication /// this enum is used to decide which data should be read. enum AssetType { Protected, // default Collateral, Debt } /// @dev There are 2 types of accounting in the system: for non-borrowable collateral deposit called "protected" and /// for borrowable collateral deposit called "collateral". System does /// identical calculations for each type of accounting but it uses different data. To avoid code duplication /// this enum is used to decide which data should be read. enum CollateralType { Protected, // default Collateral } /// @dev Types of calls that can be made by the hook receiver on behalf of Silo via `callOnBehalfOfSilo` fn enum CallType { Call, // default Delegatecall } /// @param _assets Amount of assets the user wishes to withdraw. Use 0 if shares are provided. /// @param _shares Shares the user wishes to burn in exchange for the withdrawal. Use 0 if assets are provided. /// @param _receiver Address receiving the withdrawn assets /// @param _owner Address of the owner of the shares being burned /// @param _spender Address executing the withdrawal; may be different than `_owner` if an allowance was set /// @param _collateralType Type of the asset being withdrawn (Collateral or Protected) struct WithdrawArgs { uint256 assets; uint256 shares; address receiver; address owner; address spender; ISilo.CollateralType collateralType; } /// @param assets Number of assets the borrower intends to borrow. Use 0 if shares are provided. /// @param shares Number of shares corresponding to the assets that the borrower intends to borrow. Use 0 if /// assets are provided. /// @param receiver Address that will receive the borrowed assets /// @param borrower The user who is borrowing the assets struct BorrowArgs { uint256 assets; uint256 shares; address receiver; address borrower; } /// @param shares Amount of shares the user wishes to transit. /// @param owner owner of the shares after transition. /// @param transitionFrom type of collateral that will be transitioned. struct TransitionCollateralArgs { uint256 shares; address owner; ISilo.CollateralType transitionFrom; } struct UtilizationData { /// @dev COLLATERAL: Amount of asset token that has been deposited to Silo plus interest earned by depositors. /// It also includes token amount that has been borrowed. uint256 collateralAssets; /// @dev DEBT: Amount of asset token that has been borrowed plus accrued interest. uint256 debtAssets; /// @dev timestamp of the last interest accrual uint64 interestRateTimestamp; } struct SiloStorage { /// @param daoAndDeployerRevenue Current amount of assets (fees) accrued by DAO and Deployer /// but not yet withdrawn uint192 daoAndDeployerRevenue; /// @dev timestamp of the last interest accrual uint64 interestRateTimestamp; /// @dev silo is just for one asset, /// but this one asset can be of three types: mapping key is uint256(AssetType), so we store `assets` by type. /// Assets based on type: /// - PROTECTED COLLATERAL: Amount of asset token that has been deposited to Silo that can be ONLY used /// as collateral. These deposits do NOT earn interest and CANNOT be borrowed. /// - COLLATERAL: Amount of asset token that has been deposited to Silo plus interest earned by depositors. /// It also includes token amount that has been borrowed. /// - DEBT: Amount of asset token that has been borrowed plus accrued interest. /// `totalAssets` can have outdated value (without interest), if you doing view call (of off-chain call) /// please use getters eg `getCollateralAssets()` to fetch value that includes interest. mapping(AssetType assetType => uint256 assets) totalAssets; } /// @notice Emitted on protected deposit /// @param sender wallet address that deposited asset /// @param owner wallet address that received shares in Silo /// @param assets amount of asset that was deposited /// @param shares amount of shares that was minted event DepositProtected(address indexed sender, address indexed owner, uint256 assets, uint256 shares); /// @notice Emitted on protected withdraw /// @param sender wallet address that sent transaction /// @param receiver wallet address that received asset /// @param owner wallet address that owned asset /// @param assets amount of asset that was withdrew /// @param shares amount of shares that was burn event WithdrawProtected( address indexed sender, address indexed receiver, address indexed owner, uint256 assets, uint256 shares ); /// @notice Emitted on borrow /// @param sender wallet address that sent transaction /// @param receiver wallet address that received asset /// @param owner wallet address that owes assets /// @param assets amount of asset that was borrowed /// @param shares amount of shares that was minted event Borrow( address indexed sender, address indexed receiver, address indexed owner, uint256 assets, uint256 shares ); /// @notice Emitted on repayment /// @param sender wallet address that repaid asset /// @param owner wallet address that owed asset /// @param assets amount of asset that was repaid /// @param shares amount of shares that was burn event Repay(address indexed sender, address indexed owner, uint256 assets, uint256 shares); /// @notice emitted only when collateral has been switched to other one event CollateralTypeChanged(address indexed borrower); event HooksUpdated(uint24 hooksBefore, uint24 hooksAfter); event AccruedInterest(uint256 hooksBefore); event FlashLoan(uint256 amount); event WithdrawnFeed(uint256 daoFees, uint256 deployerFees); error Unsupported(); error NothingToWithdraw(); error NotEnoughLiquidity(); error NotSolvent(); error BorrowNotPossible(); error EarnedZero(); error FlashloanFailed(); error AboveMaxLtv(); error SiloInitialized(); error OnlyHookReceiver(); error NoLiquidity(); error InputCanBeAssetsOrShares(); error CollateralSiloAlreadySet(); error RepayTooHigh(); error ZeroAmount(); error InputZeroShares(); error ReturnZeroAssets(); error ReturnZeroShares(); /// @return siloFactory The associated factory of the silo function factory() external view returns (ISiloFactory siloFactory); /// @notice Method for HookReceiver only to call on behalf of Silo /// @param _target address of the contract to call /// @param _value amount of ETH to send /// @param _callType type of the call (Call or Delegatecall) /// @param _input calldata for the call function callOnBehalfOfSilo(address _target, uint256 _value, CallType _callType, bytes calldata _input) external payable returns (bool success, bytes memory result); /// @notice Initialize Silo /// @param _siloConfig address of ISiloConfig with full config for this Silo function initialize(ISiloConfig _siloConfig) external; /// @notice Update hooks configuration for Silo /// @dev This function must be called after the hooks configuration is changed in the hook receiver function updateHooks() external; /// @notice Fetches the silo configuration contract /// @return siloConfig Address of the configuration contract associated with the silo function config() external view returns (ISiloConfig siloConfig); /// @notice Fetches the utilization data of the silo used by IRM function utilizationData() external view returns (UtilizationData memory utilizationData); /// @notice Fetches the real (available to borrow) liquidity in the silo, it does include interest /// @return liquidity The amount of liquidity function getLiquidity() external view returns (uint256 liquidity); /// @notice Determines if a borrower is solvent /// @param _borrower Address of the borrower to check for solvency /// @return True if the borrower is solvent, otherwise false function isSolvent(address _borrower) external view returns (bool); /// @notice Retrieves the raw total amount of assets based on provided type (direct storage access) function getTotalAssetsStorage(AssetType _assetType) external view returns (uint256); /// @notice Direct storage access to silo storage /// @dev See struct `SiloStorage` for more details function getSiloStorage() external view returns ( uint192 daoAndDeployerRevenue, uint64 interestRateTimestamp, uint256 protectedAssets, uint256 collateralAssets, uint256 debtAssets ); /// @notice Retrieves the total amount of collateral (borrowable) assets with interest /// @return totalCollateralAssets The total amount of assets of type 'Collateral' function getCollateralAssets() external view returns (uint256 totalCollateralAssets); /// @notice Retrieves the total amount of debt assets with interest /// @return totalDebtAssets The total amount of assets of type 'Debt' function getDebtAssets() external view returns (uint256 totalDebtAssets); /// @notice Retrieves the total amounts of collateral and protected (non-borrowable) assets /// @return totalCollateralAssets The total amount of assets of type 'Collateral' /// @return totalProtectedAssets The total amount of protected (non-borrowable) assets function getCollateralAndProtectedTotalsStorage() external view returns (uint256 totalCollateralAssets, uint256 totalProtectedAssets); /// @notice Retrieves the total amounts of collateral and debt assets /// @return totalCollateralAssets The total amount of assets of type 'Collateral' /// @return totalDebtAssets The total amount of debt assets of type 'Debt' function getCollateralAndDebtTotalsStorage() external view returns (uint256 totalCollateralAssets, uint256 totalDebtAssets); /// @notice Implements IERC4626.convertToShares for each asset type function convertToShares(uint256 _assets, AssetType _assetType) external view returns (uint256 shares); /// @notice Implements IERC4626.convertToAssets for each asset type function convertToAssets(uint256 _shares, AssetType _assetType) external view returns (uint256 assets); /// @notice Implements IERC4626.previewDeposit for protected (non-borrowable) collateral and collateral /// @dev Reverts for debt asset type function previewDeposit(uint256 _assets, CollateralType _collateralType) external view returns (uint256 shares); /// @notice Implements IERC4626.deposit for protected (non-borrowable) collateral and collateral /// @dev Reverts for debt asset type function deposit(uint256 _assets, address _receiver, CollateralType _collateralType) external returns (uint256 shares); /// @notice Implements IERC4626.previewMint for protected (non-borrowable) collateral and collateral /// @dev Reverts for debt asset type function previewMint(uint256 _shares, CollateralType _collateralType) external view returns (uint256 assets); /// @notice Implements IERC4626.mint for protected (non-borrowable) collateral and collateral /// @dev Reverts for debt asset type function mint(uint256 _shares, address _receiver, CollateralType _collateralType) external returns (uint256 assets); /// @notice Implements IERC4626.maxWithdraw for protected (non-borrowable) collateral and collateral /// @dev Reverts for debt asset type function maxWithdraw(address _owner, CollateralType _collateralType) external view returns (uint256 maxAssets); /// @notice Implements IERC4626.previewWithdraw for protected (non-borrowable) collateral and collateral /// @dev Reverts for debt asset type function previewWithdraw(uint256 _assets, CollateralType _collateralType) external view returns (uint256 shares); /// @notice Implements IERC4626.withdraw for protected (non-borrowable) collateral and collateral /// @dev Reverts for debt asset type function withdraw(uint256 _assets, address _receiver, address _owner, CollateralType _collateralType) external returns (uint256 shares); /// @notice Implements IERC4626.maxRedeem for protected (non-borrowable) collateral and collateral /// @dev Reverts for debt asset type function maxRedeem(address _owner, CollateralType _collateralType) external view returns (uint256 maxShares); /// @notice Implements IERC4626.previewRedeem for protected (non-borrowable) collateral and collateral /// @dev Reverts for debt asset type function previewRedeem(uint256 _shares, CollateralType _collateralType) external view returns (uint256 assets); /// @notice Implements IERC4626.redeem for protected (non-borrowable) collateral and collateral /// @dev Reverts for debt asset type function redeem(uint256 _shares, address _receiver, address _owner, CollateralType _collateralType) external returns (uint256 assets); /// @notice Calculates the maximum amount of assets that can be borrowed by the given address /// @param _borrower Address of the potential borrower /// @return maxAssets Maximum amount of assets that the borrower can borrow, this value is underestimated /// That means, in some cases when you borrow maxAssets, you will be able to borrow again eg. up to 2wei /// Reason for underestimation is to return value that will not cause borrow revert function maxBorrow(address _borrower) external view returns (uint256 maxAssets); /// @notice Previews the amount of shares equivalent to the given asset amount for borrowing /// @param _assets Amount of assets to preview the equivalent shares for /// @return shares Amount of shares equivalent to the provided asset amount function previewBorrow(uint256 _assets) external view returns (uint256 shares); /// @notice Allows an address to borrow a specified amount of assets /// @param _assets Amount of assets to borrow /// @param _receiver Address receiving the borrowed assets /// @param _borrower Address responsible for the borrowed assets /// @return shares Amount of shares equivalent to the borrowed assets function borrow(uint256 _assets, address _receiver, address _borrower) external returns (uint256 shares); /// @notice Calculates the maximum amount of shares that can be borrowed by the given address /// @param _borrower Address of the potential borrower /// @return maxShares Maximum number of shares that the borrower can borrow function maxBorrowShares(address _borrower) external view returns (uint256 maxShares); /// @notice Previews the amount of assets equivalent to the given share amount for borrowing /// @param _shares Amount of shares to preview the equivalent assets for /// @return assets Amount of assets equivalent to the provided share amount function previewBorrowShares(uint256 _shares) external view returns (uint256 assets); /// @notice Calculates the maximum amount of assets that can be borrowed by the given address /// @param _borrower Address of the potential borrower /// @return maxAssets Maximum amount of assets that the borrower can borrow, this value is underestimated /// That means, in some cases when you borrow maxAssets, you will be able to borrow again eg. up to 2wei /// Reason for underestimation is to return value that will not cause borrow revert function maxBorrowSameAsset(address _borrower) external view returns (uint256 maxAssets); /// @notice Allows an address to borrow a specified amount of assets that will be back up with deposit made with the /// same asset /// @param _assets Amount of assets to borrow /// @param _receiver Address receiving the borrowed assets /// @param _borrower Address responsible for the borrowed assets /// @return shares Amount of shares equivalent to the borrowed assets function borrowSameAsset(uint256 _assets, address _receiver, address _borrower) external returns (uint256 shares); /// @notice Allows a user to borrow assets based on the provided share amount /// @param _shares Amount of shares to borrow against /// @param _receiver Address to receive the borrowed assets /// @param _borrower Address responsible for the borrowed assets /// @return assets Amount of assets borrowed function borrowShares(uint256 _shares, address _receiver, address _borrower) external returns (uint256 assets); /// @notice Calculates the maximum amount an address can repay based on their debt shares /// @param _borrower Address of the borrower /// @return assets Maximum amount of assets the borrower can repay function maxRepay(address _borrower) external view returns (uint256 assets); /// @notice Provides an estimation of the number of shares equivalent to a given asset amount for repayment /// @param _assets Amount of assets to be repaid /// @return shares Estimated number of shares equivalent to the provided asset amount function previewRepay(uint256 _assets) external view returns (uint256 shares); /// @notice Repays a given asset amount and returns the equivalent number of shares /// @param _assets Amount of assets to be repaid /// @param _borrower Address of the borrower whose debt is being repaid /// @return shares The equivalent number of shares for the provided asset amount function repay(uint256 _assets, address _borrower) external returns (uint256 shares); /// @notice Calculates the maximum number of shares that can be repaid for a given borrower /// @param _borrower Address of the borrower /// @return shares The maximum number of shares that can be repaid for the borrower function maxRepayShares(address _borrower) external view returns (uint256 shares); /// @notice Provides a preview of the equivalent assets for a given number of shares to repay /// @param _shares Number of shares to preview repayment for /// @return assets Equivalent assets for the provided shares function previewRepayShares(uint256 _shares) external view returns (uint256 assets); /// @notice Allows a user to repay a loan using shares instead of assets /// @param _shares The number of shares the borrower wants to repay with /// @param _borrower The address of the borrower for whom to repay the loan /// @return assets The equivalent assets amount for the provided shares function repayShares(uint256 _shares, address _borrower) external returns (uint256 assets); /// @notice Transitions assets between borrowable (collateral) and non-borrowable (protected) states /// @dev This function allows assets to move between collateral and protected (non-borrowable) states without /// leaving the protocol /// @param _shares Amount of shares to be transitioned /// @param _owner Owner of the assets being transitioned /// @param _transitionFrom Specifies if the transition is from collateral or protected assets /// @return assets Amount of assets transitioned function transitionCollateral(uint256 _shares, address _owner, CollateralType _transitionFrom) external returns (uint256 assets); /// @notice Switches the collateral silo to this silo /// @dev Revert if the collateral silo is already set function switchCollateralToThisSilo() external; /// @notice Accrues interest for the asset and returns the accrued interest amount /// @return accruedInterest The total interest accrued during this operation function accrueInterest() external returns (uint256 accruedInterest); /// @notice only for SiloConfig function accrueInterestForConfig( address _interestRateModel, uint256 _daoFee, uint256 _deployerFee ) external; /// @notice Withdraws earned fees and distributes them to the DAO and deployer fee receivers function withdrawFees() external; }
// SPDX-License-Identifier: MIT pragma solidity >=0.5.0; import {IERC20Metadata} from "openzeppelin5/token/ERC20/extensions/IERC20Metadata.sol"; import {ISiloConfig} from "./ISiloConfig.sol"; import {ISilo} from "./ISilo.sol"; interface IShareToken is IERC20Metadata { struct HookSetup { /// @param this is the same as in siloConfig address hookReceiver; /// @param hooks bitmap uint24 hooksBefore; /// @param hooks bitmap uint24 hooksAfter; /// @param tokenType must be one of this hooks values: COLLATERAL_TOKEN, PROTECTED_TOKEN, DEBT_TOKEN uint24 tokenType; } struct ShareTokenStorage { /// @notice Silo address for which tokens was deployed ISilo silo; /// @dev cached silo config address ISiloConfig siloConfig; /// @notice Copy of hooks setup from SiloConfig for optimisation purposes HookSetup hookSetup; bool transferWithChecks; } /// @notice Emitted every time receiver is notified about token transfer /// @param notificationReceiver receiver address /// @param success false if TX reverted on `notificationReceiver` side, otherwise true event NotificationSent(address indexed notificationReceiver, bool success); error OnlySilo(); error OnlySiloConfig(); error OwnerIsZero(); error RecipientIsZero(); error AmountExceedsAllowance(); error RecipientNotSolventAfterTransfer(); error SenderNotSolventAfterTransfer(); error ZeroTransfer(); /// @notice method for SiloConfig to synchronize hooks /// @param _hooksBefore hooks bitmap to trigger hooks BEFORE action /// @param _hooksAfter hooks bitmap to trigger hooks AFTER action function synchronizeHooks(uint24 _hooksBefore, uint24 _hooksAfter) external; /// @notice Mint method for Silo to create debt /// @param _owner wallet for which to mint token /// @param _spender wallet that asks for mint /// @param _amount amount of token to be minted function mint(address _owner, address _spender, uint256 _amount) external; /// @notice Burn method for Silo to close debt /// @param _owner wallet for which to burn token /// @param _spender wallet that asks for burn /// @param _amount amount of token to be burned function burn(address _owner, address _spender, uint256 _amount) external; /// @notice TransferFrom method for liquidation /// @param _from wallet from which we transferring tokens /// @param _to wallet that will get tokens /// @param _amount amount of token to transfer function forwardTransferFromNoChecks(address _from, address _to, uint256 _amount) external; /// @dev Returns the amount of tokens owned by `account`. /// @param _account address for which to return data /// @return balance of the _account /// @return totalSupply total supply of the token function balanceOfAndTotalSupply(address _account) external view returns (uint256 balance, uint256 totalSupply); /// @notice Returns silo address for which token was deployed /// @return silo address function silo() external view returns (ISilo silo); function siloConfig() external view returns (ISiloConfig silo); /// @notice Returns hook setup function hookSetup() external view returns (HookSetup memory); /// @notice Returns hook receiver address function hookReceiver() external view returns (address); }
// SPDX-License-Identifier: MIT pragma solidity >=0.5.0; interface IERC3156FlashBorrower { /// @notice During the execution of the flashloan, Silo methods are not taking into consideration the fact, /// that some (or all) tokens were transferred as flashloan, therefore some methods can return invalid state /// eg. maxWithdraw can return amount that are not available to withdraw during flashlon. /// @dev Receive a flash loan. /// @param _initiator The initiator of the loan. /// @param _token The loan currency. /// @param _amount The amount of tokens lent. /// @param _fee The additional amount of tokens to repay. /// @param _data Arbitrary data structure, intended to contain user-defined parameters. /// @return The keccak256 hash of "ERC3156FlashBorrower.onFlashLoan" function onFlashLoan(address _initiator, address _token, uint256 _amount, uint256 _fee, bytes calldata _data) external returns (bytes32); }
// SPDX-License-Identifier: MIT pragma solidity >=0.5.0; import {ISilo} from "./ISilo.sol"; import {ICrossReentrancyGuard} from "./ICrossReentrancyGuard.sol"; interface ISiloConfig is ICrossReentrancyGuard { struct InitData { /// @notice Can be address zero if deployer fees are not to be collected. If deployer address is zero then /// deployer fee must be zero as well. Deployer will be minted an NFT that gives the right to claim deployer /// fees. NFT can be transferred with the right to claim. address deployer; /// @notice Address of the hook receiver called on every before/after action on Silo. Hook contract also /// implements liquidation logic and veSilo gauge connection. address hookReceiver; /// @notice Deployer's fee in 18 decimals points. Deployer will earn this fee based on the interest earned /// by the Silo. Max deployer fee is set by the DAO. At deployment it is 15%. uint256 deployerFee; /// @notice DAO's fee in 18 decimals points. DAO will earn this fee based on the interest earned /// by the Silo. Acceptable fee range fee is set by the DAO. Default at deployment is 5% - 50%. uint256 daoFee; /// @notice Address of the first token address token0; /// @notice Address of the solvency oracle. Solvency oracle is used to calculate LTV when deciding if borrower /// is solvent or should be liquidated. Solvency oracle is optional and if not set price of 1 will be assumed. address solvencyOracle0; /// @notice Address of the maxLtv oracle. Max LTV oracle is used to calculate LTV when deciding if borrower /// can borrow given amount of assets. Max LTV oracle is optional and if not set it defaults to solvency /// oracle. If neither is set price of 1 will be assumed. address maxLtvOracle0; /// @notice Address of the interest rate model address interestRateModel0; /// @notice Maximum LTV for first token. maxLTV is in 18 decimals points and is used to determine, if borrower /// can borrow given amount of assets. MaxLtv is in 18 decimals points. MaxLtv must be lower or equal to LT. uint256 maxLtv0; /// @notice Liquidation threshold for first token. LT is used to calculate solvency. LT is in 18 decimals /// points. LT must not be lower than maxLTV. uint256 lt0; /// @notice minimal acceptable LTV after liquidation, in 18 decimals points uint256 liquidationTargetLtv0; /// @notice Liquidation fee for the first token in 18 decimals points. Liquidation fee is what liquidator earns /// for repaying insolvent loan. uint256 liquidationFee0; /// @notice Flashloan fee sets the cost of taking a flashloan in 18 decimals points uint256 flashloanFee0; /// @notice Indicates if a beforeQuote on oracle contract should be called before quoting price bool callBeforeQuote0; /// @notice Address of the second token address token1; /// @notice Address of the solvency oracle. Solvency oracle is used to calculate LTV when deciding if borrower /// is solvent or should be liquidated. Solvency oracle is optional and if not set price of 1 will be assumed. address solvencyOracle1; /// @notice Address of the maxLtv oracle. Max LTV oracle is used to calculate LTV when deciding if borrower /// can borrow given amount of assets. Max LTV oracle is optional and if not set it defaults to solvency /// oracle. If neither is set price of 1 will be assumed. address maxLtvOracle1; /// @notice Address of the interest rate model address interestRateModel1; /// @notice Maximum LTV for first token. maxLTV is in 18 decimals points and is used to determine, /// if borrower can borrow given amount of assets. maxLtv is in 18 decimals points uint256 maxLtv1; /// @notice Liquidation threshold for first token. LT is used to calculate solvency. LT is in 18 decimals points uint256 lt1; /// @notice minimal acceptable LTV after liquidation, in 18 decimals points uint256 liquidationTargetLtv1; /// @notice Liquidation fee is what liquidator earns for repaying insolvent loan. uint256 liquidationFee1; /// @notice Flashloan fee sets the cost of taking a flashloan in 18 decimals points uint256 flashloanFee1; /// @notice Indicates if a beforeQuote on oracle contract should be called before quoting price bool callBeforeQuote1; } struct ConfigData { uint256 daoFee; uint256 deployerFee; address silo; address token; address protectedShareToken; address collateralShareToken; address debtShareToken; address solvencyOracle; address maxLtvOracle; address interestRateModel; uint256 maxLtv; uint256 lt; uint256 liquidationTargetLtv; uint256 liquidationFee; uint256 flashloanFee; address hookReceiver; bool callBeforeQuote; } struct DepositConfig { address silo; address token; address collateralShareToken; address protectedShareToken; uint256 daoFee; uint256 deployerFee; address interestRateModel; } error OnlySilo(); error OnlySiloOrTokenOrHookReceiver(); error WrongSilo(); error OnlyDebtShareToken(); error DebtExistInOtherSilo(); error FeeTooHigh(); /// @dev It should be called on debt transfer (debt share token transfer). /// In the case if the`_recipient` doesn't have configured a collateral silo, /// it will be set to the collateral silo of the `_sender`. /// @param _sender sender address /// @param _recipient recipient address function onDebtTransfer(address _sender, address _recipient) external; /// @notice Set collateral silo. /// @dev Revert if msg.sender is not a SILO_0 or SILO_1. /// @dev Always set collateral silo the same as msg.sender. /// @param _borrower borrower address function setThisSiloAsCollateralSilo(address _borrower) external; /// @notice Set collateral silo /// @dev Revert if msg.sender is not a SILO_0 or SILO_1. /// @dev Always set collateral silo opposite to the msg.sender. /// @param _borrower borrower address function setOtherSiloAsCollateralSilo(address _borrower) external; /// @notice Accrue interest for the silo /// @param _silo silo for which accrue interest function accrueInterestForSilo(address _silo) external; /// @notice Accrue interest for both silos (SILO_0 and SILO_1 in a config) function accrueInterestForBothSilos() external; /// @notice Retrieves the collateral silo for a specific borrower. /// @dev As a user can deposit into `Silo0` and `Silo1`, this property specifies which Silo /// will be used as collateral for the debt. Later on, it will be used for max LTV and solvency checks. /// After being set, the collateral silo is never set to `address(0)` again but such getters as /// `getConfigsForSolvency`, `getConfigsForBorrow`, `getConfigsForWithdraw` will return empty /// collateral silo config if borrower doesn't have debt. /// /// In the SiloConfig collateral silo is set by the following functions: /// `onDebtTransfer` - only if the recipient doesn't have collateral silo set (inherits it from the sender) /// This function is called on debt share token transfer (debt transfer). /// `setThisSiloAsCollateralSilo` - sets the same silo as the one that calls the function. /// `setOtherSiloAsCollateralSilo` - sets the opposite silo as collateral from the one that calls the function. /// /// In the Silo collateral silo is set by the following functions: /// `borrow` - always sets opposite silo as collateral. /// If Silo0 borrows, then Silo1 will be collateral and vice versa. /// `borrowSameAsset` - always sets the same silo as collateral. /// `switchCollateralToThisSilo` - always sets the same silo as collateral. /// @param _borrower The address of the borrower for which the collateral silo is being retrieved /// @return collateralSilo The address of the collateral silo for the specified borrower function borrowerCollateralSilo(address _borrower) external view returns (address collateralSilo); /// @notice Retrieves the silo ID /// @dev Each silo is assigned a unique ID. ERC-721 token is minted with identical ID to deployer. /// An owner of that token receives the deployer fees. /// @return siloId The ID of the silo function SILO_ID() external view returns (uint256 siloId); // solhint-disable-line func-name-mixedcase /// @notice Retrieves the addresses of the two silos /// @return silo0 The address of the first silo /// @return silo1 The address of the second silo function getSilos() external view returns (address silo0, address silo1); /// @notice Retrieves the asset associated with a specific silo /// @dev This function reverts for incorrect silo address input /// @param _silo The address of the silo for which the associated asset is being retrieved /// @return asset The address of the asset associated with the specified silo function getAssetForSilo(address _silo) external view returns (address asset); /// @notice Verifies if the borrower has debt in other silo by checking the debt share token balance /// @param _thisSilo The address of the silo in respect of which the debt is checked /// @param _borrower The address of the borrower for which the debt is checked /// @return hasDebt true if the borrower has debt in other silo function hasDebtInOtherSilo(address _thisSilo, address _borrower) external view returns (bool hasDebt); /// @notice Retrieves the debt silo associated with a specific borrower /// @dev This function reverts if debt present in two silo (should not happen) /// @param _borrower The address of the borrower for which the debt silo is being retrieved function getDebtSilo(address _borrower) external view returns (address debtSilo); /// @notice Retrieves configuration data for both silos. First config is for the silo that is asking for configs. /// @param borrower borrower address for which debtConfig will be returned /// @return collateralConfig The configuration data for collateral silo (empty if there is no debt). /// @return debtConfig The configuration data for debt silo (empty if there is no debt). function getConfigsForSolvency(address borrower) external view returns (ConfigData memory collateralConfig, ConfigData memory debtConfig); /// @notice Retrieves configuration data for a specific silo /// @dev This function reverts for incorrect silo address input. /// @param _silo The address of the silo for which configuration data is being retrieved /// @return config The configuration data for the specified silo function getConfig(address _silo) external view returns (ConfigData memory config); /// @notice Retrieves configuration data for a specific silo for withdraw fn. /// @dev This function reverts for incorrect silo address input. /// @param _silo The address of the silo for which configuration data is being retrieved /// @return depositConfig The configuration data for the specified silo (always config for `_silo`) /// @return collateralConfig The configuration data for the collateral silo (empty if there is no debt) /// @return debtConfig The configuration data for the debt silo (empty if there is no debt) function getConfigsForWithdraw(address _silo, address _borrower) external view returns ( DepositConfig memory depositConfig, ConfigData memory collateralConfig, ConfigData memory debtConfig ); /// @notice Retrieves configuration data for a specific silo for borrow fn. /// @dev This function reverts for incorrect silo address input. /// @param _debtSilo The address of the silo for which configuration data is being retrieved /// @return collateralConfig The configuration data for the collateral silo (always other than `_debtSilo`) /// @return debtConfig The configuration data for the debt silo (always config for `_debtSilo`) function getConfigsForBorrow(address _debtSilo) external view returns (ConfigData memory collateralConfig, ConfigData memory debtConfig); /// @notice Retrieves fee-related information for a specific silo /// @dev This function reverts for incorrect silo address input /// @param _silo The address of the silo for which fee-related information is being retrieved. /// @return daoFee The DAO fee percentage in 18 decimals points. /// @return deployerFee The deployer fee percentage in 18 decimals points. /// @return flashloanFee The flashloan fee percentage in 18 decimals points. /// @return asset The address of the asset associated with the specified silo. function getFeesWithAsset(address _silo) external view returns (uint256 daoFee, uint256 deployerFee, uint256 flashloanFee, address asset); /// @notice Retrieves share tokens associated with a specific silo /// @dev This function reverts for incorrect silo address input /// @param _silo The address of the silo for which share tokens are being retrieved /// @return protectedShareToken The address of the protected (non-borrowable) share token /// @return collateralShareToken The address of the collateral share token /// @return debtShareToken The address of the debt share token function getShareTokens(address _silo) external view returns (address protectedShareToken, address collateralShareToken, address debtShareToken); /// @notice Retrieves the share token and the silo token associated with a specific silo /// @param _silo The address of the silo for which the share token and silo token are being retrieved /// @param _collateralType The type of collateral /// @return shareToken The address of the share token (collateral or protected collateral) /// @return asset The address of the silo token function getCollateralShareTokenAndAsset(address _silo, ISilo.CollateralType _collateralType) external view returns (address shareToken, address asset); /// @notice Retrieves the share token and the silo token associated with a specific silo /// @param _silo The address of the silo for which the share token and silo token are being retrieved /// @return shareToken The address of the share token (debt) /// @return asset The address of the silo token function getDebtShareTokenAndAsset(address _silo) external view returns (address shareToken, address asset); }
// SPDX-License-Identifier: MIT pragma solidity >=0.5.0; import {IERC721} from "openzeppelin5/interfaces/IERC721.sol"; import {ISiloConfig} from "./ISiloConfig.sol"; interface ISiloFactory is IERC721 { struct Range { uint128 min; uint128 max; } /// @notice Emitted on the creation of a Silo. /// @param implementation Address of the Silo implementation. /// @param token0 Address of the first Silo token. /// @param token1 Address of the second Silo token. /// @param silo0 Address of the first Silo. /// @param silo1 Address of the second Silo. /// @param siloConfig Address of the SiloConfig. event NewSilo( address indexed implementation, address indexed token0, address indexed token1, address silo0, address silo1, address siloConfig ); event BaseURI(string newBaseURI); /// @notice Emitted on the update of DAO fee. /// @param minDaoFee Value of the new minimal DAO fee. /// @param maxDaoFee Value of the new maximal DAO fee. event DaoFeeChanged(uint128 minDaoFee, uint128 maxDaoFee); /// @notice Emitted on the update of max deployer fee. /// @param maxDeployerFee Value of the new max deployer fee. event MaxDeployerFeeChanged(uint256 maxDeployerFee); /// @notice Emitted on the update of max flashloan fee. /// @param maxFlashloanFee Value of the new max flashloan fee. event MaxFlashloanFeeChanged(uint256 maxFlashloanFee); /// @notice Emitted on the update of max liquidation fee. /// @param maxLiquidationFee Value of the new max liquidation fee. event MaxLiquidationFeeChanged(uint256 maxLiquidationFee); /// @notice Emitted on the change of DAO fee receiver. /// @param daoFeeReceiver Address of the new DAO fee receiver. event DaoFeeReceiverChanged(address daoFeeReceiver); error MissingHookReceiver(); error ZeroAddress(); error DaoFeeReceiverZeroAddress(); error EmptyToken0(); error EmptyToken1(); error MaxFeeExceeded(); error InvalidFeeRange(); error SameAsset(); error SameRange(); error InvalidIrm(); error InvalidMaxLtv(); error InvalidLt(); error InvalidDeployer(); error DaoMinRangeExceeded(); error DaoMaxRangeExceeded(); error MaxDeployerFeeExceeded(); error MaxFlashloanFeeExceeded(); error MaxLiquidationFeeExceeded(); error InvalidCallBeforeQuote(); error OracleMisconfiguration(); error InvalidQuoteToken(); error HookIsZeroAddress(); error LiquidationTargetLtvTooHigh(); /// @notice Create a new Silo. /// @param _initData Silo initialization data. /// @param _siloConfig Silo configuration. /// @param _siloImpl Address of the `Silo` implementation. /// @param _shareProtectedCollateralTokenImpl Address of the `ShareProtectedCollateralToken` implementation. /// @param _shareDebtTokenImpl Address of the `ShareDebtToken` implementation. function createSilo( ISiloConfig.InitData memory _initData, ISiloConfig _siloConfig, address _siloImpl, address _shareProtectedCollateralTokenImpl, address _shareDebtTokenImpl ) external; /// @notice NFT ownership represents the deployer fee receiver for the each Silo ID. After burning, /// the deployer fee is sent to the DAO. Burning doesn't affect Silo's behavior. It is only about fee distribution. /// @param _siloIdToBurn silo ID to burn. function burn(uint256 _siloIdToBurn) external; /// @notice Update the value of DAO fee. Updated value will be used only for a new Silos. /// Previously deployed SiloConfigs are immutable. /// @param _minFee Value of the new DAO minimal fee. /// @param _maxFee Value of the new DAO maximal fee. function setDaoFee(uint128 _minFee, uint128 _maxFee) external; /// @notice Set the new DAO fee receiver. /// @param _newDaoFeeReceiver Address of the new DAO fee receiver. function setDaoFeeReceiver(address _newDaoFeeReceiver) external; /// @notice Update the value of max deployer fee. Updated value will be used only for a new Silos max deployer /// fee validation. Previously deployed SiloConfigs are immutable. /// @param _newMaxDeployerFee Value of the new max deployer fee. function setMaxDeployerFee(uint256 _newMaxDeployerFee) external; /// @notice Update the value of max flashloan fee. Updated value will be used only for a new Silos max flashloan /// fee validation. Previously deployed SiloConfigs are immutable. /// @param _newMaxFlashloanFee Value of the new max flashloan fee. function setMaxFlashloanFee(uint256 _newMaxFlashloanFee) external; /// @notice Update the value of max liquidation fee. Updated value will be used only for a new Silos max /// liquidation fee validation. Previously deployed SiloConfigs are immutable. /// @param _newMaxLiquidationFee Value of the new max liquidation fee. function setMaxLiquidationFee(uint256 _newMaxLiquidationFee) external; /// @notice Update the base URI. /// @param _newBaseURI Value of the new base URI. function setBaseURI(string calldata _newBaseURI) external; /// @notice Acceptable DAO fee range for new Silos. Denominated in 18 decimals points. 1e18 == 100%. function daoFeeRange() external view returns (Range memory); /// @notice Max deployer fee for a new Silos. Denominated in 18 decimals points. 1e18 == 100%. function maxDeployerFee() external view returns (uint256); /// @notice Max flashloan fee for a new Silos. Denominated in 18 decimals points. 1e18 == 100%. function maxFlashloanFee() external view returns (uint256); /// @notice Max liquidation fee for a new Silos. Denominated in 18 decimals points. 1e18 == 100%. function maxLiquidationFee() external view returns (uint256); /// @notice The recipient of DAO fees. function daoFeeReceiver() external view returns (address); /// @notice Get SiloConfig address by Silo id. function idToSiloConfig(uint256 _id) external view returns (address); /// @notice Do not use this method to check if silo is secure. Anyone can deploy silo with any configuration /// and implementation. Most critical part of verification would be to check who deployed it. /// @dev True if the address was deployed using SiloFactory. function isSilo(address _silo) external view returns (bool); /// @notice Id of a next Silo to be deployed. This is an ID of non-existing Silo outside of createSilo /// function call. ID of a first Silo is 1. function getNextSiloId() external view returns (uint256); /// @notice Get the DAO and deployer fee receivers for a particular Silo address. /// @param _silo Silo address. /// @return dao DAO fee receiver. /// @return deployer Deployer fee receiver. function getFeeReceivers(address _silo) external view returns (address dao, address deployer); /// @notice Validate InitData for a new Silo. Config will be checked for the fee limits, missing parameters. /// @param _initData Silo init data. function validateSiloInitData(ISiloConfig.InitData memory _initData) external view returns (bool); }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.28; import {ShareTokenLib} from "../lib/ShareTokenLib.sol"; import {SiloMathLib} from "../lib/SiloMathLib.sol"; import {ShareCollateralTokenLib} from "../lib/ShareCollateralTokenLib.sol"; import {IShareToken, ShareToken, ISilo} from "./ShareToken.sol"; /// @title ShareCollateralToken /// @notice ERC20 compatible token representing collateral in Silo /// @custom:security-contact [email protected] abstract contract ShareCollateralToken is ShareToken { /// @inheritdoc IShareToken function mint(address _owner, address /* _spender */, uint256 _amount) external virtual override onlySilo { _mint(_owner, _amount); } /// @inheritdoc IShareToken function burn(address _owner, address _spender, uint256 _amount) external virtual override onlySilo { if (_owner != _spender) _spendAllowance(_owner, _spender, _amount); _burn(_owner, _amount); } /// @dev decimals of share token function decimals() public view virtual override(ShareToken) returns (uint8) { return ShareTokenLib.decimals() + uint8(SiloMathLib._DECIMALS_OFFSET); } /// @dev Check if sender is solvent after the transfer function _afterTokenTransfer(address _sender, address _recipient, uint256 _amount) internal virtual override { IShareToken.ShareTokenStorage storage $ = ShareTokenLib.getShareTokenStorage(); // for minting or burning, Silo is responsible to check all necessary conditions // for transfer make sure that _sender is solvent after transfer if (ShareTokenLib.isTransfer(_sender, _recipient) && $.transferWithChecks) { bool senderIsSolvent = ShareCollateralTokenLib.isSolventAfterCollateralTransfer(_sender); require(senderIsSolvent, IShareToken.SenderNotSolventAfterTransfer()); } ShareToken._afterTokenTransfer(_sender, _recipient, _amount); } }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity ^0.8.28; import {IERC20} from "openzeppelin5/token/ERC20/IERC20.sol"; import {SafeERC20} from "openzeppelin5/token/ERC20/utils/SafeERC20.sol"; import {ISiloConfig} from "../interfaces/ISiloConfig.sol"; import {IInterestRateModelV2} from "../interfaces/IInterestRateModelV2.sol"; import {ISilo} from "../interfaces/ISilo.sol"; import {IShareToken} from "../interfaces/IShareToken.sol"; import {IERC3156FlashBorrower} from "../interfaces/IERC3156FlashBorrower.sol"; import {IHookReceiver} from "../interfaces/IHookReceiver.sol"; import {SiloERC4626Lib} from "./SiloERC4626Lib.sol"; import {SiloSolvencyLib} from "./SiloSolvencyLib.sol"; import {SiloLendingLib} from "./SiloLendingLib.sol"; import {SiloStdLib} from "./SiloStdLib.sol"; import {Hook} from "./Hook.sol"; import {CallBeforeQuoteLib} from "./CallBeforeQuoteLib.sol"; import {NonReentrantLib} from "./NonReentrantLib.sol"; import {ShareTokenLib} from "./ShareTokenLib.sol"; import {SiloStorageLib} from "./SiloStorageLib.sol"; import {Views} from "./Views.sol"; library Actions { using SafeERC20 for IERC20; using Hook for uint256; using Hook for uint24; using CallBeforeQuoteLib for ISiloConfig.ConfigData; bytes32 internal constant _FLASHLOAN_CALLBACK = keccak256("ERC3156FlashBorrower.onFlashLoan"); error FeeOverflow(); error FlashLoanNotPossible(); function initialize(ISiloConfig _siloConfig) external returns (address hookReceiver) { IShareToken.ShareTokenStorage storage _sharedStorage = ShareTokenLib.getShareTokenStorage(); require(address(_sharedStorage.siloConfig) == address(0), ISilo.SiloInitialized()); ISiloConfig.ConfigData memory configData = _siloConfig.getConfig(address(this)); _sharedStorage.siloConfig = _siloConfig; return configData.hookReceiver; } function deposit( uint256 _assets, uint256 _shares, address _receiver, ISilo.CollateralType _collateralType ) external returns (uint256 assets, uint256 shares) { _hookCallBeforeDeposit(_collateralType, _assets, _shares, _receiver); ISiloConfig siloConfig = ShareTokenLib.siloConfig(); siloConfig.turnOnReentrancyProtection(); siloConfig.accrueInterestForSilo(address(this)); ( address shareToken, address asset ) = siloConfig.getCollateralShareTokenAndAsset(address(this), _collateralType); (assets, shares) = SiloERC4626Lib.deposit({ _token: asset, _depositor: msg.sender, _assets: _assets, _shares: _shares, _receiver: _receiver, _collateralShareToken: IShareToken(shareToken), _collateralType: _collateralType }); siloConfig.turnOffReentrancyProtection(); _hookCallAfterDeposit(_collateralType, _assets, _shares, _receiver, assets, shares); } function withdraw(ISilo.WithdrawArgs calldata _args) external returns (uint256 assets, uint256 shares) { _hookCallBeforeWithdraw(_args); ISiloConfig siloConfig = ShareTokenLib.siloConfig(); siloConfig.turnOnReentrancyProtection(); siloConfig.accrueInterestForBothSilos(); ISiloConfig.DepositConfig memory depositConfig; ISiloConfig.ConfigData memory collateralConfig; ISiloConfig.ConfigData memory debtConfig; (depositConfig, collateralConfig, debtConfig) = siloConfig.getConfigsForWithdraw(address(this), _args.owner); (assets, shares) = SiloERC4626Lib.withdraw( depositConfig.token, _args.collateralType == ISilo.CollateralType.Collateral ? depositConfig.collateralShareToken : depositConfig.protectedShareToken, _args ); if (depositConfig.silo == collateralConfig.silo) { // If deposit is collateral, then check the solvency. _checkSolvencyWithoutAccruingInterest(collateralConfig, debtConfig, _args.owner); } siloConfig.turnOffReentrancyProtection(); _hookCallAfterWithdraw(_args, assets, shares); } function borrow(ISilo.BorrowArgs memory _args) external returns (uint256 assets, uint256 shares) { _hookCallBeforeBorrow(_args, Hook.BORROW); ISiloConfig siloConfig = ShareTokenLib.siloConfig(); require(!siloConfig.hasDebtInOtherSilo(address(this), _args.borrower), ISilo.BorrowNotPossible()); siloConfig.turnOnReentrancyProtection(); siloConfig.accrueInterestForBothSilos(); siloConfig.setOtherSiloAsCollateralSilo(_args.borrower); ISiloConfig.ConfigData memory collateralConfig; ISiloConfig.ConfigData memory debtConfig; (collateralConfig, debtConfig) = siloConfig.getConfigsForBorrow({_debtSilo: address(this)}); (assets, shares) = SiloLendingLib.borrow( debtConfig.debtShareToken, debtConfig.token, msg.sender, _args ); _checkLTVWithoutAccruingInterest(collateralConfig, debtConfig, _args.borrower); siloConfig.turnOffReentrancyProtection(); _hookCallAfterBorrow(_args, Hook.BORROW, assets, shares); } function borrowSameAsset(ISilo.BorrowArgs memory _args) external returns (uint256 assets, uint256 shares) { _hookCallBeforeBorrow(_args, Hook.BORROW_SAME_ASSET); ISiloConfig siloConfig = ShareTokenLib.siloConfig(); require(!siloConfig.hasDebtInOtherSilo(address(this), _args.borrower), ISilo.BorrowNotPossible()); siloConfig.turnOnReentrancyProtection(); siloConfig.accrueInterestForSilo(address(this)); siloConfig.setThisSiloAsCollateralSilo(_args.borrower); ISiloConfig.ConfigData memory collateralConfig = siloConfig.getConfig(address(this)); ISiloConfig.ConfigData memory debtConfig = collateralConfig; (assets, shares) = SiloLendingLib.borrow({ _debtShareToken: debtConfig.debtShareToken, _token: debtConfig.token, _spender: msg.sender, _args: _args }); _checkLTVWithoutAccruingInterest(collateralConfig, debtConfig, _args.borrower); siloConfig.turnOffReentrancyProtection(); _hookCallAfterBorrow(_args, Hook.BORROW_SAME_ASSET, assets, shares); } function repay( uint256 _assets, uint256 _shares, address _borrower, address _repayer ) external returns (uint256 assets, uint256 shares) { IShareToken.ShareTokenStorage storage _shareStorage = ShareTokenLib.getShareTokenStorage(); if (_shareStorage.hookSetup.hooksBefore.matchAction(Hook.REPAY)) { bytes memory data = abi.encodePacked(_assets, _shares, _borrower, _repayer); IHookReceiver(_shareStorage.hookSetup.hookReceiver).beforeAction(address(this), Hook.REPAY, data); } ISiloConfig siloConfig = _shareStorage.siloConfig; siloConfig.turnOnReentrancyProtection(); siloConfig.accrueInterestForSilo(address(this)); (address debtShareToken, address debtAsset) = siloConfig.getDebtShareTokenAndAsset(address(this)); (assets, shares) = SiloLendingLib.repay( IShareToken(debtShareToken), debtAsset, _assets, _shares, _borrower, _repayer ); siloConfig.turnOffReentrancyProtection(); if (_shareStorage.hookSetup.hooksAfter.matchAction(Hook.REPAY)) { bytes memory data = abi.encodePacked(_assets, _shares, _borrower, _repayer, assets, shares); IHookReceiver(_shareStorage.hookSetup.hookReceiver).afterAction(address(this), Hook.REPAY, data); } } // solhint-disable-next-line function-max-lines function transitionCollateral(ISilo.TransitionCollateralArgs memory _args) external returns (uint256 assets, uint256 toShares) { _hookCallBeforeTransitionCollateral(_args); ISiloConfig siloConfig = ShareTokenLib.siloConfig(); siloConfig.turnOnReentrancyProtection(); siloConfig.accrueInterestForBothSilos(); ( ISiloConfig.DepositConfig memory depositConfig, ISiloConfig.ConfigData memory collateralConfig, ISiloConfig.ConfigData memory debtConfig ) = siloConfig.getConfigsForWithdraw(address(this), _args.owner); uint256 shares; // transition collateral withdraw address shareTokenFrom = _args.transitionFrom == ISilo.CollateralType.Collateral ? depositConfig.collateralShareToken : depositConfig.protectedShareToken; (assets, shares) = SiloERC4626Lib.withdraw({ _asset: address(0), // empty token because we don't want to transfer _shareToken: shareTokenFrom, _args: ISilo.WithdrawArgs({ assets: 0, shares: _args.shares, owner: _args.owner, receiver: _args.owner, spender: msg.sender, collateralType: _args.transitionFrom }) }); // transition collateral deposit (ISilo.CollateralType depositType, address shareTokenTo) = _args.transitionFrom == ISilo.CollateralType.Collateral ? (ISilo.CollateralType.Protected, depositConfig.protectedShareToken) : (ISilo.CollateralType.Collateral, depositConfig.collateralShareToken); (assets, toShares) = SiloERC4626Lib.deposit({ _token: address(0), // empty token because we don't want to transfer _depositor: msg.sender, _assets: assets, _shares: 0, _receiver: _args.owner, _collateralShareToken: IShareToken(shareTokenTo), _collateralType: depositType }); // If deposit is collateral, then check the solvency. if (depositConfig.silo == collateralConfig.silo) { _checkSolvencyWithoutAccruingInterest(collateralConfig, debtConfig, _args.owner); } siloConfig.turnOffReentrancyProtection(); _hookCallAfterTransitionCollateral(_args, toShares, assets); } function switchCollateralToThisSilo() external { IShareToken.ShareTokenStorage storage _shareStorage = ShareTokenLib.getShareTokenStorage(); uint256 action = Hook.SWITCH_COLLATERAL; if (_shareStorage.hookSetup.hooksBefore.matchAction(action)) { IHookReceiver(_shareStorage.hookSetup.hookReceiver).beforeAction( address(this), action, abi.encodePacked(msg.sender) ); } ISiloConfig siloConfig = _shareStorage.siloConfig; require(siloConfig.borrowerCollateralSilo(msg.sender) != address(this), ISilo.CollateralSiloAlreadySet()); siloConfig.turnOnReentrancyProtection(); siloConfig.setThisSiloAsCollateralSilo(msg.sender); ISiloConfig.ConfigData memory collateralConfig; ISiloConfig.ConfigData memory debtConfig; (collateralConfig, debtConfig) = siloConfig.getConfigsForSolvency(msg.sender); if (debtConfig.silo != address(0)) { siloConfig.accrueInterestForBothSilos(); _checkSolvencyWithoutAccruingInterest(collateralConfig, debtConfig, msg.sender); } siloConfig.turnOffReentrancyProtection(); if (_shareStorage.hookSetup.hooksAfter.matchAction(action)) { IHookReceiver(_shareStorage.hookSetup.hookReceiver).afterAction( address(this), action, abi.encodePacked(msg.sender) ); } } /// @notice Executes a flash loan, sending the requested amount to the receiver and expecting it back with a fee /// @param _receiver The entity that will receive the flash loan and is expected to return it with a fee /// @param _token The token that is being borrowed in the flash loan /// @param _amount The amount of tokens to be borrowed /// @param _data Additional data to be passed to the flash loan receiver /// @return success A boolean indicating if the flash loan was successful function flashLoan( IERC3156FlashBorrower _receiver, address _token, uint256 _amount, bytes calldata _data ) external returns (bool success) { require(_amount != 0, ISilo.ZeroAmount()); IShareToken.ShareTokenStorage storage _shareStorage = ShareTokenLib.getShareTokenStorage(); if (_shareStorage.hookSetup.hooksBefore.matchAction(Hook.FLASH_LOAN)) { bytes memory data = abi.encodePacked(_receiver, _token, _amount); IHookReceiver(_shareStorage.hookSetup.hookReceiver).beforeAction(address(this), Hook.FLASH_LOAN, data); } // flashFee will revert for wrong token uint256 fee = SiloStdLib.flashFee(_shareStorage.siloConfig, _token, _amount); require(fee <= type(uint192).max, FeeOverflow()); // this check also verify if token is correct require(_amount <= Views.maxFlashLoan(_token), FlashLoanNotPossible()); // cast safe, because we checked `fee > type(uint192).max` SiloStorageLib.getSiloStorage().daoAndDeployerRevenue += uint192(fee); IERC20(_token).safeTransfer(address(_receiver), _amount); require( _receiver.onFlashLoan(msg.sender, _token, _amount, fee, _data) == _FLASHLOAN_CALLBACK, ISilo.FlashloanFailed() ); IERC20(_token).safeTransferFrom(address(_receiver), address(this), _amount + fee); if (_shareStorage.hookSetup.hooksAfter.matchAction(Hook.FLASH_LOAN)) { bytes memory data = abi.encodePacked(_receiver, _token, _amount, fee); IHookReceiver(_shareStorage.hookSetup.hookReceiver).afterAction(address(this), Hook.FLASH_LOAN, data); } success = true; } /// @notice Withdraws accumulated fees and distributes them proportionally to the DAO and deployer /// @dev This function takes into account scenarios where either the DAO or deployer may not be set, distributing /// accordingly /// @param _silo Silo address function withdrawFees(ISilo _silo) external returns (uint256 daoRevenue, uint256 deployerRevenue) { ISiloConfig siloConfig = ShareTokenLib.siloConfig(); siloConfig.turnOnReentrancyProtection(); ISilo.SiloStorage storage $ = SiloStorageLib.getSiloStorage(); uint256 earnedFees = $.daoAndDeployerRevenue; require(earnedFees != 0, ISilo.EarnedZero()); ( address daoFeeReceiver, address deployerFeeReceiver, uint256 daoFee, uint256 deployerFee, address asset ) = SiloStdLib.getFeesAndFeeReceiversWithAsset(_silo); uint256 availableLiquidity; uint256 siloBalance = IERC20(asset).balanceOf(address(this)); uint256 protectedAssets = $.totalAssets[ISilo.AssetType.Protected]; // we will never underflow because `_protectedAssets` is always less/equal `siloBalance` unchecked { availableLiquidity = protectedAssets > siloBalance ? 0 : siloBalance - protectedAssets; } require(availableLiquidity != 0, ISilo.NoLiquidity()); if (earnedFees > availableLiquidity) earnedFees = availableLiquidity; // we will never underflow because earnedFees max value is `daoAndDeployerRevenue` unchecked { $.daoAndDeployerRevenue -= uint192(earnedFees); } if (deployerFeeReceiver == address(0)) { // deployer was never setup or deployer NFT has been burned IERC20(asset).safeTransfer(daoFeeReceiver, earnedFees); } else { // split fees proportionally daoRevenue = earnedFees * daoFee; unchecked { // fees are % in decimal point so safe to uncheck daoRevenue = daoRevenue / (daoFee + deployerFee); // `daoRevenue` is chunk of `earnedFees`, so safe to uncheck deployerRevenue = earnedFees - daoRevenue; } IERC20(asset).safeTransfer(daoFeeReceiver, daoRevenue); IERC20(asset).safeTransfer(deployerFeeReceiver, deployerRevenue); } siloConfig.turnOffReentrancyProtection(); } function updateHooks() external returns (uint24 hooksBefore, uint24 hooksAfter) { ISiloConfig siloConfig = ShareTokenLib.siloConfig(); NonReentrantLib.nonReentrant(siloConfig); ISiloConfig.ConfigData memory cfg = siloConfig.getConfig(address(this)); if (cfg.hookReceiver == address(0)) return (0, 0); (hooksBefore, hooksAfter) = IHookReceiver(cfg.hookReceiver).hookReceiverConfig(address(this)); IShareToken(cfg.collateralShareToken).synchronizeHooks(hooksBefore, hooksAfter); IShareToken(cfg.protectedShareToken).synchronizeHooks(hooksBefore, hooksAfter); IShareToken(cfg.debtShareToken).synchronizeHooks(hooksBefore, hooksAfter); } function callOnBehalfOfSilo(address _target, uint256 _value, ISilo.CallType _callType, bytes calldata _input) internal returns (bool success, bytes memory result) { require( msg.sender == address(ShareTokenLib.getShareTokenStorage().hookSetup.hookReceiver), ISilo.OnlyHookReceiver() ); // Silo will not send back any ether leftovers after the call. // The hook receiver should request the ether if needed in a separate call. if (_callType == ISilo.CallType.Delegatecall) { (success, result) = _target.delegatecall(_input); // solhint-disable-line avoid-low-level-calls } else { (success, result) = _target.call{value: _value}(_input); // solhint-disable-line avoid-low-level-calls } } // this method expect interest to be already accrued function _checkSolvencyWithoutAccruingInterest( ISiloConfig.ConfigData memory _collateralConfig, ISiloConfig.ConfigData memory _debtConfig, address _user ) private { if (_debtConfig.silo != _collateralConfig.silo) { _collateralConfig.callSolvencyOracleBeforeQuote(); _debtConfig.callSolvencyOracleBeforeQuote(); } bool userIsSolvent = SiloSolvencyLib.isSolvent( _collateralConfig, _debtConfig, _user, ISilo.AccrueInterestInMemory.No ); require(userIsSolvent, ISilo.NotSolvent()); } // this method expect interest to be already accrued function _checkLTVWithoutAccruingInterest( ISiloConfig.ConfigData memory _collateralConfig, ISiloConfig.ConfigData memory _debtConfig, address _borrower ) private { if (_collateralConfig.silo != _debtConfig.silo) { _collateralConfig.callMaxLtvOracleBeforeQuote(); _debtConfig.callMaxLtvOracleBeforeQuote(); } bool borrowerIsBelowMaxLtv = SiloSolvencyLib.isBelowMaxLtv( _collateralConfig, _debtConfig, _borrower, ISilo.AccrueInterestInMemory.No ); require(borrowerIsBelowMaxLtv, ISilo.AboveMaxLtv()); } function _hookCallBeforeWithdraw( ISilo.WithdrawArgs calldata _args ) private { IShareToken.ShareTokenStorage storage _shareStorage = ShareTokenLib.getShareTokenStorage(); uint256 action = Hook.withdrawAction(_args.collateralType); if (!_shareStorage.hookSetup.hooksBefore.matchAction(action)) return; bytes memory data = abi.encodePacked(_args.assets, _args.shares, _args.receiver, _args.owner, _args.spender); IHookReceiver(_shareStorage.hookSetup.hookReceiver).beforeAction(address(this), action, data); } function _hookCallAfterWithdraw( ISilo.WithdrawArgs calldata _args, uint256 assets, uint256 shares ) private { IShareToken.ShareTokenStorage storage _shareStorage = ShareTokenLib.getShareTokenStorage(); uint256 action = Hook.withdrawAction(_args.collateralType); if (!_shareStorage.hookSetup.hooksAfter.matchAction(action)) return; bytes memory data = abi.encodePacked(_args.assets, _args.shares, _args.receiver, _args.owner, _args.spender, assets, shares); IHookReceiver(_shareStorage.hookSetup.hookReceiver).afterAction(address(this), action, data); } function _hookCallBeforeBorrow(ISilo.BorrowArgs memory _args, uint256 action) private { IShareToken.ShareTokenStorage storage _shareStorage = ShareTokenLib.getShareTokenStorage(); if (!_shareStorage.hookSetup.hooksBefore.matchAction(action)) return; bytes memory data = abi.encodePacked( _args.assets, _args.shares, _args.receiver, _args.borrower, msg.sender // spender ); IHookReceiver(_shareStorage.hookSetup.hookReceiver).beforeAction(address(this), action, data); } function _hookCallAfterBorrow( ISilo.BorrowArgs memory _args, uint256 action, uint256 assets, uint256 shares ) private { IShareToken.ShareTokenStorage storage _shareStorage = ShareTokenLib.getShareTokenStorage(); if (!_shareStorage.hookSetup.hooksAfter.matchAction(action)) return; bytes memory data = abi.encodePacked( _args.assets, _args.shares, _args.receiver, _args.borrower, msg.sender, // spender assets, shares ); IHookReceiver(_shareStorage.hookSetup.hookReceiver).afterAction(address(this), action, data); } function _hookCallBeforeTransitionCollateral(ISilo.TransitionCollateralArgs memory _args) private { IShareToken.ShareTokenStorage storage _shareStorage = ShareTokenLib.getShareTokenStorage(); uint256 action = Hook.transitionCollateralAction(_args.transitionFrom); if (!_shareStorage.hookSetup.hooksBefore.matchAction(action)) return; bytes memory data = abi.encodePacked(_args.shares, _args.owner); IHookReceiver(_shareStorage.hookSetup.hookReceiver).beforeAction(address(this), action, data); } function _hookCallAfterTransitionCollateral( ISilo.TransitionCollateralArgs memory _args, uint256 _shares, uint256 _assets ) private { IShareToken.ShareTokenStorage storage _shareStorage = ShareTokenLib.getShareTokenStorage(); uint256 action = Hook.transitionCollateralAction(_args.transitionFrom); if (!_shareStorage.hookSetup.hooksAfter.matchAction(action)) return; bytes memory data = abi.encodePacked(_shares, _args.owner, _assets); IHookReceiver(_shareStorage.hookSetup.hookReceiver).afterAction(address(this), action, data); } function _hookCallBeforeDeposit( ISilo.CollateralType _collateralType, uint256 _assets, uint256 _shares, address _receiver ) private { IShareToken.ShareTokenStorage storage _shareStorage = ShareTokenLib.getShareTokenStorage(); uint256 action = Hook.depositAction(_collateralType); if (!_shareStorage.hookSetup.hooksBefore.matchAction(action)) return; bytes memory data = abi.encodePacked(_assets, _shares, _receiver); IHookReceiver(_shareStorage.hookSetup.hookReceiver).beforeAction(address(this), action, data); } function _hookCallAfterDeposit( ISilo.CollateralType _collateralType, uint256 _assets, uint256 _shares, address _receiver, uint256 _exactAssets, uint256 _exactShare ) private { IShareToken.ShareTokenStorage storage _shareStorage = ShareTokenLib.getShareTokenStorage(); uint256 action = Hook.depositAction(_collateralType); if (!_shareStorage.hookSetup.hooksAfter.matchAction(action)) return; bytes memory data = abi.encodePacked(_assets, _shares, _receiver, _exactAssets, _exactShare); IHookReceiver(_shareStorage.hookSetup.hookReceiver).afterAction(address(this), action, data); } }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity ^0.8.28; import {IERC20} from "openzeppelin5/token/ERC20/IERC20.sol"; import {ISiloConfig} from "../interfaces/ISiloConfig.sol"; import {ISilo} from "../interfaces/ISilo.sol"; import {ISiloOracle} from "../interfaces/ISiloOracle.sol"; import {IShareToken} from "../interfaces/IShareToken.sol"; import {ISiloFactory} from "../interfaces/ISiloFactory.sol"; import {SiloERC4626Lib} from "./SiloERC4626Lib.sol"; import {SiloSolvencyLib} from "./SiloSolvencyLib.sol"; import {SiloLendingLib} from "./SiloLendingLib.sol"; import {SiloStdLib} from "./SiloStdLib.sol"; import {SiloMathLib} from "./SiloMathLib.sol"; import {Rounding} from "./Rounding.sol"; import {ShareTokenLib} from "./ShareTokenLib.sol"; import {SiloStorageLib} from "./SiloStorageLib.sol"; // solhint-disable ordering library Views { uint256 internal constant _100_PERCENT = 1e18; bytes32 internal constant _FLASHLOAN_CALLBACK = keccak256("ERC3156FlashBorrower.onFlashLoan"); function isSolvent(address _borrower) external view returns (bool) { ( ISiloConfig.ConfigData memory collateral, ISiloConfig.ConfigData memory debt ) = ShareTokenLib.siloConfig().getConfigsForSolvency(_borrower); return SiloSolvencyLib.isSolvent(collateral, debt, _borrower, ISilo.AccrueInterestInMemory.Yes); } /// @notice Returns flash fee amount /// @param _token for which fee is calculated /// @param _amount for which fee is calculated /// @return fee flash fee amount function flashFee(address _token, uint256 _amount) external view returns (uint256 fee) { fee = SiloStdLib.flashFee(ShareTokenLib.siloConfig(), _token, _amount); } function maxFlashLoan(address _token) internal view returns (uint256 maxLoan) { if (_token != ShareTokenLib.siloConfig().getAssetForSilo(address(this))) return 0; ISilo.SiloStorage storage $ = SiloStorageLib.getSiloStorage(); uint256 protectedAssets = $.totalAssets[ISilo.AssetType.Protected]; uint256 balance = IERC20(_token).balanceOf(address(this)); unchecked { // we check underflow ourself return balance > protectedAssets ? balance - protectedAssets : 0; } } function maxBorrow(address _borrower, bool _sameAsset) external view returns (uint256 maxAssets, uint256 maxShares) { return SiloLendingLib.maxBorrow(_borrower, _sameAsset); } function maxWithdraw(address _owner, ISilo.CollateralType _collateralType) external view returns (uint256 assets, uint256 shares) { return SiloERC4626Lib.maxWithdraw( _owner, _collateralType, // 0 for CollateralType.Collateral because it will be calculated internally _collateralType == ISilo.CollateralType.Protected ? SiloStorageLib.getSiloStorage().totalAssets[ISilo.AssetType.Protected] : 0 ); } function maxRepay(address _borrower) external view returns (uint256 assets) { ISiloConfig.ConfigData memory configData = ShareTokenLib.getConfig(); uint256 shares = IShareToken(configData.debtShareToken).balanceOf(_borrower); (uint256 totalSiloAssets, uint256 totalShares) = SiloStdLib.getTotalAssetsAndTotalSharesWithInterest(configData, ISilo.AssetType.Debt); return SiloMathLib.convertToAssets( shares, totalSiloAssets, totalShares, Rounding.MAX_REPAY_TO_ASSETS, ISilo.AssetType.Debt ); } function getSiloStorage() internal view returns ( uint192 daoAndDeployerRevenue, uint64 interestRateTimestamp, uint256 protectedAssets, uint256 collateralAssets, uint256 debtAssets ) { ISilo.SiloStorage storage $ = SiloStorageLib.getSiloStorage(); daoAndDeployerRevenue = $.daoAndDeployerRevenue; interestRateTimestamp = $.interestRateTimestamp; protectedAssets = $.totalAssets[ISilo.AssetType.Protected]; collateralAssets = $.totalAssets[ISilo.AssetType.Collateral]; debtAssets = $.totalAssets[ISilo.AssetType.Debt]; } function utilizationData() internal view returns (ISilo.UtilizationData memory) { ISilo.SiloStorage storage $ = SiloStorageLib.getSiloStorage(); return ISilo.UtilizationData({ collateralAssets: $.totalAssets[ISilo.AssetType.Collateral], debtAssets: $.totalAssets[ISilo.AssetType.Debt], interestRateTimestamp: $.interestRateTimestamp }); } function getDebtAssets() internal view returns (uint256 totalDebtAssets) { ISiloConfig.ConfigData memory thisSiloConfig = ShareTokenLib.getConfig(); totalDebtAssets = SiloStdLib.getTotalDebtAssetsWithInterest( thisSiloConfig.silo, thisSiloConfig.interestRateModel ); } function getCollateralAndProtectedAssets() internal view returns (uint256 totalCollateralAssets, uint256 totalProtectedAssets) { ISilo.SiloStorage storage $ = SiloStorageLib.getSiloStorage(); totalCollateralAssets = $.totalAssets[ISilo.AssetType.Collateral]; totalProtectedAssets = $.totalAssets[ISilo.AssetType.Protected]; } function getCollateralAndDebtAssets() internal view returns (uint256 totalCollateralAssets, uint256 totalDebtAssets) { ISilo.SiloStorage storage $ = SiloStorageLib.getSiloStorage(); totalCollateralAssets = $.totalAssets[ISilo.AssetType.Collateral]; totalDebtAssets = $.totalAssets[ISilo.AssetType.Debt]; } function copySiloConfig( ISiloConfig.InitData memory _initData, ISiloFactory.Range memory _daoFeeRange, uint256 _maxDeployerFee, uint256 _maxFlashloanFee, uint256 _maxLiquidationFee ) internal view returns (ISiloConfig.ConfigData memory configData0, ISiloConfig.ConfigData memory configData1) { validateSiloInitData(_initData, _daoFeeRange, _maxDeployerFee, _maxFlashloanFee, _maxLiquidationFee); configData0.hookReceiver = _initData.hookReceiver; configData0.token = _initData.token0; configData0.solvencyOracle = _initData.solvencyOracle0; // If maxLtv oracle is not set, fallback to solvency oracle configData0.maxLtvOracle = _initData.maxLtvOracle0 == address(0) ? _initData.solvencyOracle0 : _initData.maxLtvOracle0; configData0.interestRateModel = _initData.interestRateModel0; configData0.maxLtv = _initData.maxLtv0; configData0.lt = _initData.lt0; configData0.liquidationTargetLtv = _initData.liquidationTargetLtv0; configData0.deployerFee = _initData.deployerFee; configData0.daoFee = _initData.daoFee; configData0.liquidationFee = _initData.liquidationFee0; configData0.flashloanFee = _initData.flashloanFee0; configData0.callBeforeQuote = _initData.callBeforeQuote0; configData1.hookReceiver = _initData.hookReceiver; configData1.token = _initData.token1; configData1.solvencyOracle = _initData.solvencyOracle1; // If maxLtv oracle is not set, fallback to solvency oracle configData1.maxLtvOracle = _initData.maxLtvOracle1 == address(0) ? _initData.solvencyOracle1 : _initData.maxLtvOracle1; configData1.interestRateModel = _initData.interestRateModel1; configData1.maxLtv = _initData.maxLtv1; configData1.lt = _initData.lt1; configData1.liquidationTargetLtv = _initData.liquidationTargetLtv1; configData1.deployerFee = _initData.deployerFee; configData1.daoFee = _initData.daoFee; configData1.liquidationFee = _initData.liquidationFee1; configData1.flashloanFee = _initData.flashloanFee1; configData1.callBeforeQuote = _initData.callBeforeQuote1; } // solhint-disable-next-line code-complexity function validateSiloInitData( ISiloConfig.InitData memory _initData, ISiloFactory.Range memory _daoFeeRange, uint256 _maxDeployerFee, uint256 _maxFlashloanFee, uint256 _maxLiquidationFee ) internal view returns (bool) { require(_initData.hookReceiver != address(0), ISiloFactory.MissingHookReceiver()); require(_initData.token0 != address(0), ISiloFactory.EmptyToken0()); require(_initData.token1 != address(0), ISiloFactory.EmptyToken1()); require(_initData.token0 != _initData.token1, ISiloFactory.SameAsset()); require(_initData.maxLtv0 != 0 || _initData.maxLtv1 != 0, ISiloFactory.InvalidMaxLtv()); require(_initData.maxLtv0 <= _initData.lt0, ISiloFactory.InvalidMaxLtv()); require(_initData.maxLtv1 <= _initData.lt1, ISiloFactory.InvalidMaxLtv()); require(_initData.liquidationFee0 <= _maxLiquidationFee, ISiloFactory.MaxLiquidationFeeExceeded()); require(_initData.liquidationFee1 <= _maxLiquidationFee, ISiloFactory.MaxLiquidationFeeExceeded()); require(_initData.lt0 + _initData.liquidationFee0 <= _100_PERCENT, ISiloFactory.InvalidLt()); require(_initData.lt1 + _initData.liquidationFee1 <= _100_PERCENT, ISiloFactory.InvalidLt()); require( _initData.maxLtvOracle0 == address(0) || _initData.solvencyOracle0 != address(0), ISiloFactory.OracleMisconfiguration() ); require( !_initData.callBeforeQuote0 || _initData.solvencyOracle0 != address(0), ISiloFactory.InvalidCallBeforeQuote() ); require( _initData.maxLtvOracle1 == address(0) || _initData.solvencyOracle1 != address(0), ISiloFactory.OracleMisconfiguration() ); require( !_initData.callBeforeQuote1 || _initData.solvencyOracle1 != address(0), ISiloFactory.InvalidCallBeforeQuote() ); verifyQuoteTokens(_initData); require(_initData.deployerFee == 0 || _initData.deployer != address(0), ISiloFactory.InvalidDeployer()); require(_initData.deployerFee <= _maxDeployerFee, ISiloFactory.MaxDeployerFeeExceeded()); require(_daoFeeRange.min <= _initData.daoFee, ISiloFactory.DaoMinRangeExceeded()); require(_initData.daoFee <= _daoFeeRange.max, ISiloFactory.DaoMaxRangeExceeded()); require(_initData.flashloanFee0 <= _maxFlashloanFee, ISiloFactory.MaxFlashloanFeeExceeded()); require(_initData.flashloanFee1 <= _maxFlashloanFee, ISiloFactory.MaxFlashloanFeeExceeded()); require(_initData.liquidationTargetLtv0 <= _initData.lt0, ISiloFactory.LiquidationTargetLtvTooHigh()); require(_initData.liquidationTargetLtv1 <= _initData.lt1, ISiloFactory.LiquidationTargetLtvTooHigh()); require( _initData.interestRateModel0 != address(0) && _initData.interestRateModel1 != address(0), ISiloFactory.InvalidIrm() ); return true; } function verifyQuoteTokens(ISiloConfig.InitData memory _initData) internal view { address expectedQuoteToken; expectedQuoteToken = verifyQuoteToken(expectedQuoteToken, _initData.solvencyOracle0); expectedQuoteToken = verifyQuoteToken(expectedQuoteToken, _initData.maxLtvOracle0); expectedQuoteToken = verifyQuoteToken(expectedQuoteToken, _initData.solvencyOracle1); expectedQuoteToken = verifyQuoteToken(expectedQuoteToken, _initData.maxLtvOracle1); } function verifyQuoteToken(address _expectedQuoteToken, address _oracle) internal view returns (address quoteToken) { if (_oracle == address(0)) return _expectedQuoteToken; quoteToken = ISiloOracle(_oracle).quoteToken(); if (_expectedQuoteToken == address(0)) return quoteToken; require(_expectedQuoteToken == quoteToken, ISiloFactory.InvalidQuoteToken()); } }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity ^0.8.28; import {SafeERC20} from "openzeppelin5/token/ERC20/utils/SafeERC20.sol"; import {IERC20} from "openzeppelin5/token/ERC20/IERC20.sol"; import {ISiloConfig} from "../interfaces/ISiloConfig.sol"; import {ISilo} from "../interfaces/ISilo.sol"; import {IInterestRateModel} from "../interfaces/IInterestRateModel.sol"; import {IShareToken} from "../interfaces/IShareToken.sol"; import {SiloMathLib} from "./SiloMathLib.sol"; library SiloStdLib { using SafeERC20 for IERC20; uint256 internal constant _PRECISION_DECIMALS = 1e18; /// @notice Returns flash fee amount /// @param _config address of config contract for Silo /// @param _token for which fee is calculated /// @param _amount for which fee is calculated /// @return fee flash fee amount function flashFee(ISiloConfig _config, address _token, uint256 _amount) internal view returns (uint256 fee) { if (_amount == 0) return 0; // all user set fees are in 18 decimals points (,, uint256 flashloanFee, address asset) = _config.getFeesWithAsset(address(this)); require(_token == asset, ISilo.Unsupported()); if (flashloanFee == 0) return 0; fee = _amount * flashloanFee / _PRECISION_DECIMALS; // round up if (fee == 0) return 1; } /// @notice Returns totalAssets and totalShares for conversion math (convertToAssets and convertToShares) /// @dev This is useful for view functions that do not accrue interest before doing calculations. To work on /// updated numbers, interest should be added on the fly. /// @param _configData for a single token for which to do calculations /// @param _assetType used to read proper storage data /// @return totalAssets total assets in Silo with interest for given asset type /// @return totalShares total shares in Silo for given asset type function getTotalAssetsAndTotalSharesWithInterest( ISiloConfig.ConfigData memory _configData, ISilo.AssetType _assetType ) internal view returns (uint256 totalAssets, uint256 totalShares) { if (_assetType == ISilo.AssetType.Protected) { totalAssets = ISilo(_configData.silo).getTotalAssetsStorage(ISilo.AssetType.Protected); totalShares = IShareToken(_configData.protectedShareToken).totalSupply(); } else if (_assetType == ISilo.AssetType.Collateral) { totalAssets = getTotalCollateralAssetsWithInterest( _configData.silo, _configData.interestRateModel, _configData.daoFee, _configData.deployerFee ); totalShares = IShareToken(_configData.collateralShareToken).totalSupply(); } else { // ISilo.AssetType.Debt totalAssets = getTotalDebtAssetsWithInterest(_configData.silo, _configData.interestRateModel); totalShares = IShareToken(_configData.debtShareToken).totalSupply(); } } /// @notice Retrieves fee amounts in 18 decimals points and their respective receivers along with the asset /// @param _silo Silo address /// @return daoFeeReceiver Address of the DAO fee receiver /// @return deployerFeeReceiver Address of the deployer fee receiver /// @return daoFee DAO fee amount in 18 decimals points /// @return deployerFee Deployer fee amount in 18 decimals points /// @return asset Address of the associated asset function getFeesAndFeeReceiversWithAsset(ISilo _silo) internal view returns ( address daoFeeReceiver, address deployerFeeReceiver, uint256 daoFee, uint256 deployerFee, address asset ) { (daoFee, deployerFee,, asset) = _silo.config().getFeesWithAsset(address(_silo)); (daoFeeReceiver, deployerFeeReceiver) = _silo.factory().getFeeReceivers(address(_silo)); } /// @notice Calculates the total collateral assets with accrued interest /// @dev Do not use this method when accrueInterest were executed already, in that case total does not change /// @param _silo Address of the silo contract /// @param _interestRateModel Interest rate model to fetch compound interest rates /// @param _daoFee DAO fee in 18 decimals points /// @param _deployerFee Deployer fee in 18 decimals points /// @return totalCollateralAssetsWithInterest Accumulated collateral amount with interest function getTotalCollateralAssetsWithInterest( address _silo, address _interestRateModel, uint256 _daoFee, uint256 _deployerFee ) internal view returns (uint256 totalCollateralAssetsWithInterest) { uint256 rcomp; try IInterestRateModel(_interestRateModel).getCompoundInterestRate(_silo, block.timestamp) returns (uint256 r) { rcomp = r; } catch { // do not lock silo } (uint256 collateralAssets, uint256 debtAssets) = ISilo(_silo).getCollateralAndDebtTotalsStorage(); (totalCollateralAssetsWithInterest,,,) = SiloMathLib.getCollateralAmountsWithInterest( collateralAssets, debtAssets, rcomp, _daoFee, _deployerFee ); } /// @param _balanceCached if balance of `_owner` is unknown beforehand, then pass `0` function getSharesAndTotalSupply(address _shareToken, address _owner, uint256 _balanceCached) internal view returns (uint256 shares, uint256 totalSupply) { if (_balanceCached == 0) { (shares, totalSupply) = IShareToken(_shareToken).balanceOfAndTotalSupply(_owner); } else { shares = _balanceCached; totalSupply = IShareToken(_shareToken).totalSupply(); } } /// @notice Calculates the total debt assets with accrued interest /// @param _silo Address of the silo contract /// @param _interestRateModel Interest rate model to fetch compound interest rates /// @return totalDebtAssetsWithInterest Accumulated debt amount with interest function getTotalDebtAssetsWithInterest(address _silo, address _interestRateModel) internal view returns (uint256 totalDebtAssetsWithInterest) { uint256 rcomp; try IInterestRateModel(_interestRateModel).getCompoundInterestRate(_silo, block.timestamp) returns (uint256 r) { rcomp = r; } catch { // do not lock silo } ( totalDebtAssetsWithInterest, ) = SiloMathLib.getDebtAmountsWithInterest(ISilo(_silo).getTotalAssetsStorage(ISilo.AssetType.Debt), rcomp); } }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity ^0.8.28; import {SafeERC20} from "openzeppelin5/token/ERC20/utils/SafeERC20.sol"; import {IERC20} from "openzeppelin5/token/ERC20/IERC20.sol"; import {Math} from "openzeppelin5/utils/math/Math.sol"; import {ISiloOracle} from "../interfaces/ISiloOracle.sol"; import {ISilo} from "../interfaces/ISilo.sol"; import {IShareToken} from "../interfaces/IShareToken.sol"; import {IInterestRateModel} from "../interfaces/IInterestRateModel.sol"; import {ISiloConfig} from "../interfaces/ISiloConfig.sol"; import {SiloSolvencyLib} from "./SiloSolvencyLib.sol"; import {SiloStdLib} from "./SiloStdLib.sol"; import {SiloMathLib} from "./SiloMathLib.sol"; import {Rounding} from "./Rounding.sol"; import {ShareTokenLib} from "./ShareTokenLib.sol"; import {SiloStorageLib} from "./SiloStorageLib.sol"; library SiloLendingLib { using SafeERC20 for IERC20; using Math for uint256; uint256 internal constant _PRECISION_DECIMALS = 1e18; /// @notice Allows repaying borrowed assets either partially or in full /// @param _debtShareToken debt share token address /// @param _debtAsset underlying debt asset address /// @param _assets The amount of assets to repay. Use 0 if shares are used. /// @param _shares The number of corresponding shares associated with the debt. Use 0 if assets are used. /// @param _borrower The account that has the debt /// @param _repayer The account that is repaying the debt /// @return assets The amount of assets that was repaid /// @return shares The corresponding number of debt shares that were repaid function repay( IShareToken _debtShareToken, address _debtAsset, uint256 _assets, uint256 _shares, address _borrower, address _repayer ) internal returns (uint256 assets, uint256 shares) { ISilo.SiloStorage storage $ = SiloStorageLib.getSiloStorage(); uint256 totalDebtAssets = $.totalAssets[ISilo.AssetType.Debt]; (uint256 debtSharesBalance, uint256 totalDebtShares) = _debtShareToken.balanceOfAndTotalSupply(_borrower); (assets, shares) = SiloMathLib.convertToAssetsOrToShares({ _assets: _assets, _shares: _shares, _totalAssets: totalDebtAssets, _totalShares: totalDebtShares, _roundingToAssets: Rounding.REPAY_TO_ASSETS, _roundingToShares: Rounding.REPAY_TO_SHARES, _assetType: ISilo.AssetType.Debt }); if (shares > debtSharesBalance) { shares = debtSharesBalance; (assets, shares) = SiloMathLib.convertToAssetsOrToShares({ _assets: 0, _shares: shares, _totalAssets: totalDebtAssets, _totalShares: totalDebtShares, _roundingToAssets: Rounding.REPAY_TO_ASSETS, _roundingToShares: Rounding.REPAY_TO_SHARES, _assetType: ISilo.AssetType.Debt }); } require(totalDebtAssets >= assets, ISilo.RepayTooHigh()); // subtract repayment from debt, save to unchecked because of above `totalDebtAssets < assets` unchecked { $.totalAssets[ISilo.AssetType.Debt] = totalDebtAssets - assets; } // Anyone can repay anyone's debt so no approval check is needed. _debtShareToken.burn(_borrower, _repayer, shares); // fee-on-transfer is ignored // Reentrancy is possible only for view methods (read-only reentrancy), // so no harm can be done as the state is already updated. // We do not expect the silo to work with any malicious token that will not send tokens back. IERC20(_debtAsset).safeTransferFrom(_repayer, address(this), assets); } /// @notice Accrues interest on assets, updating the collateral and debt balances /// @dev This method will accrue interest for ONE asset ONLY, to calculate for both silos you have to call it twice /// with `_configData` for each token /// @param _interestRateModel The address of the interest rate model to calculate the compound interest rate /// @param _daoFee DAO's fee in 18 decimals points /// @param _deployerFee Deployer's fee in 18 decimals points /// @return accruedInterest The total amount of interest accrued function accrueInterestForAsset(address _interestRateModel, uint256 _daoFee, uint256 _deployerFee) external returns (uint256 accruedInterest) { ISilo.SiloStorage storage $ = SiloStorageLib.getSiloStorage(); uint64 lastTimestamp = $.interestRateTimestamp; // Interest has already been accrued this block if (lastTimestamp == block.timestamp) { return 0; } // This is the first time, so we can return early and save some gas if (lastTimestamp == 0) { $.interestRateTimestamp = uint64(block.timestamp); return 0; } uint256 totalFees; uint256 totalCollateralAssets = $.totalAssets[ISilo.AssetType.Collateral]; uint256 totalDebtAssets = $.totalAssets[ISilo.AssetType.Debt]; uint256 rcomp; try IInterestRateModel(_interestRateModel).getCompoundInterestRateAndUpdate( totalCollateralAssets, totalDebtAssets, lastTimestamp ) returns (uint256 interestRate) { rcomp = interestRate; } catch { // do not lock silo on interest calculation emit IInterestRateModel.InterestRateModelError(); } ( $.totalAssets[ISilo.AssetType.Collateral], $.totalAssets[ISilo.AssetType.Debt], totalFees, accruedInterest ) = SiloMathLib.getCollateralAmountsWithInterest( totalCollateralAssets, totalDebtAssets, rcomp, _daoFee, _deployerFee ); // update remaining contract state $.interestRateTimestamp = uint64(block.timestamp); // we operating on chunks (fees) of real tokens, so overflow should not happen // fee is simply too small to overflow on cast to uint192, even if, we will get lower fee unchecked { $.daoAndDeployerRevenue += uint192(totalFees); } } /// @notice Allows a user or a delegate to borrow assets against their collateral /// @dev The function checks for necessary conditions such as borrow possibility, enough liquidity, and zero /// values /// @param _debtShareToken address of debt share token /// @param _token address of underlying debt token /// @param _spender Address which initiates the borrowing action on behalf of the borrower /// @return borrowedAssets Actual number of assets that the user has borrowed /// @return borrowedShares Number of debt share tokens corresponding to the borrowed assets function borrow( address _debtShareToken, address _token, address _spender, ISilo.BorrowArgs memory _args ) internal returns (uint256 borrowedAssets, uint256 borrowedShares) { ISilo.SiloStorage storage $ = SiloStorageLib.getSiloStorage(); uint256 totalDebtAssets = $.totalAssets[ISilo.AssetType.Debt]; (borrowedAssets, borrowedShares) = SiloMathLib.convertToAssetsOrToShares( _args.assets, _args.shares, totalDebtAssets, IShareToken(_debtShareToken).totalSupply(), Rounding.BORROW_TO_ASSETS, Rounding.BORROW_TO_SHARES, ISilo.AssetType.Debt ); uint256 totalCollateralAssets = $.totalAssets[ISilo.AssetType.Collateral]; require( _token == address(0) || borrowedAssets <= SiloMathLib.liquidity(totalCollateralAssets, totalDebtAssets), ISilo.NotEnoughLiquidity() ); // add new debt $.totalAssets[ISilo.AssetType.Debt] = totalDebtAssets + borrowedAssets; // `mint` checks if _spender is allowed to borrow on the account of _borrower. IShareToken(_debtShareToken).mint(_args.borrower, _spender, borrowedShares); if (_token != address(0)) { // fee-on-transfer is ignored. IERC20(_token).safeTransfer(_args.receiver, borrowedAssets); } } /// @notice Determines the maximum amount (both in assets and shares) that a borrower can borrow /// @param _collateralConfig Configuration data for the collateral /// @param _debtConfig Configuration data for the debt /// @param _borrower The address of the borrower whose maximum borrow limit is being queried /// @param _totalDebtAssets The total debt assets in the system /// @param _totalDebtShares The total debt shares in the system /// @param _siloConfig address of SiloConfig contract /// @return assets The maximum amount in assets that can be borrowed /// @return shares The equivalent amount in shares for the maximum assets that can be borrowed function calculateMaxBorrow( // solhint-disable-line function-max-lines ISiloConfig.ConfigData memory _collateralConfig, ISiloConfig.ConfigData memory _debtConfig, address _borrower, uint256 _totalDebtAssets, uint256 _totalDebtShares, ISiloConfig _siloConfig ) internal view returns (uint256 assets, uint256 shares) { SiloSolvencyLib.LtvData memory ltvData = SiloSolvencyLib.getAssetsDataForLtvCalculations({ _collateralConfig: _collateralConfig, _debtConfig: _debtConfig, _borrower: _borrower, _oracleType: ISilo.OracleType.MaxLtv, _accrueInMemory: ISilo.AccrueInterestInMemory.Yes, _debtShareBalanceCached: 0 /* no cache */ }); ( uint256 sumOfBorrowerCollateralValue, uint256 borrowerDebtValue ) = SiloSolvencyLib.getPositionValues(ltvData, _collateralConfig.token, _debtConfig.token); uint256 maxBorrowValue = SiloMathLib.calculateMaxBorrowValue( _collateralConfig.maxLtv, sumOfBorrowerCollateralValue, borrowerDebtValue ); (assets, shares) = maxBorrowValueToAssetsAndShares({ _maxBorrowValue: maxBorrowValue, _debtAsset: _debtConfig.token, _debtOracle: ltvData.debtOracle, _totalDebtAssets: _totalDebtAssets, _totalDebtShares: _totalDebtShares }); if (assets == 0 || shares == 0) return (0, 0); uint256 liquidityWithInterest = getLiquidity(_siloConfig); if (assets > liquidityWithInterest) { assets = liquidityWithInterest; // rounding must follow same flow as in `maxBorrowValueToAssetsAndShares()` shares = SiloMathLib.convertToShares( assets, _totalDebtAssets, _totalDebtShares, Rounding.MAX_BORROW_TO_SHARES, ISilo.AssetType.Debt ); } } function maxBorrow(address _borrower, bool _sameAsset) internal view returns (uint256 maxAssets, uint256 maxShares) { ISiloConfig siloConfig = ShareTokenLib.siloConfig(); if (siloConfig.hasDebtInOtherSilo(address(this), _borrower)) return (0, 0); ISiloConfig.ConfigData memory collateralConfig; ISiloConfig.ConfigData memory debtConfig; if (_sameAsset) { debtConfig = siloConfig.getConfig(address(this)); collateralConfig = debtConfig; } else { (collateralConfig, debtConfig) = siloConfig.getConfigsForBorrow({_debtSilo: address(this)}); } (uint256 totalDebtAssets, uint256 totalDebtShares) = SiloStdLib.getTotalAssetsAndTotalSharesWithInterest(debtConfig, ISilo.AssetType.Debt); return calculateMaxBorrow( collateralConfig, debtConfig, _borrower, totalDebtAssets, totalDebtShares, siloConfig ); } function getLiquidity(ISiloConfig _siloConfig) internal view returns (uint256 liquidity) { ISiloConfig.ConfigData memory config = _siloConfig.getConfig(address(this)); (liquidity,,) = getLiquidityAndAssetsWithInterest(config.interestRateModel, config.daoFee, config.deployerFee); } function getLiquidityAndAssetsWithInterest(address _interestRateModel, uint256 _daoFee, uint256 _deployerFee) internal view returns (uint256 liquidity, uint256 totalCollateralAssets, uint256 totalDebtAssets) { totalCollateralAssets = SiloStdLib.getTotalCollateralAssetsWithInterest( address(this), _interestRateModel, _daoFee, _deployerFee ); totalDebtAssets = SiloStdLib.getTotalDebtAssetsWithInterest( address(this), _interestRateModel ); liquidity = SiloMathLib.liquidity(totalCollateralAssets, totalDebtAssets); } /// @notice Calculates the maximum borrowable assets and shares /// @param _maxBorrowValue The maximum value that can be borrowed by the user /// @param _debtAsset Address of the debt token /// @param _debtOracle Oracle used to get the value of the debt token /// @param _totalDebtAssets Total assets of the debt /// @param _totalDebtShares Total shares of the debt /// @return assets Maximum borrowable assets /// @return shares Maximum borrowable shares function maxBorrowValueToAssetsAndShares( uint256 _maxBorrowValue, address _debtAsset, ISiloOracle _debtOracle, uint256 _totalDebtAssets, uint256 _totalDebtShares ) internal view returns (uint256 assets, uint256 shares) { if (_maxBorrowValue == 0) { return (0, 0); } uint256 debtTokenSample = _PRECISION_DECIMALS; uint256 debtSampleValue = address(_debtOracle) == address(0) ? debtTokenSample : _debtOracle.quote(debtTokenSample, _debtAsset); assets = _maxBorrowValue.mulDiv(debtTokenSample, debtSampleValue, Rounding.MAX_BORROW_TO_ASSETS); // when we borrow, we convertToShares with rounding.Up, to create higher debt, however here, // when we want to calculate "max borrow", we can not round.Up, because it can create issue with max ltv, // because we not creating debt here, we calculating max assets/shares, so we need to round.Down here shares = SiloMathLib.convertToShares( assets, _totalDebtAssets, _totalDebtShares, Rounding.MAX_BORROW_TO_SHARES, ISilo.AssetType.Debt ); // we need to recalculate assets, because what we did above is assets => shares with rounding down, but when // we input assets, they will generate more shares, so we need to calculate assets based on final shares // not based on borrow value assets = SiloMathLib.convertToAssets( shares, _totalDebtAssets, _totalDebtShares, Rounding.MAX_BORROW_TO_ASSETS, ISilo.AssetType.Debt ); } }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity ^0.8.28; import {SafeERC20} from "openzeppelin5/token/ERC20/utils/SafeERC20.sol"; import {IERC20} from "openzeppelin5/token/ERC20/IERC20.sol"; import {Math} from "openzeppelin5/utils/math/Math.sol"; import {ISiloConfig} from "../interfaces/ISiloConfig.sol"; import {ISilo} from "../interfaces/ISilo.sol"; import {IShareToken} from "../interfaces/IShareToken.sol"; import {SiloSolvencyLib} from "./SiloSolvencyLib.sol"; import {SiloMathLib} from "./SiloMathLib.sol"; import {SiloStdLib} from "./SiloStdLib.sol"; import {SiloLendingLib} from "./SiloLendingLib.sol"; import {Rounding} from "./Rounding.sol"; import {Hook} from "./Hook.sol"; import {ShareTokenLib} from "./ShareTokenLib.sol"; import {SiloStorageLib} from "./SiloStorageLib.sol"; // solhint-disable function-max-lines library SiloERC4626Lib { using SafeERC20 for IERC20; using Math for uint256; uint256 internal constant _PRECISION_DECIMALS = 1e18; /// @dev ERC4626: MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of assets that may be /// deposited. In our case, we want to limit this value in a way, that after max deposit we can do borrow. /// That's why we decided to go with type(uint128).max - which is anyway high enough to consume any totalSupply uint256 internal constant _VIRTUAL_DEPOSIT_LIMIT = type(uint256).max; /// @notice Deposit assets into the silo /// @param _token The ERC20 token address being deposited; 0 means tokens will not be transferred. Useful for /// transition of collateral. /// @param _depositor Address of the user depositing the assets /// @param _assets Amount of assets being deposited. Use 0 if shares are provided. /// @param _shares Shares being exchanged for the deposit; used for precise calculations. Use 0 if assets are /// provided. /// @param _receiver The address that will receive the collateral shares /// @param _collateralShareToken The collateral share token /// @param _collateralType The type of collateral being deposited /// @return assets The exact amount of assets being deposited /// @return shares The exact number of collateral shares being minted in exchange for the deposited assets function deposit( address _token, address _depositor, uint256 _assets, uint256 _shares, address _receiver, IShareToken _collateralShareToken, ISilo.CollateralType _collateralType ) internal returns (uint256 assets, uint256 shares) { ISilo.SiloStorage storage $ = SiloStorageLib.getSiloStorage(); uint256 totalAssets = $.totalAssets[ISilo.AssetType(uint256(_collateralType))]; (assets, shares) = SiloMathLib.convertToAssetsOrToShares( _assets, _shares, totalAssets, _collateralShareToken.totalSupply(), Rounding.DEPOSIT_TO_ASSETS, Rounding.DEPOSIT_TO_SHARES, ISilo.AssetType(uint256(_collateralType)) ); $.totalAssets[ISilo.AssetType(uint256(_collateralType))] = totalAssets + assets; // Hook receiver is called after `mint` and can reentry but state changes are completed already, // and reentrancy protection is still enabled. _collateralShareToken.mint(_receiver, _depositor, shares); if (_token != address(0)) { // Reentrancy is possible only for view methods (read-only reentrancy), // so no harm can be done as the state is already updated. // We do not expect the silo to work with any malicious token that will not send tokens to silo. IERC20(_token).safeTransferFrom(_depositor, address(this), assets); } } /// @notice Withdraw assets from the silo /// @dev Asset type is not verified here, make sure you revert before when type == Debt /// @param _asset The ERC20 token address to withdraw; 0 means tokens will not be transferred. Useful for /// transition of collateral. /// @param _shareToken Address of the share token being burned for withdrawal /// @param _args ISilo.WithdrawArgs /// @return assets The exact amount of assets withdrawn /// @return shares The exact number of shares burned in exchange for the withdrawn assets function withdraw( address _asset, address _shareToken, ISilo.WithdrawArgs memory _args ) internal returns (uint256 assets, uint256 shares) { uint256 shareTotalSupply = IShareToken(_shareToken).totalSupply(); require(shareTotalSupply != 0, ISilo.NothingToWithdraw()); ISilo.SiloStorage storage $ = SiloStorageLib.getSiloStorage(); { // Stack too deep uint256 totalAssets = $.totalAssets[ISilo.AssetType(uint256(_args.collateralType))]; (assets, shares) = SiloMathLib.convertToAssetsOrToShares( _args.assets, _args.shares, totalAssets, shareTotalSupply, Rounding.WITHDRAW_TO_ASSETS, Rounding.WITHDRAW_TO_SHARES, ISilo.AssetType(uint256(_args.collateralType)) ); uint256 liquidity = _args.collateralType == ISilo.CollateralType.Collateral ? SiloMathLib.liquidity($.totalAssets[ISilo.AssetType.Collateral], $.totalAssets[ISilo.AssetType.Debt]) : $.totalAssets[ISilo.AssetType.Protected]; // check liquidity require(assets <= liquidity, ISilo.NotEnoughLiquidity()); $.totalAssets[ISilo.AssetType(uint256(_args.collateralType))] = totalAssets - assets; } // `burn` checks if `_spender` is allowed to withdraw `_owner` assets. `burn` calls hook receiver // after tokens transfer and can potentially reenter, but state changes are already completed, // and reentrancy protection is still enabled. IShareToken(_shareToken).burn(_args.owner, _args.spender, shares); if (_asset != address(0)) { // fee-on-transfer is ignored IERC20(_asset).safeTransfer(_args.receiver, assets); } } /// @notice Determines the maximum amount a user can withdraw, either in terms of assets or shares /// @dev The function computes the maximum withdrawable assets and shares, considering user's collateral, debt, /// and the liquidity in the silo. /// Debt withdrawals are not allowed, resulting in a revert if such an attempt is made. /// @param _owner Address of the user for which the maximum withdrawal amount is calculated /// @param _collateralType The type of asset being considered for withdrawal /// @param _totalAssets The total PROTECTED assets in the silo. In case of collateral use `0`, total /// collateral will be calculated internally with interest /// @return assets The maximum assets that the user can withdraw /// @return shares The maximum shares that the user can withdraw function maxWithdraw( address _owner, ISilo.CollateralType _collateralType, uint256 _totalAssets ) internal view returns (uint256 assets, uint256 shares) { ( ISiloConfig.DepositConfig memory depositConfig, ISiloConfig.ConfigData memory collateralConfig, ISiloConfig.ConfigData memory debtConfig ) = ShareTokenLib.siloConfig().getConfigsForWithdraw(address(this), _owner); uint256 shareTokenTotalSupply; uint256 liquidity; if (_collateralType == ISilo.CollateralType.Collateral) { shareTokenTotalSupply = IShareToken(depositConfig.collateralShareToken).totalSupply(); (liquidity, _totalAssets, ) = SiloLendingLib.getLiquidityAndAssetsWithInterest( depositConfig.interestRateModel, depositConfig.daoFee, depositConfig.deployerFee ); } else { shareTokenTotalSupply = IShareToken(depositConfig.protectedShareToken).totalSupply(); liquidity = _totalAssets; } if (depositConfig.silo != collateralConfig.silo) { shares = _collateralType == ISilo.CollateralType.Protected ? IShareToken(depositConfig.protectedShareToken).balanceOf(_owner) : IShareToken(depositConfig.collateralShareToken).balanceOf(_owner); assets = SiloMathLib.convertToAssets( shares, _totalAssets, shareTokenTotalSupply, Rounding.MAX_WITHDRAW_TO_ASSETS, ISilo.AssetType(uint256(_collateralType)) ); if (_collateralType == ISilo.CollateralType.Protected || assets <= liquidity) return (assets, shares); assets = liquidity; shares = SiloMathLib.convertToShares( assets, _totalAssets, shareTokenTotalSupply, // when we doing withdraw, we using Rounding.Ceil, because we want to burn as many shares // however here, we will be using shares as input to withdraw, if we round up, we can overflow // because we will want to withdraw too much, so we have to use Rounding.Floor Rounding.MAX_WITHDRAW_TO_SHARES, ISilo.AssetType.Collateral ); return (assets, shares); } else { return maxWithdrawWhenDebt( collateralConfig, debtConfig, _owner, liquidity, shareTokenTotalSupply, _collateralType, _totalAssets ); } } function maxWithdrawWhenDebt( ISiloConfig.ConfigData memory _collateralConfig, ISiloConfig.ConfigData memory _debtConfig, address _owner, uint256 _liquidity, uint256 _shareTokenTotalSupply, ISilo.CollateralType _collateralType, uint256 _totalAssets ) internal view returns (uint256 assets, uint256 shares) { SiloSolvencyLib.LtvData memory ltvData = SiloSolvencyLib.getAssetsDataForLtvCalculations( _collateralConfig, _debtConfig, _owner, ISilo.OracleType.Solvency, ISilo.AccrueInterestInMemory.Yes, IShareToken(_debtConfig.debtShareToken).balanceOf(_owner) ); { (uint256 collateralValue, uint256 debtValue) = SiloSolvencyLib.getPositionValues(ltvData, _collateralConfig.token, _debtConfig.token); assets = SiloMathLib.calculateMaxAssetsToWithdraw( collateralValue, debtValue, _collateralConfig.lt, ltvData.borrowerProtectedAssets, ltvData.borrowerCollateralAssets ); } (assets, shares) = SiloMathLib.maxWithdrawToAssetsAndShares( assets, ltvData.borrowerCollateralAssets, ltvData.borrowerProtectedAssets, _collateralType, _totalAssets, _shareTokenTotalSupply, _liquidity ); if (assets != 0) { // recalculate assets due to rounding error that we have in convertToShares assets = SiloMathLib.convertToAssets( shares, _totalAssets, _shareTokenTotalSupply, Rounding.MAX_WITHDRAW_TO_ASSETS, ISilo.AssetType(uint256(_collateralType)) ); } } }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity ^0.8.28; import {Math} from "openzeppelin5/utils/math/Math.sol"; import {Rounding} from "../lib/Rounding.sol"; import {ISilo} from "../interfaces/ISilo.sol"; library SiloMathLib { using Math for uint256; uint256 internal constant _PRECISION_DECIMALS = 1e18; uint256 internal constant _DECIMALS_OFFSET = 3; /// @dev this is constant version of openzeppelin5/contracts/token/ERC20/extensions/ERC4626._decimalsOffset uint256 internal constant _DECIMALS_OFFSET_POW = 10 ** _DECIMALS_OFFSET; /// @notice Returns available liquidity to be borrowed /// @dev Accrued interest is entirely added to `debtAssets` but only part of it is added to `collateralAssets`. The /// difference is DAO's and deployer's cut. That means DAO's and deployer's cut is not considered a borrowable /// liquidity. function liquidity(uint256 _collateralAssets, uint256 _debtAssets) internal pure returns (uint256 liquidAssets) { unchecked { // we checked the underflow liquidAssets = _debtAssets > _collateralAssets ? 0 : _collateralAssets - _debtAssets; } } /// @notice Calculate collateral assets with accrued interest and associated fees /// @param _collateralAssets The total amount of collateral assets /// @param _debtAssets The total amount of debt assets /// @param _rcomp Compound interest rate for debt /// @param _daoFee The fee (in 18 decimals points) to be taken for the DAO /// @param _deployerFee The fee (in 18 decimals points) to be taken for the deployer /// @return collateralAssetsWithInterest The total collateral assets including the accrued interest /// @return debtAssetsWithInterest The debt assets with accrued interest /// @return daoAndDeployerRevenue Total fees amount to be split between DAO and deployer /// @return accruedInterest The total accrued interest function getCollateralAmountsWithInterest( uint256 _collateralAssets, uint256 _debtAssets, uint256 _rcomp, uint256 _daoFee, uint256 _deployerFee ) internal pure returns ( uint256 collateralAssetsWithInterest, uint256 debtAssetsWithInterest, uint256 daoAndDeployerRevenue, uint256 accruedInterest ) { (debtAssetsWithInterest, accruedInterest) = getDebtAmountsWithInterest(_debtAssets, _rcomp); uint256 fees; // _daoFee and _deployerFee are expected to be less than 1e18, so we will not overflow unchecked { fees = _daoFee + _deployerFee; } daoAndDeployerRevenue = mulDivOverflow(accruedInterest, fees, _PRECISION_DECIMALS); // we will not underflow because daoAndDeployerRevenue is chunk of accruedInterest uint256 collateralInterest = accruedInterest - daoAndDeployerRevenue; // save to uncheck because variable can not be more than max uint256 cap = type(uint256).max - _collateralAssets; if (cap < collateralInterest) { // avoid overflow on interest collateralInterest = cap; } // safe to uncheck because of cap unchecked { collateralAssetsWithInterest = _collateralAssets + collateralInterest; } } /// @notice Calculate the debt assets with accrued interest, it should never revert with over/under flow /// @param _totalDebtAssets The total amount of debt assets before accrued interest /// @param _rcomp Compound interest rate for the debt in 18 decimal precision /// @return debtAssetsWithInterest The debt assets including the accrued interest /// @return accruedInterest The total amount of interest accrued on the debt assets function getDebtAmountsWithInterest(uint256 _totalDebtAssets, uint256 _rcomp) internal pure returns (uint256 debtAssetsWithInterest, uint256 accruedInterest) { if (_totalDebtAssets == 0 || _rcomp == 0) { return (_totalDebtAssets, 0); } accruedInterest = mulDivOverflow(_totalDebtAssets, _rcomp, _PRECISION_DECIMALS); unchecked { // We intentionally allow overflow here, to prevent transaction revert due to interest calculation. debtAssetsWithInterest = _totalDebtAssets + accruedInterest; // If overflow occurs, we skip accruing interest. if (debtAssetsWithInterest < _totalDebtAssets) { debtAssetsWithInterest = _totalDebtAssets; accruedInterest = 0; } } } /// @notice Calculates fraction between borrowed and deposited amount of tokens denominated in percentage /// @dev It assumes `_dp` = 100%. /// @param _dp decimal points used by model /// @param _collateralAssets current total deposits for assets /// @param _debtAssets current total borrows for assets /// @return utilization value, capped to 100% /// Limiting utilization ratio by 100% max will allows us to perform better interest rate computations /// and should not affect any other part of protocol. It is possible to go over 100% only when bad debt. function calculateUtilization(uint256 _dp, uint256 _collateralAssets, uint256 _debtAssets) internal pure returns (uint256 utilization) { if (_collateralAssets == 0 || _debtAssets == 0 || _dp == 0) return 0; /* how to prevent overflow on: _debtAssets.mulDiv(_dp, _collateralAssets, Rounding.ACCRUED_INTEREST): 1. max > _debtAssets * _dp / _collateralAssets 2. max / _dp > _debtAssets / _collateralAssets */ if (type(uint256).max / _dp > _debtAssets / _collateralAssets) { utilization = _debtAssets.mulDiv(_dp, _collateralAssets, Rounding.ACCRUED_INTEREST); // cap at 100% if (utilization > _dp) utilization = _dp; } else { // we have overflow utilization = _dp; } } function convertToAssetsOrToShares( uint256 _assets, uint256 _shares, uint256 _totalAssets, uint256 _totalShares, Math.Rounding _roundingToAssets, Math.Rounding _roundingToShares, ISilo.AssetType _assetType ) internal pure returns (uint256 assets, uint256 shares) { if (_assets == 0) { require(_shares != 0, ISilo.InputZeroShares()); shares = _shares; assets = convertToAssets(_shares, _totalAssets, _totalShares, _roundingToAssets, _assetType); require(assets != 0, ISilo.ReturnZeroAssets()); } else if (_shares == 0) { shares = convertToShares(_assets, _totalAssets, _totalShares, _roundingToShares, _assetType); assets = _assets; require(shares != 0, ISilo.ReturnZeroShares()); } else { revert ISilo.InputCanBeAssetsOrShares(); } } /// @dev Math for collateral is exact copy of /// openzeppelin5/contracts/token/ERC20/extensions/ERC4626._convertToShares function convertToShares( uint256 _assets, uint256 _totalAssets, uint256 _totalShares, Math.Rounding _rounding, ISilo.AssetType _assetType ) internal pure returns (uint256 shares) { (uint256 totalShares, uint256 totalAssets) = _commonConvertTo(_totalAssets, _totalShares, _assetType); // initially, in case of debt, if silo is empty we return shares==assets // for collateral, this will never be the case, because we are adding `+1` and offset in `_commonConvertTo` if (totalShares == 0) return _assets; shares = _assets.mulDiv(totalShares, totalAssets, _rounding); } /// @dev Math for collateral is exact copy of /// openzeppelin5/contracts/token/ERC20/extensions/ERC4626._convertToAssets function convertToAssets( uint256 _shares, uint256 _totalAssets, uint256 _totalShares, Math.Rounding _rounding, ISilo.AssetType _assetType ) internal pure returns (uint256 assets) { (uint256 totalShares, uint256 totalAssets) = _commonConvertTo(_totalAssets, _totalShares, _assetType); // initially, in case of debt, if silo is empty we return shares==assets // for collateral, this will never be the case, because of `+1` in line above if (totalShares == 0) return _shares; assets = _shares.mulDiv(totalAssets, totalShares, _rounding); } /// @param _collateralMaxLtv maxLTV in 18 decimals that is set for debt asset /// @param _sumOfBorrowerCollateralValue borrower total collateral value (including protected) /// @param _borrowerDebtValue total value of borrower debt /// @return maxBorrowValue max borrow value yet available for borrower function calculateMaxBorrowValue( uint256 _collateralMaxLtv, uint256 _sumOfBorrowerCollateralValue, uint256 _borrowerDebtValue ) internal pure returns (uint256 maxBorrowValue) { if (_sumOfBorrowerCollateralValue == 0) { return 0; } uint256 maxDebtValue = _sumOfBorrowerCollateralValue.mulDiv( _collateralMaxLtv, _PRECISION_DECIMALS, Rounding.MAX_BORROW_VALUE ); unchecked { // we will not underflow because we checking `maxDebtValue > _borrowerDebtValue` maxBorrowValue = maxDebtValue > _borrowerDebtValue ? maxDebtValue - _borrowerDebtValue : 0; } } /// @notice Calculate the maximum assets a borrower can withdraw without breaching the liquidation threshold /// @param _sumOfCollateralsValue The combined value of collateral and protected assets of the borrower /// @param _debtValue The total debt value of the borrower /// @param _lt The liquidation threshold in 18 decimal points /// @param _borrowerCollateralAssets The borrower's collateral assets before the withdrawal /// @param _borrowerProtectedAssets The borrower's protected assets before the withdrawal /// @return maxAssets The maximum assets the borrower can safely withdraw function calculateMaxAssetsToWithdraw( uint256 _sumOfCollateralsValue, uint256 _debtValue, uint256 _lt, uint256 _borrowerCollateralAssets, uint256 _borrowerProtectedAssets ) internal pure returns (uint256 maxAssets) { if (_sumOfCollateralsValue == 0) return 0; if (_debtValue == 0) return _sumOfCollateralsValue; if (_lt == 0) return 0; // using Rounding.LT (up) to have highest collateralValue that we have to leave for user to stay solvent uint256 minimumCollateralValue = _debtValue.mulDiv(_PRECISION_DECIMALS, _lt, Rounding.LTV); // if we over LT, we can not withdraw if (_sumOfCollateralsValue <= minimumCollateralValue) { return 0; } uint256 spareCollateralValue; // safe because we checked `if (_sumOfCollateralsValue <= minimumCollateralValue)` unchecked { spareCollateralValue = _sumOfCollateralsValue - minimumCollateralValue; } maxAssets = (_borrowerProtectedAssets + _borrowerCollateralAssets) .mulDiv(spareCollateralValue, _sumOfCollateralsValue, Rounding.MAX_WITHDRAW_TO_ASSETS); } /// @notice Determines the maximum number of assets and corresponding shares a borrower can safely withdraw /// @param _maxAssets The calculated limit on how many assets can be withdrawn without breaching the liquidation /// threshold /// @param _borrowerCollateralAssets Amount of collateral assets currently held by the borrower /// @param _borrowerProtectedAssets Amount of protected assets currently held by the borrower /// @param _collateralType Specifies whether the asset is of type Collateral or Protected /// @param _totalAssets The entire quantity of assets available in the system for withdrawal /// @param _assetTypeShareTokenTotalSupply Total supply of share tokens for the specified asset type /// @param _liquidity Current liquidity in the system for the asset type /// @return assets Maximum assets the borrower can withdraw /// @return shares Corresponding number of shares for the derived `assets` amount function maxWithdrawToAssetsAndShares( uint256 _maxAssets, uint256 _borrowerCollateralAssets, uint256 _borrowerProtectedAssets, ISilo.CollateralType _collateralType, uint256 _totalAssets, uint256 _assetTypeShareTokenTotalSupply, uint256 _liquidity ) internal pure returns (uint256 assets, uint256 shares) { if (_maxAssets == 0) return (0, 0); if (_assetTypeShareTokenTotalSupply == 0) return (0, 0); if (_collateralType == ISilo.CollateralType.Collateral) { assets = _maxAssets > _borrowerCollateralAssets ? _borrowerCollateralAssets : _maxAssets; if (assets > _liquidity) { assets = _liquidity; } } else { assets = _maxAssets > _borrowerProtectedAssets ? _borrowerProtectedAssets : _maxAssets; } shares = SiloMathLib.convertToShares( assets, _totalAssets, _assetTypeShareTokenTotalSupply, Rounding.MAX_WITHDRAW_TO_SHARES, ISilo.AssetType(uint256(_collateralType)) ); } /// @dev executed `_a * _b / _c`, reverts on _c == 0 /// @return mulDivResult on overflow returns 0 function mulDivOverflow(uint256 _a, uint256 _b, uint256 _c) internal pure returns (uint256 mulDivResult) { if (_a == 0) return (0); unchecked { // we have to uncheck to detect overflow mulDivResult = _a * _b; if (mulDivResult / _a != _b) return 0; mulDivResult /= _c; } } /// @dev Debt calculations should not lower the result. Debt is a liability so protocol should not take any for /// itself. It should return actual result and round it up. function _commonConvertTo( uint256 _totalAssets, uint256 _totalShares, ISilo.AssetType _assetType ) private pure returns (uint256 totalShares, uint256 totalAssets) { if (_totalShares == 0) { // silo is empty and we have dust to redistribute: this can only happen when everyone exits silo // this case can happen only for collateral, because for collateral we rounding in favorite of protocol // by resetting totalAssets, the dust that we have will go to first depositor and we starts from clean state _totalAssets = 0; } (totalShares, totalAssets) = _assetType == ISilo.AssetType.Debt ? (_totalShares, _totalAssets) : (_totalShares + _DECIMALS_OFFSET_POW, _totalAssets + 1); } }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.28; import {Math} from "openzeppelin5/utils/math/Math.sol"; // solhint-disable private-vars-leading-underscore library Rounding { Math.Rounding internal constant UP = (Math.Rounding.Ceil); Math.Rounding internal constant DOWN = (Math.Rounding.Floor); Math.Rounding internal constant DEBT_TO_ASSETS = (Math.Rounding.Ceil); // COLLATERAL_TO_ASSETS is used to calculate borrower collateral (so we want to round down) Math.Rounding internal constant COLLATERAL_TO_ASSETS = (Math.Rounding.Floor); // why DEPOSIT_TO_ASSETS is Up if COLLATERAL_TO_ASSETS is Down? // DEPOSIT_TO_ASSETS is used for preview deposit and deposit, based on provided shares we want to pull "more" tokens // so we rounding up, "token flow" is in different direction than for COLLATERAL_TO_ASSETS, that's why // different rounding policy Math.Rounding internal constant DEPOSIT_TO_ASSETS = (Math.Rounding.Ceil); Math.Rounding internal constant DEPOSIT_TO_SHARES = (Math.Rounding.Floor); Math.Rounding internal constant BORROW_TO_ASSETS = (Math.Rounding.Floor); Math.Rounding internal constant BORROW_TO_SHARES = (Math.Rounding.Ceil); Math.Rounding internal constant MAX_BORROW_TO_ASSETS = (Math.Rounding.Floor); Math.Rounding internal constant MAX_BORROW_TO_SHARES = (Math.Rounding.Floor); Math.Rounding internal constant MAX_BORROW_VALUE = (Math.Rounding.Floor); Math.Rounding internal constant REPAY_TO_ASSETS = (Math.Rounding.Ceil); Math.Rounding internal constant REPAY_TO_SHARES = (Math.Rounding.Floor); Math.Rounding internal constant MAX_REPAY_TO_ASSETS = (Math.Rounding.Ceil); Math.Rounding internal constant WITHDRAW_TO_ASSETS = (Math.Rounding.Floor); Math.Rounding internal constant WITHDRAW_TO_SHARES = (Math.Rounding.Ceil); Math.Rounding internal constant MAX_WITHDRAW_TO_ASSETS = (Math.Rounding.Floor); Math.Rounding internal constant MAX_WITHDRAW_TO_SHARES = (Math.Rounding.Floor); Math.Rounding internal constant LIQUIDATE_TO_SHARES = (Math.Rounding.Floor); Math.Rounding internal constant LTV = (Math.Rounding.Ceil); Math.Rounding internal constant ACCRUED_INTEREST = (Math.Rounding.Floor); }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.28; import {ISilo} from "../interfaces/ISilo.sol"; // solhint-disable private-vars-leading-underscore library Hook { /// @notice The data structure for the deposit hook /// @param assets The amount of assets deposited /// @param shares The amount of shares deposited /// @param receiver The receiver of the deposit struct BeforeDepositInput { uint256 assets; uint256 shares; address receiver; } /// @notice The data structure for the deposit hook /// @param assets The amount of assets deposited /// @param shares The amount of shares deposited /// @param receiver The receiver of the deposit /// @param receivedAssets The exact amount of assets being deposited /// @param mintedShares The exact amount of shares being minted struct AfterDepositInput { uint256 assets; uint256 shares; address receiver; uint256 receivedAssets; uint256 mintedShares; } /// @notice The data structure for the withdraw hook /// @param assets The amount of assets withdrawn /// @param shares The amount of shares withdrawn /// @param receiver The receiver of the withdrawal /// @param owner The owner of the shares /// @param spender The spender of the shares struct BeforeWithdrawInput { uint256 assets; uint256 shares; address receiver; address owner; address spender; } /// @notice The data structure for the withdraw hook /// @param assets The amount of assets withdrawn /// @param shares The amount of shares withdrawn /// @param receiver The receiver of the withdrawal /// @param owner The owner of the shares /// @param spender The spender of the shares /// @param withdrawnAssets The exact amount of assets being withdrawn /// @param withdrawnShares The exact amount of shares being withdrawn struct AfterWithdrawInput { uint256 assets; uint256 shares; address receiver; address owner; address spender; uint256 withdrawnAssets; uint256 withdrawnShares; } /// @notice The data structure for the share token transfer hook /// @param sender The sender of the transfer (address(0) on mint) /// @param recipient The recipient of the transfer (address(0) on burn) /// @param amount The amount of tokens transferred/minted/burned /// @param senderBalance The balance of the sender after the transfer (empty on mint) /// @param recipientBalance The balance of the recipient after the transfer (empty on burn) /// @param totalSupply The total supply of the share token struct AfterTokenTransfer { address sender; address recipient; uint256 amount; uint256 senderBalance; uint256 recipientBalance; uint256 totalSupply; } /// @notice The data structure for the before borrow hook /// @param assets The amount of assets to borrow /// @param shares The amount of shares to borrow /// @param receiver The receiver of the borrow /// @param borrower The borrower of the assets /// @param _spender Address which initiates the borrowing action on behalf of the borrower struct BeforeBorrowInput { uint256 assets; uint256 shares; address receiver; address borrower; address spender; } /// @notice The data structure for the after borrow hook /// @param assets The amount of assets borrowed /// @param shares The amount of shares borrowed /// @param receiver The receiver of the borrow /// @param borrower The borrower of the assets /// @param spender Address which initiates the borrowing action on behalf of the borrower /// @param borrowedAssets The exact amount of assets being borrowed /// @param borrowedShares The exact amount of shares being borrowed struct AfterBorrowInput { uint256 assets; uint256 shares; address receiver; address borrower; address spender; uint256 borrowedAssets; uint256 borrowedShares; } /// @notice The data structure for the before repay hook /// @param assets The amount of assets to repay /// @param shares The amount of shares to repay /// @param borrower The borrower of the assets /// @param repayer The repayer of the assets struct BeforeRepayInput { uint256 assets; uint256 shares; address borrower; address repayer; } /// @notice The data structure for the after repay hook /// @param assets The amount of assets to repay /// @param shares The amount of shares to repay /// @param borrower The borrower of the assets /// @param repayer The repayer of the assets /// @param repaidAssets The exact amount of assets being repaid /// @param repaidShares The exact amount of shares being repaid struct AfterRepayInput { uint256 assets; uint256 shares; address borrower; address repayer; uint256 repaidAssets; uint256 repaidShares; } /// @notice The data structure for the before flash loan hook /// @param receiver The flash loan receiver /// @param token The flash loan token /// @param amount Requested amount of tokens struct BeforeFlashLoanInput { address receiver; address token; uint256 amount; } /// @notice The data structure for the after flash loan hook /// @param receiver The flash loan receiver /// @param token The flash loan token /// @param amount Received amount of tokens /// @param fee The flash loan fee struct AfterFlashLoanInput { address receiver; address token; uint256 amount; uint256 fee; } /// @notice The data structure for the before transition collateral hook /// @param shares The amount of shares to transition struct BeforeTransitionCollateralInput { uint256 shares; address owner; } /// @notice The data structure for the after transition collateral hook /// @param shares The amount of shares to transition struct AfterTransitionCollateralInput { uint256 shares; address owner; uint256 assets; } /// @notice The data structure for the switch collateral hook /// @param user The user switching collateral struct SwitchCollateralInput { address user; } /// @notice Supported hooks /// @dev The hooks are stored as a bitmap and can be combined with bitwise OR uint256 internal constant NONE = 0; uint256 internal constant DEPOSIT = 2 ** 1; uint256 internal constant BORROW = 2 ** 2; uint256 internal constant BORROW_SAME_ASSET = 2 ** 3; uint256 internal constant REPAY = 2 ** 4; uint256 internal constant WITHDRAW = 2 ** 5; uint256 internal constant FLASH_LOAN = 2 ** 6; uint256 internal constant TRANSITION_COLLATERAL = 2 ** 7; uint256 internal constant SWITCH_COLLATERAL = 2 ** 8; uint256 internal constant LIQUIDATION = 2 ** 9; uint256 internal constant SHARE_TOKEN_TRANSFER = 2 ** 10; uint256 internal constant COLLATERAL_TOKEN = 2 ** 11; uint256 internal constant PROTECTED_TOKEN = 2 ** 12; uint256 internal constant DEBT_TOKEN = 2 ** 13; // note: currently we can support hook value up to 2 ** 23, // because for optimisation purposes, we storing hooks as uint24 // For decoding packed data uint256 private constant PACKED_ADDRESS_LENGTH = 20; uint256 private constant PACKED_FULL_LENGTH = 32; uint256 private constant PACKED_ENUM_LENGTH = 1; uint256 private constant PACKED_BOOL_LENGTH = 1; error FailedToParseBoolean(); /// @notice Checks if the action has a specific hook /// @param _action The action /// @param _expectedHook The expected hook /// @dev The function returns true if the action has the expected hook. /// As hooks actions can be combined with bitwise OR, the following examples are valid: /// `matchAction(WITHDRAW | COLLATERAL_TOKEN, WITHDRAW) == true` /// `matchAction(WITHDRAW | COLLATERAL_TOKEN, COLLATERAL_TOKEN) == true` /// `matchAction(WITHDRAW | COLLATERAL_TOKEN, WITHDRAW | COLLATERAL_TOKEN) == true` function matchAction(uint256 _action, uint256 _expectedHook) internal pure returns (bool) { return _action & _expectedHook == _expectedHook; } /// @notice Adds a hook to an action /// @param _action The action /// @param _newAction The new hook to be added function addAction(uint256 _action, uint256 _newAction) internal pure returns (uint256) { return _action | _newAction; } /// @dev please be careful with removing actions, because other hooks might using them /// eg when you have `_action = COLLATERAL_TOKEN | PROTECTED_TOKEN | SHARE_TOKEN_TRANSFER` /// and you want to remove action on protected token transfer by doing /// `remove(_action, PROTECTED_TOKEN | SHARE_TOKEN_TRANSFER)`, the result will be `_action=COLLATERAL_TOKEN` /// and it will not trigger collateral token transfer. In this example you should do: /// `remove(_action, PROTECTED_TOKEN)` function removeAction(uint256 _action, uint256 _actionToRemove) internal pure returns (uint256) { return _action & (~_actionToRemove); } /// @notice Returns the action for depositing a specific collateral type /// @param _type The collateral type function depositAction(ISilo.CollateralType _type) internal pure returns (uint256) { return DEPOSIT | (_type == ISilo.CollateralType.Collateral ? COLLATERAL_TOKEN : PROTECTED_TOKEN); } /// @notice Returns the action for withdrawing a specific collateral type /// @param _type The collateral type function withdrawAction(ISilo.CollateralType _type) internal pure returns (uint256) { return WITHDRAW | (_type == ISilo.CollateralType.Collateral ? COLLATERAL_TOKEN : PROTECTED_TOKEN); } /// @notice Returns the action for collateral transition /// @param _type The collateral type function transitionCollateralAction(ISilo.CollateralType _type) internal pure returns (uint256) { return TRANSITION_COLLATERAL | (_type == ISilo.CollateralType.Collateral ? COLLATERAL_TOKEN : PROTECTED_TOKEN); } /// @notice Returns the share token transfer action /// @param _tokenType The token type (COLLATERAL_TOKEN || PROTECTED_TOKEN || DEBT_TOKEN) function shareTokenTransfer(uint256 _tokenType) internal pure returns (uint256) { return SHARE_TOKEN_TRANSFER | _tokenType; } /// @dev Decodes packed data from the share token after the transfer hook /// @param packed The packed data (via abi.encodePacked) /// @return input decoded function afterTokenTransferDecode(bytes memory packed) internal pure returns (AfterTokenTransfer memory input) { address sender; address recipient; uint256 amount; uint256 senderBalance; uint256 recipientBalance; uint256 totalSupply; assembly { // solhint-disable-line no-inline-assembly let pointer := PACKED_ADDRESS_LENGTH sender := mload(add(packed, pointer)) pointer := add(pointer, PACKED_ADDRESS_LENGTH) recipient := mload(add(packed, pointer)) pointer := add(pointer, PACKED_FULL_LENGTH) amount := mload(add(packed, pointer)) pointer := add(pointer, PACKED_FULL_LENGTH) senderBalance := mload(add(packed, pointer)) pointer := add(pointer, PACKED_FULL_LENGTH) recipientBalance := mload(add(packed, pointer)) pointer := add(pointer, PACKED_FULL_LENGTH) totalSupply := mload(add(packed, pointer)) } input = AfterTokenTransfer(sender, recipient, amount, senderBalance, recipientBalance, totalSupply); } /// @dev Decodes packed data from the deposit hook /// @param packed The packed data (via abi.encodePacked) /// @return input decoded function beforeDepositDecode(bytes memory packed) internal pure returns (BeforeDepositInput memory input) { uint256 assets; uint256 shares; address receiver; assembly { // solhint-disable-line no-inline-assembly let pointer := PACKED_FULL_LENGTH assets := mload(add(packed, pointer)) pointer := add(pointer, PACKED_FULL_LENGTH) shares := mload(add(packed, pointer)) pointer := add(pointer, PACKED_ADDRESS_LENGTH) receiver := mload(add(packed, pointer)) } input = BeforeDepositInput(assets, shares, receiver); } /// @dev Decodes packed data from the deposit hook /// @param packed The packed data (via abi.encodePacked) /// @return input decoded function afterDepositDecode(bytes memory packed) internal pure returns (AfterDepositInput memory input) { uint256 assets; uint256 shares; address receiver; uint256 receivedAssets; uint256 mintedShares; assembly { // solhint-disable-line no-inline-assembly let pointer := PACKED_FULL_LENGTH assets := mload(add(packed, pointer)) pointer := add(pointer, PACKED_FULL_LENGTH) shares := mload(add(packed, pointer)) pointer := add(pointer, PACKED_ADDRESS_LENGTH) receiver := mload(add(packed, pointer)) pointer := add(pointer, PACKED_FULL_LENGTH) receivedAssets := mload(add(packed, pointer)) pointer := add(pointer, PACKED_FULL_LENGTH) mintedShares := mload(add(packed, pointer)) } input = AfterDepositInput(assets, shares, receiver, receivedAssets, mintedShares); } /// @dev Decodes packed data from the withdraw hook /// @param packed The packed data (via abi.encodePacked) /// @return input decoded function beforeWithdrawDecode(bytes memory packed) internal pure returns (BeforeWithdrawInput memory input) { uint256 assets; uint256 shares; address receiver; address owner; address spender; assembly { // solhint-disable-line no-inline-assembly let pointer := PACKED_FULL_LENGTH assets := mload(add(packed, pointer)) pointer := add(pointer, PACKED_FULL_LENGTH) shares := mload(add(packed, pointer)) pointer := add(pointer, PACKED_ADDRESS_LENGTH) receiver := mload(add(packed, pointer)) pointer := add(pointer, PACKED_ADDRESS_LENGTH) owner := mload(add(packed, pointer)) pointer := add(pointer, PACKED_ADDRESS_LENGTH) spender := mload(add(packed, pointer)) } input = BeforeWithdrawInput(assets, shares, receiver, owner, spender); } /// @dev Decodes packed data from the withdraw hook /// @param packed The packed data (via abi.encodePacked) /// @return input decoded function afterWithdrawDecode(bytes memory packed) internal pure returns (AfterWithdrawInput memory input) { uint256 assets; uint256 shares; address receiver; address owner; address spender; uint256 withdrawnAssets; uint256 withdrawnShares; assembly { // solhint-disable-line no-inline-assembly let pointer := PACKED_FULL_LENGTH assets := mload(add(packed, pointer)) pointer := add(pointer, PACKED_FULL_LENGTH) shares := mload(add(packed, pointer)) pointer := add(pointer, PACKED_ADDRESS_LENGTH) receiver := mload(add(packed, pointer)) pointer := add(pointer, PACKED_ADDRESS_LENGTH) owner := mload(add(packed, pointer)) pointer := add(pointer, PACKED_ADDRESS_LENGTH) spender := mload(add(packed, pointer)) pointer := add(pointer, PACKED_FULL_LENGTH) withdrawnAssets := mload(add(packed, pointer)) pointer := add(pointer, PACKED_FULL_LENGTH) withdrawnShares := mload(add(packed, pointer)) } input = AfterWithdrawInput(assets, shares, receiver, owner, spender, withdrawnAssets, withdrawnShares); } /// @dev Decodes packed data from the before borrow hook /// @param packed The packed data (via abi.encodePacked) /// @return input decoded function beforeBorrowDecode(bytes memory packed) internal pure returns (BeforeBorrowInput memory input) { uint256 assets; uint256 shares; address receiver; address borrower; address spender; assembly { // solhint-disable-line no-inline-assembly let pointer := PACKED_FULL_LENGTH assets := mload(add(packed, pointer)) pointer := add(pointer, PACKED_FULL_LENGTH) shares := mload(add(packed, pointer)) pointer := add(pointer, PACKED_ADDRESS_LENGTH) receiver := mload(add(packed, pointer)) pointer := add(pointer, PACKED_ADDRESS_LENGTH) borrower := mload(add(packed, pointer)) pointer := add(pointer, PACKED_ADDRESS_LENGTH) spender := mload(add(packed, pointer)) } input = BeforeBorrowInput(assets, shares, receiver, borrower, spender); } /// @dev Decodes packed data from the after borrow hook /// @param packed The packed data (via abi.encodePacked) /// @return input decoded function afterBorrowDecode(bytes memory packed) internal pure returns (AfterBorrowInput memory input) { uint256 assets; uint256 shares; address receiver; address borrower; address spender; uint256 borrowedAssets; uint256 borrowedShares; assembly { // solhint-disable-line no-inline-assembly let pointer := PACKED_FULL_LENGTH assets := mload(add(packed, pointer)) pointer := add(pointer, PACKED_FULL_LENGTH) shares := mload(add(packed, pointer)) pointer := add(pointer, PACKED_ADDRESS_LENGTH) receiver := mload(add(packed, pointer)) pointer := add(pointer, PACKED_ADDRESS_LENGTH) borrower := mload(add(packed, pointer)) pointer := add(pointer, PACKED_ADDRESS_LENGTH) spender := mload(add(packed, pointer)) pointer := add(pointer, PACKED_FULL_LENGTH) borrowedAssets := mload(add(packed, pointer)) pointer := add(pointer, PACKED_FULL_LENGTH) borrowedShares := mload(add(packed, pointer)) } input = AfterBorrowInput(assets, shares, receiver, borrower, spender, borrowedAssets, borrowedShares); } /// @dev Decodes packed data from the before repay hook /// @param packed The packed data (via abi.encodePacked) /// @return input decoded function beforeRepayDecode(bytes memory packed) internal pure returns (BeforeRepayInput memory input) { uint256 assets; uint256 shares; address borrower; address repayer; assembly { // solhint-disable-line no-inline-assembly let pointer := PACKED_FULL_LENGTH assets := mload(add(packed, pointer)) pointer := add(pointer, PACKED_FULL_LENGTH) shares := mload(add(packed, pointer)) pointer := add(pointer, PACKED_ADDRESS_LENGTH) borrower := mload(add(packed, pointer)) pointer := add(pointer, PACKED_ADDRESS_LENGTH) repayer := mload(add(packed, pointer)) } input = BeforeRepayInput(assets, shares, borrower, repayer); } /// @dev Decodes packed data from the after repay hook /// @param packed The packed data (via abi.encodePacked) /// @return input decoded function afterRepayDecode(bytes memory packed) internal pure returns (AfterRepayInput memory input) { uint256 assets; uint256 shares; address borrower; address repayer; uint256 repaidAssets; uint256 repaidShares; assembly { // solhint-disable-line no-inline-assembly let pointer := PACKED_FULL_LENGTH assets := mload(add(packed, pointer)) pointer := add(pointer, PACKED_FULL_LENGTH) shares := mload(add(packed, pointer)) pointer := add(pointer, PACKED_ADDRESS_LENGTH) borrower := mload(add(packed, pointer)) pointer := add(pointer, PACKED_ADDRESS_LENGTH) repayer := mload(add(packed, pointer)) pointer := add(pointer, PACKED_FULL_LENGTH) repaidAssets := mload(add(packed, pointer)) pointer := add(pointer, PACKED_FULL_LENGTH) repaidShares := mload(add(packed, pointer)) } input = AfterRepayInput(assets, shares, borrower, repayer, repaidAssets, repaidShares); } /// @dev Decodes packed data from the before flash loan hook /// @param packed The packed data (via abi.encodePacked) /// @return input decoded function beforeFlashLoanDecode(bytes memory packed) internal pure returns (BeforeFlashLoanInput memory input) { address receiver; address token; uint256 amount; assembly { // solhint-disable-line no-inline-assembly let pointer := PACKED_ADDRESS_LENGTH receiver := mload(add(packed, pointer)) pointer := add(pointer, PACKED_ADDRESS_LENGTH) token := mload(add(packed, pointer)) pointer := add(pointer, PACKED_FULL_LENGTH) amount := mload(add(packed, pointer)) } input = BeforeFlashLoanInput(receiver, token, amount); } /// @dev Decodes packed data from the before flash loan hook /// @param packed The packed data (via abi.encodePacked) /// @return input decoded function afterFlashLoanDecode(bytes memory packed) internal pure returns (AfterFlashLoanInput memory input) { address receiver; address token; uint256 amount; uint256 fee; assembly { // solhint-disable-line no-inline-assembly let pointer := PACKED_ADDRESS_LENGTH receiver := mload(add(packed, pointer)) pointer := add(pointer, PACKED_ADDRESS_LENGTH) token := mload(add(packed, pointer)) pointer := add(pointer, PACKED_FULL_LENGTH) amount := mload(add(packed, pointer)) pointer := add(pointer, PACKED_FULL_LENGTH) fee := mload(add(packed, pointer)) } input = AfterFlashLoanInput(receiver, token, amount, fee); } /// @dev Decodes packed data from the transition collateral hook /// @param packed The packed data (via abi.encodePacked) /// @return input decoded function beforeTransitionCollateralDecode(bytes memory packed) internal pure returns (BeforeTransitionCollateralInput memory input) { uint256 shares; address owner; assembly { // solhint-disable-line no-inline-assembly let pointer := PACKED_FULL_LENGTH shares := mload(add(packed, pointer)) pointer := add(pointer, PACKED_ADDRESS_LENGTH) owner := mload(add(packed, pointer)) } input = BeforeTransitionCollateralInput(shares, owner); } /// @dev Decodes packed data from the transition collateral hook /// @param packed The packed data (via abi.encodePacked) /// @return input decoded function afterTransitionCollateralDecode(bytes memory packed) internal pure returns (AfterTransitionCollateralInput memory input) { uint256 shares; address owner; uint256 assets; assembly { // solhint-disable-line no-inline-assembly let pointer := PACKED_FULL_LENGTH shares := mload(add(packed, pointer)) pointer := add(pointer, PACKED_ADDRESS_LENGTH) owner := mload(add(packed, pointer)) pointer := add(pointer, PACKED_FULL_LENGTH) assets := mload(add(packed, pointer)) } input = AfterTransitionCollateralInput(shares, owner, assets); } /// @dev Decodes packed data from the switch collateral hook /// @param packed The packed data (via abi.encodePacked) /// @return input decoded function switchCollateralDecode(bytes memory packed) internal pure returns (SwitchCollateralInput memory input) { address user; assembly { // solhint-disable-line no-inline-assembly let pointer := PACKED_ADDRESS_LENGTH user := mload(add(packed, pointer)) } input = SwitchCollateralInput(user); } /// @dev Converts a uint8 to a boolean function _toBoolean(uint8 _value) internal pure returns (bool result) { if (_value == 0) { result = false; } else if (_value == 1) { result = true; } else { revert FailedToParseBoolean(); } } }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity ^0.8.0; import {Strings} from "openzeppelin5/utils/Strings.sol"; import {ISilo} from "../interfaces/ISilo.sol"; import {IShareToken} from "../interfaces/IShareToken.sol"; import {ISiloConfig} from "../interfaces/ISiloConfig.sol"; import {TokenHelper} from "../lib/TokenHelper.sol"; import {CallBeforeQuoteLib} from "../lib/CallBeforeQuoteLib.sol"; import {Hook} from "../lib/Hook.sol"; // solhint-disable ordering library ShareTokenLib { using Hook for uint24; using CallBeforeQuoteLib for ISiloConfig.ConfigData; // keccak256(abi.encode(uint256(keccak256("silo.storage.ShareToken")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant _STORAGE_LOCATION = 0x01b0b3f9d6e360167e522fa2b18ba597ad7b2b35841fec7e1ca4dbb0adea1200; function getShareTokenStorage() internal pure returns (IShareToken.ShareTokenStorage storage $) { // solhint-disable-next-line no-inline-assembly assembly { $.slot := _STORAGE_LOCATION } } // solhint-disable-next-line func-name-mixedcase, private-vars-leading-underscore function __ShareToken_init(ISilo _silo, address _hookReceiver, uint24 _tokenType) external { IShareToken.ShareTokenStorage storage $ = ShareTokenLib.getShareTokenStorage(); $.silo = _silo; $.siloConfig = _silo.config(); $.hookSetup.hookReceiver = _hookReceiver; $.hookSetup.tokenType = _tokenType; $.transferWithChecks = true; } /// @dev decimals of share token function decimals() external view returns (uint8) { IShareToken.ShareTokenStorage storage $ = getShareTokenStorage(); ISiloConfig.ConfigData memory configData = $.siloConfig.getConfig(address($.silo)); return uint8(TokenHelper.assertAndGetDecimals(configData.token)); } /// @dev Name convention: /// NAME - asset name /// SILO_ID - unique silo id /// /// Protected deposit: "Silo Finance Non-borrowable NAME Deposit, SiloId: SILO_ID" /// Borrowable deposit: "Silo Finance Borrowable NAME Deposit, SiloId: SILO_ID" /// Debt: "Silo Finance NAME Debt, SiloId: SILO_ID" function name() external view returns (string memory) { IShareToken.ShareTokenStorage storage $ = getShareTokenStorage(); ISiloConfig.ConfigData memory configData = $.siloConfig.getConfig(address($.silo)); string memory siloIdAscii = Strings.toString($.siloConfig.SILO_ID()); string memory pre = ""; string memory post = " Deposit"; if (address(this) == configData.protectedShareToken) { pre = "Non-borrowable "; } else if (address(this) == configData.collateralShareToken) { pre = "Borrowable "; } else if (address(this) == configData.debtShareToken) { post = " Debt"; } string memory tokenSymbol = TokenHelper.symbol(configData.token); return string.concat("Silo Finance ", pre, tokenSymbol, post, ", SiloId: ", siloIdAscii); } /// @dev Symbol convention: /// SYMBOL - asset symbol /// SILO_ID - unique silo id /// /// Protected deposit: "nbSYMBOL-SILO_ID" /// Borrowable deposit: "bSYMBOL-SILO_ID" /// Debt: "dSYMBOL-SILO_ID" function symbol() external view returns (string memory) { IShareToken.ShareTokenStorage storage $ = getShareTokenStorage(); ISiloConfig.ConfigData memory configData = $.siloConfig.getConfig(address($.silo)); string memory siloIdAscii = Strings.toString($.siloConfig.SILO_ID()); string memory pre; if (address(this) == configData.protectedShareToken) { pre = "nb"; } else if (address(this) == configData.collateralShareToken) { pre = "b"; } else if (address(this) == configData.debtShareToken) { pre = "d"; } string memory tokenSymbol = TokenHelper.symbol(configData.token); return string.concat(pre, tokenSymbol, "-", siloIdAscii); } /// @notice Call beforeQuote on solvency oracles /// @param _user user address for which the solvent check is performed function callOracleBeforeQuote(ISiloConfig _siloConfig, address _user) internal { ( ISiloConfig.ConfigData memory collateralConfig, ISiloConfig.ConfigData memory debtConfig ) = _siloConfig.getConfigsForSolvency(_user); collateralConfig.callSolvencyOracleBeforeQuote(); debtConfig.callSolvencyOracleBeforeQuote(); } /// @dev Call on behalf of share token /// @param _target target address to call /// @param _value value to send /// @param _callType call type /// @param _input input data /// @return success true if the call was successful, false otherwise /// @return result bytes returned by the call function callOnBehalfOfShareToken(address _target, uint256 _value, ISilo.CallType _callType, bytes calldata _input) internal returns (bool success, bytes memory result) { // Share token will not send back any ether leftovers after the call. // The hook receiver should request the ether if needed in a separate call. if (_callType == ISilo.CallType.Delegatecall) { (success, result) = _target.delegatecall(_input); // solhint-disable-line avoid-low-level-calls } else { (success, result) = _target.call{value: _value}(_input); // solhint-disable-line avoid-low-level-calls } } /// @dev checks if operation is "real" transfer /// @param _sender sender address /// @param _recipient recipient address /// @return bool true if operation is real transfer, false if it is mint or burn function isTransfer(address _sender, address _recipient) internal pure returns (bool) { // in order this check to be true, it is required to have: // require(sender != address(0), "ERC20: transfer from the zero address"); // require(recipient != address(0), "ERC20: transfer to the zero address"); // on transfer. ERC20 has them, so we good. return _sender != address(0) && _recipient != address(0); } function siloConfig() internal view returns (ISiloConfig thisSiloConfig) { return ShareTokenLib.getShareTokenStorage().siloConfig; } function getConfig() internal view returns (ISiloConfig.ConfigData memory thisSiloConfigData) { thisSiloConfigData = ShareTokenLib.getShareTokenStorage().siloConfig.getConfig(address(this)); } }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.28; import {ISilo} from "silo-core/contracts/interfaces/ISilo.sol"; library SiloStorageLib { // keccak256(abi.encode(uint256(keccak256("silo.storage.SiloVault")) - 1)) & ~bytes32(uint256(0xff)); bytes32 private constant _STORAGE_LOCATION = 0xd7513ffe3a01a9f6606089d1b67011bca35bec018ac0faa914e1c529408f8300; function getSiloStorage() internal pure returns (ISilo.SiloStorage storage $) { // solhint-disable-next-line no-inline-assembly assembly { $.slot := _STORAGE_LOCATION } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC1363.sol) pragma solidity ^0.8.20; import {IERC20} from "./IERC20.sol"; import {IERC165} from "./IERC165.sol"; /** * @title IERC1363 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363]. * * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction. */ interface IERC1363 is IERC20, IERC165 { /* * Note: the ERC-165 identifier for this interface is 0xb0202a11. * 0xb0202a11 === * bytes4(keccak256('transferAndCall(address,uint256)')) ^ * bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^ * bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^ * bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^ * bytes4(keccak256('approveAndCall(address,uint256)')) ^ * bytes4(keccak256('approveAndCall(address,uint256,bytes)')) */ /** * @dev Moves a `value` amount of tokens from the caller's account to `to` * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferAndCall(address to, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from the caller's account to `to` * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @param data Additional data with no specified format, sent in call to `to`. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param from The address which you want to send tokens from. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferFromAndCall(address from, address to, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param from The address which you want to send tokens from. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @param data Additional data with no specified format, sent in call to `to`. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`. * @param spender The address which will spend the funds. * @param value The amount of tokens to be spent. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function approveAndCall(address spender, uint256 value) external returns (bool); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`. * @param spender The address which will spend the funds. * @param value The amount of tokens to be spent. * @param data Additional data with no specified format, sent in call to `spender`. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol) pragma solidity ^0.8.20; import {Errors} from "./Errors.sol"; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev There's no code at `target` (it is not a contract). */ error AddressEmptyCode(address target); /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { if (address(this).balance < amount) { revert Errors.InsufficientBalance(address(this).balance, amount); } (bool success, ) = recipient.call{value: amount}(""); if (!success) { revert Errors.FailedCall(); } } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason or custom error, it is bubbled * up by this function (like regular Solidity function calls). However, if * the call reverted with no returned reason, this function reverts with a * {Errors.FailedCall} error. * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { if (address(this).balance < value) { revert Errors.InsufficientBalance(address(this).balance, value); } (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target * was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case * of an unsuccessful call. */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata ) internal view returns (bytes memory) { if (!success) { _revert(returndata); } else { // only check if target is a contract if the call was successful and the return data is empty // otherwise we already know that it was a contract if (returndata.length == 0 && target.code.length == 0) { revert AddressEmptyCode(target); } return returndata; } } /** * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the * revert reason or with a default {Errors.FailedCall} error. */ function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) { if (!success) { _revert(returndata); } else { return returndata; } } /** * @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}. */ function _revert(bytes memory returndata) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert Errors.FailedCall(); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC4626.sol) pragma solidity ^0.8.20; import {IERC20} from "../token/ERC20/IERC20.sol"; import {IERC20Metadata} from "../token/ERC20/extensions/IERC20Metadata.sol"; /** * @dev Interface of the ERC-4626 "Tokenized Vault Standard", as defined in * https://eips.ethereum.org/EIPS/eip-4626[ERC-4626]. */ interface IERC4626 is IERC20, IERC20Metadata { event Deposit(address indexed sender, address indexed owner, uint256 assets, uint256 shares); event Withdraw( address indexed sender, address indexed receiver, address indexed owner, uint256 assets, uint256 shares ); /** * @dev Returns the address of the underlying token used for the Vault for accounting, depositing, and withdrawing. * * - MUST be an ERC-20 token contract. * - MUST NOT revert. */ function asset() external view returns (address assetTokenAddress); /** * @dev Returns the total amount of the underlying asset that is “managed” by Vault. * * - SHOULD include any compounding that occurs from yield. * - MUST be inclusive of any fees that are charged against assets in the Vault. * - MUST NOT revert. */ function totalAssets() external view returns (uint256 totalManagedAssets); /** * @dev Returns the amount of shares that the Vault would exchange for the amount of assets provided, in an ideal * scenario where all the conditions are met. * * - MUST NOT be inclusive of any fees that are charged against assets in the Vault. * - MUST NOT show any variations depending on the caller. * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange. * - MUST NOT revert. * * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and * from. */ function convertToShares(uint256 assets) external view returns (uint256 shares); /** * @dev Returns the amount of assets that the Vault would exchange for the amount of shares provided, in an ideal * scenario where all the conditions are met. * * - MUST NOT be inclusive of any fees that are charged against assets in the Vault. * - MUST NOT show any variations depending on the caller. * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange. * - MUST NOT revert. * * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and * from. */ function convertToAssets(uint256 shares) external view returns (uint256 assets); /** * @dev Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver, * through a deposit call. * * - MUST return a limited value if receiver is subject to some deposit limit. * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of assets that may be deposited. * - MUST NOT revert. */ function maxDeposit(address receiver) external view returns (uint256 maxAssets); /** * @dev Allows an on-chain or off-chain user to simulate the effects of their deposit at the current block, given * current on-chain conditions. * * - MUST return as close to and no more than the exact amount of Vault shares that would be minted in a deposit * call in the same transaction. I.e. deposit should return the same or more shares as previewDeposit if called * in the same transaction. * - MUST NOT account for deposit limits like those returned from maxDeposit and should always act as though the * deposit would be accepted, regardless if the user has enough tokens approved, etc. * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees. * - MUST NOT revert. * * NOTE: any unfavorable discrepancy between convertToShares and previewDeposit SHOULD be considered slippage in * share price or some other type of condition, meaning the depositor will lose assets by depositing. */ function previewDeposit(uint256 assets) external view returns (uint256 shares); /** * @dev Mints shares Vault shares to receiver by depositing exactly amount of underlying tokens. * * - MUST emit the Deposit event. * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the * deposit execution, and are accounted for during deposit. * - MUST revert if all of assets cannot be deposited (due to deposit limit being reached, slippage, the user not * approving enough underlying tokens to the Vault contract, etc). * * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token. */ function deposit(uint256 assets, address receiver) external returns (uint256 shares); /** * @dev Returns the maximum amount of the Vault shares that can be minted for the receiver, through a mint call. * - MUST return a limited value if receiver is subject to some mint limit. * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of shares that may be minted. * - MUST NOT revert. */ function maxMint(address receiver) external view returns (uint256 maxShares); /** * @dev Allows an on-chain or off-chain user to simulate the effects of their mint at the current block, given * current on-chain conditions. * * - MUST return as close to and no fewer than the exact amount of assets that would be deposited in a mint call * in the same transaction. I.e. mint should return the same or fewer assets as previewMint if called in the * same transaction. * - MUST NOT account for mint limits like those returned from maxMint and should always act as though the mint * would be accepted, regardless if the user has enough tokens approved, etc. * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees. * - MUST NOT revert. * * NOTE: any unfavorable discrepancy between convertToAssets and previewMint SHOULD be considered slippage in * share price or some other type of condition, meaning the depositor will lose assets by minting. */ function previewMint(uint256 shares) external view returns (uint256 assets); /** * @dev Mints exactly shares Vault shares to receiver by depositing amount of underlying tokens. * * - MUST emit the Deposit event. * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the mint * execution, and are accounted for during mint. * - MUST revert if all of shares cannot be minted (due to deposit limit being reached, slippage, the user not * approving enough underlying tokens to the Vault contract, etc). * * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token. */ function mint(uint256 shares, address receiver) external returns (uint256 assets); /** * @dev Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the * Vault, through a withdraw call. * * - MUST return a limited value if owner is subject to some withdrawal limit or timelock. * - MUST NOT revert. */ function maxWithdraw(address owner) external view returns (uint256 maxAssets); /** * @dev Allows an on-chain or off-chain user to simulate the effects of their withdrawal at the current block, * given current on-chain conditions. * * - MUST return as close to and no fewer than the exact amount of Vault shares that would be burned in a withdraw * call in the same transaction. I.e. withdraw should return the same or fewer shares as previewWithdraw if * called * in the same transaction. * - MUST NOT account for withdrawal limits like those returned from maxWithdraw and should always act as though * the withdrawal would be accepted, regardless if the user has enough shares, etc. * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees. * - MUST NOT revert. * * NOTE: any unfavorable discrepancy between convertToShares and previewWithdraw SHOULD be considered slippage in * share price or some other type of condition, meaning the depositor will lose assets by depositing. */ function previewWithdraw(uint256 assets) external view returns (uint256 shares); /** * @dev Burns shares from owner and sends exactly assets of underlying tokens to receiver. * * - MUST emit the Withdraw event. * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the * withdraw execution, and are accounted for during withdraw. * - MUST revert if all of assets cannot be withdrawn (due to withdrawal limit being reached, slippage, the owner * not having enough shares, etc). * * Note that some implementations will require pre-requesting to the Vault before a withdrawal may be performed. * Those methods should be performed separately. */ function withdraw(uint256 assets, address receiver, address owner) external returns (uint256 shares); /** * @dev Returns the maximum amount of Vault shares that can be redeemed from the owner balance in the Vault, * through a redeem call. * * - MUST return a limited value if owner is subject to some withdrawal limit or timelock. * - MUST return balanceOf(owner) if owner is not subject to any withdrawal limit or timelock. * - MUST NOT revert. */ function maxRedeem(address owner) external view returns (uint256 maxShares); /** * @dev Allows an on-chain or off-chain user to simulate the effects of their redeemption at the current block, * given current on-chain conditions. * * - MUST return as close to and no more than the exact amount of assets that would be withdrawn in a redeem call * in the same transaction. I.e. redeem should return the same or more assets as previewRedeem if called in the * same transaction. * - MUST NOT account for redemption limits like those returned from maxRedeem and should always act as though the * redemption would be accepted, regardless if the user has enough shares, etc. * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees. * - MUST NOT revert. * * NOTE: any unfavorable discrepancy between convertToAssets and previewRedeem SHOULD be considered slippage in * share price or some other type of condition, meaning the depositor will lose assets by redeeming. */ function previewRedeem(uint256 shares) external view returns (uint256 assets); /** * @dev Burns exactly shares from owner and sends assets of underlying tokens to receiver. * * - MUST emit the Withdraw event. * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the * redeem execution, and are accounted for during redeem. * - MUST revert if all of shares cannot be redeemed (due to withdrawal limit being reached, slippage, the owner * not having enough shares, etc). * * NOTE: some implementations will require pre-requesting to the Vault before a withdrawal may be performed. * Those methods should be performed separately. */ function redeem(uint256 shares, address receiver, address owner) external returns (uint256 assets); }
// SPDX-License-Identifier: MIT pragma solidity >=0.5.0; import {IERC3156FlashBorrower} from "./IERC3156FlashBorrower.sol"; /// @notice https://eips.ethereum.org/EIPS/eip-3156 interface IERC3156FlashLender { /// @notice Protected deposits are not available for a flash loan. /// During the execution of the flashloan, Silo methods are not taking into consideration the fact, /// that some (or all) tokens were transferred as flashloan, therefore some methods can return invalid state /// eg. maxWithdraw can return amount that are not available to withdraw during flashlon. /// @dev Initiate a flash loan. /// @param _receiver The receiver of the tokens in the loan, and the receiver of the callback. /// @param _token The loan currency. /// @param _amount The amount of tokens lent. /// @param _data Arbitrary data structure, intended to contain user-defined parameters. function flashLoan(IERC3156FlashBorrower _receiver, address _token, uint256 _amount, bytes calldata _data) external returns (bool); /// @dev The amount of currency available to be lent. /// @param _token The loan currency. /// @return The amount of `token` that can be borrowed. function maxFlashLoan(address _token) external view returns (uint256); /// @dev The fee to be charged for a given loan. /// @param _token The loan currency. /// @param _amount The amount of tokens lent. /// @return The amount of `token` to be charged for the loan, on top of the returned principal. function flashFee(address _token, uint256 _amount) external view returns (uint256); }
// SPDX-License-Identifier: MIT pragma solidity >=0.5.0; import {ISiloConfig} from "./ISiloConfig.sol"; interface IHookReceiver { struct HookConfig { uint24 hooksBefore; uint24 hooksAfter; } event HookConfigured(address silo, uint24 hooksBefore, uint24 hooksAfter); /// @notice Initialize a hook receiver /// @param _siloConfig Silo configuration with all the details about the silo /// @param _data Data to initialize the hook receiver (if needed) function initialize(ISiloConfig _siloConfig, bytes calldata _data) external; /// @notice state of Silo before action, can be also without interest, if you need them, call silo.accrueInterest() function beforeAction(address _silo, uint256 _action, bytes calldata _input) external; function afterAction(address _silo, uint256 _action, bytes calldata _inputAndOutput) external; /// @notice return hooksBefore and hooksAfter configuration function hookReceiverConfig(address _silo) external view returns (uint24 hooksBefore, uint24 hooksAfter); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.20; import {IERC20} from "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC-20 standard. */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT pragma solidity >=0.5.0; interface ICrossReentrancyGuard { error CrossReentrantCall(); error CrossReentrancyNotActive(); /// @notice only silo method for cross Silo reentrancy function turnOnReentrancyProtection() external; /// @notice only silo method for cross Silo reentrancy function turnOffReentrancyProtection() external; /// @notice view method for checking cross Silo reentrancy flag /// @return entered true if the reentrancy guard is currently set to "entered", which indicates there is a /// `nonReentrant` function in the call stack. function reentrancyGuardEntered() external view returns (bool entered); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC721.sol) pragma solidity ^0.8.20; import {IERC721} from "../token/ERC721/IERC721.sol";
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.0; import {ISilo} from "../interfaces/ISilo.sol"; import {IShareToken} from "../interfaces/IShareToken.sol"; import {ISiloConfig} from "../interfaces/ISiloConfig.sol"; import {ShareTokenLib} from "./ShareTokenLib.sol"; import {CallBeforeQuoteLib} from "./CallBeforeQuoteLib.sol"; import {SiloSolvencyLib} from "./SiloSolvencyLib.sol"; library ShareCollateralTokenLib { using CallBeforeQuoteLib for ISiloConfig.ConfigData; function isSolventAfterCollateralTransfer(address _sender) external returns (bool isSolvent) { IShareToken.ShareTokenStorage storage $ = ShareTokenLib.getShareTokenStorage(); ISiloConfig siloConfig = $.siloConfig; ( ISiloConfig.DepositConfig memory deposit, ISiloConfig.ConfigData memory collateral, ISiloConfig.ConfigData memory debt ) = siloConfig.getConfigsForWithdraw(address($.silo), _sender); // when deposit silo is collateral silo, that means this sToken is collateral for debt if (collateral.silo != deposit.silo) return true; siloConfig.accrueInterestForBothSilos(); ShareTokenLib.callOracleBeforeQuote(siloConfig, _sender); isSolvent = SiloSolvencyLib.isSolvent(collateral, debt, _sender, ISilo.AccrueInterestInMemory.No); } }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.28; import {IERC20Permit} from "openzeppelin5/token/ERC20/extensions/ERC20Permit.sol"; import {ERC20PermitUpgradeable} from "openzeppelin5-upgradeable/token/ERC20/extensions/ERC20PermitUpgradeable.sol"; import {ERC20Upgradeable} from "openzeppelin5-upgradeable/token/ERC20/ERC20Upgradeable.sol"; import {IERC20Metadata, IERC20} from "openzeppelin5/token/ERC20/ERC20.sol"; import {IHookReceiver} from "../interfaces/IHookReceiver.sol"; import {IShareToken, ISilo} from "../interfaces/IShareToken.sol"; import {ISiloConfig} from "../SiloConfig.sol"; import {Hook} from "../lib/Hook.sol"; import {CallBeforeQuoteLib} from "../lib/CallBeforeQuoteLib.sol"; import {NonReentrantLib} from "../lib/NonReentrantLib.sol"; import {ShareTokenLib} from "../lib/ShareTokenLib.sol"; /// @title ShareToken /// @notice Implements common interface for Silo tokens representing debt or collateral. /// @dev Docs borrowed from https://github.com/OpenZeppelin/openzeppelin-contracts/tree/v4.9.3 /// /// Implementation of the ERC4626 "Tokenized Vault Standard" as defined in /// https://eips.ethereum.org/EIPS/eip-4626[EIP-4626]. /// /// This extension allows the minting and burning of "shares" (represented using the ERC20 inheritance) in exchange for /// underlying "assets" through standardized {deposit}, {mint}, {redeem} and {burn} workflows. This contract extends /// the ERC20 standard. Any additional extensions included along it would affect the "shares" token represented by this /// contract and not the "assets" token which is an independent contract. /// /// [CAUTION] /// ==== /// In empty (or nearly empty) ERC-4626 vaults, deposits are at high risk of being stolen through frontrunning /// with a "donation" to the vault that inflates the price of a share. This is variously known as a donation or /// inflation attack and is essentially a problem of slippage. Vault deployers can protect against this attack by /// making an initial deposit of a non-trivial amount of the asset, such that price manipulation becomes infeasible. /// Withdrawals may similarly be affected by slippage. Users can protect against this attack as well as unexpected /// slippage in general by verifying the amount received is as expected, using a wrapper that performs these checks /// such as https://github.com/fei-protocol/ERC4626#erc4626router-and-base[ERC4626Router]. /// /// Since v4.9, this implementation uses virtual assets and shares to mitigate that risk. The `_decimalsOffset()` /// corresponds to an offset in the decimal representation between the underlying asset's decimals and the vault /// decimals. This offset also determines the rate of virtual shares to virtual assets in the vault, which itself /// determines the initial exchange rate. While not fully preventing the attack, analysis shows that the default offset /// (0) makes it non-profitable, as a result of the value being captured by the virtual shares (out of the attacker's /// donation) matching the attacker's expected gains. With a larger offset, the attack becomes orders of magnitude more /// expensive than it is profitable. More details about the underlying math can be found /// xref:erc4626.adoc#inflation-attack[here]. /// /// The drawback of this approach is that the virtual shares do capture (a very small) part of the value being accrued /// to the vault. Also, if the vault experiences losses, the users try to exit the vault, the virtual shares and assets /// will cause the first user to exit to experience reduced losses in detriment to the last users that will experience /// bigger losses. Developers willing to revert back to the pre-v4.9 behavior just need to override the /// `_convertToShares` and `_convertToAssets` functions. /// /// To learn more, check out our xref:ROOT:erc4626.adoc[ERC-4626 guide]. /// ==== /// /// _Available since v4.7._ /// @custom:security-contact [email protected] abstract contract ShareToken is ERC20PermitUpgradeable, IShareToken { using Hook for uint24; using CallBeforeQuoteLib for ISiloConfig.ConfigData; string private constant _NAME = "SiloShareTokenEIP712Name"; modifier onlySilo() { require(msg.sender == address(_getSilo()), OnlySilo()); _; } modifier onlyHookReceiver() { require( msg.sender == address(ShareTokenLib.getShareTokenStorage().hookSetup.hookReceiver), ISilo.OnlyHookReceiver() ); _; } /// @custom:oz-upgrades-unsafe-allow constructor constructor() { _disableInitializers(); } /// @inheritdoc IShareToken function synchronizeHooks(uint24 _hooksBefore, uint24 _hooksAfter) external virtual onlySilo { IShareToken.ShareTokenStorage storage $ = ShareTokenLib.getShareTokenStorage(); $.hookSetup.hooksBefore = _hooksBefore; $.hookSetup.hooksAfter = _hooksAfter; } /// @inheritdoc IShareToken function forwardTransferFromNoChecks(address _from, address _to, uint256 _amount) external virtual onlyHookReceiver { IShareToken.ShareTokenStorage storage $ = ShareTokenLib.getShareTokenStorage(); $.transferWithChecks = false; _transfer(_from, _to, _amount); $.transferWithChecks = true; } function silo() external view virtual returns (ISilo) { return _getSilo(); } function siloConfig() external view virtual returns (ISiloConfig) { return _getSiloConfig(); } function hookSetup() external view virtual returns (HookSetup memory) { return ShareTokenLib.getShareTokenStorage().hookSetup; } function hookReceiver() external view virtual returns (address) { return ShareTokenLib.getShareTokenStorage().hookSetup.hookReceiver; } /// @inheritdoc ERC20Upgradeable function transferFrom(address _from, address _to, uint256 _amount) public virtual override(ERC20Upgradeable, IERC20) returns (bool result) { ISiloConfig siloConfigCached = _crossNonReentrantBefore(); result = ERC20Upgradeable.transferFrom(_from, _to, _amount); siloConfigCached.turnOffReentrancyProtection(); } /// @inheritdoc ERC20Upgradeable function transfer(address _to, uint256 _amount) public virtual override(ERC20Upgradeable, IERC20) returns (bool result) { ISiloConfig siloConfigCached = _crossNonReentrantBefore(); result = ERC20Upgradeable.transfer(_to, _amount); siloConfigCached.turnOffReentrancyProtection(); } function approve(address spender, uint256 value) public virtual override(ERC20Upgradeable, IERC20) returns (bool result) { NonReentrantLib.nonReentrant(_getSiloConfig()); result = ERC20Upgradeable.approve(spender, value); } /// @inheritdoc IERC20Permit function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) public virtual override { NonReentrantLib.nonReentrant(_getSiloConfig()); ERC20PermitUpgradeable.permit(owner, spender, value, deadline, v, r, s); } /// @dev decimals of share token function decimals() public view virtual override(ERC20Upgradeable, IERC20Metadata) returns (uint8) { return ShareTokenLib.decimals(); } /// @dev Name convention: /// NAME - asset name /// SILO_ID - unique silo id /// /// Protected deposit: "Silo Finance Non-borrowable NAME Deposit, SiloId: SILO_ID" /// Borrowable deposit: "Silo Finance Borrowable NAME Deposit, SiloId: SILO_ID" /// Debt: "Silo Finance NAME Debt, SiloId: SILO_ID" function name() public view virtual override(ERC20Upgradeable, IERC20Metadata) returns (string memory) { return ShareTokenLib.name(); } /// @dev Symbol convention: /// SYMBOL - asset symbol /// SILO_ID - unique silo id /// /// Protected deposit: "nbSYMBOL-SILO_ID" /// Borrowable deposit: "bSYMBOL-SILO_ID" /// Debt: "dSYMBOL-SILO_ID" function symbol() public view virtual override(ERC20Upgradeable, IERC20Metadata) returns (string memory) { return ShareTokenLib.symbol(); } function balanceOfAndTotalSupply(address _account) public view virtual returns (uint256, uint256) { return (balanceOf(_account), totalSupply()); } /// @dev Share token initialization function _shareTokenInitialize( ISilo _silo, address _hookReceiver, uint24 _tokenType ) internal virtual initializer { __ERC20Permit_init(_NAME); ShareTokenLib.__ShareToken_init(_silo, _hookReceiver, _tokenType); } /// @inheritdoc ERC20Upgradeable function _update(address from, address to, uint256 value) internal virtual override { require(value != 0, ZeroTransfer()); _beforeTokenTransfer(from, to, value); ERC20Upgradeable._update(from, to, value); _afterTokenTransfer(from, to, value); } /// @dev By default, we do not have any hooks before token transfer. However, /// derived contracts can override this function if they need to execute any logic before token transfer. function _beforeTokenTransfer(address _sender, address _recipient, uint256 _amount) internal virtual {} /// @dev Call an afterTokenTransfer hook if registered function _afterTokenTransfer(address _sender, address _recipient, uint256 _amount) internal virtual { IShareToken.ShareTokenStorage storage $ = ShareTokenLib.getShareTokenStorage(); HookSetup memory setup = $.hookSetup; uint256 action = Hook.shareTokenTransfer(setup.tokenType); if (!setup.hooksAfter.matchAction(action)) return; // report mint, burn or transfer // even if it is possible to leave silo in a middle of mint/burn, where we can have invalid state // you can not enter any function because of cross reentrancy check // invalid mid-state can be eg: in a middle of transitionCollateral, after burn but before mint IHookReceiver(setup.hookReceiver).afterAction( address($.silo), action, abi.encodePacked(_sender, _recipient, _amount, balanceOf(_sender), balanceOf(_recipient), totalSupply()) ); } function _crossNonReentrantBefore() internal virtual returns (ISiloConfig siloConfigCached) { siloConfigCached = _getSiloConfig(); siloConfigCached.turnOnReentrancyProtection(); } function _getSiloConfig() internal view virtual returns (ISiloConfig) { return ShareTokenLib.getShareTokenStorage().siloConfig; } function _getSilo() internal view virtual returns (ISilo) { return ShareTokenLib.getShareTokenStorage().silo; } }
// SPDX-License-Identifier: MIT pragma solidity >=0.5.0; import {IInterestRateModelV2Config} from "./IInterestRateModelV2Config.sol"; interface IInterestRateModelV2 { struct Config { // uopt ∈ (0, 1) – optimal utilization; int256 uopt; // ucrit ∈ (uopt, 1) – threshold of large utilization; int256 ucrit; // ulow ∈ (0, uopt) – threshold of low utilization int256 ulow; // ki > 0 – integrator gain int256 ki; // kcrit > 0 – proportional gain for large utilization int256 kcrit; // klow ≥ 0 – proportional gain for low utilization int256 klow; // klin ≥ 0 – coefficient of the lower linear bound int256 klin; // beta ≥ 0 - a scaling factor int256 beta; // ri ≥ 0 – initial value of the integrator int112 ri; // Tcrit ≥ 0 - initial value of the time during which the utilization exceeds the critical value int112 Tcrit; } struct Setup { // ri ≥ 0 – the integrator int112 ri; // Tcrit ≥ 0 - the time during which the utilization exceeds the critical value int112 Tcrit; // flag that informs if setup is initialized bool initialized; } /* solhint-enable */ error AddressZero(); error DeployConfigFirst(); error AlreadyInitialized(); error InvalidBeta(); error InvalidKcrit(); error InvalidKi(); error InvalidKlin(); error InvalidKlow(); error InvalidTcrit(); error InvalidTimestamps(); error InvalidUcrit(); error InvalidUlow(); error InvalidUopt(); error InvalidRi(); /// @dev Get config for given asset in a Silo. /// @param _silo Silo address for which config should be set /// @return Config struct for asset in Silo function getConfig(address _silo) external view returns (Config memory); /// @notice get the flag to detect rcomp restriction (zero current interest) due to overflow /// overflow boolean flag to detect rcomp restriction function overflowDetected(address _silo, uint256 _blockTimestamp) external view returns (bool overflow); /// @dev pure function that calculates current annual interest rate /// @param _c configuration object, IInterestRateModel.Config /// @param _totalBorrowAmount current total borrows for asset /// @param _totalDeposits current total deposits for asset /// @param _interestRateTimestamp timestamp of last interest rate update /// @param _blockTimestamp current block timestamp /// @return rcur current annual interest rate (1e18 == 100%) function calculateCurrentInterestRate( Config calldata _c, uint256 _totalDeposits, uint256 _totalBorrowAmount, uint256 _interestRateTimestamp, uint256 _blockTimestamp ) external pure returns (uint256 rcur); /// @dev pure function that calculates interest rate based on raw input data /// @param _c configuration object, IInterestRateModel.Config /// @param _totalBorrowAmount current total borrows for asset /// @param _totalDeposits current total deposits for asset /// @param _interestRateTimestamp timestamp of last interest rate update /// @param _blockTimestamp current block timestamp /// @return rcomp compounded interest rate from last update until now (1e18 == 100%) /// @return ri current integral part of the rate /// @return Tcrit time during which the utilization exceeds the critical value /// @return overflow boolean flag to detect rcomp restriction function calculateCompoundInterestRateWithOverflowDetection( Config memory _c, uint256 _totalDeposits, uint256 _totalBorrowAmount, uint256 _interestRateTimestamp, uint256 _blockTimestamp ) external pure returns ( uint256 rcomp, int256 ri, int256 Tcrit, bool overflow ); /// @dev pure function that calculates interest rate based on raw input data /// @param _c configuration object, IInterestRateModel.Config /// @param _totalBorrowAmount current total borrows for asset /// @param _totalDeposits current total deposits for asset /// @param _interestRateTimestamp timestamp of last interest rate update /// @param _blockTimestamp current block timestamp /// @return rcomp compounded interest rate from last update until now (1e18 == 100%) /// @return ri current integral part of the rate /// @return Tcrit time during which the utilization exceeds the critical value function calculateCompoundInterestRate( Config memory _c, uint256 _totalDeposits, uint256 _totalBorrowAmount, uint256 _interestRateTimestamp, uint256 _blockTimestamp ) external pure returns (uint256 rcomp, int256 ri, int256 Tcrit); }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity ^0.8.28; import {Math} from "openzeppelin5/utils/math/Math.sol"; import {ISiloOracle} from "../interfaces/ISiloOracle.sol"; import {SiloStdLib, ISiloConfig, IShareToken, ISilo} from "./SiloStdLib.sol"; import {SiloMathLib} from "./SiloMathLib.sol"; import {Rounding} from "./Rounding.sol"; library SiloSolvencyLib { using Math for uint256; struct LtvData { ISiloOracle collateralOracle; ISiloOracle debtOracle; uint256 borrowerProtectedAssets; uint256 borrowerCollateralAssets; uint256 borrowerDebtAssets; } uint256 internal constant _PRECISION_DECIMALS = 1e18; uint256 internal constant _INFINITY = type(uint256).max; /// @notice Determines if a borrower is solvent based on the Loan-to-Value (LTV) ratio /// @param _collateralConfig Configuration data for the collateral /// @param _debtConfig Configuration data for the debt /// @param _borrower Address of the borrower to check solvency for /// @param _accrueInMemory Determines whether or not to consider un-accrued interest in calculations /// @return True if the borrower is solvent, false otherwise function isSolvent( ISiloConfig.ConfigData memory _collateralConfig, ISiloConfig.ConfigData memory _debtConfig, address _borrower, ISilo.AccrueInterestInMemory _accrueInMemory ) internal view returns (bool) { if (_debtConfig.silo == address(0)) return true; // no debt, so solvent uint256 ltv = getLtv( _collateralConfig, _debtConfig, _borrower, ISilo.OracleType.Solvency, _accrueInMemory, IShareToken(_debtConfig.debtShareToken).balanceOf(_borrower) ); return ltv <= _collateralConfig.lt; } /// @notice Determines if a borrower's Loan-to-Value (LTV) ratio is below the maximum allowed LTV /// @param _collateralConfig Configuration data for the collateral /// @param _debtConfig Configuration data for the debt /// @param _borrower Address of the borrower to check against max LTV /// @param _accrueInMemory Determines whether or not to consider un-accrued interest in calculations /// @return True if the borrower's LTV is below the maximum, false otherwise function isBelowMaxLtv( ISiloConfig.ConfigData memory _collateralConfig, ISiloConfig.ConfigData memory _debtConfig, address _borrower, ISilo.AccrueInterestInMemory _accrueInMemory ) internal view returns (bool) { uint256 debtShareBalance = IShareToken(_debtConfig.debtShareToken).balanceOf(_borrower); if (debtShareBalance == 0) return true; uint256 ltv = getLtv( _collateralConfig, _debtConfig, _borrower, ISilo.OracleType.MaxLtv, _accrueInMemory, debtShareBalance ); return ltv <= _collateralConfig.maxLtv; } /// @notice Retrieves assets data required for LTV calculations /// @param _collateralConfig Configuration data for the collateral /// @param _debtConfig Configuration data for the debt /// @param _borrower Address of the borrower whose LTV data is to be calculated /// @param _oracleType Specifies whether to use the MaxLTV or Solvency oracle type for calculations /// @param _accrueInMemory Determines whether or not to consider un-accrued interest in calculations /// @param _debtShareBalanceCached Cached value of debt share balance for the borrower. If debt shares of /// `_borrower` is unknown, simply pass `0`. /// @return ltvData Data structure containing necessary data to compute LTV function getAssetsDataForLtvCalculations( // solhint-disable-line function-max-lines ISiloConfig.ConfigData memory _collateralConfig, ISiloConfig.ConfigData memory _debtConfig, address _borrower, ISilo.OracleType _oracleType, ISilo.AccrueInterestInMemory _accrueInMemory, uint256 _debtShareBalanceCached ) internal view returns (LtvData memory ltvData) { if (_collateralConfig.token != _debtConfig.token) { // When calculating maxLtv, use maxLtv oracle. (ltvData.collateralOracle, ltvData.debtOracle) = _oracleType == ISilo.OracleType.MaxLtv ? (ISiloOracle(_collateralConfig.maxLtvOracle), ISiloOracle(_debtConfig.maxLtvOracle)) : (ISiloOracle(_collateralConfig.solvencyOracle), ISiloOracle(_debtConfig.solvencyOracle)); } uint256 totalShares; uint256 shares; (shares, totalShares) = SiloStdLib.getSharesAndTotalSupply( _collateralConfig.protectedShareToken, _borrower, 0 /* no cache */ ); ( uint256 totalCollateralAssets, uint256 totalProtectedAssets ) = ISilo(_collateralConfig.silo).getCollateralAndProtectedTotalsStorage(); ltvData.borrowerProtectedAssets = SiloMathLib.convertToAssets( shares, totalProtectedAssets, totalShares, Rounding.COLLATERAL_TO_ASSETS, ISilo.AssetType.Protected ); (shares, totalShares) = SiloStdLib.getSharesAndTotalSupply( _collateralConfig.collateralShareToken, _borrower, 0 /* no cache */ ); totalCollateralAssets = _accrueInMemory == ISilo.AccrueInterestInMemory.Yes ? SiloStdLib.getTotalCollateralAssetsWithInterest( _collateralConfig.silo, _collateralConfig.interestRateModel, _collateralConfig.daoFee, _collateralConfig.deployerFee ) : totalCollateralAssets; ltvData.borrowerCollateralAssets = SiloMathLib.convertToAssets( shares, totalCollateralAssets, totalShares, Rounding.COLLATERAL_TO_ASSETS, ISilo.AssetType.Collateral ); (shares, totalShares) = SiloStdLib.getSharesAndTotalSupply( _debtConfig.debtShareToken, _borrower, _debtShareBalanceCached ); uint256 totalDebtAssets = _accrueInMemory == ISilo.AccrueInterestInMemory.Yes ? SiloStdLib.getTotalDebtAssetsWithInterest(_debtConfig.silo, _debtConfig.interestRateModel) : ISilo(_debtConfig.silo).getTotalAssetsStorage(ISilo.AssetType.Debt); // BORROW value -> to assets -> UP ltvData.borrowerDebtAssets = SiloMathLib.convertToAssets( shares, totalDebtAssets, totalShares, Rounding.DEBT_TO_ASSETS, ISilo.AssetType.Debt ); } /// @notice Calculates the Loan-To-Value (LTV) ratio for a given borrower /// @param _collateralConfig Configuration data related to the collateral asset /// @param _debtConfig Configuration data related to the debt asset /// @param _borrower Address of the borrower whose LTV is to be computed /// @param _oracleType Oracle type to use for fetching the asset prices /// @param _accrueInMemory Determines whether or not to consider un-accrued interest in calculations /// @return ltvInDp The computed LTV ratio in 18 decimals precision function getLtv( ISiloConfig.ConfigData memory _collateralConfig, ISiloConfig.ConfigData memory _debtConfig, address _borrower, ISilo.OracleType _oracleType, ISilo.AccrueInterestInMemory _accrueInMemory, uint256 _debtShareBalance ) internal view returns (uint256 ltvInDp) { if (_debtShareBalance == 0) return 0; LtvData memory ltvData = getAssetsDataForLtvCalculations( _collateralConfig, _debtConfig, _borrower, _oracleType, _accrueInMemory, _debtShareBalance ); if (ltvData.borrowerDebtAssets == 0) return 0; (,, ltvInDp) = calculateLtv(ltvData, _collateralConfig.token, _debtConfig.token); } /// @notice Calculates the Loan-to-Value (LTV) ratio based on provided collateral and debt data /// @dev calculation never reverts, if there is revert, then it is because of oracle /// @param _ltvData Data structure containing relevant information to calculate LTV /// @param _collateralToken Address of the collateral token /// @param _debtAsset Address of the debt token /// @return sumOfBorrowerCollateralValue Total value of borrower's collateral /// @return totalBorrowerDebtValue Total debt value for the borrower /// @return ltvInDp Calculated LTV in 18 decimal precision function calculateLtv( SiloSolvencyLib.LtvData memory _ltvData, address _collateralToken, address _debtAsset) internal view returns (uint256 sumOfBorrowerCollateralValue, uint256 totalBorrowerDebtValue, uint256 ltvInDp) { ( sumOfBorrowerCollateralValue, totalBorrowerDebtValue ) = getPositionValues(_ltvData, _collateralToken, _debtAsset); if (sumOfBorrowerCollateralValue == 0 && totalBorrowerDebtValue == 0) { return (0, 0, 0); } else if (sumOfBorrowerCollateralValue == 0) { ltvInDp = _INFINITY; } else { ltvInDp = ltvMath(totalBorrowerDebtValue, sumOfBorrowerCollateralValue); } } /// @notice Computes the value of collateral and debt based on given LTV data and asset addresses /// @param _ltvData Data structure containing the assets data required for LTV calculations /// @param _collateralAsset Address of the collateral asset /// @param _debtAsset Address of the debt asset /// @return sumOfCollateralValue Total value of collateral assets considering both protected and regular collateral /// assets /// @return debtValue Total value of debt assets function getPositionValues(LtvData memory _ltvData, address _collateralAsset, address _debtAsset) internal view returns (uint256 sumOfCollateralValue, uint256 debtValue) { uint256 sumOfCollateralAssets; sumOfCollateralAssets = _ltvData.borrowerProtectedAssets + _ltvData.borrowerCollateralAssets; if (sumOfCollateralAssets != 0) { // if no oracle is set, assume price 1, we should also not set oracle for quote token sumOfCollateralValue = address(_ltvData.collateralOracle) != address(0) ? _ltvData.collateralOracle.quote(sumOfCollateralAssets, _collateralAsset) : sumOfCollateralAssets; } if (_ltvData.borrowerDebtAssets != 0) { // if no oracle is set, assume price 1, we should also not set oracle for quote token debtValue = address(_ltvData.debtOracle) != address(0) ? _ltvData.debtOracle.quote(_ltvData.borrowerDebtAssets, _debtAsset) : _ltvData.borrowerDebtAssets; } } function ltvMath(uint256 _totalBorrowerDebtValue, uint256 _sumOfBorrowerCollateralValue) internal pure returns (uint256 ltvInDp) { ltvInDp = _totalBorrowerDebtValue.mulDiv(_PRECISION_DECIMALS, _sumOfBorrowerCollateralValue, Rounding.LTV); } }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity ^0.8.28; import {ISiloConfig} from "../interfaces/ISiloConfig.sol"; import {ISiloOracle} from "../interfaces/ISiloOracle.sol"; library CallBeforeQuoteLib { /// @dev Call `beforeQuote` on the `solvencyOracle` oracle /// @param _config Silo config data function callSolvencyOracleBeforeQuote(ISiloConfig.ConfigData memory _config) internal { if (_config.callBeforeQuote && _config.solvencyOracle != address(0)) { ISiloOracle(_config.solvencyOracle).beforeQuote(_config.token); } } /// @dev Call `beforeQuote` on the `maxLtvOracle` oracle /// @param _config Silo config data function callMaxLtvOracleBeforeQuote(ISiloConfig.ConfigData memory _config) internal { if (_config.callBeforeQuote && _config.maxLtvOracle != address(0)) { ISiloOracle(_config.maxLtvOracle).beforeQuote(_config.token); } } }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity ^0.8.28; import {ISiloConfig} from "../interfaces/ISiloConfig.sol"; import {ICrossReentrancyGuard} from "../interfaces/ICrossReentrancyGuard.sol"; library NonReentrantLib { function nonReentrant(ISiloConfig _config) internal view { require(!_config.reentrancyGuardEntered(), ICrossReentrancyGuard.CrossReentrantCall()); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.5.0; interface ISiloOracle { /// @notice Hook function to call before `quote` function reads price /// @dev This hook function can be used to change state right before the price is read. For example it can be used /// for curve read only reentrancy protection. In majority of implementations this will be an empty function. /// WARNING: reverts are propagated to Silo so if `beforeQuote` reverts, Silo reverts as well. /// @param _baseToken Address of priced token function beforeQuote(address _baseToken) external; /// @return quoteAmount Returns quote price for _baseAmount of _baseToken /// @param _baseAmount Amount of priced token /// @param _baseToken Address of priced token function quote(uint256 _baseAmount, address _baseToken) external view returns (uint256 quoteAmount); /// @return address of token in which quote (price) is denominated function quoteToken() external view returns (address); }
// SPDX-License-Identifier: MIT pragma solidity >=0.5.0; interface IInterestRateModel { event InterestRateModelError(); /// @dev Sets config address for all Silos that will use this model /// @param _irmConfig address of IRM config contract function initialize(address _irmConfig) external; /// @dev get compound interest rate and update model storage for current block.timestamp /// @param _collateralAssets total silo collateral assets /// @param _debtAssets total silo debt assets /// @param _interestRateTimestamp last IRM timestamp /// @return rcomp compounded interest rate from last update until now (1e18 == 100%) function getCompoundInterestRateAndUpdate( uint256 _collateralAssets, uint256 _debtAssets, uint256 _interestRateTimestamp ) external returns (uint256 rcomp); /// @dev get compound interest rate /// @param _silo address of Silo for which interest rate should be calculated /// @param _blockTimestamp current block timestamp /// @return rcomp compounded interest rate from last update until now (1e18 == 100%) function getCompoundInterestRate(address _silo, uint256 _blockTimestamp) external view returns (uint256 rcomp); /// @dev get current annual interest rate /// @param _silo address of Silo for which interest rate should be calculated /// @param _blockTimestamp current block timestamp /// @return rcur current annual interest rate (1e18 == 100%) function getCurrentInterestRate(address _silo, uint256 _blockTimestamp) external view returns (uint256 rcur); /// @dev returns decimal points used by model function decimals() external view returns (uint256); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol) pragma solidity ^0.8.20; import {Panic} from "../Panic.sol"; import {SafeCast} from "./SafeCast.sol"; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an success flag (no overflow). */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow). */ function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow). */ function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a success flag (no division by zero). */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero). */ function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. Panic.panic(Panic.DIVISION_BY_ZERO); } // The following calculation ensures accurate ceiling division without overflow. // Since a is non-zero, (a - 1) / b will not overflow. // The largest possible result occurs when (a - 1) / b is type(uint256).max, // but the largest value we can obtain is type(uint256).max - 1, which happens // when a = type(uint256).max and b = 1. unchecked { return a == 0 ? 0 : (a - 1) / b + 1; } } /** * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2²⁵⁶ + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0. if (denominator <= prod1) { Panic.panic(denominator == 0 ? Panic.DIVISION_BY_ZERO : Panic.UNDER_OVERFLOW); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv ≡ 1 mod 2⁴. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2⁸ inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶ inverse *= 2 - denominator * inverse; // inverse mod 2³² inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴ inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸ inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶ // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @dev Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0); } /** * @dev Calculate the modular multiplicative inverse of a number in Z/nZ. * * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, expect 0. * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible. * * If the input value is not inversible, 0 is returned. * * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Ferma's little theorem and get the * inverse using `Math.modExp(a, n - 2, n)`. */ function invMod(uint256 a, uint256 n) internal pure returns (uint256) { unchecked { if (n == 0) return 0; // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version) // Used to compute integers x and y such that: ax + ny = gcd(a, n). // When the gcd is 1, then the inverse of a modulo n exists and it's x. // ax + ny = 1 // ax = 1 + (-y)n // ax ≡ 1 (mod n) # x is the inverse of a modulo n // If the remainder is 0 the gcd is n right away. uint256 remainder = a % n; uint256 gcd = n; // Therefore the initial coefficients are: // ax + ny = gcd(a, n) = n // 0a + 1n = n int256 x = 0; int256 y = 1; while (remainder != 0) { uint256 quotient = gcd / remainder; (gcd, remainder) = ( // The old remainder is the next gcd to try. remainder, // Compute the next remainder. // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd // where gcd is at most n (capped to type(uint256).max) gcd - remainder * quotient ); (x, y) = ( // Increment the coefficient of a. y, // Decrement the coefficient of n. // Can overflow, but the result is casted to uint256 so that the // next value of y is "wrapped around" to a value between 0 and n - 1. x - y * int256(quotient) ); } if (gcd != 1) return 0; // No inverse exists. return x < 0 ? (n - uint256(-x)) : uint256(x); // Wrap the result if it's negative. } } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m) * * Requirements: * - modulus can't be zero * - underlying staticcall to precompile must succeed * * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make * sure the chain you're using it on supports the precompiled contract for modular exponentiation * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, * the underlying function will succeed given the lack of a revert, but the result may be incorrectly * interpreted as 0. */ function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) { (bool success, uint256 result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m). * It includes a success flag indicating if the operation succeeded. Operation will be marked has failed if trying * to operate modulo 0 or if the underlying precompile reverted. * * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack * of a revert, but the result may be incorrectly interpreted as 0. */ function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) { if (m == 0) return (false, 0); /// @solidity memory-safe-assembly assembly { let ptr := mload(0x40) // | Offset | Content | Content (Hex) | // |-----------|------------|--------------------------------------------------------------------| // | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x60:0x7f | value of b | 0x<.............................................................b> | // | 0x80:0x9f | value of e | 0x<.............................................................e> | // | 0xa0:0xbf | value of m | 0x<.............................................................m> | mstore(ptr, 0x20) mstore(add(ptr, 0x20), 0x20) mstore(add(ptr, 0x40), 0x20) mstore(add(ptr, 0x60), b) mstore(add(ptr, 0x80), e) mstore(add(ptr, 0xa0), m) // Given the result < m, it's guaranteed to fit in 32 bytes, // so we can use the memory scratch space located at offset 0. success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20) result := mload(0x00) } } /** * @dev Variant of {modExp} that supports inputs of arbitrary length. */ function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) { (bool success, bytes memory result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Variant of {tryModExp} that supports inputs of arbitrary length. */ function tryModExp( bytes memory b, bytes memory e, bytes memory m ) internal view returns (bool success, bytes memory result) { if (_zeroBytes(m)) return (false, new bytes(0)); uint256 mLen = m.length; // Encode call args in result and move the free memory pointer result = abi.encodePacked(b.length, e.length, mLen, b, e, m); /// @solidity memory-safe-assembly assembly { let dataPtr := add(result, 0x20) // Write result on top of args to avoid allocating extra memory. success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen) // Overwrite the length. // result.length > returndatasize() is guaranteed because returndatasize() == m.length mstore(result, mLen) // Set the memory pointer after the returned data. mstore(0x40, add(dataPtr, mLen)) } } /** * @dev Returns whether the provided byte array is zero. */ function _zeroBytes(bytes memory byteArray) private pure returns (bool) { for (uint256 i = 0; i < byteArray.length; ++i) { if (byteArray[i] != 0) { return false; } } return true; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * This method is based on Newton's method for computing square roots; the algorithm is restricted to only * using integer operations. */ function sqrt(uint256 a) internal pure returns (uint256) { unchecked { // Take care of easy edge cases when a == 0 or a == 1 if (a <= 1) { return a; } // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between // the current value as `ε_n = | x_n - sqrt(a) |`. // // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is // bigger than any uint256. // // By noticing that // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)` // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar // to the msb function. uint256 aa = a; uint256 xn = 1; if (aa >= (1 << 128)) { aa >>= 128; xn <<= 64; } if (aa >= (1 << 64)) { aa >>= 64; xn <<= 32; } if (aa >= (1 << 32)) { aa >>= 32; xn <<= 16; } if (aa >= (1 << 16)) { aa >>= 16; xn <<= 8; } if (aa >= (1 << 8)) { aa >>= 8; xn <<= 4; } if (aa >= (1 << 4)) { aa >>= 4; xn <<= 2; } if (aa >= (1 << 2)) { xn <<= 1; } // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1). // // We can refine our estimation by noticing that the middle of that interval minimizes the error. // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2). // This is going to be our x_0 (and ε_0) xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2) // From here, Newton's method give us: // x_{n+1} = (x_n + a / x_n) / 2 // // One should note that: // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a // = ((x_n² + a) / (2 * x_n))² - a // = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a // = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²) // = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²) // = (x_n² - a)² / (2 * x_n)² // = ((x_n² - a) / (2 * x_n))² // ≥ 0 // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n // // This gives us the proof of quadratic convergence of the sequence: // ε_{n+1} = | x_{n+1} - sqrt(a) | // = | (x_n + a / x_n) / 2 - sqrt(a) | // = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) | // = | (x_n - sqrt(a))² / (2 * x_n) | // = | ε_n² / (2 * x_n) | // = ε_n² / | (2 * x_n) | // // For the first iteration, we have a special case where x_0 is known: // ε_1 = ε_0² / | (2 * x_0) | // ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2))) // ≤ 2**(2*e-4) / (3 * 2**(e-1)) // ≤ 2**(e-3) / 3 // ≤ 2**(e-3-log2(3)) // ≤ 2**(e-4.5) // // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n: // ε_{n+1} = ε_n² / | (2 * x_n) | // ≤ (2**(e-k))² / (2 * 2**(e-1)) // ≤ 2**(2*e-2*k) / 2**e // ≤ 2**(e-2*k) xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5 xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9 xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18 xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36 xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72 // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either // sqrt(a) or sqrt(a) + 1. return xn - SafeCast.toUint(xn > a / xn); } } /** * @dev Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 exp; unchecked { exp = 128 * SafeCast.toUint(value > (1 << 128) - 1); value >>= exp; result += exp; exp = 64 * SafeCast.toUint(value > (1 << 64) - 1); value >>= exp; result += exp; exp = 32 * SafeCast.toUint(value > (1 << 32) - 1); value >>= exp; result += exp; exp = 16 * SafeCast.toUint(value > (1 << 16) - 1); value >>= exp; result += exp; exp = 8 * SafeCast.toUint(value > (1 << 8) - 1); value >>= exp; result += exp; exp = 4 * SafeCast.toUint(value > (1 << 4) - 1); value >>= exp; result += exp; exp = 2 * SafeCast.toUint(value > (1 << 2) - 1); value >>= exp; result += exp; result += SafeCast.toUint(value > 1); } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 isGt; unchecked { isGt = SafeCast.toUint(value > (1 << 128) - 1); value >>= isGt * 128; result += isGt * 16; isGt = SafeCast.toUint(value > (1 << 64) - 1); value >>= isGt * 64; result += isGt * 8; isGt = SafeCast.toUint(value > (1 << 32) - 1); value >>= isGt * 32; result += isGt * 4; isGt = SafeCast.toUint(value > (1 << 16) - 1); value >>= isGt * 16; result += isGt * 2; result += SafeCast.toUint(value > (1 << 8) - 1); } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol) pragma solidity ^0.8.20; import {Math} from "./math/Math.sol"; import {SignedMath} from "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant HEX_DIGITS = "0123456789abcdef"; uint8 private constant ADDRESS_LENGTH = 20; /** * @dev The `value` string doesn't fit in the specified `length`. */ error StringsInsufficientHexLength(uint256 value, uint256 length); /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), HEX_DIGITS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toStringSigned(int256 value) internal pure returns (string memory) { return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { uint256 localValue = value; bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = HEX_DIGITS[localValue & 0xf]; localValue >>= 4; } if (localValue != 0) { revert StringsInsufficientHexLength(value, length); } return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal * representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b)); } }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity ^0.8.28; import {IERC20Metadata} from "openzeppelin5/token/ERC20/extensions/IERC20Metadata.sol"; import {IsContract} from "./IsContract.sol"; library TokenHelper { uint256 private constant _BYTES32_SIZE = 32; error TokenIsNotAContract(); function assertAndGetDecimals(address _token) internal view returns (uint256) { (bool hasMetadata, bytes memory data) = _tokenMetadataCall(_token, abi.encodeCall(IERC20Metadata.decimals, ())); // decimals() is optional in the ERC20 standard, so if metadata is not accessible // we assume there are no decimals and use 0. if (!hasMetadata) { return 0; } return abi.decode(data, (uint8)); } /// @dev Returns the symbol for the provided ERC20 token. /// An empty string is returned if the call to the token didn't succeed. /// @param _token address of the token to get the symbol for /// @return assetSymbol the token symbol function symbol(address _token) internal view returns (string memory assetSymbol) { (bool hasMetadata, bytes memory data) = _tokenMetadataCall(_token, abi.encodeCall(IERC20Metadata.symbol, ())); if (!hasMetadata || data.length == 0) { return "?"; } else if (data.length == _BYTES32_SIZE) { return string(removeZeros(data)); } else { return abi.decode(data, (string)); } } /// @dev Removes bytes with value equal to 0 from the provided byte array. /// @param _data byte array from which to remove zeroes /// @return result byte array with zeroes removed function removeZeros(bytes memory _data) internal pure returns (bytes memory result) { uint256 n = _data.length; for (uint256 i; i < n; i++) { if (_data[i] == 0) continue; result = abi.encodePacked(result, _data[i]); } } /// @dev Performs a staticcall to the token to get its metadata (symbol, decimals, name) function _tokenMetadataCall(address _token, bytes memory _data) private view returns (bool, bytes memory) { // We need to do this before the call, otherwise the call will succeed even for EOAs require(IsContract.isContract(_token), TokenIsNotAContract()); (bool success, bytes memory result) = _token.staticcall(_data); // If the call reverted we assume the token doesn't follow the metadata extension if (!success) { return (false, ""); } return (true, result); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "../token/ERC20/IERC20.sol";
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol) pragma solidity ^0.8.20; import {IERC165} from "../utils/introspection/IERC165.sol";
// SPDX-License-Identifier: MIT pragma solidity ^0.8.20; /** * @dev Collection of common custom errors used in multiple contracts * * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library. * It is recommended to avoid relying on the error API for critical functionality. */ library Errors { /** * @dev The ETH balance of the account is not enough to perform the operation. */ error InsufficientBalance(uint256 balance, uint256 needed); /** * @dev A call to an address target failed. The target may have reverted. */ error FailedCall(); /** * @dev The deployment failed. */ error FailedDeployment(); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/IERC721.sol) pragma solidity ^0.8.20; import {IERC165} from "../../utils/introspection/IERC165.sol"; /** * @dev Required interface of an ERC-721 compliant contract. */ interface IERC721 is IERC165 { /** * @dev Emitted when `tokenId` token is transferred from `from` to `to`. */ event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. */ event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets. */ event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of tokens in ``owner``'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Safely transfers `tokenId` token from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon * a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external; /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients * are aware of the ERC-721 protocol to prevent tokens from being forever locked. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or * {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon * a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId) external; /** * @dev Transfers `tokenId` token from `from` to `to`. * * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC-721 * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must * understand this adds an external call which potentially creates a reentrancy vulnerability. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 tokenId) external; /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) external; /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the address zero. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool approved) external; /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) external view returns (address operator); /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll} */ function isApprovedForAll(address owner, address operator) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/ERC20Permit.sol) pragma solidity ^0.8.20; import {IERC20Permit} from "./IERC20Permit.sol"; import {ERC20} from "../ERC20.sol"; import {ECDSA} from "../../../utils/cryptography/ECDSA.sol"; import {EIP712} from "../../../utils/cryptography/EIP712.sol"; import {Nonces} from "../../../utils/Nonces.sol"; /** * @dev Implementation of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[ERC-2612]. * * Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712, Nonces { bytes32 private constant PERMIT_TYPEHASH = keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"); /** * @dev Permit deadline has expired. */ error ERC2612ExpiredSignature(uint256 deadline); /** * @dev Mismatched signature. */ error ERC2612InvalidSigner(address signer, address owner); /** * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`. * * It's a good idea to use the same `name` that is defined as the ERC-20 token name. */ constructor(string memory name) EIP712(name, "1") {} /** * @inheritdoc IERC20Permit */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) public virtual { if (block.timestamp > deadline) { revert ERC2612ExpiredSignature(deadline); } bytes32 structHash = keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline)); bytes32 hash = _hashTypedDataV4(structHash); address signer = ECDSA.recover(hash, v, r, s); if (signer != owner) { revert ERC2612InvalidSigner(signer, owner); } _approve(owner, spender, value); } /** * @inheritdoc IERC20Permit */ function nonces(address owner) public view virtual override(IERC20Permit, Nonces) returns (uint256) { return super.nonces(owner); } /** * @inheritdoc IERC20Permit */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view virtual returns (bytes32) { return _domainSeparatorV4(); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/ERC20Permit.sol) pragma solidity ^0.8.20; import {IERC20Permit} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Permit.sol"; import {ERC20Upgradeable} from "../ERC20Upgradeable.sol"; import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol"; import {EIP712Upgradeable} from "../../../utils/cryptography/EIP712Upgradeable.sol"; import {NoncesUpgradeable} from "../../../utils/NoncesUpgradeable.sol"; import {Initializable} from "../../../proxy/utils/Initializable.sol"; /** * @dev Implementation of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[ERC-2612]. * * Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ abstract contract ERC20PermitUpgradeable is Initializable, ERC20Upgradeable, IERC20Permit, EIP712Upgradeable, NoncesUpgradeable { bytes32 private constant PERMIT_TYPEHASH = keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"); /** * @dev Permit deadline has expired. */ error ERC2612ExpiredSignature(uint256 deadline); /** * @dev Mismatched signature. */ error ERC2612InvalidSigner(address signer, address owner); /** * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`. * * It's a good idea to use the same `name` that is defined as the ERC-20 token name. */ function __ERC20Permit_init(string memory name) internal onlyInitializing { __EIP712_init_unchained(name, "1"); } function __ERC20Permit_init_unchained(string memory) internal onlyInitializing {} /** * @inheritdoc IERC20Permit */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) public virtual { if (block.timestamp > deadline) { revert ERC2612ExpiredSignature(deadline); } bytes32 structHash = keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline)); bytes32 hash = _hashTypedDataV4(structHash); address signer = ECDSA.recover(hash, v, r, s); if (signer != owner) { revert ERC2612InvalidSigner(signer, owner); } _approve(owner, spender, value); } /** * @inheritdoc IERC20Permit */ function nonces(address owner) public view virtual override(IERC20Permit, NoncesUpgradeable) returns (uint256) { return super.nonces(owner); } /** * @inheritdoc IERC20Permit */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view virtual returns (bytes32) { return _domainSeparatorV4(); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/ERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; import {ContextUpgradeable} from "../../utils/ContextUpgradeable.sol"; import {IERC20Errors} from "@openzeppelin/contracts/interfaces/draft-IERC6093.sol"; import {Initializable} from "../../proxy/utils/Initializable.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * * TIP: For a detailed writeup see our guide * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * The default value of {decimals} is 18. To change this, you should override * this function so it returns a different value. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC-20 * applications. */ abstract contract ERC20Upgradeable is Initializable, ContextUpgradeable, IERC20, IERC20Metadata, IERC20Errors { /// @custom:storage-location erc7201:openzeppelin.storage.ERC20 struct ERC20Storage { mapping(address account => uint256) _balances; mapping(address account => mapping(address spender => uint256)) _allowances; uint256 _totalSupply; string _name; string _symbol; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.ERC20")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant ERC20StorageLocation = 0x52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace00; function _getERC20Storage() private pure returns (ERC20Storage storage $) { assembly { $.slot := ERC20StorageLocation } } /** * @dev Sets the values for {name} and {symbol}. * * All two of these values are immutable: they can only be set once during * construction. */ function __ERC20_init(string memory name_, string memory symbol_) internal onlyInitializing { __ERC20_init_unchained(name_, symbol_); } function __ERC20_init_unchained(string memory name_, string memory symbol_) internal onlyInitializing { ERC20Storage storage $ = _getERC20Storage(); $._name = name_; $._symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual returns (string memory) { ERC20Storage storage $ = _getERC20Storage(); return $._name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual returns (string memory) { ERC20Storage storage $ = _getERC20Storage(); return $._symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the default value returned by this function, unless * it's overridden. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual returns (uint256) { ERC20Storage storage $ = _getERC20Storage(); return $._totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual returns (uint256) { ERC20Storage storage $ = _getERC20Storage(); return $._balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `to` cannot be the zero address. * - the caller must have a balance of at least `value`. */ function transfer(address to, uint256 value) public virtual returns (bool) { address owner = _msgSender(); _transfer(owner, to, value); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual returns (uint256) { ERC20Storage storage $ = _getERC20Storage(); return $._allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on * `transferFrom`. This is semantically equivalent to an infinite approval. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 value) public virtual returns (bool) { address owner = _msgSender(); _approve(owner, spender, value); return true; } /** * @dev See {IERC20-transferFrom}. * * Skips emitting an {Approval} event indicating an allowance update. This is not * required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve]. * * NOTE: Does not update the allowance if the current allowance * is the maximum `uint256`. * * Requirements: * * - `from` and `to` cannot be the zero address. * - `from` must have a balance of at least `value`. * - the caller must have allowance for ``from``'s tokens of at least * `value`. */ function transferFrom(address from, address to, uint256 value) public virtual returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, value); _transfer(from, to, value); return true; } /** * @dev Moves a `value` amount of tokens from `from` to `to`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * NOTE: This function is not virtual, {_update} should be overridden instead. */ function _transfer(address from, address to, uint256 value) internal { if (from == address(0)) { revert ERC20InvalidSender(address(0)); } if (to == address(0)) { revert ERC20InvalidReceiver(address(0)); } _update(from, to, value); } /** * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from` * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding * this function. * * Emits a {Transfer} event. */ function _update(address from, address to, uint256 value) internal virtual { ERC20Storage storage $ = _getERC20Storage(); if (from == address(0)) { // Overflow check required: The rest of the code assumes that totalSupply never overflows $._totalSupply += value; } else { uint256 fromBalance = $._balances[from]; if (fromBalance < value) { revert ERC20InsufficientBalance(from, fromBalance, value); } unchecked { // Overflow not possible: value <= fromBalance <= totalSupply. $._balances[from] = fromBalance - value; } } if (to == address(0)) { unchecked { // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply. $._totalSupply -= value; } } else { unchecked { // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256. $._balances[to] += value; } } emit Transfer(from, to, value); } /** * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0). * Relies on the `_update` mechanism * * Emits a {Transfer} event with `from` set to the zero address. * * NOTE: This function is not virtual, {_update} should be overridden instead. */ function _mint(address account, uint256 value) internal { if (account == address(0)) { revert ERC20InvalidReceiver(address(0)); } _update(address(0), account, value); } /** * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply. * Relies on the `_update` mechanism. * * Emits a {Transfer} event with `to` set to the zero address. * * NOTE: This function is not virtual, {_update} should be overridden instead */ function _burn(address account, uint256 value) internal { if (account == address(0)) { revert ERC20InvalidSender(address(0)); } _update(account, address(0), value); } /** * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. * * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument. */ function _approve(address owner, address spender, uint256 value) internal { _approve(owner, spender, value, true); } /** * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event. * * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any * `Approval` event during `transferFrom` operations. * * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to * true using the following override: * * ```solidity * function _approve(address owner, address spender, uint256 value, bool) internal virtual override { * super._approve(owner, spender, value, true); * } * ``` * * Requirements are the same as {_approve}. */ function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual { ERC20Storage storage $ = _getERC20Storage(); if (owner == address(0)) { revert ERC20InvalidApprover(address(0)); } if (spender == address(0)) { revert ERC20InvalidSpender(address(0)); } $._allowances[owner][spender] = value; if (emitEvent) { emit Approval(owner, spender, value); } } /** * @dev Updates `owner` s allowance for `spender` based on spent `value`. * * Does not update the allowance value in case of infinite allowance. * Revert if not enough allowance is available. * * Does not emit an {Approval} event. */ function _spendAllowance(address owner, address spender, uint256 value) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance != type(uint256).max) { if (currentAllowance < value) { revert ERC20InsufficientAllowance(spender, currentAllowance, value); } unchecked { _approve(owner, spender, currentAllowance - value, false); } } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/ERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "./IERC20.sol"; import {IERC20Metadata} from "./extensions/IERC20Metadata.sol"; import {Context} from "../../utils/Context.sol"; import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * * TIP: For a detailed writeup see our guide * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * The default value of {decimals} is 18. To change this, you should override * this function so it returns a different value. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC-20 * applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the ERC may not emit * these events, as it isn't required by the specification. */ abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors { mapping(address account => uint256) private _balances; mapping(address account => mapping(address spender => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; /** * @dev Sets the values for {name} and {symbol}. * * All two of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the default value returned by this function, unless * it's overridden. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `to` cannot be the zero address. * - the caller must have a balance of at least `value`. */ function transfer(address to, uint256 value) public virtual returns (bool) { address owner = _msgSender(); _transfer(owner, to, value); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on * `transferFrom`. This is semantically equivalent to an infinite approval. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 value) public virtual returns (bool) { address owner = _msgSender(); _approve(owner, spender, value); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the ERC. See the note at the beginning of {ERC20}. * * NOTE: Does not update the allowance if the current allowance * is the maximum `uint256`. * * Requirements: * * - `from` and `to` cannot be the zero address. * - `from` must have a balance of at least `value`. * - the caller must have allowance for ``from``'s tokens of at least * `value`. */ function transferFrom(address from, address to, uint256 value) public virtual returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, value); _transfer(from, to, value); return true; } /** * @dev Moves a `value` amount of tokens from `from` to `to`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * NOTE: This function is not virtual, {_update} should be overridden instead. */ function _transfer(address from, address to, uint256 value) internal { if (from == address(0)) { revert ERC20InvalidSender(address(0)); } if (to == address(0)) { revert ERC20InvalidReceiver(address(0)); } _update(from, to, value); } /** * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from` * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding * this function. * * Emits a {Transfer} event. */ function _update(address from, address to, uint256 value) internal virtual { if (from == address(0)) { // Overflow check required: The rest of the code assumes that totalSupply never overflows _totalSupply += value; } else { uint256 fromBalance = _balances[from]; if (fromBalance < value) { revert ERC20InsufficientBalance(from, fromBalance, value); } unchecked { // Overflow not possible: value <= fromBalance <= totalSupply. _balances[from] = fromBalance - value; } } if (to == address(0)) { unchecked { // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply. _totalSupply -= value; } } else { unchecked { // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256. _balances[to] += value; } } emit Transfer(from, to, value); } /** * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0). * Relies on the `_update` mechanism * * Emits a {Transfer} event with `from` set to the zero address. * * NOTE: This function is not virtual, {_update} should be overridden instead. */ function _mint(address account, uint256 value) internal { if (account == address(0)) { revert ERC20InvalidReceiver(address(0)); } _update(address(0), account, value); } /** * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply. * Relies on the `_update` mechanism. * * Emits a {Transfer} event with `to` set to the zero address. * * NOTE: This function is not virtual, {_update} should be overridden instead */ function _burn(address account, uint256 value) internal { if (account == address(0)) { revert ERC20InvalidSender(address(0)); } _update(account, address(0), value); } /** * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. * * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument. */ function _approve(address owner, address spender, uint256 value) internal { _approve(owner, spender, value, true); } /** * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event. * * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any * `Approval` event during `transferFrom` operations. * * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to * true using the following override: * ``` * function _approve(address owner, address spender, uint256 value, bool) internal virtual override { * super._approve(owner, spender, value, true); * } * ``` * * Requirements are the same as {_approve}. */ function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual { if (owner == address(0)) { revert ERC20InvalidApprover(address(0)); } if (spender == address(0)) { revert ERC20InvalidSpender(address(0)); } _allowances[owner][spender] = value; if (emitEvent) { emit Approval(owner, spender, value); } } /** * @dev Updates `owner` s allowance for `spender` based on spent `value`. * * Does not update the allowance value in case of infinite allowance. * Revert if not enough allowance is available. * * Does not emit an {Approval} event. */ function _spendAllowance(address owner, address spender, uint256 value) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance != type(uint256).max) { if (currentAllowance < value) { revert ERC20InsufficientAllowance(spender, currentAllowance, value); } unchecked { _approve(owner, spender, currentAllowance - value, false); } } } }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.28; import {IERC20} from "openzeppelin5/token/ERC20/IERC20.sol"; import {ISilo} from "./interfaces/ISilo.sol"; import {ISiloConfig} from "./interfaces/ISiloConfig.sol"; import {CrossReentrancyGuard} from "./utils/CrossReentrancyGuard.sol"; import {Hook} from "./lib/Hook.sol"; /// @notice SiloConfig stores full configuration of Silo in immutable manner /// @dev Immutable contract is more expensive to deploy than minimal proxy however it provides nearly 10x cheaper /// data access using immutable variables. contract SiloConfig is ISiloConfig, CrossReentrancyGuard { using Hook for uint256; uint256 public immutable SILO_ID; uint256 internal immutable _DAO_FEE; uint256 internal immutable _DEPLOYER_FEE; address internal immutable _HOOK_RECEIVER; // TOKEN #0 address internal immutable _SILO0; address internal immutable _TOKEN0; /// @dev Token that represents a share in total protected deposits of Silo address internal immutable _PROTECTED_COLLATERAL_SHARE_TOKEN0; /// @dev Token that represents a share in total deposits of Silo address internal immutable _COLLATERAL_SHARE_TOKEN0; /// @dev Token that represents a share in total debt of Silo address internal immutable _DEBT_SHARE_TOKEN0; address internal immutable _SOLVENCY_ORACLE0; address internal immutable _MAX_LTV_ORACLE0; address internal immutable _INTEREST_RATE_MODEL0; uint256 internal immutable _MAX_LTV0; uint256 internal immutable _LT0; /// @dev target LTV after liquidation uint256 internal immutable _LIQUIDATION_TARGET_LTV0; uint256 internal immutable _LIQUIDATION_FEE0; uint256 internal immutable _FLASHLOAN_FEE0; bool internal immutable _CALL_BEFORE_QUOTE0; // TOKEN #1 address internal immutable _SILO1; address internal immutable _TOKEN1; /// @dev Token that represents a share in total protected deposits of Silo address internal immutable _PROTECTED_COLLATERAL_SHARE_TOKEN1; /// @dev Token that represents a share in total deposits of Silo address internal immutable _COLLATERAL_SHARE_TOKEN1; /// @dev Token that represents a share in total debt of Silo address internal immutable _DEBT_SHARE_TOKEN1; address internal immutable _SOLVENCY_ORACLE1; address internal immutable _MAX_LTV_ORACLE1; address internal immutable _INTEREST_RATE_MODEL1; uint256 internal immutable _MAX_LTV1; uint256 internal immutable _LT1; /// @dev target LTV after liquidation uint256 internal immutable _LIQUIDATION_TARGET_LTV1; uint256 internal immutable _LIQUIDATION_FEE1; uint256 internal immutable _FLASHLOAN_FEE1; bool internal immutable _CALL_BEFORE_QUOTE1; /// @inheritdoc ISiloConfig mapping (address borrower => address collateralSilo) public borrowerCollateralSilo; /// @param _siloId ID of this pool assigned by factory /// @param _configData0 silo configuration data for token0 /// @param _configData1 silo configuration data for token1 constructor( // solhint-disable-line function-max-lines uint256 _siloId, ConfigData memory _configData0, ConfigData memory _configData1 ) CrossReentrancyGuard() { SILO_ID = _siloId; // To make further computations in the Silo secure require DAO and deployer fees to be less than 100% require(_configData0.daoFee + _configData0.deployerFee < 1e18, FeeTooHigh()); _DAO_FEE = _configData0.daoFee; _DEPLOYER_FEE = _configData0.deployerFee; _HOOK_RECEIVER = _configData0.hookReceiver; // TOKEN #0 _SILO0 = _configData0.silo; _TOKEN0 = _configData0.token; _PROTECTED_COLLATERAL_SHARE_TOKEN0 = _configData0.protectedShareToken; _COLLATERAL_SHARE_TOKEN0 = _configData0.silo; _DEBT_SHARE_TOKEN0 = _configData0.debtShareToken; _SOLVENCY_ORACLE0 = _configData0.solvencyOracle; _MAX_LTV_ORACLE0 = _configData0.maxLtvOracle; _INTEREST_RATE_MODEL0 = _configData0.interestRateModel; _MAX_LTV0 = _configData0.maxLtv; _LT0 = _configData0.lt; _LIQUIDATION_TARGET_LTV0 = _configData0.liquidationTargetLtv; _LIQUIDATION_FEE0 = _configData0.liquidationFee; _FLASHLOAN_FEE0 = _configData0.flashloanFee; _CALL_BEFORE_QUOTE0 = _configData0.callBeforeQuote; // TOKEN #1 _SILO1 = _configData1.silo; _TOKEN1 = _configData1.token; _PROTECTED_COLLATERAL_SHARE_TOKEN1 = _configData1.protectedShareToken; _COLLATERAL_SHARE_TOKEN1 = _configData1.silo; _DEBT_SHARE_TOKEN1 = _configData1.debtShareToken; _SOLVENCY_ORACLE1 = _configData1.solvencyOracle; _MAX_LTV_ORACLE1 = _configData1.maxLtvOracle; _INTEREST_RATE_MODEL1 = _configData1.interestRateModel; _MAX_LTV1 = _configData1.maxLtv; _LT1 = _configData1.lt; _LIQUIDATION_TARGET_LTV1 = _configData1.liquidationTargetLtv; _LIQUIDATION_FEE1 = _configData1.liquidationFee; _FLASHLOAN_FEE1 = _configData1.flashloanFee; _CALL_BEFORE_QUOTE1 = _configData1.callBeforeQuote; } /// @inheritdoc ISiloConfig function setThisSiloAsCollateralSilo(address _borrower) external virtual { _onlySilo(); borrowerCollateralSilo[_borrower] = msg.sender; } /// @inheritdoc ISiloConfig function setOtherSiloAsCollateralSilo(address _borrower) external virtual { _onlySilo(); borrowerCollateralSilo[_borrower] = msg.sender == _SILO0 ? _SILO1 : _SILO0; } /// @inheritdoc ISiloConfig function onDebtTransfer(address _sender, address _recipient) external virtual { require(msg.sender == _DEBT_SHARE_TOKEN0 || msg.sender == _DEBT_SHARE_TOKEN1, OnlyDebtShareToken()); address thisSilo = msg.sender == _DEBT_SHARE_TOKEN0 ? _SILO0 : _SILO1; require(!hasDebtInOtherSilo(thisSilo, _recipient), DebtExistInOtherSilo()); if (borrowerCollateralSilo[_recipient] == address(0)) { borrowerCollateralSilo[_recipient] = borrowerCollateralSilo[_sender]; } } /// @inheritdoc ISiloConfig function accrueInterestForSilo(address _silo) external virtual { address irm; if (_silo == _SILO0) { irm = _INTEREST_RATE_MODEL0; } else if (_silo == _SILO1) { irm = _INTEREST_RATE_MODEL1; } else { revert WrongSilo(); } ISilo(_silo).accrueInterestForConfig( irm, _DAO_FEE, _DEPLOYER_FEE ); } /// @inheritdoc ISiloConfig function accrueInterestForBothSilos() external virtual { ISilo(_SILO0).accrueInterestForConfig( _INTEREST_RATE_MODEL0, _DAO_FEE, _DEPLOYER_FEE ); ISilo(_SILO1).accrueInterestForConfig( _INTEREST_RATE_MODEL1, _DAO_FEE, _DEPLOYER_FEE ); } /// @inheritdoc ISiloConfig function getConfigsForSolvency(address _borrower) public view virtual returns ( ConfigData memory collateralConfig, ConfigData memory debtConfig ) { address debtSilo = getDebtSilo(_borrower); if (debtSilo == address(0)) return (collateralConfig, debtConfig); address collateralSilo = borrowerCollateralSilo[_borrower]; collateralConfig = getConfig(collateralSilo); debtConfig = getConfig(debtSilo); } /// @inheritdoc ISiloConfig // solhint-disable-next-line ordering function getConfigsForWithdraw(address _silo, address _depositOwner) external view virtual returns ( DepositConfig memory depositConfig, ConfigData memory collateralConfig, ConfigData memory debtConfig ) { depositConfig = _getDepositConfig(_silo); (collateralConfig, debtConfig) = getConfigsForSolvency(_depositOwner); } /// @inheritdoc ISiloConfig function getConfigsForBorrow(address _debtSilo) external view virtual returns (ConfigData memory collateralConfig, ConfigData memory debtConfig) { address collateralSilo; if (_debtSilo == _SILO0) { collateralSilo = _SILO1; } else if (_debtSilo == _SILO1) { collateralSilo = _SILO0; } else { revert WrongSilo(); } collateralConfig = getConfig(collateralSilo); debtConfig = getConfig(_debtSilo); } /// @inheritdoc ISiloConfig function getSilos() external view virtual returns (address silo0, address silo1) { return (_SILO0, _SILO1); } /// @inheritdoc ISiloConfig function getShareTokens(address _silo) external view virtual returns (address protectedShareToken, address collateralShareToken, address debtShareToken) { if (_silo == _SILO0) { return (_PROTECTED_COLLATERAL_SHARE_TOKEN0, _COLLATERAL_SHARE_TOKEN0, _DEBT_SHARE_TOKEN0); } else if (_silo == _SILO1) { return (_PROTECTED_COLLATERAL_SHARE_TOKEN1, _COLLATERAL_SHARE_TOKEN1, _DEBT_SHARE_TOKEN1); } else { revert WrongSilo(); } } /// @inheritdoc ISiloConfig function getAssetForSilo(address _silo) external view virtual returns (address asset) { if (_silo == _SILO0) { return _TOKEN0; } else if (_silo == _SILO1) { return _TOKEN1; } else { revert WrongSilo(); } } /// @inheritdoc ISiloConfig function getFeesWithAsset(address _silo) external view virtual returns (uint256 daoFee, uint256 deployerFee, uint256 flashloanFee, address asset) { daoFee = _DAO_FEE; deployerFee = _DEPLOYER_FEE; if (_silo == _SILO0) { asset = _TOKEN0; flashloanFee = _FLASHLOAN_FEE0; } else if (_silo == _SILO1) { asset = _TOKEN1; flashloanFee = _FLASHLOAN_FEE1; } else { revert WrongSilo(); } } /// @inheritdoc ISiloConfig function getCollateralShareTokenAndAsset(address _silo, ISilo.CollateralType _collateralType) external view virtual returns (address shareToken, address asset) { if (_silo == _SILO0) { return _collateralType == ISilo.CollateralType.Collateral ? (_COLLATERAL_SHARE_TOKEN0, _TOKEN0) : (_PROTECTED_COLLATERAL_SHARE_TOKEN0, _TOKEN0); } else if (_silo == _SILO1) { return _collateralType == ISilo.CollateralType.Collateral ? (_COLLATERAL_SHARE_TOKEN1, _TOKEN1) : (_PROTECTED_COLLATERAL_SHARE_TOKEN1, _TOKEN1); } else { revert WrongSilo(); } } /// @inheritdoc ISiloConfig function getDebtShareTokenAndAsset(address _silo) external view virtual returns (address shareToken, address asset) { if (_silo == _SILO0) { return (_DEBT_SHARE_TOKEN0, _TOKEN0); } else if (_silo == _SILO1) { return (_DEBT_SHARE_TOKEN1, _TOKEN1); } else { revert WrongSilo(); } } /// @inheritdoc ISiloConfig function getConfig(address _silo) public view virtual returns (ConfigData memory config) { if (_silo == _SILO0) { config = _silo0ConfigData(); } else if (_silo == _SILO1) { config = _silo1ConfigData(); } else { revert WrongSilo(); } } /// @inheritdoc ISiloConfig function hasDebtInOtherSilo(address _thisSilo, address _borrower) public view virtual returns (bool hasDebt) { if (_thisSilo == _SILO0) { hasDebt = _balanceOf(_DEBT_SHARE_TOKEN1, _borrower) != 0; } else if (_thisSilo == _SILO1) { hasDebt = _balanceOf(_DEBT_SHARE_TOKEN0, _borrower) != 0; } else { revert WrongSilo(); } } /// @inheritdoc ISiloConfig function getDebtSilo(address _borrower) public view virtual returns (address debtSilo) { uint256 debtBal0 = _balanceOf(_DEBT_SHARE_TOKEN0, _borrower); uint256 debtBal1 = _balanceOf(_DEBT_SHARE_TOKEN1, _borrower); require(debtBal0 == 0 || debtBal1 == 0, DebtExistInOtherSilo()); if (debtBal0 == 0 && debtBal1 == 0) return address(0); debtSilo = debtBal0 != 0 ? _SILO0 : _SILO1; } function _silo0ConfigData() internal view virtual returns (ConfigData memory config) { config = ConfigData({ daoFee: _DAO_FEE, deployerFee: _DEPLOYER_FEE, silo: _SILO0, token: _TOKEN0, protectedShareToken: _PROTECTED_COLLATERAL_SHARE_TOKEN0, collateralShareToken: _COLLATERAL_SHARE_TOKEN0, debtShareToken: _DEBT_SHARE_TOKEN0, solvencyOracle: _SOLVENCY_ORACLE0, maxLtvOracle: _MAX_LTV_ORACLE0, interestRateModel: _INTEREST_RATE_MODEL0, maxLtv: _MAX_LTV0, lt: _LT0, liquidationTargetLtv: _LIQUIDATION_TARGET_LTV0, liquidationFee: _LIQUIDATION_FEE0, flashloanFee: _FLASHLOAN_FEE0, hookReceiver: _HOOK_RECEIVER, callBeforeQuote: _CALL_BEFORE_QUOTE0 }); } function _silo1ConfigData() internal view virtual returns (ConfigData memory config) { config = ConfigData({ daoFee: _DAO_FEE, deployerFee: _DEPLOYER_FEE, silo: _SILO1, token: _TOKEN1, protectedShareToken: _PROTECTED_COLLATERAL_SHARE_TOKEN1, collateralShareToken: _COLLATERAL_SHARE_TOKEN1, debtShareToken: _DEBT_SHARE_TOKEN1, solvencyOracle: _SOLVENCY_ORACLE1, maxLtvOracle: _MAX_LTV_ORACLE1, interestRateModel: _INTEREST_RATE_MODEL1, maxLtv: _MAX_LTV1, lt: _LT1, liquidationTargetLtv: _LIQUIDATION_TARGET_LTV1, liquidationFee: _LIQUIDATION_FEE1, flashloanFee: _FLASHLOAN_FEE1, hookReceiver: _HOOK_RECEIVER, callBeforeQuote: _CALL_BEFORE_QUOTE1 }); } function _getDepositConfig(address _silo) internal view virtual returns (DepositConfig memory config) { if (_silo == _SILO0) { config = DepositConfig({ silo: _SILO0, token: _TOKEN0, collateralShareToken: _COLLATERAL_SHARE_TOKEN0, protectedShareToken: _PROTECTED_COLLATERAL_SHARE_TOKEN0, daoFee: _DAO_FEE, deployerFee: _DEPLOYER_FEE, interestRateModel: _INTEREST_RATE_MODEL0 }); } else if (_silo == _SILO1) { config = DepositConfig({ silo: _SILO1, token: _TOKEN1, collateralShareToken: _COLLATERAL_SHARE_TOKEN1, protectedShareToken: _PROTECTED_COLLATERAL_SHARE_TOKEN1, daoFee: _DAO_FEE, deployerFee: _DEPLOYER_FEE, interestRateModel: _INTEREST_RATE_MODEL1 }); } else { revert WrongSilo(); } } function _onlySiloOrTokenOrHookReceiver() internal view virtual override { if (msg.sender != _SILO0 && msg.sender != _SILO1 && msg.sender != _HOOK_RECEIVER && msg.sender != _COLLATERAL_SHARE_TOKEN0 && msg.sender != _COLLATERAL_SHARE_TOKEN1 && msg.sender != _PROTECTED_COLLATERAL_SHARE_TOKEN0 && msg.sender != _PROTECTED_COLLATERAL_SHARE_TOKEN1 && msg.sender != _DEBT_SHARE_TOKEN0 && msg.sender != _DEBT_SHARE_TOKEN1 ) { revert OnlySiloOrTokenOrHookReceiver(); } } function _onlySilo() internal view virtual { require(msg.sender == _SILO0 || msg.sender == _SILO1, OnlySilo()); } function _balanceOf(address _token, address _user) internal view virtual returns (uint256 balance) { balance = IERC20(_token).balanceOf(_user); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.5.0; import {IInterestRateModelV2} from "./IInterestRateModelV2.sol"; interface IInterestRateModelV2Config { /// @return config returns immutable IRM configuration that is present in contract function getConfig() external view returns (IInterestRateModelV2.Config memory config); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.20; /** * @dev Helper library for emitting standardized panic codes. * * ```solidity * contract Example { * using Panic for uint256; * * // Use any of the declared internal constants * function foo() { Panic.GENERIC.panic(); } * * // Alternatively * function foo() { Panic.panic(Panic.GENERIC); } * } * ``` * * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil]. */ // slither-disable-next-line unused-state library Panic { /// @dev generic / unspecified error uint256 internal constant GENERIC = 0x00; /// @dev used by the assert() builtin uint256 internal constant ASSERT = 0x01; /// @dev arithmetic underflow or overflow uint256 internal constant UNDER_OVERFLOW = 0x11; /// @dev division or modulo by zero uint256 internal constant DIVISION_BY_ZERO = 0x12; /// @dev enum conversion error uint256 internal constant ENUM_CONVERSION_ERROR = 0x21; /// @dev invalid encoding in storage uint256 internal constant STORAGE_ENCODING_ERROR = 0x22; /// @dev empty array pop uint256 internal constant EMPTY_ARRAY_POP = 0x31; /// @dev array out of bounds access uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32; /// @dev resource error (too large allocation or too large array) uint256 internal constant RESOURCE_ERROR = 0x41; /// @dev calling invalid internal function uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51; /// @dev Reverts with a panic code. Recommended to use with /// the internal constants with predefined codes. function panic(uint256 code) internal pure { /// @solidity memory-safe-assembly assembly { mstore(0x00, 0x4e487b71) mstore(0x20, code) revert(0x1c, 0x24) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol) // This file was procedurally generated from scripts/generate/templates/SafeCast.js. pragma solidity ^0.8.20; /** * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeCast { /** * @dev Value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value); /** * @dev An int value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedIntToUint(int256 value); /** * @dev Value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedIntDowncast(uint8 bits, int256 value); /** * @dev An uint value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedUintToInt(uint256 value); /** * @dev Returns the downcasted uint248 from uint256, reverting on * overflow (when the input is greater than largest uint248). * * Counterpart to Solidity's `uint248` operator. * * Requirements: * * - input must fit into 248 bits */ function toUint248(uint256 value) internal pure returns (uint248) { if (value > type(uint248).max) { revert SafeCastOverflowedUintDowncast(248, value); } return uint248(value); } /** * @dev Returns the downcasted uint240 from uint256, reverting on * overflow (when the input is greater than largest uint240). * * Counterpart to Solidity's `uint240` operator. * * Requirements: * * - input must fit into 240 bits */ function toUint240(uint256 value) internal pure returns (uint240) { if (value > type(uint240).max) { revert SafeCastOverflowedUintDowncast(240, value); } return uint240(value); } /** * @dev Returns the downcasted uint232 from uint256, reverting on * overflow (when the input is greater than largest uint232). * * Counterpart to Solidity's `uint232` operator. * * Requirements: * * - input must fit into 232 bits */ function toUint232(uint256 value) internal pure returns (uint232) { if (value > type(uint232).max) { revert SafeCastOverflowedUintDowncast(232, value); } return uint232(value); } /** * @dev Returns the downcasted uint224 from uint256, reverting on * overflow (when the input is greater than largest uint224). * * Counterpart to Solidity's `uint224` operator. * * Requirements: * * - input must fit into 224 bits */ function toUint224(uint256 value) internal pure returns (uint224) { if (value > type(uint224).max) { revert SafeCastOverflowedUintDowncast(224, value); } return uint224(value); } /** * @dev Returns the downcasted uint216 from uint256, reverting on * overflow (when the input is greater than largest uint216). * * Counterpart to Solidity's `uint216` operator. * * Requirements: * * - input must fit into 216 bits */ function toUint216(uint256 value) internal pure returns (uint216) { if (value > type(uint216).max) { revert SafeCastOverflowedUintDowncast(216, value); } return uint216(value); } /** * @dev Returns the downcasted uint208 from uint256, reverting on * overflow (when the input is greater than largest uint208). * * Counterpart to Solidity's `uint208` operator. * * Requirements: * * - input must fit into 208 bits */ function toUint208(uint256 value) internal pure returns (uint208) { if (value > type(uint208).max) { revert SafeCastOverflowedUintDowncast(208, value); } return uint208(value); } /** * @dev Returns the downcasted uint200 from uint256, reverting on * overflow (when the input is greater than largest uint200). * * Counterpart to Solidity's `uint200` operator. * * Requirements: * * - input must fit into 200 bits */ function toUint200(uint256 value) internal pure returns (uint200) { if (value > type(uint200).max) { revert SafeCastOverflowedUintDowncast(200, value); } return uint200(value); } /** * @dev Returns the downcasted uint192 from uint256, reverting on * overflow (when the input is greater than largest uint192). * * Counterpart to Solidity's `uint192` operator. * * Requirements: * * - input must fit into 192 bits */ function toUint192(uint256 value) internal pure returns (uint192) { if (value > type(uint192).max) { revert SafeCastOverflowedUintDowncast(192, value); } return uint192(value); } /** * @dev Returns the downcasted uint184 from uint256, reverting on * overflow (when the input is greater than largest uint184). * * Counterpart to Solidity's `uint184` operator. * * Requirements: * * - input must fit into 184 bits */ function toUint184(uint256 value) internal pure returns (uint184) { if (value > type(uint184).max) { revert SafeCastOverflowedUintDowncast(184, value); } return uint184(value); } /** * @dev Returns the downcasted uint176 from uint256, reverting on * overflow (when the input is greater than largest uint176). * * Counterpart to Solidity's `uint176` operator. * * Requirements: * * - input must fit into 176 bits */ function toUint176(uint256 value) internal pure returns (uint176) { if (value > type(uint176).max) { revert SafeCastOverflowedUintDowncast(176, value); } return uint176(value); } /** * @dev Returns the downcasted uint168 from uint256, reverting on * overflow (when the input is greater than largest uint168). * * Counterpart to Solidity's `uint168` operator. * * Requirements: * * - input must fit into 168 bits */ function toUint168(uint256 value) internal pure returns (uint168) { if (value > type(uint168).max) { revert SafeCastOverflowedUintDowncast(168, value); } return uint168(value); } /** * @dev Returns the downcasted uint160 from uint256, reverting on * overflow (when the input is greater than largest uint160). * * Counterpart to Solidity's `uint160` operator. * * Requirements: * * - input must fit into 160 bits */ function toUint160(uint256 value) internal pure returns (uint160) { if (value > type(uint160).max) { revert SafeCastOverflowedUintDowncast(160, value); } return uint160(value); } /** * @dev Returns the downcasted uint152 from uint256, reverting on * overflow (when the input is greater than largest uint152). * * Counterpart to Solidity's `uint152` operator. * * Requirements: * * - input must fit into 152 bits */ function toUint152(uint256 value) internal pure returns (uint152) { if (value > type(uint152).max) { revert SafeCastOverflowedUintDowncast(152, value); } return uint152(value); } /** * @dev Returns the downcasted uint144 from uint256, reverting on * overflow (when the input is greater than largest uint144). * * Counterpart to Solidity's `uint144` operator. * * Requirements: * * - input must fit into 144 bits */ function toUint144(uint256 value) internal pure returns (uint144) { if (value > type(uint144).max) { revert SafeCastOverflowedUintDowncast(144, value); } return uint144(value); } /** * @dev Returns the downcasted uint136 from uint256, reverting on * overflow (when the input is greater than largest uint136). * * Counterpart to Solidity's `uint136` operator. * * Requirements: * * - input must fit into 136 bits */ function toUint136(uint256 value) internal pure returns (uint136) { if (value > type(uint136).max) { revert SafeCastOverflowedUintDowncast(136, value); } return uint136(value); } /** * @dev Returns the downcasted uint128 from uint256, reverting on * overflow (when the input is greater than largest uint128). * * Counterpart to Solidity's `uint128` operator. * * Requirements: * * - input must fit into 128 bits */ function toUint128(uint256 value) internal pure returns (uint128) { if (value > type(uint128).max) { revert SafeCastOverflowedUintDowncast(128, value); } return uint128(value); } /** * @dev Returns the downcasted uint120 from uint256, reverting on * overflow (when the input is greater than largest uint120). * * Counterpart to Solidity's `uint120` operator. * * Requirements: * * - input must fit into 120 bits */ function toUint120(uint256 value) internal pure returns (uint120) { if (value > type(uint120).max) { revert SafeCastOverflowedUintDowncast(120, value); } return uint120(value); } /** * @dev Returns the downcasted uint112 from uint256, reverting on * overflow (when the input is greater than largest uint112). * * Counterpart to Solidity's `uint112` operator. * * Requirements: * * - input must fit into 112 bits */ function toUint112(uint256 value) internal pure returns (uint112) { if (value > type(uint112).max) { revert SafeCastOverflowedUintDowncast(112, value); } return uint112(value); } /** * @dev Returns the downcasted uint104 from uint256, reverting on * overflow (when the input is greater than largest uint104). * * Counterpart to Solidity's `uint104` operator. * * Requirements: * * - input must fit into 104 bits */ function toUint104(uint256 value) internal pure returns (uint104) { if (value > type(uint104).max) { revert SafeCastOverflowedUintDowncast(104, value); } return uint104(value); } /** * @dev Returns the downcasted uint96 from uint256, reverting on * overflow (when the input is greater than largest uint96). * * Counterpart to Solidity's `uint96` operator. * * Requirements: * * - input must fit into 96 bits */ function toUint96(uint256 value) internal pure returns (uint96) { if (value > type(uint96).max) { revert SafeCastOverflowedUintDowncast(96, value); } return uint96(value); } /** * @dev Returns the downcasted uint88 from uint256, reverting on * overflow (when the input is greater than largest uint88). * * Counterpart to Solidity's `uint88` operator. * * Requirements: * * - input must fit into 88 bits */ function toUint88(uint256 value) internal pure returns (uint88) { if (value > type(uint88).max) { revert SafeCastOverflowedUintDowncast(88, value); } return uint88(value); } /** * @dev Returns the downcasted uint80 from uint256, reverting on * overflow (when the input is greater than largest uint80). * * Counterpart to Solidity's `uint80` operator. * * Requirements: * * - input must fit into 80 bits */ function toUint80(uint256 value) internal pure returns (uint80) { if (value > type(uint80).max) { revert SafeCastOverflowedUintDowncast(80, value); } return uint80(value); } /** * @dev Returns the downcasted uint72 from uint256, reverting on * overflow (when the input is greater than largest uint72). * * Counterpart to Solidity's `uint72` operator. * * Requirements: * * - input must fit into 72 bits */ function toUint72(uint256 value) internal pure returns (uint72) { if (value > type(uint72).max) { revert SafeCastOverflowedUintDowncast(72, value); } return uint72(value); } /** * @dev Returns the downcasted uint64 from uint256, reverting on * overflow (when the input is greater than largest uint64). * * Counterpart to Solidity's `uint64` operator. * * Requirements: * * - input must fit into 64 bits */ function toUint64(uint256 value) internal pure returns (uint64) { if (value > type(uint64).max) { revert SafeCastOverflowedUintDowncast(64, value); } return uint64(value); } /** * @dev Returns the downcasted uint56 from uint256, reverting on * overflow (when the input is greater than largest uint56). * * Counterpart to Solidity's `uint56` operator. * * Requirements: * * - input must fit into 56 bits */ function toUint56(uint256 value) internal pure returns (uint56) { if (value > type(uint56).max) { revert SafeCastOverflowedUintDowncast(56, value); } return uint56(value); } /** * @dev Returns the downcasted uint48 from uint256, reverting on * overflow (when the input is greater than largest uint48). * * Counterpart to Solidity's `uint48` operator. * * Requirements: * * - input must fit into 48 bits */ function toUint48(uint256 value) internal pure returns (uint48) { if (value > type(uint48).max) { revert SafeCastOverflowedUintDowncast(48, value); } return uint48(value); } /** * @dev Returns the downcasted uint40 from uint256, reverting on * overflow (when the input is greater than largest uint40). * * Counterpart to Solidity's `uint40` operator. * * Requirements: * * - input must fit into 40 bits */ function toUint40(uint256 value) internal pure returns (uint40) { if (value > type(uint40).max) { revert SafeCastOverflowedUintDowncast(40, value); } return uint40(value); } /** * @dev Returns the downcasted uint32 from uint256, reverting on * overflow (when the input is greater than largest uint32). * * Counterpart to Solidity's `uint32` operator. * * Requirements: * * - input must fit into 32 bits */ function toUint32(uint256 value) internal pure returns (uint32) { if (value > type(uint32).max) { revert SafeCastOverflowedUintDowncast(32, value); } return uint32(value); } /** * @dev Returns the downcasted uint24 from uint256, reverting on * overflow (when the input is greater than largest uint24). * * Counterpart to Solidity's `uint24` operator. * * Requirements: * * - input must fit into 24 bits */ function toUint24(uint256 value) internal pure returns (uint24) { if (value > type(uint24).max) { revert SafeCastOverflowedUintDowncast(24, value); } return uint24(value); } /** * @dev Returns the downcasted uint16 from uint256, reverting on * overflow (when the input is greater than largest uint16). * * Counterpart to Solidity's `uint16` operator. * * Requirements: * * - input must fit into 16 bits */ function toUint16(uint256 value) internal pure returns (uint16) { if (value > type(uint16).max) { revert SafeCastOverflowedUintDowncast(16, value); } return uint16(value); } /** * @dev Returns the downcasted uint8 from uint256, reverting on * overflow (when the input is greater than largest uint8). * * Counterpart to Solidity's `uint8` operator. * * Requirements: * * - input must fit into 8 bits */ function toUint8(uint256 value) internal pure returns (uint8) { if (value > type(uint8).max) { revert SafeCastOverflowedUintDowncast(8, value); } return uint8(value); } /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. */ function toUint256(int256 value) internal pure returns (uint256) { if (value < 0) { revert SafeCastOverflowedIntToUint(value); } return uint256(value); } /** * @dev Returns the downcasted int248 from int256, reverting on * overflow (when the input is less than smallest int248 or * greater than largest int248). * * Counterpart to Solidity's `int248` operator. * * Requirements: * * - input must fit into 248 bits */ function toInt248(int256 value) internal pure returns (int248 downcasted) { downcasted = int248(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(248, value); } } /** * @dev Returns the downcasted int240 from int256, reverting on * overflow (when the input is less than smallest int240 or * greater than largest int240). * * Counterpart to Solidity's `int240` operator. * * Requirements: * * - input must fit into 240 bits */ function toInt240(int256 value) internal pure returns (int240 downcasted) { downcasted = int240(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(240, value); } } /** * @dev Returns the downcasted int232 from int256, reverting on * overflow (when the input is less than smallest int232 or * greater than largest int232). * * Counterpart to Solidity's `int232` operator. * * Requirements: * * - input must fit into 232 bits */ function toInt232(int256 value) internal pure returns (int232 downcasted) { downcasted = int232(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(232, value); } } /** * @dev Returns the downcasted int224 from int256, reverting on * overflow (when the input is less than smallest int224 or * greater than largest int224). * * Counterpart to Solidity's `int224` operator. * * Requirements: * * - input must fit into 224 bits */ function toInt224(int256 value) internal pure returns (int224 downcasted) { downcasted = int224(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(224, value); } } /** * @dev Returns the downcasted int216 from int256, reverting on * overflow (when the input is less than smallest int216 or * greater than largest int216). * * Counterpart to Solidity's `int216` operator. * * Requirements: * * - input must fit into 216 bits */ function toInt216(int256 value) internal pure returns (int216 downcasted) { downcasted = int216(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(216, value); } } /** * @dev Returns the downcasted int208 from int256, reverting on * overflow (when the input is less than smallest int208 or * greater than largest int208). * * Counterpart to Solidity's `int208` operator. * * Requirements: * * - input must fit into 208 bits */ function toInt208(int256 value) internal pure returns (int208 downcasted) { downcasted = int208(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(208, value); } } /** * @dev Returns the downcasted int200 from int256, reverting on * overflow (when the input is less than smallest int200 or * greater than largest int200). * * Counterpart to Solidity's `int200` operator. * * Requirements: * * - input must fit into 200 bits */ function toInt200(int256 value) internal pure returns (int200 downcasted) { downcasted = int200(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(200, value); } } /** * @dev Returns the downcasted int192 from int256, reverting on * overflow (when the input is less than smallest int192 or * greater than largest int192). * * Counterpart to Solidity's `int192` operator. * * Requirements: * * - input must fit into 192 bits */ function toInt192(int256 value) internal pure returns (int192 downcasted) { downcasted = int192(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(192, value); } } /** * @dev Returns the downcasted int184 from int256, reverting on * overflow (when the input is less than smallest int184 or * greater than largest int184). * * Counterpart to Solidity's `int184` operator. * * Requirements: * * - input must fit into 184 bits */ function toInt184(int256 value) internal pure returns (int184 downcasted) { downcasted = int184(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(184, value); } } /** * @dev Returns the downcasted int176 from int256, reverting on * overflow (when the input is less than smallest int176 or * greater than largest int176). * * Counterpart to Solidity's `int176` operator. * * Requirements: * * - input must fit into 176 bits */ function toInt176(int256 value) internal pure returns (int176 downcasted) { downcasted = int176(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(176, value); } } /** * @dev Returns the downcasted int168 from int256, reverting on * overflow (when the input is less than smallest int168 or * greater than largest int168). * * Counterpart to Solidity's `int168` operator. * * Requirements: * * - input must fit into 168 bits */ function toInt168(int256 value) internal pure returns (int168 downcasted) { downcasted = int168(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(168, value); } } /** * @dev Returns the downcasted int160 from int256, reverting on * overflow (when the input is less than smallest int160 or * greater than largest int160). * * Counterpart to Solidity's `int160` operator. * * Requirements: * * - input must fit into 160 bits */ function toInt160(int256 value) internal pure returns (int160 downcasted) { downcasted = int160(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(160, value); } } /** * @dev Returns the downcasted int152 from int256, reverting on * overflow (when the input is less than smallest int152 or * greater than largest int152). * * Counterpart to Solidity's `int152` operator. * * Requirements: * * - input must fit into 152 bits */ function toInt152(int256 value) internal pure returns (int152 downcasted) { downcasted = int152(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(152, value); } } /** * @dev Returns the downcasted int144 from int256, reverting on * overflow (when the input is less than smallest int144 or * greater than largest int144). * * Counterpart to Solidity's `int144` operator. * * Requirements: * * - input must fit into 144 bits */ function toInt144(int256 value) internal pure returns (int144 downcasted) { downcasted = int144(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(144, value); } } /** * @dev Returns the downcasted int136 from int256, reverting on * overflow (when the input is less than smallest int136 or * greater than largest int136). * * Counterpart to Solidity's `int136` operator. * * Requirements: * * - input must fit into 136 bits */ function toInt136(int256 value) internal pure returns (int136 downcasted) { downcasted = int136(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(136, value); } } /** * @dev Returns the downcasted int128 from int256, reverting on * overflow (when the input is less than smallest int128 or * greater than largest int128). * * Counterpart to Solidity's `int128` operator. * * Requirements: * * - input must fit into 128 bits */ function toInt128(int256 value) internal pure returns (int128 downcasted) { downcasted = int128(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(128, value); } } /** * @dev Returns the downcasted int120 from int256, reverting on * overflow (when the input is less than smallest int120 or * greater than largest int120). * * Counterpart to Solidity's `int120` operator. * * Requirements: * * - input must fit into 120 bits */ function toInt120(int256 value) internal pure returns (int120 downcasted) { downcasted = int120(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(120, value); } } /** * @dev Returns the downcasted int112 from int256, reverting on * overflow (when the input is less than smallest int112 or * greater than largest int112). * * Counterpart to Solidity's `int112` operator. * * Requirements: * * - input must fit into 112 bits */ function toInt112(int256 value) internal pure returns (int112 downcasted) { downcasted = int112(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(112, value); } } /** * @dev Returns the downcasted int104 from int256, reverting on * overflow (when the input is less than smallest int104 or * greater than largest int104). * * Counterpart to Solidity's `int104` operator. * * Requirements: * * - input must fit into 104 bits */ function toInt104(int256 value) internal pure returns (int104 downcasted) { downcasted = int104(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(104, value); } } /** * @dev Returns the downcasted int96 from int256, reverting on * overflow (when the input is less than smallest int96 or * greater than largest int96). * * Counterpart to Solidity's `int96` operator. * * Requirements: * * - input must fit into 96 bits */ function toInt96(int256 value) internal pure returns (int96 downcasted) { downcasted = int96(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(96, value); } } /** * @dev Returns the downcasted int88 from int256, reverting on * overflow (when the input is less than smallest int88 or * greater than largest int88). * * Counterpart to Solidity's `int88` operator. * * Requirements: * * - input must fit into 88 bits */ function toInt88(int256 value) internal pure returns (int88 downcasted) { downcasted = int88(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(88, value); } } /** * @dev Returns the downcasted int80 from int256, reverting on * overflow (when the input is less than smallest int80 or * greater than largest int80). * * Counterpart to Solidity's `int80` operator. * * Requirements: * * - input must fit into 80 bits */ function toInt80(int256 value) internal pure returns (int80 downcasted) { downcasted = int80(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(80, value); } } /** * @dev Returns the downcasted int72 from int256, reverting on * overflow (when the input is less than smallest int72 or * greater than largest int72). * * Counterpart to Solidity's `int72` operator. * * Requirements: * * - input must fit into 72 bits */ function toInt72(int256 value) internal pure returns (int72 downcasted) { downcasted = int72(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(72, value); } } /** * @dev Returns the downcasted int64 from int256, reverting on * overflow (when the input is less than smallest int64 or * greater than largest int64). * * Counterpart to Solidity's `int64` operator. * * Requirements: * * - input must fit into 64 bits */ function toInt64(int256 value) internal pure returns (int64 downcasted) { downcasted = int64(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(64, value); } } /** * @dev Returns the downcasted int56 from int256, reverting on * overflow (when the input is less than smallest int56 or * greater than largest int56). * * Counterpart to Solidity's `int56` operator. * * Requirements: * * - input must fit into 56 bits */ function toInt56(int256 value) internal pure returns (int56 downcasted) { downcasted = int56(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(56, value); } } /** * @dev Returns the downcasted int48 from int256, reverting on * overflow (when the input is less than smallest int48 or * greater than largest int48). * * Counterpart to Solidity's `int48` operator. * * Requirements: * * - input must fit into 48 bits */ function toInt48(int256 value) internal pure returns (int48 downcasted) { downcasted = int48(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(48, value); } } /** * @dev Returns the downcasted int40 from int256, reverting on * overflow (when the input is less than smallest int40 or * greater than largest int40). * * Counterpart to Solidity's `int40` operator. * * Requirements: * * - input must fit into 40 bits */ function toInt40(int256 value) internal pure returns (int40 downcasted) { downcasted = int40(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(40, value); } } /** * @dev Returns the downcasted int32 from int256, reverting on * overflow (when the input is less than smallest int32 or * greater than largest int32). * * Counterpart to Solidity's `int32` operator. * * Requirements: * * - input must fit into 32 bits */ function toInt32(int256 value) internal pure returns (int32 downcasted) { downcasted = int32(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(32, value); } } /** * @dev Returns the downcasted int24 from int256, reverting on * overflow (when the input is less than smallest int24 or * greater than largest int24). * * Counterpart to Solidity's `int24` operator. * * Requirements: * * - input must fit into 24 bits */ function toInt24(int256 value) internal pure returns (int24 downcasted) { downcasted = int24(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(24, value); } } /** * @dev Returns the downcasted int16 from int256, reverting on * overflow (when the input is less than smallest int16 or * greater than largest int16). * * Counterpart to Solidity's `int16` operator. * * Requirements: * * - input must fit into 16 bits */ function toInt16(int256 value) internal pure returns (int16 downcasted) { downcasted = int16(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(16, value); } } /** * @dev Returns the downcasted int8 from int256, reverting on * overflow (when the input is less than smallest int8 or * greater than largest int8). * * Counterpart to Solidity's `int8` operator. * * Requirements: * * - input must fit into 8 bits */ function toInt8(int256 value) internal pure returns (int8 downcasted) { downcasted = int8(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(8, value); } } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. */ function toInt256(uint256 value) internal pure returns (int256) { // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive if (value > uint256(type(int256).max)) { revert SafeCastOverflowedUintToInt(value); } return int256(value); } /** * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump. */ function toUint(bool b) internal pure returns (uint256 u) { /// @solidity memory-safe-assembly assembly { u := iszero(iszero(b)) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.20; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson. // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift, // taking advantage of the most significant (or "sign" bit) in two's complement representation. // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result, // the mask will either be `bytes(0)` (if n is positive) or `~bytes32(0)` (if n is negative). int256 mask = n >> 255; // A `bytes(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it. return uint256((n + mask) ^ mask); } } }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity ^0.8.24; library IsContract { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * * Furthermore, `isContract` will also return true if the target contract within * the same transaction is already scheduled for destruction by `SELFDESTRUCT`, * which only has an effect at the end of a transaction. * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address _account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return _account.code.length > 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[ERC]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[ERC-2612]. * * Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. * * ==== Security Considerations * * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be * considered as an intention to spend the allowance in any specific way. The second is that because permits have * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be * generally recommended is: * * ```solidity * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public { * try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {} * doThing(..., value); * } * * function doThing(..., uint256 value) public { * token.safeTransferFrom(msg.sender, address(this), value); * ... * } * ``` * * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also * {SafeERC20-safeTransferFrom}). * * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so * contracts should have entry points that don't rely on permit. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. * * CAUTION: See Security Considerations above. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.20; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS } /** * @dev The signature derives the `address(0)`. */ error ECDSAInvalidSignature(); /** * @dev The signature has an invalid length. */ error ECDSAInvalidSignatureLength(uint256 length); /** * @dev The signature has an S value that is in the upper half order. */ error ECDSAInvalidSignatureS(bytes32 s); /** * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not * return address(0) without also returning an error description. Errors are documented using an enum (error type) * and a bytes32 providing additional information about the error. * * If no error is returned, then the address can be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] */ function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length)); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures] */ function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) { unchecked { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); // We do not check for an overflow here since the shift operation results in 0 or 1. uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. */ function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. */ function tryRecover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address, RecoverError, bytes32) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS, s); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature, bytes32(0)); } return (signer, RecoverError.NoError, bytes32(0)); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s); _throwError(error, errorArg); return recovered; } /** * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided. */ function _throwError(RecoverError error, bytes32 errorArg) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert ECDSAInvalidSignature(); } else if (error == RecoverError.InvalidSignatureLength) { revert ECDSAInvalidSignatureLength(uint256(errorArg)); } else if (error == RecoverError.InvalidSignatureS) { revert ECDSAInvalidSignatureS(errorArg); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/EIP712.sol) pragma solidity ^0.8.20; import {MessageHashUtils} from "./MessageHashUtils.sol"; import {ShortStrings, ShortString} from "../ShortStrings.sol"; import {IERC5267} from "../../interfaces/IERC5267.sol"; /** * @dev https://eips.ethereum.org/EIPS/eip-712[EIP-712] is a standard for hashing and signing of typed structured data. * * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`. * * This contract implements the EIP-712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA * ({_hashTypedDataV4}). * * The implementation of the domain separator was designed to be as efficient as possible while still properly updating * the chain id to protect against replay attacks on an eventual fork of the chain. * * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask]. * * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the * separator from the immutable values, which is cheaper than accessing a cached version in cold storage. * * @custom:oz-upgrades-unsafe-allow state-variable-immutable */ abstract contract EIP712 is IERC5267 { using ShortStrings for *; bytes32 private constant TYPE_HASH = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"); // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to // invalidate the cached domain separator if the chain id changes. bytes32 private immutable _cachedDomainSeparator; uint256 private immutable _cachedChainId; address private immutable _cachedThis; bytes32 private immutable _hashedName; bytes32 private immutable _hashedVersion; ShortString private immutable _name; ShortString private immutable _version; string private _nameFallback; string private _versionFallback; /** * @dev Initializes the domain separator and parameter caches. * * The meaning of `name` and `version` is specified in * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP-712]: * * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol. * - `version`: the current major version of the signing domain. * * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart * contract upgrade]. */ constructor(string memory name, string memory version) { _name = name.toShortStringWithFallback(_nameFallback); _version = version.toShortStringWithFallback(_versionFallback); _hashedName = keccak256(bytes(name)); _hashedVersion = keccak256(bytes(version)); _cachedChainId = block.chainid; _cachedDomainSeparator = _buildDomainSeparator(); _cachedThis = address(this); } /** * @dev Returns the domain separator for the current chain. */ function _domainSeparatorV4() internal view returns (bytes32) { if (address(this) == _cachedThis && block.chainid == _cachedChainId) { return _cachedDomainSeparator; } else { return _buildDomainSeparator(); } } function _buildDomainSeparator() private view returns (bytes32) { return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this))); } /** * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this * function returns the hash of the fully encoded EIP712 message for this domain. * * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example: * * ```solidity * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode( * keccak256("Mail(address to,string contents)"), * mailTo, * keccak256(bytes(mailContents)) * ))); * address signer = ECDSA.recover(digest, signature); * ``` */ function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) { return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash); } /** * @dev See {IERC-5267}. */ function eip712Domain() public view virtual returns ( bytes1 fields, string memory name, string memory version, uint256 chainId, address verifyingContract, bytes32 salt, uint256[] memory extensions ) { return ( hex"0f", // 01111 _EIP712Name(), _EIP712Version(), block.chainid, address(this), bytes32(0), new uint256[](0) ); } /** * @dev The name parameter for the EIP712 domain. * * NOTE: By default this function reads _name which is an immutable value. * It only reads from storage if necessary (in case the value is too large to fit in a ShortString). */ // solhint-disable-next-line func-name-mixedcase function _EIP712Name() internal view returns (string memory) { return _name.toStringWithFallback(_nameFallback); } /** * @dev The version parameter for the EIP712 domain. * * NOTE: By default this function reads _version which is an immutable value. * It only reads from storage if necessary (in case the value is too large to fit in a ShortString). */ // solhint-disable-next-line func-name-mixedcase function _EIP712Version() internal view returns (string memory) { return _version.toStringWithFallback(_versionFallback); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol) pragma solidity ^0.8.20; /** * @dev Provides tracking nonces for addresses. Nonces will only increment. */ abstract contract Nonces { /** * @dev The nonce used for an `account` is not the expected current nonce. */ error InvalidAccountNonce(address account, uint256 currentNonce); mapping(address account => uint256) private _nonces; /** * @dev Returns the next unused nonce for an address. */ function nonces(address owner) public view virtual returns (uint256) { return _nonces[owner]; } /** * @dev Consumes a nonce. * * Returns the current value and increments nonce. */ function _useNonce(address owner) internal virtual returns (uint256) { // For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be // decremented or reset. This guarantees that the nonce never overflows. unchecked { // It is important to do x++ and not ++x here. return _nonces[owner]++; } } /** * @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`. */ function _useCheckedNonce(address owner, uint256 nonce) internal virtual { uint256 current = _useNonce(owner); if (nonce != current) { revert InvalidAccountNonce(owner, current); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/EIP712.sol) pragma solidity ^0.8.20; import {MessageHashUtils} from "@openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol"; import {IERC5267} from "@openzeppelin/contracts/interfaces/IERC5267.sol"; import {Initializable} from "../../proxy/utils/Initializable.sol"; /** * @dev https://eips.ethereum.org/EIPS/eip-712[EIP-712] is a standard for hashing and signing of typed structured data. * * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`. * * This contract implements the EIP-712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA * ({_hashTypedDataV4}). * * The implementation of the domain separator was designed to be as efficient as possible while still properly updating * the chain id to protect against replay attacks on an eventual fork of the chain. * * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask]. * * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the * separator from the immutable values, which is cheaper than accessing a cached version in cold storage. */ abstract contract EIP712Upgradeable is Initializable, IERC5267 { bytes32 private constant TYPE_HASH = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"); /// @custom:storage-location erc7201:openzeppelin.storage.EIP712 struct EIP712Storage { /// @custom:oz-renamed-from _HASHED_NAME bytes32 _hashedName; /// @custom:oz-renamed-from _HASHED_VERSION bytes32 _hashedVersion; string _name; string _version; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.EIP712")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant EIP712StorageLocation = 0xa16a46d94261c7517cc8ff89f61c0ce93598e3c849801011dee649a6a557d100; function _getEIP712Storage() private pure returns (EIP712Storage storage $) { assembly { $.slot := EIP712StorageLocation } } /** * @dev Initializes the domain separator and parameter caches. * * The meaning of `name` and `version` is specified in * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP-712]: * * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol. * - `version`: the current major version of the signing domain. * * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart * contract upgrade]. */ function __EIP712_init(string memory name, string memory version) internal onlyInitializing { __EIP712_init_unchained(name, version); } function __EIP712_init_unchained(string memory name, string memory version) internal onlyInitializing { EIP712Storage storage $ = _getEIP712Storage(); $._name = name; $._version = version; // Reset prior values in storage if upgrading $._hashedName = 0; $._hashedVersion = 0; } /** * @dev Returns the domain separator for the current chain. */ function _domainSeparatorV4() internal view returns (bytes32) { return _buildDomainSeparator(); } function _buildDomainSeparator() private view returns (bytes32) { return keccak256(abi.encode(TYPE_HASH, _EIP712NameHash(), _EIP712VersionHash(), block.chainid, address(this))); } /** * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this * function returns the hash of the fully encoded EIP712 message for this domain. * * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example: * * ```solidity * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode( * keccak256("Mail(address to,string contents)"), * mailTo, * keccak256(bytes(mailContents)) * ))); * address signer = ECDSA.recover(digest, signature); * ``` */ function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) { return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash); } /** * @dev See {IERC-5267}. */ function eip712Domain() public view virtual returns ( bytes1 fields, string memory name, string memory version, uint256 chainId, address verifyingContract, bytes32 salt, uint256[] memory extensions ) { EIP712Storage storage $ = _getEIP712Storage(); // If the hashed name and version in storage are non-zero, the contract hasn't been properly initialized // and the EIP712 domain is not reliable, as it will be missing name and version. require($._hashedName == 0 && $._hashedVersion == 0, "EIP712: Uninitialized"); return ( hex"0f", // 01111 _EIP712Name(), _EIP712Version(), block.chainid, address(this), bytes32(0), new uint256[](0) ); } /** * @dev The name parameter for the EIP712 domain. * * NOTE: This function reads from storage by default, but can be redefined to return a constant value if gas costs * are a concern. */ function _EIP712Name() internal view virtual returns (string memory) { EIP712Storage storage $ = _getEIP712Storage(); return $._name; } /** * @dev The version parameter for the EIP712 domain. * * NOTE: This function reads from storage by default, but can be redefined to return a constant value if gas costs * are a concern. */ function _EIP712Version() internal view virtual returns (string memory) { EIP712Storage storage $ = _getEIP712Storage(); return $._version; } /** * @dev The hash of the name parameter for the EIP712 domain. * * NOTE: In previous versions this function was virtual. In this version you should override `_EIP712Name` instead. */ function _EIP712NameHash() internal view returns (bytes32) { EIP712Storage storage $ = _getEIP712Storage(); string memory name = _EIP712Name(); if (bytes(name).length > 0) { return keccak256(bytes(name)); } else { // If the name is empty, the contract may have been upgraded without initializing the new storage. // We return the name hash in storage if non-zero, otherwise we assume the name is empty by design. bytes32 hashedName = $._hashedName; if (hashedName != 0) { return hashedName; } else { return keccak256(""); } } } /** * @dev The hash of the version parameter for the EIP712 domain. * * NOTE: In previous versions this function was virtual. In this version you should override `_EIP712Version` instead. */ function _EIP712VersionHash() internal view returns (bytes32) { EIP712Storage storage $ = _getEIP712Storage(); string memory version = _EIP712Version(); if (bytes(version).length > 0) { return keccak256(bytes(version)); } else { // If the version is empty, the contract may have been upgraded without initializing the new storage. // We return the version hash in storage if non-zero, otherwise we assume the version is empty by design. bytes32 hashedVersion = $._hashedVersion; if (hashedVersion != 0) { return hashedVersion; } else { return keccak256(""); } } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol) pragma solidity ^0.8.20; import {Initializable} from "../proxy/utils/Initializable.sol"; /** * @dev Provides tracking nonces for addresses. Nonces will only increment. */ abstract contract NoncesUpgradeable is Initializable { /** * @dev The nonce used for an `account` is not the expected current nonce. */ error InvalidAccountNonce(address account, uint256 currentNonce); /// @custom:storage-location erc7201:openzeppelin.storage.Nonces struct NoncesStorage { mapping(address account => uint256) _nonces; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Nonces")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant NoncesStorageLocation = 0x5ab42ced628888259c08ac98db1eb0cf702fc1501344311d8b100cd1bfe4bb00; function _getNoncesStorage() private pure returns (NoncesStorage storage $) { assembly { $.slot := NoncesStorageLocation } } function __Nonces_init() internal onlyInitializing { } function __Nonces_init_unchained() internal onlyInitializing { } /** * @dev Returns the next unused nonce for an address. */ function nonces(address owner) public view virtual returns (uint256) { NoncesStorage storage $ = _getNoncesStorage(); return $._nonces[owner]; } /** * @dev Consumes a nonce. * * Returns the current value and increments nonce. */ function _useNonce(address owner) internal virtual returns (uint256) { NoncesStorage storage $ = _getNoncesStorage(); // For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be // decremented or reset. This guarantees that the nonce never overflows. unchecked { // It is important to do x++ and not ++x here. return $._nonces[owner]++; } } /** * @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`. */ function _useCheckedNonce(address owner, uint256 nonce) internal virtual { uint256 current = _useNonce(owner); if (nonce != current) { revert InvalidAccountNonce(owner, current); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.20; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ```solidity * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Storage of the initializable contract. * * It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions * when using with upgradeable contracts. * * @custom:storage-location erc7201:openzeppelin.storage.Initializable */ struct InitializableStorage { /** * @dev Indicates that the contract has been initialized. */ uint64 _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool _initializing; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00; /** * @dev The contract is already initialized. */ error InvalidInitialization(); /** * @dev The contract is not initializing. */ error NotInitializing(); /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint64 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any * number of times. This behavior in the constructor can be useful during testing and is not expected to be used in * production. * * Emits an {Initialized} event. */ modifier initializer() { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); // Cache values to avoid duplicated sloads bool isTopLevelCall = !$._initializing; uint64 initialized = $._initialized; // Allowed calls: // - initialSetup: the contract is not in the initializing state and no previous version was // initialized // - construction: the contract is initialized at version 1 (no reininitialization) and the // current contract is just being deployed bool initialSetup = initialized == 0 && isTopLevelCall; bool construction = initialized == 1 && address(this).code.length == 0; if (!initialSetup && !construction) { revert InvalidInitialization(); } $._initialized = 1; if (isTopLevelCall) { $._initializing = true; } _; if (isTopLevelCall) { $._initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint64 version) { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); if ($._initializing || $._initialized >= version) { revert InvalidInitialization(); } $._initialized = version; $._initializing = true; _; $._initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { _checkInitializing(); _; } /** * @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}. */ function _checkInitializing() internal view virtual { if (!_isInitializing()) { revert NotInitializing(); } } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); if ($._initializing) { revert InvalidInitialization(); } if ($._initialized != type(uint64).max) { $._initialized = type(uint64).max; emit Initialized(type(uint64).max); } } /** * @dev Returns the highest version that has been initialized. See {reinitializer}. */ function _getInitializedVersion() internal view returns (uint64) { return _getInitializableStorage()._initialized; } /** * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}. */ function _isInitializing() internal view returns (bool) { return _getInitializableStorage()._initializing; } /** * @dev Returns a pointer to the storage namespace. */ // solhint-disable-next-line var-name-mixedcase function _getInitializableStorage() private pure returns (InitializableStorage storage $) { assembly { $.slot := INITIALIZABLE_STORAGE } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; import {Initializable} from "../proxy/utils/Initializable.sol"; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract ContextUpgradeable is Initializable { function __Context_init() internal onlyInitializing { } function __Context_init_unchained() internal onlyInitializing { } function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol) pragma solidity ^0.8.20; /** * @dev Standard ERC-20 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens. */ interface IERC20Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC20InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC20InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers. * @param spender Address that may be allowed to operate on tokens without being their owner. * @param allowance Amount of tokens a `spender` is allowed to operate with. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC20InvalidApprover(address approver); /** * @dev Indicates a failure with the `spender` to be approved. Used in approvals. * @param spender Address that may be allowed to operate on tokens without being their owner. */ error ERC20InvalidSpender(address spender); } /** * @dev Standard ERC-721 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens. */ interface IERC721Errors { /** * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20. * Used in balance queries. * @param owner Address of the current owner of a token. */ error ERC721InvalidOwner(address owner); /** * @dev Indicates a `tokenId` whose `owner` is the zero address. * @param tokenId Identifier number of a token. */ error ERC721NonexistentToken(uint256 tokenId); /** * @dev Indicates an error related to the ownership over a particular token. Used in transfers. * @param sender Address whose tokens are being transferred. * @param tokenId Identifier number of a token. * @param owner Address of the current owner of a token. */ error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC721InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC721InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param tokenId Identifier number of a token. */ error ERC721InsufficientApproval(address operator, uint256 tokenId); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC721InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC721InvalidOperator(address operator); } /** * @dev Standard ERC-1155 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens. */ interface IERC1155Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. * @param tokenId Identifier number of a token. */ error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC1155InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC1155InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param owner Address of the current owner of a token. */ error ERC1155MissingApprovalForAll(address operator, address owner); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC1155InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC1155InvalidOperator(address operator); /** * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation. * Used in batch transfers. * @param idsLength Length of the array of token identifiers * @param valuesLength Length of the array of token amounts */ error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.28; import {ICrossReentrancyGuard} from "../interfaces/ICrossReentrancyGuard.sol"; abstract contract CrossReentrancyGuard is ICrossReentrancyGuard { uint256 private constant _NOT_ENTERED = 0; uint256 private constant _ENTERED = 1; uint256 private transient _crossReentrantStatus; /// @inheritdoc ICrossReentrancyGuard function turnOnReentrancyProtection() external virtual { _onlySiloOrTokenOrHookReceiver(); require(_crossReentrantStatus != _ENTERED, CrossReentrantCall()); _crossReentrantStatus = _ENTERED; } /// @inheritdoc ICrossReentrancyGuard function turnOffReentrancyProtection() external virtual { _onlySiloOrTokenOrHookReceiver(); // Leaving it unprotected may lead to a bug in the reentrancy protection system, // as it can be used in the function without activating the protection before deactivating it. // Later on, these functions may be called to turn off the reentrancy protection. // To avoid this, we check if the protection is active before deactivating it. require(_crossReentrantStatus != _NOT_ENTERED, CrossReentrancyNotActive()); _crossReentrantStatus = _NOT_ENTERED; } /// @inheritdoc ICrossReentrancyGuard function reentrancyGuardEntered() external view virtual returns (bool entered) { entered = _crossReentrantStatus == _ENTERED; } function _onlySiloOrTokenOrHookReceiver() internal virtual {} }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol) pragma solidity ^0.8.20; import {Strings} from "../Strings.sol"; /** * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing. * * The library provides methods for generating a hash of a message that conforms to the * https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712] * specifications. */ library MessageHashUtils { /** * @dev Returns the keccak256 digest of an ERC-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing a bytes32 `messageHash` with * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with * keccak256, although any bytes32 value can be safely used because the final digest will * be re-hashed. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) { /// @solidity memory-safe-assembly assembly { mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20) } } /** * @dev Returns the keccak256 digest of an ERC-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing an arbitrary `message` with * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) { return keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message)); } /** * @dev Returns the keccak256 digest of an ERC-191 signed data with version * `0x00` (data with intended validator). * * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended * `validator` address. Then hashing the result. * * See {ECDSA-recover}. */ function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) { return keccak256(abi.encodePacked(hex"19_00", validator, data)); } /** * @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`). * * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with * `\x19\x01` and hashing the result. It corresponds to the hash signed by the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712. * * See {ECDSA-recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) { /// @solidity memory-safe-assembly assembly { let ptr := mload(0x40) mstore(ptr, hex"19_01") mstore(add(ptr, 0x02), domainSeparator) mstore(add(ptr, 0x22), structHash) digest := keccak256(ptr, 0x42) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/ShortStrings.sol) pragma solidity ^0.8.20; import {StorageSlot} from "./StorageSlot.sol"; // | string | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA | // | length | 0x BB | type ShortString is bytes32; /** * @dev This library provides functions to convert short memory strings * into a `ShortString` type that can be used as an immutable variable. * * Strings of arbitrary length can be optimized using this library if * they are short enough (up to 31 bytes) by packing them with their * length (1 byte) in a single EVM word (32 bytes). Additionally, a * fallback mechanism can be used for every other case. * * Usage example: * * ```solidity * contract Named { * using ShortStrings for *; * * ShortString private immutable _name; * string private _nameFallback; * * constructor(string memory contractName) { * _name = contractName.toShortStringWithFallback(_nameFallback); * } * * function name() external view returns (string memory) { * return _name.toStringWithFallback(_nameFallback); * } * } * ``` */ library ShortStrings { // Used as an identifier for strings longer than 31 bytes. bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF; error StringTooLong(string str); error InvalidShortString(); /** * @dev Encode a string of at most 31 chars into a `ShortString`. * * This will trigger a `StringTooLong` error is the input string is too long. */ function toShortString(string memory str) internal pure returns (ShortString) { bytes memory bstr = bytes(str); if (bstr.length > 31) { revert StringTooLong(str); } return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length)); } /** * @dev Decode a `ShortString` back to a "normal" string. */ function toString(ShortString sstr) internal pure returns (string memory) { uint256 len = byteLength(sstr); // using `new string(len)` would work locally but is not memory safe. string memory str = new string(32); /// @solidity memory-safe-assembly assembly { mstore(str, len) mstore(add(str, 0x20), sstr) } return str; } /** * @dev Return the length of a `ShortString`. */ function byteLength(ShortString sstr) internal pure returns (uint256) { uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF; if (result > 31) { revert InvalidShortString(); } return result; } /** * @dev Encode a string into a `ShortString`, or write it to storage if it is too long. */ function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) { if (bytes(value).length < 32) { return toShortString(value); } else { StorageSlot.getStringSlot(store).value = value; return ShortString.wrap(FALLBACK_SENTINEL); } } /** * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}. */ function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) { if (ShortString.unwrap(value) != FALLBACK_SENTINEL) { return toString(value); } else { return store; } } /** * @dev Return the length of a string that was encoded to `ShortString` or written to storage using * {setWithFallback}. * * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of * actual characters as the UTF-8 encoding of a single character can span over multiple bytes. */ function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) { if (ShortString.unwrap(value) != FALLBACK_SENTINEL) { return byteLength(value); } else { return bytes(store).length; } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol) pragma solidity ^0.8.20; interface IERC5267 { /** * @dev MAY be emitted to signal that the domain could have changed. */ event EIP712DomainChanged(); /** * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712 * signature. */ function eip712Domain() external view returns ( bytes1 fields, string memory name, string memory version, uint256 chainId, address verifyingContract, bytes32 salt, uint256[] memory extensions ); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/StorageSlot.sol) // This file was procedurally generated from scripts/generate/templates/StorageSlot.js. pragma solidity ^0.8.20; /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC-1967 implementation slot: * ```solidity * contract ERC1967 { * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(newImplementation.code.length > 0); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` */ library StorageSlot { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } struct StringSlot { string value; } struct BytesSlot { bytes value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `StringSlot` with member `value` located at `slot`. */ function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `StringSlot` representation of the string storage pointer `store`. */ function getStringSlot(string storage store) internal pure returns (StringSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := store.slot } } /** * @dev Returns an `BytesSlot` with member `value` located at `slot`. */ function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`. */ function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := store.slot } } }
{ "remappings": [ "forge-std/=gitmodules/forge-std/src/", "silo-foundry-utils/=gitmodules/silo-foundry-utils/contracts/", "properties/=gitmodules/crytic/properties/contracts/", "silo-core/=silo-core/", "silo-oracles/=silo-oracles/", "silo-vaults/=silo-vaults/", "ve-silo/=ve-silo/", "@openzeppelin/=gitmodules/openzeppelin-contracts-5/contracts/", "morpho-blue/=gitmodules/morpho-blue/src/", "openzeppelin5/=gitmodules/openzeppelin-contracts-5/contracts/", "openzeppelin5-upgradeable/=gitmodules/openzeppelin-contracts-upgradeable-5/contracts/", "chainlink/=gitmodules/chainlink/contracts/src/", "chainlink-ccip/=gitmodules/chainlink-ccip/contracts/src/", "uniswap/=gitmodules/uniswap/", "@uniswap/v3-core/=gitmodules/uniswap/v3-core/", "balancer-labs/v2-solidity-utils/=external/balancer-v2-monorepo/pkg/solidity-utils/contracts/", "balancer-labs/v2-interfaces/=external/balancer-v2-monorepo/pkg/interfaces/contracts/", "balancer-labs/v2-liquidity-mining/=external/balancer-v2-monorepo/pkg/liquidity-mining/contracts/", "@balancer-labs/=node_modules/@balancer-labs/", "@ensdomains/=node_modules/@ensdomains/", "@openzeppelin/contracts-upgradeable/=gitmodules/openzeppelin-contracts-upgradeable-5/contracts/", "@openzeppelin/contracts/=gitmodules/openzeppelin-contracts-5/contracts/", "@solidity-parser/=node_modules/@solidity-parser/", "ERC4626/=gitmodules/crytic/properties/lib/ERC4626/contracts/", "crytic/=gitmodules/crytic/", "ds-test/=gitmodules/openzeppelin-contracts-5/lib/forge-std/lib/ds-test/src/", "erc4626-tests/=gitmodules/openzeppelin-contracts-5/lib/erc4626-tests/", "halmos-cheatcodes/=gitmodules/morpho-blue/lib/halmos-cheatcodes/src/", "hardhat/=node_modules/hardhat/", "openzeppelin-contracts-5/=gitmodules/openzeppelin-contracts-5/", "openzeppelin-contracts-upgradeable-5/=gitmodules/openzeppelin-contracts-upgradeable-5/", "openzeppelin-contracts/=gitmodules/openzeppelin-contracts-upgradeable-5/lib/openzeppelin-contracts/", "prettier-plugin-solidity/=node_modules/prettier-plugin-solidity/", "proposals/=node_modules/proposals/", "solmate/=gitmodules/crytic/properties/lib/solmate/src/" ], "optimizer": { "enabled": true, "runs": 200 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "ipfs", "appendCBOR": true }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "cancun", "viaIR": false, "libraries": { "silo-core/contracts/lib/Actions.sol": { "Actions": "0x393B19dFF84C806369f49F3d350d3cd90E63794A" }, "silo-core/contracts/lib/ShareCollateralTokenLib.sol": { "ShareCollateralTokenLib": "0xD57d3abE1ef81e9A4e15a991A81fB66ec5Ef30AF" }, "silo-core/contracts/lib/ShareTokenLib.sol": { "ShareTokenLib": "0x3a53E387f6567F0d4F04c754654Cfe5539d20A70" }, "silo-core/contracts/lib/SiloLendingLib.sol": { "SiloLendingLib": "0xBCAfe498Ec5cA2f6bD9276e65Ad2fbF7555B8379" }, "silo-core/contracts/lib/Views.sol": { "Views": "0x49De884BE1d5E523be4Df58ABF45881baE791808" } } }
[{"inputs":[{"internalType":"contract ISiloFactory","name":"_siloFactory","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AboveMaxLtv","type":"error"},{"inputs":[],"name":"AmountExceedsAllowance","type":"error"},{"inputs":[],"name":"BorrowNotPossible","type":"error"},{"inputs":[],"name":"CollateralSiloAlreadySet","type":"error"},{"inputs":[],"name":"CrossReentrantCall","type":"error"},{"inputs":[],"name":"ECDSAInvalidSignature","type":"error"},{"inputs":[{"internalType":"uint256","name":"length","type":"uint256"}],"name":"ECDSAInvalidSignatureLength","type":"error"},{"inputs":[{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"ECDSAInvalidSignatureS","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"allowance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientAllowance","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC20InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC20InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC20InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"}],"name":"ERC20InvalidSpender","type":"error"},{"inputs":[{"internalType":"uint256","name":"deadline","type":"uint256"}],"name":"ERC2612ExpiredSignature","type":"error"},{"inputs":[{"internalType":"address","name":"signer","type":"address"},{"internalType":"address","name":"owner","type":"address"}],"name":"ERC2612InvalidSigner","type":"error"},{"inputs":[],"name":"EarnedZero","type":"error"},{"inputs":[],"name":"FlashloanFailed","type":"error"},{"inputs":[],"name":"InputCanBeAssetsOrShares","type":"error"},{"inputs":[],"name":"InputZeroShares","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"currentNonce","type":"uint256"}],"name":"InvalidAccountNonce","type":"error"},{"inputs":[],"name":"InvalidInitialization","type":"error"},{"inputs":[],"name":"NoLiquidity","type":"error"},{"inputs":[],"name":"NotEnoughLiquidity","type":"error"},{"inputs":[],"name":"NotInitializing","type":"error"},{"inputs":[],"name":"NotSolvent","type":"error"},{"inputs":[],"name":"NothingToWithdraw","type":"error"},{"inputs":[],"name":"OnlyHookReceiver","type":"error"},{"inputs":[],"name":"OnlySilo","type":"error"},{"inputs":[],"name":"OnlySiloConfig","type":"error"},{"inputs":[],"name":"OwnerIsZero","type":"error"},{"inputs":[],"name":"RecipientIsZero","type":"error"},{"inputs":[],"name":"RecipientNotSolventAfterTransfer","type":"error"},{"inputs":[],"name":"RepayTooHigh","type":"error"},{"inputs":[],"name":"ReturnZeroAssets","type":"error"},{"inputs":[],"name":"ReturnZeroShares","type":"error"},{"inputs":[],"name":"SenderNotSolventAfterTransfer","type":"error"},{"inputs":[],"name":"SiloInitialized","type":"error"},{"inputs":[],"name":"Unsupported","type":"error"},{"inputs":[],"name":"ZeroAmount","type":"error"},{"inputs":[],"name":"ZeroTransfer","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"hooksBefore","type":"uint256"}],"name":"AccruedInterest","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":true,"internalType":"address","name":"receiver","type":"address"},{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":false,"internalType":"uint256","name":"assets","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"shares","type":"uint256"}],"name":"Borrow","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"borrower","type":"address"}],"name":"CollateralTypeChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":false,"internalType":"uint256","name":"assets","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"shares","type":"uint256"}],"name":"Deposit","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":false,"internalType":"uint256","name":"assets","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"shares","type":"uint256"}],"name":"DepositProtected","type":"event"},{"anonymous":false,"inputs":[],"name":"EIP712DomainChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"FlashLoan","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint24","name":"hooksBefore","type":"uint24"},{"indexed":false,"internalType":"uint24","name":"hooksAfter","type":"uint24"}],"name":"HooksUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint64","name":"version","type":"uint64"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"notificationReceiver","type":"address"},{"indexed":false,"internalType":"bool","name":"success","type":"bool"}],"name":"NotificationSent","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":false,"internalType":"uint256","name":"assets","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"shares","type":"uint256"}],"name":"Repay","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":true,"internalType":"address","name":"receiver","type":"address"},{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":false,"internalType":"uint256","name":"assets","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"shares","type":"uint256"}],"name":"Withdraw","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":true,"internalType":"address","name":"receiver","type":"address"},{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":false,"internalType":"uint256","name":"assets","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"shares","type":"uint256"}],"name":"WithdrawProtected","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"daoFees","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"deployerFees","type":"uint256"}],"name":"WithdrawnFeed","type":"event"},{"inputs":[],"name":"DOMAIN_SEPARATOR","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"accrueInterest","outputs":[{"internalType":"uint256","name":"accruedInterest","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_interestRateModel","type":"address"},{"internalType":"uint256","name":"_daoFee","type":"uint256"},{"internalType":"uint256","name":"_deployerFee","type":"uint256"}],"name":"accrueInterestForConfig","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"result","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"asset","outputs":[{"internalType":"address","name":"assetTokenAddress","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_account","type":"address"}],"name":"balanceOfAndTotalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_assets","type":"uint256"},{"internalType":"address","name":"_receiver","type":"address"},{"internalType":"address","name":"_borrower","type":"address"}],"name":"borrow","outputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_assets","type":"uint256"},{"internalType":"address","name":"_receiver","type":"address"},{"internalType":"address","name":"_borrower","type":"address"}],"name":"borrowSameAsset","outputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_shares","type":"uint256"},{"internalType":"address","name":"_receiver","type":"address"},{"internalType":"address","name":"_borrower","type":"address"}],"name":"borrowShares","outputs":[{"internalType":"uint256","name":"assets","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_owner","type":"address"},{"internalType":"address","name":"_spender","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"burn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_target","type":"address"},{"internalType":"uint256","name":"_value","type":"uint256"},{"internalType":"enum ISilo.CallType","name":"_callType","type":"uint8"},{"internalType":"bytes","name":"_input","type":"bytes"}],"name":"callOnBehalfOfSilo","outputs":[{"internalType":"bool","name":"success","type":"bool"},{"internalType":"bytes","name":"result","type":"bytes"}],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"config","outputs":[{"internalType":"contract ISiloConfig","name":"siloConfig","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_shares","type":"uint256"}],"name":"convertToAssets","outputs":[{"internalType":"uint256","name":"assets","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_shares","type":"uint256"},{"internalType":"enum ISilo.AssetType","name":"_assetType","type":"uint8"}],"name":"convertToAssets","outputs":[{"internalType":"uint256","name":"assets","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_assets","type":"uint256"},{"internalType":"enum ISilo.AssetType","name":"_assetType","type":"uint8"}],"name":"convertToShares","outputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_assets","type":"uint256"}],"name":"convertToShares","outputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_assets","type":"uint256"},{"internalType":"address","name":"_receiver","type":"address"}],"name":"deposit","outputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_assets","type":"uint256"},{"internalType":"address","name":"_receiver","type":"address"},{"internalType":"enum ISilo.CollateralType","name":"_collateralType","type":"uint8"}],"name":"deposit","outputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"eip712Domain","outputs":[{"internalType":"bytes1","name":"fields","type":"bytes1"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"},{"internalType":"uint256","name":"chainId","type":"uint256"},{"internalType":"address","name":"verifyingContract","type":"address"},{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"uint256[]","name":"extensions","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"factory","outputs":[{"internalType":"contract ISiloFactory","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"flashFee","outputs":[{"internalType":"uint256","name":"fee","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC3156FlashBorrower","name":"_receiver","type":"address"},{"internalType":"address","name":"_token","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"bytes","name":"_data","type":"bytes"}],"name":"flashLoan","outputs":[{"internalType":"bool","name":"success","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_from","type":"address"},{"internalType":"address","name":"_to","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"forwardTransferFromNoChecks","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"getCollateralAndDebtTotalsStorage","outputs":[{"internalType":"uint256","name":"totalCollateralAssets","type":"uint256"},{"internalType":"uint256","name":"totalDebtAssets","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getCollateralAndProtectedTotalsStorage","outputs":[{"internalType":"uint256","name":"totalCollateralAssets","type":"uint256"},{"internalType":"uint256","name":"totalProtectedAssets","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getCollateralAssets","outputs":[{"internalType":"uint256","name":"totalCollateralAssets","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getDebtAssets","outputs":[{"internalType":"uint256","name":"totalDebtAssets","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getLiquidity","outputs":[{"internalType":"uint256","name":"liquidity","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getSiloStorage","outputs":[{"internalType":"uint192","name":"daoAndDeployerRevenue","type":"uint192"},{"internalType":"uint64","name":"interestRateTimestamp","type":"uint64"},{"internalType":"uint256","name":"protectedAssets","type":"uint256"},{"internalType":"uint256","name":"collateralAssets","type":"uint256"},{"internalType":"uint256","name":"debtAssets","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"enum ISilo.AssetType","name":"_assetType","type":"uint8"}],"name":"getTotalAssetsStorage","outputs":[{"internalType":"uint256","name":"totalAssetsByType","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"hookReceiver","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"hookSetup","outputs":[{"components":[{"internalType":"address","name":"hookReceiver","type":"address"},{"internalType":"uint24","name":"hooksBefore","type":"uint24"},{"internalType":"uint24","name":"hooksAfter","type":"uint24"},{"internalType":"uint24","name":"tokenType","type":"uint24"}],"internalType":"struct IShareToken.HookSetup","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract ISiloConfig","name":"_config","type":"address"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_borrower","type":"address"}],"name":"isSolvent","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_borrower","type":"address"}],"name":"maxBorrow","outputs":[{"internalType":"uint256","name":"maxAssets","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_borrower","type":"address"}],"name":"maxBorrowSameAsset","outputs":[{"internalType":"uint256","name":"maxAssets","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_borrower","type":"address"}],"name":"maxBorrowShares","outputs":[{"internalType":"uint256","name":"maxShares","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"maxDeposit","outputs":[{"internalType":"uint256","name":"maxAssets","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"}],"name":"maxFlashLoan","outputs":[{"internalType":"uint256","name":"maxLoan","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"maxMint","outputs":[{"internalType":"uint256","name":"maxShares","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_owner","type":"address"},{"internalType":"enum ISilo.CollateralType","name":"_collateralType","type":"uint8"}],"name":"maxRedeem","outputs":[{"internalType":"uint256","name":"maxShares","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_owner","type":"address"}],"name":"maxRedeem","outputs":[{"internalType":"uint256","name":"maxShares","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_borrower","type":"address"}],"name":"maxRepay","outputs":[{"internalType":"uint256","name":"assets","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_borrower","type":"address"}],"name":"maxRepayShares","outputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_owner","type":"address"},{"internalType":"enum ISilo.CollateralType","name":"_collateralType","type":"uint8"}],"name":"maxWithdraw","outputs":[{"internalType":"uint256","name":"maxAssets","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_owner","type":"address"}],"name":"maxWithdraw","outputs":[{"internalType":"uint256","name":"maxAssets","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_shares","type":"uint256"},{"internalType":"address","name":"_receiver","type":"address"}],"name":"mint","outputs":[{"internalType":"uint256","name":"assets","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_shares","type":"uint256"},{"internalType":"address","name":"_receiver","type":"address"},{"internalType":"enum ISilo.CollateralType","name":"_collateralType","type":"uint8"}],"name":"mint","outputs":[{"internalType":"uint256","name":"assets","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_owner","type":"address"},{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"mint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"permit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_assets","type":"uint256"}],"name":"previewBorrow","outputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_shares","type":"uint256"}],"name":"previewBorrowShares","outputs":[{"internalType":"uint256","name":"assets","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_assets","type":"uint256"},{"internalType":"enum ISilo.CollateralType","name":"_collateralType","type":"uint8"}],"name":"previewDeposit","outputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_assets","type":"uint256"}],"name":"previewDeposit","outputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_shares","type":"uint256"},{"internalType":"enum ISilo.CollateralType","name":"_collateralType","type":"uint8"}],"name":"previewMint","outputs":[{"internalType":"uint256","name":"assets","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_shares","type":"uint256"}],"name":"previewMint","outputs":[{"internalType":"uint256","name":"assets","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_shares","type":"uint256"}],"name":"previewRedeem","outputs":[{"internalType":"uint256","name":"assets","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_shares","type":"uint256"},{"internalType":"enum ISilo.CollateralType","name":"_collateralType","type":"uint8"}],"name":"previewRedeem","outputs":[{"internalType":"uint256","name":"assets","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_assets","type":"uint256"}],"name":"previewRepay","outputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_shares","type":"uint256"}],"name":"previewRepayShares","outputs":[{"internalType":"uint256","name":"assets","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_assets","type":"uint256"}],"name":"previewWithdraw","outputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_assets","type":"uint256"},{"internalType":"enum ISilo.CollateralType","name":"_collateralType","type":"uint8"}],"name":"previewWithdraw","outputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_shares","type":"uint256"},{"internalType":"address","name":"_receiver","type":"address"},{"internalType":"address","name":"_owner","type":"address"}],"name":"redeem","outputs":[{"internalType":"uint256","name":"assets","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_shares","type":"uint256"},{"internalType":"address","name":"_receiver","type":"address"},{"internalType":"address","name":"_owner","type":"address"},{"internalType":"enum ISilo.CollateralType","name":"_collateralType","type":"uint8"}],"name":"redeem","outputs":[{"internalType":"uint256","name":"assets","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_assets","type":"uint256"},{"internalType":"address","name":"_borrower","type":"address"}],"name":"repay","outputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_shares","type":"uint256"},{"internalType":"address","name":"_borrower","type":"address"}],"name":"repayShares","outputs":[{"internalType":"uint256","name":"assets","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"silo","outputs":[{"internalType":"contract ISilo","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"siloConfig","outputs":[{"internalType":"contract ISiloConfig","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"switchCollateralToThisSilo","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint24","name":"_hooksBefore","type":"uint24"},{"internalType":"uint24","name":"_hooksAfter","type":"uint24"}],"name":"synchronizeHooks","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"totalAssets","outputs":[{"internalType":"uint256","name":"totalManagedAssets","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_to","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"result","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_from","type":"address"},{"internalType":"address","name":"_to","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"result","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_shares","type":"uint256"},{"internalType":"address","name":"_owner","type":"address"},{"internalType":"enum ISilo.CollateralType","name":"_transitionFrom","type":"uint8"}],"name":"transitionCollateral","outputs":[{"internalType":"uint256","name":"assets","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"updateHooks","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"utilizationData","outputs":[{"components":[{"internalType":"uint256","name":"collateralAssets","type":"uint256"},{"internalType":"uint256","name":"debtAssets","type":"uint256"},{"internalType":"uint64","name":"interestRateTimestamp","type":"uint64"}],"internalType":"struct ISilo.UtilizationData","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_assets","type":"uint256"},{"internalType":"address","name":"_receiver","type":"address"},{"internalType":"address","name":"_owner","type":"address"}],"name":"withdraw","outputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_assets","type":"uint256"},{"internalType":"address","name":"_receiver","type":"address"},{"internalType":"address","name":"_owner","type":"address"},{"internalType":"enum ISilo.CollateralType","name":"_collateralType","type":"uint8"}],"name":"withdraw","outputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"withdrawFees","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]
[ Download: CSV Export ]
[ Download: CSV Export ]
A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.