Contract Name:
PoolBoosterSwapxDouble
Contract Source Code:
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address sender,
address recipient,
uint256 amount
) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/math/SafeMath.sol)
pragma solidity ^0.8.0;
// CAUTION
// This version of SafeMath should only be used with Solidity 0.8 or later,
// because it relies on the compiler's built in overflow checks.
/**
* @dev Wrappers over Solidity's arithmetic operations.
*
* NOTE: `SafeMath` is generally not needed starting with Solidity 0.8, since the compiler
* now has built in overflow checking.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the substraction of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
return a + b;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return a - b;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
return a * b;
}
/**
* @dev Returns the integer division of two unsigned integers, reverting on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator.
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return a / b;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return a % b;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {trySub}.
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
unchecked {
require(b <= a, errorMessage);
return a - b;
}
}
/**
* @dev Returns the integer division of two unsigned integers, reverting with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
unchecked {
require(b > 0, errorMessage);
return a / b;
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting with custom message when dividing by zero.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryMod}.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
unchecked {
require(b > 0, errorMessage);
return a % b;
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface IPoolBooster {
event BribeExecuted(uint256 amount);
/// @notice Execute the bribe action
function bribe() external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface IBribe {
/// @notice Notify a bribe amount
/// @dev Rewards are saved into NEXT EPOCH mapping.
function notifyRewardAmount(address _rewardsToken, uint256 reward) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { IBribe } from "../interfaces/poolBooster/ISwapXAlgebraBribe.sol";
import { IPoolBooster } from "../interfaces/poolBooster/IPoolBooster.sol";
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { StableMath } from "../utils/StableMath.sol";
/**
* @title Pool booster for SwapX concentrated liquidity where 2 gauges are created for
* every pool. Ichi vaults currently have such setup.
* @author Origin Protocol Inc
*/
contract PoolBoosterSwapxDouble is IPoolBooster {
using StableMath for uint256;
// @notice address of the Bribes.sol(Bribe) contract for the OS token side
IBribe public immutable bribeContractOS;
// @notice address of the Bribes.sol(Bribe) contract for the other token in the pool
IBribe public immutable bribeContractOther;
// @notice address of the OS token
IERC20 public immutable osToken;
// @notice 1e18 denominated split between OS and Other bribe. E.g. 0.4e17 means 40% to OS
// bribe contract and 60% to other bribe contract
uint256 public immutable split;
// @notice if balance under this amount the bribe action is skipped
uint256 public constant MIN_BRIBE_AMOUNT = 1e10;
constructor(
address _bribeContractOS,
address _bribeContractOther,
address _osToken,
uint256 _split
) {
require(
_bribeContractOS != address(0),
"Invalid bribeContractOS address"
);
require(
_bribeContractOther != address(0),
"Invalid bribeContractOther address"
);
// expect it to be between 1% & 99%
require(_split > 1e16 && _split < 99e16, "Unexpected split amount");
bribeContractOS = IBribe(_bribeContractOS);
bribeContractOther = IBribe(_bribeContractOther);
// Abstract factory already validates this is not a zero address
osToken = IERC20(_osToken);
split = _split;
}
function bribe() external override {
uint256 balance = osToken.balanceOf(address(this));
// balance too small, do no bribes
if (balance < MIN_BRIBE_AMOUNT) {
return;
}
uint256 osBribeAmount = balance.mulTruncate(split);
uint256 otherBribeAmount = balance - osBribeAmount;
osToken.approve(address(bribeContractOS), osBribeAmount);
osToken.approve(address(bribeContractOther), otherBribeAmount);
bribeContractOS.notifyRewardAmount(address(osToken), osBribeAmount);
bribeContractOther.notifyRewardAmount(
address(osToken),
otherBribeAmount
);
emit BribeExecuted(balance);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { SafeMath } from "@openzeppelin/contracts/utils/math/SafeMath.sol";
// Based on StableMath from Stability Labs Pty. Ltd.
// https://github.com/mstable/mStable-contracts/blob/master/contracts/shared/StableMath.sol
library StableMath {
using SafeMath for uint256;
/**
* @dev Scaling unit for use in specific calculations,
* where 1 * 10**18, or 1e18 represents a unit '1'
*/
uint256 private constant FULL_SCALE = 1e18;
/***************************************
Helpers
****************************************/
/**
* @dev Adjust the scale of an integer
* @param to Decimals to scale to
* @param from Decimals to scale from
*/
function scaleBy(
uint256 x,
uint256 to,
uint256 from
) internal pure returns (uint256) {
if (to > from) {
x = x.mul(10**(to - from));
} else if (to < from) {
// slither-disable-next-line divide-before-multiply
x = x.div(10**(from - to));
}
return x;
}
/***************************************
Precise Arithmetic
****************************************/
/**
* @dev Multiplies two precise units, and then truncates by the full scale
* @param x Left hand input to multiplication
* @param y Right hand input to multiplication
* @return Result after multiplying the two inputs and then dividing by the shared
* scale unit
*/
function mulTruncate(uint256 x, uint256 y) internal pure returns (uint256) {
return mulTruncateScale(x, y, FULL_SCALE);
}
/**
* @dev Multiplies two precise units, and then truncates by the given scale. For example,
* when calculating 90% of 10e18, (10e18 * 9e17) / 1e18 = (9e36) / 1e18 = 9e18
* @param x Left hand input to multiplication
* @param y Right hand input to multiplication
* @param scale Scale unit
* @return Result after multiplying the two inputs and then dividing by the shared
* scale unit
*/
function mulTruncateScale(
uint256 x,
uint256 y,
uint256 scale
) internal pure returns (uint256) {
// e.g. assume scale = fullScale
// z = 10e18 * 9e17 = 9e36
uint256 z = x.mul(y);
// return 9e36 / 1e18 = 9e18
return z.div(scale);
}
/**
* @dev Multiplies two precise units, and then truncates by the full scale, rounding up the result
* @param x Left hand input to multiplication
* @param y Right hand input to multiplication
* @return Result after multiplying the two inputs and then dividing by the shared
* scale unit, rounded up to the closest base unit.
*/
function mulTruncateCeil(uint256 x, uint256 y)
internal
pure
returns (uint256)
{
// e.g. 8e17 * 17268172638 = 138145381104e17
uint256 scaled = x.mul(y);
// e.g. 138145381104e17 + 9.99...e17 = 138145381113.99...e17
uint256 ceil = scaled.add(FULL_SCALE.sub(1));
// e.g. 13814538111.399...e18 / 1e18 = 13814538111
return ceil.div(FULL_SCALE);
}
/**
* @dev Precisely divides two units, by first scaling the left hand operand. Useful
* for finding percentage weightings, i.e. 8e18/10e18 = 80% (or 8e17)
* @param x Left hand input to division
* @param y Right hand input to division
* @return Result after multiplying the left operand by the scale, and
* executing the division on the right hand input.
*/
function divPrecisely(uint256 x, uint256 y)
internal
pure
returns (uint256)
{
// e.g. 8e18 * 1e18 = 8e36
uint256 z = x.mul(FULL_SCALE);
// e.g. 8e36 / 10e18 = 8e17
return z.div(y);
}
}