S Price: $0.509883 (-0.70%)

Contract Diff Checker

Contract Name:
Treasury

Contract Source Code:

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)

pragma solidity ^0.8.0;

import "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor() {
        _transferOwnership(_msgSender());
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)

pragma solidity ^0.8.0;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    constructor() {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be _NOT_ENTERED
        require(_status != _ENTERED, "ReentrancyGuard: reentrant call");

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == _ENTERED;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 amount) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(IERC20 token, address spender, uint256 value) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
     * Revert on invalid signature.
     */
    function safePermit(
        IERC20Permit token,
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        uint256 nonceBefore = token.nonces(owner);
        token.permit(owner, spender, value, deadline, v, r, s);
        uint256 nonceAfter = token.nonces(owner);
        require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return
            success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     *
     * Furthermore, `isContract` will also return true if the target contract within
     * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
     * which only has an effect at the end of a transaction.
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/SafeMath.sol)

pragma solidity ^0.8.0;

// CAUTION
// This version of SafeMath should only be used with Solidity 0.8 or later,
// because it relies on the compiler's built in overflow checks.

/**
 * @dev Wrappers over Solidity's arithmetic operations.
 *
 * NOTE: `SafeMath` is generally not needed starting with Solidity 0.8, since the compiler
 * now has built in overflow checking.
 */
library SafeMath {
    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the addition of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     *
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        return a + b;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        return a - b;
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `*` operator.
     *
     * Requirements:
     *
     * - Multiplication cannot overflow.
     */
    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        return a * b;
    }

    /**
     * @dev Returns the integer division of two unsigned integers, reverting on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator.
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        return a / b;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        return a % b;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
     * overflow (when the result is negative).
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {trySub}.
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        unchecked {
            require(b <= a, errorMessage);
            return a - b;
        }
    }

    /**
     * @dev Returns the integer division of two unsigned integers, reverting with custom message on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        unchecked {
            require(b > 0, errorMessage);
            return a / b;
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting with custom message when dividing by zero.
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {tryMod}.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        unchecked {
            require(b > 0, errorMessage);
            return a % b;
        }
    }
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

interface IBasisAsset {
    function mint(address recipient, uint256 amount) external returns (bool);

    function burn(uint256 amount) external;

    function burnFrom(address from, uint256 amount) external;

    function isOperator() external returns (bool);

    function operator() external view returns (address);

    function transferOperator(address newOperator_) external;
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

interface IMasonry {
    function balanceOf(address _andras) external view returns (uint256);

    function earned(address _andras) external view returns (uint256);

    function canWithdraw(address _andras) external view returns (bool);

    function canClaimReward(address _andras) external view returns (bool);

    function epoch() external view returns (uint256);

    function nextEpochPoint() external view returns (uint256);

    function getTombPrice() external view returns (uint256);

    function setOperator(address _operator) external;

    function setLockUp(uint256 _withdrawLockupEpochs, uint256 _rewardLockupEpochs) external;

    function stake(uint256 _amount) external;

    function withdraw(uint256 _amount) external;

    function exit() external;

    function claimReward() external;

    function allocateSeigniorage(uint256 _amount) external;

    function governanceRecoverUnsupported(address _token, uint256 _amount, address _to) external;
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

interface IOracle {
    function update() external;

    function consult(address _token, uint256 _amountIn) external view returns (uint256 amountOut);

    function twap(address _token, uint256 _amountIn) external view returns (uint256 _amountOut);
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

library Babylonian {
    function sqrt(uint256 y) internal pure returns (uint256 z) {
        if (y > 3) {
            z = y;
            uint256 x = y / 2 + 1;
            while (x < z) {
                z = x;
                x = (y / x + x) / 2;
            }
        } else if (y != 0) {
            z = 1;
        }
        // else z = 0
    }
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import "@openzeppelin/contracts/utils/Context.sol";
import "@openzeppelin/contracts/access/Ownable.sol";

contract Operator is Context, Ownable {
    address private _operator;

    event OperatorTransferred(address indexed previousOperator, address indexed newOperator);

    constructor() {
        _operator = _msgSender();
        emit OperatorTransferred(address(0), _operator);
    }

    function operator() public view returns (address) {
        return _operator;
    }

    modifier onlyOperator() {
        require(_operator == msg.sender, "operator: caller is not the operator");
        _;
    }

    function isOperator() public view returns (bool) {
        return _msgSender() == _operator;
    }

    function transferOperator(address newOperator_) public onlyOwner {
        _transferOperator(newOperator_);
    }

    function _transferOperator(address newOperator_) internal {
        require(newOperator_ != address(0), "operator: zero address given for new operator");
        emit OperatorTransferred(address(0), newOperator_);
        _operator = newOperator_;
    }

    function _renounceOperator() public onlyOwner {
        emit OperatorTransferred(_operator, address(0));
        _operator = address(0);
    }
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import "@openzeppelin/contracts/utils/math/Math.sol";
import "@openzeppelin/contracts/utils/math/SafeMath.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";

import "./lib/Babylonian.sol";
import "./owner/Operator.sol";
import "./utils/ContractGuard.sol";
import "./interfaces/IBasisAsset.sol";
import "./interfaces/IOracle.sol";
import "./interfaces/IMasonry.sol";
import "./owner/Operator.sol";

contract Treasury is ContractGuard, Operator {
    using SafeERC20 for IERC20;
    using Address for address;
    using SafeMath for uint256;

    /* ========= CONSTANT VARIABLES ======== */

    uint256 public constant PERIOD = 6 hours;

    /* ========== STATE VARIABLES ========== */

    // flags
    bool public initialized = false;

    // epoch
    uint256 public startTime;
    uint256 public epoch = 0;
    uint256 public epochSupplyContractionLeft = 0;

    //=================================================================// exclusions from total supply
    address[] public excludedFromTotalSupply = [
        address(0x29D0762f7bE8409d0aC34A3595AF62E8c0120950) // SnakeGenesisRewardPool
    ];

    // core components
    address public snake;
    address public bsnake;
    address public gsnake;

    address public masonry;
    address public snakeOracle;

    // price
    uint256 public snakePriceOne;
    uint256 public snakePriceCeiling;

    uint256 public seigniorageSaved;

    uint256[] public supplyTiers;
    uint256[] public maxExpansionTiers;

    uint256 public maxSupplyExpansionPercent;
    uint256 public bondDepletionFloorPercent;
    uint256 public seigniorageExpansionFloorPercent;
    uint256 public maxSupplyContractionPercent;
    uint256 public maxDebtRatioPercent;

    // 14 first epochs (0.5 week) with 4.5% expansion regardless of SNAKE price
    uint256 public bootstrapEpochs;
    uint256 public bootstrapSupplyExpansionPercent;

    /* =================== Added variables =================== */
    uint256 public previousEpochSnakePrice;
    uint256 public maxDiscountRate; // when purchasing bond
    uint256 public maxPremiumRate;  // when redeeming bond
    uint256 public discountPercent;
    uint256 public premiumThreshold;
    uint256 public premiumPercent;
    uint256 public mintingFactorForPayingDebt; // print extra SNAKE during debt phase

    address public daoFund;
    uint256 public daoFundSharedPercent;

    //=================================================//

    address public devFund;
    uint256 public devFundSharedPercent;
    address public teamFund;
    uint256 public teamFundSharedPercent;

    /* =================== Events =================== */

    event Initialized(address indexed executor, uint256 at);
    event BurnedBonds(address indexed from, uint256 bondAmount);
    event RedeemedBonds(address indexed from, uint256 snakeAmount, uint256 bondAmount);
    event BoughtBonds(address indexed from, uint256 snakeAmount, uint256 bondAmount);
    event TreasuryFunded(uint256 timestamp, uint256 seigniorage);
    event MasonryFunded(uint256 timestamp, uint256 seigniorage);
    event DaoFundFunded(uint256 timestamp, uint256 seigniorage);
    event DevFundFunded(uint256 timestamp, uint256 seigniorage);
    event TeamFundFunded(uint256 timestamp, uint256 seigniorage);

    /* =================== Modifier =================== */

    modifier checkCondition {
        require(block.timestamp >= startTime, "Treasury: not started yet");

        _;
    }

    modifier checkEpoch {
        require(block.timestamp >= nextEpochPoint(), "Treasury: not opened yet");

        _;

        epoch = epoch.add(1);
        epochSupplyContractionLeft = (getSnakePrice() > snakePriceCeiling) ? 0 : getSnakeCirculatingSupply().mul(maxSupplyContractionPercent).div(10000);
    }

    modifier checkOperator {
        require(
                IBasisAsset(snake).operator() == address(this) &&
                IBasisAsset(bsnake).operator() == address(this) &&
                IBasisAsset(gsnake).operator() == address(this) &&
                Operator(masonry).operator() == address(this),
            "Treasury: need more permission"
        );

        _;
    }

    modifier notInitialized {
        require(!initialized, "Treasury: already initialized");

        _;
    }

    /* ========== VIEW FUNCTIONS ========== */

    function isInitialized() public view returns (bool) {
        return initialized;
    }

    // epoch
    function nextEpochPoint() public view returns (uint256) {
        return startTime.add(epoch.mul(PERIOD));
    }

    // oracle
    function getSnakePrice() public view returns (uint256 snakePrice) {
        try IOracle(snakeOracle).consult(snake, 1e18) returns (uint256 price) {
            return uint256(price);
        } catch {
            revert("Treasury: failed to consult SNAKE price from the oracle");
        }
    }

    function getSnakeUpdatedPrice() public view returns (uint256 _snakePrice) {
        try IOracle(snakeOracle).twap(snake, 1e18) returns (uint256 price) {
            return uint256(price);
        } catch {
            revert("Treasury: failed to consult SNAKE price from the oracle");
        }
    }

    // budget
    function getReserve() public view returns (uint256) {
        return seigniorageSaved;
    }

    function getBurnableSnakeLeft() public view returns (uint256 _burnableSnakeLeft) {
        uint256 _snakePrice = getSnakePrice();
        if (_snakePrice <= snakePriceOne) {
            uint256 _snakeSupply = getSnakeCirculatingSupply();
            uint256 _bondMaxSupply = _snakeSupply.mul(maxDebtRatioPercent).div(10000);
            uint256 _bondSupply = IERC20(bsnake).totalSupply();
            if (_bondMaxSupply > _bondSupply) {
                uint256 _maxMintableBond = _bondMaxSupply.sub(_bondSupply);
                uint256 _maxBurnableSnake = _maxMintableBond.mul(_snakePrice).div(1e18);
                _burnableSnakeLeft = Math.min(epochSupplyContractionLeft, _maxBurnableSnake);
            }
        }
    }

    function getRedeemableBonds() public view returns (uint256 _redeemableBonds) {
        uint256 _snakePrice = getSnakePrice();
        if (_snakePrice > snakePriceCeiling) {
            uint256 _totalSnake = IERC20(snake).balanceOf(address(this));
            uint256 _rate = getBondPremiumRate();
            if (_rate > 0) {
                _redeemableBonds = _totalSnake.mul(1e18).div(_rate);
            }
        }
    }

    function getBondDiscountRate() public view returns (uint256 _rate) {
        uint256 _snakePrice = getSnakePrice();
        if (_snakePrice <= snakePriceOne) {
            if (discountPercent == 0) {
                // no discount
                _rate = snakePriceOne;
            } else {
                uint256 _bondAmount = snakePriceOne.mul(1e18).div(_snakePrice); // to burn 1 SNAKE
                uint256 _discountAmount = _bondAmount.sub(snakePriceOne).mul(discountPercent).div(10000);
                _rate = snakePriceOne.add(_discountAmount);
                if (maxDiscountRate > 0 && _rate > maxDiscountRate) {
                    _rate = maxDiscountRate;
                }
            }
        }
    }

    function getBondPremiumRate() public view returns (uint256 _rate) {
        uint256 _snakePrice = getSnakePrice();
        if (_snakePrice > snakePriceCeiling) {
            uint256 _snakePricePremiumThreshold = snakePriceOne.mul(premiumThreshold).div(100);
            if (_snakePrice >= _snakePricePremiumThreshold) {
                //Price > 1.10
                uint256 _premiumAmount = _snakePrice.sub(snakePriceOne).mul(premiumPercent).div(10000);
                _rate = snakePriceOne.add(_premiumAmount);
                if (maxPremiumRate > 0 && _rate > maxPremiumRate) {
                    _rate = maxPremiumRate;
                }
            } else {
                // no premium bonus
                _rate = snakePriceOne;
            }
        }
    }

    /* ========== GOVERNANCE ========== */

    function initialize(
        address _snake,
        address _bsnake,
        address _gsnake,
        address _snakeOracle,
        address _masonry,
        uint256 _startTime
    ) public notInitialized onlyOperator {
        snake = _snake;
        bsnake = _bsnake;
        gsnake = _gsnake;
        snakeOracle = _snakeOracle;
        masonry = _masonry;
        startTime = _startTime;

        snakePriceOne = 10 ** 18;
        snakePriceCeiling = 1000300000000000000; // 1.003 as its stable pool
        // snakePriceCeiling = snakePriceOne.mul(101).div(100);

        // Dynamic max expansion percent
        supplyTiers = [0 ether, 500000 ether, 750000 ether, 1000000 ether, 1200000 ether, 1500000 ether, 2000000 ether];
        maxExpansionTiers = [100, 90, 80, 70, 60, 50, 20];

        maxSupplyExpansionPercent = 150; // Upto 1.5% supply for expansion

        bondDepletionFloorPercent = 10000; // 100% of Bond supply for depletion floor
        seigniorageExpansionFloorPercent = 3500; // At least 35% of expansion reserved for masonry
        maxSupplyContractionPercent = 1000; // Upto 10.0% supply for contraction (to burn SNAKE and mint bsnake)
        maxDebtRatioPercent = 3500; // Upto 35% supply of bsnake to purchase

        premiumThreshold = 110;
        premiumPercent = 7000;

        // First 12 epochs with 1.5% expansion
        bootstrapEpochs = 12;
        bootstrapSupplyExpansionPercent = 150;

        // set seigniorageSaved to it's balance
        seigniorageSaved = IERC20(snake).balanceOf(address(this));

        initialized = true;
        emit Initialized(msg.sender, block.number);
    }

    function setOperator(address _operator) external onlyOperator {
        transferOperator(_operator);
    }

    function renounceOperator() external onlyOperator {
        _renounceOperator();
    }

    function setMasonry(address _masonry) external onlyOperator {
        masonry = _masonry;
    }

    function setSnakeOracle(address _snakeOracle) external onlyOperator {
        snakeOracle = _snakeOracle;
    }

    function setSnakePriceCeiling(uint256 _snakePriceCeiling) external onlyOperator {
        require(_snakePriceCeiling >= snakePriceOne && _snakePriceCeiling <= snakePriceOne.mul(120).div(100), "out of range"); // [$1.0, $1.2]
        snakePriceCeiling = _snakePriceCeiling;
    }

    function setMaxSupplyExpansionPercents(uint256 _maxSupplyExpansionPercent) external onlyOperator {
        require(_maxSupplyExpansionPercent >= 10 && _maxSupplyExpansionPercent <= 1000, "_maxSupplyExpansionPercent: out of range"); // [0.1%, 10%]
        maxSupplyExpansionPercent = _maxSupplyExpansionPercent;
    }
    // =================== ALTER THE NUMBERS IN LOGIC!!!! =================== //
    function setSupplyTiersEntry(uint8 _index, uint256 _value) external onlyOperator returns (bool) {
        require(_index >= 0, "Index has to be higher than 0");
        require(_index < 7, "Index has to be lower than count of tiers");
        if (_index > 0) {
            require(_value > supplyTiers[_index - 1]);
        }
        if (_index < 6) {
            require(_value < supplyTiers[_index + 1]);
        }
        supplyTiers[_index] = _value;
        return true;
    }

    function setMaxExpansionTiersEntry(uint8 _index, uint256 _value) external onlyOperator returns (bool) {
        require(_index >= 0, "Index has to be higher than 0");
        require(_index < 7, "Index has to be lower than count of tiers");
        require(_value >= 10 && _value <= 1000, "_value: out of range"); // [0.1%, 10%]
        maxExpansionTiers[_index] = _value;
        return true;
    }

    function setBondDepletionFloorPercent(uint256 _bondDepletionFloorPercent) external onlyOperator {
        require(_bondDepletionFloorPercent >= 500 && _bondDepletionFloorPercent <= 10000, "out of range"); // [5%, 100%]
        bondDepletionFloorPercent = _bondDepletionFloorPercent;
    }

    function setMaxSupplyContractionPercent(uint256 _maxSupplyContractionPercent) external onlyOperator {
        require(_maxSupplyContractionPercent >= 100 && _maxSupplyContractionPercent <= 1500, "out of range"); // [0.1%, 15%]
        maxSupplyContractionPercent = _maxSupplyContractionPercent;
    }

    function setMaxDebtRatioPercent(uint256 _maxDebtRatioPercent) external onlyOperator {
        require(_maxDebtRatioPercent >= 1000 && _maxDebtRatioPercent <= 10000, "out of range"); // [10%, 100%]
        maxDebtRatioPercent = _maxDebtRatioPercent;
    }

    function setBootstrap(uint256 _bootstrapEpochs, uint256 _bootstrapSupplyExpansionPercent) external onlyOperator {
        require(_bootstrapEpochs <= 120, "_bootstrapEpochs: out of range"); // <= 1 month
        require(_bootstrapSupplyExpansionPercent >= 100 && _bootstrapSupplyExpansionPercent <= 1000, "_bootstrapSupplyExpansionPercent: out of range"); // [1%, 10%]
        bootstrapEpochs = _bootstrapEpochs;
        bootstrapSupplyExpansionPercent = _bootstrapSupplyExpansionPercent;
    }
    //======================================================================
    function setExtraFunds(
        address _daoFund,
        uint256 _daoFundSharedPercent,
        address _devFund,
        uint256 _devFundSharedPercent,
        address _teamFund,
        uint256 _teamFundSharedPercent
    ) external onlyOperator {
        require(_daoFund != address(0), "zero");
        require(_daoFundSharedPercent <= 1500, "out of range");
        require(_devFund != address(0), "zero");
        require(_devFundSharedPercent <= 350, "out of range");
        require(_teamFund != address(0), "zero");
        require(_teamFundSharedPercent <= 550, "out of range");

        daoFund = _daoFund;
        daoFundSharedPercent = _daoFundSharedPercent;
        devFund = _devFund;
        devFundSharedPercent = _devFundSharedPercent;
        teamFund = _teamFund;
        teamFundSharedPercent = _teamFundSharedPercent;
    }

    function setMaxDiscountRate(uint256 _maxDiscountRate) external onlyOperator {
        require(_maxDiscountRate <= 20000, "_maxDiscountRate is over 200%");
        maxDiscountRate = _maxDiscountRate;
    }

    function setMaxPremiumRate(uint256 _maxPremiumRate) external onlyOperator {
        require(_maxPremiumRate <= 20000, "_maxPremiumRate is over 200%");
        maxPremiumRate = _maxPremiumRate;
    }

    function setDiscountPercent(uint256 _discountPercent) external onlyOperator {
        require(_discountPercent <= 20000, "_discountPercent is over 200%");
        discountPercent = _discountPercent;
    }

    function setPremiumThreshold(uint256 _premiumThreshold) external onlyOperator {
        require(_premiumThreshold >= snakePriceCeiling, "_premiumThreshold exceeds snakePriceCeiling");
        require(_premiumThreshold <= 150, "_premiumThreshold is higher than 1.5");
        premiumThreshold = _premiumThreshold;
    }

    function setPremiumPercent(uint256 _premiumPercent) external onlyOperator {
        require(_premiumPercent <= 20000, "_premiumPercent is over 200%");
        premiumPercent = _premiumPercent;
    }

    function setMintingFactorForPayingDebt(uint256 _mintingFactorForPayingDebt) external onlyOperator {
        require(_mintingFactorForPayingDebt >= 10000 && _mintingFactorForPayingDebt <= 20000, "_mintingFactorForPayingDebt: out of range"); // [100%, 200%]
        mintingFactorForPayingDebt = _mintingFactorForPayingDebt;
    }

    /* ========== MUTABLE FUNCTIONS ========== */

    function _updateSnakePrice() internal {
        try IOracle(snakeOracle).update() {} catch {}
    }

    function getSnakeCirculatingSupply() public view returns (uint256) {
        IERC20 snakeErc20 = IERC20(snake);
        uint256 totalSupply = snakeErc20.totalSupply();
        uint256 balanceExcluded = 0;
        for (uint8 entryId = 0; entryId < excludedFromTotalSupply.length; ++entryId) {
            balanceExcluded = balanceExcluded.add(snakeErc20.balanceOf(excludedFromTotalSupply[entryId]));
        }
        return totalSupply.sub(balanceExcluded);
    }

    function buyBonds(uint256 _snakeAmount, uint256 targetPrice) external onlyOneBlock checkCondition checkOperator {
        require(_snakeAmount > 0, "Treasury: cannot purchase bonds with zero amount");

        uint256 snakePrice = getSnakePrice();
        require(snakePrice == targetPrice, "Treasury: SNAKE price moved");
        require(
            snakePrice < snakePriceOne, // price < $1
            "Treasury: snakePrice not eligible for bond purchase"
        );

        require(_snakeAmount <= epochSupplyContractionLeft, "Treasury: not enough bond left to purchase");

        uint256 _rate = getBondDiscountRate();
        require(_rate > 0, "Treasury: invalid bond rate");

        uint256 _bondAmount = _snakeAmount.mul(_rate).div(1e18);
        uint256 snakeSupply = getSnakeCirculatingSupply();
        uint256 newBondSupply = IERC20(bsnake).totalSupply().add(_bondAmount);
        require(newBondSupply <= snakeSupply.mul(maxDebtRatioPercent).div(10000), "over max debt ratio");

        IBasisAsset(snake).burnFrom(msg.sender, _snakeAmount);
        IBasisAsset(bsnake).mint(msg.sender, _bondAmount);

        epochSupplyContractionLeft = epochSupplyContractionLeft.sub(_snakeAmount);
        _updateSnakePrice();

        emit BoughtBonds(msg.sender, _snakeAmount, _bondAmount);
    }

    function redeemBonds(uint256 _bondAmount, uint256 targetPrice) external onlyOneBlock checkCondition checkOperator {
        require(_bondAmount > 0, "Treasury: cannot redeem bonds with zero amount");

        uint256 snakePrice = getSnakePrice();
        require(snakePrice == targetPrice, "Treasury: SNAKE price moved");
        require(
            snakePrice > snakePriceCeiling, // price > $1.01
            "Treasury: snakePrice not eligible for bond purchase"
        );

        uint256 _rate = getBondPremiumRate();
        require(_rate > 0, "Treasury: invalid bond rate");

        uint256 _snakeAmount = _bondAmount.mul(_rate).div(1e18);
        require(IERC20(snake).balanceOf(address(this)) >= _snakeAmount, "Treasury: treasury has no more budget");

        seigniorageSaved = seigniorageSaved.sub(Math.min(seigniorageSaved, _snakeAmount));

        IBasisAsset(bsnake).burnFrom(msg.sender, _bondAmount);
        IERC20(snake).safeTransfer(msg.sender, _snakeAmount);

        _updateSnakePrice();

        emit RedeemedBonds(msg.sender, _snakeAmount, _bondAmount);
    }

    function _sendToMasonry(uint256 _amount) internal {
        IBasisAsset(snake).mint(address(this), _amount);

        uint256 _daoFundSharedAmount = 0;
        if (daoFundSharedPercent > 0) {
            _daoFundSharedAmount = _amount.mul(daoFundSharedPercent).div(10000);
            IERC20(snake).transfer(daoFund, _daoFundSharedAmount);
            emit DaoFundFunded(block.timestamp, _daoFundSharedAmount);
        }

        uint256 _devFundSharedAmount = 0;
        if (devFundSharedPercent > 0) {
            _devFundSharedAmount = _amount.mul(devFundSharedPercent).div(10000);
            IERC20(snake).transfer(devFund, _devFundSharedAmount);
            emit DevFundFunded(block.timestamp, _devFundSharedAmount);
        }

        uint256 _teamFundSharedAmount = 0;
        if (teamFundSharedPercent > 0) {
            _teamFundSharedAmount = _amount.mul(teamFundSharedPercent).div(10000);
            IERC20(snake).transfer(teamFund, _teamFundSharedAmount);
            emit TeamFundFunded(block.timestamp, _teamFundSharedAmount);
        }

        _amount = _amount.sub(_daoFundSharedAmount).sub(_devFundSharedAmount).sub(_teamFundSharedAmount);

        IERC20(snake).safeApprove(masonry, 0);
        IERC20(snake).safeApprove(masonry, _amount);
        IMasonry(masonry).allocateSeigniorage(_amount);
        emit MasonryFunded(block.timestamp, _amount);
    }

    function _calculateMaxSupplyExpansionPercent(uint256 _snakeSupply) internal returns (uint256) {
        for (uint8 tierId = 6; tierId >= 0; --tierId) {
            if (_snakeSupply >= supplyTiers[tierId]) {
                maxSupplyExpansionPercent = maxExpansionTiers[tierId];
                break;
            }
        }
        return maxSupplyExpansionPercent;
    }

    function allocateSeigniorage() external onlyOneBlock checkCondition checkEpoch checkOperator {
        _updateSnakePrice();
        previousEpochSnakePrice = getSnakePrice();
        uint256 snakeSupply = getSnakeCirculatingSupply().sub(seigniorageSaved);
        if (epoch < bootstrapEpochs) {
            // 14 first epochs with 6% expansion
            _sendToMasonry(snakeSupply.mul(bootstrapSupplyExpansionPercent).div(10000));
        } else {
            if (previousEpochSnakePrice > snakePriceCeiling) {
                // Expansion ($SNAKE Price > 1 $FTM): there is some seigniorage to be allocated
                uint256 bondSupply = IERC20(bsnake).totalSupply();
                uint256 _percentage = previousEpochSnakePrice.sub(snakePriceOne);
                uint256 _savedForBond;
                uint256 _savedForMasonry;
                uint256 _mse = _calculateMaxSupplyExpansionPercent(snakeSupply).mul(1e14);
                if (_percentage > _mse) {
                    _percentage = _mse;
                }
                if (seigniorageSaved >= bondSupply.mul(bondDepletionFloorPercent).div(10000)) {
                    // saved enough to pay debt, mint as usual rate
                    _savedForMasonry = snakeSupply.mul(_percentage).div(1e18);
                } else {
                    // have not saved enough to pay debt, mint more
                    uint256 _seigniorage = snakeSupply.mul(_percentage).div(1e18);
                    _savedForMasonry = _seigniorage.mul(seigniorageExpansionFloorPercent).div(10000);
                    _savedForBond = _seigniorage.sub(_savedForMasonry);
                    if (mintingFactorForPayingDebt > 0) {
                        _savedForBond = _savedForBond.mul(mintingFactorForPayingDebt).div(10000);
                    }
                }
                if (_savedForMasonry > 0) {
                    _sendToMasonry(_savedForMasonry);
                }
                if (_savedForBond > 0) {
                    seigniorageSaved = seigniorageSaved.add(_savedForBond);
                    IBasisAsset(snake).mint(address(this), _savedForBond);
                    emit TreasuryFunded(block.timestamp, _savedForBond);
                }
            }
        }
    }
    //===================================================================================================================================

    function governanceRecoverUnsupported(
        IERC20 _token,
        uint256 _amount,
        address _to
    ) external onlyOperator {
        // do not allow to drain core tokens
        require(address(_token) != address(snake), "snake");
        require(address(_token) != address(bsnake), "bond");
        require(address(_token) != address(gsnake), "share");
        _token.safeTransfer(_to, _amount);
    }

    function masonrySetOperator(address _operator) external onlyOperator {
        IMasonry(masonry).setOperator(_operator);
    }

    function masonrySetLockUp(uint256 _withdrawLockupEpochs, uint256 _rewardLockupEpochs) external onlyOperator {
        IMasonry(masonry).setLockUp(_withdrawLockupEpochs, _rewardLockupEpochs);
    }

    function masonryAllocateSeigniorage(uint256 amount) external onlyOperator {
        IMasonry(masonry).allocateSeigniorage(amount);
    }

    function masonryGovernanceRecoverUnsupported(
        address _token,
        uint256 _amount,
        address _to
    ) external onlyOperator {
        IMasonry(masonry).governanceRecoverUnsupported(_token, _amount, _to);
    }
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

contract ContractGuard {
    mapping(uint256 => mapping(address => bool)) private _status;

    function checkSameOriginReentranted() internal view returns (bool) {
        return _status[block.number][tx.origin];
    }

    function checkSameSenderReentranted() internal view returns (bool) {
        return _status[block.number][msg.sender];
    }

    modifier onlyOneBlock() {
        require(!checkSameOriginReentranted(), "ContractGuard: one block, one function");
        require(!checkSameSenderReentranted(), "ContractGuard: one block, one function");

        _;

        _status[block.number][tx.origin] = true;
        _status[block.number][msg.sender] = true;
    }
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):