Contract Source Code:
// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
import { AccessControlUpgradeable } from "@openzeppelin/contracts-upgradeable/access/AccessControlUpgradeable.sol";
import { ReentrancyGuardUpgradeable } from "@openzeppelin/contracts-upgradeable/security/ReentrancyGuardUpgradeable.sol";
import { PausableUpgradeable } from "@openzeppelin/contracts-upgradeable/security/PausableUpgradeable.sol";
import { IPriceOracle } from "./interfaces/IPriceOracle.sol";
import { ITreasury } from "./interfaces/ITreasury.sol";
import { TreasuryStateLibrary } from "./libs/TreasuryStateLibrary.sol";
import { TreasuryHarvestLibrary } from "./libs/TreasuryHarvestLibrary.sol";
import { TreasuryRebalanceLibrary } from "./libs/TreasuryRebalanceLibrary.sol";
import { Currency, CurrencyLibrary } from "./types/Currency.sol";
import { GroupId } from "./types/GroupId.sol";
import { CacheLibrary } from "./libs/CacheLibrary.sol";
import { Address, AddressLibrary } from "./types/Address.sol";
import { FxStableMath } from "./libs/math/FxStableMath.sol";
import { CustomRevert } from "./libs/CustomRevert.sol";
import { DTreasury } from "./declarations/DTreasury.sol";
import { GroupState } from "./types/CommonTypes.sol";
import { GroupStateHelper, GroupSettings } from "./types/GroupStateHelper.sol";
interface IToken {
function mint(address _to, uint256 _amount) external;
function burn(address _from, uint256 _amount) external;
}
/**
* @title Treasury Contract
* @notice Manages the treasury operations including minting, redeeming tokens, handling collateral, and interacting with strategies.
*/
contract Treasury is AccessControlUpgradeable, ReentrancyGuardUpgradeable, PausableUpgradeable, ITreasury {
using TreasuryStateLibrary for DTreasury.TreasuryState;
using FxStableMath for FxStableMath.SwapState;
using CacheLibrary for CacheLibrary.Storage;
using CurrencyLibrary for Currency;
using AddressLibrary for Address;
using GroupStateHelper for GroupSettings;
using CustomRevert for bytes4;
/// @notice Cache storage for group states
CacheLibrary.Storage private cacheStorage;
/// @notice Address of the protocol contract
address public protocol;
/// @notice Address of the fee collector
address public feeCollector;
/// @notice Role identifier for the protocol role
bytes32 public constant PROTOCOL_ROLE = keccak256("PROTOCOL_ROLE");
/// @notice Role identifier for the cache updater role
bytes32 public constant CACHE_UPDATER_ROLE = keccak256("CACHE_UPDATER_ROLE");
/// @notice Role identifier for the pauser role
bytes32 public constant PAUSER_ROLE = keccak256("PAUSER_ROLE");
/// @notice Role identifier for the harvester role
bytes32 public constant HARVESTER_ROLE = keccak256("HARVESTER_ROLE");
/// @notice Precision constant used in calculations (1e18)
uint256 private constant PRECISION = 1e18;
/// @notice Small constant to avoid rounding issues
uint256 private constant DUST = 1e2;
/// @notice Mapping of treasury states by group ID
mapping(GroupId => DTreasury.TreasuryState) public treasuryStates;
/// @notice Mapping of last harvest timestamps by group ID
mapping(GroupId => uint256) public lastHarvestTimestamp;
/**
* @dev Modifier to validate if a group is properly configured for the treasury.
* @param groupId The group identifier.
*/
modifier validateGroup(GroupId groupId) {
GroupState memory groupState = cacheStorage.getGroupState(groupId);
if (groupState.extended.treasury.toAddress() != address(this)) ITreasury.InvalidGroupConfiguration.selector.revertWith(groupId);
_;
}
/// @custom:oz-upgrades-unsafe-allow constructor
constructor() initializer {}
/**
* @notice Doesn't the contract to receive Ether.
* @dev Reverts with NotPermitted error.
*/
receive() external payable {
ITreasury.NotPermitted.selector.revertWith();
}
/**
* @notice Fallback function to handle calls to non-existent functions.
* @dev Reverts with NotPermitted error.
*/
fallback() external payable {
ITreasury.NotPermitted.selector.revertWith();
}
/**
* @notice Initializes the Treasury contract.
* @param _protocol Address of the protocol.
* @param _feeCollector Address of the fee collector.
* @param _admin Address of the admin.
*/
function initialize(address _protocol, address _feeCollector, address _admin) external initializer {
if (_protocol == address(0) || _admin == address(0) || _feeCollector == address(0)) {
ITreasury.ZeroAddress.selector.revertWith();
}
__AccessControl_init();
__ReentrancyGuard_init();
__Pausable_init();
_grantRole(DEFAULT_ADMIN_ROLE, _admin);
_grantRole(PAUSER_ROLE, _admin);
_grantRole(PROTOCOL_ROLE, _protocol);
_grantRole(CACHE_UPDATER_ROLE, _protocol);
_grantRole(CACHE_UPDATER_ROLE, _admin);
_grantRole(HARVESTER_ROLE, _admin);
protocol = _protocol;
feeCollector = _feeCollector;
}
/**
* @notice Forces the update of the group cache.
* @param tokenRegistry The token registry address.
* @param groupId The group identifier.
*/
function forceUpdateGroupCache(address tokenRegistry, GroupId groupId) external nonReentrant onlyRole(CACHE_UPDATER_ROLE) {
_forceUpdateGroupCache(tokenRegistry, groupId);
}
/**
* @dev Internal function to force update the group cache.
* @param tokenRegistry The token registry address.
* @param groupId The group identifier.
*/
function _forceUpdateGroupCache(address tokenRegistry, GroupId groupId) private {
cacheStorage.forceUpdate(tokenRegistry, groupId);
GroupState memory groupState = cacheStorage.getGroupState(groupId);
if (groupState.extended.treasury.toAddress() != address(this)) ITreasury.InvalidGroupConfiguration.selector.revertWith(groupId);
}
/**
* @notice Initializes a group within the treasury.
* @param tokenRegistry The token registry address.
* @param groupId The group identifier.
* @param params Parameters for group initialization.
*/
function initializeGroup(
address tokenRegistry,
GroupId groupId,
DTreasury.GroupUpdateParams calldata params
) external nonReentrant onlyRole(DEFAULT_ADMIN_ROLE) {
// Validate input parameters
if (tokenRegistry == address(0)) ITreasury.ZeroAddress.selector.revertWith();
if (params.baseTokenCaps == 0) ITreasury.InvalidBaseTokenCap.selector.revertWith(groupId);
// Check if the group is already initialized
DTreasury.TreasuryState storage state = treasuryStates[groupId];
if (state.inited) ITreasury.GroupAlreadyInitialized.selector.revertWith(groupId);
GroupState memory groupState = cacheStorage.getGroupState(groupId);
// Force update if the treasury doesn't match
if (groupState.extended.treasury.toAddress() != address(this)) _forceUpdateGroupCache(tokenRegistry, groupId);
groupState = cacheStorage.getGroupState(groupId);
// Update base token caps in state
state.updateBaseTokenCaps(params.baseTokenCaps);
(, uint256 _newPrice) = state.fetchBaseTokenPrice(groupState);
state.updateBaseTokenPrice(_newPrice);
uint256 baseInNormalized = TreasuryStateLibrary.normalizeDecimals(params.baseIn, _getTokenDecimalsFromGroup(groupState, "base"));
state.totalBaseTokens = baseInNormalized;
state.initializeGroupEMALeverageRatio();
state.inited = true;
// Mint 50/50 aToken and xToken
uint256 halfTokenOut = (baseInNormalized * _newPrice) / (2 * PRECISION);
if (params.beta) halfTokenOut = (baseInNormalized) / (2); // this is for when beta = 0, doesn't affect the math
uint256 aTokenOutDenorm = TreasuryStateLibrary.denormalizeDecimals(halfTokenOut, _getTokenDecimalsFromGroup(groupState, "a"));
uint256 xTokenOutDenorm = TreasuryStateLibrary.denormalizeDecimals(halfTokenOut, _getTokenDecimalsFromGroup(groupState, "x"));
groupState.core.baseToken.safeTransferFrom(_msgSender(), address(this), params.baseIn);
IToken(groupState.core.xToken.toAddress()).mint(address(this), xTokenOutDenorm);
IToken(groupState.core.aToken.toAddress()).mint(address(this), aTokenOutDenorm);
emit Settle(groupId, 0, _newPrice);
emit GroupInitialized(groupId, _newPrice);
}
/**
* @notice Gets the collateral ratio for a group.
* @param groupId The group identifier.
* @return The collateral ratio.
*/
function collateralRatio(GroupId groupId) external view override validateGroup(groupId) returns (uint256) {
GroupState memory groupState = cacheStorage.getGroupState(groupId);
return treasuryStates[groupId].getCollateralRatio(groupState);
}
/**
* @notice Checks if a group is under-collateralized.
* @param groupId The group identifier.
* @return True if under-collateralized, false otherwise.
*/
function isUnderCollateral(GroupId groupId) public view override validateGroup(groupId) returns (bool) {
GroupState memory groupState = cacheStorage.getGroupState(groupId);
return treasuryStates[groupId].isUnderCollateral(groupState);
}
/**
* @notice Gets the current base token price for a group.
* @param groupId The group identifier.
* @return The current base token price.
*/
function currentBaseTokenPrice(GroupId groupId) external view override validateGroup(groupId) returns (uint256) {
GroupState memory groupState = cacheStorage.getGroupState(groupId);
(bool isValid, uint256 baseTokenPrice) = IPriceOracle(groupState.extended.priceOracle.toAddress()).getPrice(
groupState.core.baseToken.toAddress()
);
if (!isValid) ITreasury.InvalidPrice.selector.revertWith(groupId);
return baseTokenPrice;
}
/**
* @notice Gets the current EMA leverage ratio for a group.
* @param groupId The group identifier.
* @return The current EMA leverage ratio.
*/
function leverageRatio(GroupId groupId) external view override validateGroup(groupId) returns (uint256) {
uint256 ratio = treasuryStates[groupId].getEMAValue();
if (ratio == 0) ITreasury.InvalidRatio.selector.revertWith(groupId);
return ratio;
}
/**
* @notice Gets the total base tokens for a group.
* @param groupId The group identifier.
* @return The total base tokens.
*/
function totalBaseToken(GroupId groupId) external view override validateGroup(groupId) returns (uint256) {
return treasuryStates[groupId].totalBaseTokens;
}
/**
* @notice Returns the amount of base token that can be harvested.
* @param groupId The group identifier.
* @return The harvestable amount.
*/
function harvestable(GroupId groupId) public view validateGroup(groupId) returns (uint256) {
// Retrieve group state
GroupState memory groupState = cacheStorage.getGroupState(groupId);
// Get the total base tokens recorded in the treasury
uint256 _totalBaseToken = treasuryStates[groupId].totalBaseTokens;
if (_totalBaseToken < DUST) return 0;
// Get the actual balance of base tokens at this contract's address
uint256 balance = groupState.core.baseToken.balanceOf(address(this));
// Normalize the balance to account for decimal differences
uint256 balanceNormalized = TreasuryStateLibrary.normalizeDecimals(balance, _getTokenDecimalsFromGroup(groupState, "base"));
// Return the harvestable amount
if (balanceNormalized <= _totalBaseToken) {
return 0;
} else {
uint256 harvestableAmount = TreasuryStateLibrary.denormalizeDecimals(
balanceNormalized - _totalBaseToken,
_getTokenDecimalsFromGroup(groupState, "base")
);
return harvestableAmount;
}
}
/**
* @notice Calculates the maximum mintable AToken.
* @param groupId The group identifier.
* @param _newCollateralRatio The new collateral ratio.
* @return _maxBaseIn The maximum base tokens input.
* @return _maxATokenMintable The maximum AToken mintable.
*/
function maxMintableAToken(
GroupId groupId,
uint256 _newCollateralRatio
) external view override validateGroup(groupId) returns (uint256 _maxBaseIn, uint256 _maxATokenMintable) {
GroupState memory groupState = cacheStorage.getGroupState(groupId);
(_maxBaseIn, _maxATokenMintable) = treasuryStates[groupId].maxMintableAToken(groupState, _newCollateralRatio);
// Denormalize outputs
_maxBaseIn = TreasuryStateLibrary.denormalizeDecimals(_maxBaseIn, _getTokenDecimalsFromGroup(groupState, "base"));
_maxATokenMintable = TreasuryStateLibrary.denormalizeDecimals(_maxATokenMintable, _getTokenDecimalsFromGroup(groupState, "a"));
}
/**
* @notice Calculates the maximum redeemable AToken.
* @param groupId The group identifier.
* @param _newCollateralRatio The new collateral ratio.
* @return _maxBaseOut The maximum base tokens output.
* @return _maxATokenRedeemable The maximum AToken redeemable.
*/
function maxRedeemableAToken(
GroupId groupId,
uint256 _newCollateralRatio
) external view override validateGroup(groupId) returns (uint256 _maxBaseOut, uint256 _maxATokenRedeemable) {
if (_newCollateralRatio <= PRECISION) ITreasury.ErrorCollateralRatioTooSmall.selector.revertWith(groupId);
GroupState memory groupState = cacheStorage.getGroupState(groupId);
(_maxBaseOut, _maxATokenRedeemable) = treasuryStates[groupId].maxRedeemableAToken(groupState, _newCollateralRatio);
// Denormalize outputs
_maxBaseOut = TreasuryStateLibrary.denormalizeDecimals(_maxBaseOut, _getTokenDecimalsFromGroup(groupState, "base"));
_maxATokenRedeemable = TreasuryStateLibrary.denormalizeDecimals(_maxATokenRedeemable, _getTokenDecimalsFromGroup(groupState, "a"));
}
/**
* @notice Mints AToken.
* @param groupId The group identifier.
* @param _baseIn The amount of base tokens input.
* @param _recipient The recipient address.
* @return _aTokenOut The amount of AToken minted.
*/
function mintAToken(
GroupId groupId,
uint256 _baseIn,
address _recipient
) external override nonReentrant whenNotPaused onlyRole(PROTOCOL_ROLE) validateGroup(groupId) returns (uint256 _aTokenOut) {
if (isUnderCollateral(groupId)) ITreasury.ErrorUnderCollateral.selector.revertWith(groupId);
DTreasury.TreasuryState storage state = treasuryStates[groupId];
GroupState memory groupState = cacheStorage.getGroupState(groupId);
uint256 baseInNormalized = TreasuryStateLibrary.normalizeDecimals(_baseIn, _getTokenDecimalsFromGroup(groupState, "base"));
if (state.totalBaseTokens + baseInNormalized > state.baseTokenCaps) ITreasury.ErrorExceedTotalCap.selector.revertWith(groupId);
FxStableMath.SwapState memory swapState = state.loadSwapState(groupState);
state.updateEMALeverageRatio(swapState);
state.totalBaseTokens += baseInNormalized;
// Transfer base tokens from the sender
groupState.core.baseToken.safeTransferFrom(_msgSender(), address(this), _baseIn);
_aTokenOut = swapState.mintAToken(baseInNormalized);
// Denormalize _aTokenOut to aToken decimals
_aTokenOut = TreasuryStateLibrary.denormalizeDecimals(_aTokenOut, _getTokenDecimalsFromGroup(groupState, "a"));
IToken(groupState.core.aToken.toAddress()).mint(_recipient, _aTokenOut);
}
/**
* @notice Mints XToken.
* @param groupId The group identifier.
* @param _baseIn The amount of base tokens input.
* @param _recipient The recipient address.
* @return _xTokenOut The amount of XToken minted.
*/
function mintXToken(
GroupId groupId,
uint256 _baseIn,
address _recipient
) external override nonReentrant whenNotPaused onlyRole(PROTOCOL_ROLE) validateGroup(groupId) returns (uint256 _xTokenOut) {
if (isUnderCollateral(groupId)) ITreasury.ErrorUnderCollateral.selector.revertWith(groupId);
DTreasury.TreasuryState storage state = treasuryStates[groupId];
GroupState memory groupState = cacheStorage.getGroupState(groupId);
uint256 baseInNormalized = TreasuryStateLibrary.normalizeDecimals(_baseIn, _getTokenDecimalsFromGroup(groupState, "base"));
if (state.totalBaseTokens + baseInNormalized > state.baseTokenCaps) ITreasury.ErrorExceedTotalCap.selector.revertWith(groupId);
FxStableMath.SwapState memory swapState = state.loadSwapState(groupState);
state.updateEMALeverageRatio(swapState);
state.totalBaseTokens += baseInNormalized;
// Transfer base tokens from the sender
groupState.core.baseToken.safeTransferFrom(_msgSender(), address(this), _baseIn);
_xTokenOut = swapState.mintXToken(baseInNormalized);
// Denormalize _xTokenOut to xToken decimals
_xTokenOut = TreasuryStateLibrary.denormalizeDecimals(_xTokenOut, _getTokenDecimalsFromGroup(groupState, "x"));
IToken(groupState.core.xToken.toAddress()).mint(_recipient, _xTokenOut);
}
/**
* @notice Redeems tokens.
* @param groupId The group identifier.
* @param _aTokenIn The amount of AToken input.
* @param _xTokenIn The amount of XToken input.
* @param _owner The owner address.
* @return _baseOut The amount of base tokens output.
*/
function redeem(
GroupId groupId,
uint256 _aTokenIn,
uint256 _xTokenIn,
address _owner
) external override nonReentrant whenNotPaused onlyRole(PROTOCOL_ROLE) validateGroup(groupId) returns (uint256 _baseOut) {
GroupState memory groupState = cacheStorage.getGroupState(groupId);
DTreasury.TreasuryState storage treasuryState = treasuryStates[groupId];
uint256 aTokenInNormalized = TreasuryStateLibrary.normalizeDecimals(_aTokenIn, _getTokenDecimalsFromGroup(groupState, "a"));
uint256 xTokenInNormalized = TreasuryStateLibrary.normalizeDecimals(_xTokenIn, _getTokenDecimalsFromGroup(groupState, "x"));
uint256 balanceWithDust = DUST + groupState.core.xToken.balanceOf(_owner);
// Check if the owner has enough tokens
if (_xTokenIn > 0 && balanceWithDust < _xTokenIn)
ITreasury.ErrorInsufficientBalance.selector.revertWith(groupId, groupState.core.xToken.toAddress());
FxStableMath.SwapState memory swapState = treasuryState.loadSwapState(groupState);
treasuryState.updateEMALeverageRatio(swapState);
if (swapState.xNav == 0) {
if (_xTokenIn > 0) ITreasury.ErrorUnderCollateral.selector.revertWith(groupId);
/// @dev only redeem aToken proportionally when under collateral.
_baseOut = (aTokenInNormalized * treasuryState.totalBaseTokens) / swapState.aSupply;
} else {
_baseOut = swapState.redeem(aTokenInNormalized, xTokenInNormalized);
}
// Denormalize _baseOut to base token decimals
_baseOut = TreasuryStateLibrary.denormalizeDecimals(_baseOut, _getTokenDecimalsFromGroup(groupState, "base"));
// burn tokens & transfer to the owner
if (_aTokenIn > 0) {
groupState.core.aToken.safeTransferFrom(_owner, address(this), _aTokenIn);
IToken(groupState.core.aToken.toAddress()).burn(address(this), _aTokenIn);
}
if (_xTokenIn > 0) {
groupState.core.xToken.safeTransferFrom(_owner, address(this), _xTokenIn);
IToken(groupState.core.xToken.toAddress()).burn(address(this), _xTokenIn);
}
TreasuryStateLibrary.transferBaseToken(
address(this),
_getTokenDecimalsFromGroup(groupState, "base"),
groupState.core.baseToken,
groupState.extended.strategy.toAddress(),
treasuryState,
_baseOut,
_owner
);
}
/**
* @notice Transfers base tokens to the strategy.
* @param groupId The group identifier.
* @param _amount The amount to transfer.
*/
function transferToStrategy(GroupId groupId, uint256 _amount) external override nonReentrant validateGroup(groupId) {
GroupState memory groupState = cacheStorage.getGroupState(groupId);
if (_msgSender() != groupState.extended.strategy.toAddress()) ITreasury.OnlyStrategy.selector.revertWith();
DTreasury.TreasuryState storage state = treasuryStates[groupId];
uint256 amountNormalized = TreasuryStateLibrary.normalizeDecimals(_amount, _getTokenDecimalsFromGroup(groupState, "base"));
state.strategyUnderlying += amountNormalized;
if (state.totalBaseTokens < amountNormalized) ITreasury.StrategyUnderflow.selector.revertWith(groupId);
state.totalBaseTokens -= amountNormalized;
groupState.core.baseToken.safeTransfer(_msgSender(), _amount);
emit TransferToStrategy(groupId, _amount);
}
/**
* @notice Harvests fees for a group.
* @param groupId The group identifier.
* @param params The harvest fees parameters.
*/
function harvestFees(
GroupId groupId,
TreasuryHarvestLibrary.HarvestParams memory params
) external override nonReentrant validateGroup(groupId) onlyRole(HARVESTER_ROLE) {
if (params.sendTokens == true && params.swapRouter == address(0) && params.stablecoin == address(0))
ITreasury.ZeroAddress.selector.revertWith(groupId);
GroupState memory groupState = cacheStorage.getGroupState(groupId);
DTreasury.TreasuryState storage state = treasuryStates[groupId];
// collect fees
uint256 dxTokenBalance = TreasuryHarvestLibrary.collectFees(groupState, groupId);
TreasuryHarvestLibrary.harvestFees(groupId, groupState, state, params, dxTokenBalance, feeCollector, protocol);
emit HarvestFees(groupId, 0, dxTokenBalance);
}
/**
* @notice Harvests yield for a group.
* @param groupId The group identifier.
* @param params The harvest yield parameters.
*/
function harvestYield(
GroupId groupId,
TreasuryHarvestLibrary.HarvestParams memory params
) external override nonReentrant onlyRole(HARVESTER_ROLE) validateGroup(groupId) {
if (block.timestamp < lastHarvestTimestamp[groupId] + 1 days) return;
if (params.sendTokens == true && params.swapRouter == address(0) && params.stablecoin == address(0))
ITreasury.ZeroAddress.selector.revertWith(groupId);
uint256 harvestableAmount = harvestable(groupId);
if (harvestableAmount == 0) ITreasury.ZeroAmount.selector.revertWith();
GroupState memory groupState = cacheStorage.getGroupState(groupId);
DTreasury.TreasuryState storage state = treasuryStates[groupId];
lastHarvestTimestamp[groupId] = block.timestamp;
TreasuryHarvestLibrary.harvestYield(groupId, groupState, state, params, harvestableAmount, feeCollector, protocol);
emit HarvestYield(groupId, harvestableAmount);
}
/**
* @notice Rebalances the protocol when the collateral ratio is low by burning aTokens and converting base tokens to stablecoins.
* @dev This function increases the collateral ratio (CR) to enhance protocol security.
* @param groupId The identifier of the group.
* @param params Parameters for the rebalance up operation.
*/
function rebalanceUp(
GroupId groupId,
TreasuryRebalanceLibrary.RebalanceUpParams memory params
) external nonReentrant validateGroup(groupId) onlyRole(DEFAULT_ADMIN_ROLE) {
GroupState memory groupState = cacheStorage.getGroupState(groupId);
GroupSettings groupSettings = GroupSettings.wrap(groupState.groupSettings);
DTreasury.TreasuryState storage state = treasuryStates[groupId];
uint256 stabilityRatio = uint256(GroupStateHelper.getStabilityRatio(groupSettings));
uint256 currentCR = state.getCollateralRatio(groupState);
if (params.swapRouter == address(0) || Currency.wrap(params.stablecoin).isZero()) {
ITreasury.ZeroAddress.selector.revertWith();
}
/**
* @dev Ensure that the Target Collateral Ratio (TCR) is greater than 0 and higher than the current Collateral Ratio (currentCR).
* The current Collateral Ratio must be lower than the stability ratio and greater than 100% (PRECISION).
*/
if (
params.targetCollateralRatio == 0 ||
params.targetCollateralRatio <= currentCR ||
currentCR >= stabilityRatio ||
currentCR <= PRECISION
) {
ITreasury.InvalidRatio.selector.revertWith(groupId);
}
TreasuryRebalanceLibrary.rebalanceUp(state, groupState, params);
emit RebalanceUpPerformed(groupId, params.targetCollateralRatio);
}
/**
* @notice Rebalances the protocol when the collateral ratio is high by converting stablecoins to base tokens and minting aTokens.
* @dev This function decreases the collateral ratio (CR) to improve protocol efficiency.
* @param groupId The identifier of the group.
* @param params Parameters for the rebalance down operation.
*/
function rebalanceDown(
GroupId groupId,
TreasuryRebalanceLibrary.RebalanceDownParams memory params
) external nonReentrant validateGroup(groupId) onlyRole(DEFAULT_ADMIN_ROLE) {
GroupState memory groupState = cacheStorage.getGroupState(groupId);
GroupSettings groupSettings = GroupSettings.wrap(groupState.groupSettings);
DTreasury.TreasuryState storage state = treasuryStates[groupId];
if (params.swapRouter == address(0) || params.stablecoin == address(0)) {
ITreasury.ZeroAddress.selector.revertWith();
}
if (params.convertAmount == 0) {
ITreasury.ZeroAmount.selector.revertWith();
}
uint256 stabilityRatio = uint256(GroupStateHelper.getStabilityRatio(groupSettings));
uint256 currentCR = state.getCollateralRatio(groupState);
/**
* @dev Ensure that the Target Collateral Ratio (TCR) is greater than 0 and lower than the current Collateral Ratio (currentCR).
* The current Collateral Ratio must be higher than the stability ratio.
*/
if (params.targetCollateralRatio == 0 || params.targetCollateralRatio <= stabilityRatio || params.targetCollateralRatio >= currentCR) {
ITreasury.InvalidRatio.selector.revertWith();
}
TreasuryRebalanceLibrary.rebalanceDown(state, groupState, params);
emit RebalanceDownPerformed(groupId, params.targetCollateralRatio);
}
/**
* @notice Updates the base token cap for a group.
* @param groupId The group identifier.
* @param _baseTokenCap The new base token cap.
*/
function updateBaseTokenCap(GroupId groupId, uint256 _baseTokenCap) public onlyRole(DEFAULT_ADMIN_ROLE) validateGroup(groupId) {
// check if the new base token cap is greater than 0, different from the current one & greater than the total base tokens
if (
_baseTokenCap == 0 ||
_baseTokenCap == treasuryStates[groupId].baseTokenCaps ||
_baseTokenCap < treasuryStates[groupId].totalBaseTokens
) {
ITreasury.InvalidBaseTokenCap.selector.revertWith(groupId);
}
uint256 _oldBaseTokenCap = treasuryStates[groupId].baseTokenCaps;
treasuryStates[groupId].updateBaseTokenCaps(_baseTokenCap);
emit UpdateBaseTokenCap(groupId, _oldBaseTokenCap, _baseTokenCap);
}
/**
* @notice Gets the treasury state for a group.
* @param groupId The group identifier.
* @return The treasury state.
* @dev Only for admin use.
*/
function getTreasuryState(GroupId groupId) external view override validateGroup(groupId) returns (DTreasury.TreasuryState memory) {
DTreasury.TreasuryState memory state = treasuryStates[groupId];
return
DTreasury.TreasuryState({
emaLeverageRatio: state.emaLeverageRatio,
inited: state.inited,
baseTokenPrice: state.baseTokenPrice,
totalBaseTokens: state.totalBaseTokens,
baseTokenCaps: state.baseTokenCaps,
strategyUnderlying: state.strategyUnderlying,
lastSettlementTimestamp: state.lastSettlementTimestamp
});
}
/**
* @notice Updates the fee collector address.
* @param _newFeeCollector The new fee collector address.
*/
function updateFeeCollector(address _newFeeCollector) external onlyRole(DEFAULT_ADMIN_ROLE) {
if (_newFeeCollector == address(0)) ITreasury.ZeroAddress.selector.revertWith();
address oldFeeCollector = feeCollector;
feeCollector = _newFeeCollector;
emit UpdateFeeCollector(oldFeeCollector, _newFeeCollector);
}
/**
* @notice Pauses the contract.
*/
function pause() external onlyRole(PAUSER_ROLE) {
_pause();
}
/**
* @notice Unpauses the contract.
*/
function unpause() external onlyRole(DEFAULT_ADMIN_ROLE) {
_unpause();
}
/**
* @notice Prevents renouncing roles for security
* @dev Overrides the default renounceRole function to prevent accidental role removal
*/
function renounceRole(bytes32, address) public virtual override {
ITreasury.RenounceRoleProhibited.selector.revertWith();
}
/**
* @notice Checks if the contract supports a specific interface.
* @param interfaceId The interface identifier.
* @return True if the interface is supported, false otherwise.
*/
function supportsInterface(bytes4 interfaceId) public view override(AccessControlUpgradeable) returns (bool) {
return interfaceId == type(ITreasury).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @dev Helper function to get token decimals from group settings.
* @param groupState The group state.
* @param tokenType The type of token ("base", "a", or "x").
* @return The token decimals.
*/
function _getTokenDecimalsFromGroup(GroupState memory groupState, string memory tokenType) private pure returns (uint8) {
if (keccak256(abi.encodePacked(tokenType)) == keccak256(abi.encodePacked("base"))) {
return GroupSettings.wrap(groupState.groupSettings).getBaseTokenDecimals();
} else if (keccak256(abi.encodePacked(tokenType)) == keccak256(abi.encodePacked("a"))) {
return GroupSettings.wrap(groupState.groupSettings).getATokenDecimals();
} else if (keccak256(abi.encodePacked(tokenType)) == keccak256(abi.encodePacked("x"))) {
return GroupSettings.wrap(groupState.groupSettings).getXTokenDecimals();
} else ITreasury.InvalidTokenType.selector.revertWith();
}
// slither-disable-next-line unused-state
uint256[50] private __gap; // Storage gap for upgradeability
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/AccessControl.sol)
pragma solidity ^0.8.0;
import "./IAccessControlUpgradeable.sol";
import "../utils/ContextUpgradeable.sol";
import "../utils/StringsUpgradeable.sol";
import "../utils/introspection/ERC165Upgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";
/**
* @dev Contract module that allows children to implement role-based access
* control mechanisms. This is a lightweight version that doesn't allow enumerating role
* members except through off-chain means by accessing the contract event logs. Some
* applications may benefit from on-chain enumerability, for those cases see
* {AccessControlEnumerable}.
*
* Roles are referred to by their `bytes32` identifier. These should be exposed
* in the external API and be unique. The best way to achieve this is by
* using `public constant` hash digests:
*
* ```solidity
* bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
* ```
*
* Roles can be used to represent a set of permissions. To restrict access to a
* function call, use {hasRole}:
*
* ```solidity
* function foo() public {
* require(hasRole(MY_ROLE, msg.sender));
* ...
* }
* ```
*
* Roles can be granted and revoked dynamically via the {grantRole} and
* {revokeRole} functions. Each role has an associated admin role, and only
* accounts that have a role's admin role can call {grantRole} and {revokeRole}.
*
* By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
* that only accounts with this role will be able to grant or revoke other
* roles. More complex role relationships can be created by using
* {_setRoleAdmin}.
*
* WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
* grant and revoke this role. Extra precautions should be taken to secure
* accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
* to enforce additional security measures for this role.
*/
abstract contract AccessControlUpgradeable is Initializable, ContextUpgradeable, IAccessControlUpgradeable, ERC165Upgradeable {
struct RoleData {
mapping(address => bool) members;
bytes32 adminRole;
}
mapping(bytes32 => RoleData) private _roles;
bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
/**
* @dev Modifier that checks that an account has a specific role. Reverts
* with a standardized message including the required role.
*
* The format of the revert reason is given by the following regular expression:
*
* /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
*
* _Available since v4.1._
*/
modifier onlyRole(bytes32 role) {
_checkRole(role);
_;
}
function __AccessControl_init() internal onlyInitializing {
}
function __AccessControl_init_unchained() internal onlyInitializing {
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IAccessControlUpgradeable).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) public view virtual override returns (bool) {
return _roles[role].members[account];
}
/**
* @dev Revert with a standard message if `_msgSender()` is missing `role`.
* Overriding this function changes the behavior of the {onlyRole} modifier.
*
* Format of the revert message is described in {_checkRole}.
*
* _Available since v4.6._
*/
function _checkRole(bytes32 role) internal view virtual {
_checkRole(role, _msgSender());
}
/**
* @dev Revert with a standard message if `account` is missing `role`.
*
* The format of the revert reason is given by the following regular expression:
*
* /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
*/
function _checkRole(bytes32 role, address account) internal view virtual {
if (!hasRole(role, account)) {
revert(
string(
abi.encodePacked(
"AccessControl: account ",
StringsUpgradeable.toHexString(account),
" is missing role ",
StringsUpgradeable.toHexString(uint256(role), 32)
)
)
);
}
}
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {
return _roles[role].adminRole;
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleGranted} event.
*/
function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
_grantRole(role, account);
}
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleRevoked} event.
*/
function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
_revokeRole(role, account);
}
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been revoked `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `account`.
*
* May emit a {RoleRevoked} event.
*/
function renounceRole(bytes32 role, address account) public virtual override {
require(account == _msgSender(), "AccessControl: can only renounce roles for self");
_revokeRole(role, account);
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event. Note that unlike {grantRole}, this function doesn't perform any
* checks on the calling account.
*
* May emit a {RoleGranted} event.
*
* [WARNING]
* ====
* This function should only be called from the constructor when setting
* up the initial roles for the system.
*
* Using this function in any other way is effectively circumventing the admin
* system imposed by {AccessControl}.
* ====
*
* NOTE: This function is deprecated in favor of {_grantRole}.
*/
function _setupRole(bytes32 role, address account) internal virtual {
_grantRole(role, account);
}
/**
* @dev Sets `adminRole` as ``role``'s admin role.
*
* Emits a {RoleAdminChanged} event.
*/
function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
bytes32 previousAdminRole = getRoleAdmin(role);
_roles[role].adminRole = adminRole;
emit RoleAdminChanged(role, previousAdminRole, adminRole);
}
/**
* @dev Grants `role` to `account`.
*
* Internal function without access restriction.
*
* May emit a {RoleGranted} event.
*/
function _grantRole(bytes32 role, address account) internal virtual {
if (!hasRole(role, account)) {
_roles[role].members[account] = true;
emit RoleGranted(role, account, _msgSender());
}
}
/**
* @dev Revokes `role` from `account`.
*
* Internal function without access restriction.
*
* May emit a {RoleRevoked} event.
*/
function _revokeRole(bytes32 role, address account) internal virtual {
if (hasRole(role, account)) {
_roles[role].members[account] = false;
emit RoleRevoked(role, account, _msgSender());
}
}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[49] private __gap;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)
pragma solidity ^0.8.0;
import {Initializable} from "../proxy/utils/Initializable.sol";
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuardUpgradeable is Initializable {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
function __ReentrancyGuard_init() internal onlyInitializing {
__ReentrancyGuard_init_unchained();
}
function __ReentrancyGuard_init_unchained() internal onlyInitializing {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be _NOT_ENTERED
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == _ENTERED;
}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[49] private __gap;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol)
pragma solidity ^0.8.0;
import "../utils/ContextUpgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";
/**
* @dev Contract module which allows children to implement an emergency stop
* mechanism that can be triggered by an authorized account.
*
* This module is used through inheritance. It will make available the
* modifiers `whenNotPaused` and `whenPaused`, which can be applied to
* the functions of your contract. Note that they will not be pausable by
* simply including this module, only once the modifiers are put in place.
*/
abstract contract PausableUpgradeable is Initializable, ContextUpgradeable {
/**
* @dev Emitted when the pause is triggered by `account`.
*/
event Paused(address account);
/**
* @dev Emitted when the pause is lifted by `account`.
*/
event Unpaused(address account);
bool private _paused;
/**
* @dev Initializes the contract in unpaused state.
*/
function __Pausable_init() internal onlyInitializing {
__Pausable_init_unchained();
}
function __Pausable_init_unchained() internal onlyInitializing {
_paused = false;
}
/**
* @dev Modifier to make a function callable only when the contract is not paused.
*
* Requirements:
*
* - The contract must not be paused.
*/
modifier whenNotPaused() {
_requireNotPaused();
_;
}
/**
* @dev Modifier to make a function callable only when the contract is paused.
*
* Requirements:
*
* - The contract must be paused.
*/
modifier whenPaused() {
_requirePaused();
_;
}
/**
* @dev Returns true if the contract is paused, and false otherwise.
*/
function paused() public view virtual returns (bool) {
return _paused;
}
/**
* @dev Throws if the contract is paused.
*/
function _requireNotPaused() internal view virtual {
require(!paused(), "Pausable: paused");
}
/**
* @dev Throws if the contract is not paused.
*/
function _requirePaused() internal view virtual {
require(paused(), "Pausable: not paused");
}
/**
* @dev Triggers stopped state.
*
* Requirements:
*
* - The contract must not be paused.
*/
function _pause() internal virtual whenNotPaused {
_paused = true;
emit Paused(_msgSender());
}
/**
* @dev Returns to normal state.
*
* Requirements:
*
* - The contract must be paused.
*/
function _unpause() internal virtual whenPaused {
_paused = false;
emit Unpaused(_msgSender());
}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[49] private __gap;
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
/**
* @title IPriceOracle
* @notice Interface for the PriceOracle contract, managing and updating token price feeds.
*/
interface IPriceOracle {
/**
* @dev Emitted when a price feed is added for a token.
* @param token The address of the token.
* @param feed The address of the Chainlink price feed.
*/
event FeedAdded(address indexed token, address indexed feed);
/**
* @dev Emitted when a price feed is removed for a token.
* @param token The address of the token.
*/
event FeedRemoved(address indexed token);
/**
* @dev Emitted when a price feed is updated for a token.
* @param token The address of the token.
* @param oldFeed The address of the old price feed.
* @param newFeed The address of the new price feed.
*/
event FeedUpdated(address indexed token, address indexed oldFeed, address indexed newFeed);
// Custom Errors
error ZeroAddress();
error InvalidAddress();
error InvalidOperation();
error InvalidAmount();
error StalePrice();
error InvalidInput();
error DuplicateEntry();
/**
* @notice Gets the latest price data for a specified token.
* @param token The address of the token.
* @return isValid Whether the price is valid.
* @return price The last updated price (18 decimals).
*/
function getPrice(address token) external view returns (bool isValid, uint256 price);
/**
* @notice gets the token decimals from the feed
*/
function getFeedDecimals(address token) external view returns (uint8 decimals);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
import { GroupId } from "../types/GroupId.sol";
import { DTokenRegistry } from "../declarations/DTokenRegistry.sol";
import { DTreasury } from "../declarations/DTreasury.sol";
import { TreasuryHarvestLibrary } from "../libs/TreasuryHarvestLibrary.sol";
interface ITreasury {
// Events
event HarvestYield(GroupId indexed groupId, uint256 indexed yieldBaseTokens);
event HarvestFees(GroupId indexed groupId, uint256 indexed xTokenAmount, uint256 indexed aTokenAmount);
event FeesDistributed(GroupId indexed groupId, uint256 indexed xTokenAmount, uint256 indexed baseTokenAmount);
event UpdateBaseTokenCap(GroupId indexed groupId, uint256 indexed oldBaseTokenCap, uint256 indexed newBaseTokenCap);
event Settle(GroupId indexed groupId, uint256 indexed oldPrice, uint256 indexed newPrice);
event UpdateFeeCollector(address indexed oldFeeCollector, address indexed newFeeCollector);
event GroupInitialized(GroupId indexed groupId, uint256 indexed baseTokenPrice);
event RebalanceUpPerformed(GroupId indexed groupId, uint256 indexed newCollateralRatio);
event RebalanceDownPerformed(GroupId indexed groupId, uint256 indexed newCollateralRatio);
event TransferToStrategy(GroupId indexed groupId, uint256 indexed amount);
// Custom Errors
error ZeroAddress();
error ZeroAmount();
error OnlyStrategy();
error GroupAlreadyInitialized(GroupId groupId);
error ErrorUnderCollateral(GroupId groupId);
error ErrorExceedTotalCap(GroupId groupId);
error ErrorInvalidTwapPrice(GroupId groupId);
error NotPermitted();
error InvalidGroupConfiguration(GroupId groupId);
error InvalidRate(GroupId groupId, address rateProvider);
error InvalidRatio(GroupId groupId);
error InvalidPrice(GroupId groupId);
error InvalidBaseTokenCap(GroupId groupId);
error ErrorInsufficientBalance(GroupId groupId, address token);
error ErrorSwapFailed();
error ErrorDistributingYield(GroupId groupId);
error ErrorWithdrawFromStrategy();
error ErrorCollateralRatioTooSmall(GroupId groupId);
error MaximumAmountExceeded(GroupId groupId, uint256 maxAmount);
error StrategyUnderflow(GroupId groupId);
error InvalidTokenType();
error RenounceRoleProhibited();
// View Functions
function collateralRatio(GroupId groupId) external view returns (uint256);
function isUnderCollateral(GroupId groupId) external view returns (bool);
function leverageRatio(GroupId groupId) external view returns (uint256);
function currentBaseTokenPrice(GroupId groupId) external view returns (uint256);
// function isBaseTokenPriceValid(GroupId groupId) external view returns (bool _isValid);
function totalBaseToken(GroupId groupId) external view returns (uint256);
function maxMintableAToken(
GroupId groupId,
uint256 _newCollateralRatio
) external view returns (uint256 _maxBaseIn, uint256 _maxATokenMintable);
function maxRedeemableAToken(
GroupId groupId,
uint256 _newCollateralRatio
) external view returns (uint256 _maxBaseOut, uint256 _maxATokenRedeemable);
// State-Changing Functions
function mintAToken(GroupId groupId, uint256 _baseIn, address _recipient) external returns (uint256 _aTokenOut);
function mintXToken(GroupId groupId, uint256 _baseIn, address _recipient) external returns (uint256 _xTokenOut);
function redeem(GroupId groupId, uint256 _aTokenIn, uint256 _xTokenIn, address _owner) external returns (uint256 _baseOut);
function transferToStrategy(GroupId groupId, uint256 _amount) external;
// Harvest Functions
function harvestYield(GroupId groupId, TreasuryHarvestLibrary.HarvestParams memory params) external;
function harvestFees(GroupId groupId, TreasuryHarvestLibrary.HarvestParams memory params) external;
// Management Functions
function updateBaseTokenCap(GroupId groupId, uint256 _baseTokenCap) external;
function updateFeeCollector(address _newFeeCollector) external;
function forceUpdateGroupCache(address tokenRegistry, GroupId groupId) external;
function getTreasuryState(GroupId groupId) external view returns (DTreasury.TreasuryState memory);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
import { Currency, CurrencyLibrary } from "../types/Currency.sol";
import { Address, AddressLibrary } from "../types/Address.sol";
import { FxStableMath } from "../libs/math/FxStableMath.sol";
import { ExponentialMovingAverageV8 } from "../libs/math/ExponentialMovingAverageV8.sol";
import { IERC20Upgradeable } from "@openzeppelin/contracts-upgradeable/token/ERC20/IERC20Upgradeable.sol";
import { IPriceOracle } from "../interfaces/IPriceOracle.sol";
import { DTreasury } from "../declarations/DTreasury.sol";
import { GroupStateHelper, GroupSettings } from "../types/GroupStateHelper.sol";
import { IAToken } from "../interfaces/IAToken.sol";
import { CustomRevert } from "../libs/CustomRevert.sol";
import { IDEXRouter } from "../interfaces/IDEXRouter.sol";
import { IStrategy } from "../interfaces/IStrategy.sol";
import { GroupState } from "../types/CommonTypes.sol";
import { FullMath } from "../libs/math/FullMath.sol";
/**
* @title TreasuryStateLibrary
* @notice Library for managing treasury state and calculations.
*/
library TreasuryStateLibrary {
using CurrencyLibrary for Currency;
using AddressLibrary for Address;
using FxStableMath for FxStableMath.SwapState;
using ExponentialMovingAverageV8 for ExponentialMovingAverageV8.EMAStorage;
using GroupStateHelper for GroupSettings;
using CustomRevert for bytes4;
error ErrorInvalidTwapPrice();
error ErrorSwapFailed();
error ErrorWithdrawFromStrategy();
error StrategyUnderflow();
event BaseTokenCapsUpdated(uint256 newCaps);
event BaseTokenPriceUpdated(uint256 newPrice);
event SwapExecuted(address indexed fromToken, address indexed toToken, uint256 amountIn, uint256 amountOut);
event BaseTokenTransferred(address indexed recipient, uint256 amount);
event StrategyWithdrawal(address indexed strategy, uint256 amount);
event EMALeverageRatioUpdated(uint256 newEMAValue);
event GroupEMALeverageRatioInitialized(uint256 initialValue);
uint256 private constant PRECISION = 1e18;
/**
* @notice Updates the base token caps in the treasury state.
* @param self The treasury state storage.
* @param newCaps The new base token caps.
*/
function updateBaseTokenCaps(DTreasury.TreasuryState storage self, uint256 newCaps) internal {
self.baseTokenCaps = newCaps;
emit BaseTokenCapsUpdated(newCaps);
}
/**
* @notice Updates the base token price in the treasury state.
* @param self The treasury state storage.
* @param newPrice The new base token price.
*/
function updateBaseTokenPrice(DTreasury.TreasuryState storage self, uint256 newPrice) internal {
self.baseTokenPrice = newPrice;
emit BaseTokenPriceUpdated(newPrice);
}
/**
* @notice Loads the swap state with proper precision handling.
* @param self The treasury state storage.
* @param group The group state.
* @return _state The loaded swap state.
*/
function loadSwapState(
DTreasury.TreasuryState storage self,
GroupState memory group
) internal view returns (FxStableMath.SwapState memory _state) {
// Fetch decimals
uint8 baseTokenDecimals = GroupSettings.wrap(group.groupSettings).getBaseTokenDecimals();
uint8 aTokenDecimals = GroupSettings.wrap(group.groupSettings).getATokenDecimals();
uint8 xTokenDecimals = GroupSettings.wrap(group.groupSettings).getXTokenDecimals();
// Normalize baseSupply to 18 decimals
_state.baseSupply = normalizeDecimals(self.totalBaseTokens, baseTokenDecimals);
// Fetch base token price (already in 18 decimals)
(_state.baseTwapNav, _state.baseNav) = fetchBaseTokenPrice(self, group);
if (_state.baseSupply == 0) {
_state.aNav = PRECISION;
_state.xNav = PRECISION;
} else {
// Fetch token supplies and normalize to 18 decimals
uint256 aSupplyRaw = IERC20Upgradeable(group.core.aToken.toAddress()).totalSupply();
uint256 xSupplyRaw = IERC20Upgradeable(group.core.xToken.toAddress()).totalSupply();
_state.aSupply = normalizeDecimals(aSupplyRaw, aTokenDecimals);
_state.xSupply = normalizeDecimals(xSupplyRaw, xTokenDecimals);
// Fetch aNav (assuming it's already in 18 decimals)
_state.beta = IAToken(group.core.aToken.toAddress()).beta();
if (_state.beta) {
_state.aNav = IAToken(group.core.aToken.toAddress()).nav();
} else {
_state.aNav = PRECISION;
}
if (_state.xSupply == 0) {
// No xToken, treat the nav of xToken as 1.0
_state.xNav = PRECISION;
} else {
uint256 _baseVal = _state.baseSupply * _state.baseNav;
uint256 _aVal = _state.aSupply * _state.aNav;
if (_baseVal >= _aVal) {
_state.xNav = (_baseVal - _aVal) / _state.xSupply;
} else {
// Under-collateralized
_state.xNav = 0;
}
}
}
}
/**
* @notice Fetches the base token price from the price oracle.
* @param group The group state.
* @return _twap The time-weighted average price.
* @return _price The selected price
*/
function fetchBaseTokenPrice(
DTreasury.TreasuryState storage /*self*/,
GroupState memory group
) internal view returns (uint256 _twap, uint256 _price) {
bool isValid;
address priceOracle = group.extended.priceOracle.toAddress();
(isValid, _price) = IPriceOracle(priceOracle).getPrice(group.core.baseToken.toAddress());
if (!isValid || _price == 0) ErrorInvalidTwapPrice.selector.revertWith();
// Prices are already in 18 decimals
return (_price, _price);
}
/**
* @notice Checks if the treasury is under-collateralized.
* @param self The treasury state storage.
* @param group The group state.
* @return True if under-collateralized, false otherwise.
*/
function isUnderCollateral(DTreasury.TreasuryState storage self, GroupState memory group) internal view returns (bool) {
FxStableMath.SwapState memory _state = loadSwapState(self, group);
return _state.xNav == 0;
}
/**
* @notice Gets the collateral ratio of the treasury.
* @param self The treasury state storage.
* @param group The group state.
* @return The collateral ratio.
*/
function getCollateralRatio(DTreasury.TreasuryState storage self, GroupState memory group) internal view returns (uint256) {
FxStableMath.SwapState memory _state = loadSwapState(self, group);
if (_state.baseSupply == 0) return PRECISION;
if (_state.aSupply == 0 || _state.aNav == 0) return PRECISION * PRECISION;
return FullMath.mulDiv(_state.baseSupply * _state.baseNav, PRECISION, _state.aSupply * _state.aNav);
}
/**
* @notice Calculates the maximum mintable AToken based on the new collateral ratio.
* @param self The treasury state storage.
* @param group The group state.
* @param _newCollateralRatio The new desired collateral ratio.
* @return _maxBaseIn The maximum base tokens that can be input.
* @return _maxATokenMintable The maximum AToken that can be minted.
*/
function maxMintableAToken(
DTreasury.TreasuryState storage self,
GroupState memory group,
uint256 _newCollateralRatio
) internal view returns (uint256 _maxBaseIn, uint256 _maxATokenMintable) {
FxStableMath.SwapState memory _state = loadSwapState(self, group);
(_maxBaseIn, _maxATokenMintable) = _state.maxMintableAToken(_newCollateralRatio);
}
/**
* @notice Calculates the maximum redeemable AToken based on the new collateral ratio.
* @param self The treasury state storage.
* @param group The group state.
* @param _newCollateralRatio The new desired collateral ratio.
* @return _maxBaseOut The maximum base tokens that can be output.
* @return _maxATokenRedeemable The maximum AToken that can be redeemed.
*/
function maxRedeemableAToken(
DTreasury.TreasuryState storage self,
GroupState memory group,
uint256 _newCollateralRatio
) internal view returns (uint256 _maxBaseOut, uint256 _maxATokenRedeemable) {
FxStableMath.SwapState memory _state = loadSwapState(self, group);
(_maxBaseOut, _maxATokenRedeemable) = _state.maxRedeemableAToken(_newCollateralRatio);
}
/**
* @notice Updates the Exponential Moving Average (EMA) of the leverage ratio.
* @param self The treasury state storage.
* @param _state The current swap state.
*/
function updateEMALeverageRatio(DTreasury.TreasuryState storage self, FxStableMath.SwapState memory _state) internal {
uint256 _ratio = _state.leverageRatio();
self.emaLeverageRatio.saveValue(uint96(_ratio));
emit EMALeverageRatioUpdated(_ratio);
}
function getEMAValue(DTreasury.TreasuryState storage self) internal view returns (uint256) {
return self.emaLeverageRatio.emaValue();
}
function initializeGroupEMALeverageRatio(DTreasury.TreasuryState storage self) internal {
self.emaLeverageRatio.lastTime = uint40(block.timestamp);
self.emaLeverageRatio.lastValue = uint96(PRECISION * 2);
self.emaLeverageRatio.lastEmaValue = uint96(PRECISION * 2);
self.emaLeverageRatio.sampleInterval = 1 days;
emit GroupEMALeverageRatioInitialized(PRECISION * 2);
}
/**
* @dev Normalizes a token amount to 18 decimals.
* @param amount The amount to normalize.
* @param tokenDecimals The decimals of the token.
* @return The normalized amount.
*/
function normalizeDecimals(uint256 amount, uint8 tokenDecimals) internal pure returns (uint256) {
if (tokenDecimals == 18) {
return amount;
}
uint256 factor;
if (tokenDecimals < 18) {
factor = 10 ** (18 - tokenDecimals);
return amount * factor;
} else {
factor = 10 ** (tokenDecimals - 18);
return amount / factor;
}
}
/**
* @dev Denormalizes a token amount from 18 decimals to the token's decimals.
* @param amount The amount to denormalize.
* @param tokenDecimals The decimals of the token.
* @return The denormalized amount.
*/
function denormalizeDecimals(uint256 amount, uint8 tokenDecimals) internal pure returns (uint256) {
if (tokenDecimals == 18) {
return amount;
}
uint256 factor;
if (tokenDecimals < 18) {
factor = 10 ** (18 - tokenDecimals);
return amount / factor;
} else {
factor = 10 ** (tokenDecimals - 18);
return amount * factor;
}
}
/**
* @notice Transfers base tokens to the recipient, withdrawing from strategy if necessary.
* @param baseToken The base token.
* @param strategyAddress The strategy address.
* @param treasuryState The treasury state.
* @param amount The amount of base tokens to transfer.
* @param recipient The recipient address.
*/
function transferBaseToken(
address self,
uint8 baseTokenDecimals,
Currency baseToken,
address strategyAddress,
DTreasury.TreasuryState storage treasuryState,
uint256 amount,
address recipient
) internal {
uint256 amountNormalized = normalizeDecimals(amount, baseTokenDecimals);
uint256 balance = baseToken.balanceOf(self);
uint256 balanceNormalized = normalizeDecimals(balance, baseTokenDecimals);
if (balanceNormalized < amountNormalized) {
uint256 diff = amountNormalized - balanceNormalized;
if (diff == 0) return;
IStrategy strategy = IStrategy(strategyAddress);
bool success = strategy.withdrawToTreasury(diff);
if (!success) ErrorWithdrawFromStrategy.selector.revertWith();
if (treasuryState.strategyUnderlying < diff) StrategyUnderflow.selector.revertWith();
treasuryState.strategyUnderlying -= diff;
balance = baseToken.balanceOf(self);
balanceNormalized = normalizeDecimals(balance, baseTokenDecimals);
if (amountNormalized > balanceNormalized) {
amountNormalized = balanceNormalized;
amount = denormalizeDecimals(amountNormalized, baseTokenDecimals);
}
}
treasuryState.totalBaseTokens -= amountNormalized;
baseToken.safeTransfer(recipient, amount);
emit BaseTokenTransferred(recipient, amount);
}
/**
* @notice Swaps tokens using the specified router.
* @param self The address of the contract using this library
* @param swapRouter The address of the swap router.
* @param from The address of the token to swap from.
* @param to The address of the token to swap to.
* @param amount The amount of tokens to swap.
* @param minOutAmount The minimum acceptable amount of tokens to receive.
* @return swappedAmount The amount of tokens received after the swap.
*/
function swapTokens(
address self,
address swapRouter,
address from,
address to,
uint256 amount,
uint256 minOutAmount
) internal returns (uint256 swappedAmount) {
IDEXRouter router = IDEXRouter(swapRouter);
uint256 deadline = block.timestamp + 30;
address[] memory path = new address[](2);
path[0] = from;
path[1] = to;
Currency fromToken = Currency.wrap(from);
uint256 currentAllowance = fromToken.allowance(self, swapRouter);
if (currentAllowance < amount) {
fromToken.safeIncreaseAllowance(swapRouter, amount - currentAllowance);
}
swappedAmount = _executeSwap(router, amount, minOutAmount, path, self, deadline);
if (swappedAmount < minOutAmount) {
ErrorSwapFailed.selector.revertWith();
}
emit SwapExecuted(from, to, amount, swappedAmount);
return swappedAmount;
}
function _executeSwap(
IDEXRouter router,
uint256 amount,
uint256 minOutAmount,
address[] memory path,
address to,
uint256 deadline
) private returns (uint256) {
try router.swapExactTokensForTokens(amount, minOutAmount, path, to, deadline) returns (uint256[] memory amounts) {
return amounts[amounts.length - 1];
} catch {
ErrorSwapFailed.selector.revertWith();
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
import { Currency, CurrencyLibrary } from "../types/Currency.sol";
import { GroupStateHelper, GroupSettings } from "../types/GroupStateHelper.sol";
import { GroupState, FeeModel } from "../types/CommonTypes.sol";
import { GroupId } from "../types/GroupId.sol";
import { DTreasury } from "../declarations/DTreasury.sol";
import { TreasuryStateLibrary } from "./TreasuryStateLibrary.sol";
import { IDXToken } from "../interfaces/IDXToken.sol";
import { IAToken } from "../interfaces/IAToken.sol";
import { IWToken } from "../interfaces/IWToken.sol";
import { IRebalancePool } from "../interfaces/IRebalancePool.sol";
import { CustomRevert } from "../libs/CustomRevert.sol";
import { FullMath } from "../libs/math/FullMath.sol";
import { IProtocolMinimum as IProtocol } from "../interfaces/IProtocolMinimum.sol";
/**
* @title TreasuryHarvestLibrary
* @notice This library orchestrates fee and yield harvesting for a specific group.
* @dev It handles collecting fees, distributing base tokens, minting aTokens, and managing
* yield fees. The library relies on external calls to tokens and Rebalance Pools, and
* carefully handles potential revert scenarios via `try/catch` and bubble-up reverts.
*/
library TreasuryHarvestLibrary {
using CurrencyLibrary for Currency;
using GroupStateHelper for GroupSettings;
using TreasuryStateLibrary for *;
using CustomRevert for bytes4;
// =========================
// ======== Errors =========
// =========================
error ZeroAmount();
error WrongFeeModel(GroupId groupId);
error ErrorDistributingYield();
error ErrorFeeCollectionFailed(GroupId groupId);
error ErrorDistributingTokens(GroupId groupId);
// =========================
// ======== Events =========
// =========================
event FeesCollected(GroupId indexed groupId, uint256 amount);
event FeesHarvested(GroupId indexed groupId, uint256 dxTokenBalance, address feeCollector);
event YieldHarvested(GroupId indexed groupId, uint256 yieldAmount, address feeCollector);
event ATokensMintedToPool(GroupId indexed groupId, uint256 aTokenAmount, address recipient);
event TokensSwappedToPool(GroupId indexed groupId, address fromToken, address toToken, uint256 amountIn, uint256 amountOut);
// =========================
// ======== Structs ========
// =========================
/**
* @notice Parameters used to harvest yield or fees.
* @param sendTokens If true, will swap base tokens into stablecoins
* instead of attempting to mint aTokens (when mint capacity is exceeded).
* @param swapRouter Address of the DEX/router used to swap base tokens for stablecoins.
* @param stablecoin The address of the stablecoin into which base tokens may be swapped.
* @param minAmountOut The minimum amount of stablecoins that must be received from the swap
* for the transaction not to revert.
*/
struct HarvestParams {
bool sendTokens;
address swapRouter;
address stablecoin;
uint256 minAmountOut;
}
/**
* @notice Collects any accrued fees from dxToken.
* @dev Calls `collectFees` on the dxToken. Reverts if no fees were collected.
* @param groupState The current group state, which includes the dxToken address.
* @return The amount of dxToken fees collected.
*/
function collectFees(GroupState memory groupState, GroupId groupId) internal returns (uint256) {
IDXToken dxToken = IDXToken(groupState.core.xToken.toAddress());
uint256 dxTokenBalanceBefore = dxToken.balanceOf(address(this));
// Attempt to collect fees from dxToken
try dxToken.collectFees() {
// Get the balance of dxToken after fees have been collected
uint256 dxTokenBalanceAfter = dxToken.balanceOf(address(this));
uint256 collectedAmount = dxTokenBalanceAfter - dxTokenBalanceBefore;
// Revert if no fees were actually collected
if (collectedAmount == 0) ZeroAmount.selector.revertWith();
// Emit an event to log the fees collected
emit FeesCollected(groupId, collectedAmount);
return collectedAmount;
} catch {
CustomRevert.bubbleUpAndRevertWith(dxToken.collectFees.selector, address(dxToken));
}
}
/**
* @notice Harvests fees (not yield) based on the group's fee model.
* @dev For management fees, the dxTokens are simply transferred to the feeCollector.
* For funding fees, dxTokens are burned and then aTokens are minted (or stablecoins are swapped).
* @param groupId The ID of the group for which fees are harvested.
* @param groupState The current group state data.
* @param treasuryState The TreasuryState storage reference for updating internal state.
* @param harvestParams Parameters controlling how the harvested tokens might be swapped or minted.
* @param dxTokenBalance The amount of dxTokens available for fee harvesting.
* @param feeCollector The address to which management fees should be sent.
* @param protocol The Protocol contract address (for calculating stability ratio, etc).
*/
function harvestFees(
GroupId groupId,
GroupState memory groupState,
DTreasury.TreasuryState storage treasuryState,
HarvestParams memory harvestParams,
uint256 dxTokenBalance,
address feeCollector,
address protocol
) internal {
IDXToken dxToken = IDXToken(groupState.core.xToken.toAddress());
// Determine the fee model for this group
FeeModel feeModel = dxToken.getFeeModel();
if (feeModel == FeeModel.MANAGEMENT_FEE) {
// Simply transfer dxTokens to fee collector
groupState.core.xToken.safeTransfer(feeCollector, dxTokenBalance);
return;
}
if (feeModel == FeeModel.VARIABLE_FUNDING_FEE || feeModel == FeeModel.FIXED_FUNDING_FEE) {
// For funding fees, burn dxTokens
try dxToken.burn(address(this), dxTokenBalance) {} catch {
CustomRevert.bubbleUpAndRevertWith(dxToken.burn.selector, address(dxToken));
}
// Calculate baseTokenAmount from dxTokens
uint256 baseTokenAmount = dxToken.dxTokenToBaseToken(dxTokenBalance);
uint8 baseTokenDecimals = GroupSettings.wrap(groupState.groupSettings).getBaseTokenDecimals();
// apply yield and get net harvestable amount
(baseTokenAmount, ) = _applyYield(groupState, baseTokenAmount, feeCollector);
// Normalize baseTokenAmount to an 18-decimal scale (for internal accounting)
uint256 baseTokenAmountNormalized = TreasuryStateLibrary.normalizeDecimals(
baseTokenAmount,
baseTokenDecimals
);
// Distribute base tokens either as aToken or stablecoin, depending on mint capacity
_distributeBaseTokens(
groupState,
groupId,
treasuryState,
baseTokenAmount,
baseTokenAmountNormalized,
harvestParams,
protocol
);
emit FeesHarvested(groupId, dxTokenBalance, feeCollector);
return;
}
// If none of the recognized fee models applies, revert.
WrongFeeModel.selector.revertWith(groupId);
}
/**
* @notice Harvests yield for a group, applies any yield fees, and distributes the net amount.
* @dev A portion of the yield is sent to the feeCollector as a yield fee (if applicable).
* @param groupId The ID of the group for which yield is being harvested.
* @param groupState The current group state data.
* @param treasuryState The TreasuryState storage reference for updating internal state.
* @param harvestParams Parameters controlling how the base tokens might be swapped or minted.
* @param harvestableAmount The total base token amount of yield harvested.
* @param feeCollector The address to which the yield fee is sent.
* @param protocol The Protocol contract address (for calculating stability ratio, etc).
*/
function harvestYield(
GroupId groupId,
GroupState memory groupState,
DTreasury.TreasuryState storage treasuryState,
HarvestParams memory harvestParams,
uint256 harvestableAmount,
address feeCollector,
address protocol
) internal {
// Apply yield fees and get net harvestable amount
(harvestableAmount, ) = _applyYield(groupState, harvestableAmount, feeCollector);
// Normalize the base token amount for internal accounting
uint8 baseTokenDecimals = GroupSettings.wrap(groupState.groupSettings).getBaseTokenDecimals();
uint256 baseTokenAmountNormalized = TreasuryStateLibrary.normalizeDecimals(
harvestableAmount,
baseTokenDecimals
);
// Distribute the net base tokens (either as stablecoin or aTokens)
_distributeBaseTokens(
groupState,
groupId,
treasuryState,
harvestableAmount,
baseTokenAmountNormalized,
harvestParams,
protocol
);
emit YieldHarvested(groupId, harvestableAmount, feeCollector);
}
/**
* @notice Calculates how many aTokens should be minted given a certain amount of base tokens,
* and also how many aTokens can be minted at maximum without breaching collateral targets.
* @param groupState The current group state data.
* @param groupId The ID of the group for which aTokens will be minted.
* @param baseTokenAmountNormalized The normalized amount of base tokens to convert into aTokens.
* @param aToken The IAToken contract reference (whose NAV is used to compute minted supply).
* @param protocol The Protocol contract address (for stability ratio checks).
* @return aTokenToMint How many aTokens should be minted given the current NAV.
* @return aTokenMintableMax The maximum number of aTokens that can be minted without breaching collateral.
*/
function calculateMintingParams(
DTreasury.TreasuryState storage treasuryState,
GroupState memory groupState,
GroupId groupId,
uint256 baseTokenAmountNormalized,
IAToken aToken,
address protocol
) internal view returns (uint256 aTokenToMint, uint256 aTokenMintableMax) {
// Fetch the current base token price from an oracle or similar feed
(, uint256 newPrice) = TreasuryStateLibrary.fetchBaseTokenPrice(treasuryState, groupState);
// NAV of the aToken is used to determine how many aTokens 1 base token is worth
uint256 aTokenNav = aToken.nav();
// aTokenToMint = (baseTokenAmountNormalized * newPrice) / aTokenNav
aTokenToMint = FullMath.mulDiv(baseTokenAmountNormalized, newPrice, aTokenNav);
// Check how many aTokens we can mint before breaching collateral/stability constraints
(, aTokenMintableMax) = TreasuryStateLibrary.maxMintableAToken(
treasuryState,
groupState,
uint256(IProtocol(protocol).stabilityRatio(groupId))
);
}
/**
* @notice Distributes base tokens to the Rebalance Pool either by minting aTokens or swapping
* them into stablecoins, depending on the mint capacity and user preference.
* @dev If the aToken mint capacity is insufficient and `sendTokens == true`, base tokens
* are swapped into stablecoins. Otherwise, the function reverts.
* @param groupState The current group state data.
* @param groupId The ID of the group for which distribution is happening.
* @param treasuryState The TreasuryState storage reference for updating internal state.
* @param baseTokenAmount The actual (denormalized) amount of base tokens.
* @param baseTokenAmountNormalized The normalized base token amount (scaled to 18 decimals internally).
* @param harvestParams Struct containing swap and stablecoin parameters.
* @param protocol The Protocol contract address (for stability ratio checks).
*/
function _distributeBaseTokens(
GroupState memory groupState,
GroupId groupId,
DTreasury.TreasuryState storage treasuryState,
uint256 baseTokenAmount,
uint256 baseTokenAmountNormalized,
HarvestParams memory harvestParams,
address protocol
) private {
IAToken aToken = IAToken(groupState.core.aToken.toAddress());
Currency stableCoinCurrency = Currency.wrap(harvestParams.stablecoin);
// Compute how many aTokens we *need* to mint and how many are *allowed* to mint
(uint256 aTokenToMint, uint256 aTokenMintableMax) = calculateMintingParams(
treasuryState,
groupState,
groupId,
baseTokenAmountNormalized,
aToken,
protocol
);
// If we cannot mint the entire required amount of aTokens
if (aTokenMintableMax < aTokenToMint) {
// If we are NOT allowed to send stablecoins, revert
if (!harvestParams.sendTokens) ErrorDistributingTokens.selector.revertWith(groupId);
// Decrease the treasury's totalBaseTokens because we'll unwrap and swap them
treasuryState.totalBaseTokens -= baseTokenAmountNormalized;
// 1. Unwrap the wrapped base tokens into their underlying (e.g., WETH -> ETH or WMATIC -> MATIC).
uint256 unwrappedBaseTokens = IWToken(groupState.core.baseToken.toAddress()).unwrap(baseTokenAmount);
// 2. Swap from base tokens -> stablecoins
uint256 stablecoinAmount = TreasuryStateLibrary.swapTokens(
address(this),
harvestParams.swapRouter,
// We should swap from the *yield-bearing token* (not the base token)
groupState.core.yieldBearingToken.toAddress(),
stableCoinCurrency.toAddress(),
unwrappedBaseTokens,
harvestParams.minAmountOut
);
// 3. Transfer the stablecoins to the Rebalance Pool
stableCoinCurrency.safeTransfer(
groupState.extended.rebalancePool.toAddress(),
stablecoinAmount
);
emit TokensSwappedToPool(groupId, groupState.core.baseToken.toAddress(), harvestParams.stablecoin, unwrappedBaseTokens, stablecoinAmount);
} else {
// We can mint the full aToken amount from the base tokens
// Increase the treasury's totalBaseTokens accordingly
treasuryState.totalBaseTokens += baseTokenAmountNormalized;
// Convert aTokenToMint from normalized (18 decimals) to the actual aToken decimals
uint8 aTokenDecimals = GroupSettings.wrap(groupState.groupSettings).getATokenDecimals();
uint256 aTokenToMintDenorm = TreasuryStateLibrary.denormalizeDecimals(aTokenToMint, aTokenDecimals);
// Mint aTokens directly to the Rebalance Pool
aToken.mint(groupState.extended.rebalancePool.toAddress(), aTokenToMintDenorm);
// Update the Rebalance Pool’s NAV to reflect the newly minted aTokens
IRebalancePool(groupState.extended.rebalancePool.toAddress()).updateNAV();
emit ATokensMintedToPool(groupId, aTokenToMintDenorm, groupState.extended.rebalancePool.toAddress());
}
}
/**
* @notice Applies a yield fee to the harvestable amount (if any) and transfers that fee
* portion to the feeCollector. Returns the net amount after fee.
* @param groupState The current group state data (for accessing baseToken).
* @param harvestableAmount The total yield (in base tokens) to be distributed.
* @param feeCollector The address to which yield fees should be sent.
* @return _harvestableAmount The net (post-fee) amount of base tokens.
* @return _feeAmount The fee amount that was deducted and sent to the feeCollector.
*/
function _applyYield(
GroupState memory groupState,
uint256 harvestableAmount,
address feeCollector
)
private
returns (uint256 _harvestableAmount, uint256 _feeAmount)
{
IRebalancePool rebalancePool = IRebalancePool(groupState.extended.rebalancePool.toAddress());
uint256 yieldFeePercentage = rebalancePool.yieldFeePercentage();
uint256 BASE_POINTS = 10_000;
// If there's a yield fee, calculate and transfer it
if (yieldFeePercentage > 0) {
_feeAmount = (harvestableAmount * yieldFeePercentage) / BASE_POINTS;
_harvestableAmount = harvestableAmount - _feeAmount;
if (_feeAmount > 0) {
groupState.core.baseToken.safeTransfer(feeCollector, _feeAmount);
}
} else {
// If no yield fee, the entire amount is harvestable
_harvestableAmount = harvestableAmount;
}
return (_harvestableAmount, _feeAmount);
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
import { Currency, CurrencyLibrary } from "../types/Currency.sol";
import { GroupStateHelper, GroupSettings } from "../types/GroupStateHelper.sol";
import { GroupState } from "../types/CommonTypes.sol";
import { GroupId } from "../types/GroupId.sol";
import { DTreasury } from "../declarations/DTreasury.sol";
import { TreasuryStateLibrary } from "./TreasuryStateLibrary.sol";
import { IAToken } from "../interfaces/IAToken.sol";
import { IWToken } from "../interfaces/IWToken.sol";
import { IRebalancePool } from "../interfaces/IRebalancePool.sol";
import { FullMath } from "../libs/math/FullMath.sol";
import { CurrencyLibrary } from "../types/Currency.sol";
/**
* @title TreasuryRebalanceLibrary
* @notice This library handles "rebalanceUp" and "rebalanceDown" for a given group,
* adjusting the collateral ratio to ensure protocol stability or efficiency.
* @dev Refactored into smaller, reusable helper functions for improved readability.
*/
library TreasuryRebalanceLibrary {
using CurrencyLibrary for Currency;
using GroupStateHelper for GroupSettings;
using TreasuryStateLibrary for DTreasury.TreasuryState;
error InvalidRatio();
error ZeroAddress();
error ZeroAmount();
// Precision factor used in validations (e.g. checking CR > 100%)
uint256 internal constant PRECISION = 1e18;
struct RebalanceUpParams {
uint256 targetCollateralRatio;
address swapRouter;
address stablecoin;
uint256 minAmountOut;
}
struct RebalanceDownParams {
uint256 targetCollateralRatio;
uint256 convertAmount;
address stablecoin;
address swapRouter;
uint256 minAmountOut;
}
/**
* @notice Rebalances the protocol upward when the collateral ratio is below the stability ratio.
* Burns aTokens in exchange for stablecoins, thus increasing the effective CR.
* @dev If the current CR is below the protocol's stability ratio, this method pulls it closer
* to (or above) that stability ratio.
*
* Steps (High-Level):
* 1. Compute how many aTokens to burn.
* 2. Convert the burned aTokens to base tokens, unwrap, then swap them to stablecoins.
* 3. Send those stablecoins to the Rebalance Pool.
* 4. Decrease `totalBaseTokens` accordingly in treasury storage.
*
* @param state The storage state of the Treasury (i.e. `treasuryStates[groupId]`).
* @param groupState The current group state info.
* @param params The parameters for the rebalance up operation.
*/
function rebalanceUp(
DTreasury.TreasuryState storage state,
GroupState memory groupState,
RebalanceUpParams memory params
) internal {
// Compute the normalized amount of aTokens to burn
uint256 aTokenToBurn = _computeATokenToBurn(state, groupState, params.targetCollateralRatio);
// Burn aTokens from Rebalance Pool, get the equivalent base tokens
uint256 baseTokenAmountNormalized = _burnATokensForBase(state, groupState, aTokenToBurn);
// 4. Unwrap & Swap base tokens -> stablecoins
uint256 stablecoinReceived = _swapBaseForStablecoin(
groupState,
baseTokenAmountNormalized,
params.swapRouter,
params.stablecoin,
params.minAmountOut
);
// 5. Transfer stablecoins to Rebalance Pool & update treasury state
Currency.wrap(params.stablecoin).safeTransfer(groupState.extended.rebalancePool.toAddress(), stablecoinReceived);
state.totalBaseTokens -= baseTokenAmountNormalized;
}
/**
* @notice Rebalances the protocol downward when the collateral ratio is too high.
* Converts stablecoins to base tokens, then mints aTokens, effectively reducing the CR.
* @dev If the current CR is above some target, this brings it down closer to that target CR.
*
* Steps (High-Level):
* 1. Transfer stablecoins from Rebalance Pool -> Treasury.
* 2. Swap stablecoins -> base tokens, then wrap them.
* 3. Normalize base token amount, compute how many aTokens we can mint, and mint them.
* 4. Increase `totalBaseTokens` accordingly in treasury storage.
*
* @param state The storage state of the Treasury (i.e. `treasuryStates[groupId]`).
* @param groupState The current group state info.
* @param params The parameters for the rebalance down operation.
*/
function rebalanceDown(
DTreasury.TreasuryState storage state,
GroupState memory groupState,
RebalanceDownParams memory params
) internal {
// Transfer stablecoins from Rebalance Pool -> Treasury
uint256 finalConvertAmount = _transferStablecoinsToTreasury(groupState, params.stablecoin, params.convertAmount);
// Swap stablecoins -> base tokens, then wrap
uint256 baseTokenAmountNormalized = _swapStablecoinForBaseWrapped(
state,
groupState,
finalConvertAmount,
params.stablecoin,
params.swapRouter,
params.minAmountOut
);
// Mint aTokens from the base tokens
uint256 aTokenOut = _mintATokensFromBase(state, groupState, baseTokenAmountNormalized);
if (aTokenOut == 0) revert ZeroAmount(); // i.e., minting failed
// Update treasury storage to reflect new base token total
state.totalBaseTokens += baseTokenAmountNormalized;
}
/**
* @notice Computes how many aTokens we need to burn to reach the `targetCollateralRatio`.
* @return aTokenToBurn (normalized to 18 decimals, not the actual token decimals)
*/
function _computeATokenToBurn(
DTreasury.TreasuryState storage state,
GroupState memory groupState,
uint256 targetCollateralRatio
) private view returns (uint256) {
(, uint256 aTokenToBurn) = state.maxRedeemableAToken(groupState, targetCollateralRatio);
return aTokenToBurn;
}
/**
* @notice Burns aTokens from the Rebalance Pool and calculates the normalized base token value.
* @dev 1) Denormalize aTokenToBurn (to match aToken decimals),
* 2) burn them from Rebalance Pool,
* 3) compute baseTokenAmountNormalized = (aTokenToBurn * aTokenNav) / basePrice
*/
function _burnATokensForBase(
DTreasury.TreasuryState storage state,
GroupState memory groupState,
uint256 aTokenToBurnNormalized
) private returns (uint256 baseTokenAmountNormalized) {
IAToken aToken = IAToken(groupState.core.aToken.toAddress());
address rebalancePool = groupState.extended.rebalancePool.toAddress();
// Denormalize amount to aToken decimals
uint8 aTokenDecimals = GroupSettings.wrap(groupState.groupSettings).getATokenDecimals();
uint256 aTokenBurnAmountDenorm = TreasuryStateLibrary.denormalizeDecimals(aTokenToBurnNormalized, aTokenDecimals);
// Burn from Rebalance Pool
aToken.burn(rebalancePool, aTokenBurnAmountDenorm);
// Calculate how many base tokens this is worth (in normalized form)
(, uint256 basePrice) = state.fetchBaseTokenPrice(groupState);
baseTokenAmountNormalized = FullMath.mulDiv(aTokenToBurnNormalized, aToken.nav(), basePrice);
}
/**
* @notice Unwraps the base tokens and swaps them for stablecoins.
* @dev 1) Convert normalized base tokens -> actual decimals,
* 2) unwrap WETH->ETH or WMATIC->MATIC,
* 3) swap via `TreasuryStateLibrary.swapTokens`.
*/
function _swapBaseForStablecoin(
GroupState memory groupState,
uint256 baseTokenAmountNormalized,
address swapRouter,
address stablecoin,
uint256 minAmountOut
) private returns (uint256 stablecoinReceived) {
// Denormalize to get actual base token decimals
uint8 baseTokenDecimals = GroupSettings.wrap(groupState.groupSettings).getBaseTokenDecimals();
uint256 baseTokenAmount = TreasuryStateLibrary.denormalizeDecimals(baseTokenAmountNormalized, baseTokenDecimals);
// Unwrap (e.g., WETH -> ETH)
baseTokenAmount = IWToken(groupState.core.baseToken.toAddress()).unwrap(baseTokenAmount);
// Swap base token -> stablecoin
stablecoinReceived = TreasuryStateLibrary.swapTokens(
address(this),
swapRouter,
groupState.core.yieldBearingToken.toAddress(),
stablecoin,
baseTokenAmount,
minAmountOut
);
}
/**
* @notice Transfers stablecoins from Rebalance Pool to Treasury, returning the final amount to convert.
* @dev If the Rebalance Pool has less than `convertAmount`, use the pool's entire balance.
*/
function _transferStablecoinsToTreasury(
GroupState memory groupState,
address stablecoin,
uint256 convertAmount
) private returns (uint256) {
address rebalancePool = groupState.extended.rebalancePool.toAddress();
IRebalancePool rPool = IRebalancePool(rebalancePool);
Currency stableCoinCurrency = Currency.wrap(stablecoin);
// Check pool balance, cap convertAmount if insufficient
uint256 rPoolBalance = stableCoinCurrency.balanceOf(rebalancePool);
if (rPoolBalance < convertAmount) {
convertAmount = rPoolBalance;
}
// Transfer stablecoins from Rebalance Pool -> Treasury
rPool.transferTokenToTreasury(stableCoinCurrency.toAddress(), convertAmount);
return convertAmount;
}
/**
* @notice Swaps stablecoins into base tokens, then wraps them.
* @dev 1) Approve & swap stablecoin -> base tokens,
* 2) wrap base tokens (ETH->WETH, etc.),
* 3) normalize the final base token amount to 18 decimals.
*/
function _swapStablecoinForBaseWrapped(
DTreasury.TreasuryState storage /*state*/,
GroupState memory groupState,
uint256 finalConvertAmount,
address stablecoin,
address swapRouter,
uint256 minAmountOut
) private returns (uint256 baseTokenAmountNormalized) {
// Approve stablecoins for swapping
Currency stableCoinCurrency = Currency.wrap(stablecoin);
stableCoinCurrency.safeIncreaseAllowance(swapRouter, finalConvertAmount);
// Perform swap (stablecoin -> base token)
uint256 baseTokenAmount = TreasuryStateLibrary.swapTokens(
address(this),
swapRouter,
stablecoin,
groupState.core.yieldBearingToken.toAddress(),
finalConvertAmount,
minAmountOut
);
// Wrap base tokens (e.g., ETH -> WETH)
groupState.core.yieldBearingToken.safeIncreaseAllowance(groupState.core.baseToken.toAddress(), baseTokenAmount);
baseTokenAmount = IWToken(groupState.core.baseToken.toAddress()).wrap(baseTokenAmount);
// Normalize (scale to 18 decimals internally)
uint8 baseTokenDecimals = GroupSettings.wrap(groupState.groupSettings).getBaseTokenDecimals();
baseTokenAmountNormalized = TreasuryStateLibrary.normalizeDecimals(baseTokenAmount, baseTokenDecimals);
}
/**
* @notice Converts the given `baseTokenAmountNormalized` into aTokens, checking capacity (max mintable).
* @dev 1) Use `aToken.nav()` and `basePrice` to compute how many aTokens to mint,
* 2) Verify we can mint that many (not exceeding `maxMintableAToken`),
* 3) Mint aTokens to Rebalance Pool.
* @return aTokenOut The final aToken amount (in normalized form) minted.
*/
function _mintATokensFromBase(
DTreasury.TreasuryState storage state,
GroupState memory groupState,
uint256 baseTokenAmountNormalized
) private returns (uint256 aTokenOut) {
IAToken aToken = IAToken(groupState.core.aToken.toAddress());
GroupSettings groupSettings = GroupSettings.wrap(groupState.groupSettings);
(, uint256 basePrice) = state.fetchBaseTokenPrice(groupState);
uint256 aTokenPrice = aToken.nav();
// aTokenOut = (baseTokenAmountNormalized * basePrice) / aTokenPrice
aTokenOut = FullMath.mulDiv(baseTokenAmountNormalized, basePrice, aTokenPrice);
// Check capacity
uint256 stabilityRatio = uint256(GroupStateHelper.getStabilityRatio(groupSettings));
(, uint256 aTokenMintableMax) = state.maxMintableAToken(groupState, stabilityRatio);
if (aTokenMintableMax < aTokenOut) {
revert InvalidRatio(); // i.e., can't mint that many without breaking CR constraints
}
// Convert to aToken decimals for actual mint
uint8 aTokenDecimals = GroupSettings.wrap(groupState.groupSettings).getATokenDecimals();
uint256 aTokenOutDenorm = TreasuryStateLibrary.denormalizeDecimals(aTokenOut, aTokenDecimals);
// Mint aTokens directly to the Rebalance Pool
aToken.mint(groupState.extended.rebalancePool.toAddress(), aTokenOutDenorm);
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
/// @notice https://forum.openzeppelin.com/t/safeerc20-vs-safeerc20upgradeable/17326
import { SafeERC20Upgradeable, IERC20Upgradeable } from "@openzeppelin/contracts-upgradeable/token/ERC20/utils/SafeERC20Upgradeable.sol";
import { CustomRevert } from "../libs/CustomRevert.sol";
// Custom type `Currency` to represent either an ERC20 token or the native currency (e.g., ETH)
type Currency is address;
/**
* @title CurrencyLibrary
* @dev A library for handling operations related to currencies, supporting both ERC20 tokens and native currency.
* Provides utility functions for balance checks, transfers, approvals, and comparisons.
*/
library CurrencyLibrary {
// Use SafeERC20Upgradeable for IERC20Upgradeable token operations to ensure safety
using SafeERC20Upgradeable for IERC20Upgradeable;
// Use CustomRevert for standardized error handling via selectors
using CustomRevert for bytes4;
// Define a constant representing the native currency (address(0))
Currency public constant NATIVE = Currency.wrap(address(0));
// Custom error definitions for various invalid operations involving native currency
error NativeCurrencyTransfersNotAllowed();
error NativeCurrencyTransferFromNotAllowed();
error NativeCurrencyApprovalNotAllowed();
error NativeCurrencyDoesNotHaveTotalSupply();
error NativeCurrencyIncreaseAllowanceNotAllowed();
error NativeCurrencyDecreaseAllowanceNotAllowed();
error ArbitraryTransfersNotAllowed();
/**
* @notice Checks if two currencies are equal.
* @param currency The first currency to compare.
* @param other The second currency to compare.
* @return True if both currencies are the same, false otherwise.
*/
function equals(Currency currency, Currency other) internal pure returns (bool) {
return Currency.unwrap(currency) == Currency.unwrap(other);
}
/**
* @notice Retrieves the balance of the specified owner for the given currency.
* @param currency The currency to check (ERC20 token or native).
* @param owner The address of the owner whose balance is queried.
* @return The balance of the owner in the specified currency.
*/
function balanceOf(Currency currency, address owner) internal view returns (uint256) {
if (isNative(currency)) {
return owner.balance; // For native currency, return the ETH balance
} else {
return IERC20Upgradeable(Currency.unwrap(currency)).balanceOf(owner); // For ERC20 tokens, use balanceOf
}
}
/**
* @notice Safely transfers a specified amount of the currency to a recipient.
* @param currency The currency to transfer (must be an ERC20 token).
* @param to The recipient address.
* @param amount The amount to transfer.
* @dev Native currency transfers are not allowed and will revert.
*/
function safeTransfer(Currency currency, address to, uint256 amount) internal {
if (isNative(currency)) {
// Revert if attempting to transfer native currency using ERC20 methods
NativeCurrencyTransfersNotAllowed.selector.revertWith();
} else {
IERC20Upgradeable(Currency.unwrap(currency)).safeTransfer(to, amount);
}
}
/**
* @notice Safely transfers a specified amount of the currency from one address to another.
* @param currency The currency to transfer (must be an ERC20 token).
* @param safeFrom The address to transfer from.
* @param to The recipient address.
* @param amount The amount to transfer.
* @dev Native currency transfers are not allowed and will revert.
* @dev Arbitrary transfers (i.e., not initiated by the sender) are also not allowed and will revert.
* @notice Slither false positive. The function is internal and only used within the library
*/
//slither-disable-next-line arbitrary-send-erc20
function safeTransferFrom(Currency currency, address safeFrom, address to, uint256 amount) internal {
if (isNative(currency)) {
// Revert if attempting to transfer ERC20 tokens from an address other than the sender
// This is to prevent arbitrary transfers, which are not allowed in the context of this library
// This logic has the priority, so overrides any other inhereted logic
NativeCurrencyTransferFromNotAllowed.selector.revertWith();
} else {
if (safeFrom != msg.sender) ArbitraryTransfersNotAllowed.selector.revertWith();
IERC20Upgradeable(Currency.unwrap(currency)).safeTransferFrom(safeFrom, to, amount);
}
}
/**
* @notice Retrieves the allowance of a spender for the given owner's currency.
* @param currency The currency to check (must be an ERC20 token).
* @param owner The address of the owner of the currency.
* @param spender The address of the spender.
* @return The allowance of the spender for the owner's currency.
*/
function allowance(Currency currency, address owner, address spender) internal view returns (uint256) {
if (isNative(currency)) {
return 0; // For native currency, return 0 as allowance is not applicable
} else {
return IERC20Upgradeable(Currency.unwrap(currency)).allowance(owner, spender); // For ERC20 tokens, use allowance
}
}
/**
* @notice Safely approves a spender to spend a specified amount of the currency.
* @param currency The currency to approve (must be an ERC20 token).
* @param spender The address authorized to spend the tokens.
* @param amount The amount to approve.
* @dev Approving native currency is not allowed and will revert.
*/
function safeApprove(Currency currency, address spender, uint256 amount) internal {
if (!isNative(currency)) {
IERC20Upgradeable(Currency.unwrap(currency)).safeApprove(spender, amount);
} else {
// Revert if attempting to approve native currency
NativeCurrencyApprovalNotAllowed.selector.revertWith();
}
}
/**
* @notice Safely increases the allowance of a spender for the currency.
* @param currency The currency to modify allowance for (must be an ERC20 token).
* @param spender The address authorized to spend the tokens.
* @param addedValue The amount to increase the allowance by.
* @dev Increasing allowance for native currency is not allowed and will revert.
*/
function safeIncreaseAllowance(Currency currency, address spender, uint256 addedValue) internal {
if (!isNative(currency)) {
IERC20Upgradeable(Currency.unwrap(currency)).safeIncreaseAllowance(spender, addedValue);
} else {
// Revert if attempting to increase allowance for native currency
NativeCurrencyIncreaseAllowanceNotAllowed.selector.revertWith();
}
}
/**
* @notice Checks if the given currency is the native currency.
* @param currency The currency to check.
* @return True if `currency` is the native currency, false otherwise.
*/
function isNative(Currency currency) internal pure returns (bool) {
return Currency.unwrap(currency) == Currency.unwrap(NATIVE);
}
/**
* @notice Checks if the given currency is the zero address.
* @param currency The currency to check.
* @return True if `currency` is the zero address, false otherwise.
*/
function isZero(Currency currency) internal pure returns (bool) {
return Currency.unwrap(currency) == address(0);
}
/**
* @notice Converts the currency address to a unique identifier.
* @param currency The currency to convert.
* @return The uint256 representation of the currency's address.
*/
function toId(Currency currency) internal pure returns (uint256) {
return uint160(Currency.unwrap(currency));
}
/**
* @notice Unwraps the `Currency` type to retrieve the underlying address.
* @param currency The currency to unwrap.
* @return The underlying address of the currency.
*/
function toAddress(Currency currency) internal pure returns (address) {
return Currency.unwrap(currency);
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
import { GroupKey } from "./GroupKey.sol";
type GroupId is bytes32;
// @notice library for computing the ID of a group
library GroupIdLibrary {
using GroupIdLibrary for GroupId;
function toId(GroupKey memory groupKey) internal pure returns (GroupId groupId) {
groupId = GroupId.wrap(keccak256(abi.encode(groupKey)));
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
import { ITokenRegistryMinimum as ITokenRegistry } from "../interfaces/ITokenRegistryMinimum.sol";
import { DTokenRegistry } from "../declarations/DTokenRegistry.sol";
import { GroupId } from "../types/GroupId.sol";
import { IProtocol } from "../interfaces/IProtocol.sol";
import { Address, AddressLibrary } from "../types/Address.sol";
import { Currency, CurrencyLibrary } from "../types/Currency.sol";
import { CustomRevert } from "./CustomRevert.sol";
import { GroupStateHelper, GroupSettings } from "../types/GroupStateHelper.sol";
import { GroupState, CollateralInfo } from "../types/CommonTypes.sol";
library CacheLibrary {
using CurrencyLibrary for Currency;
using AddressLibrary for Address;
using CustomRevert for bytes4;
struct CachedGroupState {
GroupState data;
uint256 lastUpdateBlock;
bool exists;
}
struct Storage {
mapping(GroupId => CachedGroupState) cachedStates;
}
event CacheUpdated(GroupId indexed groupId);
error ConfigNotReady(GroupId groupId);
error InvalidTokenRegistry(address tokenRegistry);
error InvalidGroupConfiguration(GroupId groupId);
error EmptyCollateralListOnUpdate(GroupId groupId);
/**
* @notice Retrieves the cached group state, updating the cache if necessary.
* @param self The storage containing cached group states.
* @param groupId The ID of the group.
* @return The group state.
*/
function getGroupState(Storage storage self, GroupId groupId) internal view returns (GroupState memory) {
CachedGroupState storage cachedState = self.cachedStates[groupId];
if (!cachedState.exists) {
ConfigNotReady.selector.revertWith(groupId);
}
return cachedState.data;
}
/**
* @notice Updates the cache for a specific group ID.
* @param self The storage containing cached group states.
* @param tokenRegistry The token registry to fetch group state from.
* @param groupId The ID of the group.
*/
function updateCache(Storage storage self, ITokenRegistry tokenRegistry, GroupId groupId) internal {
CachedGroupState storage cachedState = self.cachedStates[groupId];
GroupState memory groupState = tokenRegistry.getGroup(groupId);
if (groupState.core.aToken.isZero()) {
InvalidGroupConfiguration.selector.revertWith(groupId);
}
uint256 len = groupState.acceptableCollaterals.length;
if (len > 0) {
delete cachedState.data.acceptableCollaterals;
for (uint256 i = 0; i < len; ) {
cachedState.data.acceptableCollaterals.push(groupState.acceptableCollaterals[i]);
unchecked {
++i;
}
}
} else {
EmptyCollateralListOnUpdate.selector.revertWith(groupId);
}
/// @dev Validate core tokens with simple zero checks.
/// @dev Token registry should have already validated these but this is another layer of fundamental validation.
_simpleValidateGroupCoreTokens(groupState.core, groupId);
_simpleValidateGroupExtendedTokens(groupState.extended, groupId);
cachedState.data.core = groupState.core;
cachedState.data.extended = groupState.extended;
cachedState.data.feesPacked = groupState.feesPacked;
cachedState.data.groupSettings = groupState.groupSettings;
cachedState.data.hookContract = groupState.hookContract;
cachedState.lastUpdateBlock = block.number;
cachedState.exists = true;
emit CacheUpdated(groupId);
}
/**
* @notice Validates the core tokens of a group.
* @param core The core tokens of the group.
* @param groupId The ID of the group.
* @dev This is a simple validation that checks for zero addresses and cartesian checks.
* @dev Token registry should have already validated these but this is another layer of fundamental validation.
*/
function _simpleValidateGroupCoreTokens(DTokenRegistry.GroupCore memory core, GroupId groupId) private pure {
if (core.aToken.isZero() || core.xToken.isZero() || core.baseToken.isZero() || core.yieldBearingToken.isZero()) {
InvalidGroupConfiguration.selector.revertWith(groupId);
}
/// @dev cartesian check
if (
core.aToken.equals(core.xToken) ||
core.aToken.equals(core.baseToken) ||
core.aToken.equals(core.yieldBearingToken) ||
core.xToken.equals(core.baseToken) ||
core.xToken.equals(core.yieldBearingToken) ||
core.baseToken.equals(core.yieldBearingToken)
) {
InvalidGroupConfiguration.selector.revertWith(groupId);
}
}
/**
* @notice Validates the extended tokens of a group.
* @param extended The extended tokens of the group.
* @param groupId The ID of the group.
* @dev This is a simple validation that checks for zero addresses.
* @dev Token registry should have already validated these but this is another layer of fundamental validation.
*/
function _simpleValidateGroupExtendedTokens(DTokenRegistry.GroupExtended memory extended, GroupId groupId) private pure {
if (
extended.priceOracle.isZero() ||
extended.rateProvider.isZero() ||
extended.swapRouter.isZero() ||
extended.treasury.isZero() ||
extended.feeCollector.isZero() ||
extended.strategy.isZero() ||
extended.rebalancePool.isZero()
) InvalidGroupConfiguration.selector.revertWith(groupId);
}
/**
* @notice Forces the cache to update for a specific group ID.
* @param self The storage containing cached group states.
* @param tokenRegistry The token registry to fetch group state from.
* @param groupId The ID of the group.
*/
function forceUpdate(Storage storage self, address tokenRegistry, GroupId groupId) internal {
if (tokenRegistry == address(0)) InvalidTokenRegistry.selector.revertWith(groupId);
updateCache(self, ITokenRegistry(tokenRegistry), groupId);
}
function getGroupTreasury(Storage storage self, GroupId groupId) internal view returns (address) {
if (!self.cachedStates[groupId].exists) {
ConfigNotReady.selector.revertWith(groupId);
}
return self.cachedStates[groupId].data.extended.treasury.toAddress();
}
function getGroupHookContract(Storage storage self, GroupId groupId) internal view returns (address) {
if (!self.cachedStates[groupId].exists) {
ConfigNotReady.selector.revertWith(groupId);
}
return self.cachedStates[groupId].data.hookContract.toAddress();
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
// Import the CustomRevert library for standardized error handling
import { CustomRevert } from "../libs/CustomRevert.sol";
/**
* @title Address
* @dev Defines a user-defined value type `Address` that wraps the built-in `address` type.
*/
type Address is address;
/**
* @title AddressLibrary
* @dev A library for performing various operations on the `Address` type.
*/
library AddressLibrary {
// Apply the library functions to the `Address` type
using AddressLibrary for Address;
// Use the CustomRevert library for standardized error handling via selectors
using CustomRevert for bytes4;
// Custom error definitions for more descriptive revert reasons
error ZeroAddress();
error FailedCall(string reason);
error NonContractAddress();
error UnableToSendValue();
/**
* @notice Checks if the given `Address` is the zero address.
* @param addr The `Address` to check.
* @return True if `addr` is the zero address, false otherwise.
*/
function isZero(Address addr) internal pure returns (bool) {
return Address.unwrap(addr) == address(0);
}
/**
* @notice Determines if the given `Address` is a contract.
* @param addr The `Address` to check.
* @return True if `addr` is a contract, false otherwise.
*
* @dev This method relies on the fact that contracts have non-zero code size.
* It returns false for contracts in construction, since the code is only stored at the end of the constructor execution.
*/
function isContract(Address addr) internal view returns (bool) {
return Address.unwrap(addr).code.length > 0;
}
/**
* @notice Compares two `Address` instances for equality.
* @param a The first `Address`.
* @param b The second `Address`.
* @return True if both addresses are equal, false otherwise.
*/
function equals(Address a, Address b) internal pure returns (bool) {
address addrA = Address.unwrap(a);
address addrB = Address.unwrap(b);
return addrA == addrB;
}
/**
* @notice Converts an `Address` to a `uint160`.
* @param addr The `Address` to convert.
* @return The `uint160` representation of the address.
*/
function toUint160(Address addr) internal pure returns (uint160) {
return uint160(Address.unwrap(addr));
}
/**
* @notice Creates an `Address` from a `uint160`.
* @param addr The `uint160` value to convert.
* @return A new `Address` instance.
*/
function fromUint160(uint160 addr) internal pure returns (Address) {
return Address.wrap(address(addr));
}
/**
* @notice Unwraps the `Address` type to retrieve the underlying address.
* @param addr The `Address` to unwrap.
* @return The underlying `address`.
*/
function toAddress(Address addr) internal pure returns (address) {
return Address.unwrap(addr);
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
/// @dev This library implements formulas for minting and redeeming stable coin token (aToken) and leveraged (xToken)
/// tokens in a system where:
/// - There is a base token with a certain Net Asset Value (NAV).
/// - A stable coin token (aToken) with its own NAV.
/// - A leveraged token (xToken) with its own NAV.
/// All values are scaled by 1e18 before being passed to these functions.
///
/// The core equation governing the system is:
/// n * v = nf * vf + nx * vx
///
/// Where:
/// n = current total base supply
/// v = baseNav (NAV of base token)
/// nf = aSupply (supply of stable coin token)
/// vf = aNav (NAV of stable coin token)
/// nx = xSupply (supply of leveraged token)
/// vx = xNav (NAV of leveraged token)
///
/// The "collateral ratio" (cr) or "target collateral ratio" (ncr) is defined as:
/// cr = (total base value) / (stable coin token value) = (n * v) / (nf * vf)
///
/// Operations involve adjusting supplies (minting or redeeming tokens) to reach a new collateral ratio (ncr).
/// We define:
/// dn = change in base supply (how many base tokens are added or removed)
/// df = change in stable coin token supply (how many stable coin tokens are added or removed)
///
/// By setting:
/// ((n + dn) * v) / ((nf + df)*vf) = ncr
///
/// and using the base equation n * v = nf * vf + nx * vx, we can derive formulas for dn and df
/// depending on whether we are minting or redeeming under a desired collateral ratio.
library FxStableMath {
/*************
* Constants *
*************/
/// @dev The precision (scaling factor) used for calculations.
uint256 internal constant PRECISION = 1e18;
/// @dev The maximum leverage ratio allowed.
uint256 internal constant MAX_LEVERAGE_RATIO = 100e18;
/***********
* Structs *
***********/
struct SwapState {
// Current supply of the base token
uint256 baseSupply;
// Current NAV of the base token (scaled by 1e18)
uint256 baseNav;
// Current TWAP NAV of the base token (scaled by 1e18), used for stable calculations
uint256 baseTwapNav;
// Current supply of the stable coin token
uint256 aSupply;
// Current NAV of the stable coin token (scaled by 1e18)
uint256 aNav;
// Current supply of the leveraged token
uint256 xSupply;
// Current NAV of the leveraged token (scaled by 1e18)
uint256 xNav;
// A boolean parameter `beta` that may adjust behavior in some calculations
bool beta;
}
/**
* @notice Compute how much base token (dn) and stable coin tokens (df) can be minted to achieve a new collateral ratio,
* if the current collateral ratio is less than the new target.
*
* Variables (for reference):
* n: current total base supply
* v: baseNav
* nf: aSupply
* vf: aNav
* nx: xSupply
* vx: xNav
* ncr: newCollateralRatio
*
* Core equations:
* Initially:
* n * v = nf * vf + nx * vx
*
* After adding some amount of base tokens (dn) and stable coin tokens (df):
* (n + dn) * v = (nf + df) * vf + nx * vx
*
* Define collateral ratio as:
* ((n + dn) * v) / ((nf + df) * vf) = ncr
*
* From the above, solving for df and dn:
* df = ((n * v) - (ncr * nf * vf)) / ((ncr - 1) * vf)
* dn = ((n * v) - (ncr * nf * vf)) / ((ncr - 1) * v)
*
* Here, df and dn tell us how much stable coin token and base token must be added to achieve ncr.
* If dn > 0, we need to add that many base tokens; if df > 0, we can mint that many stable coin tokens.
*
* @dev If the current collateral ratio is already >= ncr, then we return 0 because no minting is needed.
*
* @param state Current state of the system.
* @param _newCollateralRatio The desired new collateral ratio (scaled by 1e18).
* @return _maxBaseIn The amount of base token required (corresponds to dn).
* @return _maxATokenMintable The amount of stable coin token (aToken) that can be minted (corresponds to df).
*/
function maxMintableAToken(
SwapState memory state,
uint256 _newCollateralRatio
) internal pure returns (uint256 _maxBaseIn, uint256 _maxATokenMintable) {
// Calculate scaled values
uint256 _baseVal = state.baseSupply * (state.baseNav) * (PRECISION);
uint256 _aVal = _newCollateralRatio * (state.aSupply) * state.aNav;
// If baseVal > aVal, we can mint
if (_baseVal > _aVal) {
// Adjust ncr to (ncr - 1)*PRECISION
_newCollateralRatio = _newCollateralRatio - (PRECISION);
uint256 _delta = _baseVal - _aVal;
// dn = delta / ((ncr - 1)*v)
_maxBaseIn = _delta / (state.baseNav * (_newCollateralRatio));
// df = delta / ((ncr - 1)*vf)
_maxATokenMintable = _delta / (state.aNav * (_newCollateralRatio));
}
}
/**
* @notice Compute how much base token (dn) and leveraged tokens (xToken) can be minted to achieve a new collateral ratio,
* if the current collateral ratio is less than the new target.
*
* Equations:
* n * v = nf * vf + nx * vx
*
* After adding dn base tokens and dx leveraged tokens:
* (n + dn)*v = nf*vf + (nx + dx)*vx
*
* The new collateral ratio condition:
* ((n + dn)*v) / (nf*vf) = ncr
*
* From this, solving for dn and dx:
* dn = (ncr * nf * vf - n * v) / v
* dx = (ncr * nf * vf - n * v) / vx
*
* @dev If the current collateral ratio >= ncr, we return 0 because no minting is needed.
*
* @param state The current state.
* @param _newCollateralRatio The desired new collateral ratio (scaled by 1e18).
* @return _maxBaseIn The amount of base token needed (dn).
* @return _maxXTokenMintable The amount of leveraged token (xToken) that can be minted (dx).
*/
function maxMintableXToken(
SwapState memory state,
uint256 _newCollateralRatio
) internal pure returns (uint256 _maxBaseIn, uint256 _maxXTokenMintable) {
uint256 _baseVal = state.baseSupply * state.baseNav * PRECISION;
uint256 _aVal = _newCollateralRatio * state.aSupply * state.aNav;
if (_aVal > _baseVal) {
uint256 _delta = _aVal - _baseVal;
// dn = delta / (v * PRECISION)
_maxBaseIn = _delta / (state.baseNav * (PRECISION));
// dx = delta / (vx * PRECISION)
_maxXTokenMintable = _delta / (state.xNav * (PRECISION));
}
}
/**
* @notice Compute how many stable coin tokens (aToken) can be redeemed and how much base token (dn) is released
* to reach the new collateral ratio if the current ratio is greater than the target.
*
* Equations:
* Initially:
* n * v = nf * vf + nx * vx
*
* After removing dn base tokens and df stable coin tokens:
* (n - dn)*v = (nf - df)*vf + nx*vx
*
* The new collateral ratio:
* ((n - dn)*v) / ((nf - df)*vf) = ncr
*
* Solve these for df and dn:
* df = (ncr * nf * vf - n * v) / ((ncr - 1)*vf)
* dn = (ncr * nf * vf - n * v) / ((ncr - 1)*v)
*
* Here, df and dn now represent how many stable coin tokens and base tokens must be removed (redeemed)
* to achieve ncr. If df > 0, it means we should redeem that many aTokens; if dn > 0, that many base tokens
* can be released.
*
* @dev If the current collateral ratio <= ncr, no redemption is needed, so return 0.
*
* @param state Current state.
* @param _newCollateralRatio Desired collateral ratio (scaled by 1e18).
* @return _maxBaseOut The amount of base token released (dn).
* @return _maxATokenRedeemable The amount of stable coin token that can be redeemed (df).
*/
function maxRedeemableAToken(
SwapState memory state,
uint256 _newCollateralRatio
) internal pure returns (uint256 _maxBaseOut, uint256 _maxATokenRedeemable) {
uint256 _baseVal = state.baseSupply * (state.baseNav) * (PRECISION);
uint256 _aVal = _newCollateralRatio * (state.aSupply) * (PRECISION);
if (_aVal > _baseVal) {
uint256 _delta = _aVal - _baseVal;
// Adjust ncr to (ncr - 1)*PRECISION
_newCollateralRatio = _newCollateralRatio - (PRECISION);
// df = delta / ((ncr - 1)*vf)
_maxATokenRedeemable = _delta / (_newCollateralRatio * (state.aNav));
// dn = delta / ((ncr - 1)*v)
_maxBaseOut = _delta / (_newCollateralRatio * (state.baseNav));
} else {
_maxBaseOut = 0;
_maxATokenRedeemable = 0;
}
}
/**
* @notice Compute how many leveraged tokens (xToken) can be redeemed and how much base token is released
* if the current collateral ratio is greater than the target.
*
* Equations:
* n * v = nf * vf + nx * vx
*
* After removing dn base tokens and dx leveraged tokens:
* (n - dn)*v = nf*vf + (nx - dx)*vx
*
* The new collateral ratio:
* ((n - dn)*v) / (nf*vf) = ncr
*
* Solve for dn and dx:
* dn = (n * v - ncr * nf * vf) / v
* dx = (n * v - ncr * nf * vf) / vx
*
* If dn > 0, that means base tokens can be redeemed; if dx > 0, that many xTokens can be redeemed.
*
* @dev If current collateral ratio <= ncr, return 0.
*
* @param state Current state.
* @param _newCollateralRatio Desired collateral ratio (scaled by 1e18).
* @return _maxBaseOut The base token released (dn).
* @return _maxXTokenRedeemable The leveraged tokens (xToken) redeemable (dx).
*/
function maxRedeemableXToken(
SwapState memory state,
uint256 _newCollateralRatio
) internal pure returns (uint256 _maxBaseOut, uint256 _maxXTokenRedeemable) {
uint256 _baseVal = state.baseSupply * (state.baseNav) * (PRECISION);
uint256 _aVal = _newCollateralRatio * (state.aSupply) * (state.aNav);
if (_baseVal > _aVal) {
uint256 _delta = _baseVal - _aVal;
// dx = delta / (vx * PRECISION)
_maxXTokenRedeemable = _delta / (state.xNav * (PRECISION));
// dn = delta / (v * PRECISION)
_maxBaseOut = _delta / (state.baseNav * (PRECISION));
} else {
_maxBaseOut = 0;
_maxXTokenRedeemable = 0;
}
}
/**
* @notice Mint stable coin tokens (aToken) given a certain amount of base tokens (dn).
*
* Equations:
* n * v = nf * vf + nx * vx
* After adding dn base and df fraction tokens:
* (n + dn)*v = (nf + df)*vf + nx*vx
*
* Solve for df given dn:
* df = (dn * v) / vf
*
* @param state Current state.
* @param _baseIn Amount of base token supplied.
* @return _aTokenOut Amount of stable coin token minted (df).
*/
function mintAToken(SwapState memory state, uint256 _baseIn) internal pure returns (uint256 _aTokenOut) {
// df = (dn * v) / vf
_aTokenOut = (_baseIn * state.baseNav) / state.aNav;
}
/**
* @notice Mint leveraged tokens (xToken) given a certain amount of base tokens (dn).
*
* Equations:
* n * v = nf * vf + nx * vx
* After adding dn base tokens and dx leveraged tokens:
* (n + dn)*v = nf*vf + (nx + dx)*vx
*
* Solve for dx:
* dx = (dn * v * nx) / (n * v - nf * vf)
*
* @param state Current state.
* @param _baseIn Amount of base token supplied.
* @return _xTokenOut Amount of leveraged token minted (dx).
*/
function mintXToken(SwapState memory state, uint256 _baseIn) internal pure returns (uint256 _xTokenOut) {
// dx = (dn * v * nx) / (n * v - nf * vf)
_xTokenOut = _baseIn * state.baseNav * state.xSupply;
_xTokenOut = _xTokenOut / (state.baseSupply * state.baseNav - state.aSupply * state.aNav);
}
/**
* @notice Redeem base tokens by supplying stable coin tokens (aToken) and/or leveraged tokens (xToken).
*
* Equations:
* n * v = nf * vf + nx * vx
* After removing df fraction tokens and dx leveraged tokens:
* (n - dn)*v = (nf - df)*vf + (nx - dx)*vx
*
* The amount of baseOut (dn*v) depends on how many fraction and leveraged tokens are provided.
*
* If xSupply = 0 (no leveraged tokens):
* baseOut = (aTokenIn * vf) / v
*
* If xSupply > 0:
* baseOut = [ (aTokenIn * vf) + (xTokenIn * (n*v - nf*vf) / nx ) ] / v
*
* @param state Current state.
* @param _aTokenIn stable coin tokens supplied.
* @param _xTokenIn Leveraged tokens supplied.
* @return _baseOut Amount of base token redeemed.
*/
function redeem(SwapState memory state, uint256 _aTokenIn, uint256 _xTokenIn) internal pure returns (uint256 _baseOut) {
uint256 _xVal = state.baseSupply * state.baseNav - state.aSupply * state.aNav;
if (state.xSupply == 0) {
_baseOut = (_aTokenIn * state.aNav) / state.baseNav;
} else {
_baseOut = _aTokenIn * state.aNav;
_baseOut += (_xTokenIn * _xVal) / state.xSupply;
_baseOut /= state.baseNav;
}
}
/**
* @notice Compute the current leverage ratio for the xToken.
*
* Define:
* rho = (aSupply * aNav) / (baseSupply * baseTwapNav)
*
* When beta = false, leverage ratio = 1 / (1 - rho)
* If under-collateralized (rho >= 1), leverage ratio = MAX_LEVERAGE_RATIO
*
* @param state Current state.
* @return ratio Current leverage ratio.
*/
function leverageRatio(SwapState memory state) internal pure returns (uint256 ratio) {
if (state.beta) return PRECISION;
if(state.baseSupply == 0 || state.baseNav == 0 || state.baseTwapNav == 0) return 0;
// rho = (aSupply * aNav * PRECISION) / (baseSupply * baseTwapNav)
uint256 rho = (state.aSupply * state.aNav * PRECISION) / (state.baseSupply * state.baseTwapNav);
if (rho >= PRECISION) {
// Under-collateralized
ratio = MAX_LEVERAGE_RATIO;
} else {
// ratio = 1 / (1 - rho)
ratio = (PRECISION * PRECISION) / (PRECISION - rho);
if (ratio > MAX_LEVERAGE_RATIO) ratio = MAX_LEVERAGE_RATIO;
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
import { GroupId } from "../types/GroupId.sol";
// solhint-disable
/// @title Library for reverting with custom errors efficiently
/// @notice Contains functions for reverting with custom errors with different argument types efficiently
/// @dev To use this library, declare `using CustomRevert for bytes4;` and replace `revert CustomError()` with
/// `CustomError.selector.revertWith()`
/// @dev The functions may tamper with the free memory pointer but it is fine since the call context is exited immediately
library CustomRevert {
/// @dev Reverts with the selector of a custom error in the scratch space
function revertWith(bytes4 selector) internal pure {
assembly("memory-safe") {
mstore(0, selector)
revert(0, 0x04)
}
}
/// @dev Reverts with a custom error with an address argument in the scratch space
function revertWith(bytes4 selector, address addr) internal pure {
assembly("memory-safe") {
mstore(0, selector)
mstore(0x04, and(addr, 0xffffffffffffffffffffffffffffffffffffffff))
revert(0, 0x24)
}
}
/// @dev Reverts with a custom error with an int24 argument in the scratch space
function revertWith(bytes4 selector, int24 value) internal pure {
assembly("memory-safe") {
mstore(0, selector)
mstore(0x04, signextend(2, value))
revert(0, 0x24)
}
}
/// @dev Reverts with a custom error with a uint160 argument in the scratch space
function revertWith(bytes4 selector, uint160 value) internal pure {
assembly("memory-safe") {
mstore(0, selector)
mstore(0x04, and(value, 0xffffffffffffffffffffffffffffffffffffffff))
revert(0, 0x24)
}
}
/// @dev Reverts with a custom error with two int24 arguments
function revertWith(bytes4 selector, int24 value1, int24 value2) internal pure {
assembly("memory-safe") {
let fmp := mload(0x40)
mstore(fmp, selector)
mstore(add(fmp, 0x04), signextend(2, value1))
mstore(add(fmp, 0x24), signextend(2, value2))
revert(fmp, 0x44)
}
}
/// @dev Reverts with a custom error with two uint160 arguments
function revertWith(bytes4 selector, uint160 value1, uint160 value2) internal pure {
assembly("memory-safe") {
let fmp := mload(0x40)
mstore(fmp, selector)
mstore(add(fmp, 0x04), and(value1, 0xffffffffffffffffffffffffffffffffffffffff))
mstore(add(fmp, 0x24), and(value2, 0xffffffffffffffffffffffffffffffffffffffff))
revert(fmp, 0x44)
}
}
/// @dev Reverts with a custom error with two address arguments
function revertWith(bytes4 selector, address value1, address value2) internal pure {
assembly("memory-safe") {
mstore(0, selector)
mstore(0x04, and(value1, 0xffffffffffffffffffffffffffffffffffffffff))
mstore(0x24, and(value2, 0xffffffffffffffffffffffffffffffffffffffff))
revert(0, 0x44)
}
}
/// @dev Reverts with a custom error with a bytes32 argument in the scratch space
function revertWith(bytes4 selector, bytes32 value) internal pure {
assembly("memory-safe") {
mstore(0, selector)
mstore(0x04, value)
revert(0, 0x24)
}
}
/// @dev Reverts with a custom error with a bytes32 argument in the scratch space
function revertWith(bytes4 selector, GroupId value) internal pure {
bytes32 valueBytes = GroupId.unwrap(value);
assembly("memory-safe") {
mstore(0, selector)
mstore(0x04, valueBytes)
revert(0, 0x24)
}
}
/// @dev Reverts with a custom error with a bytes32 and an address argument
function revertWith(bytes4 selector, GroupId value, address addr) internal pure {
bytes32 valueBytes = GroupId.unwrap(value);
assembly("memory-safe") {
mstore(0x00, selector)
mstore(0x04, valueBytes)
mstore(0x24, and(addr, 0xffffffffffffffffffffffffffffffffffffffff))
revert(0x00, 0x44)
}
}
/// @dev Reverts with a custom error with a bytes32, address, and uint256 arguments
function revertWith(bytes4 selector, GroupId value, address addr, uint256 amount) internal pure {
bytes32 valueBytes = GroupId.unwrap(value);
assembly("memory-safe") {
mstore(0x00, selector)
mstore(0x04, valueBytes)
mstore(0x24, and(addr, 0xffffffffffffffffffffffffffffffffffffffff))
mstore(0x44, amount)
revert(0x00, 0x64)
}
}
/// @notice bubble up the revert message returned by a call and revert with the selector provided
/// @dev this function should only be used with custom errors of the type `CustomError(address target, bytes revertReason)`
function bubbleUpAndRevertWith(bytes4 selector, address addr) internal pure {
assembly("memory-safe") {
let size := returndatasize()
let fmp := mload(0x40)
// Encode selector, address, offset, size, data
mstore(fmp, selector)
mstore(add(fmp, 0x04), addr)
mstore(add(fmp, 0x24), 0x40)
mstore(add(fmp, 0x44), size)
returndatacopy(add(fmp, 0x64), 0, size)
// Ensure the size is a multiple of 32 bytes
let encodedSize := add(0x64, mul(div(add(size, 31), 32), 32))
revert(fmp, encodedSize)
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
import { ExponentialMovingAverageV8 } from "../libs/math/ExponentialMovingAverageV8.sol";
library DTreasury {
using ExponentialMovingAverageV8 for ExponentialMovingAverageV8.EMAStorage;
struct GroupUpdateParams {
uint256 baseTokenCaps;
uint256 baseIn;
bool beta;
}
struct TreasuryState {
ExponentialMovingAverageV8.EMAStorage emaLeverageRatio;
uint256 totalBaseTokens;
uint256 baseTokenCaps;
uint256 lastSettlementTimestamp;
uint256 baseTokenPrice;
bool inited;
uint256 strategyUnderlying;
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
import { Currency } from "./Currency.sol";
import { DTokenRegistry } from "../declarations/DTokenRegistry.sol";
import { Address } from "../types/Address.sol";
// Enums representing different fee models that can be applied.
enum OperationTypes {
OP_TYPE_MINT_VT,
OP_TYPE_MINT_YT,
OP_TYPE_REDEEM_VT,
OP_TYPE_REDEEM_YT
}
enum FeeModel {
NONE, // No fees.
MANAGEMENT_FEE, // Management fee model.
VARIABLE_FUNDING_FEE, // Fee that varies based on funding.
FIXED_FUNDING_FEE, // Fixed fee for funding.
CURATED_PAIRS_FEE, // Curated pairs fee model.
BLANK_FEE // Blank fee model.
}
// Information about acceptable collaterals
struct CollateralInfo {
Currency token; // Token address for collateral
uint8 decimals; // Decimals for the collateral token
uint256 minAmount; // Minimum amount for both usage minting and redeeming (as desired token)
uint256 maxAmount; // Maximum amount for both usage minting and redeeming (as desired token)
}
// DefaultFeeParams defines the basic fee structure with base, min, and max fees.
struct DefaultFeeParams {
uint24 baseFee; // The base fee applied when no flags are present.
uint24 minFee; // The minimum fee allowed for dynamic fee models.
uint24 maxFee; // The maximum fee allowed.
}
// FeeParams defines specific fees for different token types and operations.
struct FeeParams {
uint24 mintFeeVT; // Minting fee for volatile tokens (VT).
uint24 redeemFeeVT; // Redemption fee for volatile tokens (VT).
uint24 mintFeeYT; // Minting fee for yield tokens (YT).
uint24 redeemFeeYT; // Redemption fee for yield tokens (YT).
uint24 stabilityMintFeeVT; // Stability minting fee for volatile tokens (VT).
uint24 stabilityMintFeeYT; // Stability minting fee for yield tokens (YT).
uint24 stabilityRedeemFeeVT; // Stability redemption fee for volatile tokens (VT).
uint24 stabilityRedeemFeeYT; // Stability redemption fee for yield tokens (YT).
uint24 yieldFeeVT; // Yield fee for volatile tokens (VT).
uint24 yieldFeeYT; // Yield fee for yield tokens (YT).
uint24 protocolFee; // Protocol fee.
}
// FeePermissions define the flexibility of the fee model (dynamic fees, delegation).
struct FeePermissions {
bool isDynamic; // Whether the fee model is dynamic.
bool allowDelegation; // Whether fee delegation is allowed.
}
struct GroupState {
DTokenRegistry.GroupCore core;
DTokenRegistry.GroupExtended extended;
bytes32 feesPacked;
CollateralInfo[] acceptableCollaterals;
Address hookContract;
bytes32 groupSettings;
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
import { DTokenRegistry } from "../declarations/DTokenRegistry.sol";
import { WordCodec } from "../libs/WordCodec.sol";
import { Address, AddressLibrary } from "../types/Address.sol";
import { Currency, CurrencyLibrary } from "../types/Currency.sol";
import { DefaultFeeParams, FeeParams, FeePermissions, CollateralInfo, GroupState } from "../types/CommonTypes.sol";
import { ITokenRegistry } from "../interfaces/ITokenRegistry.sol";
/**
* @title GroupStateHelper
* @notice Library for managing group settings and fee parameters in a space-efficient manner using bit packing
* @dev Uses WordCodec for bit manipulation operations to store and retrieve various parameters
*/
type GroupSettings is bytes32;
library GroupStateHelper {
using WordCodec for bytes32;
using CurrencyLibrary for Currency;
using AddressLibrary for address;
// Group Settings bit layout (total 256 bits):
uint256 private constant A_TOKEN_DECIMALS_OFFSET = 0; // [0-7]: aToken decimals (8 bits)
uint256 private constant X_TOKEN_DECIMALS_OFFSET = 8; // [8-15]: xToken decimals (8 bits)
uint256 private constant BASE_TOKEN_DECIMALS_OFFSET = 16; // [16-23]: baseToken decimals (8 bits)
uint256 private constant YIELD_BEARING_TOKEN_DECIMALS_OFFSET = 24; // [24-31]: yieldBearingToken decimals (8 bits)
uint256 private constant HOOK_PERMISSIONS_OFFSET = 32; // [32-47]: hook permissions (16 bits)
uint256 private constant FEE_PERMISSIONS_OFFSET = 48; // [48-49]: fee permissions (2 bits)
uint256 private constant FEE_MODEL_OFFSET = 50; // [50-57]: fee model (8 bits)
uint256 private constant WRAPPING_REQUIRED_OFFSET = 58; // [58]: wrapping required (1 bit)
uint256 private constant STABILITY_RATIO_OFFSET = 59; // [59-154]: stability ratio (96 bits)
uint256 private constant STABILITY_TRIGGER_RATIO_OFFSET = 155; // [155-250]: stability triggering ratio (96 bits)
// Fee Parameters bit layout (total 256 bits):
uint256 private constant MAX_FEE_OFFSET = 0; // [0-15]: max fee (16 bits)
uint256 private constant MIN_FEE_OFFSET = 16; // [16-31]: min fee (16 bits)
uint256 private constant BASE_FEE_OFFSET = 32; // [32-47]: base fee (16 bits)
uint256 private constant YIELD_FEE_VT_OFFSET = 48; // [48-63]: yield fee VT (16 bits)
uint256 private constant YIELD_FEE_YT_OFFSET = 64; // [64-79]: yield fee YT (16 bits)
uint256 private constant REDEEM_FEE_YT_OFFSET = 80; // [80-103]: redeem fee YT (24 bits)
uint256 private constant MINT_FEE_YT_OFFSET = 104; // [104-127]: mint fee YT (24 bits)
uint256 private constant REDEEM_FEE_VT_OFFSET = 128; // [128-151]: redeem fee VT (24 bits)
uint256 private constant MINT_FEE_VT_OFFSET = 152; // [152-175]: mint fee VT (24 bits)
uint256 private constant STABILITY_MINT_FEE_VT_OFFSET = 176; // [176-191]: stability mint fee VT (16 bits)
uint256 private constant STABILITY_MINT_FEE_YT_OFFSET = 192; // [192-207]: stability mint fee YT (16 bits)
uint256 private constant STABILITY_REDEEM_FEE_VT_OFFSET = 208; // [208-223]: stability redeem fee VT (16 bits)
uint256 private constant STABILITY_REDEEM_FEE_YT_OFFSET = 224; // [224-239]: stability redeem fee YT (16 bits)
uint256 private constant PROTOCOL_FEE_OFFSET = 240; // [240-255]: protocol fee (16 bits)
// Common bit lengths
uint256 private constant LENGTH_1BIT = 1;
uint256 private constant LENGTH_2BITS = 2;
uint256 private constant LENGTH_8BITS = 8;
uint256 private constant LENGTH_16BITS = 16;
uint256 private constant LENGTH_24BITS = 24;
uint256 private constant LENGTH_96BITS = 96;
/**
* @notice Retrieves the aToken decimals from group settings
* @param groupSettings The packed group settings
* @return The aToken decimals
*/
function getATokenDecimals(GroupSettings groupSettings) internal pure returns (uint8) {
return uint8(GroupSettings.unwrap(groupSettings).decodeUint(A_TOKEN_DECIMALS_OFFSET, LENGTH_8BITS));
}
/**
* @notice Retrieves the xToken decimals from group settings
* @param groupSettings The packed group settings
* @return The xToken decimals
*/
function getXTokenDecimals(GroupSettings groupSettings) internal pure returns (uint8) {
return uint8(GroupSettings.unwrap(groupSettings).decodeUint(X_TOKEN_DECIMALS_OFFSET, LENGTH_8BITS));
}
/**
* @notice Retrieves the baseToken decimals from group settings
* @param groupSettings The packed group settings
* @return The baseToken decimals
*/
function getBaseTokenDecimals(GroupSettings groupSettings) internal pure returns (uint8) {
return uint8(GroupSettings.unwrap(groupSettings).decodeUint(BASE_TOKEN_DECIMALS_OFFSET, LENGTH_8BITS));
}
/**
* @notice Retrieves the yieldBearingToken decimals from group settings
* @param groupSettings The packed group settings
* @return The yieldBearingToken decimals
*/
function getYieldBearingTokenDecimals(GroupSettings groupSettings) internal pure returns (uint8) {
return uint8(GroupSettings.unwrap(groupSettings).decodeUint(YIELD_BEARING_TOKEN_DECIMALS_OFFSET, LENGTH_8BITS));
}
/**
* @notice Retrieves the hook permissions from group settings
* @param groupSettings The packed group settings
* @return The hook permissions
*/
function getHookPermissions(GroupSettings groupSettings) internal pure returns (uint16) {
return uint16(GroupSettings.unwrap(groupSettings).decodeUint(HOOK_PERMISSIONS_OFFSET, LENGTH_16BITS));
}
/**
* @notice Retrieves the fee permissions from group settings
* @param groupSettings The packed group settings
* @return FeePermissions struct containing permission flags
*/
function getFeePermissions(GroupSettings groupSettings) internal pure returns (FeePermissions memory) {
bytes32 raw = GroupSettings.unwrap(groupSettings);
return
FeePermissions({ isDynamic: raw.decodeBool(FEE_PERMISSIONS_OFFSET + 1), allowDelegation: raw.decodeBool(FEE_PERMISSIONS_OFFSET) });
}
/**
* @notice Retrieves the fee model from group settings
* @param groupSettings The packed group settings
* @return The fee model
*/
function getFeeModel(GroupSettings groupSettings) internal pure returns (uint8) {
return uint8(GroupSettings.unwrap(groupSettings).decodeUint(FEE_MODEL_OFFSET, LENGTH_8BITS));
}
/**
* @notice Checks if wrapping is required from group settings
* @param groupSettings The packed group settings
* @return True if wrapping is required, false otherwise
*/
function isWrappingRequired(GroupSettings groupSettings) internal pure returns (bool) {
return GroupSettings.unwrap(groupSettings).decodeBool(WRAPPING_REQUIRED_OFFSET);
}
/**
* @notice Retrieves the stability ratio from group settings
* @param groupSettings The packed group settings
* @return The stability ratio (scaled by 1e18)
*/
function getStabilityRatio(GroupSettings groupSettings) internal pure returns (uint96) {
return uint96(GroupSettings.unwrap(groupSettings).decodeUint(STABILITY_RATIO_OFFSET, LENGTH_96BITS));
}
/**
* @notice Retrieves the stability triggering ratio from group settings
* @param groupSettings The packed group settings
* @return The stability triggering ratio (scaled by 1e18)
*/
function getStabilityTriggeringRatio(GroupSettings groupSettings) internal pure returns (uint96) {
return uint96(GroupSettings.unwrap(groupSettings).decodeUint(STABILITY_TRIGGER_RATIO_OFFSET, LENGTH_96BITS));
}
/**
* @notice Sets the aToken decimals in group settings
* @param groupSettings Current group settings
* @param decimals The new aToken decimals
* @return Updated group settings
*/
function setATokenDecimals(GroupSettings groupSettings, uint8 decimals) internal pure returns (GroupSettings) {
bytes32 updated = GroupSettings.unwrap(groupSettings).insertUint(uint256(decimals), A_TOKEN_DECIMALS_OFFSET, LENGTH_8BITS);
return GroupSettings.wrap(updated);
}
/**
* @notice Sets the xToken decimals in group settings
* @param groupSettings Current group settings
* @param decimals The new xToken decimals
* @return Updated group settings
*/
function setXTokenDecimals(GroupSettings groupSettings, uint8 decimals) internal pure returns (GroupSettings) {
bytes32 updated = GroupSettings.unwrap(groupSettings).insertUint(uint256(decimals), X_TOKEN_DECIMALS_OFFSET, LENGTH_8BITS);
return GroupSettings.wrap(updated);
}
/**
* @notice Sets the baseToken decimals in group settings
* @param groupSettings Current group settings
* @param decimals The new baseToken decimals
* @return Updated group settings
*/
function setBaseTokenDecimals(GroupSettings groupSettings, uint8 decimals) internal pure returns (GroupSettings) {
bytes32 updated = GroupSettings.unwrap(groupSettings).insertUint(uint256(decimals), BASE_TOKEN_DECIMALS_OFFSET, LENGTH_8BITS);
return GroupSettings.wrap(updated);
}
/**
* @notice Sets the yieldBearingToken decimals in group settings
* @param groupSettings Current group settings
* @param decimals The new yieldBearingToken decimals
* @return Updated group settings
*/
function setYieldBearingTokenDecimals(GroupSettings groupSettings, uint8 decimals) internal pure returns (GroupSettings) {
bytes32 updated = GroupSettings.unwrap(groupSettings).insertUint(uint256(decimals), YIELD_BEARING_TOKEN_DECIMALS_OFFSET, LENGTH_8BITS);
return GroupSettings.wrap(updated);
}
/**
* @notice Sets the hook permissions in group settings
* @param groupSettings Current group settings
* @param hookPermissions The new hook permissions
* @return Updated group settings
*/
function setHookPermissions(GroupSettings groupSettings, uint16 hookPermissions) internal pure returns (GroupSettings) {
bytes32 updated = GroupSettings.unwrap(groupSettings).insertUint(uint256(hookPermissions), HOOK_PERMISSIONS_OFFSET, LENGTH_16BITS);
return GroupSettings.wrap(updated);
}
/**
* @notice Sets the fee permissions in group settings
* @param groupSettings Current group settings
* @param permissions The new fee permissions
* @return Updated group settings
*/
function setFeePermissions(GroupSettings groupSettings, FeePermissions memory permissions) internal pure returns (GroupSettings) {
bytes32 raw = GroupSettings.unwrap(groupSettings);
raw = raw.insertBool(permissions.allowDelegation, FEE_PERMISSIONS_OFFSET);
raw = raw.insertBool(permissions.isDynamic, FEE_PERMISSIONS_OFFSET + 1);
return GroupSettings.wrap(raw);
}
/**
* @notice Sets the fee model in group settings
* @param groupSettings Current group settings
* @param feeModel The new fee model
* @return Updated group settings
*/
function setFeeModel(GroupSettings groupSettings, uint8 feeModel) internal pure returns (GroupSettings) {
bytes32 updated = GroupSettings.unwrap(groupSettings).insertUint(uint256(feeModel), FEE_MODEL_OFFSET, LENGTH_8BITS);
return GroupSettings.wrap(updated);
}
/**
* @notice Sets the wrapping required flag in group settings
* @param groupSettings Current group settings
* @param wrappingRequired The new wrapping required flag
* @return Updated group settings
*/
function setWrappingRequired(GroupSettings groupSettings, bool wrappingRequired) internal pure returns (GroupSettings) {
bytes32 updated = GroupSettings.unwrap(groupSettings).insertBool(wrappingRequired, WRAPPING_REQUIRED_OFFSET);
return GroupSettings.wrap(updated);
}
/**
* @notice Sets the stability ratio in group settings
* @param groupSettings Current group settings
* @param stabilityRatio The new stability ratio (scaled by 1e18)
* @return Updated group settings
*/
function setStabilityRatio(GroupSettings groupSettings, uint96 stabilityRatio) internal pure returns (GroupSettings) {
bytes32 updated = GroupSettings.unwrap(groupSettings).insertUint(uint256(stabilityRatio), STABILITY_RATIO_OFFSET, LENGTH_96BITS);
return GroupSettings.wrap(updated);
}
/**
* @notice Sets the stability triggering ratio in group settings
* @param groupSettings Current group settings
* @param stabilityTriggeringRatio The new stability triggering ratio (scaled by 1e18)
* @return Updated group settings
*/
function setStabilityTriggeringRatio(GroupSettings groupSettings, uint96 stabilityTriggeringRatio) internal pure returns (GroupSettings) {
bytes32 updated = GroupSettings.unwrap(groupSettings).insertUint(
uint256(stabilityTriggeringRatio),
STABILITY_TRIGGER_RATIO_OFFSET,
LENGTH_96BITS
);
return GroupSettings.wrap(updated);
}
/**
* @notice Retrieves all fee parameters from packed fees
* @param feesPacked The packed fees
* @return FeeParams struct containing all fee parameters
*/
function getFeeParams(bytes32 feesPacked) internal pure returns (FeeParams memory) {
return
FeeParams({
mintFeeVT: uint24(feesPacked.decodeUint(MINT_FEE_VT_OFFSET, LENGTH_24BITS)),
redeemFeeVT: uint24(feesPacked.decodeUint(REDEEM_FEE_VT_OFFSET, LENGTH_24BITS)),
mintFeeYT: uint24(feesPacked.decodeUint(MINT_FEE_YT_OFFSET, LENGTH_24BITS)),
redeemFeeYT: uint24(feesPacked.decodeUint(REDEEM_FEE_YT_OFFSET, LENGTH_24BITS)),
// Upcast 16-bit stability fees to 24-bit
stabilityMintFeeVT: uint24(uint16(feesPacked.decodeUint(STABILITY_MINT_FEE_VT_OFFSET, LENGTH_16BITS))),
stabilityMintFeeYT: uint24(uint16(feesPacked.decodeUint(STABILITY_MINT_FEE_YT_OFFSET, LENGTH_16BITS))),
stabilityRedeemFeeVT: uint24(uint16(feesPacked.decodeUint(STABILITY_REDEEM_FEE_VT_OFFSET, LENGTH_16BITS))),
stabilityRedeemFeeYT: uint24(uint16(feesPacked.decodeUint(STABILITY_REDEEM_FEE_YT_OFFSET, LENGTH_16BITS))),
// Upcast 16-bit yield fees to 24-bit
yieldFeeVT: uint24(uint16(feesPacked.decodeUint(YIELD_FEE_VT_OFFSET, LENGTH_16BITS))),
yieldFeeYT: uint24(uint16(feesPacked.decodeUint(YIELD_FEE_YT_OFFSET, LENGTH_16BITS))),
protocolFee: uint16(feesPacked.decodeUint(PROTOCOL_FEE_OFFSET, LENGTH_16BITS))
});
}
/**
* @notice Retrieves the default fee parameters from packed fees
* @param feesPacked The packed fees
* @return DefaultFeeParams struct containing min, max and base fees
*/
function getDefaultFeeParams(bytes32 feesPacked) internal pure returns (DefaultFeeParams memory) {
return
DefaultFeeParams({
baseFee: uint24(feesPacked.decodeUint(BASE_FEE_OFFSET, LENGTH_16BITS)),
maxFee: uint16(feesPacked.decodeUint(MAX_FEE_OFFSET, LENGTH_16BITS)),
minFee: uint16(feesPacked.decodeUint(MIN_FEE_OFFSET, LENGTH_16BITS))
});
}
/**
* @notice Retrieves the max fee from packed fees
* @param feesPacked The packed fees
* @return The max fee value (24-bit)
*/
function getMaxFee(bytes32 feesPacked) internal pure returns (uint24) {
return uint24(uint16(feesPacked.decodeUint(MAX_FEE_OFFSET, LENGTH_16BITS)));
}
/**
* @notice Retrieves the min fee from packed fees
* @param feesPacked The packed fees
* @return The min fee value (24-bit)
*/
function getMinFee(bytes32 feesPacked) internal pure returns (uint24) {
return uint24(uint16(feesPacked.decodeUint(MIN_FEE_OFFSET, LENGTH_16BITS)));
}
/**
* @notice Retrieves the base fee from packed fees
* @param feesPacked The packed fees
* @return The base fee value (24-bit)
*/
function getBaseFee(bytes32 feesPacked) internal pure returns (uint24) {
return uint24(uint16(feesPacked.decodeUint(BASE_FEE_OFFSET, LENGTH_16BITS)));
}
/**
* @notice Retrieves the yield fee VT from packed fees
* @param feesPacked The packed fees
* @return The yield fee VT value (24-bit)
*/
function getYieldFeeVT(bytes32 feesPacked) internal pure returns (uint24) {
return uint24(uint16(feesPacked.decodeUint(YIELD_FEE_VT_OFFSET, LENGTH_16BITS)));
}
/**
* @notice Retrieves the yield fee YT from packed fees
* @param feesPacked The packed fees
* @return The yield fee YT value (24-bit)
*/
function getYieldFeeYT(bytes32 feesPacked) internal pure returns (uint24) {
return uint24(uint16(feesPacked.decodeUint(YIELD_FEE_YT_OFFSET, LENGTH_16BITS)));
}
/**
* @notice Retrieves the mint fee VT from packed fees
* @param feesPacked The packed fees
* @return The mint fee VT value (24-bit)
*/
function getMintFeeVT(bytes32 feesPacked) internal pure returns (uint24) {
return uint24(feesPacked.decodeUint(MINT_FEE_VT_OFFSET, LENGTH_24BITS));
}
/**
* @notice Retrieves the redeem fee VT from packed fees
* @param feesPacked The packed fees
* @return The redeem fee VT value (24-bit)
*/
function getRedeemFeeVT(bytes32 feesPacked) internal pure returns (uint24) {
return uint24(feesPacked.decodeUint(REDEEM_FEE_VT_OFFSET, LENGTH_24BITS));
}
/**
* @notice Retrieves the mint fee YT from packed fees
* @param feesPacked The packed fees
* @return The mint fee YT value (24-bit)
*/
function getMintFeeYT(bytes32 feesPacked) internal pure returns (uint24) {
return uint24(feesPacked.decodeUint(MINT_FEE_YT_OFFSET, LENGTH_24BITS));
}
/**
* @notice Retrieves the redeem fee YT from packed fees
* @param feesPacked The packed fees
* @return The redeem fee YT value (24-bit)
*/
function getRedeemFeeYT(bytes32 feesPacked) internal pure returns (uint24) {
return uint24(feesPacked.decodeUint(REDEEM_FEE_YT_OFFSET, LENGTH_24BITS));
}
/**
* @notice Retrieves the stability mint fee VT from packed fees
* @param feesPacked The packed fees
* @return The stability mint fee VT value (24-bit)
*/
function getStabilityMintFeeVT(bytes32 feesPacked) internal pure returns (uint24) {
return uint24(uint16(feesPacked.decodeUint(STABILITY_MINT_FEE_VT_OFFSET, LENGTH_16BITS)));
}
/**
* @notice Retrieves the stability mint fee YT from packed fees
* @param feesPacked The packed fees
* @return The stability mint fee YT value (24-bit)
*/
function getStabilityMintFeeYT(bytes32 feesPacked) internal pure returns (uint24) {
return uint24(uint16(feesPacked.decodeUint(STABILITY_MINT_FEE_YT_OFFSET, LENGTH_16BITS)));
}
/**
* @notice Retrieves the stability redeem fee VT from packed fees
* @param feesPacked The packed fees
* @return The stability redeem fee VT value (24-bit)
*/
function getStabilityRedeemFeeVT(bytes32 feesPacked) internal pure returns (uint24) {
return uint24(uint16(feesPacked.decodeUint(STABILITY_REDEEM_FEE_VT_OFFSET, LENGTH_16BITS)));
}
/**
* @notice Retrieves the stability redeem fee YT from packed fees
* @param feesPacked The packed fees
* @return The stability redeem fee YT value (24-bit)
*/
function getStabilityRedeemFeeYT(bytes32 feesPacked) internal pure returns (uint24) {
return uint24(uint16(feesPacked.decodeUint(STABILITY_REDEEM_FEE_YT_OFFSET, LENGTH_16BITS)));
}
/**
* @notice Retrieves the protocol fee from packed fees
* @param feesPacked The packed fees
* @return The protocol fee value (24-bit)
*/
function getProtocolFee(bytes32 feesPacked) internal pure returns (uint24) {
return uint24(uint16(feesPacked.decodeUint(PROTOCOL_FEE_OFFSET, LENGTH_16BITS)));
}
/**
* @notice Sets the max fee in packed fees
* @param feesPacked Current packed fees
* @param maxFee The new max fee value (truncated to 16-bit)
* @return Updated packed fees
*/
function setMaxFee(bytes32 feesPacked, uint24 maxFee) internal pure returns (bytes32) {
return feesPacked.insertUint(uint256(uint16(maxFee)), MAX_FEE_OFFSET, LENGTH_16BITS);
}
/**
* @notice Sets the min fee in packed fees
* @param feesPacked Current packed fees
* @param minFee The new min fee value (truncated to 16-bit)
* @return Updated packed fees
*/
function setMinFee(bytes32 feesPacked, uint24 minFee) internal pure returns (bytes32) {
return feesPacked.insertUint(uint256(uint16(minFee)), MIN_FEE_OFFSET, LENGTH_16BITS);
}
/**
* @notice Sets the base fee in packed fees
* @param feesPacked Current packed fees
* @param baseFee The new base fee value (truncated to 16-bit)
* @return Updated packed fees
*/
function setBaseFee(bytes32 feesPacked, uint24 baseFee) internal pure returns (bytes32) {
return feesPacked.insertUint(uint256(uint16(baseFee)), BASE_FEE_OFFSET, LENGTH_16BITS);
}
/**
* @notice Sets the yield fee VT in packed fees
* @param feesPacked Current packed fees
* @param yieldFeeVT The new yield fee VT value (truncated to 16-bit)
* @return Updated packed fees
*/
function setYieldFeeVT(bytes32 feesPacked, uint24 yieldFeeVT) internal pure returns (bytes32) {
return feesPacked.insertUint(uint256(uint16(yieldFeeVT)), YIELD_FEE_VT_OFFSET, LENGTH_16BITS);
}
/**
* @notice Sets the yield fee YT in packed fees
* @param feesPacked Current packed fees
* @param yieldFeeYT The new yield fee YT value (truncated to 16-bit)
* @return Updated packed fees
*/
function setYieldFeeYT(bytes32 feesPacked, uint24 yieldFeeYT) internal pure returns (bytes32) {
return feesPacked.insertUint(uint256(uint16(yieldFeeYT)), YIELD_FEE_YT_OFFSET, LENGTH_16BITS);
}
/**
* @notice Sets the mint fee VT in packed fees
* @param feesPacked Current packed fees
* @param mintFeeVT The new mint fee VT value
* @return Updated packed fees
*/
function setMintFeeVT(bytes32 feesPacked, uint24 mintFeeVT) internal pure returns (bytes32) {
return feesPacked.insertUint(uint256(mintFeeVT), MINT_FEE_VT_OFFSET, LENGTH_24BITS);
}
/**
* @notice Sets the redeem fee VT in packed fees
* @param feesPacked Current packed fees
* @param redeemFeeVT The new redeem fee VT value
* @return Updated packed fees
*/
function setRedeemFeeVT(bytes32 feesPacked, uint24 redeemFeeVT) internal pure returns (bytes32) {
return feesPacked.insertUint(uint256(redeemFeeVT), REDEEM_FEE_VT_OFFSET, LENGTH_24BITS);
}
/**
* @notice Sets the mint fee YT in packed fees
* @param feesPacked Current packed fees
* @param mintFeeYT The new mint fee YT value
* @return Updated packed fees
*/
function setMintFeeYT(bytes32 feesPacked, uint24 mintFeeYT) internal pure returns (bytes32) {
return feesPacked.insertUint(uint256(mintFeeYT), MINT_FEE_YT_OFFSET, LENGTH_24BITS);
}
/**
* @notice Sets the redeem fee YT in packed fees
* @param feesPacked Current packed fees
* @param redeemFeeYT The new redeem fee YT value
* @return Updated packed fees
*/
function setRedeemFeeYT(bytes32 feesPacked, uint24 redeemFeeYT) internal pure returns (bytes32) {
return feesPacked.insertUint(uint256(redeemFeeYT), REDEEM_FEE_YT_OFFSET, LENGTH_24BITS);
}
/**
* @notice Sets the stability mint fee VT in packed fees
* @param feesPacked Current packed fees
* @param stabilityMintFeeVT The new stability mint fee VT value (truncated to 16-bit)
* @return Updated packed fees
*/
function setStabilityMintFeeVT(bytes32 feesPacked, uint24 stabilityMintFeeVT) internal pure returns (bytes32) {
return feesPacked.insertUint(uint256(uint16(stabilityMintFeeVT)), STABILITY_MINT_FEE_VT_OFFSET, LENGTH_16BITS);
}
/**
* @notice Sets the stability mint fee YT in packed fees
* @param feesPacked Current packed fees
* @param stabilityMintFeeYT The new stability mint fee YT value (truncated to 16-bit)
* @return Updated packed fees
*/
function setStabilityMintFeeYT(bytes32 feesPacked, uint24 stabilityMintFeeYT) internal pure returns (bytes32) {
return feesPacked.insertUint(uint256(uint16(stabilityMintFeeYT)), STABILITY_MINT_FEE_YT_OFFSET, LENGTH_16BITS);
}
/**
* @notice Sets the stability redeem fee VT in packed fees
* @param feesPacked Current packed fees
* @param stabilityRedeemFeeVT The new stability redeem fee VT value (truncated to 16-bit)
* @return Updated packed fees
*/
function setStabilityRedeemFeeVT(bytes32 feesPacked, uint24 stabilityRedeemFeeVT) internal pure returns (bytes32) {
return feesPacked.insertUint(uint256(uint16(stabilityRedeemFeeVT)), STABILITY_REDEEM_FEE_VT_OFFSET, LENGTH_16BITS);
}
/**
* @notice Sets the stability redeem fee YT in packed fees
* @param feesPacked Current packed fees
* @param stabilityRedeemFeeYT The new stability redeem fee YT value (truncated to 16-bit)
* @return Updated packed fees
*/
function setStabilityRedeemFeeYT(bytes32 feesPacked, uint24 stabilityRedeemFeeYT) internal pure returns (bytes32) {
return feesPacked.insertUint(uint256(uint16(stabilityRedeemFeeYT)), STABILITY_REDEEM_FEE_YT_OFFSET, LENGTH_16BITS);
}
/**
* @notice Sets the protocol fee in packed fees
* @param feesPacked Current packed fees
* @param protocolFee The new protocol fee value (truncated to 16-bit)
* @return Updated packed fees
*/
function setProtocolFee(bytes32 feesPacked, uint24 protocolFee) internal pure returns (bytes32) {
return feesPacked.insertUint(uint256(uint16(protocolFee)), PROTOCOL_FEE_OFFSET, LENGTH_16BITS);
}
// Group Core Components Getters
/**
* @notice Retrieves the hook contract from group state
* @param groupState The group state
* @return The hook contract address wrapper
*/
function getHookContract(GroupState memory groupState) internal pure returns (Address) {
return groupState.hookContract;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)
pragma solidity ^0.8.0;
/**
* @dev External interface of AccessControl declared to support ERC165 detection.
*/
interface IAccessControlUpgradeable {
/**
* @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
*
* `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
* {RoleAdminChanged} not being emitted signaling this.
*
* _Available since v3.1._
*/
event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
/**
* @dev Emitted when `account` is granted `role`.
*
* `sender` is the account that originated the contract call, an admin role
* bearer except when using {AccessControl-_setupRole}.
*/
event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Emitted when `account` is revoked `role`.
*
* `sender` is the account that originated the contract call:
* - if using `revokeRole`, it is the admin role bearer
* - if using `renounceRole`, it is the role bearer (i.e. `account`)
*/
event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) external view returns (bool);
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {AccessControl-_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) external view returns (bytes32);
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function grantRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function revokeRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been granted `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `account`.
*/
function renounceRole(bytes32 role, address account) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol)
pragma solidity ^0.8.0;
import {Initializable} from "../proxy/utils/Initializable.sol";
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract ContextUpgradeable is Initializable {
function __Context_init() internal onlyInitializing {
}
function __Context_init_unchained() internal onlyInitializing {
}
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[50] private __gap;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/MathUpgradeable.sol";
import "./math/SignedMathUpgradeable.sol";
/**
* @dev String operations.
*/
library StringsUpgradeable {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = MathUpgradeable.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toString(int256 value) internal pure returns (string memory) {
return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMathUpgradeable.abs(value))));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, MathUpgradeable.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return keccak256(bytes(a)) == keccak256(bytes(b));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
pragma solidity ^0.8.0;
import "./IERC165Upgradeable.sol";
import {Initializable} from "../../proxy/utils/Initializable.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*
* Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
*/
abstract contract ERC165Upgradeable is Initializable, IERC165Upgradeable {
function __ERC165_init() internal onlyInitializing {
}
function __ERC165_init_unchained() internal onlyInitializing {
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IERC165Upgradeable).interfaceId;
}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[50] private __gap;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol)
pragma solidity ^0.8.2;
import "../../utils/AddressUpgradeable.sol";
/**
* @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
* behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
* external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
* function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
*
* The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
* reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
* case an upgrade adds a module that needs to be initialized.
*
* For example:
*
* [.hljs-theme-light.nopadding]
* ```solidity
* contract MyToken is ERC20Upgradeable {
* function initialize() initializer public {
* __ERC20_init("MyToken", "MTK");
* }
* }
*
* contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
* function initializeV2() reinitializer(2) public {
* __ERC20Permit_init("MyToken");
* }
* }
* ```
*
* TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
* possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
*
* CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
* that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
*
* [CAUTION]
* ====
* Avoid leaving a contract uninitialized.
*
* An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
* contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
* the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
*
* [.hljs-theme-light.nopadding]
* ```
* /// @custom:oz-upgrades-unsafe-allow constructor
* constructor() {
* _disableInitializers();
* }
* ```
* ====
*/
abstract contract Initializable {
/**
* @dev Indicates that the contract has been initialized.
* @custom:oz-retyped-from bool
*/
uint8 private _initialized;
/**
* @dev Indicates that the contract is in the process of being initialized.
*/
bool private _initializing;
/**
* @dev Triggered when the contract has been initialized or reinitialized.
*/
event Initialized(uint8 version);
/**
* @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
* `onlyInitializing` functions can be used to initialize parent contracts.
*
* Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
* constructor.
*
* Emits an {Initialized} event.
*/
modifier initializer() {
bool isTopLevelCall = !_initializing;
require(
(isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
"Initializable: contract is already initialized"
);
_initialized = 1;
if (isTopLevelCall) {
_initializing = true;
}
_;
if (isTopLevelCall) {
_initializing = false;
emit Initialized(1);
}
}
/**
* @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
* contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
* used to initialize parent contracts.
*
* A reinitializer may be used after the original initialization step. This is essential to configure modules that
* are added through upgrades and that require initialization.
*
* When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
* cannot be nested. If one is invoked in the context of another, execution will revert.
*
* Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
* a contract, executing them in the right order is up to the developer or operator.
*
* WARNING: setting the version to 255 will prevent any future reinitialization.
*
* Emits an {Initialized} event.
*/
modifier reinitializer(uint8 version) {
require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
_initialized = version;
_initializing = true;
_;
_initializing = false;
emit Initialized(version);
}
/**
* @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
* {initializer} and {reinitializer} modifiers, directly or indirectly.
*/
modifier onlyInitializing() {
require(_initializing, "Initializable: contract is not initializing");
_;
}
/**
* @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
* Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
* to any version. It is recommended to use this to lock implementation contracts that are designed to be called
* through proxies.
*
* Emits an {Initialized} event the first time it is successfully executed.
*/
function _disableInitializers() internal virtual {
require(!_initializing, "Initializable: contract is initializing");
if (_initialized != type(uint8).max) {
_initialized = type(uint8).max;
emit Initialized(type(uint8).max);
}
}
/**
* @dev Returns the highest version that has been initialized. See {reinitializer}.
*/
function _getInitializedVersion() internal view returns (uint8) {
return _initialized;
}
/**
* @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
*/
function _isInitializing() internal view returns (bool) {
return _initializing;
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
import { Currency } from "../types/Currency.sol";
import { Address } from "../types/Address.sol";
import { DefaultFeeParams, FeeParams, FeePermissions, CollateralInfo } from "../types/CommonTypes.sol";
library DTokenRegistry {
// Core tokens of the group (immutable)
struct GroupCore {
Currency aToken; // Yield-bearing token
Currency xToken; // Leverage token
Currency baseToken; // Base token for the group - wrapped Avax
Currency yieldBearingToken; // Example: staked AVAX (immutable)
Currency wethToken; // WETH token address for the router
}
// Decimals for each core token
struct GroupDecimals {
uint8 aTokenDecimals;
uint8 xTokenDecimals;
uint8 baseTokenDecimals;
uint8 yieldBearingTokenDecimals;
}
// Extended group settings (mutable)
struct GroupExtended {
Address priceOracle; // Price Oracle address
Address rateProvider; // Rate provider address
Address swapRouter; // Swap Router
Address treasury; // Treasury address
Address feeCollector; // Fee collector address
Address strategy; // Strategy contract address
Currency rebalancePool; // Rebalance pool address
}
// Metadata for the group (partially mutable)
struct GroupMeta {
uint96 stabilityRatio; // Mutable stability ratio (this is 2^96-1 and we have max 5e18)
uint96 stabilityConditionsTriggeringRate; // Mutable stability fee trigger (this is 2^96-1 and we have max 5e18)
uint8 feeModel; // Immutable fee model used for this group
bool isWrappingRequired; // Immutable wrapping requirement flag
}
// Struct representing full group setup during creation
struct GroupSetup {
GroupCore core;
GroupDecimals decimals;
GroupExtended extended;
GroupMeta meta;
FeeParams fees;
DefaultFeeParams defaultFees;
FeePermissions feePermissions;
CollateralInfo[] acceptableCollaterals;
}
// Data used for updating mutable parts of the group
struct GroupUpdate {
GroupExtended extended;
GroupMeta meta;
CollateralInfo[] acceptableCollaterals;
FeeParams feeParams;
DefaultFeeParams defaultFees;
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
import { LogExpMathV8 } from "./LogExpMathV8.sol";
// solhint-disable not-rely-on-time
/// @dev See https://en.wikipedia.org/wiki/Exponential_smoothing
/// It is the same as `ExponentialMovingAverageV7` with `unchecked` scope.
library ExponentialMovingAverageV8 {
/*************
* Constants *
*************/
/// @dev The precision used to compute EMA.
uint256 private constant PRECISION = 1e18;
/***********
* Structs *
***********/
/// @dev Compiler will pack this into single `uint256`.
/// @param lastTime The last timestamp when the storage is updated.
/// @param sampleInterval The sampling time interval used in the EMA.
/// @param lastValue The last value in the data sequence, with precision 1e18.
/// @param lastEmaValue The last EMA value computed, with precision 1e18.
struct EMAStorage {
uint40 lastTime;
uint24 sampleInterval;
uint96 lastValue;
uint96 lastEmaValue;
}
/// @dev Save value of EMA storage.
/// @param s The EMA storage.
/// @param value The new value, with precision 1e18.
function saveValue(EMAStorage storage s, uint96 value) internal {
s.lastEmaValue = uint96(emaValue(s));
s.lastValue = value;
s.lastTime = uint40(block.timestamp);
}
/// @dev Return the current ema value.
/// @param s The EMA storage.
function emaValue(EMAStorage storage s) internal view returns (uint256) {
unchecked {
if (uint256(s.lastTime) < block.timestamp) {
uint256 dt = block.timestamp - uint256(s.lastTime);
uint256 e = (dt * PRECISION) / s.sampleInterval;
if (e > 41e18) {
return s.lastValue;
} else {
uint256 alpha = uint256(LogExpMathV8.exp(-int256(e)));
return (s.lastValue * (PRECISION - alpha) + s.lastEmaValue * alpha) / PRECISION;
}
} else {
return s.lastEmaValue;
}
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20Upgradeable {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
import { IERC20Upgradeable } from "@openzeppelin/contracts-upgradeable/token/ERC20/utils/SafeERC20Upgradeable.sol";
import { GroupId } from "../types/GroupId.sol";
/**
* @title IAToken
* @notice Interface for AToken, an ERC20-compatible token with minting, burning, and
* additional functionality for treasury and rebalance management.
*/
interface IAToken is IERC20Upgradeable {
/**
* @dev Emitted when the treasury address is updated.
* @param oldTreasury The previous treasury address.
* @param newTreasury The new treasury address.
*/
event UpdateTreasuryAddress(address indexed oldTreasury, address indexed newTreasury);
/**
* @dev Emitted when the rebalance pool address is updated.
* @param oldRebalancePool The previous rebalance pool address.
* @param newRebalancePool The new rebalance pool address.
*/
event UpdateRebalancePool(address indexed oldRebalancePool, address indexed newRebalancePool);
/**
* @dev Emitted when tokens are minted to an address.
* @param to The address receiving the minted tokens.
* @param amount The amount of tokens minted.
*/
event Minted(address indexed to, uint256 indexed amount);
/**
* @dev Emitted when tokens are burned from an address.
* @param from The address from which tokens are burned.
* @param amount The amount of tokens burned.
*/
event Burned(address indexed from, uint256 indexed amount);
/**
* @dev Emitted when a group is updated.
* @param groupId The identifier of the updated group.
*/
event UpdateGroup(GroupId indexed groupId);
/**
* @dev Emitted when the max supply is updated.
* @param oldMaxSupply The previous max supply.
* @param newMaxSupply The new max supply.
*/
event UpdateMaxSupply(uint256 indexed oldMaxSupply, uint256 indexed newMaxSupply);
// Custom Errors
error InvalidDecimals();
error ErrorNotPermitted();
error ErrorZeroAddress();
error ErrorZeroAmount();
error ErrorExceedsMaxSupply();
error ErrorCannotRecoverToken();
error ErrorParameterUnchanged();
/**
* @notice Returns the beta status of the token.
*/
function beta() external view returns (bool);
/**
* @notice Returns the Net Asset Value (NAV) of the token.
* @return The current NAV as an unsigned integer.
*/
function nav() external view returns (uint256);
/**
* @notice Returns the number of decimals used by the token.
* @return The number of decimals.
*/
function decimals() external view returns (uint8);
/**
* @notice Mints tokens to a specified address.
* @dev Emits a {Minted} event.
* @param _to The address to receive the minted tokens.
* @param _amount The amount of tokens to mint.
*/
function mint(address _to, uint256 _amount) external;
/**
* @notice Burns tokens from a specified address.
* @dev Emits a {Burned} event.
* @param _from The address from which tokens are burned.
* @param _amount The amount of tokens to burn.
*/
function burn(address _from, uint256 _amount) external;
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
interface IDEXRouter {
function swapExactTokensForTokens(
uint256 amountIn,
uint256 amountOutMin,
address[] calldata path,
address to,
uint256 deadline
) external returns (uint256[] memory amounts);
function swapExactETHForTokens(
uint256 amountOutMin,
address[] calldata path,
address to,
uint256 deadline
) external payable returns (uint256[] memory amounts);
function swapExactTokensForETH(
uint256 amountIn,
uint256 amountOutMin,
address[] calldata path,
address to,
uint256 deadline
) external returns (uint256[] memory amounts);
// function getAmountsOut(
// uint256 amountIn,
// address[] calldata path
// ) external view returns (uint256[] memory amounts);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
interface IStrategy {
error ErrorNotPermitted();
error ErrorZeroAmount();
error ErrorZeroAddress();
error ErrorCannotRecoverToken();
error ZeroGroupId();
function withdrawToTreasury(uint256 _diff) external returns (bool);
function emergencyWithdraw() external returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
// solhint-disable
/// @title Contains 512-bit math functions
/// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision
/// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits
library FullMath {
/// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
/// @param a The multiplicand
/// @param b The multiplier
/// @param denominator The divisor
/// @return result The 256-bit result
/// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv
function mulDiv(uint256 a, uint256 b, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = a * b
// Compute the product mod 2**256 and mod 2**256 - 1
// then use the Chinese Remainder Theorem to reconstruct
// the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2**256 + prod0
uint256 prod0 = a * b; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly ("memory-safe") {
let mm := mulmod(a, b, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Make sure the result is less than 2**256.
// Also prevents denominator == 0
require(denominator > prod1, "FullMath: denominator too small");
// Handle non-overflow cases, 256 by 256 division
if (prod1 == 0) {
assembly ("memory-safe") {
result := div(prod0, denominator)
}
return result;
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0]
// Compute remainder using mulmod
uint256 remainder;
assembly ("memory-safe") {
remainder := mulmod(a, b, denominator)
}
// Subtract 256 bit number from 512 bit number
assembly ("memory-safe") {
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator
// Compute largest power of two divisor of denominator.
// Always >= 1.
uint256 twos = (0 - denominator) & denominator;
// Divide denominator by power of two
assembly ("memory-safe") {
denominator := div(denominator, twos)
}
// Divide [prod1 prod0] by the factors of two
assembly ("memory-safe") {
prod0 := div(prod0, twos)
}
// Shift in bits from prod1 into prod0. For this we need
// to flip `twos` such that it is 2**256 / twos.
// If twos is zero, then it becomes one
assembly ("memory-safe") {
twos := add(div(sub(0, twos), twos), 1)
}
prod0 |= prod1 * twos;
// Invert denominator mod 2**256
// Now that denominator is an odd number, it has an inverse
// modulo 2**256 such that denominator * inv = 1 mod 2**256.
// Compute the inverse by starting with a seed that is correct
// correct for four bits. That is, denominator * inv = 1 mod 2**4
uint256 inv = (3 * denominator) ^ 2;
// Now use Newton-Raphson iteration to improve the precision.
// Thanks to Hensel's lifting lemma, this also works in modular
// arithmetic, doubling the correct bits in each step.
inv *= 2 - denominator * inv; // inverse mod 2**8
inv *= 2 - denominator * inv; // inverse mod 2**16
inv *= 2 - denominator * inv; // inverse mod 2**32
inv *= 2 - denominator * inv; // inverse mod 2**64
inv *= 2 - denominator * inv; // inverse mod 2**128
inv *= 2 - denominator * inv; // inverse mod 2**256
// Because the division is now exact we can divide by multiplying
// with the modular inverse of denominator. This will give us the
// correct result modulo 2**256. Since the preconditions guarantee
// that the outcome is less than 2**256, this is the final result.
// We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inv;
return result;
}
}
/// @notice Calculates ceil(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
/// @param a The multiplicand
/// @param b The multiplier
/// @param denominator The divisor
/// @return result The 256-bit result
function mulDivRoundingUp(uint256 a, uint256 b, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
result = mulDiv(a, b, denominator);
if (mulmod(a, b, denominator) != 0) {
require(++result > 0, "FullMath: addition overflow");
}
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
import { IERC20Upgradeable } from "@openzeppelin/contracts-upgradeable/token/ERC20/IERC20Upgradeable.sol";
import { FeeModel } from "../types/CommonTypes.sol";
interface IDXToken is IERC20Upgradeable {
/**********
* Events *
**********/
/// @notice Emitted when the cooling-off period is updated.
/// @param oldValue The value of the previous cooling-off period.
/// @param newValue The value of the current cooling-off period.
event UpdateCoolingOffPeriod(uint256 indexed oldValue, uint256 indexed newValue);
/// @notice Emitted when the management fee rate is updated.
/// @param oldRate The previous management fee rate.
/// @param newRate The new management fee rate.
event UpdateManagementFeeRate(uint256 indexed oldRate, uint256 indexed newRate);
/// @notice Emitted when the funding fee rate is updated.
/// @param oldRate The previous funding fee rate.
/// @param newRate The new funding fee rate.
event UpdateFundingFeeRate(uint256 indexed oldRate, uint256 indexed newRate);
/// @notice Emitted when the fixed yield amount is updated.
/// @param oldRate The previous fixed yield amount.
/// @param newRate The new fixed yield amount.
event UpdateVariableFundingFeeRate(uint256 indexed oldRate, uint256 indexed newRate);
/// @notice Emitted when fees are collected.
/// @param amount The amount of fees collected.
event FeesCollected(uint256 indexed amount);
/// @notice Emitted when tokens are minted.
/// @param to The address receiving the minted tokens.
/// @param amount The amount of tokens minted.
event Minted(address indexed to, uint256 indexed amount);
/// @notice Emitted when tokens are burned.
/// @param from The address whose tokens are burned.
/// @param amount The amount of tokens burned.
event Burned(address indexed from, uint256 indexed amount);
/// @notice Emitted when the cooling-off period is triggered.
/// @param account The account triggering the cooling-off period.
/// @param timestamp The timestamp when triggered.
event CoolingOffPeriodTriggered(address indexed account, uint256 indexed timestamp);
/// @notice Emitted when the associated group is updated.
/// @param groupId The new associated group ID.
event UpdateGroup(bytes32 indexed groupId);
/// @notice Emitted when the treasury address is updated.
/// @param oldTreasury The old treasury address.
/// @param newTreasury The new treasury address.
event UpdateTreasuryAddress(address indexed oldTreasury, address indexed newTreasury);
/// @notice Emitted when the max supply is updated.
/// @param oldMaxSupply The old max supply.
/// @param newMaxSupply The new max supply.
event UpdateMaxSupply(uint256 indexed oldMaxSupply, uint256 indexed newMaxSupply);
/**********
* Errors *
**********/
/// @dev Thrown when an address is zero.
error ZeroAddress();
/// @dev Thrown when decimals are invalid.
error InvalidDecimals();
/// @dev Thrown when the cooling-off period is too large.
error CoolingOffPeriodTooLarge();
/// @dev Thrown when trying to mint or burn an amount below the minimum.
error ErrorMinimumMintingAmount();
/// @dev Thrown when trying to burn an amount below the minimum.
error ErrorMinimumBurningAmount();
/// @dev Thrown when minting exceeds the max supply.
error ExceedsMaxSupply();
/// @dev Thrown when cooling-off period is active.
error CoolingOffPeriodActive();
/// @dev Thrown when parameter is unchanged.
error ParameterUnchanged();
/// @dev Thrown when management fee is invalid.
error InvalidManagementFee();
/// @dev Thrown when funding fee rate is invalid.
error InvalidFundingFeeRate();
/// @dev Thrown when fixed yield amount is invalid.
error InvalidFixedYieldAmount();
/// @dev Thrown when fee model is invalid.
error InvalidFeeModel();
/// @dev Thrown when base supply is zero.
error BaseSupplyZero();
/// @dev Thrown when transfer amount exceeds balance.
error TransferAmountExceedsBalance();
/// @dev Thrown when burn amount exceeds balance.
error BurnAmountExceedsBalance();
/// @dev Thrown cannot recover token.
error CannotRecoverToken();
/// @dev Thrown when invalid base token price.
error InvalidBaseTokenPrice();
/// @dev Thrown when an operation is not permitted.
error NotPermitted();
/*************************
* Public View Functions *
*************************/
/// @notice Returns the NAV of the token.
function nav() external view returns (uint256);
/// @notice Converts DXToken amount to base token amount.
function dxTokenToBaseToken(uint256 dxTokenAmount) external view returns (uint256 baseTokenAmount);
/// @notice Returns the fee model.
function getFeeModel() external view returns (FeeModel);
/****************************
* Public Mutated Functions *
****************************/
/// @notice Mints tokens to a specified address.
function mint(address _to, uint256 _amount) external;
/// @notice Burns tokens from a specified address.
function burn(address _from, uint256 _amount) external;
/// @notice Collects accumulated fees.
function collectFees() external;
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
import { IERC20Upgradeable } from "@openzeppelin/contracts-upgradeable/token/ERC20/utils/SafeERC20Upgradeable.sol";
import { GroupId } from "../types/GroupId.sol";
/**
* @title IWToken
* @notice Interface for the WToken contract, enabling wrapping and unwrapping of an underlying token.
*/
interface IWToken is IERC20Upgradeable {
/**
* @dev Emitted when tokens are wrapped into WTokens.
* @param user The address of the user wrapping tokens.
* @param underlyingAmount The amount of underlying tokens wrapped.
* @param amount The amount of tokens wrapped.
*/
event TokenWrapped(address indexed user, uint256 indexed underlyingAmount, uint256 indexed amount);
/**
* @dev Emitted when WTokens are unwrapped into underlying tokens.
* @param user The address of the user unwrapping tokens.
* @param underlyingAmount The amount of underlying tokens unwrapped.
* @param amount The amount of WTokens unwrapped.
*/
event TokenUnwrapped(address indexed user, uint256 indexed underlyingAmount, uint256 indexed amount);
/**
* @dev Emitted when the treasury address is updated.
* @param oldTreasury The address of the previous treasury contract.
* @param newTreasury The address of the new treasury contract.
*/
event UpdateTreasuryAddress(address indexed oldTreasury, address indexed newTreasury);
/**
* @dev Emitted when the associated group ID is updated.
* @param groupId New group identifier.
*/
event UpdateGroup(GroupId indexed groupId);
event Rebase(uint256 indexed epoch, uint256 indexed newScalar);
event RateProviderUpdated(address indexed rateProvider);
// Custom Errors
error ErrorZeroAddress();
error InvalidDecimals();
error ErrorZeroAmount();
error ErrorNotPermitted();
error ErrorCannotRecoverToken();
error ErrorMaxUnderlyingExceeded();
/**
* @notice Wraps underlying tokens into WTokens.
* @param underlyingAmount The amount of underlying tokens to wrap.
* @return wrappedAmount amount of WTokens minted.
*/
function wrap(uint256 underlyingAmount) external returns (uint256 wrappedAmount);
/**
* @notice Unwraps WTokens back into underlying tokens.
* @param burnAmount The amount of WTokens to burn.
* @return amount of underlying tokens returned.
*/
function unwrap(uint256 burnAmount) external returns (uint256 amount);
/**
* @notice rebase the WToken
*/
function rebase() external;
function updateRateProvider(address _rateProvider) external;
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
import { IERC4626Upgradeable } from "@openzeppelin/contracts-upgradeable/token/ERC20/extensions/ERC4626Upgradeable.sol";
/**
* @title IRebalancePool
* @notice Interface for the RebalancePool contract implementing ERC4626
*/
interface IRebalancePool is IERC4626Upgradeable {
/// @notice Errors
error ZeroAddress();
error ZeroDeposit();
error InvalidDepositAmount();
error ZeroRedeem();
error TokenAlreadyAdded(address token);
error ZeroShares();
error InvalidPriceFromOracle();
error NotPermitted();
error InvalidYieldFee();
error RedeemingNotAvailableYet();
error CannotRecoverToken();
error UpdatingNotAvailableYet();
error InvalidCoolingPeriod();
error CoolingPeriodTriggered();
/// @notice Events
event YieldDistributed(uint256 indexed assets, uint256 indexed shares);
event NAVUpdated(address indexed caller, uint256 indexed totalAssets, uint256 indexed totalSupply);
event CoolingOffPeriodUpdated(uint256 indexed oldPeriod, uint256 indexed newPeriod);
event FeeCollectorUpdated(address indexed oldCollector, address indexed newCollector);
event PriceOracleUpdated(address indexed oldOracle, address indexed newOracle);
event OtherERC20Withdrawn(address indexed receiver, address indexed token, uint256 indexed amount);
event DepositMade(address indexed depositor, address indexed receiver, uint256 indexed amount);
event YieldFeeUpdated(uint256 indexed newFee);
/// @notice Function to update NAV externally
function updateNAV() external;
/// @notice Get NAV per share
function getNavPerShare() external view returns (uint256);
/// @notice Override decimals
function decimals() external view override returns (uint8);
/// @notice Get cooling off period
function coolingOffPeriod() external view returns (uint256);
/// @notice Transfer tokens to treasury
function transferTokenToTreasury(address token, uint256 amount) external;
/// @notice Get yieldFeePercentage
function yieldFeePercentage() external view returns (uint256);
/// @notice Get base points
function BASE_POINTS() external view returns (uint256);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
import { GroupId } from "../types/GroupId.sol";
interface IProtocolMinimum {
function stabilityRatio(GroupId groupId) external view returns (uint96);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20Upgradeable.sol";
import "../extensions/IERC20PermitUpgradeable.sol";
import "../../../utils/AddressUpgradeable.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20Upgradeable {
using AddressUpgradeable for address;
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20Upgradeable token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20Upgradeable token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20Upgradeable token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20Upgradeable token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20Upgradeable token, address spender, uint256 value) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20Upgradeable token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
* Revert on invalid signature.
*/
function safePermit(
IERC20PermitUpgradeable token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20Upgradeable token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20Upgradeable token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return
success && (returndata.length == 0 || abi.decode(returndata, (bool))) && AddressUpgradeable.isContract(address(token));
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
import { DTokenRegistry } from "../declarations/DTokenRegistry.sol";
/**
* @title GroupKey
* @dev Struct representing the core group key information.
*/
struct GroupKey {
/**
* @dev The core group information from the DTokenRegistry.
*/
DTokenRegistry.GroupCore core;
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
import { GroupId } from "../types/GroupId.sol";
import { GroupState } from "../types/CommonTypes.sol";
interface ITokenRegistryMinimum {
// Getter functions for group state
function getGroup(GroupId groupId) external view returns (GroupState memory);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
import { Currency } from "../types/Currency.sol";
import { GroupKey } from "../types/GroupKey.sol";
import { GroupId } from "../types/GroupId.sol";
import { DProtocol } from "../declarations/DProtocol.sol";
interface IProtocol {
/**
* @notice Emitted when ERC20 tokens are recovered.
* @param tokenAddress The address of the recovered token.
* @param amount The amount of tokens recovered.
*/
event ERC20Recovered(Currency indexed tokenAddress, uint256 indexed amount);
/**
* @notice Emitted when native tokens are withdrawn.
* @param amount The amount of native tokens withdrawn.
*/
event NativeTokenWithdrawn(uint256 indexed amount);
/**
* @notice Emitted when tokens are minted.
* @param groupId The group ID.
* @param token The token address.
* @param recipient The recipient address.
* @param sender The sender address.
* @param ytMinted The amount of aTokens minted.
* @param vtMinted The amount of vTokens minted.
*/
event MintToken(
GroupId indexed groupId,
address indexed token,
address indexed recipient,
address sender,
uint256 ytMinted,
uint256 vtMinted
);
/**
* @notice Emitted when tokens are redeemed.
* @param groupId The group ID.
* @param token The token address.
* @param recipient The recipient address.
* @param sender The sender address.
* @param baseOut The amount of base tokens received.
*/
event RedeemToken(
GroupId indexed groupId,
address indexed token,
address indexed recipient,
address sender,
uint256 baseOut
);
/**
* @notice Emitted when the minting is paused.
* @param groupId The group ID.
*/
event RedeemLockUpdated(GroupId indexed groupId, bool indexed enabled);
event FeeDelegated(address indexed hookContract, uint256 indexed protocolFeeAmount, uint256 indexed hookRemainingFee);
event FeeCollected(address indexed feeCollector, address indexed token, uint256 indexed amount);
/**
* @notice Emitted when fees are settled.
* @param hookContract The hook contract address.
* @param token The token address.
* @param amount The amount of fees settled.
*/
event FeesSettled(address indexed hookContract, address indexed token, uint256 indexed amount);
// Custom Errors
// todo: bytes32 groupId
error ZeroAddress();
error ZeroAmount();
error ErrorMinTokenAmount();
error NotPermitted();
error ZeroGroupId();
error ConfigNotReady();
error NoFeesOwed();
error InvalidOperationType();
error InvalidRatios();
error ErrorMintPaused();
error ErrorRedeemPaused();
error UnsupportedCollateralType();
error InvalidMinMaxCollateralAmount();
error InsufficientAllowance();
error InsufficientBalance(address token);
error ErrorInsufficientTokenOutput();
error ErrorInsufficientBaseOutput();
error InvalidSlippageRequested();
error TreasuryGroupUpdateFailed();
error InvalidMinimumAmount(uint256 minimumAmount, uint256 amountReceived);
error MaximumAmountExceeded(GroupId groupId, uint256 preparedAmount, uint256 maxAmount);
error InvalidPaymentAmount();
error TransferFailed(GroupId groupId, address recipient, uint256 amount);
error ErrorATokenMintingPausedInStabilityMode(GroupId groupId);
error RedeemLocked(GroupId groupId);
error EarlyExit(GroupId groupId);
error EmptyCollateralListOnUpdate(GroupId groupId);
error InvalidGroupConfiguration(GroupId groupId);
error NativeTokenWithdrawnFailed(uint256 amount);
/**
* @notice Mints tokens based on the provided parameters.
* @param groupKey The key identifying the group.
* @param params The mint parameters.
* @return result The result of the mint operation.
*/
function mintToken(
GroupKey calldata groupKey,
DProtocol.MintParams calldata params
) external payable returns (DProtocol.MintResult memory result);
/**
* @notice Redeems tokens based on the provided parameters.
* @param groupKey The key identifying the group.
* @param params The redeem parameters.
* @return baseOut The amount of base tokens received.
*/
function redeemToken(GroupKey calldata groupKey, DProtocol.RedeemParams calldata params) external returns (uint256 baseOut);
/**
* @notice Returns the stability ratio for a group.
* @param groupId The group identifier.
* @return The stability ratio.
*/
function stabilityRatio(GroupId groupId) external view returns (uint96);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
// solhint-disable no-inline-assembly
/// @dev A subset copied from the following contracts:
///
/// + `balancer-labs/v2-solidity-utils/contracts/helpers/WordCodec.sol`
/// + `balancer-labs/v2-solidity-utils/contracts/helpers/WordCodecHelpers.sol`
library WordCodec {
/// @dev Inserts an unsigned integer of bitLength, shifted by an offset, into a 256 bit word,
/// replacing the old value. Returns the new word.
function insertUint(bytes32 word, uint256 value, uint256 offset, uint256 bitLength) internal pure returns (bytes32 result) {
// Equivalent to:
// uint256 mask = (1 << bitLength) - 1;
// bytes32 clearedWord = bytes32(uint256(word) & ~(mask << offset));
// result = clearedWord | bytes32(value << offset);
assembly("memory-safe") {
let mask := sub(shl(bitLength, 1), 1)
let clearedWord := and(word, not(shl(offset, mask)))
result := or(clearedWord, shl(offset, value))
}
}
/// @dev Decodes and returns an unsigned integer with `bitLength` bits, shifted by an offset, from a 256 bit word.
function decodeUint(bytes32 word, uint256 offset, uint256 bitLength) internal pure returns (uint256 result) {
// Equivalent to:
// result = uint256(word >> offset) & ((1 << bitLength) - 1);
assembly("memory-safe") {
result := and(shr(offset, word), sub(shl(bitLength, 1), 1))
}
}
/// @dev Inserts a signed integer shifted by an offset into a 256 bit word, replacing the old value. Returns
/// the new word.
///
function insertInt(bytes32 word, int256 value, uint256 offset, uint256 bitLength) internal pure returns (bytes32) {
unchecked {
uint256 mask = (1 << bitLength) - 1;
bytes32 clearedWord = bytes32(uint256(word) & ~(mask << offset));
// Integer values need masking to remove the upper bits of negative values.
return clearedWord | bytes32((uint256(value) & mask) << offset);
}
}
/// @dev Decodes and returns a signed integer with `bitLength` bits, shifted by an offset, from a 256 bit word.
function decodeInt(bytes32 word, uint256 offset, uint256 bitLength) internal pure returns (int256 result) {
unchecked {
int256 maxInt = int256((1 << (bitLength - 1)) - 1);
uint256 mask = (1 << bitLength) - 1;
int256 value = int256(uint256(word >> offset) & mask);
// In case the decoded value is greater than the max positive integer that can be represented with bitLength
// bits, we know it was originally a negative integer. Therefore, we mask it to restore the sign in the 256 bit
// representation.
//
// Equivalent to:
// result = value > maxInt ? (value | int256(~mask)) : value;
assembly {
result := or(mul(gt(value, maxInt), not(mask)), value)
}
}
}
/// @dev Decodes and returns a boolean shifted by an offset from a 256 bit word.
function decodeBool(bytes32 word, uint256 offset) internal pure returns (bool result) {
// Equivalent to:
// result = (uint256(word >> offset) & 1) == 1;
assembly {
result := and(shr(offset, word), 1)
}
}
/// @dev Inserts a boolean value shifted by an offset into a 256 bit word, replacing the old value. Returns the new
/// word.
function insertBool(bytes32 word, bool value, uint256 offset) internal pure returns (bytes32 result) {
// Equivalent to:
// bytes32 clearedWord = bytes32(uint256(word) & ~(1 << offset));
// bytes32 referenceInsertBool = clearedWord | bytes32(uint256(value ? 1 : 0) << offset);
assembly("memory-safe") {
let clearedWord := and(word, not(shl(offset, 1)))
result := or(clearedWord, shl(offset, value))
}
}
function clearWordAtPosition(bytes32 word, uint256 offset, uint256 bitLength) internal pure returns (bytes32 clearedWord) {
unchecked {
uint256 mask = (1 << bitLength) - 1;
clearedWord = bytes32(uint256(word) & ~(mask << offset));
}
}
/// @dev Encodes an address into a 256 bit word at a given offset.
function insertAddress(bytes32 word, address value, uint256 offset) internal pure returns (bytes32 result) {
assembly("memory-safe") {
let clearedWord := and(word, not(shl(offset, 0xffffffffffffffffffffffffffffffffffffffff)))
result := or(clearedWord, shl(offset, value))
}
}
/// @dev Decodes an address from a 256 bit word at a given offset.
function decodeAddress(bytes32 word, uint256 offset) internal pure returns (address result) {
assembly("memory-safe") {
result := and(shr(offset, word), 0xffffffffffffffffffffffffffffffffffffffff)
}
}
/// @dev Encodes an enum value into a 256 bit word at a given offset.
function insertEnum(bytes32 word, uint8 value, uint256 offset) internal pure returns (bytes32 result) {
assembly("memory-safe") {
let clearedWord := and(word, not(shl(offset, 0xff)))
result := or(clearedWord, shl(offset, value))
}
}
/// @dev Decodes an enum value from a 256 bit word at a given offset.
function decodeEnum(bytes32 word, uint256 offset) internal pure returns (uint8 result) {
assembly("memory-safe") {
result := and(shr(offset, word), 0xff)
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
import { Currency } from "../types/Currency.sol";
import { GroupId } from "../types/GroupId.sol";
import { GroupKey } from "../types/GroupKey.sol";
import { DTokenRegistry } from "../declarations/DTokenRegistry.sol";
import { GroupState, FeePermissions, FeeParams, DefaultFeeParams, CollateralInfo } from "../types/CommonTypes.sol";
interface ITokenRegistry {
// Events
event GroupAdded(GroupId indexed groupId);
event GroupUpdated(GroupId indexed groupId);
event CollateralAdded(GroupId indexed groupId, Currency indexed token, uint8 indexed decimals);
event CollateralRemoved(GroupId indexed groupId, Currency indexed token);
event HookContractSet(GroupId indexed groupId, address indexed newHookContract, bool indexed isDynamic, bool isDelegated);
event HookPermissionsSet(GroupId indexed groupId, uint256 indexed newPermissions);
event UpdateFeePermissions(GroupId indexed groupId, bool indexed isDynamic, bool indexed allowDelegation);
// Custom Errors
error AddressNotContract(address addr);
error NotPermitted();
error GroupNotFound(GroupId groupId);
error GroupAlreadyExists(GroupId groupId);
error InvalidDecimals();
error InvalidMinMaxCollateralAmount();
error CollateralAlreadyExists();
error MultipleNativeTokensNotAllowed();
error CollateralNotFound();
error InvalidGroupSetup();
error ZeroAddress();
error EmptyCollateralList();
error MaxCollateralsLimitReached();
error StabilityRatioTooLarge();
error stabilityConditionsTriggeringRateTooLarge();
error InvalidStabilityTriggeringRatio(GroupId groupId);
error FeesTooHigh();
error InvalidMaxFee();
error InvalidMinFee();
error InvalidBaseFee();
error InvalidYieldFee();
error InvalidStabilityFee();
error InvalidProtocolFee();
error InvalidFeeFlags();
error FeesAreNotCompatibleWithDefaultFees();
error CannotRecoverToken();
// Group management functions (Manager Role)
function addGroup(
DTokenRegistry.GroupSetup calldata setup, // Full group setup
address hookContract, // Hook contract for the group
uint256 hookPermissions // Hook permissions
) external;
// Collateral management functions (Manager Role)
function addCollateral(GroupKey calldata key, CollateralInfo calldata collateral) external;
function removeCollateral(GroupKey calldata key, Currency token) external;
// Getter functions for group state
function getGroup(GroupId groupId) external view returns (GroupState memory);
function getStabilityRatio(GroupId groupId) external view returns (uint96);
function getStabilityTriggeringRatio(GroupId groupId) external view returns (uint96);
function getProtocolFee(GroupId groupId) external view returns (uint24);
function getFeePermissions(GroupId groupId) external view returns (FeePermissions memory);
function getFeeParams(GroupId groupId) external view returns (FeeParams memory);
function getMintFeeVT(GroupId groupId) external view returns (uint24);
function getRedeemFeeVT(GroupId groupId) external view returns (uint24);
function getMintFeeYT(GroupId groupId) external view returns (uint24);
function getRedeemFeeYT(GroupId groupId) external view returns (uint24);
function getYieldFeeYT(GroupId groupId) external view returns (uint24);
function getStabilityMintFeeVT(GroupId groupId) external view returns (uint24);
function getStabilityMintFeeYT(GroupId groupId) external view returns (uint24);
function getStabilityRedeemFeeVT(GroupId groupId) external view returns (uint24);
function getStabilityRedeemFeeYT(GroupId groupId) external view returns (uint24);
function getHookContract(GroupId groupId) external view returns (address);
function getHookPermissions(GroupId groupId) external view returns (uint256);
function validateCollateral(GroupId groupId, Currency currency) external view returns (bool);
function isWrappingRequired(GroupId groupId) external view returns (bool);
function getFeeModel(GroupId groupId) external view returns (uint8);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library MathUpgradeable {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1, "Math: mulDiv overflow");
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMathUpgradeable {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165Upgradeable {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library AddressUpgradeable {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: MIT
// THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
pragma solidity 0.8.28;
/* solhint-disable */
/**
* @dev Copied from https://github.com/balancer/balancer-v2-monorepo/blob/master/pkg/solidity-utils/contracts/math/LogExpMath.sol
*
* Some modifications are made due to compile error.
*
* It is the same as `LogExpMathV8` with `unchecked` scope.
*
* @dev Exponentiation and logarithm functions for 18 decimal fixed point numbers (both base and exponent/argument).
*
* Exponentiation and logarithm with arbitrary bases (x^y and log_x(y)) are implemented by conversion to natural
* exponentiation and logarithm (where the base is Euler's number).
*
* @author Fernando Martinelli - @fernandomartinelli
* @author Sergio Yuhjtman - @sergioyuhjtman
* @author Daniel Fernandez - @dmf7z
*/
library LogExpMathV8 {
// All fixed point multiplications and divisions are inlined. This means we need to divide by ONE when multiplying
// two numbers, and multiply by ONE when dividing them.
// All arguments and return values are 18 decimal fixed point numbers.
int256 constant ONE_18 = 1e18;
// Internally, intermediate values are computed with higher precision as 20 decimal fixed point numbers, and in the
// case of ln36, 36 decimals.
int256 constant ONE_20 = 1e20;
int256 constant ONE_36 = 1e36;
// The domain of natural exponentiation is bound by the word size and number of decimals used.
//
// Because internally the result will be stored using 20 decimals, the largest possible result is
// (2^255 - 1) / 10^20, which makes the largest exponent ln((2^255 - 1) / 10^20) = 130.700829182905140221.
// The smallest possible result is 10^(-18), which makes largest negative argument
// ln(10^(-18)) = -41.446531673892822312.
// We use 130.0 and -41.0 to have some safety margin.
int256 constant MAX_NATURAL_EXPONENT = 130e18;
int256 constant MIN_NATURAL_EXPONENT = -41e18;
// Bounds for ln_36's argument. Both ln(0.9) and ln(1.1) can be represented with 36 decimal places in a fixed point
// 256 bit integer.
int256 constant LN_36_LOWER_BOUND = ONE_18 - 1e17;
int256 constant LN_36_UPPER_BOUND = ONE_18 + 1e17;
uint256 constant MILD_EXPONENT_BOUND = 2 ** 254 / uint256(ONE_20);
// 18 decimal constants
int256 constant x0 = 128000000000000000000; // 2ˆ7
int256 constant a0 = 38877084059945950922200000000000000000000000000000000000; // eˆ(x0) (no decimals)
int256 constant x1 = 64000000000000000000; // 2ˆ6
int256 constant a1 = 6235149080811616882910000000; // eˆ(x1) (no decimals)
// 20 decimal constants
int256 constant x2 = 3200000000000000000000; // 2ˆ5
int256 constant a2 = 7896296018268069516100000000000000; // eˆ(x2)
int256 constant x3 = 1600000000000000000000; // 2ˆ4
int256 constant a3 = 888611052050787263676000000; // eˆ(x3)
int256 constant x4 = 800000000000000000000; // 2ˆ3
int256 constant a4 = 298095798704172827474000; // eˆ(x4)
int256 constant x5 = 400000000000000000000; // 2ˆ2
int256 constant a5 = 5459815003314423907810; // eˆ(x5)
int256 constant x6 = 200000000000000000000; // 2ˆ1
int256 constant a6 = 738905609893065022723; // eˆ(x6)
int256 constant x7 = 100000000000000000000; // 2ˆ0
int256 constant a7 = 271828182845904523536; // eˆ(x7)
int256 constant x8 = 50000000000000000000; // 2ˆ-1
int256 constant a8 = 164872127070012814685; // eˆ(x8)
int256 constant x9 = 25000000000000000000; // 2ˆ-2
int256 constant a9 = 128402541668774148407; // eˆ(x9)
int256 constant x10 = 12500000000000000000; // 2ˆ-3
int256 constant a10 = 113314845306682631683; // eˆ(x10)
int256 constant x11 = 6250000000000000000; // 2ˆ-4
int256 constant a11 = 106449445891785942956; // eˆ(x11)
/**
* @dev Exponentiation (x^y) with unsigned 18 decimal fixed point base and exponent.
*
* Reverts if ln(x) * y is smaller than `MIN_NATURAL_EXPONENT`, or larger than `MAX_NATURAL_EXPONENT`.
*/
function pow(uint256 x, uint256 y) internal pure returns (uint256) {
unchecked {
if (y == 0) {
// We solve the 0^0 indetermination by making it equal one.
return uint256(ONE_18);
}
if (x == 0) {
return 0;
}
// Instead of computing x^y directly, we instead rely on the properties of logarithms and exponentiation to
// arrive at that result. In particular, exp(ln(x)) = x, and ln(x^y) = y * ln(x). This means
// x^y = exp(y * ln(x)).
// The ln function takes a signed value, so we need to make sure x fits in the signed 256 bit range.
require(x >> 255 == 0, "X_OUT_OF_BOUNDS");
int256 x_int256 = int256(x);
// We will compute y * ln(x) in a single step. Depending on the value of x, we can either use ln or ln_36. In
// both cases, we leave the division by ONE_18 (due to fixed point multiplication) to the end.
// This prevents y * ln(x) from overflowing, and at the same time guarantees y fits in the signed 256 bit range.
require(y < MILD_EXPONENT_BOUND, "Y_OUT_OF_BOUNDS");
int256 y_int256 = int256(y);
int256 logx_times_y;
if (LN_36_LOWER_BOUND < x_int256 && x_int256 < LN_36_UPPER_BOUND) {
int256 ln_36_x = _ln_36(x_int256);
// ln_36_x has 36 decimal places, so multiplying by y_int256 isn't as straightforward, since we can't just
// bring y_int256 to 36 decimal places, as it might overflow. Instead, we perform two 18 decimal
// multiplications and add the results: one with the first 18 decimals of ln_36_x, and one with the
// (downscaled) last 18 decimals.
logx_times_y = ((ln_36_x / ONE_18) * y_int256 + ((ln_36_x % ONE_18) * y_int256) / ONE_18);
} else {
logx_times_y = _ln(x_int256) * y_int256;
}
logx_times_y /= ONE_18;
// Finally, we compute exp(y * ln(x)) to arrive at x^y
require(MIN_NATURAL_EXPONENT <= logx_times_y && logx_times_y <= MAX_NATURAL_EXPONENT, "PRODUCT_OUT_OF_BOUNDS");
return uint256(exp(logx_times_y));
}
}
/**
* @dev Natural exponentiation (e^x) with signed 18 decimal fixed point exponent.
*
* Reverts if `x` is smaller than MIN_NATURAL_EXPONENT, or larger than `MAX_NATURAL_EXPONENT`.
*/
function exp(int256 x) internal pure returns (int256) {
unchecked {
require(x >= MIN_NATURAL_EXPONENT && x <= MAX_NATURAL_EXPONENT, "INVALID_EXPONENT");
if (x < 0) {
// We only handle positive exponents: e^(-x) is computed as 1 / e^x. We can safely make x positive since it
// fits in the signed 256 bit range (as it is larger than MIN_NATURAL_EXPONENT).
// Fixed point division requires multiplying by ONE_18.
return ((ONE_18 * ONE_18) / exp(-x));
}
// First, we use the fact that e^(x+y) = e^x * e^y to decompose x into a sum of powers of two, which we call x_n,
// where x_n == 2^(7 - n), and e^x_n = a_n has been precomputed. We choose the first x_n, x0, to equal 2^7
// because all larger powers are larger than MAX_NATURAL_EXPONENT, and therefore not present in the
// decomposition.
// At the end of this process we will have the product of all e^x_n = a_n that apply, and the remainder of this
// decomposition, which will be lower than the smallest x_n.
// exp(x) = k_0 * a_0 * k_1 * a_1 * ... + k_n * a_n * exp(remainder), where each k_n equals either 0 or 1.
// We mutate x by subtracting x_n, making it the remainder of the decomposition.
// The first two a_n (e^(2^7) and e^(2^6)) are too large if stored as 18 decimal numbers, and could cause
// intermediate overflows. Instead we store them as plain integers, with 0 decimals.
// Additionally, x0 + x1 is larger than MAX_NATURAL_EXPONENT, which means they will not both be present in the
// decomposition.
// For each x_n, we test if that term is present in the decomposition (if x is larger than it), and if so deduct
// it and compute the accumulated product.
int256 firstAN;
if (x >= x0) {
x -= x0;
firstAN = a0;
} else if (x >= x1) {
x -= x1;
firstAN = a1;
} else {
firstAN = 1; // One with no decimal places
}
// We now transform x into a 20 decimal fixed point number, to have enhanced precision when computing the
// smaller terms.
x *= 100;
// `product` is the accumulated product of all a_n (except a0 and a1), which starts at 20 decimal fixed point
// one. Recall that fixed point multiplication requires dividing by ONE_20.
int256 product = ONE_20;
if (x >= x2) {
x -= x2;
product = (product * a2) / ONE_20;
}
if (x >= x3) {
x -= x3;
product = (product * a3) / ONE_20;
}
if (x >= x4) {
x -= x4;
product = (product * a4) / ONE_20;
}
if (x >= x5) {
x -= x5;
product = (product * a5) / ONE_20;
}
if (x >= x6) {
x -= x6;
product = (product * a6) / ONE_20;
}
if (x >= x7) {
x -= x7;
product = (product * a7) / ONE_20;
}
if (x >= x8) {
x -= x8;
product = (product * a8) / ONE_20;
}
if (x >= x9) {
x -= x9;
product = (product * a9) / ONE_20;
}
// x10 and x11 are unnecessary here since we have high enough precision already.
// Now we need to compute e^x, where x is small (in particular, it is smaller than x9). We use the Taylor series
// expansion for e^x: 1 + x + (x^2 / 2!) + (x^3 / 3!) + ... + (x^n / n!).
int256 seriesSum = ONE_20; // The initial one in the sum, with 20 decimal places.
int256 term; // Each term in the sum, where the nth term is (x^n / n!).
// The first term is simply x.
term = x;
seriesSum += term;
// Each term (x^n / n!) equals the previous one times x, divided by n. Since x is a fixed point number,
// multiplying by it requires dividing by ONE_20, but dividing by the non-fixed point n values does not.
term = ((term * x) / ONE_20) / 2;
seriesSum += term;
term = ((term * x) / ONE_20) / 3;
seriesSum += term;
term = ((term * x) / ONE_20) / 4;
seriesSum += term;
term = ((term * x) / ONE_20) / 5;
seriesSum += term;
term = ((term * x) / ONE_20) / 6;
seriesSum += term;
term = ((term * x) / ONE_20) / 7;
seriesSum += term;
term = ((term * x) / ONE_20) / 8;
seriesSum += term;
term = ((term * x) / ONE_20) / 9;
seriesSum += term;
term = ((term * x) / ONE_20) / 10;
seriesSum += term;
term = ((term * x) / ONE_20) / 11;
seriesSum += term;
term = ((term * x) / ONE_20) / 12;
seriesSum += term;
// 12 Taylor terms are sufficient for 18 decimal precision.
// We now have the first a_n (with no decimals), and the product of all other a_n present, and the Taylor
// approximation of the exponentiation of the remainder (both with 20 decimals). All that remains is to multiply
// all three (one 20 decimal fixed point multiplication, dividing by ONE_20, and one integer multiplication),
// and then drop two digits to return an 18 decimal value.
return (((product * seriesSum) / ONE_20) * firstAN) / 100;
}
}
/**
* @dev Logarithm (log(arg, base), with signed 18 decimal fixed point base and argument.
*/
function log(int256 arg, int256 base) internal pure returns (int256) {
unchecked {
// This performs a simple base change: log(arg, base) = ln(arg) / ln(base).
// Both logBase and logArg are computed as 36 decimal fixed point numbers, either by using ln_36, or by
// upscaling.
int256 logBase;
if (LN_36_LOWER_BOUND < base && base < LN_36_UPPER_BOUND) {
logBase = _ln_36(base);
} else {
logBase = _ln(base) * ONE_18;
}
int256 logArg;
if (LN_36_LOWER_BOUND < arg && arg < LN_36_UPPER_BOUND) {
logArg = _ln_36(arg);
} else {
logArg = _ln(arg) * ONE_18;
}
// When dividing, we multiply by ONE_18 to arrive at a result with 18 decimal places
return (logArg * ONE_18) / logBase;
}
}
/**
* @dev Natural logarithm (ln(a)) with signed 18 decimal fixed point argument.
*/
function ln(int256 a) internal pure returns (int256) {
unchecked {
// The real natural logarithm is not defined for negative numbers or zero.
require(a > 0, "OUT_OF_BOUNDS");
if (LN_36_LOWER_BOUND < a && a < LN_36_UPPER_BOUND) {
return _ln_36(a) / ONE_18;
} else {
return _ln(a);
}
}
}
/**
* @dev Internal natural logarithm (ln(a)) with signed 18 decimal fixed point argument.
*/
function _ln(int256 a) private pure returns (int256) {
unchecked {
if (a < ONE_18) {
// Since ln(a^k) = k * ln(a), we can compute ln(a) as ln(a) = ln((1/a)^(-1)) = - ln((1/a)). If a is less
// than one, 1/a will be greater than one, and this if statement will not be entered in the recursive call.
// Fixed point division requires multiplying by ONE_18.
return (-_ln((ONE_18 * ONE_18) / a));
}
// First, we use the fact that ln^(a * b) = ln(a) + ln(b) to decompose ln(a) into a sum of powers of two, which
// we call x_n, where x_n == 2^(7 - n), which are the natural logarithm of precomputed quantities a_n (that is,
// ln(a_n) = x_n). We choose the first x_n, x0, to equal 2^7 because the exponential of all larger powers cannot
// be represented as 18 fixed point decimal numbers in 256 bits, and are therefore larger than a.
// At the end of this process we will have the sum of all x_n = ln(a_n) that apply, and the remainder of this
// decomposition, which will be lower than the smallest a_n.
// ln(a) = k_0 * x_0 + k_1 * x_1 + ... + k_n * x_n + ln(remainder), where each k_n equals either 0 or 1.
// We mutate a by subtracting a_n, making it the remainder of the decomposition.
// For reasons related to how `exp` works, the first two a_n (e^(2^7) and e^(2^6)) are not stored as fixed point
// numbers with 18 decimals, but instead as plain integers with 0 decimals, so we need to multiply them by
// ONE_18 to convert them to fixed point.
// For each a_n, we test if that term is present in the decomposition (if a is larger than it), and if so divide
// by it and compute the accumulated sum.
int256 sum = 0;
if (a >= a0 * ONE_18) {
a /= a0; // Integer, not fixed point division
sum += x0;
}
if (a >= a1 * ONE_18) {
a /= a1; // Integer, not fixed point division
sum += x1;
}
// All other a_n and x_n are stored as 20 digit fixed point numbers, so we convert the sum and a to this format.
sum *= 100;
a *= 100;
// Because further a_n are 20 digit fixed point numbers, we multiply by ONE_20 when dividing by them.
if (a >= a2) {
a = (a * ONE_20) / a2;
sum += x2;
}
if (a >= a3) {
a = (a * ONE_20) / a3;
sum += x3;
}
if (a >= a4) {
a = (a * ONE_20) / a4;
sum += x4;
}
if (a >= a5) {
a = (a * ONE_20) / a5;
sum += x5;
}
if (a >= a6) {
a = (a * ONE_20) / a6;
sum += x6;
}
if (a >= a7) {
a = (a * ONE_20) / a7;
sum += x7;
}
if (a >= a8) {
a = (a * ONE_20) / a8;
sum += x8;
}
if (a >= a9) {
a = (a * ONE_20) / a9;
sum += x9;
}
if (a >= a10) {
a = (a * ONE_20) / a10;
sum += x10;
}
if (a >= a11) {
a = (a * ONE_20) / a11;
sum += x11;
}
// a is now a small number (smaller than a_11, which roughly equals 1.06). This means we can use a Taylor series
// that converges rapidly for values of `a` close to one - the same one used in ln_36.
// Let z = (a - 1) / (a + 1).
// ln(a) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1))
// Recall that 20 digit fixed point division requires multiplying by ONE_20, and multiplication requires
// division by ONE_20.
int256 z = ((a - ONE_20) * ONE_20) / (a + ONE_20);
int256 z_squared = (z * z) / ONE_20;
// num is the numerator of the series: the z^(2 * n + 1) term
int256 num = z;
// seriesSum holds the accumulated sum of each term in the series, starting with the initial z
int256 seriesSum = num;
// In each step, the numerator is multiplied by z^2
num = (num * z_squared) / ONE_20;
seriesSum += num / 3;
num = (num * z_squared) / ONE_20;
seriesSum += num / 5;
num = (num * z_squared) / ONE_20;
seriesSum += num / 7;
num = (num * z_squared) / ONE_20;
seriesSum += num / 9;
num = (num * z_squared) / ONE_20;
seriesSum += num / 11;
// 6 Taylor terms are sufficient for 36 decimal precision.
// Finally, we multiply by 2 (non fixed point) to compute ln(remainder)
seriesSum *= 2;
// We now have the sum of all x_n present, and the Taylor approximation of the logarithm of the remainder (both
// with 20 decimals). All that remains is to sum these two, and then drop two digits to return a 18 decimal
// value.
return (sum + seriesSum) / 100;
}
}
/**
* @dev Intrnal high precision (36 decimal places) natural logarithm (ln(x)) with signed 18 decimal fixed point argument,
* for x close to one.
*
* Should only be used if x is between LN_36_LOWER_BOUND and LN_36_UPPER_BOUND.
*/
function _ln_36(int256 x) private pure returns (int256) {
unchecked {
// Since ln(1) = 0, a value of x close to one will yield a very small result, which makes using 36 digits
// worthwhile.
// First, we transform x to a 36 digit fixed point value.
x *= ONE_18;
// We will use the following Taylor expansion, which converges very rapidly. Let z = (x - 1) / (x + 1).
// ln(x) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1))
// Recall that 36 digit fixed point division requires multiplying by ONE_36, and multiplication requires
// division by ONE_36.
int256 z = ((x - ONE_36) * ONE_36) / (x + ONE_36);
int256 z_squared = (z * z) / ONE_36;
// num is the numerator of the series: the z^(2 * n + 1) term
int256 num = z;
// seriesSum holds the accumulated sum of each term in the series, starting with the initial z
int256 seriesSum = num;
// In each step, the numerator is multiplied by z^2
num = (num * z_squared) / ONE_36;
seriesSum += num / 3;
num = (num * z_squared) / ONE_36;
seriesSum += num / 5;
num = (num * z_squared) / ONE_36;
seriesSum += num / 7;
num = (num * z_squared) / ONE_36;
seriesSum += num / 9;
num = (num * z_squared) / ONE_36;
seriesSum += num / 11;
num = (num * z_squared) / ONE_36;
seriesSum += num / 13;
num = (num * z_squared) / ONE_36;
seriesSum += num / 15;
// 8 Taylor terms are sufficient for 36 decimal precision.
// All that remains is multiplying by 2 (non fixed point).
return seriesSum * 2;
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/ERC4626.sol)
pragma solidity ^0.8.0;
import "../ERC20Upgradeable.sol";
import "../utils/SafeERC20Upgradeable.sol";
import "../../../interfaces/IERC4626Upgradeable.sol";
import "../../../utils/math/MathUpgradeable.sol";
import {Initializable} from "../../../proxy/utils/Initializable.sol";
/**
* @dev Implementation of the ERC4626 "Tokenized Vault Standard" as defined in
* https://eips.ethereum.org/EIPS/eip-4626[EIP-4626].
*
* This extension allows the minting and burning of "shares" (represented using the ERC20 inheritance) in exchange for
* underlying "assets" through standardized {deposit}, {mint}, {redeem} and {burn} workflows. This contract extends
* the ERC20 standard. Any additional extensions included along it would affect the "shares" token represented by this
* contract and not the "assets" token which is an independent contract.
*
* [CAUTION]
* ====
* In empty (or nearly empty) ERC-4626 vaults, deposits are at high risk of being stolen through frontrunning
* with a "donation" to the vault that inflates the price of a share. This is variously known as a donation or inflation
* attack and is essentially a problem of slippage. Vault deployers can protect against this attack by making an initial
* deposit of a non-trivial amount of the asset, such that price manipulation becomes infeasible. Withdrawals may
* similarly be affected by slippage. Users can protect against this attack as well as unexpected slippage in general by
* verifying the amount received is as expected, using a wrapper that performs these checks such as
* https://github.com/fei-protocol/ERC4626#erc4626router-and-base[ERC4626Router].
*
* Since v4.9, this implementation uses virtual assets and shares to mitigate that risk. The `_decimalsOffset()`
* corresponds to an offset in the decimal representation between the underlying asset's decimals and the vault
* decimals. This offset also determines the rate of virtual shares to virtual assets in the vault, which itself
* determines the initial exchange rate. While not fully preventing the attack, analysis shows that the default offset
* (0) makes it non-profitable, as a result of the value being captured by the virtual shares (out of the attacker's
* donation) matching the attacker's expected gains. With a larger offset, the attack becomes orders of magnitude more
* expensive than it is profitable. More details about the underlying math can be found
* xref:erc4626.adoc#inflation-attack[here].
*
* The drawback of this approach is that the virtual shares do capture (a very small) part of the value being accrued
* to the vault. Also, if the vault experiences losses, the users try to exit the vault, the virtual shares and assets
* will cause the first user to exit to experience reduced losses in detriment to the last users that will experience
* bigger losses. Developers willing to revert back to the pre-v4.9 behavior just need to override the
* `_convertToShares` and `_convertToAssets` functions.
*
* To learn more, check out our xref:ROOT:erc4626.adoc[ERC-4626 guide].
* ====
*
* _Available since v4.7._
*/
abstract contract ERC4626Upgradeable is Initializable, ERC20Upgradeable, IERC4626Upgradeable {
using MathUpgradeable for uint256;
IERC20Upgradeable private _asset;
uint8 private _underlyingDecimals;
/**
* @dev Set the underlying asset contract. This must be an ERC20-compatible contract (ERC20 or ERC777).
*/
function __ERC4626_init(IERC20Upgradeable asset_) internal onlyInitializing {
__ERC4626_init_unchained(asset_);
}
function __ERC4626_init_unchained(IERC20Upgradeable asset_) internal onlyInitializing {
(bool success, uint8 assetDecimals) = _tryGetAssetDecimals(asset_);
_underlyingDecimals = success ? assetDecimals : 18;
_asset = asset_;
}
/**
* @dev Attempts to fetch the asset decimals. A return value of false indicates that the attempt failed in some way.
*/
function _tryGetAssetDecimals(IERC20Upgradeable asset_) private view returns (bool, uint8) {
(bool success, bytes memory encodedDecimals) = address(asset_).staticcall(
abi.encodeWithSelector(IERC20MetadataUpgradeable.decimals.selector)
);
if (success && encodedDecimals.length >= 32) {
uint256 returnedDecimals = abi.decode(encodedDecimals, (uint256));
if (returnedDecimals <= type(uint8).max) {
return (true, uint8(returnedDecimals));
}
}
return (false, 0);
}
/**
* @dev Decimals are computed by adding the decimal offset on top of the underlying asset's decimals. This
* "original" value is cached during construction of the vault contract. If this read operation fails (e.g., the
* asset has not been created yet), a default of 18 is used to represent the underlying asset's decimals.
*
* See {IERC20Metadata-decimals}.
*/
function decimals() public view virtual override(IERC20MetadataUpgradeable, ERC20Upgradeable) returns (uint8) {
return _underlyingDecimals + _decimalsOffset();
}
/** @dev See {IERC4626-asset}. */
function asset() public view virtual override returns (address) {
return address(_asset);
}
/** @dev See {IERC4626-totalAssets}. */
function totalAssets() public view virtual override returns (uint256) {
return _asset.balanceOf(address(this));
}
/** @dev See {IERC4626-convertToShares}. */
function convertToShares(uint256 assets) public view virtual override returns (uint256) {
return _convertToShares(assets, MathUpgradeable.Rounding.Down);
}
/** @dev See {IERC4626-convertToAssets}. */
function convertToAssets(uint256 shares) public view virtual override returns (uint256) {
return _convertToAssets(shares, MathUpgradeable.Rounding.Down);
}
/** @dev See {IERC4626-maxDeposit}. */
function maxDeposit(address) public view virtual override returns (uint256) {
return type(uint256).max;
}
/** @dev See {IERC4626-maxMint}. */
function maxMint(address) public view virtual override returns (uint256) {
return type(uint256).max;
}
/** @dev See {IERC4626-maxWithdraw}. */
function maxWithdraw(address owner) public view virtual override returns (uint256) {
return _convertToAssets(balanceOf(owner), MathUpgradeable.Rounding.Down);
}
/** @dev See {IERC4626-maxRedeem}. */
function maxRedeem(address owner) public view virtual override returns (uint256) {
return balanceOf(owner);
}
/** @dev See {IERC4626-previewDeposit}. */
function previewDeposit(uint256 assets) public view virtual override returns (uint256) {
return _convertToShares(assets, MathUpgradeable.Rounding.Down);
}
/** @dev See {IERC4626-previewMint}. */
function previewMint(uint256 shares) public view virtual override returns (uint256) {
return _convertToAssets(shares, MathUpgradeable.Rounding.Up);
}
/** @dev See {IERC4626-previewWithdraw}. */
function previewWithdraw(uint256 assets) public view virtual override returns (uint256) {
return _convertToShares(assets, MathUpgradeable.Rounding.Up);
}
/** @dev See {IERC4626-previewRedeem}. */
function previewRedeem(uint256 shares) public view virtual override returns (uint256) {
return _convertToAssets(shares, MathUpgradeable.Rounding.Down);
}
/** @dev See {IERC4626-deposit}. */
function deposit(uint256 assets, address receiver) public virtual override returns (uint256) {
require(assets <= maxDeposit(receiver), "ERC4626: deposit more than max");
uint256 shares = previewDeposit(assets);
_deposit(_msgSender(), receiver, assets, shares);
return shares;
}
/** @dev See {IERC4626-mint}.
*
* As opposed to {deposit}, minting is allowed even if the vault is in a state where the price of a share is zero.
* In this case, the shares will be minted without requiring any assets to be deposited.
*/
function mint(uint256 shares, address receiver) public virtual override returns (uint256) {
require(shares <= maxMint(receiver), "ERC4626: mint more than max");
uint256 assets = previewMint(shares);
_deposit(_msgSender(), receiver, assets, shares);
return assets;
}
/** @dev See {IERC4626-withdraw}. */
function withdraw(uint256 assets, address receiver, address owner) public virtual override returns (uint256) {
require(assets <= maxWithdraw(owner), "ERC4626: withdraw more than max");
uint256 shares = previewWithdraw(assets);
_withdraw(_msgSender(), receiver, owner, assets, shares);
return shares;
}
/** @dev See {IERC4626-redeem}. */
function redeem(uint256 shares, address receiver, address owner) public virtual override returns (uint256) {
require(shares <= maxRedeem(owner), "ERC4626: redeem more than max");
uint256 assets = previewRedeem(shares);
_withdraw(_msgSender(), receiver, owner, assets, shares);
return assets;
}
/**
* @dev Internal conversion function (from assets to shares) with support for rounding direction.
*/
function _convertToShares(uint256 assets, MathUpgradeable.Rounding rounding) internal view virtual returns (uint256) {
return assets.mulDiv(totalSupply() + 10 ** _decimalsOffset(), totalAssets() + 1, rounding);
}
/**
* @dev Internal conversion function (from shares to assets) with support for rounding direction.
*/
function _convertToAssets(uint256 shares, MathUpgradeable.Rounding rounding) internal view virtual returns (uint256) {
return shares.mulDiv(totalAssets() + 1, totalSupply() + 10 ** _decimalsOffset(), rounding);
}
/**
* @dev Deposit/mint common workflow.
*/
function _deposit(address caller, address receiver, uint256 assets, uint256 shares) internal virtual {
// If _asset is ERC777, `transferFrom` can trigger a reentrancy BEFORE the transfer happens through the
// `tokensToSend` hook. On the other hand, the `tokenReceived` hook, that is triggered after the transfer,
// calls the vault, which is assumed not malicious.
//
// Conclusion: we need to do the transfer before we mint so that any reentrancy would happen before the
// assets are transferred and before the shares are minted, which is a valid state.
// slither-disable-next-line reentrancy-no-eth
SafeERC20Upgradeable.safeTransferFrom(_asset, caller, address(this), assets);
_mint(receiver, shares);
emit Deposit(caller, receiver, assets, shares);
}
/**
* @dev Withdraw/redeem common workflow.
*/
function _withdraw(
address caller,
address receiver,
address owner,
uint256 assets,
uint256 shares
) internal virtual {
if (caller != owner) {
_spendAllowance(owner, caller, shares);
}
// If _asset is ERC777, `transfer` can trigger a reentrancy AFTER the transfer happens through the
// `tokensReceived` hook. On the other hand, the `tokensToSend` hook, that is triggered before the transfer,
// calls the vault, which is assumed not malicious.
//
// Conclusion: we need to do the transfer after the burn so that any reentrancy would happen after the
// shares are burned and after the assets are transferred, which is a valid state.
_burn(owner, shares);
SafeERC20Upgradeable.safeTransfer(_asset, receiver, assets);
emit Withdraw(caller, receiver, owner, assets, shares);
}
function _decimalsOffset() internal view virtual returns (uint8) {
return 0;
}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[49] private __gap;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20PermitUpgradeable {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
library DProtocol {
struct MintParams {
uint8 operationType; // Type of mint operation
uint256 baseIn; // Amount of base token input
uint24 slippage; // The slippage tolerance
address paymentToken; // Token used for payment
bytes hookData; // Hook data if any
}
struct RedeemParams {
uint8 operationType; // Type of redeem operation
uint256 baseOut; // Amount of tokens to redeem
uint24 slippage; // The slippage tolerance
address desiredCollateral; // Desired collateral to receive
bytes hookData; // Hook data if any
}
struct MintResult {
uint256 ytMinted; // Amount of YT Tokens minted
uint256 vtMinted; // Amount of VT Tokens minted
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/ERC20.sol)
pragma solidity ^0.8.0;
import "./IERC20Upgradeable.sol";
import "./extensions/IERC20MetadataUpgradeable.sol";
import "../../utils/ContextUpgradeable.sol";
import {Initializable} from "../../proxy/utils/Initializable.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* The default value of {decimals} is 18. To change this, you should override
* this function so it returns a different value.
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC20
* applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
contract ERC20Upgradeable is Initializable, ContextUpgradeable, IERC20Upgradeable, IERC20MetadataUpgradeable {
mapping(address => uint256) private _balances;
mapping(address => mapping(address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* All two of these values are immutable: they can only be set once during
* construction.
*/
function __ERC20_init(string memory name_, string memory symbol_) internal onlyInitializing {
__ERC20_init_unchained(name_, symbol_);
}
function __ERC20_init_unchained(string memory name_, string memory symbol_) internal onlyInitializing {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual override returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the default value returned by this function, unless
* it's overridden.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual override returns (uint8) {
return 18;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual override returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual override returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address to, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_transfer(owner, to, amount);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_approve(owner, spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
* - the caller must have allowance for ``from``'s tokens of at least
* `amount`.
*/
function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, amount);
_transfer(from, to, amount);
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, allowance(owner, spender) + addedValue);
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
address owner = _msgSender();
uint256 currentAllowance = allowance(owner, spender);
require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
unchecked {
_approve(owner, spender, currentAllowance - subtractedValue);
}
return true;
}
/**
* @dev Moves `amount` of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
*/
function _transfer(address from, address to, uint256 amount) internal virtual {
require(from != address(0), "ERC20: transfer from the zero address");
require(to != address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(from, to, amount);
uint256 fromBalance = _balances[from];
require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
unchecked {
_balances[from] = fromBalance - amount;
// Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
// decrementing then incrementing.
_balances[to] += amount;
}
emit Transfer(from, to, amount);
_afterTokenTransfer(from, to, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply += amount;
unchecked {
// Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
_balances[account] += amount;
}
emit Transfer(address(0), account, amount);
_afterTokenTransfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
uint256 accountBalance = _balances[account];
require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
unchecked {
_balances[account] = accountBalance - amount;
// Overflow not possible: amount <= accountBalance <= totalSupply.
_totalSupply -= amount;
}
emit Transfer(account, address(0), amount);
_afterTokenTransfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(address owner, address spender, uint256 amount) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Updates `owner` s allowance for `spender` based on spent `amount`.
*
* Does not update the allowance amount in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Might emit an {Approval} event.
*/
function _spendAllowance(address owner, address spender, uint256 amount) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance != type(uint256).max) {
require(currentAllowance >= amount, "ERC20: insufficient allowance");
unchecked {
_approve(owner, spender, currentAllowance - amount);
}
}
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {}
/**
* @dev Hook that is called after any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* has been transferred to `to`.
* - when `from` is zero, `amount` tokens have been minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens have been burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[45] private __gap;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC4626.sol)
pragma solidity ^0.8.0;
import "../token/ERC20/IERC20Upgradeable.sol";
import "../token/ERC20/extensions/IERC20MetadataUpgradeable.sol";
/**
* @dev Interface of the ERC4626 "Tokenized Vault Standard", as defined in
* https://eips.ethereum.org/EIPS/eip-4626[ERC-4626].
*
* _Available since v4.7._
*/
interface IERC4626Upgradeable is IERC20Upgradeable, IERC20MetadataUpgradeable {
event Deposit(address indexed sender, address indexed owner, uint256 assets, uint256 shares);
event Withdraw(
address indexed sender,
address indexed receiver,
address indexed owner,
uint256 assets,
uint256 shares
);
/**
* @dev Returns the address of the underlying token used for the Vault for accounting, depositing, and withdrawing.
*
* - MUST be an ERC-20 token contract.
* - MUST NOT revert.
*/
function asset() external view returns (address assetTokenAddress);
/**
* @dev Returns the total amount of the underlying asset that is “managed” by Vault.
*
* - SHOULD include any compounding that occurs from yield.
* - MUST be inclusive of any fees that are charged against assets in the Vault.
* - MUST NOT revert.
*/
function totalAssets() external view returns (uint256 totalManagedAssets);
/**
* @dev Returns the amount of shares that the Vault would exchange for the amount of assets provided, in an ideal
* scenario where all the conditions are met.
*
* - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
* - MUST NOT show any variations depending on the caller.
* - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
* - MUST NOT revert.
*
* NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
* “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
* from.
*/
function convertToShares(uint256 assets) external view returns (uint256 shares);
/**
* @dev Returns the amount of assets that the Vault would exchange for the amount of shares provided, in an ideal
* scenario where all the conditions are met.
*
* - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
* - MUST NOT show any variations depending on the caller.
* - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
* - MUST NOT revert.
*
* NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
* “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
* from.
*/
function convertToAssets(uint256 shares) external view returns (uint256 assets);
/**
* @dev Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver,
* through a deposit call.
*
* - MUST return a limited value if receiver is subject to some deposit limit.
* - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of assets that may be deposited.
* - MUST NOT revert.
*/
function maxDeposit(address receiver) external view returns (uint256 maxAssets);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their deposit at the current block, given
* current on-chain conditions.
*
* - MUST return as close to and no more than the exact amount of Vault shares that would be minted in a deposit
* call in the same transaction. I.e. deposit should return the same or more shares as previewDeposit if called
* in the same transaction.
* - MUST NOT account for deposit limits like those returned from maxDeposit and should always act as though the
* deposit would be accepted, regardless if the user has enough tokens approved, etc.
* - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToShares and previewDeposit SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by depositing.
*/
function previewDeposit(uint256 assets) external view returns (uint256 shares);
/**
* @dev Mints shares Vault shares to receiver by depositing exactly amount of underlying tokens.
*
* - MUST emit the Deposit event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
* deposit execution, and are accounted for during deposit.
* - MUST revert if all of assets cannot be deposited (due to deposit limit being reached, slippage, the user not
* approving enough underlying tokens to the Vault contract, etc).
*
* NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
*/
function deposit(uint256 assets, address receiver) external returns (uint256 shares);
/**
* @dev Returns the maximum amount of the Vault shares that can be minted for the receiver, through a mint call.
* - MUST return a limited value if receiver is subject to some mint limit.
* - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of shares that may be minted.
* - MUST NOT revert.
*/
function maxMint(address receiver) external view returns (uint256 maxShares);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their mint at the current block, given
* current on-chain conditions.
*
* - MUST return as close to and no fewer than the exact amount of assets that would be deposited in a mint call
* in the same transaction. I.e. mint should return the same or fewer assets as previewMint if called in the
* same transaction.
* - MUST NOT account for mint limits like those returned from maxMint and should always act as though the mint
* would be accepted, regardless if the user has enough tokens approved, etc.
* - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToAssets and previewMint SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by minting.
*/
function previewMint(uint256 shares) external view returns (uint256 assets);
/**
* @dev Mints exactly shares Vault shares to receiver by depositing amount of underlying tokens.
*
* - MUST emit the Deposit event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the mint
* execution, and are accounted for during mint.
* - MUST revert if all of shares cannot be minted (due to deposit limit being reached, slippage, the user not
* approving enough underlying tokens to the Vault contract, etc).
*
* NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
*/
function mint(uint256 shares, address receiver) external returns (uint256 assets);
/**
* @dev Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the
* Vault, through a withdraw call.
*
* - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
* - MUST NOT revert.
*/
function maxWithdraw(address owner) external view returns (uint256 maxAssets);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their withdrawal at the current block,
* given current on-chain conditions.
*
* - MUST return as close to and no fewer than the exact amount of Vault shares that would be burned in a withdraw
* call in the same transaction. I.e. withdraw should return the same or fewer shares as previewWithdraw if
* called
* in the same transaction.
* - MUST NOT account for withdrawal limits like those returned from maxWithdraw and should always act as though
* the withdrawal would be accepted, regardless if the user has enough shares, etc.
* - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToShares and previewWithdraw SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by depositing.
*/
function previewWithdraw(uint256 assets) external view returns (uint256 shares);
/**
* @dev Burns shares from owner and sends exactly assets of underlying tokens to receiver.
*
* - MUST emit the Withdraw event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
* withdraw execution, and are accounted for during withdraw.
* - MUST revert if all of assets cannot be withdrawn (due to withdrawal limit being reached, slippage, the owner
* not having enough shares, etc).
*
* Note that some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
* Those methods should be performed separately.
*/
function withdraw(uint256 assets, address receiver, address owner) external returns (uint256 shares);
/**
* @dev Returns the maximum amount of Vault shares that can be redeemed from the owner balance in the Vault,
* through a redeem call.
*
* - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
* - MUST return balanceOf(owner) if owner is not subject to any withdrawal limit or timelock.
* - MUST NOT revert.
*/
function maxRedeem(address owner) external view returns (uint256 maxShares);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their redeemption at the current block,
* given current on-chain conditions.
*
* - MUST return as close to and no more than the exact amount of assets that would be withdrawn in a redeem call
* in the same transaction. I.e. redeem should return the same or more assets as previewRedeem if called in the
* same transaction.
* - MUST NOT account for redemption limits like those returned from maxRedeem and should always act as though the
* redemption would be accepted, regardless if the user has enough shares, etc.
* - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToAssets and previewRedeem SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by redeeming.
*/
function previewRedeem(uint256 shares) external view returns (uint256 assets);
/**
* @dev Burns exactly shares from owner and sends assets of underlying tokens to receiver.
*
* - MUST emit the Withdraw event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
* redeem execution, and are accounted for during redeem.
* - MUST revert if all of shares cannot be redeemed (due to withdrawal limit being reached, slippage, the owner
* not having enough shares, etc).
*
* NOTE: some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
* Those methods should be performed separately.
*/
function redeem(uint256 shares, address receiver, address owner) external returns (uint256 assets);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.0;
import "../IERC20Upgradeable.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*
* _Available since v4.1._
*/
interface IERC20MetadataUpgradeable is IERC20Upgradeable {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}