S Price: $0.505308 (-10.56%)

Contract Diff Checker

Contract Name:
Router

Contract Source Code:

// SPDX-License-Identifier: GPL-2.0-or-later

pragma solidity ^0.8.26;

import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";

import {IERC20Extended} from "./interfaces/IERC20Extended.sol";
import {IPair} from "./interfaces/IPair.sol";
import {IPairFactory} from "./interfaces/IPairFactory.sol";
import {IVoter} from "./interfaces/IVoter.sol";
import {IGauge} from "./interfaces/IGauge.sol";
import {IRouter} from "./interfaces/IRouter.sol";
import {IWETH} from "./interfaces/IWETH.sol";

contract Router is IRouter {
    address public immutable factory;
    address public immutable WETH;
    uint256 internal constant MINIMUM_LIQUIDITY = 10 ** 3;
    bytes32 immutable pairCodeHash;
    /// @dev 1m = 100%
    uint256 internal constant FEE_DENOM = 1_000_000;

    modifier ensure(uint256 deadline) {
        require(block.timestamp <= deadline, EXPIRED());
        _;
    }

    constructor(address _factory, address _weth) {
        factory = _factory;
        pairCodeHash = IPairFactory(_factory).pairCodeHash();
        WETH = _weth;
    }

    receive() external payable {
        /// @dev only accept ETH via fallback from the WETH contract
        assert(msg.sender == WETH);
    }

    /// @inheritdoc IRouter
    function sortTokens(
        address tokenA,
        address tokenB
    ) public pure returns (address token0, address token1) {
        require(tokenA != tokenB, IDENTICAL());
        (token0, token1) = tokenA < tokenB
            ? (tokenA, tokenB)
            : (tokenB, tokenA);
        require(token0 != address(0), ZERO_ADDRESS());
    }

    /// @inheritdoc IRouter
    function pairFor(
        address tokenA,
        address tokenB,
        bool stable
    ) public view returns (address pair) {
        (address token0, address token1) = sortTokens(tokenA, tokenB);
        pair = address(
            uint160(
                uint256(
                    keccak256(
                        abi.encodePacked(
                            hex"ff",
                            factory,
                            keccak256(abi.encodePacked(token0, token1, stable)),
                            pairCodeHash /// @dev init code hash
                        )
                    )
                )
            )
        );
    }

    /// @dev given some amount of an asset and pair reserves, returns an equivalent amount of the other asset
    function quoteLiquidity(
        uint256 amountA,
        uint256 reserveA,
        uint256 reserveB
    ) internal pure returns (uint256 amountB) {
        require(amountA != 0, INSUFFICIENT_AMOUNT());
        require(reserveA != 0 && reserveB != 0, INSUFFICIENT_LIQUIDITY());
        amountB = (amountA * reserveB) / reserveA;
    }

    /// @inheritdoc IRouter
    function getReserves(
        address tokenA,
        address tokenB,
        bool stable
    ) public view returns (uint256 reserveA, uint256 reserveB) {
        (address token0, ) = sortTokens(tokenA, tokenB);
        (uint256 reserve0, uint256 reserve1, ) = IPair(
            pairFor(tokenA, tokenB, stable)
        ).getReserves();
        (reserveA, reserveB) = tokenA == token0
            ? (reserve0, reserve1)
            : (reserve1, reserve0);
    }

    /// @inheritdoc IRouter
    function getAmountsOut(
        uint256 amountIn,
        route[] memory routes
    ) public view returns (uint256[] memory amounts) {
        require(routes.length >= 1, INVALID_PATH());
        amounts = new uint256[](routes.length + 1);
        amounts[0] = amountIn;
        for (uint256 i = 0; i < routes.length; ++i) {
            address pair = pairFor(
                routes[i].from,
                routes[i].to,
                routes[i].stable
            );
            if (IPairFactory(factory).isPair(pair)) {
                amounts[i + 1] = IPair(pair).getAmountOut(
                    amounts[i],
                    routes[i].from
                );
            }
        }
    }

    function _k(
        uint256 x,
        uint256 y,
        bool _stable
    ) internal pure returns (uint256) {
        if (_stable) {
            uint256 _a = (x * y) / 10 ** 18;
            uint256 _b = ((x * x) / 10 ** 18 + (y * y) / 10 ** 18);
            return (_a * _b) / 10 ** 18; /// @dev x3y+y3x >= k
        } else {
            return x * y; /// @dev xy >= k
        }
    }

    function _f(uint256 x0, uint256 y) internal pure returns (uint256) {
        return
            (x0 * ((((y * y) / 1e18) * y) / 1e18)) /
            1e18 +
            (((((x0 * x0) / 1e18) * x0) / 1e18) * y) /
            1e18;
    }

    function _d(uint256 x0, uint256 y) internal pure returns (uint256) {
        return
            (3 * x0 * ((y * y) / 1e18)) /
            1e18 +
            ((((x0 * x0) / 1e18) * x0) / 1e18);
    }

    function _get_y(
        uint256 x0,
        uint256 xy,
        uint256 y
    ) internal pure returns (uint256) {
        for (uint256 i = 0; i < 255; ++i) {
            uint256 y_prev = y;
            uint256 k = _f(x0, y);
            if (k < xy) {
                uint256 dy = ((xy - k) * 1e18) / _d(x0, y);
                y = y + dy;
            } else {
                uint256 dy = ((k - xy) * 1e18) / _d(x0, y);
                y = y - dy;
            }
            if (y > y_prev) {
                if (y - y_prev <= 1) {
                    return y;
                }
            } else {
                if (y_prev - y <= 1) {
                    return y;
                }
            }
        }
        return y;
    }

    /// @inheritdoc IRouter
    function getAmountOut(
        uint256 amountIn,
        address tokenIn,
        address tokenOut
    ) public view returns (uint256 amount, bool stable) {
        address pair = pairFor(tokenIn, tokenOut, true);
        uint256 amountStable;
        uint256 amountVolatile;
        if (IPairFactory(factory).isPair(pair)) {
            amountStable = IPair(pair).getAmountOut(amountIn, tokenIn);
        }
        pair = pairFor(tokenIn, tokenOut, false);
        if (IPairFactory(factory).isPair(pair)) {
            amountVolatile = IPair(pair).getAmountOut(amountIn, tokenIn);
        }
        return
            amountStable > amountVolatile
                ? (amountStable, true)
                : (amountVolatile, false);
    }

    function _getAmountIn(
        uint256 amountOut,
        address tokenIn,
        address tokenOut,
        bool stable
    ) internal view returns (uint256 amountIn) {
        require(amountOut != 0, INSUFFICIENT_OUTPUT_AMOUNT());
        address pair = pairFor(tokenIn, tokenOut, stable);
        uint256 fee = IPairFactory(factory).pairFee(pair);

        (
            uint256 decimals0,
            uint256 decimals1,
            uint256 reserve0,
            uint256 reserve1,
            ,
            address token0,

        ) = IPair(pair).metadata();

        require(reserve0 != 0 && reserve1 != 0, INVALID_RESERVES());

        /// @dev normalize the decimals
        reserve0 = (reserve0 * 1e18) / decimals0;
        reserve1 = (reserve1 * 1e18) / decimals1;
        amountOut = tokenOut == token0
            ? (amountOut * 1e18) / decimals0
            : (amountOut * 1e18) / decimals1;

        uint256 reserveIn = tokenIn == token0 ? reserve0 : reserve1;
        uint256 reserveOut = tokenOut == token0 ? reserve0 : reserve1;
        uint256 decimalsIn = tokenIn == token0 ? decimals0 : decimals1;

        if (stable) {
            uint256 k = _k(reserveIn, reserveOut, stable);
            amountIn = _get_y(reserveOut - amountOut, k, reserveIn) - reserveIn;
        } else {
            amountIn = ((reserveIn * amountOut) / (reserveOut - amountOut));
        }

        /// @dev multiply by a ratio to get the amount + fees and convert back to the right decimals
        amountIn =
            ((amountIn * FEE_DENOM * decimalsIn) / ((FEE_DENOM - fee) * 1e18)) +
            1;
    }

    /// @dev performs chained getAmountIn calculations on any number of pairs
    function getAmountsIn(
        uint256 amountOut,
        route[] memory routes
    ) public view returns (uint256[] memory amounts) {
        require(routes.length >= 1, INVALID_PATH());
        amounts = new uint256[](routes.length + 1);
        amounts[amounts.length - 1] = amountOut;

        for (uint i = 0; i < routes.length; i++) {
            uint256 j = routes.length - 1 - i;
            amounts[j] = _getAmountIn(
                amounts[j + 1],
                routes[j].from,
                routes[j].to,
                routes[j].stable
            );
        }
    }

    /// @inheritdoc IRouter
    function quoteAddLiquidity(
        address tokenA,
        address tokenB,
        bool stable,
        uint256 amountADesired,
        uint256 amountBDesired
    )
        external
        view
        returns (uint256 amountA, uint256 amountB, uint256 liquidity)
    {
        address _pair = IPairFactory(factory).getPair(tokenA, tokenB, stable);
        (uint256 reserveA, uint256 reserveB) = (0, 0);
        uint256 _totalSupply = 0;
        if (_pair != address(0)) {
            _totalSupply = IERC20Extended(_pair).totalSupply();
            (reserveA, reserveB) = getReserves(tokenA, tokenB, stable);
        }
        if (reserveA == 0 && reserveB == 0) {
            (amountA, amountB) = (amountADesired, amountBDesired);
            liquidity = Math.sqrt(amountA * amountB) - MINIMUM_LIQUIDITY;
        } else {
            uint256 amountBOptimal = quoteLiquidity(
                amountADesired,
                reserveA,
                reserveB
            );
            if (amountBOptimal <= amountBDesired) {
                (amountA, amountB) = (amountADesired, amountBOptimal);
                liquidity = Math.min(
                    (amountA * _totalSupply) / reserveA,
                    (amountB * _totalSupply) / reserveB
                );
            } else {
                uint256 amountAOptimal = quoteLiquidity(
                    amountBDesired,
                    reserveB,
                    reserveA
                );
                (amountA, amountB) = (amountAOptimal, amountBDesired);
                liquidity = Math.min(
                    (amountA * _totalSupply) / reserveA,
                    (amountB * _totalSupply) / reserveB
                );
            }
        }
    }

    /// @inheritdoc IRouter
    function quoteRemoveLiquidity(
        address tokenA,
        address tokenB,
        bool stable,
        uint256 liquidity
    ) external view returns (uint256 amountA, uint256 amountB) {
        address _pair = IPairFactory(factory).getPair(tokenA, tokenB, stable);

        if (_pair == address(0)) {
            return (0, 0);
        }

        (uint256 reserveA, uint256 reserveB) = getReserves(
            tokenA,
            tokenB,
            stable
        );
        uint256 _totalSupply = IERC20Extended(_pair).totalSupply();
        /// @dev using balances ensures pro-rata distribution
        amountA = (liquidity * reserveA) / _totalSupply;
        /// @dev using balances ensures pro-rata distribution
        amountB = (liquidity * reserveB) / _totalSupply;
    }

    function _addLiquidity(
        address tokenA,
        address tokenB,
        bool stable,
        uint256 amountADesired,
        uint256 amountBDesired,
        uint256 amountAMin,
        uint256 amountBMin
    ) internal returns (uint256 amountA, uint256 amountB) {
        require(amountADesired >= amountAMin);
        require(amountBDesired >= amountBMin);
        /// @dev create the pair if it doesn't exist yet
        address _pair = IPairFactory(factory).getPair(tokenA, tokenB, stable);
        if (_pair == address(0)) {
            _pair = IPairFactory(factory).createPair(tokenA, tokenB, stable);
        }
        (uint256 reserveA, uint256 reserveB) = getReserves(
            tokenA,
            tokenB,
            stable
        );
        if (reserveA == 0 && reserveB == 0) {
            (amountA, amountB) = (amountADesired, amountBDesired);
        } else {
            uint256 amountBOptimal = quoteLiquidity(
                amountADesired,
                reserveA,
                reserveB
            );
            if (amountBOptimal <= amountBDesired) {
                require(amountBOptimal >= amountBMin, INSUFFICIENT_B_AMOUNT());
                (amountA, amountB) = (amountADesired, amountBOptimal);
            } else {
                uint256 amountAOptimal = quoteLiquidity(
                    amountBDesired,
                    reserveB,
                    reserveA
                );
                assert(amountAOptimal <= amountADesired);
                require(amountAOptimal >= amountAMin, INSUFFICIENT_A_AMOUNT());
                (amountA, amountB) = (amountAOptimal, amountBDesired);
            }
        }
    }

    /// @inheritdoc IRouter
    function addLiquidity(
        address tokenA,
        address tokenB,
        bool stable,
        uint256 amountADesired,
        uint256 amountBDesired,
        uint256 amountAMin,
        uint256 amountBMin,
        address to,
        uint256 deadline
    )
        public
        ensure(deadline)
        returns (uint256 amountA, uint256 amountB, uint256 liquidity)
    {
        (amountA, amountB) = _addLiquidity(
            tokenA,
            tokenB,
            stable,
            amountADesired,
            amountBDesired,
            amountAMin,
            amountBMin
        );
        address pair = pairFor(tokenA, tokenB, stable);
        _safeTransferFrom(tokenA, msg.sender, pair, amountA);
        _safeTransferFrom(tokenB, msg.sender, pair, amountB);
        liquidity = IPair(pair).mint(to);
    }

    /// @inheritdoc IRouter
    function addLiquidityETH(
        address token,
        bool stable,
        uint256 amountTokenDesired,
        uint256 amountTokenMin,
        uint256 amountETHMin,
        address to,
        uint256 deadline
    )
        public
        payable
        ensure(deadline)
        returns (uint256 amountToken, uint256 amountETH, uint256 liquidity)
    {
        (amountToken, amountETH) = _addLiquidity(
            token,
            WETH,
            stable,
            amountTokenDesired,
            msg.value,
            amountTokenMin,
            amountETHMin
        );
        address pair = pairFor(token, WETH, stable);
        _safeTransferFrom(token, msg.sender, pair, amountToken);
        IWETH(WETH).deposit{value: amountETH}();
        assert(IWETH(WETH).transfer(pair, amountETH));
        liquidity = IPair(pair).mint(to);
        /// @dev refund dust eth, if any
        if (msg.value > amountETH)
            _safeTransferETH(msg.sender, msg.value - amountETH);
    }

    /// @inheritdoc IRouter
    function addLiquidityAndStake(
        address tokenA,
        address tokenB,
        bool stable,
        uint256 amountADesired,
        uint256 amountBDesired,
        uint256 amountAMin,
        uint256 amountBMin,
        address to,
        uint256 deadline
    ) external returns (uint256 amountA, uint256 amountB, uint256 liquidity) {
        (amountA, amountB, liquidity) = addLiquidity(
            tokenA,
            tokenB,
            stable,
            amountADesired,
            amountBDesired,
            amountAMin,
            amountBMin,
            address(this),
            deadline
        );
        address pair = pairFor(tokenA, tokenB, stable);
        address voter = IPairFactory(factory).voter();
        address gauge = IVoter(voter).gaugeForPool(pair);
        IERC20Extended(pair).approve(gauge, liquidity);
        IGauge(gauge).depositFor(to, liquidity);
    }

    /// @inheritdoc IRouter
    function addLiquidityETHAndStake(
        address token,
        bool stable,
        uint256 amountTokenDesired,
        uint256 amountTokenMin,
        uint256 amountETHMin,
        address to,
        uint256 deadline
    )
        external
        payable
        returns (uint256 amountA, uint256 amountB, uint256 liquidity)
    {
        (amountA, amountB, liquidity) = addLiquidityETH(
            token,
            stable,
            amountTokenDesired,
            amountTokenMin,
            amountETHMin,
            address(this),
            deadline
        );
        address pair = pairFor(token, WETH, stable);
        address voter = IPairFactory(factory).voter();
        address gauge = IVoter(voter).gaugeForPool(pair);
        IERC20Extended(pair).approve(gauge, liquidity);
        IGauge(gauge).depositFor(to, liquidity);
    }

    /// @inheritdoc IRouter
    function removeLiquidity(
        address tokenA,
        address tokenB,
        bool stable,
        uint256 liquidity,
        uint256 amountAMin,
        uint256 amountBMin,
        address to,
        uint256 deadline
    ) public ensure(deadline) returns (uint256 amountA, uint256 amountB) {
        address pair = pairFor(tokenA, tokenB, stable);
        /// @dev send liquidity to pair
        require(IERC20Extended(pair).transferFrom(msg.sender, pair, liquidity)); 
        (uint256 amount0, uint256 amount1) = IPair(pair).burn(to);
        (address token0, ) = sortTokens(tokenA, tokenB);
        (amountA, amountB) = tokenA == token0
            ? (amount0, amount1)
            : (amount1, amount0);

        require(amountA >= amountAMin, INSUFFICIENT_A_AMOUNT());
        require(amountB >= amountBMin, INSUFFICIENT_B_AMOUNT());
    }

    /// @inheritdoc IRouter
    function removeLiquidityETH(
        address token,
        bool stable,
        uint256 liquidity,
        uint256 amountTokenMin,
        uint256 amountETHMin,
        address to,
        uint256 deadline
    ) public ensure(deadline) returns (uint256 amountToken, uint256 amountETH) {
        (amountToken, amountETH) = removeLiquidity(
            token,
            WETH,
            stable,
            liquidity,
            amountTokenMin,
            amountETHMin,
            address(this),
            deadline
        );
        _safeTransfer(token, to, amountToken);
        IWETH(WETH).withdraw(amountETH);
        _safeTransferETH(to, amountETH);
    }

    /// @dev requires the initial amount to have already been sent to the first pair
    function _swap(
        uint256[] memory amounts,
        route[] memory routes,
        address _to
    ) internal virtual {
        for (uint256 i = 0; i < routes.length; ++i) {
            (address token0, ) = sortTokens(routes[i].from, routes[i].to);
            uint256 amountOut = amounts[i + 1];
            (uint256 amount0Out, uint256 amount1Out) = routes[i].from == token0
                ? (uint256(0), amountOut)
                : (amountOut, uint256(0));
            address to = i < routes.length - 1
                ? pairFor(
                    routes[i + 1].from,
                    routes[i + 1].to,
                    routes[i + 1].stable
                )
                : _to;
            IPair(pairFor(routes[i].from, routes[i].to, routes[i].stable)).swap(
                    amount0Out,
                    amount1Out,
                    to,
                    new bytes(0)
                );
        }
    }

    /// @inheritdoc IRouter
    function swapExactTokensForTokens(
        uint256 amountIn,
        uint256 amountOutMin,
        route[] calldata routes,
        address to,
        uint256 deadline
    ) external ensure(deadline) returns (uint256[] memory amounts) {
        amounts = getAmountsOut(amountIn, routes);
        require(
            amounts[amounts.length - 1] >= amountOutMin,
            INSUFFICIENT_OUTPUT_AMOUNT()
        );
        _safeTransferFrom(
            routes[0].from,
            msg.sender,
            pairFor(routes[0].from, routes[0].to, routes[0].stable),
            amounts[0]
        );
        _swap(amounts, routes, to);
    }

    /// @inheritdoc IRouter
    function swapTokensForExactTokens(
        uint amountOut,
        uint amountInMax,
        route[] memory routes,
        address to,
        uint deadline
    ) external ensure(deadline) returns (uint[] memory amounts) {
        amounts = getAmountsIn(amountOut, routes);
        require(amounts[0] <= amountInMax, EXCESSIVE_INPUT_AMOUNT());
        _safeTransferFrom(
            routes[0].from,
            msg.sender,
            pairFor(routes[0].from, routes[0].to, routes[0].stable),
            amounts[0]
        );
        _swap(amounts, routes, to);
    }

    /// @inheritdoc IRouter
    function swapExactETHForTokens(
        uint256 amountOutMin,
        route[] calldata routes,
        address to,
        uint256 deadline
    ) external payable ensure(deadline) returns (uint256[] memory amounts) {
        require(routes[0].from == WETH, INVALID_PATH());
        amounts = getAmountsOut(msg.value, routes);
        require(
            amounts[amounts.length - 1] >= amountOutMin,
            INSUFFICIENT_OUTPUT_AMOUNT()
        );
        IWETH(WETH).deposit{value: amounts[0]}();
        assert(
            IWETH(WETH).transfer(
                pairFor(routes[0].from, routes[0].to, routes[0].stable),
                amounts[0]
            )
        );
        _swap(amounts, routes, to);
    }

    /// @inheritdoc IRouter
    function swapTokensForExactETH(
        uint amountOut,
        uint amountInMax,
        route[] calldata routes,
        address to,
        uint deadline
    ) external ensure(deadline) returns (uint[] memory amounts) {
        require(routes[routes.length - 1].to == WETH, INVALID_PATH());
        amounts = getAmountsIn(amountOut, routes);
        require(amounts[0] <= amountInMax, EXCESSIVE_INPUT_AMOUNT());
        _safeTransferFrom(
            routes[0].from,
            msg.sender,
            pairFor(routes[0].from, routes[0].to, routes[0].stable),
            amounts[0]
        );
        _swap(amounts, routes, address(this));
        IWETH(WETH).withdraw(amounts[amounts.length - 1]);
        _safeTransferETH(to, amounts[amounts.length - 1]);
    }

    /// @inheritdoc IRouter
    function swapExactTokensForETH(
        uint256 amountIn,
        uint256 amountOutMin,
        route[] calldata routes,
        address to,
        uint256 deadline
    ) external ensure(deadline) returns (uint256[] memory amounts) {
        require(routes[routes.length - 1].to == WETH, INVALID_PATH());
        amounts = getAmountsOut(amountIn, routes);
        require(
            amounts[amounts.length - 1] >= amountOutMin,
            INSUFFICIENT_OUTPUT_AMOUNT()
        );
        _safeTransferFrom(
            routes[0].from,
            msg.sender,
            pairFor(routes[0].from, routes[0].to, routes[0].stable),
            amounts[0]
        );
        _swap(amounts, routes, address(this));
        IWETH(WETH).withdraw(amounts[amounts.length - 1]);
        _safeTransferETH(to, amounts[amounts.length - 1]);
    }

    /// @inheritdoc IRouter
    function swapETHForExactTokens(
        uint amountOut,
        route[] calldata routes,
        address to,
        uint deadline
    ) external payable ensure(deadline) returns (uint[] memory amounts) {
        require(routes[0].from == WETH, INVALID_PATH());
        amounts = getAmountsIn(amountOut, routes);
        require(amounts[0] <= msg.value, EXCESSIVE_INPUT_AMOUNT());
        IWETH(WETH).deposit{value: amounts[0]}();
        assert(
            IWETH(WETH).transfer(
                pairFor(routes[0].from, routes[0].to, routes[0].stable),
                amounts[0]
            )
        );
        _swap(amounts, routes, to);
        /// @dev refund dust eth, if any
        if (msg.value > amounts[0])
            _safeTransferETH(msg.sender, msg.value - amounts[0]);
    }

    /// @dev **** SWAP (supporting fee-on-transfer tokens) ****
    /// @dev requires the initial amount to have already been sent to the first pair
    function _swapSupportingFeeOnTransferTokens(
        route[] calldata routes,
        address _to
    ) internal virtual {
        for (uint256 i; i < routes.length; i++) {
            (address input, address output) = (routes[i].from, routes[i].to);
            (address token0, ) = sortTokens(input, output);
            IPair pair = IPair(
                pairFor(routes[i].from, routes[i].to, routes[i].stable)
            );
            uint256 amountInput;
            uint256 amountOutput;
            {
                /// @dev scope to avoid stack too deep errors
                (uint256 reserve0, uint256 reserve1, ) = pair.getReserves();
                (uint256 reserveInput, ) = input == token0
                    ? (reserve0, reserve1)
                    : (reserve1, reserve0);
                amountInput =
                    IERC20Extended(input).balanceOf(address(pair)) -
                    reserveInput;
                amountOutput = IPair(pair).getAmountOut(amountInput, input);
            }
            (uint256 amount0Out, uint256 amount1Out) = input == token0
                ? (uint256(0), amountOutput)
                : (amountOutput, uint256(0));
            address to = i < routes.length - 1
                ? pairFor(
                    routes[i + 1].from,
                    routes[i + 1].to,
                    routes[i + 1].stable
                )
                : _to;
            pair.swap(amount0Out, amount1Out, to, new bytes(0));
        }
    }

    /// @inheritdoc IRouter
    function swapExactTokensForTokensSupportingFeeOnTransferTokens(
        uint256 amountIn,
        uint256 amountOutMin,
        route[] calldata routes,
        address to,
        uint256 deadline
    ) external ensure(deadline) {
        _safeTransferFrom(
            routes[0].from,
            msg.sender,
            pairFor(routes[0].from, routes[0].to, routes[0].stable),
            amountIn
        );
        uint256 balanceBefore = IERC20Extended(routes[routes.length - 1].to)
            .balanceOf(to);
        _swapSupportingFeeOnTransferTokens(routes, to);
        require(
            IERC20Extended(routes[routes.length - 1].to).balanceOf(to) -
                balanceBefore >=
                amountOutMin,
            INSUFFICIENT_OUTPUT_AMOUNT()
        );
    }

    /// @inheritdoc IRouter
    function swapExactETHForTokensSupportingFeeOnTransferTokens(
        uint256 amountOutMin,
        route[] calldata routes,
        address to,
        uint256 deadline
    ) external payable ensure(deadline) {
        require(routes[0].from == WETH, INVALID_PATH());
        IWETH(WETH).deposit{value: msg.value}();
        assert(
            IWETH(WETH).transfer(
                pairFor(routes[0].from, routes[0].to, routes[0].stable),
                msg.value
            )
        );
        uint256 balanceBefore = IERC20Extended(routes[routes.length - 1].to)
            .balanceOf(to);
        _swapSupportingFeeOnTransferTokens(routes, to);
        require(
            IERC20Extended(routes[routes.length - 1].to).balanceOf(to) -
                balanceBefore >=
                amountOutMin,
            INSUFFICIENT_OUTPUT_AMOUNT()
        );
    }

    /// @inheritdoc IRouter
    function swapExactTokensForETHSupportingFeeOnTransferTokens(
        uint256 amountIn,
        uint256 amountOutMin,
        route[] calldata routes,
        address to,
        uint256 deadline
    ) external ensure(deadline) {
        require(routes[routes.length - 1].to == WETH, INVALID_PATH());
        _safeTransferFrom(
            routes[0].from,
            msg.sender,
            pairFor(routes[0].from, routes[0].to, routes[0].stable),
            amountIn
        );
        _swapSupportingFeeOnTransferTokens(routes, address(this));
        uint256 amountOut = IERC20Extended(WETH).balanceOf(address(this));
        require(amountOut >= amountOutMin, INSUFFICIENT_OUTPUT_AMOUNT());
        IWETH(WETH).withdraw(amountOut);
        _safeTransferETH(to, amountOut);
    }

    /// @inheritdoc IRouter
    function removeLiquidityETHSupportingFeeOnTransferTokens(
        address token,
        bool stable,
        uint256 liquidity,
        uint256 amountTokenMin,
        uint256 amountETHMin,
        address to,
        uint256 deadline
    ) external ensure(deadline) returns (uint256 amountToken, uint256 amountETH) {
        (amountToken, amountETH) = removeLiquidity(
            token,
            WETH,
            stable,
            liquidity,
            amountTokenMin,
            amountETHMin,
            address(this),
            deadline
        );
        _safeTransfer(
            token,
            to,
            IERC20Extended(token).balanceOf(address(this))
        );
        IWETH(WETH).withdraw(amountETH);
        _safeTransferETH(to, amountETH);
    }

    function _safeTransferETH(address to, uint256 value) internal {
        (bool success, ) = to.call{value: value}(new bytes(0));
        require(success, ETH_TRANSFER_FAILED());
    }

    function _safeTransfer(address token, address to, uint256 value) internal {
        require(token.code.length > 0);
        (bool success, bytes memory data) = token.call(
            abi.encodeWithSelector(IERC20Extended.transfer.selector, to, value)
        );
        require(success && (data.length == 0 || abi.decode(data, (bool))));
    }

    function _safeTransferFrom(
        address token,
        address from,
        address to,
        uint256 value
    ) internal {
        require(token.code.length > 0);
        (bool success, bytes memory data) = token.call(
            abi.encodeWithSelector(
                IERC20Extended.transferFrom.selector,
                from,
                to,
                value
            )
        );
        require(success && (data.length == 0 || abi.decode(data, (bool))));
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
            // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2²⁵⁶ + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= prod1) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 exp;
        unchecked {
            exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
            value >>= exp;
            result += exp;

            exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
            value >>= exp;
            result += exp;

            exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
            value >>= exp;
            result += exp;

            exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
            value >>= exp;
            result += exp;

            exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
            value >>= exp;
            result += exp;

            exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
            value >>= exp;
            result += exp;

            exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
            value >>= exp;
            result += exp;

            result += SafeCast.toUint(value > 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 isGt;
        unchecked {
            isGt = SafeCast.toUint(value > (1 << 128) - 1);
            value >>= isGt * 128;
            result += isGt * 16;

            isGt = SafeCast.toUint(value > (1 << 64) - 1);
            value >>= isGt * 64;
            result += isGt * 8;

            isGt = SafeCast.toUint(value > (1 << 32) - 1);
            value >>= isGt * 32;
            result += isGt * 4;

            isGt = SafeCast.toUint(value > (1 << 16) - 1);
            value >>= isGt * 16;
            result += isGt * 2;

            result += SafeCast.toUint(value > (1 << 8) - 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.26;

import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import {IERC20Permit} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Permit.sol";

interface IERC20Extended is IERC20, IERC20Metadata, IERC20Permit {
    function mint(address account, uint256 amount) external;

    function burn(uint256 amount) external;

    function transfer(address to, uint256 value) external returns (bool);

    function transferFrom(
        address from,
        address to,
        uint256 value
    ) external returns (bool);

    function burnFrom(address account, uint256 value) external;
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.26;

interface IPair {
    error NOT_AUTHORIZED();
    error UNSTABLE_RATIO();
    /// @dev safe transfer failed
    error STF();
    error OVERFLOW();
    /// @dev skim disabled
    error SD();
    /// @dev insufficient liquidity minted
    error ILM();
    /// @dev insufficient liquidity burned
    error ILB();
    /// @dev insufficient output amount
    error IOA();
    /// @dev insufficient input amount
    error IIA();
    error IL();
    error IT();
    error K();

    event Mint(address indexed sender, uint256 amount0, uint256 amount1);
    event Burn(
        address indexed sender,
        uint256 amount0,
        uint256 amount1,
        address indexed to
    );
    event Swap(
        address indexed sender,
        uint256 amount0In,
        uint256 amount1In,
        uint256 amount0Out,
        uint256 amount1Out,
        address indexed to
    );
    event Sync(uint112 reserve0, uint112 reserve1);

    /// @notice initialize the pool, called only once programatically
    function initialize(
        address _token0,
        address _token1,
        bool _stable
    ) external;

    /// @notice calculate the current reserves of the pool and their last 'seen' timestamp
    /// @return _reserve0 amount of token0 in reserves
    /// @return _reserve1 amount of token1 in reserves
    /// @return _blockTimestampLast the timestamp when the pool was last updated
    function getReserves()
        external
        view
        returns (
            uint112 _reserve0,
            uint112 _reserve1,
            uint32 _blockTimestampLast
        );

    /// @notice mint the pair tokens (LPs)
    /// @param to where to mint the LP tokens to
    /// @return liquidity amount of LP tokens to mint
    function mint(address to) external returns (uint256 liquidity);

    /// @notice burn the pair tokens (LPs)
    /// @param to where to send the underlying
    /// @return amount0 amount of amount0
    /// @return amount1 amount of amount1
    function burn(
        address to
    ) external returns (uint256 amount0, uint256 amount1);

    /// @notice direct swap through the pool
    function swap(
        uint256 amount0Out,
        uint256 amount1Out,
        address to,
        bytes calldata data
    ) external;

    /// @notice force balances to match reserves, can be used to harvest rebases from rebasing tokens or other external factors
    /// @param to where to send the excess tokens to
    function skim(address to) external;

    /// @notice force reserves to match balances, prevents skim excess if skim is enabled
    function sync() external;

    /// @notice set the pair fees contract address
    function setFeeRecipient(address _pairFees) external;

    /// @notice set the feesplit variable
    function setFeeSplit(uint256 _feeSplit) external;

    /// @notice sets the swap fee of the pair
    /// @dev max of 10_000 (10%)
    /// @param _fee the fee
    function setFee(uint256 _fee) external;

    /// @notice 'mint' the fees as LP tokens
    /// @dev this is used for protocol/voter fees
    function mintFee() external;

    /// @notice calculates the amount of tokens to receive post swap
    /// @param amountIn the token amount
    /// @param tokenIn the address of the token
    function getAmountOut(
        uint256 amountIn,
        address tokenIn
    ) external view returns (uint256 amountOut);

    /// @notice returns various metadata about the pair
    function metadata()
        external
        view
        returns (
            uint256 _decimals0,
            uint256 _decimals1,
            uint256 _reserve0,
            uint256 _reserve1,
            bool _stable,
            address _token0,
            address _token1
        );

    /// @notice returns the feeSplit of the pair
    function feeSplit() external view returns (uint256);

    /// @notice returns the fee of the pair
    function fee() external view returns (uint256);

    /// @notice returns the feeRecipient of the pair
    function feeRecipient() external view returns (address);

}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.26;

interface IPairFactory {
    error FEE_TOO_HIGH();
    error ZERO_FEE();
    /// @dev invalid assortment
    error IA();
    /// @dev zero address
    error ZA();
    /// @dev pair exists
    error PE();
    error NOT_AUTHORIZED();
    error INVALID_FEE_SPLIT();

    event PairCreated(
        address indexed token0,
        address indexed token1,
        address pair,
        uint256
    );

    event SetFee(uint256 indexed fee);

    event SetPairFee(address indexed pair, uint256 indexed fee);

    event SetFeeSplit(uint256 indexed _feeSplit);

    event SetPairFeeSplit(address indexed pair, uint256 indexed _feeSplit);

    event SkimStatus(address indexed _pair, bool indexed _status);

    event NewTreasury(address indexed _caller, address indexed _newTreasury);

    event FeeSplitWhenNoGauge(address indexed _caller, bool indexed _status);

    event SetFeeRecipient(address indexed pair, address indexed feeRecipient);

    /// @notice returns the total length of legacy pairs
    /// @return _length the length
    function allPairsLength() external view returns (uint256 _length);

    /// @notice calculates if the address is a legacy pair
    /// @param pair the address to check
    /// @return _boolean the bool return
    function isPair(address pair) external view returns (bool _boolean);

    /// @notice calculates the pairCodeHash
    /// @return _hash the pair code hash
    function pairCodeHash() external view returns (bytes32 _hash);

    /// @param tokenA address of tokenA
    /// @param tokenB address of tokenB
    /// @param stable whether it uses the stable curve
    /// @return _pair the address of the pair
    function getPair(
        address tokenA,
        address tokenB,
        bool stable
    ) external view returns (address _pair);

    /// @notice creates a new legacy pair
    /// @param tokenA address of tokenA
    /// @param tokenB address of tokenB
    /// @param stable whether it uses the stable curve
    /// @return pair the address of the created pair
    function createPair(
        address tokenA,
        address tokenB,
        bool stable
    ) external returns (address pair);

    /// @notice the address of the voter
    /// @return _voter the address of the voter
    function voter() external view returns (address _voter);

    /// @notice returns the address of a pair based on the index
    /// @param _index the index to check for a pair
    /// @return _pair the address of the pair at the index
    function allPairs(uint256 _index) external view returns (address _pair);

    /// @notice the swap fee of a pair
    /// @param _pair the address of the pair
    /// @return _fee the fee
    function pairFee(address _pair) external view returns (uint256 _fee);

    /// @notice the split of fees
    /// @return _split the feeSplit
    function feeSplit() external view returns (uint256 _split);

    /// @notice sets the swap fee for a pair
    /// @param _pair the address of the pair
    /// @param _fee the fee for the pair
    function setPairFee(address _pair, uint256 _fee) external;

    /// @notice set the swap fees of the pair
    /// @param _fee the fee, scaled to MAX 10% of 100_000
    function setFee(uint256 _fee) external;

    /// @notice the address for the treasury
    /// @return _treasury address of the treasury
    function treasury() external view returns (address _treasury);

    /// @notice sets the pairFees contract
    /// @param _pair the address of the pair
    /// @param _pairFees the address of the new Pair Fees
    function setFeeRecipient(address _pair, address _pairFees) external;

    /// @notice sets the feeSplit for a pair
    /// @param _pair the address of the pair
    /// @param _feeSplit the feeSplit
    function setPairFeeSplit(address _pair, uint256 _feeSplit) external;

    /// @notice whether there is feeSplit when there's no gauge
    /// @return _boolean whether there is a feesplit when no gauge
    function feeSplitWhenNoGauge() external view returns (bool _boolean);

    /// @notice whether a pair can be skimmed
    /// @param _pair the pair address
    /// @return _boolean whether skim is enabled
    function skimEnabled(address _pair) external view returns (bool _boolean);

    /// @notice set whether skim is enabled for a specific pair
    function setSkimEnabled(address _pair, bool _status) external;

    /// @notice sets a new treasury address
    /// @param _treasury the new treasury address
    function setTreasury(address _treasury) external;

    /// @notice set whether there should be a feesplit without gauges
    /// @param status whether enabled or not
    function setFeeSplitWhenNoGauge(bool status) external;

    /// @notice sets the feesSplit globally
    /// @param _feeSplit the fee split
    function setFeeSplit(uint256 _feeSplit) external;
}

// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.26;
pragma abicoder v2;

interface IVoter {
    error ACTIVE_GAUGE(address gauge);

    error GAUGE_INACTIVE(address gauge);

    error ALREADY_WHITELISTED(address token);

    error NOT_AUTHORIZED(address caller);

    error NOT_WHITELISTED();

    error NOT_POOL();

    error NOT_INIT();

    error LENGTH_MISMATCH();

    error NO_GAUGE();

    error ALREADY_DISTRIBUTED(address gauge, uint256 period);

    error ZERO_VOTE(address pool);

    error RATIO_TOO_HIGH(uint256 _xRatio);

    error VOTE_UNSUCCESSFUL();

    event GaugeCreated(
        address indexed gauge,
        address creator,
        address feeDistributor,
        address indexed pool
    );

    event GaugeKilled(address indexed gauge);

    event GaugeRevived(address indexed gauge);

    event Voted(address indexed owner, uint256 weight, address indexed pool);

    event Abstained(address indexed owner, uint256 weight);

    event Deposit(
        address indexed lp,
        address indexed gauge,
        address indexed owner,
        uint256 amount
    );

    event Withdraw(
        address indexed lp,
        address indexed gauge,
        address indexed owner,
        uint256 amount
    );

    event NotifyReward(
        address indexed sender,
        address indexed reward,
        uint256 amount
    );

    event DistributeReward(
        address indexed sender,
        address indexed gauge,
        uint256 amount
    );

    event EmissionsRatio(
        address indexed caller,
        uint256 oldRatio,
        uint256 newRatio
    );

    event NewGovernor(address indexed sender, address indexed governor);

    event Whitelisted(address indexed whitelister, address indexed token);

    event WhitelistRevoked(
        address indexed forbidder,
        address indexed token,
        bool status
    );

    event MainTickSpacingChanged(
        address indexed token0,
        address indexed token1,
        int24 indexed newMainTickSpacing
    );

    event Poke(address indexed user);

    function initialize(
        address _shadow,
        address _legacyFactory,
        address _gauges,
        address _feeDistributorFactory,
        address _minter,
        address _msig,
        address _xShadow,
        address _clFactory,
        address _clGaugeFactory,
        address _nfpManager,
        address _feeRecipientFactory,
        address _voteModule,
        address _launcherPlugin
    ) external;

    /// @notice denominator basis
    function BASIS() external view returns (uint256);

    /// @notice ratio of xShadow emissions globally
    function xRatio() external view returns (uint256);

    /// @notice xShadow contract address
    function xShadow() external view returns (address);

    /// @notice legacy factory address (uni-v2/stableswap)
    function legacyFactory() external view returns (address);

    /// @notice concentrated liquidity factory
    function clFactory() external view returns (address);

    /// @notice gauge factory for CL
    function clGaugeFactory() external view returns (address);

    /// @notice legacy fee recipient factory
    function feeRecipientFactory() external view returns (address);

    /// @notice peripheral NFPManager contract
    function nfpManager() external view returns (address);

    /// @notice returns the address of the current governor
    /// @return _governor address of the governor
    function governor() external view returns (address _governor);

    /// @notice the address of the vote module
    /// @return _voteModule the vote module contract address
    function voteModule() external view returns (address _voteModule);

    /// @notice address of the central access Hub
    function accessHub() external view returns (address);

    /// @notice the address of the shadow launcher plugin to enable third party launchers
    /// @return _launcherPlugin the address of the plugin
    function launcherPlugin() external view returns (address _launcherPlugin);

    /// @notice distributes emissions from the minter to the voter
    /// @param amount the amount of tokens to notify
    function notifyRewardAmount(uint256 amount) external;

    /// @notice distributes the emissions for a specific gauge
    /// @param _gauge the gauge address
    function distribute(address _gauge) external;

    /// @notice returns the address of the gauge factory
    /// @param _gaugeFactory gauge factory address
    function gaugeFactory() external view returns (address _gaugeFactory);

    /// @notice returns the address of the feeDistributor factory
    /// @return _feeDistributorFactory feeDist factory address
    function feeDistributorFactory()
        external
        view
        returns (address _feeDistributorFactory);

    /// @notice returns the address of the minter contract
    /// @return _minter address of the minter
    function minter() external view returns (address _minter);

    /// @notice check if the gauge is active for governance use
    /// @param _gauge address of the gauge
    /// @return _trueOrFalse if the gauge is alive
    function isAlive(address _gauge) external view returns (bool _trueOrFalse);

    /// @notice allows the token to be paired with other whitelisted assets to participate in governance
    /// @param _token the address of the token
    function whitelist(address _token) external;

    /// @notice effectively disqualifies a token from governance
    /// @param _token the address of the token
    function revokeWhitelist(address _token) external;

    /// @notice returns if the address is a gauge
    /// @param gauge address of the gauge
    /// @return _trueOrFalse boolean if the address is a gauge
    function isGauge(address gauge) external view returns (bool _trueOrFalse);

    /// @notice disable a gauge from governance
    /// @param _gauge address of the gauge
    function killGauge(address _gauge) external;

    /// @notice re-activate a dead gauge
    /// @param _gauge address of the gauge
    function reviveGauge(address _gauge) external;

    /// @notice re-cast a tokenID's votes
    /// @param owner address of the owner
    function poke(address owner) external;

    /// @notice sets the main tickspacing of a token pairing
    /// @param tokenA address of tokenA
    /// @param tokenB address of tokenB
    /// @param tickSpacing the main tickspacing to set to
    function setMainTickSpacing(
        address tokenA,
        address tokenB,
        int24 tickSpacing
    ) external;

    /// @notice returns if the address is a fee distributor
    /// @param _feeDistributor address of the feeDist
    /// @return _trueOrFalse if the address is a fee distributor
    function isFeeDistributor(
        address _feeDistributor
    ) external view returns (bool _trueOrFalse);

    /// @notice returns the address of the emission's token
    /// @return _shadow emissions token contract address
    function shadow() external view returns (address _shadow);

    /// @notice returns the address of the pool's gauge, if any
    /// @param _pool pool address
    /// @return _gauge gauge address
    function gaugeForPool(address _pool) external view returns (address _gauge);

    /// @notice returns the address of the pool's feeDistributor, if any
    /// @param _gauge address of the gauge
    /// @return _feeDistributor address of the pool's feedist
    function feeDistributorForGauge(
        address _gauge
    ) external view returns (address _feeDistributor);

    /// @notice returns the new toPool that was redirected fromPool
    /// @param fromPool address of the original pool
    /// @return toPool the address of the redirected pool
    function poolRedirect(
        address fromPool
    ) external view returns (address toPool);

    /// @notice returns the gauge address of a CL pool
    /// @param tokenA address of token A in the pair
    /// @param tokenB address of token B in the pair
    /// @param tickSpacing tickspacing of the pool
    /// @return gauge address of the gauge
    function gaugeForClPool(
        address tokenA,
        address tokenB,
        int24 tickSpacing
    ) external view returns (address gauge);

    /// @notice returns the array of all tickspacings for the tokenA/tokenB combination
    /// @param tokenA address of token A in the pair
    /// @param tokenB address of token B in the pair
    /// @return _ts array of all the tickspacings
    function tickSpacingsForPair(
        address tokenA,
        address tokenB
    ) external view returns (int24[] memory _ts);

    /// @notice returns the main tickspacing used in the gauge/governance process
    /// @param tokenA address of token A in the pair
    /// @param tokenB address of token B in the pair
    /// @return _ts the main tickspacing
    function mainTickSpacingForPair(
        address tokenA,
        address tokenB
    ) external view returns (int24 _ts);

    /// @notice returns the block.timestamp divided by 1 week in seconds
    /// @return period the period used for gauges
    function getPeriod() external view returns (uint256 period);

    /// @notice cast a vote to direct emissions to gauges and earn incentives
    /// @param owner address of the owner
    /// @param _pools the list of pools to vote on
    /// @param _weights an arbitrary weight per pool which will be normalized to 100% regardless of numerical inputs
    function vote(
        address owner,
        address[] calldata _pools,
        uint256[] calldata _weights
    ) external;

    /// @notice reset the vote of an address
    /// @param owner address of the owner
    function reset(address owner) external;

    /// @notice set the governor address
    /// @param _governor the new governor address
    function setGovernor(address _governor) external;

    /// @notice recover stuck emissions
    /// @param _gauge the gauge address
    /// @param _period the period
    function stuckEmissionsRecovery(address _gauge, uint256 _period) external;

    /// @notice whitelists extra rewards for a gauge
    /// @param _gauge the gauge to whitelist rewards to
    /// @param _reward the reward to whitelist
    function whitelistGaugeRewards(address _gauge, address _reward) external;

    /// @notice removes a reward from the gauge whitelist
    /// @param _gauge the gauge to remove the whitelist from
    /// @param _reward the reward to remove from the whitelist
    function removeGaugeRewardWhitelist(
        address _gauge,
        address _reward
    ) external;

    /// @notice creates a legacy gauge for the pool
    /// @param _pool pool's address
    /// @return _gauge address of the new gauge
    function createGauge(address _pool) external returns (address _gauge);

    /// @notice create a concentrated liquidity gauge
    /// @param tokenA the address of tokenA
    /// @param tokenB the address of tokenB
    /// @param tickSpacing the tickspacing of the pool
    /// @return _clGauge address of the new gauge
    function createCLGauge(
        address tokenA,
        address tokenB,
        int24 tickSpacing
    ) external returns (address _clGauge);

    /// @notice claim concentrated liquidity gauge rewards for specific NFP token ids
    /// @param _gauges array of gauges
    /// @param _tokens two dimensional array for the tokens to claim
    /// @param _nfpTokenIds two dimensional array for the NFPs
    function claimClGaugeRewards(
        address[] calldata _gauges,
        address[][] calldata _tokens,
        uint256[][] calldata _nfpTokenIds
    ) external;

    /// @notice claim arbitrary rewards from specific feeDists
    /// @param owner address of the owner
    /// @param _feeDistributors address of the feeDists
    /// @param _tokens two dimensional array for the tokens to claim
    function claimIncentives(
        address owner,
        address[] calldata _feeDistributors,
        address[][] calldata _tokens
    ) external;

    /// @notice claim arbitrary rewards from specific gauges
    /// @param _gauges address of the gauges
    /// @param _tokens two dimensional array for the tokens to claim
    function claimRewards(
        address[] calldata _gauges,
        address[][] calldata _tokens
    ) external;

    /// @notice claim arbitrary rewards from specific legacy gauges, and exit to shadow
    /// @param _gauges address of the gauges
    /// @param _tokens two dimensional array for the tokens to claim
    function claimLegacyRewardsAndExit(
        address[] calldata _gauges,
        address[][] calldata _tokens
    ) external;

    /// @notice distribute emissions to a gauge for a specific period
    /// @param _gauge address of the gauge
    /// @param _period value of the period
    function distributeForPeriod(address _gauge, uint256 _period) external;

    /// @notice attempt distribution of emissions to all gauges
    function distributeAll() external;

    /// @notice distribute emissions to gauges by index
    /// @param startIndex start of the loop
    /// @param endIndex end of the loop
    function batchDistributeByIndex(
        uint256 startIndex,
        uint256 endIndex
    ) external;

    /// @notice returns the votes cast for a tokenID
    /// @param owner address of the owner
    /// @return votes an array of votes casted
    /// @return weights an array of the weights casted per pool
    function getVotes(
        address owner,
        uint256 period
    ) external view returns (address[] memory votes, uint256[] memory weights);

    /// @notice returns an array of all the gauges
    /// @return _gauges the array of gauges
    function getAllGauges() external view returns (address[] memory _gauges);

    /// @notice returns an array of all the feeDists
    /// @return _feeDistributors the array of feeDists
    function getAllFeeDistributors()
        external
        view
        returns (address[] memory _feeDistributors);

    /// @notice sets the xShadowRatio default
    function setGlobalRatio(uint256 _xRatio) external;

    /// @notice whether the token is whitelisted in governance
    function isWhitelisted(address _token) external view returns (bool _tf);

    /// @notice function for removing malicious or stuffed tokens
    function removeFeeDistributorReward(
        address _feeDist,
        address _token
    ) external;
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.26;

interface IGauge {
    error ZERO_AMOUNT();

    error CANT_NOTIFY_STAKE();

    error REWARD_TOO_HIGH();

    error NOT_GREATER_THAN_REMAINING(uint256 amount, uint256 remaining);

    error TOKEN_ERROR(address token);

    error NOT_WHITELISTED();

    error NOT_AUTHORIZED();

    event Deposit(address indexed from, uint256 amount);

    event Withdraw(address indexed from, uint256 amount);

    event NotifyReward(
        address indexed from,
        address indexed reward,
        uint256 amount
    );

    event ClaimRewards(
        address indexed from,
        address indexed reward,
        uint256 amount
    );

    event RewardWhitelisted(address indexed reward, bool whitelisted);

    /// @notice returns an array with all the addresses of the rewards
    /// @return _rewards array of addresses for rewards
    function rewardsList() external view returns (address[] memory _rewards);

    /// @notice number of different rewards the gauge has facilitated that are 'active'
    /// @return _length the number of individual rewards
    function rewardsListLength() external view returns (uint256 _length);

    /// @notice returns the last time the reward was modified or periodFinish if the reward has ended
    /// @param token address of the token
    /// @return ltra last time reward applicable
    function lastTimeRewardApplicable(
        address token
    ) external view returns (uint256 ltra);

    /// @notice displays the data struct of rewards for a token
    /// @param token the address of the token
    /// @return data rewards struct
    function rewardData(
        address token
    ) external view returns (Reward memory data);

    /// @notice calculates the amount of tokens earned for an address
    /// @param token address of the token to check
    /// @param account address to check
    /// @return _reward amount of token claimable
    function earned(
        address token,
        address account
    ) external view returns (uint256 _reward);
    /// @notice claims rewards (shadow + any external LP Incentives)
    /// @param account the address to claim for
    /// @param tokens an array of the tokens to claim
    function getReward(address account, address[] calldata tokens) external;

    /// @notice claims all rewards and instant exits xshadow into shadow
    function getRewardAndExit(
        address account,
        address[] calldata tokens
    ) external;

    /// @notice calculates the token amounts earned per lp token
    /// @param token address of the token to check
    /// @return rpt reward per token
    function rewardPerToken(address token) external view returns (uint256 rpt);

    /// @notice deposit all LP tokens from msg.sender's wallet to the gauge
    function depositAll() external;
    /// @param recipient the address of who to deposit on behalf of
    /// @param amount the amount of LP tokens to withdraw
    function depositFor(address recipient, uint256 amount) external;

    /// @notice deposit LP tokens to the gauge
    /// @param amount the amount of LP tokens to withdraw
    function deposit(uint256 amount) external;

    /// @notice withdraws all fungible LP tokens from legacy gauges
    function withdrawAll() external;

    /// @notice withdraws fungible LP tokens from legacy gauges
    /// @param amount the amount of LP tokens to withdraw
    function withdraw(uint256 amount) external;

    /// @notice calculates how many tokens are left to be distributed
    /// @dev reduces per second
    /// @param token the address of the token
    function left(address token) external view returns (uint256);
    /// @notice add a reward to the whitelist
    /// @param _reward address of the reward
    function whitelistReward(address _reward) external;

    /// @notice remove rewards from the whitelist
    /// @param _reward address of the reward
    function removeRewardWhitelist(address _reward) external;

    /**
     * @notice amount must be greater than left() for the token, this is to prevent griefing attacks
     * @notice notifying rewards is completely permissionless
     * @notice if nobody registers for a newly added reward for the period it will remain in the contract indefinitely
     */
    function notifyRewardAmount(address token, uint256 amount) external;

    struct Reward {
        /// @dev tokens per second
        uint256 rewardRate;
        /// @dev 7 days after start
        uint256 periodFinish;
        uint256 lastUpdateTime;
        uint256 rewardPerTokenStored;
    }

    /// @notice checks if a reward is whitelisted
    /// @param reward the address of the reward
    /// @return true if the reward is whitelisted, false otherwise
    function isWhitelisted(address reward) external view returns (bool);
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.26;

interface IRouter {
    error EXPIRED();
    error IDENTICAL();
    error ZERO_ADDRESS();
    error INSUFFICIENT_AMOUNT();
    error INSUFFICIENT_LIQUIDITY();
    error INSUFFICIENT_OUTPUT_AMOUNT();
    error INVALID_PATH();
    error INSUFFICIENT_B_AMOUNT();
    error INSUFFICIENT_A_AMOUNT();
    error EXCESSIVE_INPUT_AMOUNT();
    error ETH_TRANSFER_FAILED();
    error INVALID_RESERVES();

    struct route {
        /// @dev token from
        address from;
        /// @dev token to
        address to;
        /// @dev is stable route
        bool stable;
    }

    /// @notice sorts the tokens to see what the expected LP output would be for token0 and token1 (A/B)
    /// @param tokenA the address of tokenA
    /// @param tokenB the address of tokenB
    /// @return token0 address of which becomes token0
    /// @return token1 address of which becomes token1
    function sortTokens(
        address tokenA,
        address tokenB
    ) external pure returns (address token0, address token1);

    /// @notice calculates the CREATE2 address for a pair without making any external calls
    /// @param tokenA the address of tokenA
    /// @param tokenB the address of tokenB
    /// @param stable if the pair is using the stable curve
    /// @return pair address of the pair
    function pairFor(
        address tokenA,
        address tokenB,
        bool stable
    ) external view returns (address pair);

    /// @notice fetches and sorts the reserves for a pair
    /// @param tokenA the address of tokenA
    /// @param tokenB the address of tokenB
    /// @param stable if the pair is using the stable curve
    /// @return reserveA get the reserves for tokenA
    /// @return reserveB get the reserves for tokenB
    function getReserves(
        address tokenA,
        address tokenB,
        bool stable
    ) external view returns (uint256 reserveA, uint256 reserveB);

    /// @notice performs chained getAmountOut calculations on any number of pairs
    /// @param amountIn the amount of tokens of routes[0] to swap
    /// @param routes the struct of the hops the swap should take
    /// @return amounts uint array of the amounts out
    function getAmountsOut(
        uint256 amountIn,
        route[] memory routes
    ) external view returns (uint256[] memory amounts);

    /// @notice performs chained getAmountOut calculations on any number of pairs
    /// @param amountIn amount of tokenIn
    /// @param tokenIn address of the token going in
    /// @param tokenOut address of the token coming out
    /// @return amount uint amount out
    /// @return stable if the curve used is stable or not
    function getAmountOut(
        uint256 amountIn,
        address tokenIn,
        address tokenOut
    ) external view returns (uint256 amount, bool stable);

    /// @notice performs calculations to determine the expected state when adding liquidity
    /// @param tokenA the address of tokenA
    /// @param tokenB the address of tokenB
    /// @param stable if the pair is using the stable curve
    /// @param amountADesired amount of tokenA desired to be added
    /// @param amountBDesired amount of tokenB desired to be added
    /// @return amountA amount of tokenA added
    /// @return amountB amount of tokenB added
    /// @return liquidity liquidity value added
    function quoteAddLiquidity(
        address tokenA,
        address tokenB,
        bool stable,
        uint256 amountADesired,
        uint256 amountBDesired
    )
        external
        view
        returns (uint256 amountA, uint256 amountB, uint256 liquidity);

    /// @param tokenA the address of tokenA
    /// @param tokenB the address of tokenB
    /// @param stable if the pair is using the stable curve
    /// @param liquidity liquidity value to remove
    /// @return amountA amount of tokenA removed
    /// @return amountB amount of tokenB removed
    function quoteRemoveLiquidity(
        address tokenA,
        address tokenB,
        bool stable,
        uint256 liquidity
    ) external view returns (uint256 amountA, uint256 amountB);

    /// @param tokenA the address of tokenA
    /// @param tokenB the address of tokenB
    /// @param stable if the pair is using the stable curve
    /// @param amountADesired amount of tokenA desired to be added
    /// @param amountBDesired amount of tokenB desired to be added
    /// @param amountAMin slippage for tokenA calculated from this param
    /// @param amountBMin slippage for tokenB calculated from this param
    /// @param to the address the liquidity tokens should be minted to
    /// @param deadline timestamp deadline
    /// @return amountA amount of tokenA used
    /// @return amountB amount of tokenB used
    /// @return liquidity amount of liquidity minted
    function addLiquidity(
        address tokenA,
        address tokenB,
        bool stable,
        uint256 amountADesired,
        uint256 amountBDesired,
        uint256 amountAMin,
        uint256 amountBMin,
        address to,
        uint256 deadline
    ) external returns (uint256 amountA, uint256 amountB, uint256 liquidity);

    /// @param token the address of token
    /// @param stable if the pair is using the stable curve
    /// @param amountTokenDesired desired amount for token
    /// @param amountTokenMin slippage for token
    /// @param amountETHMin minimum amount of ETH added (slippage)
    /// @param to the address the liquidity tokens should be minted to
    /// @param deadline timestamp deadline
    /// @return amountToken amount of the token used
    /// @return amountETH amount of ETH used
    /// @return liquidity amount of liquidity minted
    function addLiquidityETH(
        address token,
        bool stable,
        uint256 amountTokenDesired,
        uint256 amountTokenMin,
        uint256 amountETHMin,
        address to,
        uint256 deadline
    )
        external
        payable
        returns (uint256 amountToken, uint256 amountETH, uint256 liquidity);
    /// @param tokenA the address of tokenA
    /// @param tokenB the address of tokenB
    /// @param stable if the pair is using the stable curve
    /// @param amountADesired amount of tokenA desired to be added
    /// @param amountBDesired amount of tokenB desired to be added
    /// @param amountAMin slippage for tokenA calculated from this param
    /// @param amountBMin slippage for tokenB calculated from this param
    /// @param to the address the liquidity tokens should be minted to
    /// @param deadline timestamp deadline
    /// @return amountA amount of tokenA used
    /// @return amountB amount of tokenB used
    /// @return liquidity amount of liquidity minted
    function addLiquidityAndStake(
        address tokenA,
        address tokenB,
        bool stable,
        uint256 amountADesired,
        uint256 amountBDesired,
        uint256 amountAMin,
        uint256 amountBMin,
        address to,
        uint256 deadline
    ) external returns (uint256 amountA, uint256 amountB, uint256 liquidity);

    /// @notice adds liquidity to a legacy pair using ETH, and stakes it into a gauge on "to's" behalf
    /// @param token the address of token
    /// @param stable if the pair is using the stable curve
    /// @param amountTokenDesired amount of token to be used
    /// @param amountTokenMin slippage of token
    /// @param amountETHMin slippage of ETH
    /// @param to the address the liquidity tokens should be minted to
    /// @param deadline timestamp deadline
    /// @return amountA amount of tokenA used
    /// @return amountB amount of tokenB used
    /// @return liquidity amount of liquidity minted
    function addLiquidityETHAndStake(
        address token,
        bool stable,
        uint256 amountTokenDesired,
        uint256 amountTokenMin,
        uint256 amountETHMin,
        address to,
        uint256 deadline
    )
        external
        payable
        returns (uint256 amountA, uint256 amountB, uint256 liquidity);
    /// @param tokenA the address of tokenA
    /// @param tokenB the address of tokenB
    /// @param stable if the pair is using the stable curve
    /// @param liquidity amount of LP tokens to remove
    /// @param amountAMin slippage of tokenA
    /// @param amountBMin slippage of tokenB
    /// @param to the address the liquidity tokens should be minted to
    /// @param deadline timestamp deadline
    /// @return amountA amount of tokenA used
    /// @return amountB amount of tokenB used
    function removeLiquidity(
        address tokenA,
        address tokenB,
        bool stable,
        uint256 liquidity,
        uint256 amountAMin,
        uint256 amountBMin,
        address to,
        uint256 deadline
    ) external returns (uint256 amountA, uint256 amountB);
    /// @param token address of the token
    /// @param stable if the pair is using the stable curve
    /// @param liquidity liquidity tokens to remove
    /// @param amountTokenMin slippage of token
    /// @param amountETHMin slippage of ETH
    /// @param to the address the liquidity tokens should be minted to
    /// @param deadline timestamp deadline
    /// @return amountToken amount of token used
    /// @return amountETH amount of ETH used
    function removeLiquidityETH(
        address token,
        bool stable,
        uint256 liquidity,
        uint256 amountTokenMin,
        uint256 amountETHMin,
        address to,
        uint256 deadline
    ) external returns (uint256 amountToken, uint256 amountETH);
    /// @param amountIn amount to send ideally
    /// @param amountOutMin slippage of amount out
    /// @param routes the hops the swap should take
    /// @param to the address the liquidity tokens should be minted to
    /// @param deadline timestamp deadline
    /// @return amounts amounts returned
    function swapExactTokensForTokens(
        uint256 amountIn,
        uint256 amountOutMin,
        route[] calldata routes,
        address to,
        uint256 deadline
    ) external returns (uint256[] memory amounts);
    /// @param routes the hops the swap should take
    /// @param to the address the liquidity tokens should be minted to
    /// @param deadline timestamp deadline
    /// @return amounts amounts returned
    function swapTokensForExactTokens(
        uint amountOut,
        uint amountInMax,
        route[] memory routes,
        address to,
        uint deadline
    ) external returns (uint256[] memory amounts);
    /// @param amountOutMin slippage of token
    /// @param routes the hops the swap should take
    /// @param to the address the liquidity tokens should be minted to
    /// @param deadline timestamp deadline
    /// @return amounts amounts returned
    function swapExactETHForTokens(
        uint256 amountOutMin,
        route[] calldata routes,
        address to,
        uint256 deadline
    ) external payable returns (uint256[] memory amounts);
    /// @param amountOut amount of tokens to get out
    /// @param amountInMax max amount of tokens to put in to achieve amountOut (slippage)
    /// @param routes the hops the swap should take
    /// @param to the address the liquidity tokens should be minted to
    /// @param deadline timestamp deadline
    /// @return amounts amounts returned
    function swapTokensForExactETH(
        uint amountOut,
        uint amountInMax,
        route[] calldata routes,
        address to,
        uint deadline
    ) external returns (uint256[] memory amounts);
    /// @param amountIn amount of tokens to swap
    /// @param amountOutMin slippage of token
    /// @param routes the hops the swap should take
    /// @param to the address the liquidity tokens should be minted to
    /// @param deadline timestamp deadline
    /// @return amounts amounts returned
    function swapExactTokensForETH(
        uint256 amountIn,
        uint256 amountOutMin,
        route[] calldata routes,
        address to,
        uint256 deadline
    ) external returns (uint256[] memory amounts);
    /// @param amountOut exact amount out or revert
    /// @param routes the hops the swap should take
    /// @param to the address the liquidity tokens should be minted to
    /// @param deadline timestamp deadline
    /// @return amounts amounts returned
    function swapETHForExactTokens(
        uint amountOut,
        route[] calldata routes,
        address to,
        uint deadline
    ) external payable returns (uint256[] memory amounts);

    /// @param amountIn token amount to swap
    /// @param amountOutMin slippage of token
    /// @param routes the hops the swap should take
    /// @param to the address the liquidity tokens should be minted to
    /// @param deadline timestamp deadline
    function swapExactTokensForTokensSupportingFeeOnTransferTokens(
        uint256 amountIn,
        uint256 amountOutMin,
        route[] calldata routes,
        address to,
        uint256 deadline
    ) external;

    /// @param amountOutMin slippage of token
    /// @param routes the hops the swap should take
    /// @param to the address the liquidity tokens should be minted to
    /// @param deadline timestamp deadline
    function swapExactETHForTokensSupportingFeeOnTransferTokens(
        uint256 amountOutMin,
        route[] calldata routes,
        address to,
        uint256 deadline
    ) external payable;

    /// @param amountIn token amount to swap
    /// @param amountOutMin slippage of token
    /// @param routes the hops the swap should take
    /// @param to the address the liquidity tokens should be minted to
    /// @param deadline timestamp deadline
    function swapExactTokensForETHSupportingFeeOnTransferTokens(
        uint256 amountIn,
        uint256 amountOutMin,
        route[] calldata routes,
        address to,
        uint256 deadline
    ) external;

    /// @notice **** REMOVE LIQUIDITY (supporting fee-on-transfer tokens)****
    /// @param token address of the token
    /// @param stable if the swap curve is stable
    /// @param liquidity liquidity value (lp tokens)
    /// @param amountTokenMin slippage of token
    /// @param amountETHMin slippage of ETH
    /// @param to address to send to
    /// @param deadline timestamp deadline
    /// @return amountToken amount of token received
    /// @return amountETH amount of ETH received
    function removeLiquidityETHSupportingFeeOnTransferTokens(
        address token,
        bool stable,
        uint256 liquidity,
        uint256 amountTokenMin,
        uint256 amountETHMin,
        address to,
        uint256 deadline
    ) external returns (uint256 amountToken, uint256 amountETH);
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.26;

interface IWETH {
    function deposit() external payable;

    function transfer(address to, uint256 value) external returns (bool);

    function withdraw(uint256) external;

    function approve(address spender, uint256 value) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC-20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):