S Price: $0.620716 (+19.92%)

Contract Diff Checker

Contract Name:
FluidVaultResolver

Contract Source Code:

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (token/ERC721/extensions/IERC721Enumerable.sol)

pragma solidity ^0.8.0;

import "../IERC721.sol";

/**
 * @title ERC-721 Non-Fungible Token Standard, optional enumeration extension
 * @dev See https://eips.ethereum.org/EIPS/eip-721
 */
interface IERC721Enumerable is IERC721 {
    /**
     * @dev Returns the total amount of tokens stored by the contract.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns a token ID owned by `owner` at a given `index` of its token list.
     * Use along with {balanceOf} to enumerate all of ``owner``'s tokens.
     */
    function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256);

    /**
     * @dev Returns a token ID at a given `index` of all the tokens stored by the contract.
     * Use along with {totalSupply} to enumerate all tokens.
     */
    function tokenByIndex(uint256 index) external view returns (uint256);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC721/IERC721.sol)

pragma solidity ^0.8.0;

import "../../utils/introspection/IERC165.sol";

/**
 * @dev Required interface of an ERC721 compliant contract.
 */
interface IERC721 is IERC165 {
    /**
     * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
     */
    event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
     */
    event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
     */
    event ApprovalForAll(address indexed owner, address indexed operator, bool approved);

    /**
     * @dev Returns the number of tokens in ``owner``'s account.
     */
    function balanceOf(address owner) external view returns (uint256 balance);

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) external view returns (address owner);

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId,
        bytes calldata data
    ) external;

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
     * are aware of the ERC721 protocol to prevent tokens from being forever locked.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId
    ) external;

    /**
     * @dev Transfers `tokenId` token from `from` to `to`.
     *
     * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
     * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
     * understand this adds an external call which potentially creates a reentrancy vulnerability.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 tokenId
    ) external;

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) external;

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the caller.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool _approved) external;

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) external view returns (address operator);

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}
     */
    function isApprovedForAll(address owner, address operator) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.21;

/// @notice implements calculation of address for contracts deployed through CREATE.
/// Accepts contract deployed from which address & nonce
library AddressCalcs {

    /// @notice                         Computes the address of a contract based
    /// @param deployedFrom_            Address from which the contract was deployed
    /// @param nonce_                   Nonce at which the contract was deployed
    /// @return contract_               Address of deployed contract
    function addressCalc(address deployedFrom_, uint nonce_) internal pure returns (address contract_) {
        // @dev based on https://ethereum.stackexchange.com/a/61413

        // nonce of smart contract always starts with 1. so, with nonce 0 there won't be any deployment
        // hence, nonce of vault deployment starts with 1.
        bytes memory data;
        if (nonce_ == 0x00) {
            return address(0);
        } else if (nonce_ <= 0x7f) {
            data = abi.encodePacked(bytes1(0xd6), bytes1(0x94), deployedFrom_, uint8(nonce_));
        } else if (nonce_ <= 0xff) {
            data = abi.encodePacked(bytes1(0xd7), bytes1(0x94), deployedFrom_, bytes1(0x81), uint8(nonce_));
        } else if (nonce_ <= 0xffff) {
            data = abi.encodePacked(bytes1(0xd8), bytes1(0x94), deployedFrom_, bytes1(0x82), uint16(nonce_));
        } else if (nonce_ <= 0xffffff) {
            data = abi.encodePacked(bytes1(0xd9), bytes1(0x94), deployedFrom_, bytes1(0x83), uint24(nonce_));
        } else {
            data = abi.encodePacked(bytes1(0xda), bytes1(0x94), deployedFrom_, bytes1(0x84), uint32(nonce_));
        }

        return address(uint160(uint256(keccak256(data))));
    }

}

// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.21;

/// @title library that represents a number in BigNumber(coefficient and exponent) format to store in smaller bits.
/// @notice the number is divided into two parts: a coefficient and an exponent. This comes at a cost of losing some precision
/// at the end of the number because the exponent simply fills it with zeroes. This precision is oftentimes negligible and can
/// result in significant gas cost reduction due to storage space reduction.
/// Also note, a valid big number is as follows: if the exponent is > 0, then coefficient last bits should be occupied to have max precision.
/// @dev roundUp is more like a increase 1, which happens everytime for the same number.
/// roundDown simply sets trailing digits after coefficientSize to zero (floor), only once for the same number.
library BigMathMinified {
    /// @dev constants to use for `roundUp` input param to increase readability
    bool internal constant ROUND_DOWN = false;
    bool internal constant ROUND_UP = true;

    /// @dev converts `normal` number to BigNumber with `exponent` and `coefficient` (or precision).
    /// e.g.:
    /// 5035703444687813576399599 (normal) = (coefficient[32bits], exponent[8bits])[40bits]
    /// 5035703444687813576399599 (decimal) => 10000101010010110100000011111011110010100110100000000011100101001101001101011101111 (binary)
    ///                                     => 10000101010010110100000011111011000000000000000000000000000000000000000000000000000
    ///                                                                        ^-------------------- 51(exponent) -------------- ^
    /// coefficient = 1000,0101,0100,1011,0100,0000,1111,1011               (2236301563)
    /// exponent =                                            0011,0011     (51)
    /// bigNumber =   1000,0101,0100,1011,0100,0000,1111,1011,0011,0011     (572493200179)
    ///
    /// @param normal number which needs to be converted into Big Number
    /// @param coefficientSize at max how many bits of precision there should be (64 = uint64 (64 bits precision))
    /// @param exponentSize at max how many bits of exponent there should be (8 = uint8 (8 bits exponent))
    /// @param roundUp signals if result should be rounded down or up
    /// @return bigNumber converted bigNumber (coefficient << exponent)
    function toBigNumber(
        uint256 normal,
        uint256 coefficientSize,
        uint256 exponentSize,
        bool roundUp
    ) internal pure returns (uint256 bigNumber) {
        assembly {
            let lastBit_
            let number_ := normal
            if gt(number_, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF) {
                number_ := shr(0x80, number_)
                lastBit_ := 0x80
            }
            if gt(number_, 0xFFFFFFFFFFFFFFFF) {
                number_ := shr(0x40, number_)
                lastBit_ := add(lastBit_, 0x40)
            }
            if gt(number_, 0xFFFFFFFF) {
                number_ := shr(0x20, number_)
                lastBit_ := add(lastBit_, 0x20)
            }
            if gt(number_, 0xFFFF) {
                number_ := shr(0x10, number_)
                lastBit_ := add(lastBit_, 0x10)
            }
            if gt(number_, 0xFF) {
                number_ := shr(0x8, number_)
                lastBit_ := add(lastBit_, 0x8)
            }
            if gt(number_, 0xF) {
                number_ := shr(0x4, number_)
                lastBit_ := add(lastBit_, 0x4)
            }
            if gt(number_, 0x3) {
                number_ := shr(0x2, number_)
                lastBit_ := add(lastBit_, 0x2)
            }
            if gt(number_, 0x1) {
                lastBit_ := add(lastBit_, 1)
            }
            if gt(number_, 0) {
                lastBit_ := add(lastBit_, 1)
            }
            if lt(lastBit_, coefficientSize) {
                // for throw exception
                lastBit_ := coefficientSize
            }
            let exponent := sub(lastBit_, coefficientSize)
            let coefficient := shr(exponent, normal)
            if and(roundUp, gt(exponent, 0)) {
                // rounding up is only needed if exponent is > 0, as otherwise the coefficient fully holds the original number
                coefficient := add(coefficient, 1)
                if eq(shl(coefficientSize, 1), coefficient) {
                    // case were coefficient was e.g. 111, with adding 1 it became 1000 (in binary) and coefficientSize 3 bits
                    // final coefficient would exceed it's size. -> reduce coefficent to 100 and increase exponent by 1.
                    coefficient := shl(sub(coefficientSize, 1), 1)
                    exponent := add(exponent, 1)
                }
            }
            if iszero(lt(exponent, shl(exponentSize, 1))) {
                // if exponent is >= exponentSize, the normal number is too big to fit within
                // BigNumber with too small sizes for coefficient and exponent
                revert(0, 0)
            }
            bigNumber := shl(exponentSize, coefficient)
            bigNumber := add(bigNumber, exponent)
        }
    }

    /// @dev get `normal` number from `bigNumber`, `exponentSize` and `exponentMask`
    function fromBigNumber(
        uint256 bigNumber,
        uint256 exponentSize,
        uint256 exponentMask
    ) internal pure returns (uint256 normal) {
        assembly {
            let coefficient := shr(exponentSize, bigNumber)
            let exponent := and(bigNumber, exponentMask)
            normal := shl(exponent, coefficient)
        }
    }

    /// @dev gets the most significant bit `lastBit` of a `normal` number (length of given number of binary format).
    /// e.g.
    /// 5035703444687813576399599 = 10000101010010110100000011111011110010100110100000000011100101001101001101011101111
    /// lastBit =                   ^---------------------------------   83   ----------------------------------------^
    function mostSignificantBit(uint256 normal) internal pure returns (uint lastBit) {
        assembly {
            let number_ := normal
            if gt(normal, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF) {
                number_ := shr(0x80, number_)
                lastBit := 0x80
            }
            if gt(number_, 0xFFFFFFFFFFFFFFFF) {
                number_ := shr(0x40, number_)
                lastBit := add(lastBit, 0x40)
            }
            if gt(number_, 0xFFFFFFFF) {
                number_ := shr(0x20, number_)
                lastBit := add(lastBit, 0x20)
            }
            if gt(number_, 0xFFFF) {
                number_ := shr(0x10, number_)
                lastBit := add(lastBit, 0x10)
            }
            if gt(number_, 0xFF) {
                number_ := shr(0x8, number_)
                lastBit := add(lastBit, 0x8)
            }
            if gt(number_, 0xF) {
                number_ := shr(0x4, number_)
                lastBit := add(lastBit, 0x4)
            }
            if gt(number_, 0x3) {
                number_ := shr(0x2, number_)
                lastBit := add(lastBit, 0x2)
            }
            if gt(number_, 0x1) {
                lastBit := add(lastBit, 1)
            }
            if gt(number_, 0) {
                lastBit := add(lastBit, 1)
            }
        }
    }
}

// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.21;

import { BigMathMinified } from "./bigMathMinified.sol";
import { DexSlotsLink } from "./dexSlotsLink.sol";

// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
// @DEV ATTENTION: ON ANY CHANGES HERE, MAKE SURE THAT LOGIC IN VAULTS WILL STILL BE VALID.
// SOME CODE THERE ASSUMES DEXCALCS == LIQUIDITYCALCS.
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

/// @notice implements calculation methods used for Fluid Dex such as updated withdrawal / borrow limits.
library DexCalcs {
    // constants used for BigMath conversion from and to storage
    uint256 internal constant DEFAULT_EXPONENT_SIZE = 8;
    uint256 internal constant DEFAULT_EXPONENT_MASK = 0xFF;

    uint256 internal constant FOUR_DECIMALS = 1e4;
    uint256 internal constant X14 = 0x3fff;
    uint256 internal constant X18 = 0x3ffff;
    uint256 internal constant X24 = 0xffffff;
    uint256 internal constant X33 = 0x1ffffffff;
    uint256 internal constant X64 = 0xffffffffffffffff;

    ///////////////////////////////////////////////////////////////////////////
    //////////                      CALC LIMITS                       /////////
    ///////////////////////////////////////////////////////////////////////////

    /// @dev calculates withdrawal limit before an operate execution:
    /// amount of user supply that must stay supplied (not amount that can be withdrawn).
    /// i.e. if user has supplied 100m and can withdraw 5M, this method returns the 95M, not the withdrawable amount 5M
    /// @param userSupplyData_ user supply data packed uint256 from storage
    /// @param userSupply_ current user supply amount already extracted from `userSupplyData_` and converted from BigMath
    /// @return currentWithdrawalLimit_ current withdrawal limit updated for expansion since last interaction.
    ///         returned value is in raw for with interest mode, normal amount for interest free mode!
    function calcWithdrawalLimitBeforeOperate(
        uint256 userSupplyData_,
        uint256 userSupply_
    ) internal view returns (uint256 currentWithdrawalLimit_) {
        // @dev must support handling the case where timestamp is 0 (config is set but no interactions yet).
        // first tx where timestamp is 0 will enter `if (lastWithdrawalLimit_ == 0)` because lastWithdrawalLimit_ is not set yet.
        // returning max withdrawal allowed, which is not exactly right but doesn't matter because the first interaction must be
        // a deposit anyway. Important is that it would not revert.

        // Note the first time a deposit brings the user supply amount to above the base withdrawal limit, the active limit
        // is the fully expanded limit immediately.

        // extract last set withdrawal limit
        uint256 lastWithdrawalLimit_ = (userSupplyData_ >> DexSlotsLink.BITS_USER_SUPPLY_PREVIOUS_WITHDRAWAL_LIMIT) &
            X64;
        lastWithdrawalLimit_ =
            (lastWithdrawalLimit_ >> DEFAULT_EXPONENT_SIZE) <<
            (lastWithdrawalLimit_ & DEFAULT_EXPONENT_MASK);
        if (lastWithdrawalLimit_ == 0) {
            // withdrawal limit is not activated. Max withdrawal allowed
            return 0;
        }

        uint256 maxWithdrawableLimit_;
        uint256 temp_;
        unchecked {
            // extract max withdrawable percent of user supply and
            // calculate maximum withdrawable amount expandPercentage of user supply at full expansion duration elapsed
            // e.g.: if 10% expandPercentage, meaning 10% is withdrawable after full expandDuration has elapsed.

            // userSupply_ needs to be atleast 1e73 to overflow max limit of ~1e77 in uint256 (no token in existence where this is possible).
            maxWithdrawableLimit_ =
                (((userSupplyData_ >> DexSlotsLink.BITS_USER_SUPPLY_EXPAND_PERCENT) & X14) * userSupply_) /
                FOUR_DECIMALS;

            // time elapsed since last withdrawal limit was set (in seconds)
            // @dev last process timestamp is guaranteed to exist for withdrawal, as a supply must have happened before.
            // last timestamp can not be > current timestamp
            temp_ = block.timestamp - ((userSupplyData_ >> DexSlotsLink.BITS_USER_SUPPLY_LAST_UPDATE_TIMESTAMP) & X33);
        }
        // calculate withdrawable amount of expandPercent that is elapsed of expandDuration.
        // e.g. if 60% of expandDuration has elapsed, then user should be able to withdraw 6% of user supply, down to 94%.
        // Note: no explicit check for this needed, it is covered by setting minWithdrawalLimit_ if needed.
        temp_ =
            (maxWithdrawableLimit_ * temp_) /
            // extract expand duration: After this, decrement won't happen (user can withdraw 100% of withdraw limit)
            ((userSupplyData_ >> DexSlotsLink.BITS_USER_SUPPLY_EXPAND_DURATION) & X24); // expand duration can never be 0
        // calculate expanded withdrawal limit: last withdrawal limit - withdrawable amount.
        // Note: withdrawable amount here can grow bigger than userSupply if timeElapsed is a lot bigger than expandDuration,
        // which would cause the subtraction `lastWithdrawalLimit_ - withdrawableAmount_` to revert. In that case, set 0
        // which will cause minimum (fully expanded) withdrawal limit to be set in lines below.
        unchecked {
            // underflow explicitly checked & handled
            currentWithdrawalLimit_ = lastWithdrawalLimit_ > temp_ ? lastWithdrawalLimit_ - temp_ : 0;
            // calculate minimum withdrawal limit: minimum amount of user supply that must stay supplied at full expansion.
            // subtraction can not underflow as maxWithdrawableLimit_ is a percentage amount (<=100%) of userSupply_
            temp_ = userSupply_ - maxWithdrawableLimit_;
        }
        // if withdrawal limit is decreased below minimum then set minimum
        // (e.g. when more than expandDuration time has elapsed)
        if (temp_ > currentWithdrawalLimit_) {
            currentWithdrawalLimit_ = temp_;
        }
    }

    /// @dev calculates withdrawal limit after an operate execution:
    /// amount of user supply that must stay supplied (not amount that can be withdrawn).
    /// i.e. if user has supplied 100m and can withdraw 5M, this method returns the 95M, not the withdrawable amount 5M
    /// @param userSupplyData_ user supply data packed uint256 from storage
    /// @param userSupply_ current user supply amount already extracted from `userSupplyData_` and added / subtracted with the executed operate amount
    /// @param newWithdrawalLimit_ current withdrawal limit updated for expansion since last interaction, result from `calcWithdrawalLimitBeforeOperate`
    /// @return withdrawalLimit_ updated withdrawal limit that should be written to storage. returned value is in
    ///                          raw for with interest mode, normal amount for interest free mode!
    function calcWithdrawalLimitAfterOperate(
        uint256 userSupplyData_,
        uint256 userSupply_,
        uint256 newWithdrawalLimit_
    ) internal pure returns (uint256) {
        // temp_ => base withdrawal limit. below this, maximum withdrawals are allowed
        uint256 temp_ = (userSupplyData_ >> DexSlotsLink.BITS_USER_SUPPLY_BASE_WITHDRAWAL_LIMIT) & X18;
        temp_ = (temp_ >> DEFAULT_EXPONENT_SIZE) << (temp_ & DEFAULT_EXPONENT_MASK);

        // if user supply is below base limit then max withdrawals are allowed
        if (userSupply_ < temp_) {
            return 0;
        }
        // temp_ => withdrawal limit expandPercent (is in 1e2 decimals)
        temp_ = (userSupplyData_ >> DexSlotsLink.BITS_USER_SUPPLY_EXPAND_PERCENT) & X14;
        unchecked {
            // temp_ => minimum withdrawal limit: userSupply - max withdrawable limit (userSupply * expandPercent))
            // userSupply_ needs to be atleast 1e73 to overflow max limit of ~1e77 in uint256 (no token in existence where this is possible).
            // subtraction can not underflow as maxWithdrawableLimit_ is a percentage amount (<=100%) of userSupply_
            temp_ = userSupply_ - ((userSupply_ * temp_) / FOUR_DECIMALS);
        }
        // if new (before operation) withdrawal limit is less than minimum limit then set minimum limit.
        // e.g. can happen on new deposits. withdrawal limit is instantly fully expanded in a scenario where
        // increased deposit amount outpaces withrawals.
        if (temp_ > newWithdrawalLimit_) {
            return temp_;
        }
        return newWithdrawalLimit_;
    }

    /// @dev calculates borrow limit before an operate execution:
    /// total amount user borrow can reach (not borrowable amount in current operation).
    /// i.e. if user has borrowed 50M and can still borrow 5M, this method returns the total 55M, not the borrowable amount 5M
    /// @param userBorrowData_ user borrow data packed uint256 from storage
    /// @param userBorrow_ current user borrow amount already extracted from `userBorrowData_`
    /// @return currentBorrowLimit_ current borrow limit updated for expansion since last interaction. returned value is in
    ///                             raw for with interest mode, normal amount for interest free mode!
    function calcBorrowLimitBeforeOperate(
        uint256 userBorrowData_,
        uint256 userBorrow_
    ) internal view returns (uint256 currentBorrowLimit_) {
        // @dev must support handling the case where timestamp is 0 (config is set but no interactions yet) -> base limit.
        // first tx where timestamp is 0 will enter `if (maxExpandedBorrowLimit_ < baseBorrowLimit_)` because `userBorrow_` and thus
        // `maxExpansionLimit_` and thus `maxExpandedBorrowLimit_` is 0 and `baseBorrowLimit_` can not be 0.

        // temp_ = extract borrow expand percent (is in 1e2 decimals)
        uint256 temp_ = (userBorrowData_ >> DexSlotsLink.BITS_USER_BORROW_EXPAND_PERCENT) & X14;

        uint256 maxExpansionLimit_;
        uint256 maxExpandedBorrowLimit_;
        unchecked {
            // calculate max expansion limit: Max amount limit can expand to since last interaction
            // userBorrow_ needs to be atleast 1e73 to overflow max limit of ~1e77 in uint256 (no token in existence where this is possible).
            maxExpansionLimit_ = ((userBorrow_ * temp_) / FOUR_DECIMALS);

            // calculate max borrow limit: Max point limit can increase to since last interaction
            maxExpandedBorrowLimit_ = userBorrow_ + maxExpansionLimit_;
        }

        // currentBorrowLimit_ = extract base borrow limit
        currentBorrowLimit_ = (userBorrowData_ >> DexSlotsLink.BITS_USER_BORROW_BASE_BORROW_LIMIT) & X18;
        currentBorrowLimit_ =
            (currentBorrowLimit_ >> DEFAULT_EXPONENT_SIZE) <<
            (currentBorrowLimit_ & DEFAULT_EXPONENT_MASK);

        if (maxExpandedBorrowLimit_ < currentBorrowLimit_) {
            return currentBorrowLimit_;
        }
        // time elapsed since last borrow limit was set (in seconds)
        unchecked {
            // temp_ = timeElapsed_ (last timestamp can not be > current timestamp)
            temp_ = block.timestamp - ((userBorrowData_ >> DexSlotsLink.BITS_USER_BORROW_LAST_UPDATE_TIMESTAMP) & X33); // extract last update timestamp
        }

        // currentBorrowLimit_ = expandedBorrowableAmount + extract last set borrow limit
        currentBorrowLimit_ =
            // calculate borrow limit expansion since last interaction for `expandPercent` that is elapsed of `expandDuration`.
            // divisor is extract expand duration (after this, full expansion to expandPercentage happened).
            ((maxExpansionLimit_ * temp_) /
                ((userBorrowData_ >> DexSlotsLink.BITS_USER_BORROW_EXPAND_DURATION) & X24)) + // expand duration can never be 0
            //  extract last set borrow limit
            BigMathMinified.fromBigNumber(
                (userBorrowData_ >> DexSlotsLink.BITS_USER_BORROW_PREVIOUS_BORROW_LIMIT) & X64,
                DEFAULT_EXPONENT_SIZE,
                DEFAULT_EXPONENT_MASK
            );

        // if timeElapsed is bigger than expandDuration, new borrow limit would be > max expansion,
        // so set to `maxExpandedBorrowLimit_` in that case.
        // also covers the case where last process timestamp = 0 (timeElapsed would simply be very big)
        if (currentBorrowLimit_ > maxExpandedBorrowLimit_) {
            currentBorrowLimit_ = maxExpandedBorrowLimit_;
        }
        // temp_ = extract hard max borrow limit. Above this user can never borrow (not expandable above)
        temp_ = (userBorrowData_ >> DexSlotsLink.BITS_USER_BORROW_MAX_BORROW_LIMIT) & X18;
        temp_ = (temp_ >> DEFAULT_EXPONENT_SIZE) << (temp_ & DEFAULT_EXPONENT_MASK);

        if (currentBorrowLimit_ > temp_) {
            currentBorrowLimit_ = temp_;
        }
    }

    /// @dev calculates borrow limit after an operate execution:
    /// total amount user borrow can reach (not borrowable amount in current operation).
    /// i.e. if user has borrowed 50M and can still borrow 5M, this method returns the total 55M, not the borrowable amount 5M
    /// @param userBorrowData_ user borrow data packed uint256 from storage
    /// @param userBorrow_ current user borrow amount already extracted from `userBorrowData_` and added / subtracted with the executed operate amount
    /// @param newBorrowLimit_ current borrow limit updated for expansion since last interaction, result from `calcBorrowLimitBeforeOperate`
    /// @return borrowLimit_ updated borrow limit that should be written to storage.
    ///                      returned value is in raw for with interest mode, normal amount for interest free mode!
    function calcBorrowLimitAfterOperate(
        uint256 userBorrowData_,
        uint256 userBorrow_,
        uint256 newBorrowLimit_
    ) internal pure returns (uint256 borrowLimit_) {
        // temp_ = extract borrow expand percent
        uint256 temp_ = (userBorrowData_ >> DexSlotsLink.BITS_USER_BORROW_EXPAND_PERCENT) & X14; // (is in 1e2 decimals)

        unchecked {
            // borrowLimit_ = calculate maximum borrow limit at full expansion.
            // userBorrow_ needs to be at least 1e73 to overflow max limit of ~1e77 in uint256 (no token in existence where this is possible).
            borrowLimit_ = userBorrow_ + ((userBorrow_ * temp_) / FOUR_DECIMALS);
        }

        // temp_ = extract base borrow limit
        temp_ = (userBorrowData_ >> DexSlotsLink.BITS_USER_BORROW_BASE_BORROW_LIMIT) & X18;
        temp_ = (temp_ >> DEFAULT_EXPONENT_SIZE) << (temp_ & DEFAULT_EXPONENT_MASK);

        if (borrowLimit_ < temp_) {
            // below base limit, borrow limit is always base limit
            return temp_;
        }
        // temp_ = extract hard max borrow limit. Above this user can never borrow (not expandable above)
        temp_ = (userBorrowData_ >> DexSlotsLink.BITS_USER_BORROW_MAX_BORROW_LIMIT) & X18;
        temp_ = (temp_ >> DEFAULT_EXPONENT_SIZE) << (temp_ & DEFAULT_EXPONENT_MASK);

        // make sure fully expanded borrow limit is not above hard max borrow limit
        if (borrowLimit_ > temp_) {
            borrowLimit_ = temp_;
        }
        // if new borrow limit (from before operate) is > max borrow limit, set max borrow limit.
        // (e.g. on a repay shrinking instantly to fully expanded borrow limit from new borrow amount. shrinking is instant)
        if (newBorrowLimit_ > borrowLimit_) {
            return borrowLimit_;
        }
        return newBorrowLimit_;
    }
}

// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.21;

/// @notice library that helps in reading / working with storage slot data of Fluid Dex.
/// @dev as all data for Fluid Dex is internal, any data must be fetched directly through manual
/// slot reading through this library or, if gas usage is less important, through the FluidDexResolver.
library DexSlotsLink {
    /// @dev storage slot for variables at Dex
    uint256 internal constant DEX_VARIABLES_SLOT = 0;
    /// @dev storage slot for variables2 at Dex
    uint256 internal constant DEX_VARIABLES2_SLOT = 1;
    /// @dev storage slot for total supply shares at Dex
    uint256 internal constant DEX_TOTAL_SUPPLY_SHARES_SLOT = 2;
    /// @dev storage slot for user supply mapping at Dex
    uint256 internal constant DEX_USER_SUPPLY_MAPPING_SLOT = 3;
    /// @dev storage slot for total borrow shares at Dex
    uint256 internal constant DEX_TOTAL_BORROW_SHARES_SLOT = 4;
    /// @dev storage slot for user borrow mapping at Dex
    uint256 internal constant DEX_USER_BORROW_MAPPING_SLOT = 5;
    /// @dev storage slot for oracle mapping at Dex
    uint256 internal constant DEX_ORACLE_MAPPING_SLOT = 6;
    /// @dev storage slot for range and threshold shifts at Dex
    uint256 internal constant DEX_RANGE_THRESHOLD_SHIFTS_SLOT = 7;
    /// @dev storage slot for center price shift at Dex
    uint256 internal constant DEX_CENTER_PRICE_SHIFT_SLOT = 8;

    // --------------------------------
    // @dev stacked uint256 storage slots bits position data for each:

    // UserSupplyData
    uint256 internal constant BITS_USER_SUPPLY_ALLOWED = 0;
    uint256 internal constant BITS_USER_SUPPLY_AMOUNT = 1;
    uint256 internal constant BITS_USER_SUPPLY_PREVIOUS_WITHDRAWAL_LIMIT = 65;
    uint256 internal constant BITS_USER_SUPPLY_LAST_UPDATE_TIMESTAMP = 129;
    uint256 internal constant BITS_USER_SUPPLY_EXPAND_PERCENT = 162;
    uint256 internal constant BITS_USER_SUPPLY_EXPAND_DURATION = 176;
    uint256 internal constant BITS_USER_SUPPLY_BASE_WITHDRAWAL_LIMIT = 200;

    // UserBorrowData
    uint256 internal constant BITS_USER_BORROW_ALLOWED = 0;
    uint256 internal constant BITS_USER_BORROW_AMOUNT = 1;
    uint256 internal constant BITS_USER_BORROW_PREVIOUS_BORROW_LIMIT = 65;
    uint256 internal constant BITS_USER_BORROW_LAST_UPDATE_TIMESTAMP = 129;
    uint256 internal constant BITS_USER_BORROW_EXPAND_PERCENT = 162;
    uint256 internal constant BITS_USER_BORROW_EXPAND_DURATION = 176;
    uint256 internal constant BITS_USER_BORROW_BASE_BORROW_LIMIT = 200;
    uint256 internal constant BITS_USER_BORROW_MAX_BORROW_LIMIT = 218;

    // --------------------------------

    /// @notice Calculating the slot ID for Dex contract for single mapping at `slot_` for `key_`
    function calculateMappingStorageSlot(uint256 slot_, address key_) internal pure returns (bytes32) {
        return keccak256(abi.encode(key_, slot_));
    }

    /// @notice Calculating the slot ID for Dex contract for double mapping at `slot_` for `key1_` and `key2_`
    function calculateDoubleMappingStorageSlot(
        uint256 slot_,
        address key1_,
        address key2_
    ) internal pure returns (bytes32) {
        bytes32 intermediateSlot_ = keccak256(abi.encode(key1_, slot_));
        return keccak256(abi.encode(key2_, intermediateSlot_));
    }
}

// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.21;

library LibsErrorTypes {
    /***********************************|
    |         LiquidityCalcs            | 
    |__________________________________*/

    /// @notice thrown when supply or borrow exchange price is zero at calc token data (token not configured yet)
    uint256 internal constant LiquidityCalcs__ExchangePriceZero = 70001;

    /// @notice thrown when rate data is set to a version that is not implemented
    uint256 internal constant LiquidityCalcs__UnsupportedRateVersion = 70002;

    /// @notice thrown when the calculated borrow rate turns negative. This should never happen.
    uint256 internal constant LiquidityCalcs__BorrowRateNegative = 70003;

    /***********************************|
    |           SafeTransfer            | 
    |__________________________________*/

    /// @notice thrown when safe transfer from for an ERC20 fails
    uint256 internal constant SafeTransfer__TransferFromFailed = 71001;

    /// @notice thrown when safe transfer for an ERC20 fails
    uint256 internal constant SafeTransfer__TransferFailed = 71002;

    /***********************************|
    |           SafeApprove             | 
    |__________________________________*/

    /// @notice thrown when safe approve from for an ERC20 fails
    uint256 internal constant SafeApprove__ApproveFailed = 81001;
}

// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.21;

interface IFluidProtocol {
    function TYPE() external view returns (uint256);
}

/// @notice implements helper methods to filter Fluid protocols by a certain type
library FluidProtocolTypes {
    uint256 internal constant VAULT_T1_TYPE = 10000; // VaultT1 borrow protocol type vaults
    uint256 internal constant VAULT_T2_SMART_COL_TYPE = 20000; // DEX protocol type vault
    uint256 internal constant VAULT_T3_SMART_DEBT_TYPE = 30000; // DEX protocol type vault
    uint256 internal constant VAULT_T4_SMART_COL_SMART_DEBT_TYPE = 40000; // DEX protocol type vault

    /// @dev filters input `addresses_` by protocol `type_`. Input addresses must be actual Fluid protocols, otherwise
    ///      they would be wrongly assumed to be VaultT1 even if they are not Fluid VaultT1 smart contracts.
    ///      `type_` must be a listed constant type of this library.
    ///      Example usage is to filter all vault addresses at the Vault factory by a certain type, e.g. to not include
    ///      DEX protocol type vaults.
    function filterBy(address[] memory addresses_, uint256 type_) internal view returns (address[] memory filtered_) {
        uint256 curType_;
        uint256 filteredProtocols_ = addresses_.length;
        for (uint256 i; i < addresses_.length; ) {
            try IFluidProtocol(addresses_[i]).TYPE() returns (uint256 protocolType_) {
                curType_ = protocolType_;
            } catch {
                curType_ = VAULT_T1_TYPE;
            }

            if (curType_ != type_) {
                addresses_[i] = address(0);
                --filteredProtocols_;
            }

            unchecked {
                ++i;
            }
        }

        filtered_ = new address[](filteredProtocols_);
        uint256 index_;
        unchecked {
            for (uint256 i; i < addresses_.length; ) {
                if (addresses_[i] != address(0)) {
                    filtered_[index_] = addresses_[i];
                    ++index_;
                }
                ++i;
            }
        }
    }
}

// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.21;

import { LibsErrorTypes as ErrorTypes } from "./errorTypes.sol";
import { LiquiditySlotsLink } from "./liquiditySlotsLink.sol";
import { BigMathMinified } from "./bigMathMinified.sol";

/// @notice implements calculation methods used for Fluid liquidity such as updated exchange prices,
/// borrow rate, withdrawal / borrow limits, revenue amount.
library LiquidityCalcs {
    error FluidLiquidityCalcsError(uint256 errorId_);

    /// @notice emitted if the calculated borrow rate surpassed max borrow rate (16 bits) and was capped at maximum value 65535
    event BorrowRateMaxCap();

    /// @dev constants as from Liquidity variables.sol
    uint256 internal constant EXCHANGE_PRICES_PRECISION = 1e12;

    /// @dev Ignoring leap years
    uint256 internal constant SECONDS_PER_YEAR = 365 days;
    // constants used for BigMath conversion from and to storage
    uint256 internal constant DEFAULT_EXPONENT_SIZE = 8;
    uint256 internal constant DEFAULT_EXPONENT_MASK = 0xFF;

    uint256 internal constant FOUR_DECIMALS = 1e4;
    uint256 internal constant TWELVE_DECIMALS = 1e12;
    uint256 internal constant X14 = 0x3fff;
    uint256 internal constant X15 = 0x7fff;
    uint256 internal constant X16 = 0xffff;
    uint256 internal constant X18 = 0x3ffff;
    uint256 internal constant X24 = 0xffffff;
    uint256 internal constant X33 = 0x1ffffffff;
    uint256 internal constant X64 = 0xffffffffffffffff;

    ///////////////////////////////////////////////////////////////////////////
    //////////                  CALC EXCHANGE PRICES                  /////////
    ///////////////////////////////////////////////////////////////////////////

    /// @dev calculates interest (exchange prices) for a token given its' exchangePricesAndConfig from storage.
    /// @param exchangePricesAndConfig_ exchange prices and config packed uint256 read from storage
    /// @return supplyExchangePrice_ updated supplyExchangePrice
    /// @return borrowExchangePrice_ updated borrowExchangePrice
    function calcExchangePrices(
        uint256 exchangePricesAndConfig_
    ) internal view returns (uint256 supplyExchangePrice_, uint256 borrowExchangePrice_) {
        // Extracting exchange prices
        supplyExchangePrice_ =
            (exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_SUPPLY_EXCHANGE_PRICE) &
            X64;
        borrowExchangePrice_ =
            (exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_BORROW_EXCHANGE_PRICE) &
            X64;

        if (supplyExchangePrice_ == 0 || borrowExchangePrice_ == 0) {
            revert FluidLiquidityCalcsError(ErrorTypes.LiquidityCalcs__ExchangePriceZero);
        }

        uint256 temp_ = exchangePricesAndConfig_ & X16; // temp_ = borrowRate

        unchecked {
            // last timestamp can not be > current timestamp
            uint256 secondsSinceLastUpdate_ = block.timestamp -
                ((exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_LAST_TIMESTAMP) & X33);

            uint256 borrowRatio_ = (exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_BORROW_RATIO) &
                X15;
            if (secondsSinceLastUpdate_ == 0 || temp_ == 0 || borrowRatio_ == 1) {
                // if no time passed, borrow rate is 0, or no raw borrowings: no exchange price update needed
                // (if borrowRatio_ == 1 means there is only borrowInterestFree, as first bit is 1 and rest is 0)
                return (supplyExchangePrice_, borrowExchangePrice_);
            }

            // calculate new borrow exchange price.
            // formula borrowExchangePriceIncrease: previous price * borrow rate * secondsSinceLastUpdate_.
            // nominator is max uint112 (uint64 * uint16 * uint32). Divisor can not be 0.
            borrowExchangePrice_ +=
                (borrowExchangePrice_ * temp_ * secondsSinceLastUpdate_) /
                (SECONDS_PER_YEAR * FOUR_DECIMALS);

            // FOR SUPPLY EXCHANGE PRICE:
            // all yield paid by borrowers (in mode with interest) goes to suppliers in mode with interest.
            // formula: previous price * supply rate * secondsSinceLastUpdate_.
            // where supply rate = (borrow rate  - revenueFee%) * ratioSupplyYield. And
            // ratioSupplyYield = utilization * supplyRatio * borrowRatio
            //
            // Example:
            // supplyRawInterest is 80, supplyInterestFree is 20. totalSupply is 100. BorrowedRawInterest is 50.
            // BorrowInterestFree is 10. TotalBorrow is 60. borrow rate 40%, revenueFee 10%.
            // yield is 10 (so half a year must have passed).
            // supplyRawInterest must become worth 89. totalSupply must become 109. BorrowedRawInterest must become 60.
            // borrowInterestFree must still be 10. supplyInterestFree still 20. totalBorrow 70.
            // supplyExchangePrice would have to go from 1 to 1,125 (+ 0.125). borrowExchangePrice from 1 to 1,2 (+0.2).
            // utilization is 60%. supplyRatio = 20 / 80 = 25% (only 80% of lenders receiving yield).
            // borrowRatio = 10 / 50 = 20% (only 83,333% of borrowers paying yield):
            // x of borrowers paying yield = 100% - (20 / (100 + 20)) = 100% - 16.6666666% = 83,333%.
            // ratioSupplyYield = 60% * 83,33333% * (100% + 20%) = 62,5%
            // supplyRate = (40% * (100% - 10%)) * = 36% * 62,5% = 22.5%
            // increase in supplyExchangePrice, assuming 100 as previous price.
            // 100 * 22,5% * 1/2 (half a year) = 0,1125.
            // cross-check supplyRawInterest worth = 80 * 1.1125 = 89. totalSupply worth = 89 + 20.

            // -------------- 1. calculate ratioSupplyYield --------------------------------
            // step1: utilization * supplyRatio (or actually part of lenders receiving yield)

            // temp_ => supplyRatio (in 1e2: 100% = 10_000; 1% = 100 -> max value 16_383)
            // if first bit 0 then ratio is supplyInterestFree / supplyWithInterest (supplyWithInterest is bigger)
            // else ratio is supplyWithInterest / supplyInterestFree (supplyInterestFree is bigger)
            temp_ = (exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_SUPPLY_RATIO) & X15;

            if (temp_ == 1) {
                // if no raw supply: no exchange price update needed
                // (if supplyRatio_ == 1 means there is only supplyInterestFree, as first bit is 1 and rest is 0)
                return (supplyExchangePrice_, borrowExchangePrice_);
            }

            // ratioSupplyYield precision is 1e27 as 100% for increased precision when supplyInterestFree > supplyWithInterest
            if (temp_ & 1 == 1) {
                // ratio is supplyWithInterest / supplyInterestFree (supplyInterestFree is bigger)
                temp_ = temp_ >> 1;

                // Note: case where temp_ == 0 (only supplyInterestFree, no yield) already covered by early return
                // in the if statement a little above.

                // based on above example but supplyRawInterest is 20, supplyInterestFree is 80. no fee.
                // supplyRawInterest must become worth 30. totalSupply must become 110.
                // supplyExchangePrice would have to go from 1 to 1,5. borrowExchangePrice from 1 to 1,2.
                // so ratioSupplyYield must come out as 2.5 (250%).
                // supplyRatio would be (20 * 10_000 / 80) = 2500. but must be inverted.
                temp_ = (1e27 * FOUR_DECIMALS) / temp_; // e.g. 1e31 / 2500 = 4e27. (* 1e27 for precision)
                // e.g. 5_000 * (1e27 + 4e27) / 1e27 = 25_000 (=250%).
                temp_ =
                    // utilization * (100% + 100% / supplyRatio)
                    (((exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_UTILIZATION) & X14) *
                        (1e27 + temp_)) / // extract utilization (max 16_383 so there is no way this can overflow).
                    (FOUR_DECIMALS);
                // max possible value of temp_ here is 16383 * (1e27 + 1e31) / 1e4 = ~1.64e31
            } else {
                // ratio is supplyInterestFree / supplyWithInterest (supplyWithInterest is bigger)
                temp_ = temp_ >> 1;
                // if temp_ == 0 then only supplyWithInterest => full yield. temp_ is already 0

                // e.g. 5_000 * 10_000 + (20 * 10_000 / 80) / 10_000 = 5000 * 12500 / 10000 = 6250 (=62.5%).
                temp_ =
                    // 1e27 * utilization * (100% + supplyRatio) / 100%
                    (1e27 *
                        ((exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_UTILIZATION) & X14) * // extract utilization (max 16_383 so there is no way this can overflow).
                        (FOUR_DECIMALS + temp_)) /
                    (FOUR_DECIMALS * FOUR_DECIMALS);
                // max possible temp_ value: 1e27 * 16383 * 2e4 / 1e8 = 3.2766e27
            }
            // from here temp_ => ratioSupplyYield (utilization * supplyRatio part) scaled by 1e27. max possible value ~1.64e31

            // step2 of ratioSupplyYield: add borrowRatio (only x% of borrowers paying yield)
            if (borrowRatio_ & 1 == 1) {
                // ratio is borrowWithInterest / borrowInterestFree (borrowInterestFree is bigger)
                borrowRatio_ = borrowRatio_ >> 1;
                // borrowRatio_ => x of total bororwers paying yield. scale to 1e27.

                // Note: case where borrowRatio_ == 0 (only borrowInterestFree, no yield) already covered
                // at the beginning of the method by early return if `borrowRatio_ == 1`.

                // based on above example but borrowRawInterest is 10, borrowInterestFree is 50. no fee. borrowRatio = 20%.
                // so only 16.66% of borrowers are paying yield. so the 100% - part of the formula is not needed.
                // x of borrowers paying yield = (borrowRatio / (100 + borrowRatio)) = 16.6666666%
                // borrowRatio_ => x of total bororwers paying yield. scale to 1e27.
                borrowRatio_ = (borrowRatio_ * 1e27) / (FOUR_DECIMALS + borrowRatio_);
                // max value here for borrowRatio_ is (1e31 / (1e4 + 1e4))= 5e26 (= 50% of borrowers paying yield).
            } else {
                // ratio is borrowInterestFree / borrowWithInterest (borrowWithInterest is bigger)
                borrowRatio_ = borrowRatio_ >> 1;

                // borrowRatio_ => x of total bororwers paying yield. scale to 1e27.
                // x of borrowers paying yield = 100% - (borrowRatio / (100 + borrowRatio)) = 100% - 16.6666666% = 83,333%.
                borrowRatio_ = (1e27 - ((borrowRatio_ * 1e27) / (FOUR_DECIMALS + borrowRatio_)));
                // borrowRatio can never be > 100%. so max subtraction can be 100% - 100% / 200%.
                // or if borrowRatio_ is 0 -> 100% - 0. or if borrowRatio_ is 1 -> 100% - 1 / 101.
                // max value here for borrowRatio_ is 1e27 - 0 = 1e27 (= 100% of borrowers paying yield).
            }

            // temp_ => ratioSupplyYield. scaled down from 1e25 = 1% each to normal percent precision 1e2 = 1%.
            // max nominator value is ~1.64e31 * 1e27 = 1.64e58. max result = 1.64e8
            temp_ = (FOUR_DECIMALS * temp_ * borrowRatio_) / 1e54;

            // 2. calculate supply rate
            // temp_ => supply rate (borrow rate  - revenueFee%) * ratioSupplyYield.
            // division part is done in next step to increase precision. (divided by 2x FOUR_DECIMALS, fee + borrowRate)
            // Note that all calculation divisions for supplyExchangePrice are rounded down.
            // Note supply rate can be bigger than the borrowRate, e.g. if there are only few lenders with interest
            // but more suppliers not earning interest.
            temp_ = ((exchangePricesAndConfig_ & X16) * // borrow rate
                temp_ * // ratioSupplyYield
                (FOUR_DECIMALS - ((exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_FEE) & X14))); // revenueFee
            // fee can not be > 100%. max possible = 65535 * ~1.64e8 * 1e4 =~1.074774e17.

            // 3. calculate increase in supply exchange price
            supplyExchangePrice_ += ((supplyExchangePrice_ * temp_ * secondsSinceLastUpdate_) /
                (SECONDS_PER_YEAR * FOUR_DECIMALS * FOUR_DECIMALS * FOUR_DECIMALS));
            // max possible nominator = max uint 64 * 1.074774e17 * max uint32 = ~8.52e45. Denominator can not be 0.
        }
    }

    ///////////////////////////////////////////////////////////////////////////
    //////////                     CALC REVENUE                       /////////
    ///////////////////////////////////////////////////////////////////////////

    /// @dev gets the `revenueAmount_` for a token given its' totalAmounts and exchangePricesAndConfig from storage
    /// and the current balance of the Fluid liquidity contract for the token.
    /// @param totalAmounts_ total amounts packed uint256 read from storage
    /// @param exchangePricesAndConfig_ exchange prices and config packed uint256 read from storage
    /// @param liquidityTokenBalance_   current balance of Liquidity contract (IERC20(token_).balanceOf(address(this)))
    /// @return revenueAmount_ collectable revenue amount
    function calcRevenue(
        uint256 totalAmounts_,
        uint256 exchangePricesAndConfig_,
        uint256 liquidityTokenBalance_
    ) internal view returns (uint256 revenueAmount_) {
        // @dev no need to super-optimize this method as it is only used by admin

        // calculate the new exchange prices based on earned interest
        (uint256 supplyExchangePrice_, uint256 borrowExchangePrice_) = calcExchangePrices(exchangePricesAndConfig_);

        // total supply = interest free + with interest converted from raw
        uint256 totalSupply_ = getTotalSupply(totalAmounts_, supplyExchangePrice_);

        if (totalSupply_ > 0) {
            // available revenue: balanceOf(token) + totalBorrowings - totalLendings.
            revenueAmount_ = liquidityTokenBalance_ + getTotalBorrow(totalAmounts_, borrowExchangePrice_);
            // ensure there is no possible case because of rounding etc. where this would revert,
            // explicitly check if >
            revenueAmount_ = revenueAmount_ > totalSupply_ ? revenueAmount_ - totalSupply_ : 0;
            // Note: if utilization > 100% (totalSupply < totalBorrow), then all the amount above 100% utilization
            // can only be revenue.
        } else {
            // if supply is 0, then rest of balance can be withdrawn as revenue so that no amounts get stuck
            revenueAmount_ = liquidityTokenBalance_;
        }
    }

    ///////////////////////////////////////////////////////////////////////////
    //////////                      CALC LIMITS                       /////////
    ///////////////////////////////////////////////////////////////////////////

    /// @dev calculates withdrawal limit before an operate execution:
    /// amount of user supply that must stay supplied (not amount that can be withdrawn).
    /// i.e. if user has supplied 100m and can withdraw 5M, this method returns the 95M, not the withdrawable amount 5M
    /// @param userSupplyData_ user supply data packed uint256 from storage
    /// @param userSupply_ current user supply amount already extracted from `userSupplyData_` and converted from BigMath
    /// @return currentWithdrawalLimit_ current withdrawal limit updated for expansion since last interaction.
    ///         returned value is in raw for with interest mode, normal amount for interest free mode!
    function calcWithdrawalLimitBeforeOperate(
        uint256 userSupplyData_,
        uint256 userSupply_
    ) internal view returns (uint256 currentWithdrawalLimit_) {
        // @dev must support handling the case where timestamp is 0 (config is set but no interactions yet).
        // first tx where timestamp is 0 will enter `if (lastWithdrawalLimit_ == 0)` because lastWithdrawalLimit_ is not set yet.
        // returning max withdrawal allowed, which is not exactly right but doesn't matter because the first interaction must be
        // a deposit anyway. Important is that it would not revert.

        // Note the first time a deposit brings the user supply amount to above the base withdrawal limit, the active limit
        // is the fully expanded limit immediately.

        // extract last set withdrawal limit
        uint256 lastWithdrawalLimit_ = (userSupplyData_ >>
            LiquiditySlotsLink.BITS_USER_SUPPLY_PREVIOUS_WITHDRAWAL_LIMIT) & X64;
        lastWithdrawalLimit_ =
            (lastWithdrawalLimit_ >> DEFAULT_EXPONENT_SIZE) <<
            (lastWithdrawalLimit_ & DEFAULT_EXPONENT_MASK);
        if (lastWithdrawalLimit_ == 0) {
            // withdrawal limit is not activated. Max withdrawal allowed
            return 0;
        }

        uint256 maxWithdrawableLimit_;
        uint256 temp_;
        unchecked {
            // extract max withdrawable percent of user supply and
            // calculate maximum withdrawable amount expandPercentage of user supply at full expansion duration elapsed
            // e.g.: if 10% expandPercentage, meaning 10% is withdrawable after full expandDuration has elapsed.

            // userSupply_ needs to be atleast 1e73 to overflow max limit of ~1e77 in uint256 (no token in existence where this is possible).
            maxWithdrawableLimit_ =
                (((userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_EXPAND_PERCENT) & X14) * userSupply_) /
                FOUR_DECIMALS;

            // time elapsed since last withdrawal limit was set (in seconds)
            // @dev last process timestamp is guaranteed to exist for withdrawal, as a supply must have happened before.
            // last timestamp can not be > current timestamp
            temp_ =
                block.timestamp -
                ((userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_LAST_UPDATE_TIMESTAMP) & X33);
        }
        // calculate withdrawable amount of expandPercent that is elapsed of expandDuration.
        // e.g. if 60% of expandDuration has elapsed, then user should be able to withdraw 6% of user supply, down to 94%.
        // Note: no explicit check for this needed, it is covered by setting minWithdrawalLimit_ if needed.
        temp_ =
            (maxWithdrawableLimit_ * temp_) /
            // extract expand duration: After this, decrement won't happen (user can withdraw 100% of withdraw limit)
            ((userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_EXPAND_DURATION) & X24); // expand duration can never be 0
        // calculate expanded withdrawal limit: last withdrawal limit - withdrawable amount.
        // Note: withdrawable amount here can grow bigger than userSupply if timeElapsed is a lot bigger than expandDuration,
        // which would cause the subtraction `lastWithdrawalLimit_ - withdrawableAmount_` to revert. In that case, set 0
        // which will cause minimum (fully expanded) withdrawal limit to be set in lines below.
        unchecked {
            // underflow explicitly checked & handled
            currentWithdrawalLimit_ = lastWithdrawalLimit_ > temp_ ? lastWithdrawalLimit_ - temp_ : 0;
            // calculate minimum withdrawal limit: minimum amount of user supply that must stay supplied at full expansion.
            // subtraction can not underflow as maxWithdrawableLimit_ is a percentage amount (<=100%) of userSupply_
            temp_ = userSupply_ - maxWithdrawableLimit_;
        }
        // if withdrawal limit is decreased below minimum then set minimum
        // (e.g. when more than expandDuration time has elapsed)
        if (temp_ > currentWithdrawalLimit_) {
            currentWithdrawalLimit_ = temp_;
        }
    }

    /// @dev calculates withdrawal limit after an operate execution:
    /// amount of user supply that must stay supplied (not amount that can be withdrawn).
    /// i.e. if user has supplied 100m and can withdraw 5M, this method returns the 95M, not the withdrawable amount 5M
    /// @param userSupplyData_ user supply data packed uint256 from storage
    /// @param userSupply_ current user supply amount already extracted from `userSupplyData_` and added / subtracted with the executed operate amount
    /// @param newWithdrawalLimit_ current withdrawal limit updated for expansion since last interaction, result from `calcWithdrawalLimitBeforeOperate`
    /// @return withdrawalLimit_ updated withdrawal limit that should be written to storage. returned value is in
    ///                          raw for with interest mode, normal amount for interest free mode!
    function calcWithdrawalLimitAfterOperate(
        uint256 userSupplyData_,
        uint256 userSupply_,
        uint256 newWithdrawalLimit_
    ) internal pure returns (uint256) {
        // temp_ => base withdrawal limit. below this, maximum withdrawals are allowed
        uint256 temp_ = (userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_BASE_WITHDRAWAL_LIMIT) & X18;
        temp_ = (temp_ >> DEFAULT_EXPONENT_SIZE) << (temp_ & DEFAULT_EXPONENT_MASK);

        // if user supply is below base limit then max withdrawals are allowed
        if (userSupply_ < temp_) {
            return 0;
        }
        // temp_ => withdrawal limit expandPercent (is in 1e2 decimals)
        temp_ = (userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_EXPAND_PERCENT) & X14;
        unchecked {
            // temp_ => minimum withdrawal limit: userSupply - max withdrawable limit (userSupply * expandPercent))
            // userSupply_ needs to be atleast 1e73 to overflow max limit of ~1e77 in uint256 (no token in existence where this is possible).
            // subtraction can not underflow as maxWithdrawableLimit_ is a percentage amount (<=100%) of userSupply_
            temp_ = userSupply_ - ((userSupply_ * temp_) / FOUR_DECIMALS);
        }
        // if new (before operation) withdrawal limit is less than minimum limit then set minimum limit.
        // e.g. can happen on new deposits. withdrawal limit is instantly fully expanded in a scenario where
        // increased deposit amount outpaces withrawals.
        if (temp_ > newWithdrawalLimit_) {
            return temp_;
        }
        return newWithdrawalLimit_;
    }

    /// @dev calculates borrow limit before an operate execution:
    /// total amount user borrow can reach (not borrowable amount in current operation).
    /// i.e. if user has borrowed 50M and can still borrow 5M, this method returns the total 55M, not the borrowable amount 5M
    /// @param userBorrowData_ user borrow data packed uint256 from storage
    /// @param userBorrow_ current user borrow amount already extracted from `userBorrowData_`
    /// @return currentBorrowLimit_ current borrow limit updated for expansion since last interaction. returned value is in
    ///                             raw for with interest mode, normal amount for interest free mode!
    function calcBorrowLimitBeforeOperate(
        uint256 userBorrowData_,
        uint256 userBorrow_
    ) internal view returns (uint256 currentBorrowLimit_) {
        // @dev must support handling the case where timestamp is 0 (config is set but no interactions yet) -> base limit.
        // first tx where timestamp is 0 will enter `if (maxExpandedBorrowLimit_ < baseBorrowLimit_)` because `userBorrow_` and thus
        // `maxExpansionLimit_` and thus `maxExpandedBorrowLimit_` is 0 and `baseBorrowLimit_` can not be 0.

        // temp_ = extract borrow expand percent (is in 1e2 decimals)
        uint256 temp_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_EXPAND_PERCENT) & X14;

        uint256 maxExpansionLimit_;
        uint256 maxExpandedBorrowLimit_;
        unchecked {
            // calculate max expansion limit: Max amount limit can expand to since last interaction
            // userBorrow_ needs to be atleast 1e73 to overflow max limit of ~1e77 in uint256 (no token in existence where this is possible).
            maxExpansionLimit_ = ((userBorrow_ * temp_) / FOUR_DECIMALS);

            // calculate max borrow limit: Max point limit can increase to since last interaction
            maxExpandedBorrowLimit_ = userBorrow_ + maxExpansionLimit_;
        }

        // currentBorrowLimit_ = extract base borrow limit
        currentBorrowLimit_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_BASE_BORROW_LIMIT) & X18;
        currentBorrowLimit_ =
            (currentBorrowLimit_ >> DEFAULT_EXPONENT_SIZE) <<
            (currentBorrowLimit_ & DEFAULT_EXPONENT_MASK);

        if (maxExpandedBorrowLimit_ < currentBorrowLimit_) {
            return currentBorrowLimit_;
        }
        // time elapsed since last borrow limit was set (in seconds)
        unchecked {
            // temp_ = timeElapsed_ (last timestamp can not be > current timestamp)
            temp_ =
                block.timestamp -
                ((userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_LAST_UPDATE_TIMESTAMP) & X33); // extract last update timestamp
        }

        // currentBorrowLimit_ = expandedBorrowableAmount + extract last set borrow limit
        currentBorrowLimit_ =
            // calculate borrow limit expansion since last interaction for `expandPercent` that is elapsed of `expandDuration`.
            // divisor is extract expand duration (after this, full expansion to expandPercentage happened).
            ((maxExpansionLimit_ * temp_) /
                ((userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_EXPAND_DURATION) & X24)) + // expand duration can never be 0
            //  extract last set borrow limit
            BigMathMinified.fromBigNumber(
                (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_PREVIOUS_BORROW_LIMIT) & X64,
                DEFAULT_EXPONENT_SIZE,
                DEFAULT_EXPONENT_MASK
            );

        // if timeElapsed is bigger than expandDuration, new borrow limit would be > max expansion,
        // so set to `maxExpandedBorrowLimit_` in that case.
        // also covers the case where last process timestamp = 0 (timeElapsed would simply be very big)
        if (currentBorrowLimit_ > maxExpandedBorrowLimit_) {
            currentBorrowLimit_ = maxExpandedBorrowLimit_;
        }
        // temp_ = extract hard max borrow limit. Above this user can never borrow (not expandable above)
        temp_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_MAX_BORROW_LIMIT) & X18;
        temp_ = (temp_ >> DEFAULT_EXPONENT_SIZE) << (temp_ & DEFAULT_EXPONENT_MASK);

        if (currentBorrowLimit_ > temp_) {
            currentBorrowLimit_ = temp_;
        }
    }

    /// @dev calculates borrow limit after an operate execution:
    /// total amount user borrow can reach (not borrowable amount in current operation).
    /// i.e. if user has borrowed 50M and can still borrow 5M, this method returns the total 55M, not the borrowable amount 5M
    /// @param userBorrowData_ user borrow data packed uint256 from storage
    /// @param userBorrow_ current user borrow amount already extracted from `userBorrowData_` and added / subtracted with the executed operate amount
    /// @param newBorrowLimit_ current borrow limit updated for expansion since last interaction, result from `calcBorrowLimitBeforeOperate`
    /// @return borrowLimit_ updated borrow limit that should be written to storage.
    ///                      returned value is in raw for with interest mode, normal amount for interest free mode!
    function calcBorrowLimitAfterOperate(
        uint256 userBorrowData_,
        uint256 userBorrow_,
        uint256 newBorrowLimit_
    ) internal pure returns (uint256 borrowLimit_) {
        // temp_ = extract borrow expand percent
        uint256 temp_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_EXPAND_PERCENT) & X14; // (is in 1e2 decimals)

        unchecked {
            // borrowLimit_ = calculate maximum borrow limit at full expansion.
            // userBorrow_ needs to be at least 1e73 to overflow max limit of ~1e77 in uint256 (no token in existence where this is possible).
            borrowLimit_ = userBorrow_ + ((userBorrow_ * temp_) / FOUR_DECIMALS);
        }

        // temp_ = extract base borrow limit
        temp_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_BASE_BORROW_LIMIT) & X18;
        temp_ = (temp_ >> DEFAULT_EXPONENT_SIZE) << (temp_ & DEFAULT_EXPONENT_MASK);

        if (borrowLimit_ < temp_) {
            // below base limit, borrow limit is always base limit
            return temp_;
        }
        // temp_ = extract hard max borrow limit. Above this user can never borrow (not expandable above)
        temp_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_MAX_BORROW_LIMIT) & X18;
        temp_ = (temp_ >> DEFAULT_EXPONENT_SIZE) << (temp_ & DEFAULT_EXPONENT_MASK);

        // make sure fully expanded borrow limit is not above hard max borrow limit
        if (borrowLimit_ > temp_) {
            borrowLimit_ = temp_;
        }
        // if new borrow limit (from before operate) is > max borrow limit, set max borrow limit.
        // (e.g. on a repay shrinking instantly to fully expanded borrow limit from new borrow amount. shrinking is instant)
        if (newBorrowLimit_ > borrowLimit_) {
            return borrowLimit_;
        }
        return newBorrowLimit_;
    }

    ///////////////////////////////////////////////////////////////////////////
    //////////                      CALC RATES                        /////////
    ///////////////////////////////////////////////////////////////////////////

    /// @dev Calculates new borrow rate from utilization for a token
    /// @param rateData_ rate data packed uint256 from storage for the token
    /// @param utilization_ totalBorrow / totalSupply. 1e4 = 100% utilization
    /// @return rate_ rate for that particular token in 1e2 precision (e.g. 5% rate = 500)
    function calcBorrowRateFromUtilization(uint256 rateData_, uint256 utilization_) internal returns (uint256 rate_) {
        // extract rate version: 4 bits (0xF) starting from bit 0
        uint256 rateVersion_ = (rateData_ & 0xF);

        if (rateVersion_ == 1) {
            rate_ = calcRateV1(rateData_, utilization_);
        } else if (rateVersion_ == 2) {
            rate_ = calcRateV2(rateData_, utilization_);
        } else {
            revert FluidLiquidityCalcsError(ErrorTypes.LiquidityCalcs__UnsupportedRateVersion);
        }

        if (rate_ > X16) {
            // hard cap for borrow rate at maximum value 16 bits (65535) to make sure it does not overflow storage space.
            // this is unlikely to ever happen if configs stay within expected levels.
            rate_ = X16;
            // emit event to more easily become aware
            emit BorrowRateMaxCap();
        }
    }

    /// @dev calculates the borrow rate based on utilization for rate data version 1 (with one kink) in 1e2 precision
    /// @param rateData_ rate data packed uint256 from storage for the token
    /// @param utilization_  in 1e2 (100% = 1e4)
    /// @return rate_ rate in 1e2 precision
    function calcRateV1(uint256 rateData_, uint256 utilization_) internal pure returns (uint256 rate_) {
        /// For rate v1 (one kink) ------------------------------------------------------
        /// Next 16  bits =>  4 - 19 => Rate at utilization 0% (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)
        /// Next 16  bits =>  20- 35 => Utilization at kink1 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)
        /// Next 16  bits =>  36- 51 => Rate at utilization kink1 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)
        /// Next 16  bits =>  52- 67 => Rate at utilization 100% (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)
        /// Last 188 bits =>  68-255 => blank, might come in use in future

        // y = mx + c.
        // y is borrow rate
        // x is utilization
        // m = slope (m can also be negative for declining rates)
        // c is constant (c can be negative)

        uint256 y1_;
        uint256 y2_;
        uint256 x1_;
        uint256 x2_;

        // extract kink1: 16 bits (0xFFFF) starting from bit 20
        // kink is in 1e2, same as utilization, so no conversion needed for direct comparison of the two
        uint256 kink1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V1_UTILIZATION_AT_KINK) & X16;
        if (utilization_ < kink1_) {
            // if utilization is less than kink
            y1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_ZERO) & X16;
            y2_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_KINK) & X16;
            x1_ = 0; // 0%
            x2_ = kink1_;
        } else {
            // else utilization is greater than kink
            y1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_KINK) & X16;
            y2_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_MAX) & X16;
            x1_ = kink1_;
            x2_ = FOUR_DECIMALS; // 100%
        }

        int256 constant_;
        int256 slope_;
        unchecked {
            // calculating slope with twelve decimal precision. m = (y2 - y1) / (x2 - x1).
            // utilization of x2 can not be <= utilization of x1 (so no underflow or 0 divisor)
            // y is in 1e2 so can not overflow when multiplied with TWELVE_DECIMALS
            slope_ = (int256(y2_ - y1_) * int256(TWELVE_DECIMALS)) / int256((x2_ - x1_));

            // calculating constant at 12 decimal precision. slope is already in 12 decimal hence only multiple with y1. c = y - mx.
            // maximum y1_ value is 65535. 65535 * 1e12 can not overflow int256
            // maximum slope is 65535 - 0 * TWELVE_DECIMALS / 1 = 65535 * 1e12;
            // maximum x1_ is 100% (9_999 actually) => slope_ * x1_ can not overflow int256
            // subtraction most extreme case would be  0 - max value slope_ * x1_ => can not underflow int256
            constant_ = int256(y1_ * TWELVE_DECIMALS) - (slope_ * int256(x1_));

            // calculating new borrow rate
            // - slope_ max value is 65535 * 1e12,
            // - utilization max value is let's say 500% (extreme case where borrow rate increases borrow amount without new supply)
            // - constant max value is 65535 * 1e12
            // so max values are 65535 * 1e12 * 50_000 + 65535 * 1e12 -> 3.2768*10^21, which easily fits int256
            // divisor TWELVE_DECIMALS can not be 0
            slope_ = (slope_ * int256(utilization_)) + constant_; // reusing `slope_` as variable for gas savings
            if (slope_ < 0) {
                revert FluidLiquidityCalcsError(ErrorTypes.LiquidityCalcs__BorrowRateNegative);
            }
            rate_ = uint256(slope_) / TWELVE_DECIMALS;
        }
    }

    /// @dev calculates the borrow rate based on utilization for rate data version 2 (with two kinks) in 1e4 precision
    /// @param rateData_ rate data packed uint256 from storage for the token
    /// @param utilization_  in 1e2 (100% = 1e4)
    /// @return rate_ rate in 1e4 precision
    function calcRateV2(uint256 rateData_, uint256 utilization_) internal pure returns (uint256 rate_) {
        /// For rate v2 (two kinks) -----------------------------------------------------
        /// Next 16  bits =>  4 - 19 => Rate at utilization 0% (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)
        /// Next 16  bits =>  20- 35 => Utilization at kink1 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)
        /// Next 16  bits =>  36- 51 => Rate at utilization kink1 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)
        /// Next 16  bits =>  52- 67 => Utilization at kink2 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)
        /// Next 16  bits =>  68- 83 => Rate at utilization kink2 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)
        /// Next 16  bits =>  84- 99 => Rate at utilization 100% (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)
        /// Last 156 bits => 100-255 => blank, might come in use in future

        // y = mx + c.
        // y is borrow rate
        // x is utilization
        // m = slope (m can also be negative for declining rates)
        // c is constant (c can be negative)

        uint256 y1_;
        uint256 y2_;
        uint256 x1_;
        uint256 x2_;

        // extract kink1: 16 bits (0xFFFF) starting from bit 20
        // kink is in 1e2, same as utilization, so no conversion needed for direct comparison of the two
        uint256 kink1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_UTILIZATION_AT_KINK1) & X16;
        if (utilization_ < kink1_) {
            // if utilization is less than kink1
            y1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_ZERO) & X16;
            y2_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_KINK1) & X16;
            x1_ = 0; // 0%
            x2_ = kink1_;
        } else {
            // extract kink2: 16 bits (0xFFFF) starting from bit 52
            uint256 kink2_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_UTILIZATION_AT_KINK2) & X16;
            if (utilization_ < kink2_) {
                // if utilization is less than kink2
                y1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_KINK1) & X16;
                y2_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_KINK2) & X16;
                x1_ = kink1_;
                x2_ = kink2_;
            } else {
                // else utilization is greater than kink2
                y1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_KINK2) & X16;
                y2_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_MAX) & X16;
                x1_ = kink2_;
                x2_ = FOUR_DECIMALS;
            }
        }

        int256 constant_;
        int256 slope_;
        unchecked {
            // calculating slope with twelve decimal precision. m = (y2 - y1) / (x2 - x1).
            // utilization of x2 can not be <= utilization of x1 (so no underflow or 0 divisor)
            // y is in 1e2 so can not overflow when multiplied with TWELVE_DECIMALS
            slope_ = (int256(y2_ - y1_) * int256(TWELVE_DECIMALS)) / int256((x2_ - x1_));

            // calculating constant at 12 decimal precision. slope is already in 12 decimal hence only multiple with y1. c = y - mx.
            // maximum y1_ value is 65535. 65535 * 1e12 can not overflow int256
            // maximum slope is 65535 - 0 * TWELVE_DECIMALS / 1 = 65535 * 1e12;
            // maximum x1_ is 100% (9_999 actually) => slope_ * x1_ can not overflow int256
            // subtraction most extreme case would be  0 - max value slope_ * x1_ => can not underflow int256
            constant_ = int256(y1_ * TWELVE_DECIMALS) - (slope_ * int256(x1_));

            // calculating new borrow rate
            // - slope_ max value is 65535 * 1e12,
            // - utilization max value is let's say 500% (extreme case where borrow rate increases borrow amount without new supply)
            // - constant max value is 65535 * 1e12
            // so max values are 65535 * 1e12 * 50_000 + 65535 * 1e12 -> 3.2768*10^21, which easily fits int256
            // divisor TWELVE_DECIMALS can not be 0
            slope_ = (slope_ * int256(utilization_)) + constant_; // reusing `slope_` as variable for gas savings
            if (slope_ < 0) {
                revert FluidLiquidityCalcsError(ErrorTypes.LiquidityCalcs__BorrowRateNegative);
            }
            rate_ = uint256(slope_) / TWELVE_DECIMALS;
        }
    }

    /// @dev reads the total supply out of Liquidity packed storage `totalAmounts_` for `supplyExchangePrice_`
    function getTotalSupply(
        uint256 totalAmounts_,
        uint256 supplyExchangePrice_
    ) internal pure returns (uint256 totalSupply_) {
        // totalSupply_ => supplyInterestFree
        totalSupply_ = (totalAmounts_ >> LiquiditySlotsLink.BITS_TOTAL_AMOUNTS_SUPPLY_INTEREST_FREE) & X64;
        totalSupply_ = (totalSupply_ >> DEFAULT_EXPONENT_SIZE) << (totalSupply_ & DEFAULT_EXPONENT_MASK);

        uint256 totalSupplyRaw_ = totalAmounts_ & X64; // no shifting as supplyRaw is first 64 bits
        totalSupplyRaw_ = (totalSupplyRaw_ >> DEFAULT_EXPONENT_SIZE) << (totalSupplyRaw_ & DEFAULT_EXPONENT_MASK);

        // totalSupply = supplyInterestFree + supplyRawInterest normalized from raw
        totalSupply_ += ((totalSupplyRaw_ * supplyExchangePrice_) / EXCHANGE_PRICES_PRECISION);
    }

    /// @dev reads the total borrow out of Liquidity packed storage `totalAmounts_` for `borrowExchangePrice_`
    function getTotalBorrow(
        uint256 totalAmounts_,
        uint256 borrowExchangePrice_
    ) internal pure returns (uint256 totalBorrow_) {
        // totalBorrow_ => borrowInterestFree
        // no & mask needed for borrow interest free as it occupies the last bits in the storage slot
        totalBorrow_ = (totalAmounts_ >> LiquiditySlotsLink.BITS_TOTAL_AMOUNTS_BORROW_INTEREST_FREE);
        totalBorrow_ = (totalBorrow_ >> DEFAULT_EXPONENT_SIZE) << (totalBorrow_ & DEFAULT_EXPONENT_MASK);

        uint256 totalBorrowRaw_ = (totalAmounts_ >> LiquiditySlotsLink.BITS_TOTAL_AMOUNTS_BORROW_WITH_INTEREST) & X64;
        totalBorrowRaw_ = (totalBorrowRaw_ >> DEFAULT_EXPONENT_SIZE) << (totalBorrowRaw_ & DEFAULT_EXPONENT_MASK);

        // totalBorrow = borrowInterestFree + borrowRawInterest normalized from raw
        totalBorrow_ += ((totalBorrowRaw_ * borrowExchangePrice_) / EXCHANGE_PRICES_PRECISION);
    }
}

// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.21;

/// @notice library that helps in reading / working with storage slot data of Fluid Liquidity.
/// @dev as all data for Fluid Liquidity is internal, any data must be fetched directly through manual
/// slot reading through this library or, if gas usage is less important, through the FluidLiquidityResolver.
library LiquiditySlotsLink {
    /// @dev storage slot for status at Liquidity
    uint256 internal constant LIQUIDITY_STATUS_SLOT = 1;
    /// @dev storage slot for auths mapping at Liquidity
    uint256 internal constant LIQUIDITY_AUTHS_MAPPING_SLOT = 2;
    /// @dev storage slot for guardians mapping at Liquidity
    uint256 internal constant LIQUIDITY_GUARDIANS_MAPPING_SLOT = 3;
    /// @dev storage slot for user class mapping at Liquidity
    uint256 internal constant LIQUIDITY_USER_CLASS_MAPPING_SLOT = 4;
    /// @dev storage slot for exchangePricesAndConfig mapping at Liquidity
    uint256 internal constant LIQUIDITY_EXCHANGE_PRICES_MAPPING_SLOT = 5;
    /// @dev storage slot for rateData mapping at Liquidity
    uint256 internal constant LIQUIDITY_RATE_DATA_MAPPING_SLOT = 6;
    /// @dev storage slot for totalAmounts mapping at Liquidity
    uint256 internal constant LIQUIDITY_TOTAL_AMOUNTS_MAPPING_SLOT = 7;
    /// @dev storage slot for user supply double mapping at Liquidity
    uint256 internal constant LIQUIDITY_USER_SUPPLY_DOUBLE_MAPPING_SLOT = 8;
    /// @dev storage slot for user borrow double mapping at Liquidity
    uint256 internal constant LIQUIDITY_USER_BORROW_DOUBLE_MAPPING_SLOT = 9;
    /// @dev storage slot for listed tokens array at Liquidity
    uint256 internal constant LIQUIDITY_LISTED_TOKENS_ARRAY_SLOT = 10;
    /// @dev storage slot for listed tokens array at Liquidity
    uint256 internal constant LIQUIDITY_CONFIGS2_MAPPING_SLOT = 11;

    // --------------------------------
    // @dev stacked uint256 storage slots bits position data for each:

    // ExchangePricesAndConfig
    uint256 internal constant BITS_EXCHANGE_PRICES_BORROW_RATE = 0;
    uint256 internal constant BITS_EXCHANGE_PRICES_FEE = 16;
    uint256 internal constant BITS_EXCHANGE_PRICES_UTILIZATION = 30;
    uint256 internal constant BITS_EXCHANGE_PRICES_UPDATE_THRESHOLD = 44;
    uint256 internal constant BITS_EXCHANGE_PRICES_LAST_TIMESTAMP = 58;
    uint256 internal constant BITS_EXCHANGE_PRICES_SUPPLY_EXCHANGE_PRICE = 91;
    uint256 internal constant BITS_EXCHANGE_PRICES_BORROW_EXCHANGE_PRICE = 155;
    uint256 internal constant BITS_EXCHANGE_PRICES_SUPPLY_RATIO = 219;
    uint256 internal constant BITS_EXCHANGE_PRICES_BORROW_RATIO = 234;
    uint256 internal constant BITS_EXCHANGE_PRICES_USES_CONFIGS2 = 249;

    // RateData:
    uint256 internal constant BITS_RATE_DATA_VERSION = 0;
    // RateData: V1
    uint256 internal constant BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_ZERO = 4;
    uint256 internal constant BITS_RATE_DATA_V1_UTILIZATION_AT_KINK = 20;
    uint256 internal constant BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_KINK = 36;
    uint256 internal constant BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_MAX = 52;
    // RateData: V2
    uint256 internal constant BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_ZERO = 4;
    uint256 internal constant BITS_RATE_DATA_V2_UTILIZATION_AT_KINK1 = 20;
    uint256 internal constant BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_KINK1 = 36;
    uint256 internal constant BITS_RATE_DATA_V2_UTILIZATION_AT_KINK2 = 52;
    uint256 internal constant BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_KINK2 = 68;
    uint256 internal constant BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_MAX = 84;

    // TotalAmounts
    uint256 internal constant BITS_TOTAL_AMOUNTS_SUPPLY_WITH_INTEREST = 0;
    uint256 internal constant BITS_TOTAL_AMOUNTS_SUPPLY_INTEREST_FREE = 64;
    uint256 internal constant BITS_TOTAL_AMOUNTS_BORROW_WITH_INTEREST = 128;
    uint256 internal constant BITS_TOTAL_AMOUNTS_BORROW_INTEREST_FREE = 192;

    // UserSupplyData
    uint256 internal constant BITS_USER_SUPPLY_MODE = 0;
    uint256 internal constant BITS_USER_SUPPLY_AMOUNT = 1;
    uint256 internal constant BITS_USER_SUPPLY_PREVIOUS_WITHDRAWAL_LIMIT = 65;
    uint256 internal constant BITS_USER_SUPPLY_LAST_UPDATE_TIMESTAMP = 129;
    uint256 internal constant BITS_USER_SUPPLY_EXPAND_PERCENT = 162;
    uint256 internal constant BITS_USER_SUPPLY_EXPAND_DURATION = 176;
    uint256 internal constant BITS_USER_SUPPLY_BASE_WITHDRAWAL_LIMIT = 200;
    uint256 internal constant BITS_USER_SUPPLY_IS_PAUSED = 255;

    // UserBorrowData
    uint256 internal constant BITS_USER_BORROW_MODE = 0;
    uint256 internal constant BITS_USER_BORROW_AMOUNT = 1;
    uint256 internal constant BITS_USER_BORROW_PREVIOUS_BORROW_LIMIT = 65;
    uint256 internal constant BITS_USER_BORROW_LAST_UPDATE_TIMESTAMP = 129;
    uint256 internal constant BITS_USER_BORROW_EXPAND_PERCENT = 162;
    uint256 internal constant BITS_USER_BORROW_EXPAND_DURATION = 176;
    uint256 internal constant BITS_USER_BORROW_BASE_BORROW_LIMIT = 200;
    uint256 internal constant BITS_USER_BORROW_MAX_BORROW_LIMIT = 218;
    uint256 internal constant BITS_USER_BORROW_IS_PAUSED = 255;

    // Configs2
    uint256 internal constant BITS_CONFIGS2_MAX_UTILIZATION = 0;

    // --------------------------------

    /// @notice Calculating the slot ID for Liquidity contract for single mapping at `slot_` for `key_`
    function calculateMappingStorageSlot(uint256 slot_, address key_) internal pure returns (bytes32) {
        return keccak256(abi.encode(key_, slot_));
    }

    /// @notice Calculating the slot ID for Liquidity contract for double mapping at `slot_` for `key1_` and `key2_`
    function calculateDoubleMappingStorageSlot(
        uint256 slot_,
        address key1_,
        address key2_
    ) internal pure returns (bytes32) {
        bytes32 intermediateSlot_ = keccak256(abi.encode(key1_, slot_));
        return keccak256(abi.encode(key2_, intermediateSlot_));
    }
}

// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.21;

/// @title library that calculates number "tick" and "ratioX96" from this: ratioX96 = (1.0015^tick) * 2^96
/// @notice this library is used in Fluid Vault protocol for optimiziation.
/// @dev "tick" supports between -32767 and 32767. "ratioX96" supports between 37075072 and 169307877264527972847801929085841449095838922544595
library TickMath {
    /// The minimum tick that can be passed in getRatioAtTick. 1.0015**-32767
    int24 internal constant MIN_TICK = -32767;
    /// The maximum tick that can be passed in getRatioAtTick. 1.0015**32767
    int24 internal constant MAX_TICK = 32767;

    uint256 internal constant FACTOR00 = 0x100000000000000000000000000000000;
    uint256 internal constant FACTOR01 = 0xff9dd7de423466c20352b1246ce4856f; // 2^128/1.0015**1 = 339772707859149738855091969477551883631
    uint256 internal constant FACTOR02 = 0xff3bd55f4488ad277531fa1c725a66d0; // 2^128/1.0015**2 = 339263812140938331358054887146831636176
    uint256 internal constant FACTOR03 = 0xfe78410fd6498b73cb96a6917f853259; // 2^128/1.0015**4 = 338248306163758188337119769319392490073
    uint256 internal constant FACTOR04 = 0xfcf2d9987c9be178ad5bfeffaa123273; // 2^128/1.0015**8 = 336226404141693512316971918999264834163
    uint256 internal constant FACTOR05 = 0xf9ef02c4529258b057769680fc6601b3; // 2^128/1.0015**16 = 332218786018727629051611634067491389875
    uint256 internal constant FACTOR06 = 0xf402d288133a85a17784a411f7aba082; // 2^128/1.0015**32 = 324346285652234375371948336458280706178
    uint256 internal constant FACTOR07 = 0xe895615b5beb6386553757b0352bda90; // 2^128/1.0015**64 = 309156521885964218294057947947195947664
    uint256 internal constant FACTOR08 = 0xd34f17a00ffa00a8309940a15930391a; // 2^128/1.0015**128 = 280877777739312896540849703637713172762 
    uint256 internal constant FACTOR09 = 0xae6b7961714e20548d88ea5123f9a0ff; // 2^128/1.0015**256 = 231843708922198649176471782639349113087
    uint256 internal constant FACTOR10 = 0x76d6461f27082d74e0feed3b388c0ca1; // 2^128/1.0015**512 = 157961477267171621126394973980180876449
    uint256 internal constant FACTOR11 = 0x372a3bfe0745d8b6b19d985d9a8b85bb; // 2^128/1.0015**1024 = 73326833024599564193373530205717235131
    uint256 internal constant FACTOR12 = 0x0be32cbee48979763cf7247dd7bb539d; // 2^128/1.0015**2048 = 15801066890623697521348224657638773661
    uint256 internal constant FACTOR13 = 0x8d4f70c9ff4924dac37612d1e2921e;   // 2^128/1.0015**4096 = 733725103481409245883800626999235102
    uint256 internal constant FACTOR14 = 0x4e009ae5519380809a02ca7aec77;     // 2^128/1.0015**8192 = 1582075887005588088019997442108535
    uint256 internal constant FACTOR15 = 0x17c45e641b6e95dee056ff10;         // 2^128/1.0015**16384 = 7355550435635883087458926352

    /// The minimum value that can be returned from getRatioAtTick. Equivalent to getRatioAtTick(MIN_TICK). ~ Equivalent to `(1 << 96) * (1.0015**-32767)`
    uint256 internal constant MIN_RATIOX96 = 37075072;
    /// The maximum value that can be returned from getRatioAtTick. Equivalent to getRatioAtTick(MAX_TICK).
    /// ~ Equivalent to `(1 << 96) * (1.0015**32767)`, rounding etc. leading to minor difference
    uint256 internal constant MAX_RATIOX96 = 169307877264527972847801929085841449095838922544595;

    uint256 internal constant ZERO_TICK_SCALED_RATIO = 0x1000000000000000000000000; // 1 << 96 // 79228162514264337593543950336
    uint256 internal constant _1E26 = 1e26;

    /// @notice ratioX96 = (1.0015^tick) * 2^96
    /// @dev Throws if |tick| > max tick
    /// @param tick The input tick for the above formula
    /// @return ratioX96 ratio = (debt amount/collateral amount)
    function getRatioAtTick(int tick) internal pure returns (uint256 ratioX96) {
        assembly {
            let absTick_ := sub(xor(tick, sar(255, tick)), sar(255, tick))

            if gt(absTick_, MAX_TICK) {
                revert(0, 0)
            }
            let factor_ := FACTOR00
            if and(absTick_, 0x1) {
                factor_ := FACTOR01
            }
            if and(absTick_, 0x2) {
                factor_ := shr(128, mul(factor_, FACTOR02))
            }
            if and(absTick_, 0x4) {
                factor_ := shr(128, mul(factor_, FACTOR03))
            }
            if and(absTick_, 0x8) {
                factor_ := shr(128, mul(factor_, FACTOR04))
            }
            if and(absTick_, 0x10) {
                factor_ := shr(128, mul(factor_, FACTOR05))
            }
            if and(absTick_, 0x20) {
                factor_ := shr(128, mul(factor_, FACTOR06))
            }
            if and(absTick_, 0x40) {
                factor_ := shr(128, mul(factor_, FACTOR07))
            }
            if and(absTick_, 0x80) {
                factor_ := shr(128, mul(factor_, FACTOR08))
            }
            if and(absTick_, 0x100) {
                factor_ := shr(128, mul(factor_, FACTOR09))
            }
            if and(absTick_, 0x200) {
                factor_ := shr(128, mul(factor_, FACTOR10))
            }
            if and(absTick_, 0x400) {
                factor_ := shr(128, mul(factor_, FACTOR11))
            }
            if and(absTick_, 0x800) {
                factor_ := shr(128, mul(factor_, FACTOR12))
            }
            if and(absTick_, 0x1000) {
                factor_ := shr(128, mul(factor_, FACTOR13))
            }
            if and(absTick_, 0x2000) {
                factor_ := shr(128, mul(factor_, FACTOR14))
            }
            if and(absTick_, 0x4000) {
                factor_ := shr(128, mul(factor_, FACTOR15))
            }

            let precision_ := 0
            if iszero(and(tick, 0x8000000000000000000000000000000000000000000000000000000000000000)) {
                factor_ := div(0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff, factor_)
                // we round up in the division so getTickAtRatio of the output price is always consistent
                if mod(factor_, 0x100000000) {
                    precision_ := 1
                }
            }
            ratioX96 := add(shr(32, factor_), precision_)
        }
    }

    /// @notice ratioX96 = (1.0015^tick) * 2^96
    /// @dev Throws if ratioX96 > max ratio || ratioX96 < min ratio
    /// @param ratioX96 The input ratio; ratio = (debt amount/collateral amount)
    /// @return tick The output tick for the above formula. Returns in round down form. if tick is 123.23 then 123, if tick is -123.23 then returns -124
    /// @return perfectRatioX96 perfect ratio for the above tick
    function getTickAtRatio(uint256 ratioX96) internal pure returns (int tick, uint perfectRatioX96) {
        assembly {
            if or(gt(ratioX96, MAX_RATIOX96), lt(ratioX96, MIN_RATIOX96)) {
                revert(0, 0)
            }

            let cond := lt(ratioX96, ZERO_TICK_SCALED_RATIO)
            let factor_

            if iszero(cond) {
                // if ratioX96 >= ZERO_TICK_SCALED_RATIO
                factor_ := div(mul(ratioX96, _1E26), ZERO_TICK_SCALED_RATIO)
            }
            if cond {
                // ratioX96 < ZERO_TICK_SCALED_RATIO
                factor_ := div(mul(ZERO_TICK_SCALED_RATIO, _1E26), ratioX96)
            }

            // put in https://www.wolframalpha.com/ whole equation: (1.0015^tick) * 2^96 * 10^26 / 79228162514264337593543950336

            // for tick = 16384
            // ratioX96 = (1.0015^16384) * 2^96 = 3665252098134783297721995888537077351735
            // 3665252098134783297721995888537077351735 * 10^26 / 79228162514264337593543950336 =
            // 4626198540796508716348404308345255985.06131964639489434655721
            if iszero(lt(factor_, 4626198540796508716348404308345255985)) {
                tick := or(tick, 0x4000)
                factor_ := div(mul(factor_, _1E26), 4626198540796508716348404308345255985)
            }
            // for tick = 8192
            // ratioX96 = (1.0015^8192) * 2^96 = 17040868196391020479062776466509865
            // 17040868196391020479062776466509865 * 10^26 / 79228162514264337593543950336 =
            // 21508599537851153911767490449162.3037648642153898377655505172
            if iszero(lt(factor_, 21508599537851153911767490449162)) {
                tick := or(tick, 0x2000)
                factor_ := div(mul(factor_, _1E26), 21508599537851153911767490449162)
            }
            // for tick = 4096
            // ratioX96 = (1.0015^4096) * 2^96 = 36743933851015821532611831851150
            // 36743933851015821532611831851150 * 10^26 / 79228162514264337593543950336 =
            // 46377364670549310883002866648.9777607649742626173648716941385
            if iszero(lt(factor_, 46377364670549310883002866649)) {
                tick := or(tick, 0x1000)
                factor_ := div(mul(factor_, _1E26), 46377364670549310883002866649)
            }
            // for tick = 2048
            // ratioX96 = (1.0015^2048) * 2^96 = 1706210527034005899209104452335
            // 1706210527034005899209104452335 * 10^26 / 79228162514264337593543950336 =
            // 2153540449365864845468344760.06357108484096046743300420319322
            if iszero(lt(factor_, 2153540449365864845468344760)) {
                tick := or(tick, 0x800)
                factor_ := div(mul(factor_, _1E26), 2153540449365864845468344760)
            }
            // for tick = 1024
            // ratioX96 = (1.0015^1024) * 2^96 = 367668226692760093024536487236
            // 367668226692760093024536487236 * 10^26 / 79228162514264337593543950336 =
            // 464062544207767844008185024.950588990554136265212906454481127
            if iszero(lt(factor_, 464062544207767844008185025)) {
                tick := or(tick, 0x400)
                factor_ := div(mul(factor_, _1E26), 464062544207767844008185025)
            }
            // for tick = 512
            // ratioX96 = (1.0015^512) * 2^96 = 170674186729409605620119663668
            // 170674186729409605620119663668 * 10^26 / 79228162514264337593543950336 =
            // 215421109505955298802281577.031879604792139232258508172947569
            if iszero(lt(factor_, 215421109505955298802281577)) {
                tick := or(tick, 0x200)
                factor_ := div(mul(factor_, _1E26), 215421109505955298802281577)
            }
            // for tick = 256
            // ratioX96 = (1.0015^256) * 2^96 = 116285004205991934861656513301
            // 116285004205991934861656513301 * 10^26 / 79228162514264337593543950336 =
            // 146772309890508740607270614.667650899656438875541505058062410
            if iszero(lt(factor_, 146772309890508740607270615)) {
                tick := or(tick, 0x100)
                factor_ := div(mul(factor_, _1E26), 146772309890508740607270615)
            }
            // for tick = 128
            // ratioX96 = (1.0015^128) * 2^96 = 95984619659632141743747099590
            // 95984619659632141743747099590 * 10^26 / 79228162514264337593543950336 =
            // 121149622323187099817270416.157248837742741760456796835775887
            if iszero(lt(factor_, 121149622323187099817270416)) {
                tick := or(tick, 0x80)
                factor_ := div(mul(factor_, _1E26), 121149622323187099817270416)
            }
            // for tick = 64
            // ratioX96 = (1.0015^64) * 2^96 = 87204845308406958006717891124
            // 87204845308406958006717891124 * 10^26 / 79228162514264337593543950336 =
            // 110067989135437147685980801.568068573422377364214113968609839
            if iszero(lt(factor_, 110067989135437147685980801)) {
                tick := or(tick, 0x40)
                factor_ := div(mul(factor_, _1E26), 110067989135437147685980801)
            }
            // for tick = 32
            // ratioX96 = (1.0015^32) * 2^96 = 83120873769022354029916374475
            // 83120873769022354029916374475 * 10^26 / 79228162514264337593543950336 =
            // 104913292358707887270979599.831816586773651266562785765558183
            if iszero(lt(factor_, 104913292358707887270979600)) {
                tick := or(tick, 0x20)
                factor_ := div(mul(factor_, _1E26), 104913292358707887270979600)
            }
            // for tick = 16
            // ratioX96 = (1.0015^16) * 2^96 = 81151180492336368327184716176
            // 81151180492336368327184716176 * 10^26 / 79228162514264337593543950336 =
            // 102427189924701091191840927.762844039579442328381455567932128
            if iszero(lt(factor_, 102427189924701091191840928)) {
                tick := or(tick, 0x10)
                factor_ := div(mul(factor_, _1E26), 102427189924701091191840928)
            }
            // for tick = 8
            // ratioX96 = (1.0015^8) * 2^96 = 80183906840906820640659903620
            // 80183906840906820640659903620 * 10^26 / 79228162514264337593543950336 =
            // 101206318935480056907421312.890625
            if iszero(lt(factor_, 101206318935480056907421313)) {
                tick := or(tick, 0x8)
                factor_ := div(mul(factor_, _1E26), 101206318935480056907421313)
            }
            // for tick = 4
            // ratioX96 = (1.0015^4) * 2^96 = 79704602139525152702959747603
            // 79704602139525152702959747603 * 10^26 / 79228162514264337593543950336 =
            // 100601351350506250000000000
            if iszero(lt(factor_, 100601351350506250000000000)) {
                tick := or(tick, 0x4)
                factor_ := div(mul(factor_, _1E26), 100601351350506250000000000)
            }
            // for tick = 2
            // ratioX96 = (1.0015^2) * 2^96 = 79466025265172787701084167660
            // 79466025265172787701084167660 * 10^26 / 79228162514264337593543950336 =
            // 100300225000000000000000000
            if iszero(lt(factor_, 100300225000000000000000000)) {
                tick := or(tick, 0x2)
                factor_ := div(mul(factor_, _1E26), 100300225000000000000000000)
            }
            // for tick = 1
            // ratioX96 = (1.0015^1) * 2^96 = 79347004758035734099934266261
            // 79347004758035734099934266261 * 10^26 / 79228162514264337593543950336 =
            // 100150000000000000000000000
            if iszero(lt(factor_, 100150000000000000000000000)) {
                tick := or(tick, 0x1)
                factor_ := div(mul(factor_, _1E26), 100150000000000000000000000)
            }
            if iszero(cond) {
                // if ratioX96 >= ZERO_TICK_SCALED_RATIO
                perfectRatioX96 := div(mul(ratioX96, _1E26), factor_)
            }
            if cond {
                // ratioX96 < ZERO_TICK_SCALED_RATIO
                tick := not(tick)
                perfectRatioX96 := div(mul(ratioX96, factor_), 100150000000000000000000000)
            }
            // perfect ratio should always be <= ratioX96
            // not sure if it can ever be bigger but better to have extra checks
            if gt(perfectRatioX96, ratioX96) {
                revert(0, 0)
            }
        }
    }
}

// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.21;

abstract contract Structs {
    struct AddressBool {
        address addr;
        bool value;
    }

    struct AddressUint256 {
        address addr;
        uint256 value;
    }

    /// @notice struct to set borrow rate data for version 1
    struct RateDataV1Params {
        ///
        /// @param token for rate data
        address token;
        ///
        /// @param kink in borrow rate. in 1e2: 100% = 10_000; 1% = 100
        /// utilization below kink usually means slow increase in rate, once utilization is above kink borrow rate increases fast
        uint256 kink;
        ///
        /// @param rateAtUtilizationZero desired borrow rate when utilization is zero. in 1e2: 100% = 10_000; 1% = 100
        /// i.e. constant minimum borrow rate
        /// e.g. at utilization = 0.01% rate could still be at least 4% (rateAtUtilizationZero would be 400 then)
        uint256 rateAtUtilizationZero;
        ///
        /// @param rateAtUtilizationKink borrow rate when utilization is at kink. in 1e2: 100% = 10_000; 1% = 100
        /// e.g. when rate should be 7% at kink then rateAtUtilizationKink would be 700
        uint256 rateAtUtilizationKink;
        ///
        /// @param rateAtUtilizationMax borrow rate when utilization is maximum at 100%. in 1e2: 100% = 10_000; 1% = 100
        /// e.g. when rate should be 125% at 100% then rateAtUtilizationMax would be 12_500
        uint256 rateAtUtilizationMax;
    }

    /// @notice struct to set borrow rate data for version 2
    struct RateDataV2Params {
        ///
        /// @param token for rate data
        address token;
        ///
        /// @param kink1 first kink in borrow rate. in 1e2: 100% = 10_000; 1% = 100
        /// utilization below kink 1 usually means slow increase in rate, once utilization is above kink 1 borrow rate increases faster
        uint256 kink1;
        ///
        /// @param kink2 second kink in borrow rate. in 1e2: 100% = 10_000; 1% = 100
        /// utilization below kink 2 usually means slow / medium increase in rate, once utilization is above kink 2 borrow rate increases fast
        uint256 kink2;
        ///
        /// @param rateAtUtilizationZero desired borrow rate when utilization is zero. in 1e2: 100% = 10_000; 1% = 100
        /// i.e. constant minimum borrow rate
        /// e.g. at utilization = 0.01% rate could still be at least 4% (rateAtUtilizationZero would be 400 then)
        uint256 rateAtUtilizationZero;
        ///
        /// @param rateAtUtilizationKink1 desired borrow rate when utilization is at first kink. in 1e2: 100% = 10_000; 1% = 100
        /// e.g. when rate should be 7% at first kink then rateAtUtilizationKink would be 700
        uint256 rateAtUtilizationKink1;
        ///
        /// @param rateAtUtilizationKink2 desired borrow rate when utilization is at second kink. in 1e2: 100% = 10_000; 1% = 100
        /// e.g. when rate should be 7% at second kink then rateAtUtilizationKink would be 1_200
        uint256 rateAtUtilizationKink2;
        ///
        /// @param rateAtUtilizationMax desired borrow rate when utilization is maximum at 100%. in 1e2: 100% = 10_000; 1% = 100
        /// e.g. when rate should be 125% at 100% then rateAtUtilizationMax would be 12_500
        uint256 rateAtUtilizationMax;
    }

    /// @notice struct to set token config
    struct TokenConfig {
        ///
        /// @param token address
        address token;
        ///
        /// @param fee charges on borrower's interest. in 1e2: 100% = 10_000; 1% = 100
        uint256 fee;
        ///
        /// @param threshold on when to update the storage slot. in 1e2: 100% = 10_000; 1% = 100
        uint256 threshold;
        ///
        /// @param maxUtilization maximum allowed utilization. in 1e2: 100% = 10_000; 1% = 100
        ///                       set to 100% to disable and have default limit of 100% (avoiding SLOAD).
        uint256 maxUtilization;
    }

    /// @notice struct to set user supply & withdrawal config
    struct UserSupplyConfig {
        ///
        /// @param user address
        address user;
        ///
        /// @param token address
        address token;
        ///
        /// @param mode: 0 = without interest. 1 = with interest
        uint8 mode;
        ///
        /// @param expandPercent withdrawal limit expand percent. in 1e2: 100% = 10_000; 1% = 100
        /// Also used to calculate rate at which withdrawal limit should decrease (instant).
        uint256 expandPercent;
        ///
        /// @param expandDuration withdrawal limit expand duration in seconds.
        /// used to calculate rate together with expandPercent
        uint256 expandDuration;
        ///
        /// @param baseWithdrawalLimit base limit, below this, user can withdraw the entire amount.
        /// amount in raw (to be multiplied with exchange price) or normal depends on configured mode in user config for the token:
        /// with interest -> raw, without interest -> normal
        uint256 baseWithdrawalLimit;
    }

    /// @notice struct to set user borrow & payback config
    struct UserBorrowConfig {
        ///
        /// @param user address
        address user;
        ///
        /// @param token address
        address token;
        ///
        /// @param mode: 0 = without interest. 1 = with interest
        uint8 mode;
        ///
        /// @param expandPercent debt limit expand percent. in 1e2: 100% = 10_000; 1% = 100
        /// Also used to calculate rate at which debt limit should decrease (instant).
        uint256 expandPercent;
        ///
        /// @param expandDuration debt limit expand duration in seconds.
        /// used to calculate rate together with expandPercent
        uint256 expandDuration;
        ///
        /// @param baseDebtCeiling base borrow limit. until here, borrow limit remains as baseDebtCeiling
        /// (user can borrow until this point at once without stepped expansion). Above this, automated limit comes in place.
        /// amount in raw (to be multiplied with exchange price) or normal depends on configured mode in user config for the token:
        /// with interest -> raw, without interest -> normal
        uint256 baseDebtCeiling;
        ///
        /// @param maxDebtCeiling max borrow ceiling, maximum amount the user can borrow.
        /// amount in raw (to be multiplied with exchange price) or normal depends on configured mode in user config for the token:
        /// with interest -> raw, without interest -> normal
        uint256 maxDebtCeiling;
    }
}

// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.21;

contract Error {
    error FluidOracleError(uint256 errorId_);
}

// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.21;

library ErrorTypes {
    /***********************************|
    |           FluidOracleL2           | 
    |__________________________________*/

    /// @notice thrown when sequencer on a L2 has an outage and grace period has not yet passed.
    uint256 internal constant FluidOracleL2__SequencerOutage = 60000;

    /***********************************|
    |     UniV3CheckCLRSOracle          | 
    |__________________________________*/

    /// @notice thrown when the delta between main price source and check rate source is exceeding the allowed delta
    uint256 internal constant UniV3CheckCLRSOracle__InvalidPrice = 60001;

    /// @notice thrown when an invalid parameter is passed to a method
    uint256 internal constant UniV3CheckCLRSOracle__InvalidParams = 60002;

    /// @notice thrown when the exchange rate is zero, even after all possible fallbacks depending on config
    uint256 internal constant UniV3CheckCLRSOracle__ExchangeRateZero = 60003;

    /***********************************|
    |           FluidOracle             | 
    |__________________________________*/

    /// @notice thrown when an invalid info name is passed into a fluid oracle (e.g. not set or too long)
    uint256 internal constant FluidOracle__InvalidInfoName = 60010;

    /***********************************|
    |            sUSDe Oracle           | 
    |__________________________________*/

    /// @notice thrown when an invalid parameter is passed to a method
    uint256 internal constant SUSDeOracle__InvalidParams = 60102;

    /***********************************|
    |           Pendle Oracle           | 
    |__________________________________*/

    /// @notice thrown when an invalid parameter is passed to a method
    uint256 internal constant PendleOracle__InvalidParams = 60201;

    /// @notice thrown when the Pendle market Oracle has not been initialized yet
    uint256 internal constant PendleOracle__MarketNotInitialized = 60202;

    /// @notice thrown when the Pendle market does not have 18 decimals
    uint256 internal constant PendleOracle__MarketInvalidDecimals = 60203;

    /// @notice thrown when the Pendle market returns an unexpected price
    uint256 internal constant PendleOracle__InvalidPrice = 60204;

    /***********************************|
    |    CLRS2UniV3CheckCLRSOracleL2    | 
    |__________________________________*/

    /// @notice thrown when the exchange rate is zero, even after all possible fallbacks depending on config
    uint256 internal constant CLRS2UniV3CheckCLRSOracleL2__ExchangeRateZero = 60301;

    /***********************************|
    |    Ratio2xFallbackCLRSOracleL2    | 
    |__________________________________*/

    /// @notice thrown when the exchange rate is zero, even after all possible fallbacks depending on config
    uint256 internal constant Ratio2xFallbackCLRSOracleL2__ExchangeRateZero = 60311;

    /***********************************|
    |            WeETHsOracle           | 
    |__________________________________*/

    /// @notice thrown when an invalid parameter is passed to a method
    uint256 internal constant WeETHsOracle__InvalidParams = 60321;

    /***********************************|
    |        DexSmartColOracle          | 
    |__________________________________*/

    /// @notice thrown when an invalid parameter is passed to a method
    uint256 internal constant DexSmartColOracle__InvalidParams = 60331;

    /// @notice thrown when smart col is not enabled
    uint256 internal constant DexSmartColOracle__SmartColNotEnabled = 60332;

    /***********************************|
    |        DexSmartDebtOracle         | 
    |__________________________________*/

    /// @notice thrown when an invalid parameter is passed to a method
    uint256 internal constant DexSmartDebtOracle__InvalidParams = 60341;

    /// @notice thrown when smart debt is not enabled
    uint256 internal constant DexSmartDebtOracle__SmartDebtNotEnabled = 60342;

    /***********************************|
    |            ContractRate           | 
    |__________________________________*/

    /// @notice thrown when an invalid parameter is passed to a method
    uint256 internal constant ContractRate__InvalidParams = 60351;

    /// @notice thrown when caller is not authorized
    uint256 internal constant ContractRate__Unauthorized = 60352;

    /// @notice thrown when minimum diff for triggering update on the stared rate is not reached
    uint256 internal constant ContractRate__MinUpdateDiffNotReached = 60353;

    /***********************************|
    |            sUSDs Oracle           | 
    |__________________________________*/

    /// @notice thrown when an invalid parameter is passed to a method
    uint256 internal constant SUSDsOracle__InvalidParams = 60361;

    /***********************************|
    |            Peg Oracle             | 
    |__________________________________*/

    /// @notice thrown when an invalid parameter is passed to a method
    uint256 internal constant PegOracle__InvalidParams = 60371;

    /***********************************|
    |          Chainlink Oracle         | 
    |__________________________________*/

    /// @notice thrown when an invalid parameter is passed to a method
    uint256 internal constant ChainlinkOracle__InvalidParams = 61001;

    /***********************************|
    |          UniswapV3 Oracle         | 
    |__________________________________*/

    /// @notice thrown when an invalid parameter is passed to a method
    uint256 internal constant UniV3Oracle__InvalidParams = 62001;

    /// @notice thrown when constructor is called with invalid ordered seconds agos values
    uint256 internal constant UniV3Oracle__InvalidSecondsAgos = 62002;

    /// @notice thrown when constructor is called with invalid delta values > 100%
    uint256 internal constant UniV3Oracle__InvalidDeltas = 62003;

    /***********************************|
    |            WstETh Oracle          | 
    |__________________________________*/

    /// @notice thrown when an invalid parameter is passed to a method
    uint256 internal constant WstETHOracle__InvalidParams = 63001;

    /***********************************|
    |           Redstone Oracle         | 
    |__________________________________*/

    /// @notice thrown when an invalid parameter is passed to a method
    uint256 internal constant RedstoneOracle__InvalidParams = 64001;

    /***********************************|
    |          Fallback Oracle          | 
    |__________________________________*/

    /// @notice thrown when an invalid parameter is passed to a method
    uint256 internal constant FallbackOracle__InvalidParams = 65001;

    /***********************************|
    |       FallbackCLRSOracle          | 
    |__________________________________*/

    /// @notice thrown when the exchange rate is zero, even for the fallback oracle source (if enabled)
    uint256 internal constant FallbackCLRSOracle__ExchangeRateZero = 66001;

    /***********************************|
    |         WstETHCLRSOracle          | 
    |__________________________________*/

    /// @notice thrown when the exchange rate is zero, even for the fallback oracle source (if enabled)
    uint256 internal constant WstETHCLRSOracle__ExchangeRateZero = 67001;

    /***********************************|
    |        CLFallbackUniV3Oracle      | 
    |__________________________________*/

    /// @notice thrown when the exchange rate is zero, even for the uniV3 rate
    uint256 internal constant CLFallbackUniV3Oracle__ExchangeRateZero = 68001;

    /***********************************|
    |  WstETHCLRS2UniV3CheckCLRSOracle  | 
    |__________________________________*/

    /// @notice thrown when the exchange rate is zero, even for the uniV3 rate
    uint256 internal constant WstETHCLRS2UniV3CheckCLRSOracle__ExchangeRateZero = 69001;

    /***********************************|
    |             WeETh Oracle          | 
    |__________________________________*/

    /// @notice thrown when an invalid parameter is passed to a method
    uint256 internal constant WeETHOracle__InvalidParams = 70001;
}

// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.21;

import { IFluidOracle } from "./interfaces/iFluidOracle.sol";
import { ErrorTypes } from "./errorTypes.sol";
import { Error as OracleError } from "./error.sol";

/// @title   FluidOracle
/// @notice  Base contract that any Fluid Oracle must implement
abstract contract FluidOracle is IFluidOracle, OracleError {
    /// @dev short helper string to easily identify the oracle. E.g. token symbols
    //
    // using a bytes32 because string can not be immutable.
    bytes32 private immutable _infoName;

    constructor(string memory infoName_) {
        if (bytes(infoName_).length > 32 || bytes(infoName_).length == 0) {
            revert FluidOracleError(ErrorTypes.FluidOracle__InvalidInfoName);
        }

        // convert string to bytes32
        bytes32 infoNameBytes32_;
        assembly {
            infoNameBytes32_ := mload(add(infoName_, 32))
        }
        _infoName = infoNameBytes32_;
    }

    /// @inheritdoc IFluidOracle
    function infoName() external view returns (string memory) {
        // convert bytes32 to string
        uint256 length_;
        while (length_ < 32 && _infoName[length_] != 0) {
            length_++;
        }
        bytes memory infoNameBytes_ = new bytes(length_);
        for (uint256 i; i < length_; i++) {
            infoNameBytes_[i] = _infoName[i];
        }
        return string(infoNameBytes_);
    }

    /// @inheritdoc IFluidOracle
    function getExchangeRate() external view virtual returns (uint256 exchangeRate_);

    /// @inheritdoc IFluidOracle
    function getExchangeRateOperate() external view virtual returns (uint256 exchangeRate_);

    /// @inheritdoc IFluidOracle
    function getExchangeRateLiquidate() external view virtual returns (uint256 exchangeRate_);
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.21;

interface IFluidOracle {
    /// @dev Deprecated. Use `getExchangeRateOperate()` and `getExchangeRateLiquidate()` instead. Only implemented for
    ///      backwards compatibility.
    function getExchangeRate() external view returns (uint256 exchangeRate_);

    /// @notice Get the `exchangeRate_` between the underlying asset and the peg asset in 1e27 for operates
    function getExchangeRateOperate() external view returns (uint256 exchangeRate_);

    /// @notice Get the `exchangeRate_` between the underlying asset and the peg asset in 1e27 for liquidations
    function getExchangeRateLiquidate() external view returns (uint256 exchangeRate_);

    /// @notice helper string to easily identify the oracle. E.g. token symbols
    function infoName() external view returns (string memory);
}

//SPDX-License-Identifier: MIT
pragma solidity 0.8.21;

import { Structs as LiquidityStructs } from "../../../periphery/resolvers/liquidity/structs.sol";

interface IFluidLiquidityResolver {
    /// @notice gets the `revenueAmount_` for a `token_`.
    function getRevenue(address token_) external view returns (uint256 revenueAmount_);

    /// @notice address of contract that gets sent the revenue. Configurable by governance
    function getRevenueCollector() external view returns (address);

    /// @notice Liquidity contract paused status: status = 1 -> normal. status = 2 -> paused.
    function getStatus() external view returns (uint256);

    /// @notice checks if `auth_` is an allowed auth on Liquidity.
    /// Auths can set most config values. E.g. contracts that automate certain flows like e.g. adding a new fToken.
    /// Governance can add/remove auths. Governance is auth by default.
    function isAuth(address auth_) external view returns (uint256);

    /// @notice checks if `guardian_` is an allowed Guardian on Liquidity.
    /// Guardians can pause lower class users.
    /// Governance can add/remove guardians. Governance is guardian by default.
    function isGuardian(address guardian_) external view returns (uint256);

    /// @notice gets user class for `user_`. Class defines which protocols can be paused by guardians.
    /// Currently there are 2 classes: 0 can be paused by guardians. 1 cannot be paused by guardians.
    /// New protocols are added as class 0 and will be upgraded to 1 over time.
    function getUserClass(address user_) external view returns (uint256);

    /// @notice gets exchangePricesAndConfig packed uint256 storage slot for `token_`.
    function getExchangePricesAndConfig(address token_) external view returns (uint256);

    /// @notice gets rateConfig packed uint256 storage slot for `token_`.
    function getRateConfig(address token_) external view returns (uint256);

    /// @notice gets totalAmounts packed uint256 storage slot for `token_`.
    function getTotalAmounts(address token_) external view returns (uint256);

    /// @notice gets configs2 packed uint256 storage slot for `token_`.
    function getConfigs2(address token_) external view returns (uint256);

    /// @notice gets userSupply data packed uint256 storage slot for `user_` and `token_`.
    function getUserSupply(address user_, address token_) external view returns (uint256);

    /// @notice gets userBorrow data packed uint256 storage slot for `user_` and `token_`.
    function getUserBorrow(address user_, address token_) external view returns (uint256);

    /// @notice returns all `listedTokens_` at the Liquidity contract. Once configured, a token can never be removed.
    function listedTokens() external view returns (address[] memory listedTokens_);

    /// @notice get the Rate config data `rateData_` for a `token_` compiled from the packed uint256 rateConfig storage slot
    function getTokenRateData(address token_) external view returns (LiquidityStructs.RateData memory rateData_);

    /// @notice get the Rate config datas `rateDatas_` for multiple `tokens_` compiled from the packed uint256 rateConfig storage slot
    function getTokensRateData(
        address[] calldata tokens_
    ) external view returns (LiquidityStructs.RateData[] memory rateDatas_);

    /// @notice returns general data for `token_` such as rates, exchange prices, utilization, fee, total amounts etc.
    function getOverallTokenData(
        address token_
    ) external view returns (LiquidityStructs.OverallTokenData memory overallTokenData_);

    /// @notice returns general data for multiple `tokens_` such as rates, exchange prices, utilization, fee, total amounts etc.
    function getOverallTokensData(
        address[] calldata tokens_
    ) external view returns (LiquidityStructs.OverallTokenData[] memory overallTokensData_);

    /// @notice returns general data for all `listedTokens()` such as rates, exchange prices, utilization, fee, total amounts etc.
    function getAllOverallTokensData()
        external
        view
        returns (LiquidityStructs.OverallTokenData[] memory overallTokensData_);

    /// @notice returns `user_` supply data and general data (such as rates, exchange prices, utilization, fee, total amounts etc.) for `token_`
    function getUserSupplyData(
        address user_,
        address token_
    )
        external
        view
        returns (
            LiquidityStructs.UserSupplyData memory userSupplyData_,
            LiquidityStructs.OverallTokenData memory overallTokenData_
        );

    /// @notice returns `user_` supply data and general data (such as rates, exchange prices, utilization, fee, total amounts etc.) for multiple `tokens_`
    function getUserMultipleSupplyData(
        address user_,
        address[] calldata tokens_
    )
        external
        view
        returns (
            LiquidityStructs.UserSupplyData[] memory userSuppliesData_,
            LiquidityStructs.OverallTokenData[] memory overallTokensData_
        );

    /// @notice returns `user_` borrow data and general data (such as rates, exchange prices, utilization, fee, total amounts etc.) for `token_`
    function getUserBorrowData(
        address user_,
        address token_
    )
        external
        view
        returns (
            LiquidityStructs.UserBorrowData memory userBorrowData_,
            LiquidityStructs.OverallTokenData memory overallTokenData_
        );

    /// @notice returns `user_` borrow data and general data (such as rates, exchange prices, utilization, fee, total amounts etc.) for multiple `tokens_`
    function getUserMultipleBorrowData(
        address user_,
        address[] calldata tokens_
    )
        external
        view
        returns (
            LiquidityStructs.UserBorrowData[] memory userBorrowingsData_,
            LiquidityStructs.OverallTokenData[] memory overallTokensData_
        );

    /// @notice returns `user_` supply data and general data (such as rates, exchange prices, utilization, fee, total amounts etc.) for multiple `supplyTokens_`
    ///     and returns `user_` borrow data and general data (such as rates, exchange prices, utilization, fee, total amounts etc.) for multiple `borrowTokens_`
    function getUserMultipleBorrowSupplyData(
        address user_,
        address[] calldata supplyTokens_,
        address[] calldata borrowTokens_
    )
        external
        view
        returns (
            LiquidityStructs.UserSupplyData[] memory userSuppliesData_,
            LiquidityStructs.OverallTokenData[] memory overallSupplyTokensData_,
            LiquidityStructs.UserBorrowData[] memory userBorrowingsData_,
            LiquidityStructs.OverallTokenData[] memory overallBorrowTokensData_
        );
}

// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.21;

import { Structs as AdminModuleStructs } from "../../../liquidity/adminModule/structs.sol";

abstract contract Structs {
    struct RateData {
        uint256 version;
        AdminModuleStructs.RateDataV1Params rateDataV1;
        AdminModuleStructs.RateDataV2Params rateDataV2;
    }

    struct OverallTokenData {
        uint256 borrowRate;
        uint256 supplyRate;
        uint256 fee; // revenue fee
        uint256 lastStoredUtilization;
        uint256 storageUpdateThreshold;
        uint256 lastUpdateTimestamp;
        uint256 supplyExchangePrice;
        uint256 borrowExchangePrice;
        uint256 supplyRawInterest;
        uint256 supplyInterestFree;
        uint256 borrowRawInterest;
        uint256 borrowInterestFree;
        uint256 totalSupply;
        uint256 totalBorrow;
        uint256 revenue;
        uint256 maxUtilization; // maximum allowed utilization
        RateData rateData;
    }

    // amounts are always in normal (for withInterest already multiplied with exchange price)
    struct UserSupplyData {
        bool modeWithInterest; // true if mode = with interest, false = without interest
        uint256 supply; // user supply amount
        // the withdrawal limit (e.g. if 10% is the limit, and 100M is supplied, it would be 90M)
        uint256 withdrawalLimit;
        uint256 lastUpdateTimestamp;
        uint256 expandPercent; // withdrawal limit expand percent in 1e2
        uint256 expandDuration; // withdrawal limit expand duration in seconds
        uint256 baseWithdrawalLimit;
        // the current actual max withdrawable amount (e.g. if 10% is the limit, and 100M is supplied, it would be 10M)
        uint256 withdrawableUntilLimit;
        uint256 withdrawable; // actual currently withdrawable amount (supply - withdrawal Limit) & considering balance
    }

    // amounts are always in normal (for withInterest already multiplied with exchange price)
    struct UserBorrowData {
        bool modeWithInterest; // true if mode = with interest, false = without interest
        uint256 borrow; // user borrow amount
        uint256 borrowLimit;
        uint256 lastUpdateTimestamp;
        uint256 expandPercent;
        uint256 expandDuration;
        uint256 baseBorrowLimit;
        uint256 maxBorrowLimit;
        uint256 borrowableUntilLimit; // borrowable amount until any borrow limit (incl. max utilization limit)
        uint256 borrowable; // actual currently borrowable amount (borrow limit - already borrowed) & considering balance, max utilization
        uint256 borrowLimitUtilization; // borrow limit for `maxUtilization`
    }
}

// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.21;

import { Variables } from "./variables.sol";
import { Structs } from "./structs.sol";
import { TickMath } from "../../../libraries/tickMath.sol";
import { BigMathMinified } from "../../../libraries/bigMathMinified.sol";

contract Helpers is Variables, Structs {
    function normalSlot(uint256 slot_) public pure returns (bytes32) {
        return bytes32(slot_);
    }

    /// @notice Calculating the slot ID for Liquidity contract for single mapping
    function calculateStorageSlotUintMapping(uint256 slot_, uint key_) public pure returns (bytes32) {
        return keccak256(abi.encode(key_, slot_));
    }

    /// @notice Calculating the slot ID for Liquidity contract for single mapping
    function calculateStorageSlotIntMapping(uint256 slot_, int key_) public pure returns (bytes32) {
        return keccak256(abi.encode(key_, slot_));
    }

    /// @notice Calculating the slot ID for Liquidity contract for double mapping
    function calculateDoubleIntUintMapping(uint256 slot_, int key1_, uint key2_) public pure returns (bytes32) {
        bytes32 intermediateSlot_ = keccak256(abi.encode(key1_, slot_));
        return keccak256(abi.encode(key2_, intermediateSlot_));
    }

    function tickHelper(uint tickRaw_) public pure returns (int tick) {
        require(tickRaw_ < X20, "invalid-number");
        if (tickRaw_ > 0) {
            tick = tickRaw_ & 1 == 1 ? int((tickRaw_ >> 1) & X19) : -int((tickRaw_ >> 1) & X19);
        } else {
            tick = type(int).min;
        }
    }

    constructor(address factory_, address liquidityResolver_) Variables(factory_, liquidityResolver_) {}
}

// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.21;

import { Helpers } from "./helpers.sol";
import { TickMath } from "../../../libraries/tickMath.sol";
import { BigMathMinified } from "../../../libraries/bigMathMinified.sol";
import { IFluidOracle } from "../../../oracle/fluidOracle.sol";
import { IFluidVault } from "../../../protocols/vault/interfaces/iVault.sol";
import { IFluidVaultT1 } from "../../../protocols/vault/interfaces/iVaultT1.sol";
import { Structs as FluidLiquidityResolverStructs } from "../liquidity/structs.sol";
import { LiquiditySlotsLink } from "../../../libraries/liquiditySlotsLink.sol";
import { LiquidityCalcs } from "../../../libraries/liquidityCalcs.sol";
import { DexCalcs } from "../../../libraries/dexCalcs.sol";
import { DexSlotsLink } from "../../../libraries/dexSlotsLink.sol";
import { AddressCalcs } from "../../../libraries/addressCalcs.sol";
import { IFluidStorageReadable } from "./variables.sol";
import { FluidProtocolTypes } from "../../../libraries/fluidProtocolTypes.sol";

interface TokenInterface {
    function balanceOf(address) external view returns (uint);
}

/// @notice Fluid Vault protocol resolver
/// Implements various view-only methods to give easy access to Vault protocol data.
/// For vaults with Smart Col / Smart Debt from the Dex protocol, combine this data with Data fetched
/// from the DexResolver e.g. via MultiCall to fetch Vault limits, shares exchange rates etc. at the Dex.
contract FluidVaultResolver is Helpers {
    constructor(address factory_, address liquidityResolver_) Helpers(factory_, liquidityResolver_) {}

    /// @notice Get the address of a vault.
    /// @param vaultId_ The ID of the vault.
    /// @return vault_ The address of the vault.
    function getVaultAddress(uint vaultId_) public view returns (address vault_) {
        return AddressCalcs.addressCalc(address(FACTORY), vaultId_);
    }

    /// @notice Get the type of a vault.
    /// @param vault_ The address of the vault.
    /// @return vaultType_ The type of the vault. 0 if not a Fluid vault.
    function getVaultType(address vault_) public view returns (uint vaultType_) {
        if (vault_.code.length == 0) {
            return 0;
        }
        try IFluidVault(vault_).TYPE() returns (uint type_) {
            return type_;
        } catch {
            if (getVaultAddress(getVaultId(vault_)) != vault_) {
                return 0;
            }
            // if TYPE() is not available but address is valid vault id, it must be vault T1
            return FluidProtocolTypes.VAULT_T1_TYPE;
        }
    }

    /// @notice Get the ID of a vault.
    /// @param vault_ The address of the vault.
    /// @return id_ The ID of the vault.
    function getVaultId(address vault_) public view returns (uint id_) {
        id_ = IFluidVault(vault_).VAULT_ID();
    }

    /// @notice Get the token configuration.
    /// @param nftId_ The ID of the NFT.
    /// @return The token configuration.
    function getTokenConfig(uint nftId_) public view returns (uint) {
        return FACTORY.readFromStorage(calculateStorageSlotUintMapping(3, nftId_));
    }

    /// @notice Get the raw variables of a vault.
    /// @param vault_ The address of the vault.
    /// @return The raw variables of the vault.
    function getVaultVariablesRaw(address vault_) public view returns (uint) {
        return IFluidVault(vault_).readFromStorage(normalSlot(0));
    }

    /// @notice Get the raw variables of a vault.
    /// @param vault_ The address of the vault.
    /// @return The raw variables of the vault.
    function getVaultVariables2Raw(address vault_) public view returns (uint) {
        return IFluidVault(vault_).readFromStorage(normalSlot(1));
    }

    /// @notice Get the absorbed liquidity of a vault.
    /// @param vault_ The address of the vault.
    /// @return The absorbed liquidity of the vault.
    function getAbsorbedLiquidityRaw(address vault_) public view returns (uint) {
        return IFluidVault(vault_).readFromStorage(normalSlot(2));
    }

    /// @notice Get the position data of a vault.
    /// @param vault_ The address of the vault.
    /// @param positionId_ The ID of the position.
    /// @return The position data of the vault.
    function getPositionDataRaw(address vault_, uint positionId_) public view returns (uint) {
        return IFluidVault(vault_).readFromStorage(calculateStorageSlotUintMapping(3, positionId_));
    }

    /// @notice Get the raw tick data of a vault.
    /// @param vault_ The address of the vault.
    /// @param tick_ The tick value.
    /// @return The raw tick data of the vault.
    // if tick > 0 then key_ = tick / 256
    // if tick < 0 then key_ = (tick / 256) - 1
    function getTickDataRaw(address vault_, int tick_) public view returns (uint) {
        return IFluidVault(vault_).readFromStorage(calculateStorageSlotIntMapping(5, tick_));
    }

    /// @notice Get the raw tick data of a vault.
    /// @param vault_ The address of the vault.
    /// @param key_ The tick key.
    /// @return The raw tick data of the vault.
    function getTickHasDebtRaw(address vault_, int key_) public view returns (uint) {
        return IFluidVault(vault_).readFromStorage(calculateStorageSlotIntMapping(4, key_));
    }

    /// @notice Get the raw tick data of a vault.
    /// @param vault_ The address of the vault.
    /// @param tick_ The tick value.
    /// @param id_ The ID of the tick.
    /// @return The raw tick data of the vault.
    // id_ = (realId_ / 3) + 1
    function getTickIdDataRaw(address vault_, int tick_, uint id_) public view returns (uint) {
        return IFluidVault(vault_).readFromStorage(calculateDoubleIntUintMapping(6, tick_, id_));
    }

    /// @notice Get the raw branch data of a vault.
    /// @param vault_ The address of the vault.
    /// @param branch_ The branch value.
    /// @return The raw branch data of the vault.
    function getBranchDataRaw(address vault_, uint branch_) public view returns (uint) {
        return IFluidVault(vault_).readFromStorage(calculateStorageSlotUintMapping(7, branch_));
    }

    /// @notice Get the raw rate of a vault.
    /// @param vault_ The address of the vault.
    /// @return The raw rate of the vault.
    function getRateRaw(address vault_) public view returns (uint) {
        return IFluidVault(vault_).readFromStorage(normalSlot(8));
    }

    /// @notice Get the rebalancer of a vault.
    /// @param vault_ The address of the vault.
    /// @return The rebalancer of the vault.
    function getRebalancer(address vault_) public view returns (address) {
        return address(uint160(IFluidVault(vault_).readFromStorage(normalSlot(9))));
    }

    /// @notice Get the absorbed dust debt of a vault.
    /// @param vault_ The address of the vault.
    /// @return The absorbed dust debt of the vault.
    function getAbsorbedDustDebt(address vault_) public view returns (uint) {
        return IFluidVault(vault_).readFromStorage(normalSlot(10));
    }

    /// @notice Get the DEX from address of a vault.
    /// @param vault_ The address of the vault.
    /// @return The DEX from address of the vault.
    function getDexFromAddress(address vault_) public view returns (address) {
        return address(uint160(IFluidVault(vault_).readFromStorage(normalSlot(11))));
    }

    /// @notice Get the total number of vaults.
    /// @return The total number of vaults.
    function getTotalVaults() public view returns (uint) {
        return FACTORY.totalVaults();
    }

    /// @notice Get the addresses of all the vaults.
    /// @return vaults_ The addresses of all the vaults.
    function getAllVaultsAddresses() public view returns (address[] memory vaults_) {
        uint totalVaults_ = getTotalVaults();
        vaults_ = new address[](totalVaults_);
        for (uint i = 0; i < totalVaults_; i++) {
            vaults_[i] = getVaultAddress((i + 1));
        }
    }

    /// @notice Get the contract for deployer index of a vault.
    /// @param vault_ The address of the vault.
    /// @param index_ The index of the deployer.
    /// @return The contract for deployer index of the vault.
    function getContractForDeployerIndex(address vault_, uint index_) public view returns (address) {
        IFluidVault.ConstantViews memory constants_ = _getVaultConstants(vault_, getVaultType(vault_));
        if (constants_.deployer == address(0) || index_ == 0) {
            return address(0);
        }
        return AddressCalcs.addressCalc(constants_.deployer, index_);
    }

    /// @dev Get the constants of a vault.
    /// @param vault_ The address of the vault.
    /// @param vaultType_ The type of the vault.
    /// @return constants_ The constants of the vault.
    function _getVaultConstants(
        address vault_,
        uint vaultType_
    ) internal view returns (IFluidVault.ConstantViews memory constants_) {
        if (vaultType_ == FluidProtocolTypes.VAULT_T1_TYPE) {
            try IFluidVaultT1(vault_).constantsView() returns (IFluidVaultT1.ConstantViews memory constantsT1_) {
                constants_.liquidity = constantsT1_.liquidity;
                constants_.factory = constantsT1_.factory;
                constants_.operateImplementation = address(vault_);
                constants_.adminImplementation = constantsT1_.adminImplementation;
                constants_.secondaryImplementation = constantsT1_.secondaryImplementation;
                constants_.deployer = address(0);
                constants_.supply = constantsT1_.liquidity;
                constants_.borrow = constantsT1_.liquidity;
                constants_.supplyToken.token0 = constantsT1_.supplyToken;
                constants_.supplyToken.token1 = address(0);
                constants_.borrowToken.token0 = constantsT1_.borrowToken;
                constants_.borrowToken.token1 = address(0);
                constants_.vaultId = constantsT1_.vaultId;
                constants_.vaultType = FluidProtocolTypes.VAULT_T1_TYPE;
                constants_.supplyExchangePriceSlot = constantsT1_.liquiditySupplyExchangePriceSlot;
                constants_.borrowExchangePriceSlot = constantsT1_.liquidityBorrowExchangePriceSlot;
                constants_.userSupplySlot = constantsT1_.liquidityUserSupplySlot;
                constants_.userBorrowSlot = constantsT1_.liquidityUserBorrowSlot;
            } catch {
                // vault address is likely not a fluid vault or not deployed yet etc.
                // vault type is detected as being T1 when TYPE() is not present, which could also happen
                // on non-Fluid-vault contracts
            }
        } else {
            constants_ = IFluidVault(vault_).constantsView();
        }
    }

    /// @dev Get the configuration of a vault.
    /// @param vault_ The address of the vault.
    /// @param vaultType_ The type of the vault.
    /// @return configs_ The configuration of the vault.
    function _getVaultConfig(address vault_, uint vaultType_) internal view returns (Configs memory configs_) {
        uint vaultVariables2_ = getVaultVariables2Raw(vault_);
        configs_.supplyRateMagnifier = uint16(vaultVariables2_ & X16);
        configs_.borrowRateMagnifier = uint16((vaultVariables2_ >> 16) & X16);
        configs_.collateralFactor = (uint16((vaultVariables2_ >> 32) & X10)) * 10;
        configs_.liquidationThreshold = (uint16((vaultVariables2_ >> 42) & X10)) * 10;
        configs_.liquidationMaxLimit = (uint16((vaultVariables2_ >> 52) & X10) * 10);
        configs_.withdrawalGap = uint16((vaultVariables2_ >> 62) & X10) * 10;
        configs_.liquidationPenalty = uint16((vaultVariables2_ >> 72) & X10);
        configs_.borrowFee = uint16((vaultVariables2_ >> 82) & X10);

        if (vaultType_ == FluidProtocolTypes.VAULT_T1_TYPE) {
            configs_.oracle = address(uint160(vaultVariables2_ >> 96));
        } else {
            /// Next 30 bits => 92-121 => bits to calculate address of oracle
            uint index_ = (vaultVariables2_ >> 92) & X30;
            if (index_ > 0) {
                configs_.oracle = getContractForDeployerIndex(vault_, index_);
            }
            /// Next 33 bits => 122-154 => last update timestamp
            configs_.lastUpdateTimestamp = uint((vaultVariables2_ >> 122) & X33);
        }

        if (configs_.oracle != address(0)) {
            try IFluidOracle(configs_.oracle).getExchangeRateOperate() returns (uint exchangeRate_) {
                configs_.oraclePriceOperate = exchangeRate_;
                configs_.oraclePriceLiquidate = IFluidOracle(configs_.oracle).getExchangeRateLiquidate();
            } catch {
                // deprecated backward compatible for older vaults oracles
                configs_.oraclePriceOperate = IFluidOracle(configs_.oracle).getExchangeRate();
                configs_.oraclePriceLiquidate = configs_.oraclePriceOperate;
            }
        }

        configs_.rebalancer = getRebalancer(vault_);
    }

    /// @dev Get the exchange prices and rates of a vault.
    /// @param vault_ The address of the vault.
    /// @param vaultType_ The type of the vault.
    /// @param configs_ The configuration of the vault.
    /// @param liquiditySupplyRate_ The liquidity supply rate, only set in case of NOT smart collateral.
    /// @param liquidityBorrowRate_ The liquidity borrow rate, only set in case of NOT smart debt.
    /// @return exchangePricesAndRates_ The exchange prices and rates of the vault.
    function _getExchangePricesAndRates(
        address vault_,
        uint vaultType_,
        Configs memory configs_,
        uint liquiditySupplyRate_,
        uint liquidityBorrowRate_
    ) internal view returns (ExchangePricesAndRates memory exchangePricesAndRates_) {
        uint exchangePrices_ = getRateRaw(vault_);
        exchangePricesAndRates_.lastStoredLiquiditySupplyExchangePrice = exchangePrices_ & X64;
        exchangePricesAndRates_.lastStoredLiquidityBorrowExchangePrice = (exchangePrices_ >> 64) & X64;
        exchangePricesAndRates_.lastStoredVaultSupplyExchangePrice = (exchangePrices_ >> 128) & X64;
        exchangePricesAndRates_.lastStoredVaultBorrowExchangePrice = (exchangePrices_ >> 192) & X64;

        (
            exchangePricesAndRates_.liquiditySupplyExchangePrice,
            exchangePricesAndRates_.liquidityBorrowExchangePrice,
            exchangePricesAndRates_.vaultSupplyExchangePrice,
            exchangePricesAndRates_.vaultBorrowExchangePrice
        ) = IFluidVault(vault_).updateExchangePrices(getVaultVariables2Raw(vault_));

        exchangePricesAndRates_.supplyRateLiquidity = liquiditySupplyRate_;
        exchangePricesAndRates_.borrowRateLiquidity = liquidityBorrowRate_;

        if (
            vaultType_ == FluidProtocolTypes.VAULT_T2_SMART_COL_TYPE ||
            vaultType_ == FluidProtocolTypes.VAULT_T4_SMART_COL_SMART_DEBT_TYPE
        ) {
            // in case of smart collateral supply magnifier bits stores supply interest rate positive or negative
            // negative meaning charging users, positive means incentivizing users
            exchangePricesAndRates_.supplyRateVault = int256((configs_.supplyRateMagnifier >> 1) & X15);
            // if first bit == 1 then positive else negative
            if ((configs_.supplyRateMagnifier & 1) == 0) {
                exchangePricesAndRates_.supplyRateVault = -exchangePricesAndRates_.supplyRateVault;
            }
            exchangePricesAndRates_.rewardsOrFeeRateSupply = exchangePricesAndRates_.supplyRateVault;
        } else {
            // NOT smart col
            unchecked {
                exchangePricesAndRates_.supplyRateVault = int256(
                    (liquiditySupplyRate_ * configs_.supplyRateMagnifier) / 10000
                );
                exchangePricesAndRates_.rewardsOrFeeRateSupply = int256(uint(configs_.supplyRateMagnifier)) - 10000;
            }
        }

        if (
            vaultType_ == FluidProtocolTypes.VAULT_T3_SMART_DEBT_TYPE ||
            vaultType_ == FluidProtocolTypes.VAULT_T4_SMART_COL_SMART_DEBT_TYPE
        ) {
            // in case of smart debt borrow magnifier bits stores borrow interest rate positive or negative
            // negative meaning incentivizing users, positive means charging users
            exchangePricesAndRates_.borrowRateVault = int256((configs_.borrowRateMagnifier >> 1) & X15);
            // if first bit == 1 then positive else negative
            if ((configs_.borrowRateMagnifier & 1) == 0) {
                exchangePricesAndRates_.borrowRateVault = -exchangePricesAndRates_.borrowRateVault;
            }
            exchangePricesAndRates_.rewardsOrFeeRateBorrow = exchangePricesAndRates_.borrowRateVault;
        } else {
            unchecked {
                // NOT smart debt
                exchangePricesAndRates_.borrowRateVault = int256(
                    (liquidityBorrowRate_ * configs_.borrowRateMagnifier) / 10000
                );
                exchangePricesAndRates_.rewardsOrFeeRateBorrow = int256(uint(configs_.borrowRateMagnifier)) - 10000;
            }
        }
    }

    /// @dev Get the total supply and borrow of a vault.
    /// @param vault_ The address of the vault.
    /// @param exchangePricesAndRates_ The exchange prices and rates of the vault.
    /// @param constantsVariables_ The constants and variables of the vault.
    /// @return totalSupplyAndBorrow_ The total supply and borrow of the vault.
    function _getTotalSupplyAndBorrow(
        address vault_,
        ExchangePricesAndRates memory exchangePricesAndRates_,
        IFluidVault.ConstantViews memory constantsVariables_
    ) internal view returns (TotalSupplyAndBorrow memory totalSupplyAndBorrow_) {
        uint vaultVariables_ = getVaultVariablesRaw(vault_);
        uint absorbedLiquidity_ = getAbsorbedLiquidityRaw(vault_);
        uint totalSupplyLiquidityOrDex_ = IFluidStorageReadable(constantsVariables_.supply).readFromStorage(
            constantsVariables_.userSupplySlot
        );
        // extracting user's supply
        if (constantsVariables_.supplyToken.token1 == address(0)) {
            totalSupplyLiquidityOrDex_ =
                (totalSupplyLiquidityOrDex_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_AMOUNT) &
                X64;
        } else {
            totalSupplyLiquidityOrDex_ = (totalSupplyLiquidityOrDex_ >> DexSlotsLink.BITS_USER_SUPPLY_AMOUNT) & X64;
        }
        // converting big number into normal number
        totalSupplyLiquidityOrDex_ = (totalSupplyLiquidityOrDex_ >> 8) << (totalSupplyLiquidityOrDex_ & X8);

        uint totalBorrowLiquidityOrDex_ = IFluidStorageReadable(constantsVariables_.borrow).readFromStorage(
            constantsVariables_.userBorrowSlot
        );
        // extracting user's borrow
        if (constantsVariables_.borrowToken.token1 == address(0)) {
            totalBorrowLiquidityOrDex_ =
                (totalBorrowLiquidityOrDex_ >> LiquiditySlotsLink.BITS_USER_BORROW_AMOUNT) &
                X64;
        } else {
            totalBorrowLiquidityOrDex_ = (totalBorrowLiquidityOrDex_ >> DexSlotsLink.BITS_USER_BORROW_AMOUNT) & X64;
        }
        // converting big number into normal number
        totalBorrowLiquidityOrDex_ = (totalBorrowLiquidityOrDex_ >> 8) << (totalBorrowLiquidityOrDex_ & X8);

        totalSupplyAndBorrow_.totalSupplyVault = (vaultVariables_ >> 82) & X64;
        // Converting bignumber into normal number
        totalSupplyAndBorrow_.totalSupplyVault =
            (totalSupplyAndBorrow_.totalSupplyVault >> 8) <<
            (totalSupplyAndBorrow_.totalSupplyVault & X8);
        totalSupplyAndBorrow_.totalBorrowVault = (vaultVariables_ >> 146) & X64;
        // Converting bignumber into normal number
        totalSupplyAndBorrow_.totalBorrowVault =
            (totalSupplyAndBorrow_.totalBorrowVault >> 8) <<
            (totalSupplyAndBorrow_.totalBorrowVault & X8);

        totalSupplyAndBorrow_.totalSupplyLiquidityOrDex = totalSupplyLiquidityOrDex_;
        totalSupplyAndBorrow_.totalBorrowLiquidityOrDex = totalBorrowLiquidityOrDex_;

        totalSupplyAndBorrow_.absorbedBorrow = absorbedLiquidity_ & X128;
        totalSupplyAndBorrow_.absorbedSupply = absorbedLiquidity_ >> 128;

        unchecked {
            // converting raw total supply & total borrow into normal amounts
            totalSupplyAndBorrow_.totalSupplyVault =
                (totalSupplyAndBorrow_.totalSupplyVault * exchangePricesAndRates_.vaultSupplyExchangePrice) /
                EXCHANGE_PRICES_PRECISION;
            totalSupplyAndBorrow_.totalBorrowVault =
                (totalSupplyAndBorrow_.totalBorrowVault * exchangePricesAndRates_.vaultBorrowExchangePrice) /
                EXCHANGE_PRICES_PRECISION;

            // below logic multiply with liquidity exchange price also works for case of smart debt / smart col because
            // liquiditySupplyExchangePrice and liquidityBorrowExchangePrice will be EXCHANGE_PRICES_PRECISION
            totalSupplyAndBorrow_.totalSupplyLiquidityOrDex =
                (totalSupplyAndBorrow_.totalSupplyLiquidityOrDex *
                    exchangePricesAndRates_.liquiditySupplyExchangePrice) /
                EXCHANGE_PRICES_PRECISION;
            totalSupplyAndBorrow_.totalBorrowLiquidityOrDex =
                (totalSupplyAndBorrow_.totalBorrowLiquidityOrDex *
                    exchangePricesAndRates_.liquidityBorrowExchangePrice) /
                EXCHANGE_PRICES_PRECISION;

            totalSupplyAndBorrow_.absorbedSupply =
                (totalSupplyAndBorrow_.absorbedSupply * exchangePricesAndRates_.vaultSupplyExchangePrice) /
                EXCHANGE_PRICES_PRECISION;
            totalSupplyAndBorrow_.absorbedBorrow =
                (totalSupplyAndBorrow_.absorbedBorrow * exchangePricesAndRates_.vaultBorrowExchangePrice) /
                EXCHANGE_PRICES_PRECISION;
        }
    }

    /// @dev Calculates limits and availability for a user's vault operations.
    /// @param exchangePricesAndRates_ Exchange prices and rates for the vault.
    /// @param constantsVariables_ Constants and variables for the vault.
    /// @param withdrawalGapConfig_ Configuration for the withdrawal gap.
    /// @param borrowLimit_ The borrow limit for the user. Only set if not smart debt.
    /// @param borrowLimitUtilization_ The utilization of the borrow limit. Only set if not smart debt.
    /// @param borrowableUntilLimit_ The limit until which borrowing is allowed. Only set if not smart debt.
    /// @param liquidityUserSupplyData_ User's supply data at Liquidity.
    /// @param liquidityUserBorrowData_ User's borrow data at Liquidity.
    /// @return limitsAndAvailability_ The calculated limits and availability for the user's vault operations.
    /// @return liquidityOrDexUserSupplyData_ The User's supply data at Liquidity OR dex.
    /// @return liquidityOrDexUserSupplyData_ The User's borrow data at Liquidity OR dex.
    function _getLimitsAndAvailability(
        ExchangePricesAndRates memory exchangePricesAndRates_,
        IFluidVault.ConstantViews memory constantsVariables_,
        uint withdrawalGapConfig_,
        uint borrowLimit_,
        uint borrowLimitUtilization_,
        uint borrowableUntilLimit_,
        FluidLiquidityResolverStructs.UserSupplyData memory liquidityUserSupplyData_,
        FluidLiquidityResolverStructs.UserBorrowData memory liquidityUserBorrowData_
    )
        internal
        view
        returns (
            LimitsAndAvailability memory limitsAndAvailability_,
            FluidLiquidityResolverStructs.UserSupplyData memory,
            FluidLiquidityResolverStructs.UserBorrowData memory
        )
    {
        // fetching user's supply slot data
        uint userSupplyLiquidityOrDexData_ = IFluidStorageReadable(constantsVariables_.supply).readFromStorage(
            constantsVariables_.userSupplySlot
        );
        if (userSupplyLiquidityOrDexData_ > 0) {
            {
                uint userSupply_;
                uint supplyLimitRaw_;
                if (constantsVariables_.supply == address(constantsVariables_.liquidity)) {
                    userSupply_ = (userSupplyLiquidityOrDexData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_AMOUNT) & X64;
                    userSupply_ = (userSupply_ >> 8) << (userSupply_ & X8);

                    supplyLimitRaw_ = LiquidityCalcs.calcWithdrawalLimitBeforeOperate(
                        userSupplyLiquidityOrDexData_,
                        userSupply_
                    );
                } else {
                    // smart col -> using Dex libraries
                    userSupply_ = (userSupplyLiquidityOrDexData_ >> DexSlotsLink.BITS_USER_SUPPLY_AMOUNT) & X64;
                    userSupply_ = (userSupply_ >> 8) << (userSupply_ & X8);

                    supplyLimitRaw_ = DexCalcs.calcWithdrawalLimitBeforeOperate(
                        userSupplyLiquidityOrDexData_,
                        userSupply_
                    );

                    liquidityUserSupplyData_.modeWithInterest = false;
                    liquidityUserSupplyData_.supply = userSupply_;
                    liquidityUserSupplyData_.lastUpdateTimestamp =
                        (userSupplyLiquidityOrDexData_ >> DexSlotsLink.BITS_USER_SUPPLY_LAST_UPDATE_TIMESTAMP) &
                        X33;
                    liquidityUserSupplyData_.expandPercent =
                        (userSupplyLiquidityOrDexData_ >> DexSlotsLink.BITS_USER_SUPPLY_EXPAND_PERCENT) &
                        X14;
                    liquidityUserSupplyData_.expandDuration =
                        (userSupplyLiquidityOrDexData_ >> DexSlotsLink.BITS_USER_SUPPLY_EXPAND_DURATION) &
                        X24;
                }

                unchecked {
                    // liquiditySupplyExchangePrice is EXCHANGE_PRICES_PRECISION in case of smart col
                    limitsAndAvailability_.withdrawLimit =
                        (supplyLimitRaw_ * exchangePricesAndRates_.liquiditySupplyExchangePrice) /
                        EXCHANGE_PRICES_PRECISION;

                    // totalSupplyLiquidityOrDex = user supply
                    limitsAndAvailability_.withdrawableUntilLimit = userSupply_ > limitsAndAvailability_.withdrawLimit
                        ? userSupply_ - limitsAndAvailability_.withdrawLimit
                        : 0;

                    uint withdrawalGap_ = limitsAndAvailability_.withdrawLimit == 0
                        ? 0 // apply withdrawal gap only if withdraw limit is actually active (not below base limit)
                        : (userSupply_ * withdrawalGapConfig_) / 1e4;

                    limitsAndAvailability_.withdrawableUntilLimit = (limitsAndAvailability_.withdrawableUntilLimit >
                        withdrawalGap_)
                        ? (((limitsAndAvailability_.withdrawableUntilLimit - withdrawalGap_) * 999999) / 1000000)
                        : 0;
                }
            }

            limitsAndAvailability_.withdrawable = limitsAndAvailability_.withdrawableUntilLimit;
            if (constantsVariables_.supplyToken.token1 == address(0)) {
                // NOT smart col -> check withdrawableUntilLimit against available balance at Liquidity
                // if smart col -> must check manually against balances using data returned at DexResolver
                uint balanceOf_;
                if (constantsVariables_.supplyToken.token0 == NATIVE_TOKEN_ADDRESS) {
                    balanceOf_ = address(constantsVariables_.liquidity).balance;
                } else {
                    balanceOf_ = TokenInterface(constantsVariables_.supplyToken.token0).balanceOf(
                        address(constantsVariables_.liquidity)
                    );
                }
                if (balanceOf_ < limitsAndAvailability_.withdrawableUntilLimit) {
                    limitsAndAvailability_.withdrawable = balanceOf_;
                }
            } else {
                // mirror limits in liquidityUserSupplyData_
                liquidityUserSupplyData_.withdrawalLimit = limitsAndAvailability_.withdrawLimit;
                // exchange price for SC is 1 so no conversion needed for base withdrawal limit
                liquidityUserSupplyData_.baseWithdrawalLimit = BigMathMinified.fromBigNumber(
                    (userSupplyLiquidityOrDexData_ >> DexSlotsLink.BITS_USER_SUPPLY_BASE_WITHDRAWAL_LIMIT) & X18,
                    8,
                    X8
                );
                liquidityUserSupplyData_.withdrawableUntilLimit = limitsAndAvailability_.withdrawableUntilLimit;
                liquidityUserSupplyData_.withdrawable = limitsAndAvailability_.withdrawable;
            }
        }

        uint userBorrowLiquidityOrDexData_ = IFluidStorageReadable(constantsVariables_.borrow).readFromStorage(
            constantsVariables_.userBorrowSlot
        );
        if (userBorrowLiquidityOrDexData_ > 0) {
            if (constantsVariables_.borrowToken.token1 == address(0)) {
                // NOT smart debt. fetch limit from LiquidityResolver

                limitsAndAvailability_.borrowLimit = borrowLimit_;
                limitsAndAvailability_.borrowLimitUtilization = borrowLimitUtilization_;

                unchecked {
                    limitsAndAvailability_.borrowableUntilLimit = (borrowableUntilLimit_ * 999999) / 1000000;
                }

                uint balanceOf_;
                if (constantsVariables_.borrowToken.token0 == NATIVE_TOKEN_ADDRESS) {
                    balanceOf_ = address(constantsVariables_.liquidity).balance;
                } else {
                    balanceOf_ = TokenInterface(constantsVariables_.borrowToken.token0).balanceOf(
                        address(constantsVariables_.liquidity)
                    );
                }
                limitsAndAvailability_.borrowable = balanceOf_ > limitsAndAvailability_.borrowableUntilLimit
                    ? limitsAndAvailability_.borrowableUntilLimit
                    : balanceOf_;
            } else {
                // smart debt -> using Dex libraries
                uint userBorrow_ = (userBorrowLiquidityOrDexData_ >> DexSlotsLink.BITS_USER_BORROW_AMOUNT) & X64;
                userBorrow_ = (userBorrow_ >> 8) << (userBorrow_ & X8);

                limitsAndAvailability_.borrowLimit = DexCalcs.calcBorrowLimitBeforeOperate(
                    userBorrowLiquidityOrDexData_,
                    userBorrow_
                );

                unchecked {
                    limitsAndAvailability_.borrowableUntilLimit = limitsAndAvailability_.borrowLimit > userBorrow_
                        ? limitsAndAvailability_.borrowLimit - userBorrow_
                        : 0;

                    limitsAndAvailability_.borrowableUntilLimit =
                        (limitsAndAvailability_.borrowableUntilLimit * 999999) /
                        1000000;
                }

                limitsAndAvailability_.borrowable = limitsAndAvailability_.borrowableUntilLimit;

                liquidityUserBorrowData_.modeWithInterest = false;
                liquidityUserBorrowData_.borrow = userBorrow_;
                liquidityUserBorrowData_.borrowLimit = limitsAndAvailability_.borrowLimit;
                liquidityUserBorrowData_.borrowableUntilLimit = limitsAndAvailability_.borrowableUntilLimit;
                liquidityUserBorrowData_.borrowable = limitsAndAvailability_.borrowable;

                liquidityUserBorrowData_.lastUpdateTimestamp =
                    (userBorrowLiquidityOrDexData_ >> DexSlotsLink.BITS_USER_BORROW_LAST_UPDATE_TIMESTAMP) &
                    X33;
                liquidityUserBorrowData_.expandPercent =
                    (userBorrowLiquidityOrDexData_ >> DexSlotsLink.BITS_USER_BORROW_EXPAND_PERCENT) &
                    X14;
                liquidityUserBorrowData_.expandDuration =
                    (userBorrowLiquidityOrDexData_ >> DexSlotsLink.BITS_USER_BORROW_EXPAND_DURATION) &
                    X24;

                liquidityUserBorrowData_.baseBorrowLimit = BigMathMinified.fromBigNumber(
                    (userBorrowLiquidityOrDexData_ >> DexSlotsLink.BITS_USER_BORROW_BASE_BORROW_LIMIT) & X18,
                    8,
                    X8
                );
                liquidityUserBorrowData_.maxBorrowLimit = BigMathMinified.fromBigNumber(
                    (userBorrowLiquidityOrDexData_ >> DexSlotsLink.BITS_USER_BORROW_MAX_BORROW_LIMIT) & X18,
                    8,
                    X8
                );
            }
        }

        limitsAndAvailability_.minimumBorrowing =
            (10001 * exchangePricesAndRates_.vaultBorrowExchangePrice) /
            EXCHANGE_PRICES_PRECISION;

        return (limitsAndAvailability_, liquidityUserSupplyData_, liquidityUserBorrowData_);
    }

    /// @notice Retrieves the state of a given vault.
    /// @param vault_ The address of the vault to retrieve the state for.
    /// @return vaultState_ The state of the vault, including top tick, current and total branches,
    ///                     total supply and borrow, total positions, and current branch state.
    function getVaultState(address vault_) public view returns (VaultState memory vaultState_) {
        uint vaultVariables_ = getVaultVariablesRaw(vault_);

        vaultState_.topTick = tickHelper(((vaultVariables_ >> 2) & X20));
        vaultState_.currentBranch = (vaultVariables_ >> 22) & X30;
        vaultState_.totalBranch = (vaultVariables_ >> 52) & X30;
        vaultState_.totalSupply = BigMathMinified.fromBigNumber((vaultVariables_ >> 82) & X64, 8, X8);
        vaultState_.totalBorrow = BigMathMinified.fromBigNumber((vaultVariables_ >> 146) & X64, 8, X8);
        vaultState_.totalPositions = (vaultVariables_ >> 210) & X32;

        uint currentBranchData_ = getBranchDataRaw(vault_, vaultState_.currentBranch);
        vaultState_.currentBranchState.status = currentBranchData_ & 3;
        vaultState_.currentBranchState.minimaTick = tickHelper(((currentBranchData_ >> 2) & X20));
        vaultState_.currentBranchState.debtFactor = (currentBranchData_ >> 116) & X50;
        vaultState_.currentBranchState.partials = (currentBranchData_ >> 22) & X30;
        vaultState_.currentBranchState.debtLiquidity = BigMathMinified.fromBigNumber(
            (currentBranchData_ >> 52) & X64,
            8,
            X8
        );
        vaultState_.currentBranchState.baseBranchId = (currentBranchData_ >> 166) & X30;
        vaultState_.currentBranchState.baseBranchMinima = tickHelper(((currentBranchData_ >> 196) & X20));
    }

    /// @notice Retrieves the entire data for a given vault.
    /// @param vault_ The address of the vault to retrieve the data for.
    /// @return vaultData_ The entire data of the vault.
    function getVaultEntireData(address vault_) public view returns (VaultEntireData memory vaultData_) {
        vaultData_.vault = vault_;
        uint vaultType_ = getVaultType(vault_);

        if (vaultType_ != 0) {
            vaultData_.constantVariables = _getVaultConstants(vault_, vaultType_);

            vaultData_.isSmartCol = vaultData_.constantVariables.supplyToken.token1 != address(0);
            vaultData_.isSmartDebt = vaultData_.constantVariables.borrowToken.token1 != address(0);

            // in case of NOT smart debt, the borrow limits are fetched from liquidity resolver
            uint borrowLimit_;
            uint borrowLimitUtilization_;
            uint borrowableUntilLimit_;

            {
                uint liquiditySupplyRate_;
                uint liquidityBorrowRate_;
                if (!vaultData_.isSmartCol) {
                    // NOT smart col
                    (
                        FluidLiquidityResolverStructs.UserSupplyData memory liquidityUserSupplyData_,
                        FluidLiquidityResolverStructs.OverallTokenData memory liquiditySupplyTokenData_
                    ) = LIQUIDITY_RESOLVER.getUserSupplyData(vault_, vaultData_.constantVariables.supplyToken.token0);

                    vaultData_.liquidityUserSupplyData = liquidityUserSupplyData_;

                    liquiditySupplyRate_ = liquiditySupplyTokenData_.supplyRate;
                }

                if (!vaultData_.isSmartDebt) {
                    // NOT smart debt
                    (
                        FluidLiquidityResolverStructs.UserBorrowData memory liquidityUserBorrowData_,
                        FluidLiquidityResolverStructs.OverallTokenData memory liquidityBorrowTokenData_
                    ) = LIQUIDITY_RESOLVER.getUserBorrowData(vault_, vaultData_.constantVariables.borrowToken.token0);

                    vaultData_.liquidityUserBorrowData = liquidityUserBorrowData_;

                    liquidityBorrowRate_ = liquidityBorrowTokenData_.borrowRate;

                    borrowLimit_ = liquidityUserBorrowData_.borrowLimit;
                    borrowLimitUtilization_ = liquidityUserBorrowData_.borrowLimitUtilization;
                    borrowableUntilLimit_ = liquidityUserBorrowData_.borrowableUntilLimit;
                }

                vaultData_.configs = _getVaultConfig(vault_, vaultData_.constantVariables.vaultType);
                vaultData_.exchangePricesAndRates = _getExchangePricesAndRates(
                    vault_,
                    vaultType_,
                    vaultData_.configs,
                    liquiditySupplyRate_,
                    liquidityBorrowRate_
                );
            }
            vaultData_.totalSupplyAndBorrow = _getTotalSupplyAndBorrow(
                vault_,
                vaultData_.exchangePricesAndRates,
                vaultData_.constantVariables
            );
            (
                vaultData_.limitsAndAvailability,
                vaultData_.liquidityUserSupplyData,
                vaultData_.liquidityUserBorrowData
            ) = _getLimitsAndAvailability(
                vaultData_.exchangePricesAndRates,
                vaultData_.constantVariables,
                vaultData_.configs.withdrawalGap,
                borrowLimit_,
                borrowLimitUtilization_,
                borrowableUntilLimit_,
                vaultData_.liquidityUserSupplyData,
                vaultData_.liquidityUserBorrowData
            );
            vaultData_.vaultState = getVaultState(vault_);
        }
    }

    /// @notice Retrieves the entire data for a list of vaults.
    /// @param vaults_ The list of vault addresses.
    /// @return vaultsData_ An array of VaultEntireData structures containing the data for each vault.
    function getVaultsEntireData(
        address[] memory vaults_
    ) external view returns (VaultEntireData[] memory vaultsData_) {
        uint length_ = vaults_.length;
        vaultsData_ = new VaultEntireData[](length_);
        for (uint i; i < length_; i++) {
            vaultsData_[i] = getVaultEntireData(vaults_[i]);
        }
    }

    /// @notice Retrieves the entire data for all vaults.
    /// @return vaultsData_ An array of VaultEntireData structures containing the data for each vault.
    function getVaultsEntireData() external view returns (VaultEntireData[] memory vaultsData_) {
        address[] memory vaults_ = getAllVaultsAddresses();
        uint length_ = vaults_.length;
        vaultsData_ = new VaultEntireData[](length_);
        for (uint i; i < length_; i++) {
            vaultsData_[i] = getVaultEntireData(vaults_[i]);
        }
    }

    /// @notice Retrieves the position data for a given NFT ID and the corresponding vault data.
    /// @param nftId_ The NFT ID for which to retrieve the position data.
    /// @return userPosition_ The UserPosition structure containing the position data.
    /// @return vaultData_ The VaultEntireData structure containing the vault data.
    function positionByNftId(
        uint nftId_
    ) public view returns (UserPosition memory userPosition_, VaultEntireData memory vaultData_) {
        userPosition_.nftId = nftId_;
        address vault_ = vaultByNftId(nftId_);
        if (vault_ != address(0)) {
            uint positionData_ = getPositionDataRaw(vault_, nftId_);
            vaultData_ = getVaultEntireData(vault_);

            userPosition_.owner = FACTORY.ownerOf(nftId_);
            userPosition_.isSupplyPosition = (positionData_ & 1) == 1;
            userPosition_.supply = (positionData_ >> 45) & X64;
            // Converting big number into normal number
            userPosition_.supply = (userPosition_.supply >> 8) << (userPosition_.supply & X8);
            userPosition_.beforeSupply = userPosition_.supply;
            userPosition_.dustBorrow = (positionData_ >> 109) & X64;
            // Converting big number into normal number
            userPosition_.dustBorrow = (userPosition_.dustBorrow >> 8) << (userPosition_.dustBorrow & X8);
            userPosition_.beforeDustBorrow = userPosition_.dustBorrow;
            if (!userPosition_.isSupplyPosition) {
                userPosition_.tick = (positionData_ & 2) == 2
                    ? int((positionData_ >> 2) & X19)
                    : -int((positionData_ >> 2) & X19);
                userPosition_.tickId = (positionData_ >> 21) & X24;
                userPosition_.borrow =
                    (TickMath.getRatioAtTick(int24(userPosition_.tick)) * userPosition_.supply) >>
                    96;
                userPosition_.beforeBorrow = userPosition_.borrow - userPosition_.beforeDustBorrow;

                uint tickData_ = getTickDataRaw(vault_, userPosition_.tick);

                if (((tickData_ & 1) == 1) || (((tickData_ >> 1) & X24) > userPosition_.tickId)) {
                    // user got liquidated
                    userPosition_.isLiquidated = true;
                    (userPosition_.tick, userPosition_.borrow, userPosition_.supply, , ) = IFluidVault(vault_)
                        .fetchLatestPosition(userPosition_.tick, userPosition_.tickId, userPosition_.borrow, tickData_);
                }

                if (userPosition_.borrow > userPosition_.dustBorrow) {
                    userPosition_.borrow = userPosition_.borrow - userPosition_.dustBorrow;
                } else {
                    userPosition_.borrow = 0;
                    userPosition_.dustBorrow = 0;
                }
            }

            // converting raw amounts into normal
            userPosition_.beforeSupply =
                (userPosition_.beforeSupply * vaultData_.exchangePricesAndRates.vaultSupplyExchangePrice) /
                EXCHANGE_PRICES_PRECISION;
            userPosition_.beforeBorrow =
                (userPosition_.beforeBorrow * vaultData_.exchangePricesAndRates.vaultBorrowExchangePrice) /
                EXCHANGE_PRICES_PRECISION;
            userPosition_.beforeDustBorrow =
                (userPosition_.beforeDustBorrow * vaultData_.exchangePricesAndRates.vaultBorrowExchangePrice) /
                EXCHANGE_PRICES_PRECISION;
            userPosition_.supply =
                (userPosition_.supply * vaultData_.exchangePricesAndRates.vaultSupplyExchangePrice) /
                EXCHANGE_PRICES_PRECISION;
            userPosition_.borrow =
                (userPosition_.borrow * vaultData_.exchangePricesAndRates.vaultBorrowExchangePrice) /
                EXCHANGE_PRICES_PRECISION;
            userPosition_.dustBorrow =
                (userPosition_.dustBorrow * vaultData_.exchangePricesAndRates.vaultBorrowExchangePrice) /
                EXCHANGE_PRICES_PRECISION;
        }
    }

    /// @notice Returns an array of NFT IDs for all positions of a given user.
    /// @param user_ The address of the user for whom to fetch positions.
    /// @return nftIds_ An array of NFT IDs representing the user's positions.
    function positionsNftIdOfUser(address user_) public view returns (uint[] memory nftIds_) {
        uint totalPositions_ = FACTORY.balanceOf(user_);
        nftIds_ = new uint[](totalPositions_);
        for (uint i; i < totalPositions_; i++) {
            nftIds_[i] = FACTORY.tokenOfOwnerByIndex(user_, i);
        }
    }

    /// @notice Returns the vault address associated with a given NFT ID.
    /// @param nftId_ The NFT ID for which to fetch the vault address.
    /// @return vault_ The address of the vault associated with the NFT ID.
    function vaultByNftId(uint nftId_) public view returns (address vault_) {
        uint tokenConfig_ = getTokenConfig(nftId_);
        vault_ = FACTORY.getVaultAddress((tokenConfig_ >> 192) & X32);
    }

    /// @notice Fetches all positions and their corresponding vault data for a given user.
    /// @param user_ The address of the user for whom to fetch positions and vault data.
    /// @return userPositions_ An array of UserPosition structs representing the user's positions.
    /// @return vaultsData_ An array of VaultEntireData structs representing the vault data for each position.
    function positionsByUser(
        address user_
    ) external view returns (UserPosition[] memory userPositions_, VaultEntireData[] memory vaultsData_) {
        uint[] memory nftIds_ = positionsNftIdOfUser(user_);
        uint length_ = nftIds_.length;
        userPositions_ = new UserPosition[](length_);
        vaultsData_ = new VaultEntireData[](length_);
        for (uint i = 0; i < length_; i++) {
            (userPositions_[i], vaultsData_[i]) = positionByNftId(nftIds_[i]);
        }
    }

    /// @notice Returns the total number of positions across all users.
    /// @return The total number of positions.
    function totalPositions() external view returns (uint) {
        return FACTORY.totalSupply();
    }

    /// @notice fetches available liquidations
    /// @param vault_ address of vault for which to fetch
    /// @param tokenInAmt_ token in aka debt to payback, leave 0 to get max
    /// @return liquidationData_ liquidation related data. Check out structs.sol
    function getVaultLiquidation(
        address vault_,
        uint tokenInAmt_
    ) public returns (LiquidationStruct memory liquidationData_) {
        tokenInAmt_ = tokenInAmt_ == 0 ? X128 : tokenInAmt_;

        uint vaultType_ = getVaultType(vault_);
        if (vaultType_ != 0) {
            liquidationData_.vault = vault_;
            IFluidVault.ConstantViews memory constants_ = _getVaultConstants(vault_, vaultType_);

            if (constants_.vaultType == FluidProtocolTypes.VAULT_T1_TYPE) {
                liquidationData_.token0In = constants_.borrowToken.token0;
                liquidationData_.token0Out = constants_.supplyToken.token0;

                // running without absorb
                try IFluidVaultT1(vault_).liquidate(tokenInAmt_, 0, 0x000000000000000000000000000000000000dEaD, false) {
                    // Handle successful execution
                } catch Error(string memory) {
                    // Handle generic errors with a reason
                } catch (bytes memory lowLevelData_) {
                    (liquidationData_.inAmt, liquidationData_.outAmt) = _decodeLiquidationResult(lowLevelData_);
                }

                // running with absorb
                try IFluidVaultT1(vault_).liquidate(tokenInAmt_, 0, 0x000000000000000000000000000000000000dEaD, true) {
                    // Handle successful execution
                } catch Error(string memory) {
                    // Handle generic errors with a reason
                } catch (bytes memory lowLevelData_) {
                    (liquidationData_.inAmtWithAbsorb, liquidationData_.outAmtWithAbsorb) = _decodeLiquidationResult(
                        lowLevelData_
                    );
                }
            } else {
                liquidationData_.token0In = constants_.borrowToken.token0;
                liquidationData_.token0Out = constants_.supplyToken.token0;
                liquidationData_.token1In = constants_.borrowToken.token1;
                liquidationData_.token1Out = constants_.supplyToken.token1;

                // running without absorb
                try IFluidVault(vault_).simulateLiquidate(0, false) {
                    // Handle successful execution
                } catch Error(string memory) {
                    // Handle generic errors with a reason
                } catch (bytes memory lowLevelData_) {
                    (liquidationData_.inAmt, liquidationData_.outAmt) = _decodeLiquidationResult(lowLevelData_);
                }

                // running with absorb
                try IFluidVault(vault_).simulateLiquidate(0, true) {
                    // Handle successful execution
                } catch Error(string memory) {
                    // Handle generic errors with a reason
                } catch (bytes memory lowLevelData_) {
                    (liquidationData_.inAmtWithAbsorb, liquidationData_.outAmtWithAbsorb) = _decodeLiquidationResult(
                        lowLevelData_
                    );
                }
            }

            liquidationData_.absorbAvailable =
                liquidationData_.inAmtWithAbsorb > liquidationData_.inAmt ||
                liquidationData_.outAmtWithAbsorb > liquidationData_.outAmt;
        }
    }

    /// @dev helper method to decode liquidation result revert data
    function _decodeLiquidationResult(bytes memory lowLevelData_) internal pure returns (uint amtIn_, uint amtOut_) {
        // Check if the error data is long enough to contain a selector
        if (lowLevelData_.length >= 68) {
            bytes4 errorSelector_;
            assembly {
                // Extract the selector from the error data
                errorSelector_ := mload(add(lowLevelData_, 0x20))
            }
            if (errorSelector_ == IFluidVault.FluidLiquidateResult.selector) {
                assembly {
                    amtOut_ := mload(add(lowLevelData_, 36))
                    amtIn_ := mload(add(lowLevelData_, 68))
                }
            } // else -> tokenInAmtTwo & tokenOutAmtTwo remains 0
        }
    }

    /// @notice Retrieves liquidation data for multiple vaults.
    /// @param vaults_ The array of vault addresses.
    /// @param tokensInAmt_ The array of token amounts to liquidate.
    /// @return liquidationsData_ An array of LiquidationStruct containing the liquidation data for each vault.
    function getMultipleVaultsLiquidation(
        address[] memory vaults_,
        uint[] memory tokensInAmt_
    ) external returns (LiquidationStruct[] memory liquidationsData_) {
        uint length_ = vaults_.length;
        liquidationsData_ = new LiquidationStruct[](length_);
        for (uint i = 0; i < length_; i++) {
            liquidationsData_[i] = getVaultLiquidation(vaults_[i], tokensInAmt_[i]);
        }
    }

    /// @notice Retrieves liquidation data for all vaults.
    /// @return liquidationsData_ An array of LiquidationStruct containing the liquidation data for all vaults.
    function getAllVaultsLiquidation() external returns (LiquidationStruct[] memory liquidationsData_) {
        address[] memory vaults_ = getAllVaultsAddresses();
        uint length_ = vaults_.length;

        liquidationsData_ = new LiquidationStruct[](length_);
        for (uint i = 0; i < length_; i++) {
            liquidationsData_[i] = getVaultLiquidation(vaults_[i], 0);
        }
    }

    /// @notice DEPRECATED, only works for vaults v1.0.0: Retrieves absorb data for a single vault.
    /// @param vault_ The address of the vault.
    /// @return absorbData_ The AbsorbStruct containing the absorb data for the vault.
    function getVaultAbsorb(address vault_) public returns (AbsorbStruct memory absorbData_) {
        absorbData_.vault = vault_;
        uint absorbedLiquidity_ = getAbsorbedLiquidityRaw(vault_);
        try IFluidVaultT1(vault_).absorb() {
            // Handle successful execution
            uint newAbsorbedLiquidity_ = getAbsorbedLiquidityRaw(vault_);
            if (newAbsorbedLiquidity_ != absorbedLiquidity_) {
                absorbData_.absorbAvailable = true;
            }
        } catch Error(string memory) {} catch (bytes memory) {}
    }

    /// @notice DEPRECATED, only works for vaults v1.0.0: Retrieves absorb data for multiple vaults.
    /// @param vaults_ The array of vault addresses.
    /// @return absorbData_ An array of AbsorbStruct containing the absorb data for each vault.
    function getVaultsAbsorb(address[] memory vaults_) public returns (AbsorbStruct[] memory absorbData_) {
        uint length_ = vaults_.length;
        absorbData_ = new AbsorbStruct[](length_);
        for (uint i = 0; i < length_; i++) {
            absorbData_[i] = getVaultAbsorb(vaults_[i]);
        }
    }

    /// @notice DEPRECATED, only works for vaults v1.0.0: Retrieves absorb data for all vaults.
    /// @return absorbData_ An array of AbsorbStruct containing the absorb data for all vaults.
    function getVaultsAbsorb() public returns (AbsorbStruct[] memory absorbData_) {
        return getVaultsAbsorb(getAllVaultsAddresses());
    }
}

// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.21;

import { IFluidVault } from "../../../protocols/vault/interfaces/iVault.sol";
import { Structs as FluidLiquidityResolverStructs } from "../liquidity/structs.sol";

// @dev Amounts are always in token amount for normal col / normal debt or in
// shares for Dex smart col / smart debt.
contract Structs {
    struct Configs {
        // can be supplyRate instead if Vault Type is smart col. in that case if 1st bit == 1 then positive else negative
        uint16 supplyRateMagnifier;
        // can be borrowRate instead if Vault Type is smart debt. in that case if 1st bit == 1 then positive else negative
        uint16 borrowRateMagnifier;
        uint16 collateralFactor;
        uint16 liquidationThreshold;
        uint16 liquidationMaxLimit;
        uint16 withdrawalGap;
        uint16 liquidationPenalty;
        uint16 borrowFee;
        address oracle;
        // Oracle price is always debt per col, i.e. amount of debt for 1 col.
        // In case of Dex this price can be used to resolve shares values w.r.t. token0 or token1:
        // - T2: debt token per 1 col share
        // - T3: debt shares per 1 col token
        // - T4: debt shares per 1 col share
        uint oraclePriceOperate;
        uint oraclePriceLiquidate;
        address rebalancer;
        uint lastUpdateTimestamp;
    }

    struct ExchangePricesAndRates {
        uint lastStoredLiquiditySupplyExchangePrice; // 0 in case of smart col
        uint lastStoredLiquidityBorrowExchangePrice; // 0 in case of smart debt
        uint lastStoredVaultSupplyExchangePrice;
        uint lastStoredVaultBorrowExchangePrice;
        uint liquiditySupplyExchangePrice; // set to 1e12 in case of smart col
        uint liquidityBorrowExchangePrice; // set to 1e12 in case of smart debt
        uint vaultSupplyExchangePrice;
        uint vaultBorrowExchangePrice;
        uint supplyRateLiquidity; // set to 0 in case of smart col. Must get per token through DexEntireData
        uint borrowRateLiquidity; // set to 0 in case of smart debt. Must get per token through DexEntireData
        // supplyRateVault or borrowRateVault:
        // - when normal col / debt: rate at liquidity + diff rewards or fee through magnifier (rewardsOrFeeRate below)
        // - when smart col / debt: rewards or fee rate at the vault itself. always == rewardsOrFeeRate below.
        // to get the full rates for vault when smart col / debt, combine with data from DexResolver:
        // - rateAtLiquidity for token0 or token1 (DexResolver)
        // - the rewards or fee rate at the vault (VaultResolver)
        // - the Dex APR (currently off-chain compiled through tracking swap events at the DEX)
        int supplyRateVault; // can be negative in case of smart col (meaning pay to supply)
        int borrowRateVault; // can be negative in case of smart debt (meaning get paid to borrow)
        // rewardsOrFeeRateSupply: rewards or fee rate in percent 1e2 precision (1% = 100, 100% = 10000).
        // positive rewards, negative fee.
        // for smart col vaults: supplyRateVault == supplyRateLiquidity.
        // for normal col vaults: relative percent to supplyRateLiquidity, e.g.:
        // when rewards: supplyRateLiquidity = 4%, rewardsOrFeeRateSupply = 20%, supplyRateVault = 4.8%.
        // when fee: supplyRateLiquidity = 4%, rewardsOrFeeRateSupply = -30%, supplyRateVault = 2.8%.
        int rewardsOrFeeRateSupply;
        // rewardsOrFeeRateBorrow: rewards or fee rate in percent 1e2 precision (1% = 100, 100% = 10000).
        // negative rewards, positive fee.
        // for smart debt vaults: borrowRateVault == borrowRateLiquidity.
        // for normal debt vaults: relative percent to borrowRateLiquidity, e.g.:
        // when rewards: borrowRateLiquidity = 4%, rewardsOrFeeRateBorrow = -20%, borrowRateVault = 3.2%.
        // when fee: borrowRateLiquidity = 4%, rewardsOrFeeRateBorrow = 30%, borrowRateVault = 5.2%.
        int rewardsOrFeeRateBorrow;
    }

    struct TotalSupplyAndBorrow {
        uint totalSupplyVault;
        uint totalBorrowVault;
        uint totalSupplyLiquidityOrDex;
        uint totalBorrowLiquidityOrDex;
        uint absorbedSupply;
        uint absorbedBorrow;
    }

    struct LimitsAndAvailability {
        // in case of DEX: withdrawable / borrowable amount of vault at DEX, BUT there could be that DEX can not withdraw
        // that much at Liquidity! So for DEX this must be combined with returned data in DexResolver.
        uint withdrawLimit;
        uint withdrawableUntilLimit;
        uint withdrawable;
        uint borrowLimit;
        uint borrowableUntilLimit; // borrowable amount until any borrow limit (incl. max utilization limit)
        uint borrowable; // actual currently borrowable amount (borrow limit - already borrowed) & considering balance, max utilization
        uint borrowLimitUtilization; // borrow limit for `maxUtilization` config at Liquidity
        uint minimumBorrowing;
    }

    struct CurrentBranchState {
        uint status; // if 0 then not liquidated, if 1 then liquidated, if 2 then merged, if 3 then closed
        int minimaTick;
        uint debtFactor;
        uint partials;
        uint debtLiquidity;
        uint baseBranchId;
        int baseBranchMinima;
    }

    struct VaultState {
        uint totalPositions;
        int topTick;
        uint currentBranch;
        uint totalBranch;
        uint totalBorrow;
        uint totalSupply;
        CurrentBranchState currentBranchState;
    }

    struct VaultEntireData {
        address vault;
        bool isSmartCol; // true if col token is a Fluid Dex
        bool isSmartDebt; // true if debt token is a Fluid Dex
        IFluidVault.ConstantViews constantVariables;
        Configs configs;
        ExchangePricesAndRates exchangePricesAndRates;
        TotalSupplyAndBorrow totalSupplyAndBorrow;
        LimitsAndAvailability limitsAndAvailability;
        VaultState vaultState;
        // liquidity related data such as supply amount, limits, expansion etc.
        // Also set for Dex, limits are in shares and same things apply as noted for LimitsAndAvailability above!
        FluidLiquidityResolverStructs.UserSupplyData liquidityUserSupplyData;
        // liquidity related data such as borrow amount, limits, expansion etc.
        // Also set for Dex, limits are in shares and same things apply as noted for LimitsAndAvailability above!
        FluidLiquidityResolverStructs.UserBorrowData liquidityUserBorrowData;
    }

    struct UserPosition {
        uint nftId;
        address owner;
        bool isLiquidated;
        bool isSupplyPosition; // if true that means borrowing is 0
        int tick;
        uint tickId;
        uint beforeSupply;
        uint beforeBorrow;
        uint beforeDustBorrow;
        uint supply;
        uint borrow;
        uint dustBorrow;
    }

    /// @dev liquidation related data
    /// @param vault address of vault
    /// @param token0In address of token in
    /// @param token0Out address of token out
    /// @param token1In address of token in (if smart debt)
    /// @param token1Out address of token out (if smart col)
    /// @param inAmt (without absorb liquidity) minimum of available liquidation
    /// @param outAmt (without absorb liquidity) expected token out, collateral to withdraw
    /// @param inAmtWithAbsorb (absorb liquidity included) minimum of available liquidation. In most cases it'll be same as inAmt but sometimes can be bigger.
    /// @param outAmtWithAbsorb (absorb liquidity included) expected token out, collateral to withdraw. In most cases it'll be same as outAmt but sometimes can be bigger.
    /// @param absorbAvailable true if absorb is available
    /// @dev Liquidity in with absirb will always be >= without asborb. Sometimes without asborb can provide better swaps,
    ///      sometimes with absirb can provide better swaps. But available in with absirb will always be >= One
    struct LiquidationStruct {
        address vault;
        address token0In;
        address token0Out;
        address token1In;
        address token1Out;
        // amounts in case of smart debt are in shares, otherwise token amounts.
        // smart col can not be liquidated so to exchange inAmt always use DexResolver DexState.tokenPerDebtShare
        // and tokenPerColShare for outAmt when Vault is smart col.
        uint inAmt;
        uint outAmt;
        uint inAmtWithAbsorb;
        uint outAmtWithAbsorb;
        bool absorbAvailable;
    }

    struct AbsorbStruct {
        address vault;
        bool absorbAvailable;
    }
}

// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.21;

import { IFluidLiquidityResolver } from "../liquidity/iLiquidityResolver.sol";
import { IFluidVaultFactory } from "../../../protocols/vault/interfaces/iVaultFactory.sol";

interface IFluidStorageReadable {
    function readFromStorage(bytes32 slot_) external view returns (uint result_);
}

contract Variables {
    IFluidVaultFactory public immutable FACTORY;
    IFluidLiquidityResolver public immutable LIQUIDITY_RESOLVER;

    // 30 bits (used for partials mainly)
    uint internal constant X8 = 0xff;
    uint internal constant X10 = 0x3ff;
    uint internal constant X14 = 0x3fff;
    uint internal constant X15 = 0x7fff;
    uint internal constant X16 = 0xffff;
    uint internal constant X18 = 0x3ffff;
    uint internal constant X19 = 0x7ffff;
    uint internal constant X20 = 0xfffff;
    uint internal constant X24 = 0xffffff;
    uint internal constant X25 = 0x1ffffff;
    uint internal constant X30 = 0x3fffffff;
    uint internal constant X32 = 0xffffffff;
    uint internal constant X33 = 0x1ffffffff;
    uint internal constant X35 = 0x7ffffffff;
    uint internal constant X40 = 0xffffffffff;
    uint internal constant X50 = 0x3ffffffffffff;
    uint internal constant X64 = 0xffffffffffffffff;
    uint internal constant X96 = 0xffffffffffffffffffffffff;
    uint internal constant X128 = 0xffffffffffffffffffffffffffffffff;
    /// @dev address that is mapped to the chain native token
    address internal constant NATIVE_TOKEN_ADDRESS = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;

    uint internal constant EXCHANGE_PRICES_PRECISION = 1e12;

    constructor(address factory_, address liquidityResolver_) {
        FACTORY = IFluidVaultFactory(factory_);
        LIQUIDITY_RESOLVER = IFluidLiquidityResolver(liquidityResolver_);
    }
}

//SPDX-License-Identifier: MIT
pragma solidity 0.8.21;

/// @notice common Fluid vaults interface, some methods only available for vaults > T1 (type, simulateLiquidate, rebalance is different)
interface IFluidVault {
    /// @notice returns the vault id
    function VAULT_ID() external view returns (uint256);

    /// @notice returns the vault id
    function TYPE() external view returns (uint256);

    /// @notice reads uint256 data `result_` from storage at a bytes32 storage `slot_` key.
    function readFromStorage(bytes32 slot_) external view returns (uint256 result_);

    struct Tokens {
        address token0;
        address token1;
    }

    struct ConstantViews {
        address liquidity;
        address factory;
        address operateImplementation;
        address adminImplementation;
        address secondaryImplementation;
        address deployer; // address which deploys oracle
        address supply; // either liquidity layer or DEX protocol
        address borrow; // either liquidity layer or DEX protocol
        Tokens supplyToken; // if smart collateral then address of token0 & token1 else just supply token address at token0 and token1 as empty
        Tokens borrowToken; // if smart debt then address of token0 & token1 else just borrow token address at token0 and token1 as empty
        uint256 vaultId;
        uint256 vaultType;
        bytes32 supplyExchangePriceSlot; // if smart collateral then slot is from DEX protocol else from liquidity layer
        bytes32 borrowExchangePriceSlot; // if smart debt then slot is from DEX protocol else from liquidity layer
        bytes32 userSupplySlot; // if smart collateral then slot is from DEX protocol else from liquidity layer
        bytes32 userBorrowSlot; // if smart debt then slot is from DEX protocol else from liquidity layer
    }

    /// @notice returns all Vault constants
    function constantsView() external view returns (ConstantViews memory constantsView_);

    /// @notice fetches the latest user position after a liquidation
    function fetchLatestPosition(
        int256 positionTick_,
        uint256 positionTickId_,
        uint256 positionRawDebt_,
        uint256 tickData_
    )
        external
        view
        returns (
            int256, // tick
            uint256, // raw debt
            uint256, // raw collateral
            uint256, // branchID_
            uint256 // branchData_
        );

    /// @notice calculates the updated vault exchange prices
    function updateExchangePrices(
        uint256 vaultVariables2_
    )
        external
        view
        returns (
            uint256 liqSupplyExPrice_,
            uint256 liqBorrowExPrice_,
            uint256 vaultSupplyExPrice_,
            uint256 vaultBorrowExPrice_
        );

    /// @notice calculates the updated vault exchange prices and writes them to storage
    function updateExchangePricesOnStorage()
        external
        returns (
            uint256 liqSupplyExPrice_,
            uint256 liqBorrowExPrice_,
            uint256 vaultSupplyExPrice_,
            uint256 vaultBorrowExPrice_
        );

    /// @notice returns the liquidity contract address
    function LIQUIDITY() external view returns (address);

    error FluidLiquidateResult(uint256 colLiquidated, uint256 debtLiquidated);

    function rebalance(
        int colToken0MinMax_,
        int colToken1MinMax_,
        int debtToken0MinMax_,
        int debtToken1MinMax_
    ) external payable returns (int supplyAmt_, int borrowAmt_);

    /// @notice reverts with FluidLiquidateResult
    function simulateLiquidate(uint debtAmt_, bool absorb_) external;
}

//SPDX-License-Identifier: MIT
pragma solidity 0.8.21;

import { IERC721Enumerable } from "@openzeppelin/contracts/token/ERC721/extensions/IERC721Enumerable.sol";

interface IFluidVaultFactory is IERC721Enumerable {
    /// @notice Minting an NFT Vault for the user
    function mint(uint256 vaultId_, address user_) external returns (uint256 tokenId_);

    /// @notice returns owner of Vault which is also an NFT
    function ownerOf(uint256 tokenId) external view returns (address owner);

    /// @notice Global auth is auth for all vaults
    function isGlobalAuth(address auth_) external view returns (bool);

    /// @notice Vault auth is auth for a specific vault
    function isVaultAuth(address vault_, address auth_) external view returns (bool);

    /// @notice Total vaults deployed.
    function totalVaults() external view returns (uint256);

    /// @notice Compute vaultAddress
    function getVaultAddress(uint256 vaultId) external view returns (address);

    /// @notice read uint256 `result_` for a storage `slot_` key
    function readFromStorage(bytes32 slot_) external view returns (uint256 result_);
}

//SPDX-License-Identifier: MIT
pragma solidity 0.8.21;

interface IFluidVaultT1 {
    /// @notice returns the vault id
    function VAULT_ID() external view returns (uint256);

    /// @notice reads uint256 data `result_` from storage at a bytes32 storage `slot_` key.
    function readFromStorage(bytes32 slot_) external view returns (uint256 result_);

    struct ConstantViews {
        address liquidity;
        address factory;
        address adminImplementation;
        address secondaryImplementation;
        address supplyToken;
        address borrowToken;
        uint8 supplyDecimals;
        uint8 borrowDecimals;
        uint vaultId;
        bytes32 liquiditySupplyExchangePriceSlot;
        bytes32 liquidityBorrowExchangePriceSlot;
        bytes32 liquidityUserSupplySlot;
        bytes32 liquidityUserBorrowSlot;
    }

    /// @notice returns all Vault constants
    function constantsView() external view returns (ConstantViews memory constantsView_);

    /// @notice fetches the latest user position after a liquidation
    function fetchLatestPosition(
        int256 positionTick_,
        uint256 positionTickId_,
        uint256 positionRawDebt_,
        uint256 tickData_
    )
        external
        view
        returns (
            int256, // tick
            uint256, // raw debt
            uint256, // raw collateral
            uint256, // branchID_
            uint256 // branchData_
        );

    /// @notice calculates the updated vault exchange prices
    function updateExchangePrices(
        uint256 vaultVariables2_
    )
        external
        view
        returns (
            uint256 liqSupplyExPrice_,
            uint256 liqBorrowExPrice_,
            uint256 vaultSupplyExPrice_,
            uint256 vaultBorrowExPrice_
        );

    /// @notice calculates the updated vault exchange prices and writes them to storage
    function updateExchangePricesOnStorage()
        external
        returns (
            uint256 liqSupplyExPrice_,
            uint256 liqBorrowExPrice_,
            uint256 vaultSupplyExPrice_,
            uint256 vaultBorrowExPrice_
        );

    /// @notice returns the liquidity contract address
    function LIQUIDITY() external view returns (address);

    function operate(
        uint256 nftId_, // if 0 then new position
        int256 newCol_, // if negative then withdraw
        int256 newDebt_, // if negative then payback
        address to_ // address at which the borrow & withdraw amount should go to. If address(0) then it'll go to msg.sender
    )
        external
        payable
        returns (
            uint256, // nftId_
            int256, // final supply amount. if - then withdraw
            int256 // final borrow amount. if - then payback
        );

    function liquidate(
        uint256 debtAmt_,
        uint256 colPerUnitDebt_, // min collateral needed per unit of debt in 1e18
        address to_,
        bool absorb_
    ) external payable returns (uint actualDebtAmt_, uint actualColAmt_);

    function absorb() external;

    function rebalance() external payable returns (int supplyAmt_, int borrowAmt_);

    error FluidLiquidateResult(uint256 colLiquidated, uint256 debtLiquidated);
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):