Contract Source Code:
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.26;
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import {IERC20Extended} from "./interfaces/IERC20Extended.sol";
import {IPair} from "./interfaces/IPair.sol";
import {IPairFactory} from "./interfaces/IPairFactory.sol";
import {IVoter} from "./interfaces/IVoter.sol";
import {IGauge} from "./interfaces/IGauge.sol";
import {IRouter} from "./interfaces/IRouter.sol";
import {IWETH} from "./interfaces/IWETH.sol";
contract Router is IRouter {
address public immutable factory;
address public immutable WETH;
uint256 internal constant MINIMUM_LIQUIDITY = 10 ** 3;
bytes32 immutable pairCodeHash;
/// @dev 1m = 100%
uint256 internal constant FEE_DENOM = 1_000_000;
modifier ensure(uint256 deadline) {
require(block.timestamp <= deadline, EXPIRED());
_;
}
constructor(address _factory, address _weth) {
factory = _factory;
pairCodeHash = IPairFactory(_factory).pairCodeHash();
WETH = _weth;
}
receive() external payable {
/// @dev only accept ETH via fallback from the WETH contract
assert(msg.sender == WETH);
}
/// @inheritdoc IRouter
function sortTokens(
address tokenA,
address tokenB
) public pure returns (address token0, address token1) {
require(tokenA != tokenB, IDENTICAL());
(token0, token1) = tokenA < tokenB
? (tokenA, tokenB)
: (tokenB, tokenA);
require(token0 != address(0), ZERO_ADDRESS());
}
/// @inheritdoc IRouter
function pairFor(
address tokenA,
address tokenB,
bool stable
) public view returns (address pair) {
(address token0, address token1) = sortTokens(tokenA, tokenB);
pair = address(
uint160(
uint256(
keccak256(
abi.encodePacked(
hex"ff",
factory,
keccak256(abi.encodePacked(token0, token1, stable)),
pairCodeHash /// @dev init code hash
)
)
)
)
);
}
/// @dev given some amount of an asset and pair reserves, returns an equivalent amount of the other asset
function quoteLiquidity(
uint256 amountA,
uint256 reserveA,
uint256 reserveB
) internal pure returns (uint256 amountB) {
require(amountA != 0, INSUFFICIENT_AMOUNT());
require(reserveA != 0 && reserveB != 0, INSUFFICIENT_LIQUIDITY());
amountB = (amountA * reserveB) / reserveA;
}
/// @inheritdoc IRouter
function getReserves(
address tokenA,
address tokenB,
bool stable
) public view returns (uint256 reserveA, uint256 reserveB) {
(address token0, ) = sortTokens(tokenA, tokenB);
(uint256 reserve0, uint256 reserve1, ) = IPair(
pairFor(tokenA, tokenB, stable)
).getReserves();
(reserveA, reserveB) = tokenA == token0
? (reserve0, reserve1)
: (reserve1, reserve0);
}
/// @inheritdoc IRouter
function getAmountsOut(
uint256 amountIn,
route[] memory routes
) public view returns (uint256[] memory amounts) {
require(routes.length >= 1, INVALID_PATH());
amounts = new uint256[](routes.length + 1);
amounts[0] = amountIn;
for (uint256 i = 0; i < routes.length; ++i) {
address pair = pairFor(
routes[i].from,
routes[i].to,
routes[i].stable
);
if (IPairFactory(factory).isPair(pair)) {
amounts[i + 1] = IPair(pair).getAmountOut(
amounts[i],
routes[i].from
);
}
}
}
function _k(
uint256 x,
uint256 y,
bool _stable
) internal pure returns (uint256) {
if (_stable) {
uint256 _a = (x * y) / 10 ** 18;
uint256 _b = ((x * x) / 10 ** 18 + (y * y) / 10 ** 18);
return (_a * _b) / 10 ** 18; /// @dev x3y+y3x >= k
} else {
return x * y; /// @dev xy >= k
}
}
function _f(uint256 x0, uint256 y) internal pure returns (uint256) {
return
(x0 * ((((y * y) / 1e18) * y) / 1e18)) /
1e18 +
(((((x0 * x0) / 1e18) * x0) / 1e18) * y) /
1e18;
}
function _d(uint256 x0, uint256 y) internal pure returns (uint256) {
return
(3 * x0 * ((y * y) / 1e18)) /
1e18 +
((((x0 * x0) / 1e18) * x0) / 1e18);
}
function _get_y(
uint256 x0,
uint256 xy,
uint256 y
) internal pure returns (uint256) {
for (uint256 i = 0; i < 255; ++i) {
uint256 y_prev = y;
uint256 k = _f(x0, y);
if (k < xy) {
uint256 dy = ((xy - k) * 1e18) / _d(x0, y);
y = y + dy;
} else {
uint256 dy = ((k - xy) * 1e18) / _d(x0, y);
y = y - dy;
}
if (y > y_prev) {
if (y - y_prev <= 1) {
return y;
}
} else {
if (y_prev - y <= 1) {
return y;
}
}
}
return y;
}
/// @inheritdoc IRouter
function getAmountOut(
uint256 amountIn,
address tokenIn,
address tokenOut
) public view returns (uint256 amount, bool stable) {
address pair = pairFor(tokenIn, tokenOut, true);
uint256 amountStable;
uint256 amountVolatile;
if (IPairFactory(factory).isPair(pair)) {
amountStable = IPair(pair).getAmountOut(amountIn, tokenIn);
}
pair = pairFor(tokenIn, tokenOut, false);
if (IPairFactory(factory).isPair(pair)) {
amountVolatile = IPair(pair).getAmountOut(amountIn, tokenIn);
}
return
amountStable > amountVolatile
? (amountStable, true)
: (amountVolatile, false);
}
function _getAmountIn(
uint256 amountOut,
address tokenIn,
address tokenOut,
bool stable
) internal view returns (uint256 amountIn) {
require(amountOut != 0, INSUFFICIENT_OUTPUT_AMOUNT());
address pair = pairFor(tokenIn, tokenOut, stable);
uint256 fee = IPairFactory(factory).pairFee(pair);
(
uint256 decimals0,
uint256 decimals1,
uint256 reserve0,
uint256 reserve1,
,
address token0,
) = IPair(pair).metadata();
require(reserve0 != 0 && reserve1 != 0, INVALID_RESERVES());
/// @dev normalize the decimals
reserve0 = (reserve0 * 1e18) / decimals0;
reserve1 = (reserve1 * 1e18) / decimals1;
amountOut = tokenOut == token0
? (amountOut * 1e18) / decimals0
: (amountOut * 1e18) / decimals1;
uint256 reserveIn = tokenIn == token0 ? reserve0 : reserve1;
uint256 reserveOut = tokenOut == token0 ? reserve0 : reserve1;
uint256 decimalsIn = tokenIn == token0 ? decimals0 : decimals1;
if (stable) {
uint256 k = _k(reserveIn, reserveOut, stable);
amountIn = _get_y(reserveOut - amountOut, k, reserveIn) - reserveIn;
} else {
amountIn = ((reserveIn * amountOut) / (reserveOut - amountOut));
}
/// @dev multiply by a ratio to get the amount + fees and convert back to the right decimals
amountIn =
((amountIn * FEE_DENOM * decimalsIn) / ((FEE_DENOM - fee) * 1e18)) +
1;
}
/// @dev performs chained getAmountIn calculations on any number of pairs
function getAmountsIn(
uint256 amountOut,
route[] memory routes
) public view returns (uint256[] memory amounts) {
require(routes.length >= 1, INVALID_PATH());
amounts = new uint256[](routes.length + 1);
amounts[amounts.length - 1] = amountOut;
for (uint i = 0; i < routes.length; i++) {
uint256 j = routes.length - 1 - i;
amounts[j] = _getAmountIn(
amounts[j + 1],
routes[j].from,
routes[j].to,
routes[j].stable
);
}
}
/// @inheritdoc IRouter
function quoteAddLiquidity(
address tokenA,
address tokenB,
bool stable,
uint256 amountADesired,
uint256 amountBDesired
)
external
view
returns (uint256 amountA, uint256 amountB, uint256 liquidity)
{
address _pair = IPairFactory(factory).getPair(tokenA, tokenB, stable);
(uint256 reserveA, uint256 reserveB) = (0, 0);
uint256 _totalSupply = 0;
if (_pair != address(0)) {
_totalSupply = IERC20Extended(_pair).totalSupply();
(reserveA, reserveB) = getReserves(tokenA, tokenB, stable);
}
if (reserveA == 0 && reserveB == 0) {
(amountA, amountB) = (amountADesired, amountBDesired);
liquidity = Math.sqrt(amountA * amountB) - MINIMUM_LIQUIDITY;
} else {
uint256 amountBOptimal = quoteLiquidity(
amountADesired,
reserveA,
reserveB
);
if (amountBOptimal <= amountBDesired) {
(amountA, amountB) = (amountADesired, amountBOptimal);
liquidity = Math.min(
(amountA * _totalSupply) / reserveA,
(amountB * _totalSupply) / reserveB
);
} else {
uint256 amountAOptimal = quoteLiquidity(
amountBDesired,
reserveB,
reserveA
);
(amountA, amountB) = (amountAOptimal, amountBDesired);
liquidity = Math.min(
(amountA * _totalSupply) / reserveA,
(amountB * _totalSupply) / reserveB
);
}
}
}
/// @inheritdoc IRouter
function quoteRemoveLiquidity(
address tokenA,
address tokenB,
bool stable,
uint256 liquidity
) external view returns (uint256 amountA, uint256 amountB) {
address _pair = IPairFactory(factory).getPair(tokenA, tokenB, stable);
if (_pair == address(0)) {
return (0, 0);
}
(uint256 reserveA, uint256 reserveB) = getReserves(
tokenA,
tokenB,
stable
);
uint256 _totalSupply = IERC20Extended(_pair).totalSupply();
/// @dev using balances ensures pro-rata distribution
amountA = (liquidity * reserveA) / _totalSupply;
/// @dev using balances ensures pro-rata distribution
amountB = (liquidity * reserveB) / _totalSupply;
}
function _addLiquidity(
address tokenA,
address tokenB,
bool stable,
uint256 amountADesired,
uint256 amountBDesired,
uint256 amountAMin,
uint256 amountBMin
) internal returns (uint256 amountA, uint256 amountB) {
require(amountADesired >= amountAMin);
require(amountBDesired >= amountBMin);
/// @dev create the pair if it doesn't exist yet
address _pair = IPairFactory(factory).getPair(tokenA, tokenB, stable);
if (_pair == address(0)) {
_pair = IPairFactory(factory).createPair(tokenA, tokenB, stable);
}
(uint256 reserveA, uint256 reserveB) = getReserves(
tokenA,
tokenB,
stable
);
if (reserveA == 0 && reserveB == 0) {
(amountA, amountB) = (amountADesired, amountBDesired);
} else {
uint256 amountBOptimal = quoteLiquidity(
amountADesired,
reserveA,
reserveB
);
if (amountBOptimal <= amountBDesired) {
require(amountBOptimal >= amountBMin, INSUFFICIENT_B_AMOUNT());
(amountA, amountB) = (amountADesired, amountBOptimal);
} else {
uint256 amountAOptimal = quoteLiquidity(
amountBDesired,
reserveB,
reserveA
);
assert(amountAOptimal <= amountADesired);
require(amountAOptimal >= amountAMin, INSUFFICIENT_A_AMOUNT());
(amountA, amountB) = (amountAOptimal, amountBDesired);
}
}
}
/// @inheritdoc IRouter
function addLiquidity(
address tokenA,
address tokenB,
bool stable,
uint256 amountADesired,
uint256 amountBDesired,
uint256 amountAMin,
uint256 amountBMin,
address to,
uint256 deadline
)
public
ensure(deadline)
returns (uint256 amountA, uint256 amountB, uint256 liquidity)
{
(amountA, amountB) = _addLiquidity(
tokenA,
tokenB,
stable,
amountADesired,
amountBDesired,
amountAMin,
amountBMin
);
address pair = pairFor(tokenA, tokenB, stable);
_safeTransferFrom(tokenA, msg.sender, pair, amountA);
_safeTransferFrom(tokenB, msg.sender, pair, amountB);
liquidity = IPair(pair).mint(to);
}
/// @inheritdoc IRouter
function addLiquidityETH(
address token,
bool stable,
uint256 amountTokenDesired,
uint256 amountTokenMin,
uint256 amountETHMin,
address to,
uint256 deadline
)
public
payable
ensure(deadline)
returns (uint256 amountToken, uint256 amountETH, uint256 liquidity)
{
(amountToken, amountETH) = _addLiquidity(
token,
WETH,
stable,
amountTokenDesired,
msg.value,
amountTokenMin,
amountETHMin
);
address pair = pairFor(token, WETH, stable);
_safeTransferFrom(token, msg.sender, pair, amountToken);
IWETH(WETH).deposit{value: amountETH}();
assert(IWETH(WETH).transfer(pair, amountETH));
liquidity = IPair(pair).mint(to);
/// @dev refund dust eth, if any
if (msg.value > amountETH)
_safeTransferETH(msg.sender, msg.value - amountETH);
}
/// @inheritdoc IRouter
function addLiquidityAndStake(
address tokenA,
address tokenB,
bool stable,
uint256 amountADesired,
uint256 amountBDesired,
uint256 amountAMin,
uint256 amountBMin,
address to,
uint256 deadline
) external returns (uint256 amountA, uint256 amountB, uint256 liquidity) {
(amountA, amountB, liquidity) = addLiquidity(
tokenA,
tokenB,
stable,
amountADesired,
amountBDesired,
amountAMin,
amountBMin,
address(this),
deadline
);
address pair = pairFor(tokenA, tokenB, stable);
address voter = IPairFactory(factory).voter();
address gauge = IVoter(voter).gaugeForPool(pair);
IERC20Extended(pair).approve(gauge, liquidity);
IGauge(gauge).depositFor(to, liquidity);
}
/// @inheritdoc IRouter
function addLiquidityETHAndStake(
address token,
bool stable,
uint256 amountTokenDesired,
uint256 amountTokenMin,
uint256 amountETHMin,
address to,
uint256 deadline
)
external
payable
returns (uint256 amountA, uint256 amountB, uint256 liquidity)
{
(amountA, amountB, liquidity) = addLiquidityETH(
token,
stable,
amountTokenDesired,
amountTokenMin,
amountETHMin,
address(this),
deadline
);
address pair = pairFor(token, WETH, stable);
address voter = IPairFactory(factory).voter();
address gauge = IVoter(voter).gaugeForPool(pair);
IERC20Extended(pair).approve(gauge, liquidity);
IGauge(gauge).depositFor(to, liquidity);
}
/// @inheritdoc IRouter
function removeLiquidity(
address tokenA,
address tokenB,
bool stable,
uint256 liquidity,
uint256 amountAMin,
uint256 amountBMin,
address to,
uint256 deadline
) public ensure(deadline) returns (uint256 amountA, uint256 amountB) {
address pair = pairFor(tokenA, tokenB, stable);
/// @dev send liquidity to pair
require(IERC20Extended(pair).transferFrom(msg.sender, pair, liquidity));
(uint256 amount0, uint256 amount1) = IPair(pair).burn(to);
(address token0, ) = sortTokens(tokenA, tokenB);
(amountA, amountB) = tokenA == token0
? (amount0, amount1)
: (amount1, amount0);
require(amountA >= amountAMin, INSUFFICIENT_A_AMOUNT());
require(amountB >= amountBMin, INSUFFICIENT_B_AMOUNT());
}
/// @inheritdoc IRouter
function removeLiquidityETH(
address token,
bool stable,
uint256 liquidity,
uint256 amountTokenMin,
uint256 amountETHMin,
address to,
uint256 deadline
) public ensure(deadline) returns (uint256 amountToken, uint256 amountETH) {
(amountToken, amountETH) = removeLiquidity(
token,
WETH,
stable,
liquidity,
amountTokenMin,
amountETHMin,
address(this),
deadline
);
_safeTransfer(token, to, amountToken);
IWETH(WETH).withdraw(amountETH);
_safeTransferETH(to, amountETH);
}
/// @dev requires the initial amount to have already been sent to the first pair
function _swap(
uint256[] memory amounts,
route[] memory routes,
address _to
) internal virtual {
for (uint256 i = 0; i < routes.length; ++i) {
(address token0, ) = sortTokens(routes[i].from, routes[i].to);
uint256 amountOut = amounts[i + 1];
(uint256 amount0Out, uint256 amount1Out) = routes[i].from == token0
? (uint256(0), amountOut)
: (amountOut, uint256(0));
address to = i < routes.length - 1
? pairFor(
routes[i + 1].from,
routes[i + 1].to,
routes[i + 1].stable
)
: _to;
IPair(pairFor(routes[i].from, routes[i].to, routes[i].stable)).swap(
amount0Out,
amount1Out,
to,
new bytes(0)
);
}
}
/// @inheritdoc IRouter
function swapExactTokensForTokens(
uint256 amountIn,
uint256 amountOutMin,
route[] calldata routes,
address to,
uint256 deadline
) external ensure(deadline) returns (uint256[] memory amounts) {
amounts = getAmountsOut(amountIn, routes);
require(
amounts[amounts.length - 1] >= amountOutMin,
INSUFFICIENT_OUTPUT_AMOUNT()
);
_safeTransferFrom(
routes[0].from,
msg.sender,
pairFor(routes[0].from, routes[0].to, routes[0].stable),
amounts[0]
);
_swap(amounts, routes, to);
}
/// @inheritdoc IRouter
function swapTokensForExactTokens(
uint amountOut,
uint amountInMax,
route[] memory routes,
address to,
uint deadline
) external ensure(deadline) returns (uint[] memory amounts) {
amounts = getAmountsIn(amountOut, routes);
require(amounts[0] <= amountInMax, EXCESSIVE_INPUT_AMOUNT());
_safeTransferFrom(
routes[0].from,
msg.sender,
pairFor(routes[0].from, routes[0].to, routes[0].stable),
amounts[0]
);
_swap(amounts, routes, to);
}
/// @inheritdoc IRouter
function swapExactETHForTokens(
uint256 amountOutMin,
route[] calldata routes,
address to,
uint256 deadline
) external payable ensure(deadline) returns (uint256[] memory amounts) {
require(routes[0].from == WETH, INVALID_PATH());
amounts = getAmountsOut(msg.value, routes);
require(
amounts[amounts.length - 1] >= amountOutMin,
INSUFFICIENT_OUTPUT_AMOUNT()
);
IWETH(WETH).deposit{value: amounts[0]}();
assert(
IWETH(WETH).transfer(
pairFor(routes[0].from, routes[0].to, routes[0].stable),
amounts[0]
)
);
_swap(amounts, routes, to);
}
/// @inheritdoc IRouter
function swapTokensForExactETH(
uint amountOut,
uint amountInMax,
route[] calldata routes,
address to,
uint deadline
) external ensure(deadline) returns (uint[] memory amounts) {
require(routes[routes.length - 1].to == WETH, INVALID_PATH());
amounts = getAmountsIn(amountOut, routes);
require(amounts[0] <= amountInMax, EXCESSIVE_INPUT_AMOUNT());
_safeTransferFrom(
routes[0].from,
msg.sender,
pairFor(routes[0].from, routes[0].to, routes[0].stable),
amounts[0]
);
_swap(amounts, routes, address(this));
IWETH(WETH).withdraw(amounts[amounts.length - 1]);
_safeTransferETH(to, amounts[amounts.length - 1]);
}
/// @inheritdoc IRouter
function swapExactTokensForETH(
uint256 amountIn,
uint256 amountOutMin,
route[] calldata routes,
address to,
uint256 deadline
) external ensure(deadline) returns (uint256[] memory amounts) {
require(routes[routes.length - 1].to == WETH, INVALID_PATH());
amounts = getAmountsOut(amountIn, routes);
require(
amounts[amounts.length - 1] >= amountOutMin,
INSUFFICIENT_OUTPUT_AMOUNT()
);
_safeTransferFrom(
routes[0].from,
msg.sender,
pairFor(routes[0].from, routes[0].to, routes[0].stable),
amounts[0]
);
_swap(amounts, routes, address(this));
IWETH(WETH).withdraw(amounts[amounts.length - 1]);
_safeTransferETH(to, amounts[amounts.length - 1]);
}
/// @inheritdoc IRouter
function swapETHForExactTokens(
uint amountOut,
route[] calldata routes,
address to,
uint deadline
) external payable ensure(deadline) returns (uint[] memory amounts) {
require(routes[0].from == WETH, INVALID_PATH());
amounts = getAmountsIn(amountOut, routes);
require(amounts[0] <= msg.value, EXCESSIVE_INPUT_AMOUNT());
IWETH(WETH).deposit{value: amounts[0]}();
assert(
IWETH(WETH).transfer(
pairFor(routes[0].from, routes[0].to, routes[0].stable),
amounts[0]
)
);
_swap(amounts, routes, to);
/// @dev refund dust eth, if any
if (msg.value > amounts[0])
_safeTransferETH(msg.sender, msg.value - amounts[0]);
}
/// @dev **** SWAP (supporting fee-on-transfer tokens) ****
/// @dev requires the initial amount to have already been sent to the first pair
function _swapSupportingFeeOnTransferTokens(
route[] calldata routes,
address _to
) internal virtual {
for (uint256 i; i < routes.length; i++) {
(address input, address output) = (routes[i].from, routes[i].to);
(address token0, ) = sortTokens(input, output);
IPair pair = IPair(
pairFor(routes[i].from, routes[i].to, routes[i].stable)
);
uint256 amountInput;
uint256 amountOutput;
{
/// @dev scope to avoid stack too deep errors
(uint256 reserve0, uint256 reserve1, ) = pair.getReserves();
(uint256 reserveInput, ) = input == token0
? (reserve0, reserve1)
: (reserve1, reserve0);
amountInput =
IERC20Extended(input).balanceOf(address(pair)) -
reserveInput;
amountOutput = IPair(pair).getAmountOut(amountInput, input);
}
(uint256 amount0Out, uint256 amount1Out) = input == token0
? (uint256(0), amountOutput)
: (amountOutput, uint256(0));
address to = i < routes.length - 1
? pairFor(
routes[i + 1].from,
routes[i + 1].to,
routes[i + 1].stable
)
: _to;
pair.swap(amount0Out, amount1Out, to, new bytes(0));
}
}
/// @inheritdoc IRouter
function swapExactTokensForTokensSupportingFeeOnTransferTokens(
uint256 amountIn,
uint256 amountOutMin,
route[] calldata routes,
address to,
uint256 deadline
) external ensure(deadline) {
_safeTransferFrom(
routes[0].from,
msg.sender,
pairFor(routes[0].from, routes[0].to, routes[0].stable),
amountIn
);
uint256 balanceBefore = IERC20Extended(routes[routes.length - 1].to)
.balanceOf(to);
_swapSupportingFeeOnTransferTokens(routes, to);
require(
IERC20Extended(routes[routes.length - 1].to).balanceOf(to) -
balanceBefore >=
amountOutMin,
INSUFFICIENT_OUTPUT_AMOUNT()
);
}
/// @inheritdoc IRouter
function swapExactETHForTokensSupportingFeeOnTransferTokens(
uint256 amountOutMin,
route[] calldata routes,
address to,
uint256 deadline
) external payable ensure(deadline) {
require(routes[0].from == WETH, INVALID_PATH());
IWETH(WETH).deposit{value: msg.value}();
assert(
IWETH(WETH).transfer(
pairFor(routes[0].from, routes[0].to, routes[0].stable),
msg.value
)
);
uint256 balanceBefore = IERC20Extended(routes[routes.length - 1].to)
.balanceOf(to);
_swapSupportingFeeOnTransferTokens(routes, to);
require(
IERC20Extended(routes[routes.length - 1].to).balanceOf(to) -
balanceBefore >=
amountOutMin,
INSUFFICIENT_OUTPUT_AMOUNT()
);
}
/// @inheritdoc IRouter
function swapExactTokensForETHSupportingFeeOnTransferTokens(
uint256 amountIn,
uint256 amountOutMin,
route[] calldata routes,
address to,
uint256 deadline
) external ensure(deadline) {
require(routes[routes.length - 1].to == WETH, INVALID_PATH());
_safeTransferFrom(
routes[0].from,
msg.sender,
pairFor(routes[0].from, routes[0].to, routes[0].stable),
amountIn
);
_swapSupportingFeeOnTransferTokens(routes, address(this));
uint256 amountOut = IERC20Extended(WETH).balanceOf(address(this));
require(amountOut >= amountOutMin, INSUFFICIENT_OUTPUT_AMOUNT());
IWETH(WETH).withdraw(amountOut);
_safeTransferETH(to, amountOut);
}
/// @inheritdoc IRouter
function removeLiquidityETHSupportingFeeOnTransferTokens(
address token,
bool stable,
uint256 liquidity,
uint256 amountTokenMin,
uint256 amountETHMin,
address to,
uint256 deadline
) external ensure(deadline) returns (uint256 amountToken, uint256 amountETH) {
(amountToken, amountETH) = removeLiquidity(
token,
WETH,
stable,
liquidity,
amountTokenMin,
amountETHMin,
address(this),
deadline
);
_safeTransfer(
token,
to,
IERC20Extended(token).balanceOf(address(this))
);
IWETH(WETH).withdraw(amountETH);
_safeTransferETH(to, amountETH);
}
function _safeTransferETH(address to, uint256 value) internal {
(bool success, ) = to.call{value: value}(new bytes(0));
require(success, ETH_TRANSFER_FAILED());
}
function _safeTransfer(address token, address to, uint256 value) internal {
require(token.code.length > 0);
(bool success, bytes memory data) = token.call(
abi.encodeWithSelector(IERC20Extended.transfer.selector, to, value)
);
require(success && (data.length == 0 || abi.decode(data, (bool))));
}
function _safeTransferFrom(
address token,
address from,
address to,
uint256 value
) internal {
require(token.code.length > 0);
(bool success, bytes memory data) = token.call(
abi.encodeWithSelector(
IERC20Extended.transferFrom.selector,
from,
to,
value
)
);
require(success && (data.length == 0 || abi.decode(data, (bool))));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * SafeCast.toUint(condition));
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2²⁵⁶ + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= prod1) {
Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
}
}
/**
* @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
*
* From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
* prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
* `a**(p-2)` is the modular multiplicative inverse of a in Fp.
*
* NOTE: this function does NOT check that `p` is a prime greater than `2`.
*/
function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
unchecked {
return Math.modExp(a, p - 2, p);
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
assembly ("memory-safe") {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
assembly ("memory-safe") {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ≥ 0
// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ≤ 2**(2*e-4) / (3 * 2**(e-1))
// ≤ 2**(e-3) / 3
// ≤ 2**(e-3-log2(3))
// ≤ 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ≤ (2**(e-k))² / (2 * 2**(e-1))
// ≤ 2**(2*e-2*k) / 2**e
// ≤ 2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 exp;
unchecked {
exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
value >>= exp;
result += exp;
exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
value >>= exp;
result += exp;
exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
value >>= exp;
result += exp;
exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
value >>= exp;
result += exp;
exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
value >>= exp;
result += exp;
exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
value >>= exp;
result += exp;
exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
value >>= exp;
result += exp;
result += SafeCast.toUint(value > 1);
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 isGt;
unchecked {
isGt = SafeCast.toUint(value > (1 << 128) - 1);
value >>= isGt * 128;
result += isGt * 16;
isGt = SafeCast.toUint(value > (1 << 64) - 1);
value >>= isGt * 64;
result += isGt * 8;
isGt = SafeCast.toUint(value > (1 << 32) - 1);
value >>= isGt * 32;
result += isGt * 4;
isGt = SafeCast.toUint(value > (1 << 16) - 1);
value >>= isGt * 16;
result += isGt * 2;
result += SafeCast.toUint(value > (1 << 8) - 1);
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.26;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import {IERC20Permit} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Permit.sol";
interface IERC20Extended is IERC20, IERC20Metadata, IERC20Permit {
function mint(address account, uint256 amount) external;
function burn(uint256 amount) external;
function transfer(address to, uint256 value) external returns (bool);
function transferFrom(
address from,
address to,
uint256 value
) external returns (bool);
function burnFrom(address account, uint256 value) external;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.26;
interface IPair {
error NOT_AUTHORIZED();
error UNSTABLE_RATIO();
/// @dev safe transfer failed
error STF();
error OVERFLOW();
/// @dev skim disabled
error SD();
/// @dev insufficient liquidity minted
error ILM();
/// @dev insufficient liquidity burned
error ILB();
/// @dev insufficient output amount
error IOA();
/// @dev insufficient input amount
error IIA();
error IL();
error IT();
error K();
event Mint(address indexed sender, uint256 amount0, uint256 amount1);
event Burn(
address indexed sender,
uint256 amount0,
uint256 amount1,
address indexed to
);
event Swap(
address indexed sender,
uint256 amount0In,
uint256 amount1In,
uint256 amount0Out,
uint256 amount1Out,
address indexed to
);
event Sync(uint112 reserve0, uint112 reserve1);
/// @notice initialize the pool, called only once programatically
function initialize(
address _token0,
address _token1,
bool _stable
) external;
/// @notice calculate the current reserves of the pool and their last 'seen' timestamp
/// @return _reserve0 amount of token0 in reserves
/// @return _reserve1 amount of token1 in reserves
/// @return _blockTimestampLast the timestamp when the pool was last updated
function getReserves()
external
view
returns (
uint112 _reserve0,
uint112 _reserve1,
uint32 _blockTimestampLast
);
/// @notice mint the pair tokens (LPs)
/// @param to where to mint the LP tokens to
/// @return liquidity amount of LP tokens to mint
function mint(address to) external returns (uint256 liquidity);
/// @notice burn the pair tokens (LPs)
/// @param to where to send the underlying
/// @return amount0 amount of amount0
/// @return amount1 amount of amount1
function burn(
address to
) external returns (uint256 amount0, uint256 amount1);
/// @notice direct swap through the pool
function swap(
uint256 amount0Out,
uint256 amount1Out,
address to,
bytes calldata data
) external;
/// @notice force balances to match reserves, can be used to harvest rebases from rebasing tokens or other external factors
/// @param to where to send the excess tokens to
function skim(address to) external;
/// @notice force reserves to match balances, prevents skim excess if skim is enabled
function sync() external;
/// @notice set the pair fees contract address
function setFeeRecipient(address _pairFees) external;
/// @notice set the feesplit variable
function setFeeSplit(uint256 _feeSplit) external;
/// @notice sets the swap fee of the pair
/// @dev max of 10_000 (10%)
/// @param _fee the fee
function setFee(uint256 _fee) external;
/// @notice 'mint' the fees as LP tokens
/// @dev this is used for protocol/voter fees
function mintFee() external;
/// @notice calculates the amount of tokens to receive post swap
/// @param amountIn the token amount
/// @param tokenIn the address of the token
function getAmountOut(
uint256 amountIn,
address tokenIn
) external view returns (uint256 amountOut);
/// @notice returns various metadata about the pair
function metadata()
external
view
returns (
uint256 _decimals0,
uint256 _decimals1,
uint256 _reserve0,
uint256 _reserve1,
bool _stable,
address _token0,
address _token1
);
/// @notice returns the feeSplit of the pair
function feeSplit() external view returns (uint256);
/// @notice returns the fee of the pair
function fee() external view returns (uint256);
/// @notice returns the feeRecipient of the pair
function feeRecipient() external view returns (address);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.26;
interface IPairFactory {
error FEE_TOO_HIGH();
error ZERO_FEE();
/// @dev invalid assortment
error IA();
/// @dev zero address
error ZA();
/// @dev pair exists
error PE();
error NOT_AUTHORIZED();
error INVALID_FEE_SPLIT();
event PairCreated(
address indexed token0,
address indexed token1,
address pair,
uint256
);
event SetFee(uint256 indexed fee);
event SetPairFee(address indexed pair, uint256 indexed fee);
event SetFeeSplit(uint256 indexed _feeSplit);
event SetPairFeeSplit(address indexed pair, uint256 indexed _feeSplit);
event SkimStatus(address indexed _pair, bool indexed _status);
event NewTreasury(address indexed _caller, address indexed _newTreasury);
event FeeSplitWhenNoGauge(address indexed _caller, bool indexed _status);
event SetFeeRecipient(address indexed pair, address indexed feeRecipient);
/// @notice returns the total length of legacy pairs
/// @return _length the length
function allPairsLength() external view returns (uint256 _length);
/// @notice calculates if the address is a legacy pair
/// @param pair the address to check
/// @return _boolean the bool return
function isPair(address pair) external view returns (bool _boolean);
/// @notice calculates the pairCodeHash
/// @return _hash the pair code hash
function pairCodeHash() external view returns (bytes32 _hash);
/// @param tokenA address of tokenA
/// @param tokenB address of tokenB
/// @param stable whether it uses the stable curve
/// @return _pair the address of the pair
function getPair(
address tokenA,
address tokenB,
bool stable
) external view returns (address _pair);
/// @notice creates a new legacy pair
/// @param tokenA address of tokenA
/// @param tokenB address of tokenB
/// @param stable whether it uses the stable curve
/// @return pair the address of the created pair
function createPair(
address tokenA,
address tokenB,
bool stable
) external returns (address pair);
/// @notice the address of the voter
/// @return _voter the address of the voter
function voter() external view returns (address _voter);
/// @notice returns the address of a pair based on the index
/// @param _index the index to check for a pair
/// @return _pair the address of the pair at the index
function allPairs(uint256 _index) external view returns (address _pair);
/// @notice the swap fee of a pair
/// @param _pair the address of the pair
/// @return _fee the fee
function pairFee(address _pair) external view returns (uint256 _fee);
/// @notice the split of fees
/// @return _split the feeSplit
function feeSplit() external view returns (uint256 _split);
/// @notice sets the swap fee for a pair
/// @param _pair the address of the pair
/// @param _fee the fee for the pair
function setPairFee(address _pair, uint256 _fee) external;
/// @notice set the swap fees of the pair
/// @param _fee the fee, scaled to MAX 10% of 100_000
function setFee(uint256 _fee) external;
/// @notice the address for the treasury
/// @return _treasury address of the treasury
function treasury() external view returns (address _treasury);
/// @notice sets the pairFees contract
/// @param _pair the address of the pair
/// @param _pairFees the address of the new Pair Fees
function setFeeRecipient(address _pair, address _pairFees) external;
/// @notice sets the feeSplit for a pair
/// @param _pair the address of the pair
/// @param _feeSplit the feeSplit
function setPairFeeSplit(address _pair, uint256 _feeSplit) external;
/// @notice whether there is feeSplit when there's no gauge
/// @return _boolean whether there is a feesplit when no gauge
function feeSplitWhenNoGauge() external view returns (bool _boolean);
/// @notice whether a pair can be skimmed
/// @param _pair the pair address
/// @return _boolean whether skim is enabled
function skimEnabled(address _pair) external view returns (bool _boolean);
/// @notice set whether skim is enabled for a specific pair
function setSkimEnabled(address _pair, bool _status) external;
/// @notice sets a new treasury address
/// @param _treasury the new treasury address
function setTreasury(address _treasury) external;
/// @notice set whether there should be a feesplit without gauges
/// @param status whether enabled or not
function setFeeSplitWhenNoGauge(bool status) external;
/// @notice sets the feesSplit globally
/// @param _feeSplit the fee split
function setFeeSplit(uint256 _feeSplit) external;
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.26;
pragma abicoder v2;
interface IVoter {
error ACTIVE_GAUGE(address gauge);
error GAUGE_INACTIVE(address gauge);
error ALREADY_WHITELISTED(address token);
error NOT_AUTHORIZED(address caller);
error NOT_WHITELISTED();
error NOT_POOL();
error NOT_INIT();
error LENGTH_MISMATCH();
error NO_GAUGE();
error ALREADY_DISTRIBUTED(address gauge, uint256 period);
error ZERO_VOTE(address pool);
error RATIO_TOO_HIGH(uint256 _xRatio);
error VOTE_UNSUCCESSFUL();
event GaugeCreated(
address indexed gauge,
address creator,
address feeDistributor,
address indexed pool
);
event GaugeKilled(address indexed gauge);
event GaugeRevived(address indexed gauge);
event Voted(address indexed owner, uint256 weight, address indexed pool);
event Abstained(address indexed owner, uint256 weight);
event Deposit(
address indexed lp,
address indexed gauge,
address indexed owner,
uint256 amount
);
event Withdraw(
address indexed lp,
address indexed gauge,
address indexed owner,
uint256 amount
);
event NotifyReward(
address indexed sender,
address indexed reward,
uint256 amount
);
event DistributeReward(
address indexed sender,
address indexed gauge,
uint256 amount
);
event EmissionsRatio(
address indexed caller,
uint256 oldRatio,
uint256 newRatio
);
event NewGovernor(address indexed sender, address indexed governor);
event Whitelisted(address indexed whitelister, address indexed token);
event WhitelistRevoked(
address indexed forbidder,
address indexed token,
bool status
);
event MainTickSpacingChanged(
address indexed token0,
address indexed token1,
int24 indexed newMainTickSpacing
);
event Poke(address indexed user);
function initialize(
address _shadow,
address _legacyFactory,
address _gauges,
address _feeDistributorFactory,
address _minter,
address _msig,
address _xShadow,
address _clFactory,
address _clGaugeFactory,
address _nfpManager,
address _feeRecipientFactory,
address _voteModule,
address _launcherPlugin
) external;
/// @notice denominator basis
function BASIS() external view returns (uint256);
/// @notice ratio of xShadow emissions globally
function xRatio() external view returns (uint256);
/// @notice xShadow contract address
function xShadow() external view returns (address);
/// @notice legacy factory address (uni-v2/stableswap)
function legacyFactory() external view returns (address);
/// @notice concentrated liquidity factory
function clFactory() external view returns (address);
/// @notice gauge factory for CL
function clGaugeFactory() external view returns (address);
/// @notice legacy fee recipient factory
function feeRecipientFactory() external view returns (address);
/// @notice peripheral NFPManager contract
function nfpManager() external view returns (address);
/// @notice returns the address of the current governor
/// @return _governor address of the governor
function governor() external view returns (address _governor);
/// @notice the address of the vote module
/// @return _voteModule the vote module contract address
function voteModule() external view returns (address _voteModule);
/// @notice address of the central access Hub
function accessHub() external view returns (address);
/// @notice the address of the shadow launcher plugin to enable third party launchers
/// @return _launcherPlugin the address of the plugin
function launcherPlugin() external view returns (address _launcherPlugin);
/// @notice distributes emissions from the minter to the voter
/// @param amount the amount of tokens to notify
function notifyRewardAmount(uint256 amount) external;
/// @notice distributes the emissions for a specific gauge
/// @param _gauge the gauge address
function distribute(address _gauge) external;
/// @notice returns the address of the gauge factory
/// @param _gaugeFactory gauge factory address
function gaugeFactory() external view returns (address _gaugeFactory);
/// @notice returns the address of the feeDistributor factory
/// @return _feeDistributorFactory feeDist factory address
function feeDistributorFactory()
external
view
returns (address _feeDistributorFactory);
/// @notice returns the address of the minter contract
/// @return _minter address of the minter
function minter() external view returns (address _minter);
/// @notice check if the gauge is active for governance use
/// @param _gauge address of the gauge
/// @return _trueOrFalse if the gauge is alive
function isAlive(address _gauge) external view returns (bool _trueOrFalse);
/// @notice allows the token to be paired with other whitelisted assets to participate in governance
/// @param _token the address of the token
function whitelist(address _token) external;
/// @notice effectively disqualifies a token from governance
/// @param _token the address of the token
function revokeWhitelist(address _token) external;
/// @notice returns if the address is a gauge
/// @param gauge address of the gauge
/// @return _trueOrFalse boolean if the address is a gauge
function isGauge(address gauge) external view returns (bool _trueOrFalse);
/// @notice disable a gauge from governance
/// @param _gauge address of the gauge
function killGauge(address _gauge) external;
/// @notice re-activate a dead gauge
/// @param _gauge address of the gauge
function reviveGauge(address _gauge) external;
/// @notice re-cast a tokenID's votes
/// @param owner address of the owner
function poke(address owner) external;
/// @notice sets the main tickspacing of a token pairing
/// @param tokenA address of tokenA
/// @param tokenB address of tokenB
/// @param tickSpacing the main tickspacing to set to
function setMainTickSpacing(
address tokenA,
address tokenB,
int24 tickSpacing
) external;
/// @notice returns if the address is a fee distributor
/// @param _feeDistributor address of the feeDist
/// @return _trueOrFalse if the address is a fee distributor
function isFeeDistributor(
address _feeDistributor
) external view returns (bool _trueOrFalse);
/// @notice returns the address of the emission's token
/// @return _shadow emissions token contract address
function shadow() external view returns (address _shadow);
/// @notice returns the address of the pool's gauge, if any
/// @param _pool pool address
/// @return _gauge gauge address
function gaugeForPool(address _pool) external view returns (address _gauge);
/// @notice returns the address of the pool's feeDistributor, if any
/// @param _gauge address of the gauge
/// @return _feeDistributor address of the pool's feedist
function feeDistributorForGauge(
address _gauge
) external view returns (address _feeDistributor);
/// @notice returns the new toPool that was redirected fromPool
/// @param fromPool address of the original pool
/// @return toPool the address of the redirected pool
function poolRedirect(
address fromPool
) external view returns (address toPool);
/// @notice returns the gauge address of a CL pool
/// @param tokenA address of token A in the pair
/// @param tokenB address of token B in the pair
/// @param tickSpacing tickspacing of the pool
/// @return gauge address of the gauge
function gaugeForClPool(
address tokenA,
address tokenB,
int24 tickSpacing
) external view returns (address gauge);
/// @notice returns the array of all tickspacings for the tokenA/tokenB combination
/// @param tokenA address of token A in the pair
/// @param tokenB address of token B in the pair
/// @return _ts array of all the tickspacings
function tickSpacingsForPair(
address tokenA,
address tokenB
) external view returns (int24[] memory _ts);
/// @notice returns the main tickspacing used in the gauge/governance process
/// @param tokenA address of token A in the pair
/// @param tokenB address of token B in the pair
/// @return _ts the main tickspacing
function mainTickSpacingForPair(
address tokenA,
address tokenB
) external view returns (int24 _ts);
/// @notice returns the block.timestamp divided by 1 week in seconds
/// @return period the period used for gauges
function getPeriod() external view returns (uint256 period);
/// @notice cast a vote to direct emissions to gauges and earn incentives
/// @param owner address of the owner
/// @param _pools the list of pools to vote on
/// @param _weights an arbitrary weight per pool which will be normalized to 100% regardless of numerical inputs
function vote(
address owner,
address[] calldata _pools,
uint256[] calldata _weights
) external;
/// @notice reset the vote of an address
/// @param owner address of the owner
function reset(address owner) external;
/// @notice set the governor address
/// @param _governor the new governor address
function setGovernor(address _governor) external;
/// @notice recover stuck emissions
/// @param _gauge the gauge address
/// @param _period the period
function stuckEmissionsRecovery(address _gauge, uint256 _period) external;
/// @notice whitelists extra rewards for a gauge
/// @param _gauge the gauge to whitelist rewards to
/// @param _reward the reward to whitelist
function whitelistGaugeRewards(address _gauge, address _reward) external;
/// @notice removes a reward from the gauge whitelist
/// @param _gauge the gauge to remove the whitelist from
/// @param _reward the reward to remove from the whitelist
function removeGaugeRewardWhitelist(
address _gauge,
address _reward
) external;
/// @notice creates a legacy gauge for the pool
/// @param _pool pool's address
/// @return _gauge address of the new gauge
function createGauge(address _pool) external returns (address _gauge);
/// @notice create a concentrated liquidity gauge
/// @param tokenA the address of tokenA
/// @param tokenB the address of tokenB
/// @param tickSpacing the tickspacing of the pool
/// @return _clGauge address of the new gauge
function createCLGauge(
address tokenA,
address tokenB,
int24 tickSpacing
) external returns (address _clGauge);
/// @notice claim concentrated liquidity gauge rewards for specific NFP token ids
/// @param _gauges array of gauges
/// @param _tokens two dimensional array for the tokens to claim
/// @param _nfpTokenIds two dimensional array for the NFPs
function claimClGaugeRewards(
address[] calldata _gauges,
address[][] calldata _tokens,
uint256[][] calldata _nfpTokenIds
) external;
/// @notice claim arbitrary rewards from specific feeDists
/// @param owner address of the owner
/// @param _feeDistributors address of the feeDists
/// @param _tokens two dimensional array for the tokens to claim
function claimIncentives(
address owner,
address[] calldata _feeDistributors,
address[][] calldata _tokens
) external;
/// @notice claim arbitrary rewards from specific gauges
/// @param _gauges address of the gauges
/// @param _tokens two dimensional array for the tokens to claim
function claimRewards(
address[] calldata _gauges,
address[][] calldata _tokens
) external;
/// @notice claim arbitrary rewards from specific legacy gauges, and exit to shadow
/// @param _gauges address of the gauges
/// @param _tokens two dimensional array for the tokens to claim
function claimLegacyRewardsAndExit(
address[] calldata _gauges,
address[][] calldata _tokens
) external;
/// @notice distribute emissions to a gauge for a specific period
/// @param _gauge address of the gauge
/// @param _period value of the period
function distributeForPeriod(address _gauge, uint256 _period) external;
/// @notice attempt distribution of emissions to all gauges
function distributeAll() external;
/// @notice distribute emissions to gauges by index
/// @param startIndex start of the loop
/// @param endIndex end of the loop
function batchDistributeByIndex(
uint256 startIndex,
uint256 endIndex
) external;
/// @notice returns the votes cast for a tokenID
/// @param owner address of the owner
/// @return votes an array of votes casted
/// @return weights an array of the weights casted per pool
function getVotes(
address owner,
uint256 period
) external view returns (address[] memory votes, uint256[] memory weights);
/// @notice returns an array of all the gauges
/// @return _gauges the array of gauges
function getAllGauges() external view returns (address[] memory _gauges);
/// @notice returns an array of all the feeDists
/// @return _feeDistributors the array of feeDists
function getAllFeeDistributors()
external
view
returns (address[] memory _feeDistributors);
/// @notice sets the xShadowRatio default
function setGlobalRatio(uint256 _xRatio) external;
/// @notice whether the token is whitelisted in governance
function isWhitelisted(address _token) external view returns (bool _tf);
/// @notice function for removing malicious or stuffed tokens
function removeFeeDistributorReward(
address _feeDist,
address _token
) external;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.26;
interface IGauge {
error ZERO_AMOUNT();
error CANT_NOTIFY_STAKE();
error REWARD_TOO_HIGH();
error NOT_GREATER_THAN_REMAINING(uint256 amount, uint256 remaining);
error TOKEN_ERROR(address token);
error NOT_WHITELISTED();
error NOT_AUTHORIZED();
event Deposit(address indexed from, uint256 amount);
event Withdraw(address indexed from, uint256 amount);
event NotifyReward(
address indexed from,
address indexed reward,
uint256 amount
);
event ClaimRewards(
address indexed from,
address indexed reward,
uint256 amount
);
event RewardWhitelisted(address indexed reward, bool whitelisted);
/// @notice returns an array with all the addresses of the rewards
/// @return _rewards array of addresses for rewards
function rewardsList() external view returns (address[] memory _rewards);
/// @notice number of different rewards the gauge has facilitated that are 'active'
/// @return _length the number of individual rewards
function rewardsListLength() external view returns (uint256 _length);
/// @notice returns the last time the reward was modified or periodFinish if the reward has ended
/// @param token address of the token
/// @return ltra last time reward applicable
function lastTimeRewardApplicable(
address token
) external view returns (uint256 ltra);
/// @notice displays the data struct of rewards for a token
/// @param token the address of the token
/// @return data rewards struct
function rewardData(
address token
) external view returns (Reward memory data);
/// @notice calculates the amount of tokens earned for an address
/// @param token address of the token to check
/// @param account address to check
/// @return _reward amount of token claimable
function earned(
address token,
address account
) external view returns (uint256 _reward);
/// @notice claims rewards (shadow + any external LP Incentives)
/// @param account the address to claim for
/// @param tokens an array of the tokens to claim
function getReward(address account, address[] calldata tokens) external;
/// @notice claims all rewards and instant exits xshadow into shadow
function getRewardAndExit(
address account,
address[] calldata tokens
) external;
/// @notice calculates the token amounts earned per lp token
/// @param token address of the token to check
/// @return rpt reward per token
function rewardPerToken(address token) external view returns (uint256 rpt);
/// @notice deposit all LP tokens from msg.sender's wallet to the gauge
function depositAll() external;
/// @param recipient the address of who to deposit on behalf of
/// @param amount the amount of LP tokens to withdraw
function depositFor(address recipient, uint256 amount) external;
/// @notice deposit LP tokens to the gauge
/// @param amount the amount of LP tokens to withdraw
function deposit(uint256 amount) external;
/// @notice withdraws all fungible LP tokens from legacy gauges
function withdrawAll() external;
/// @notice withdraws fungible LP tokens from legacy gauges
/// @param amount the amount of LP tokens to withdraw
function withdraw(uint256 amount) external;
/// @notice calculates how many tokens are left to be distributed
/// @dev reduces per second
/// @param token the address of the token
function left(address token) external view returns (uint256);
/// @notice add a reward to the whitelist
/// @param _reward address of the reward
function whitelistReward(address _reward) external;
/// @notice remove rewards from the whitelist
/// @param _reward address of the reward
function removeRewardWhitelist(address _reward) external;
/**
* @notice amount must be greater than left() for the token, this is to prevent griefing attacks
* @notice notifying rewards is completely permissionless
* @notice if nobody registers for a newly added reward for the period it will remain in the contract indefinitely
*/
function notifyRewardAmount(address token, uint256 amount) external;
struct Reward {
/// @dev tokens per second
uint256 rewardRate;
/// @dev 7 days after start
uint256 periodFinish;
uint256 lastUpdateTime;
uint256 rewardPerTokenStored;
}
/// @notice checks if a reward is whitelisted
/// @param reward the address of the reward
/// @return true if the reward is whitelisted, false otherwise
function isWhitelisted(address reward) external view returns (bool);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.26;
interface IRouter {
error EXPIRED();
error IDENTICAL();
error ZERO_ADDRESS();
error INSUFFICIENT_AMOUNT();
error INSUFFICIENT_LIQUIDITY();
error INSUFFICIENT_OUTPUT_AMOUNT();
error INVALID_PATH();
error INSUFFICIENT_B_AMOUNT();
error INSUFFICIENT_A_AMOUNT();
error EXCESSIVE_INPUT_AMOUNT();
error ETH_TRANSFER_FAILED();
error INVALID_RESERVES();
struct route {
/// @dev token from
address from;
/// @dev token to
address to;
/// @dev is stable route
bool stable;
}
/// @notice sorts the tokens to see what the expected LP output would be for token0 and token1 (A/B)
/// @param tokenA the address of tokenA
/// @param tokenB the address of tokenB
/// @return token0 address of which becomes token0
/// @return token1 address of which becomes token1
function sortTokens(
address tokenA,
address tokenB
) external pure returns (address token0, address token1);
/// @notice calculates the CREATE2 address for a pair without making any external calls
/// @param tokenA the address of tokenA
/// @param tokenB the address of tokenB
/// @param stable if the pair is using the stable curve
/// @return pair address of the pair
function pairFor(
address tokenA,
address tokenB,
bool stable
) external view returns (address pair);
/// @notice fetches and sorts the reserves for a pair
/// @param tokenA the address of tokenA
/// @param tokenB the address of tokenB
/// @param stable if the pair is using the stable curve
/// @return reserveA get the reserves for tokenA
/// @return reserveB get the reserves for tokenB
function getReserves(
address tokenA,
address tokenB,
bool stable
) external view returns (uint256 reserveA, uint256 reserveB);
/// @notice performs chained getAmountOut calculations on any number of pairs
/// @param amountIn the amount of tokens of routes[0] to swap
/// @param routes the struct of the hops the swap should take
/// @return amounts uint array of the amounts out
function getAmountsOut(
uint256 amountIn,
route[] memory routes
) external view returns (uint256[] memory amounts);
/// @notice performs chained getAmountOut calculations on any number of pairs
/// @param amountIn amount of tokenIn
/// @param tokenIn address of the token going in
/// @param tokenOut address of the token coming out
/// @return amount uint amount out
/// @return stable if the curve used is stable or not
function getAmountOut(
uint256 amountIn,
address tokenIn,
address tokenOut
) external view returns (uint256 amount, bool stable);
/// @notice performs calculations to determine the expected state when adding liquidity
/// @param tokenA the address of tokenA
/// @param tokenB the address of tokenB
/// @param stable if the pair is using the stable curve
/// @param amountADesired amount of tokenA desired to be added
/// @param amountBDesired amount of tokenB desired to be added
/// @return amountA amount of tokenA added
/// @return amountB amount of tokenB added
/// @return liquidity liquidity value added
function quoteAddLiquidity(
address tokenA,
address tokenB,
bool stable,
uint256 amountADesired,
uint256 amountBDesired
)
external
view
returns (uint256 amountA, uint256 amountB, uint256 liquidity);
/// @param tokenA the address of tokenA
/// @param tokenB the address of tokenB
/// @param stable if the pair is using the stable curve
/// @param liquidity liquidity value to remove
/// @return amountA amount of tokenA removed
/// @return amountB amount of tokenB removed
function quoteRemoveLiquidity(
address tokenA,
address tokenB,
bool stable,
uint256 liquidity
) external view returns (uint256 amountA, uint256 amountB);
/// @param tokenA the address of tokenA
/// @param tokenB the address of tokenB
/// @param stable if the pair is using the stable curve
/// @param amountADesired amount of tokenA desired to be added
/// @param amountBDesired amount of tokenB desired to be added
/// @param amountAMin slippage for tokenA calculated from this param
/// @param amountBMin slippage for tokenB calculated from this param
/// @param to the address the liquidity tokens should be minted to
/// @param deadline timestamp deadline
/// @return amountA amount of tokenA used
/// @return amountB amount of tokenB used
/// @return liquidity amount of liquidity minted
function addLiquidity(
address tokenA,
address tokenB,
bool stable,
uint256 amountADesired,
uint256 amountBDesired,
uint256 amountAMin,
uint256 amountBMin,
address to,
uint256 deadline
) external returns (uint256 amountA, uint256 amountB, uint256 liquidity);
/// @param token the address of token
/// @param stable if the pair is using the stable curve
/// @param amountTokenDesired desired amount for token
/// @param amountTokenMin slippage for token
/// @param amountETHMin minimum amount of ETH added (slippage)
/// @param to the address the liquidity tokens should be minted to
/// @param deadline timestamp deadline
/// @return amountToken amount of the token used
/// @return amountETH amount of ETH used
/// @return liquidity amount of liquidity minted
function addLiquidityETH(
address token,
bool stable,
uint256 amountTokenDesired,
uint256 amountTokenMin,
uint256 amountETHMin,
address to,
uint256 deadline
)
external
payable
returns (uint256 amountToken, uint256 amountETH, uint256 liquidity);
/// @param tokenA the address of tokenA
/// @param tokenB the address of tokenB
/// @param stable if the pair is using the stable curve
/// @param amountADesired amount of tokenA desired to be added
/// @param amountBDesired amount of tokenB desired to be added
/// @param amountAMin slippage for tokenA calculated from this param
/// @param amountBMin slippage for tokenB calculated from this param
/// @param to the address the liquidity tokens should be minted to
/// @param deadline timestamp deadline
/// @return amountA amount of tokenA used
/// @return amountB amount of tokenB used
/// @return liquidity amount of liquidity minted
function addLiquidityAndStake(
address tokenA,
address tokenB,
bool stable,
uint256 amountADesired,
uint256 amountBDesired,
uint256 amountAMin,
uint256 amountBMin,
address to,
uint256 deadline
) external returns (uint256 amountA, uint256 amountB, uint256 liquidity);
/// @notice adds liquidity to a legacy pair using ETH, and stakes it into a gauge on "to's" behalf
/// @param token the address of token
/// @param stable if the pair is using the stable curve
/// @param amountTokenDesired amount of token to be used
/// @param amountTokenMin slippage of token
/// @param amountETHMin slippage of ETH
/// @param to the address the liquidity tokens should be minted to
/// @param deadline timestamp deadline
/// @return amountA amount of tokenA used
/// @return amountB amount of tokenB used
/// @return liquidity amount of liquidity minted
function addLiquidityETHAndStake(
address token,
bool stable,
uint256 amountTokenDesired,
uint256 amountTokenMin,
uint256 amountETHMin,
address to,
uint256 deadline
)
external
payable
returns (uint256 amountA, uint256 amountB, uint256 liquidity);
/// @param tokenA the address of tokenA
/// @param tokenB the address of tokenB
/// @param stable if the pair is using the stable curve
/// @param liquidity amount of LP tokens to remove
/// @param amountAMin slippage of tokenA
/// @param amountBMin slippage of tokenB
/// @param to the address the liquidity tokens should be minted to
/// @param deadline timestamp deadline
/// @return amountA amount of tokenA used
/// @return amountB amount of tokenB used
function removeLiquidity(
address tokenA,
address tokenB,
bool stable,
uint256 liquidity,
uint256 amountAMin,
uint256 amountBMin,
address to,
uint256 deadline
) external returns (uint256 amountA, uint256 amountB);
/// @param token address of the token
/// @param stable if the pair is using the stable curve
/// @param liquidity liquidity tokens to remove
/// @param amountTokenMin slippage of token
/// @param amountETHMin slippage of ETH
/// @param to the address the liquidity tokens should be minted to
/// @param deadline timestamp deadline
/// @return amountToken amount of token used
/// @return amountETH amount of ETH used
function removeLiquidityETH(
address token,
bool stable,
uint256 liquidity,
uint256 amountTokenMin,
uint256 amountETHMin,
address to,
uint256 deadline
) external returns (uint256 amountToken, uint256 amountETH);
/// @param amountIn amount to send ideally
/// @param amountOutMin slippage of amount out
/// @param routes the hops the swap should take
/// @param to the address the liquidity tokens should be minted to
/// @param deadline timestamp deadline
/// @return amounts amounts returned
function swapExactTokensForTokens(
uint256 amountIn,
uint256 amountOutMin,
route[] calldata routes,
address to,
uint256 deadline
) external returns (uint256[] memory amounts);
/// @param routes the hops the swap should take
/// @param to the address the liquidity tokens should be minted to
/// @param deadline timestamp deadline
/// @return amounts amounts returned
function swapTokensForExactTokens(
uint amountOut,
uint amountInMax,
route[] memory routes,
address to,
uint deadline
) external returns (uint256[] memory amounts);
/// @param amountOutMin slippage of token
/// @param routes the hops the swap should take
/// @param to the address the liquidity tokens should be minted to
/// @param deadline timestamp deadline
/// @return amounts amounts returned
function swapExactETHForTokens(
uint256 amountOutMin,
route[] calldata routes,
address to,
uint256 deadline
) external payable returns (uint256[] memory amounts);
/// @param amountOut amount of tokens to get out
/// @param amountInMax max amount of tokens to put in to achieve amountOut (slippage)
/// @param routes the hops the swap should take
/// @param to the address the liquidity tokens should be minted to
/// @param deadline timestamp deadline
/// @return amounts amounts returned
function swapTokensForExactETH(
uint amountOut,
uint amountInMax,
route[] calldata routes,
address to,
uint deadline
) external returns (uint256[] memory amounts);
/// @param amountIn amount of tokens to swap
/// @param amountOutMin slippage of token
/// @param routes the hops the swap should take
/// @param to the address the liquidity tokens should be minted to
/// @param deadline timestamp deadline
/// @return amounts amounts returned
function swapExactTokensForETH(
uint256 amountIn,
uint256 amountOutMin,
route[] calldata routes,
address to,
uint256 deadline
) external returns (uint256[] memory amounts);
/// @param amountOut exact amount out or revert
/// @param routes the hops the swap should take
/// @param to the address the liquidity tokens should be minted to
/// @param deadline timestamp deadline
/// @return amounts amounts returned
function swapETHForExactTokens(
uint amountOut,
route[] calldata routes,
address to,
uint deadline
) external payable returns (uint256[] memory amounts);
/// @param amountIn token amount to swap
/// @param amountOutMin slippage of token
/// @param routes the hops the swap should take
/// @param to the address the liquidity tokens should be minted to
/// @param deadline timestamp deadline
function swapExactTokensForTokensSupportingFeeOnTransferTokens(
uint256 amountIn,
uint256 amountOutMin,
route[] calldata routes,
address to,
uint256 deadline
) external;
/// @param amountOutMin slippage of token
/// @param routes the hops the swap should take
/// @param to the address the liquidity tokens should be minted to
/// @param deadline timestamp deadline
function swapExactETHForTokensSupportingFeeOnTransferTokens(
uint256 amountOutMin,
route[] calldata routes,
address to,
uint256 deadline
) external payable;
/// @param amountIn token amount to swap
/// @param amountOutMin slippage of token
/// @param routes the hops the swap should take
/// @param to the address the liquidity tokens should be minted to
/// @param deadline timestamp deadline
function swapExactTokensForETHSupportingFeeOnTransferTokens(
uint256 amountIn,
uint256 amountOutMin,
route[] calldata routes,
address to,
uint256 deadline
) external;
/// @notice **** REMOVE LIQUIDITY (supporting fee-on-transfer tokens)****
/// @param token address of the token
/// @param stable if the swap curve is stable
/// @param liquidity liquidity value (lp tokens)
/// @param amountTokenMin slippage of token
/// @param amountETHMin slippage of ETH
/// @param to address to send to
/// @param deadline timestamp deadline
/// @return amountToken amount of token received
/// @return amountETH amount of ETH received
function removeLiquidityETHSupportingFeeOnTransferTokens(
address token,
bool stable,
uint256 liquidity,
uint256 amountTokenMin,
uint256 amountETHMin,
address to,
uint256 deadline
) external returns (uint256 amountToken, uint256 amountETH);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.26;
interface IWETH {
function deposit() external payable;
function transfer(address to, uint256 value) external returns (bool);
function withdraw(uint256) external;
function approve(address spender, uint256 value) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)
pragma solidity ^0.8.20;
/**
* @dev Helper library for emitting standardized panic codes.
*
* ```solidity
* contract Example {
* using Panic for uint256;
*
* // Use any of the declared internal constants
* function foo() { Panic.GENERIC.panic(); }
*
* // Alternatively
* function foo() { Panic.panic(Panic.GENERIC); }
* }
* ```
*
* Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
*
* _Available since v5.1._
*/
// slither-disable-next-line unused-state
library Panic {
/// @dev generic / unspecified error
uint256 internal constant GENERIC = 0x00;
/// @dev used by the assert() builtin
uint256 internal constant ASSERT = 0x01;
/// @dev arithmetic underflow or overflow
uint256 internal constant UNDER_OVERFLOW = 0x11;
/// @dev division or modulo by zero
uint256 internal constant DIVISION_BY_ZERO = 0x12;
/// @dev enum conversion error
uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
/// @dev invalid encoding in storage
uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
/// @dev empty array pop
uint256 internal constant EMPTY_ARRAY_POP = 0x31;
/// @dev array out of bounds access
uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
/// @dev resource error (too large allocation or too large array)
uint256 internal constant RESOURCE_ERROR = 0x41;
/// @dev calling invalid internal function
uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
/// @dev Reverts with a panic code. Recommended to use with
/// the internal constants with predefined codes.
function panic(uint256 code) internal pure {
assembly ("memory-safe") {
mstore(0x00, 0x4e487b71)
mstore(0x20, code)
revert(0x1c, 0x24)
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
/**
* @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
*/
function toUint(bool b) internal pure returns (uint256 u) {
assembly ("memory-safe") {
u := iszero(iszero(b))
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-20 standard as defined in the ERC.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC-20 standard.
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}