Contract Source Code:
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.23;
/// @notice All errors of the app
interface IAppErrors {
//region ERC20Errors
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC20InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC20InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
* @param spender Address that may be allowed to operate on tokens without being their owner.
* @param allowance Amount of tokens a `spender` is allowed to operate with.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC20InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `spender` to be approved. Used in approvals.
* @param spender Address that may be allowed to operate on tokens without being their owner.
*/
error ERC20InvalidSpender(address spender);
//endregion ERC20Errors
//region ERC721Errors
/**
* @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
* Used in balance queries.
* @param owner Address of the current owner of a token.
*/
error ERC721InvalidOwner(address owner);
/**
* @dev Indicates a `tokenId` whose `owner` is the zero address.
* @param tokenId Identifier number of a token.
*/
error ERC721NonexistentToken(uint256 tokenId);
/**
* @dev Indicates an error related to the ownership over a particular token. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param tokenId Identifier number of a token.
* @param owner Address of the current owner of a token.
*/
error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC721InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC721InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param tokenId Identifier number of a token.
*/
error ERC721InsufficientApproval(address operator, uint256 tokenId);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC721InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC721InvalidOperator(address operator);
//endregion ERC721Errors
error ZeroAddress();
error ZeroValueNotAllowed();
error ZeroToken();
error LengthsMismatch();
error NotEnoughBalance();
error NotEnoughAllowance();
error EmptyNameNotAllowed();
error NotInitialized();
error AlreadyInitialized();
error ReentrancyGuardReentrantCall();
error TooLongString();
error AlreadyDeployed(address deployed);
error AlreadyClaimed();
//region Restrictions
error ErrorNotDeployer(address sender);
error ErrorNotGoc();
error NotGovernance(address sender);
error ErrorOnlyEoa();
error NotEOA(address sender);
error ErrorForbidden(address sender);
error AdminOnly();
error ErrorNotItemController(address sender);
error ErrorNotHeroController(address sender);
error ErrorNotDungeonFactory(address sender);
error ErrorNotObjectController(address sender);
error ErrorNotStoryController();
error ErrorNotAllowedSender();
error MintNotAllowed();
error NotPvpController();
//endregion Restrictions
//region PackingLib
error TooHighValue(uint value);
error IntValueOutOfRange(int value);
error OutOfBounds(uint index, uint length);
error UnexpectedValue(uint expected, uint actual);
error WrongValue(uint newValue, uint actual);
error IntOutOfRange(int value);
error ZeroValue();
/// @notice packCustomDataChange requires an input string with two zero bytes at the beginning
/// 0xXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX0000
/// This error happens if these bytes are not zero
error IncompatibleInputString();
error IncorrectOtherItemTypeKind(uint8 kind);
//endregion PackingLib
//region Hero
error ErrorHeroIsNotRegistered(address heroToken);
error ErrorHeroIsDead(address heroToken, uint heroTokenId);
error ErrorHeroNotInDungeon();
error HeroInDungeon();
error ErrorNotOwner(address token, uint tokenId);
error ErrorNotOwnerOrHero(address token, uint tokenId);
error Staked(address heroToken, uint heroId);
error NameTaken();
error TooBigName();
error WrongSymbolsInTheName();
error NoPayToken(address token, uint payTokenAmount);
error AlreadyHaveReinforcement();
/// @notice SIP-001 - Reinforcement requires 3 skills
error ErrorReinforcementRequiresThreeSkills();
error WrongTier(uint tier);
error NotEnoughNgLevel(uint8 ngLevel);
error NgpNotActive(address hero);
error RebornNotAllowed();
error AlreadyPrePaidHero();
error SandboxTierForbidden();
error SandboxPrepaidOnly();
error SandboxNgZeroOnly();
error SandboxModeNotAllowed();
error SandboxUpgradeModeRequired();
error SandboxModeRequired();
error SandboxItemOutside();
error SandboxItemNotActive();
error SandboxItemNotRegistered();
error SandboxItemAlreadyEquipped();
error SandboxDifferentHeroesNotAllowed();
error HeroWasTransferredBetweenAccounts();
//endregion Hero
//region Dungeon
error ErrorDungeonIsFreeAlready();
error ErrorNoEligibleDungeons();
error ErrorDungeonBusy();
error ErrorNoDungeonsForBiome(uint8 heroBiome);
error ErrorDungeonCompleted();
error ErrorAlreadyInDungeon();
error NotEnoughTokens(uint balance, uint expectedBalance);
error DungeonAlreadySpecific(uint16 dungNum);
error DungeonAlreadySpecific2(uint16 dungNum);
error WrongSpecificDungeon();
error LastLifeChance();
//endregion Dungeon
//region Items
error ErrorItemNotEligibleForTheSlot(uint itemType, uint8 itemSlot);
error ErrorItemSlotBusyHand(uint8 slot);
error ErrorItemSlotBusy();
error ErrorItemNotInSlot();
error ErrorConsumableItemIsUsed(address item);
error ErrorCannotRemoveItemFromMap();
error ErrorCannotRemoveDataFromMap();
error EquippedItemsExist();
error ItemEquipped(address item, uint itemId);
error ZeroItemMetaType();
error NotZeroOtherItemMetaType();
error ZeroLevel();
error ItemTypeChanged();
error ItemMetaTypeChanged();
error UnknownItem(address item);
error ErrorEquipForbidden();
error EquipForbiddenInDungeon();
error TakeOffForbiddenInDungeon();
error Consumable(address item);
error NotConsumable(address item);
error Broken(address item);
error ZeroLife();
error RequirementsToItemAttributes();
error NotEquipped(address item);
error ZeroDurability();
error ZeroAugmentation();
error TooHighAgLevel(uint8 augmentationLevel);
error UseForbiddenZeroPayToken();
error IncorrectMinMaxAttributeRange(int32 min, int32 max);
error SameIdsNotAllowed();
error ZeroFragility();
error OtherTypeItemNotRepairable();
error NotOther();
error DoubleItemUsageForbidden(uint itemIndex, address[] items);
error ItemAlreadyUsedInSlot(address item, uint8 equippedSlot);
error WrongWayToRegisterItem();
error UnionItemNotFound(address item);
error WrongListUnionItemTokens(address item, uint countTokens, uint requiredCountTokens);
error UnknownUnionConfig(uint unionConfigId);
error UserHasNoKeyPass(address user, address keyPassItem);
error MaxValue(uint value);
error UnexpectedOtherItem(address item);
error NotExist();
error ItemNotFound(address item, uint itemId);
error NoFirstAugmentationInfo();
error NotAugmentationProtectiveItem(address item);
//endregion Items
//region Stages
error ErrorWrongStage(uint stage);
error ErrorNotStages();
//endregion Stages
//region Level
error ErrorWrongLevel(uint heroLevel);
error ErrorLevelTooLow(uint heroLevel);
error ErrorHeroLevelStartFrom1();
error ErrorWrongLevelUpSum();
error ErrorMaxLevel();
//endregion Level
//region Treasure
error ErrorNotValidTreasureToken(address treasureToken);
//endregion Treasure
//region State
error ErrorPaused();
error ErrorNotReady();
error ErrorNotObject1();
error ErrorNotObject2();
error ErrorNotCompleted();
//endregion State
//region Biome
error ErrorNotBiome();
error ErrorIncorrectBiome(uint biome);
error TooHighBiome(uint biome);
//endregion Biome
//region Misc
error ErrorWrongMultiplier(uint multiplier);
error ErrorNotEnoughMana(uint32 mana, uint requiredMana);
error ErrorExperienceMustNotDecrease();
error ErrorNotEnoughExperience();
error ErrorNotChances();
error ErrorNotEligible(address heroToken, uint16 dungNum);
error ErrorZeroKarmaNotAllowed();
//endregion Misc
//region GOC
error GenObjectIdBiomeOverflow(uint8 biome);
error GenObjectIdSubTypeOverflow(uint subType);
error GenObjectIdIdOverflow(uint id);
error UnknownObjectTypeGoc1(uint8 objectType);
error UnknownObjectTypeGoc2(uint8 objectType);
error UnknownObjectTypeGocLib1(uint8 objectType);
error UnknownObjectTypeGocLib2(uint8 objectType);
error UnknownObjectTypeForSubtype(uint8 objectSubType);
error FightDelay();
error ZeroChance();
error TooHighChance(uint32 chance);
error TooHighRandom(uint random);
error EmptyObjects();
error ObjectNotFound();
error WrongGetObjectTypeInput();
error WrongChances(uint32 chances, uint32 maxChances);
//endregion GOC
//region Story
error PageNotRemovedError(uint pageId);
error NotItem1();
error NotItem2();
error NotRandom(uint32 random);
error NotHeroData();
error NotGlobalData();
error ZeroStoryIdRemoveStory();
error ZeroStoryIdStoryAction();
error ZeroStoryIdAction();
error NotEnoughAmount(uint balance, uint requiredAmount);
error NotAnswer();
error AnswerStoryIdMismatch(uint16 storyId, uint16 storyIdFromAnswerHash);
error AnswerPageIdMismatch(uint16 pageId, uint16 pageIdFromAnswerHash);
error NotSkippableStory();
error StoryNotPassed();
error SkippingNotAllowed();
//endregion Story
//region FightLib
error NotMagic();
error NotAType(uint atype);
//endregion FightLib
//region MonsterLib
error NotYourDebuffItem();
error UnknownAttackType(uint attackType);
error NotYourAttackItem();
/// @notice The skill item cannot be used because it doesn't belong either to the hero or to the hero's helper
error NotYourBuffItem();
//endregion MonsterLib
//region GameToken
error ApproveToZeroAddress();
error MintToZeroAddress();
error TransferToZeroAddress();
error TransferAmountExceedsBalance(uint balance, uint value);
error InsufficientAllowance();
error BurnAmountExceedsBalance();
error NotMinter(address sender);
//endregion GameToken
//region NFT
error TokenTransferNotAllowed();
error IdOverflow(uint id);
error NotExistToken(uint tokenId);
error EquippedItemIsNotAllowedToTransfer(uint tokenId);
//endregion NFT
//region CalcLib
error TooLowX(uint x);
//endregion CalcLib
//region Controller
error NotFutureGovernance(address sender);
//endregion Controller
//region Oracle
error OracleWrongInput();
//endregion Oracle
//region ReinforcementController
error AlreadyStaked();
error MaxFee(uint8 fee);
error MinFee(uint8 fee);
error StakeHeroNotStats();
error NotStaked();
error NoStakedHeroes();
error GuildHelperNotAvailable(uint guildId, address helper, uint helperId);
error PvpStaked();
error HelperNotAvailableInGivenBiome();
//endregion ReinforcementController
//region SponsoredHero
error InvalidHeroClass();
error ZeroAmount();
error InvalidProof();
error NoHeroesAvailable();
error AlreadyRegistered();
//endregion SponsoredHero
//region SacraRelay
error SacraRelayNotOwner();
error SacraRelayNotDelegator();
error SacraRelayNotOperator();
error SacraRelayInvalidChainId(uint callChainId, uint blockChainId);
error SacraRelayInvalidNonce(uint callNonce, uint txNonce);
error SacraRelayDeadline();
error SacraRelayDelegationExpired();
error SacraRelayNotAllowed();
error SacraRelayInvalidSignature();
/// @notice This error is generated when custom error is caught
/// There is no info about custom error in SacraRelay
/// but you can decode custom error by selector, see tests
error SacraRelayNoErrorSelector(bytes4 selector, string tracingInfo);
/// @notice This error is generated when custom error is caught
/// There is no info about custom error in SacraRelay
/// but you can decode custom error manually from {errorBytes} as following:
/// if (keccak256(abi.encodeWithSignature("MyError()")) == keccak256(errorBytes)) { ... }
error SacraRelayUnexpectedReturnData(bytes errorBytes, string tracingInfo);
error SacraRelayCallToNotContract(address notContract, string tracingInfo);
//endregion SacraRelay
//region Misc
error UnknownHeroClass(uint heroClass);
error AbsDiff(int32 a, int32 b);
//endregion Misc
//region ------------------------ UserController
error NoAvailableLootBox(address msgSender, uint lootBoxKind);
error FameHallHeroAlreadyRegistered(uint8 openedNgLevel);
//endregion ------------------------ UserController
//region ------------------------ Guilds
error AlreadyGuildMember();
error NotGuildMember();
error WrongGuild();
error GuildActionForbidden(uint right);
error GuildHasMaxSize(uint guildSize);
error GuildHasMaxLevel(uint level);
error TooLongUrl();
error TooLongDescription();
error CannotRemoveGuildOwnerFromNotEmptyGuild();
error GuildControllerOnly();
error GuildAlreadyHasShelter();
error ShelterIsBusy();
error ShelterIsNotRegistered();
error ShelterIsNotOwnedByTheGuild();
error ShelterIsInUse();
error GuildHasNoShelter();
error ShelterBidIsNotAllowedToBeUsed();
error ShelterHasHeroesInside();
error SecondGuildAdminIsNotAllowed();
error NotEnoughGuildBankBalance(uint guildId);
error GuildReinforcementCooldownPeriod();
error NoStakedGuildHeroes();
error NotStakedInGuild();
error ShelterHasNotEnoughLevelForReinforcement();
error NotBusyGuildHelper();
error TooLowGuildLevel();
/// @notice Target biome can be selected only once per epoch
error BiomeAlreadySelected();
error NoDominationRequest();
error PvpFightIsNotPrepared(uint8 biome, uint32 week, address user);
error PvpFightIsCompleted(uint8 biome, uint32 week, address user);
error TooLowMaxCountTurns();
error UserTokensVaultAlreadySet();
error DifferentBiomeInPvpFight();
error PvpFightOpponentNotFound();
error PvpHeroHasInitializedFight();
error PvpHeroNotRegistered();
/// @notice User should unregister pvp-hero from prev biome and only then register it in the new biome
error UserHasRegisteredPvpHeroInBiome(uint8 biome);
error UserHasRegisteredPvpHero();
error UserNotAllowedForPvpInCurrentEpoch(uint week);
error UnknownPvpStrategy();
error GuildRequestNotActive();
error GuildRequestNotAvailable();
error NotAdminCannotAddMemberWithNotZeroRights();
//endregion ------------------------ Guilds
//region ------------------------ Shelters
error ErrorNotShelterController();
error ErrorNotGuildController();
error ShelterHasNotItem(uint shelterId, address item);
error MaxNumberItemsSoldToday(uint numSoldItems, uint limit);
error GuildHasNotEnoughPvpPoints(uint64 pointsAvailable, uint pointRequired);
error FreeShelterItemsAreNotAllowed(uint shelterId, address item);
error TooLowShelterLevel(uint8 shelterLevel, uint8 allowedShelterLevel);
error NotEnoughPvpPointsCapacity(address user, uint usedPoints, uint pricePvpPoints, uint64 capactiy);
error IncorrectShelterLevel(uint8 shelterLevel);
//endregion ------------------------ Shelters
//region ------------------------ Auction
error WrongAuctionPosition();
error AuctionPositionClosed();
error AuctionBidOpened(uint positionId);
error TooLowAmountToBid();
error AuctionEnded();
error TooLowAmountForNewBid();
error AuctionSellerOnly();
error AuctionBuyerOnly();
error AuctionBidNotFound();
error AuctionBidClosed();
error OnlyShelterAuction();
error CannotCloseLastBid();
error AuctionNotEnded();
error NotShelterAuction();
error AuctionPositionOpened(uint positionId);
error AuctionSellerCannotBid();
error AuctionGuildWithShelterCannotBid();
error AuctionBidExists();
//endregion ------------------------ Auction
//region ------------------------ Pawnshop
error AuctionPositionNotSupported(uint positionId);
error PositionNotSupported(uint positionId);
error NotNftPositionNotSupported(uint positionId);
error CallFailed(bytes callResultData);
error PawnShopZeroOwner();
error PawnShopZeroFeeRecipient();
error PawnShopNotOwner();
error PawnShopAlreadyAnnounced();
error PawnShopTimeLock();
error PawnShopWrongAddressValue();
error PawnShopWrongUintValue();
error PawnShopZeroAddress();
error PawnShopTooHighValue();
error PawnShopZeroAToken();
error PawnShopZeroCToken();
error PawnShopWrongAmounts();
error PawnShopPosFeeForInstantDealForbidden();
error PawnShopPosFeeAbsurdlyHigh();
error PawnShopIncorrect();
error PawnShopWrongId();
error PawnShopNotBorrower();
error PawnShopPositionClosed();
error PawnShopPositionExecuted();
error PawnShopWrongBidAmount();
error PawnShopTooLowBid();
error PawnShopNewBidTooLow();
error PawnShopBidAlreadyExists();
error PawnShopAuctionEnded();
error PawnShopNotLender();
error PawnShopTooEarlyToClaim();
error PawnShopPositionNotExecuted();
error PawnShopAlreadyClaimed();
error PawnShopAuctionNotEnded();
error PawnShopBidClosed();
error PawnShopNoBids();
error PawnShopAuctionBidNotFound();
error PawnShopWrongBid();
error PawnShopBidNotFound();
//endregion ------------------------ Pawnshop
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.23;
import "../openzeppelin/EnumerableSet.sol";
import "../openzeppelin/EnumerableMap.sol";
interface IStatController {
/// @custom:storage-location erc7201:stat.controller.main
struct MainState {
mapping(bytes32 => bytes32[]) heroTotalAttributes;
/// @dev heroAdr+heroId => int32 packed strength, dexterity, vitality, energy
mapping(bytes32 => bytes32) _heroCore;
mapping(bytes32 => bytes32[]) heroBonusAttributes;
mapping(bytes32 => bytes32[]) heroTemporallyAttributes;
/// @dev heroAdr+heroId => uint32 packed level, experience, life, mana, lifeChances
mapping(bytes32 => bytes32) heroStats;
/// @dev heroAdr+heroId+itemSlot => itemAdr + itemId
mapping(bytes32 => bytes32) heroSlots;
/// @dev heroAdr+heroId => busy slots uint8[] packed
mapping(bytes32 => bytes32) heroBusySlots;
mapping(bytes32 => EnumerableSet.AddressSet) usedConsumables;
/// @dev heroCustomDataV2 is used instead
mapping(bytes32 => mapping(bytes32 => uint)) _deprecated_heroCustomData;
mapping(bytes32 => uint) globalCustomData;
/// @notice packNftIdWithValue(hero, heroId, ngLevel) => hero custom data map
/// @dev initially it was packedHero => hero custom data map
mapping(bytes32 => EnumerableMap.Bytes32ToUintMap) heroCustomDataV2;
}
enum ATTRIBUTES {
// core
STRENGTH, // 0
DEXTERITY, // 1
VITALITY, // 2
ENERGY, // 3
// attributes
DAMAGE_MIN, // 4
DAMAGE_MAX, // 5
ATTACK_RATING, // 6
DEFENSE, // 7
BLOCK_RATING, // 8
LIFE, // 9
MANA, // 10
// resistance
FIRE_RESISTANCE, // 11
COLD_RESISTANCE, // 12
LIGHTNING_RESISTANCE, // 13
// dmg against
DMG_AGAINST_HUMAN, // 14
DMG_AGAINST_UNDEAD, // 15
DMG_AGAINST_DAEMON, // 16
DMG_AGAINST_BEAST, // 17
// defence against
DEF_AGAINST_HUMAN, // 18
DEF_AGAINST_UNDEAD, // 19
DEF_AGAINST_DAEMON, // 20
DEF_AGAINST_BEAST, // 21
// --- unique, not augmentable
// hero will not die until have positive chances
LIFE_CHANCES, // 22
// increase chance to get an item
MAGIC_FIND, // 23
// decrease chance to get an item
DESTROY_ITEMS, // 24
// percent of chance x2 dmg
CRITICAL_HIT, // 25
// dmg factors
MELEE_DMG_FACTOR, // 26
FIRE_DMG_FACTOR, // 27
COLD_DMG_FACTOR, // 28
LIGHTNING_DMG_FACTOR, // 29
// increase attack rating on given percent
AR_FACTOR, // 30
// percent of damage will be converted to HP
LIFE_STOLEN_PER_HIT, // 31
// amount of mana restored after each battle
MANA_AFTER_KILL, // 32
// reduce all damage on percent after all other reductions
DAMAGE_REDUCTION, // 33
// -- statuses
// chance to stun an enemy, stunned enemy skip next hit
STUN, // 34
// chance burn an enemy, burned enemy will loss 50% of defence
BURN, // 35
// chance freeze an enemy, frozen enemy will loss 50% of MELEE damage
FREEZE, // 36
// chance to reduce enemy's attack rating on 50%
CONFUSE, // 37
// chance curse an enemy, cursed enemy will loss 50% of resistance
CURSE, // 38
// percent of dmg return to attacker
REFLECT_DAMAGE_MELEE, // 39
REFLECT_DAMAGE_MAGIC, // 40
// chance to poison enemy, poisoned enemy will loss 10% of the current health
POISON, // 41
// reduce chance get any of uniq statuses
RESIST_TO_STATUSES, // 42
END_SLOT // 43
}
// possible
// HEAL_FACTOR
struct CoreAttributes {
int32 strength;
int32 dexterity;
int32 vitality;
int32 energy;
}
struct ChangeableStats {
uint32 level;
uint32 experience;
uint32 life;
uint32 mana;
uint32 lifeChances;
}
enum ItemSlots {
UNKNOWN, // 0
HEAD, // 1
BODY, // 2
GLOVES, // 3
BELT, // 4
AMULET, // 5
BOOTS, // 6
RIGHT_RING, // 7
LEFT_RING, // 8
RIGHT_HAND, // 9
LEFT_HAND, // 10
TWO_HAND, // 11
SKILL_1, // 12
SKILL_2, // 13
SKILL_3, // 14
END_SLOT // 15
}
struct NftItem {
address token;
uint tokenId;
}
enum Race {
UNKNOWN, // 0
HUMAN, // 1
UNDEAD, // 2
DAEMON, // 3
BEAST, // 4
END_SLOT // 5
}
struct ChangeAttributesInfo {
address heroToken;
uint heroTokenId;
int32[] changeAttributes;
bool add;
bool temporally;
}
struct BuffInfo {
address heroToken;
uint heroTokenId;
uint32 heroLevel;
address[] buffTokens;
uint[] buffTokenIds;
}
/// @dev This struct is used inside event, so it's moved here from lib
struct ActionInternalInfo {
int32[] posAttributes;
int32[] negAttributes;
uint32 experience;
int32 heal;
int32 manaRegen;
int32 lifeChancesRecovered;
int32 damage;
int32 manaConsumed;
address[] mintedItems;
}
function initNewHero(address token, uint tokenId, uint heroClass) external;
function heroAttributes(address token, uint tokenId) external view returns (int32[] memory);
function heroAttribute(address token, uint tokenId, uint index) external view returns (int32);
function heroAttributesLength(address token, uint tokenId) external view returns (uint);
function heroBaseAttributes(address token, uint tokenId) external view returns (CoreAttributes memory);
function heroCustomData(address token, uint tokenId, bytes32 index) external view returns (uint);
function globalCustomData(bytes32 index) external view returns (uint);
function heroStats(address token, uint tokenId) external view returns (ChangeableStats memory);
function heroItemSlot(address token, uint64 tokenId, uint8 itemSlot) external view returns (bytes32 nftPacked);
function heroItemSlots(address heroToken, uint heroTokenId) external view returns (uint8[] memory);
function isHeroAlive(address heroToken, uint heroTokenId) external view returns (bool);
function levelUp(address token, uint tokenId, uint heroClass, CoreAttributes memory change) external returns (uint newLvl);
function changeHeroItemSlot(
address heroToken,
uint64 heroTokenId,
uint itemType,
uint8 itemSlot,
address itemToken,
uint itemTokenId,
bool equip
) external;
function changeCurrentStats(
address token,
uint tokenId,
ChangeableStats memory change,
bool increase
) external;
function changeBonusAttributes(ChangeAttributesInfo memory info) external;
function registerConsumableUsage(address heroToken, uint heroTokenId, address item) external;
function clearUsedConsumables(address heroToken, uint heroTokenId) external;
function clearTemporallyAttributes(address heroToken, uint heroTokenId) external;
function buffHero(BuffInfo memory info) external view returns (int32[] memory attributes, int32 manaConsumed);
function setHeroCustomData(address token, uint tokenId, bytes32 index, uint value) external;
function setGlobalCustomData(bytes32 index, uint value) external;
/// @notice Restore life and mana during reinforcement
/// @dev Life and mana will be increased on ((current life/mana attr value) - (prev life/mana attr value))
/// @param prevAttributes Hero attributes before reinforcement
function restoreLifeAndMana(address heroToken, uint heroTokenId, int32[] memory prevAttributes) external;
function reborn(address heroToken, uint heroTokenId, uint heroClass) external;
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.23;
import "../interfaces/IAppErrors.sol";
import "../solady/LibPRNG.sol";
library CalcLib {
uint32 public constant MAX_CHANCE = 1e9;
function minI32(int32 a, int32 b) internal pure returns (int32) {
return a < b ? a : b;
}
function max32(int32 a, int32 b) internal pure returns (int32) {
return a >= b ? a : b;
}
function absDiff(int32 a, int32 b) internal pure returns (uint32) {
if (!((a >= 0 && b >= 0) || (a <= 0 && b <= 0))) revert IAppErrors.AbsDiff(a, b);
if (a < 0) {
a = - a;
}
if (b < 0) {
b = - b;
}
return uint32(uint(int(a >= b ? a - b : b - a)));
}
function toUint(int32 n) internal pure returns (uint) {
if (n <= 0) {
return 0;
}
return uint(int(n));
}
function toInt32(uint a) internal pure returns (int32){
if (a >= uint(int(type(int32).max))) {
return type(int32).max;
}
return int32(int(a));
}
/// @dev Simplified pseudo-random for minor functionality
function pseudoRandom(uint maxValue) internal view returns (uint) {
if (maxValue == 0) {
return 0;
}
uint salt = genSalt();
// pseudo random number
return (uint(keccak256(abi.encodePacked(blockhash(block.number), block.coinbase, block.difficulty, block.number, block.timestamp, tx.gasprice, gasleft(), salt))) % (maxValue + 1));
}
function genSalt() internal view returns (uint salt) {
// skale has a RNG Endpoint
if (
block.chainid == uint(1351057110)
|| block.chainid == uint(37084624)
) {
assembly {
let freemem := mload(0x40)
let start_addr := add(freemem, 0)
if iszero(staticcall(gas(), 0x18, 0, 0, start_addr, 32)) {
invalid()
}
salt := mload(freemem)
}
}
}
function pseudoRandomUint32(uint32 maxValue) internal view returns (uint32) {
return uint32(pseudoRandom(uint(maxValue)));
}
/// @notice Generate pseudo-random uint in the range [0..maxValue) using Solady pseudo-random function
function nextPrng(LibPRNG.PRNG memory prng, uint maxValue) internal pure returns (uint) {
return LibPRNG.next(prng) % maxValue;
}
/// @notice pseudoRandomUint32 with customizable pseudoRandom()
function pseudoRandomUint32Flex(
uint32 maxValue,
function (uint) internal view returns (uint) random_
) internal view returns (uint32) {
return uint32(random_(uint(maxValue)));
}
function pseudoRandomInt32(int32 maxValue) internal view returns (int32) {
bool neg;
if (maxValue < 0) {
neg = true;
maxValue = - maxValue;
}
uint32 v = uint32(pseudoRandom(uint(int(maxValue))));
return neg
? - int32(int(uint(v)))
: int32(int(uint(v)));
}
/// @dev Simplified pseudo-random for minor functionality
function pseudoRandomWithSeed(uint maxValue, uint seed) internal view returns (uint) {
if (maxValue == 0) {
return 0;
}
uint salt = genSalt();
// pseudo random number
return (uint(keccak256(abi.encodePacked(blockhash(block.number), block.coinbase, block.difficulty, block.number, block.timestamp, tx.gasprice, gasleft(), seed, salt))) % (maxValue + 1));
}
/// @dev Simplified pseudo-random for minor functionality, in range
function pseudoRandomInRange(uint min, uint max) internal view returns (uint) {
if (min >= max) {
return max;
}
uint r = pseudoRandom(max - min);
return min + r;
}
/// @dev Simplified pseudo-random for minor functionality, in range
/// Equal to pseudoRandomInRange(min, max, pseudoRandom)
function pseudoRandomInRangeFlex(
uint min,
uint max,
function (uint) internal view returns (uint) random_
) internal view returns (uint) {
return min >= max ? max : min + random_(max - min);
}
function minusWithZeroFloor(uint a, uint b) internal pure returns (uint){
if (a <= b) {
return 0;
}
return a - b;
}
function minusWithMinFloorI32(int32 a, int32 b) internal pure returns (int32){
if (int(a) - int(b) < type(int32).min) {
return type(int32).min;
}
return a - b;
}
function plusWithMaxFloor32(int32 a, int32 b) internal pure returns (int32){
if (int(a) + int(b) >= type(int32).max) {
return type(int32).max;
}
return a + b;
}
function sqrt(uint x) internal pure returns (uint z) {
assembly {
// Start off with z at 1.
z := 1
// Used below to help find a nearby power of 2.
let y := x
// Find the lowest power of 2 that is at least sqrt(x).
if iszero(lt(y, 0x100000000000000000000000000000000)) {
y := shr(128, y) // Like dividing by 2 ** 128.
z := shl(64, z) // Like multiplying by 2 ** 64.
}
if iszero(lt(y, 0x10000000000000000)) {
y := shr(64, y) // Like dividing by 2 ** 64.
z := shl(32, z) // Like multiplying by 2 ** 32.
}
if iszero(lt(y, 0x100000000)) {
y := shr(32, y) // Like dividing by 2 ** 32.
z := shl(16, z) // Like multiplying by 2 ** 16.
}
if iszero(lt(y, 0x10000)) {
y := shr(16, y) // Like dividing by 2 ** 16.
z := shl(8, z) // Like multiplying by 2 ** 8.
}
if iszero(lt(y, 0x100)) {
y := shr(8, y) // Like dividing by 2 ** 8.
z := shl(4, z) // Like multiplying by 2 ** 4.
}
if iszero(lt(y, 0x10)) {
y := shr(4, y) // Like dividing by 2 ** 4.
z := shl(2, z) // Like multiplying by 2 ** 2.
}
if iszero(lt(y, 0x8)) {
// Equivalent to 2 ** z.
z := shl(1, z)
}
// Shifting right by 1 is like dividing by 2.
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
// Compute a rounded down version of z.
let zRoundDown := div(x, z)
// If zRoundDown is smaller, use it.
if lt(zRoundDown, z) {
z := zRoundDown
}
}
}
/*********************************************
* PRB-MATH *
* https://github.com/hifi-finance/prb-math *
**********************************************/
/// @notice Calculates the binary logarithm of x.
///
/// @dev Based on the iterative approximation algorithm.
/// https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation
///
/// Requirements:
/// - x must be greater than or equal to SCALE, otherwise the result would be negative.
///
/// Caveats:
/// - The results are nor perfectly accurate to the last decimal,
/// due to the lossy precision of the iterative approximation.
///
/// @param x The unsigned 60.18-decimal fixed-point number for which
/// to calculate the binary logarithm.
/// @return result The binary logarithm as an unsigned 60.18-decimal fixed-point number.
function log2(uint256 x) internal pure returns (uint256 result) {
if (x < 1e18) revert IAppErrors.TooLowX(x);
// Calculate the integer part of the logarithm
// and add it to the result and finally calculate y = x * 2^(-n).
uint256 n = mostSignificantBit(x / 1e18);
// The integer part of the logarithm as an unsigned 60.18-decimal fixed-point number.
// The operation can't overflow because n is maximum 255 and SCALE is 1e18.
uint256 rValue = n * 1e18;
// This is y = x * 2^(-n).
uint256 y = x >> n;
// If y = 1, the fractional part is zero.
if (y == 1e18) {
return rValue;
}
// Calculate the fractional part via the iterative approximation.
// The "delta >>= 1" part is equivalent to "delta /= 2", but shifting bits is faster.
for (uint256 delta = 5e17; delta > 0; delta >>= 1) {
y = (y * y) / 1e18;
// Is y^2 > 2 and so in the range [2,4)?
if (y >= 2 * 1e18) {
// Add the 2^(-m) factor to the logarithm.
rValue += delta;
// Corresponds to z/2 on Wikipedia.
y >>= 1;
}
}
return rValue;
}
/// @notice Finds the zero-based index of the first one in the binary representation of x.
/// @dev See the note on msb in the "Find First Set"
/// Wikipedia article https://en.wikipedia.org/wiki/Find_first_set
/// @param x The uint256 number for which to find the index of the most significant bit.
/// @return msb The index of the most significant bit as an uint256.
//noinspection NoReturn
function mostSignificantBit(uint256 x) internal pure returns (uint256 msb) {
if (x >= 2 ** 128) {
x >>= 128;
msb += 128;
}
if (x >= 2 ** 64) {
x >>= 64;
msb += 64;
}
if (x >= 2 ** 32) {
x >>= 32;
msb += 32;
}
if (x >= 2 ** 16) {
x >>= 16;
msb += 16;
}
if (x >= 2 ** 8) {
x >>= 8;
msb += 8;
}
if (x >= 2 ** 4) {
x >>= 4;
msb += 4;
}
if (x >= 2 ** 2) {
x >>= 2;
msb += 2;
}
if (x >= 2 ** 1) {
// No need to shift x any more.
msb += 1;
}
}
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.23;
import "../openzeppelin/Math.sol";
import "../interfaces/IStatController.sol";
import "./CalcLib.sol";
library ScoreLib {
using CalcLib for int32;
// core
uint public constant STRENGTH = 100;
uint public constant DEXTERITY = 100;
uint public constant VITALITY = 100;
uint public constant ENERGY = 100;
// attributes
uint public constant MELEE_DAMAGE = 10;
uint public constant ATTACK_RATING = 3;
uint public constant DEFENCE = 10;
uint public constant BLOCK_RATING = 500;
uint public constant LIFE = 10;
uint public constant MANA = 10;
uint public constant LIFE_CHANCES = 10_000;
uint public constant MAGIC_FIND = 300;
uint public constant CRITICAL_HIT = 150;
uint public constant DMG_FACTOR = 200;
uint public constant AR_FACTOR = 200;
uint public constant LIFE_STOLEN_PER_HIT = 1000;
uint public constant MANA_AFTER_KILL = 1000;
uint public constant DAMAGE_REDUCTION = 500;
uint public constant REFLECT_DAMAGE = 250;
uint public constant RESIST_TO_STATUSES = 70;
// resistance
uint public constant ELEMENT_RESIST = 100;
// race specific attributes
uint public constant RACE_SPECIFIC = 20;
// statuses
uint public constant STATUSES = 100;
// items
uint public constant DURABILITY_SCORE = 1;
// hero
uint public constant HERO_LEVEL_SCORE = 1000;
/// @param isForReinforcement If true calculate score using 12 main attributes only. Otherwise use all attributes.
function attributesScore(int32[] memory attributes, bool isForReinforcement) internal pure returns (uint) {
uint result;
{
result += (attributes[uint(IStatController.ATTRIBUTES.STRENGTH)]).toUint() * STRENGTH
+ (attributes[uint(IStatController.ATTRIBUTES.DEXTERITY)]).toUint() * DEXTERITY
+ (attributes[uint(IStatController.ATTRIBUTES.VITALITY)]).toUint() * VITALITY
+ (attributes[uint(IStatController.ATTRIBUTES.ENERGY)]).toUint() * ENERGY
+ (attributes[uint(IStatController.ATTRIBUTES.ATTACK_RATING)]).toUint() * ATTACK_RATING
+ (attributes[uint(IStatController.ATTRIBUTES.DEFENSE)]).toUint() * DEFENCE
+ (attributes[uint(IStatController.ATTRIBUTES.BLOCK_RATING)]).toUint() * BLOCK_RATING
+ Math.average(attributes[uint(IStatController.ATTRIBUTES.DAMAGE_MIN)].toUint(), attributes[uint(IStatController.ATTRIBUTES.DAMAGE_MAX)].toUint()) * MELEE_DAMAGE
;
}
{
result +=
(attributes[uint(IStatController.ATTRIBUTES.FIRE_RESISTANCE)]).toUint() * ELEMENT_RESIST
+ (attributes[uint(IStatController.ATTRIBUTES.COLD_RESISTANCE)]).toUint() * ELEMENT_RESIST
+ (attributes[uint(IStatController.ATTRIBUTES.LIGHTNING_RESISTANCE)]).toUint() * ELEMENT_RESIST;
}
if (! isForReinforcement) {
{
result +=
(attributes[uint(IStatController.ATTRIBUTES.LIFE)]).toUint() * LIFE
+ (attributes[uint(IStatController.ATTRIBUTES.MANA)]).toUint() * MANA;
}
{
result +=
(attributes[uint(IStatController.ATTRIBUTES.DMG_AGAINST_HUMAN)]).toUint() * RACE_SPECIFIC
+ (attributes[uint(IStatController.ATTRIBUTES.DMG_AGAINST_UNDEAD)]).toUint() * RACE_SPECIFIC
+ (attributes[uint(IStatController.ATTRIBUTES.DMG_AGAINST_DAEMON)]).toUint() * RACE_SPECIFIC
+ (attributes[uint(IStatController.ATTRIBUTES.DMG_AGAINST_BEAST)]).toUint() * RACE_SPECIFIC
+ (attributes[uint(IStatController.ATTRIBUTES.DEF_AGAINST_HUMAN)]).toUint() * RACE_SPECIFIC
+ (attributes[uint(IStatController.ATTRIBUTES.DEF_AGAINST_UNDEAD)]).toUint() * RACE_SPECIFIC
+ (attributes[uint(IStatController.ATTRIBUTES.DEF_AGAINST_DAEMON)]).toUint() * RACE_SPECIFIC
+ (attributes[uint(IStatController.ATTRIBUTES.DEF_AGAINST_BEAST)]).toUint() * RACE_SPECIFIC;
}
{
result +=
(attributes[uint(IStatController.ATTRIBUTES.STUN)]).toUint() * STATUSES
+ (attributes[uint(IStatController.ATTRIBUTES.BURN)]).toUint() * STATUSES
+ (attributes[uint(IStatController.ATTRIBUTES.FREEZE)]).toUint() * STATUSES
+ (attributes[uint(IStatController.ATTRIBUTES.CONFUSE)]).toUint() * STATUSES
+ (attributes[uint(IStatController.ATTRIBUTES.CURSE)]).toUint() * STATUSES
+ (attributes[uint(IStatController.ATTRIBUTES.POISON)]).toUint() * STATUSES;
}
{
result +=
(attributes[uint(IStatController.ATTRIBUTES.LIFE_CHANCES)]).toUint() * LIFE_CHANCES
+ (attributes[uint(IStatController.ATTRIBUTES.MAGIC_FIND)]).toUint() * MAGIC_FIND
+ (attributes[uint(IStatController.ATTRIBUTES.CRITICAL_HIT)]).toUint() * CRITICAL_HIT
+ (attributes[uint(IStatController.ATTRIBUTES.MELEE_DMG_FACTOR)]).toUint() * DMG_FACTOR
+ (attributes[uint(IStatController.ATTRIBUTES.FIRE_DMG_FACTOR)]).toUint() * DMG_FACTOR
+ (attributes[uint(IStatController.ATTRIBUTES.COLD_DMG_FACTOR)]).toUint() * DMG_FACTOR
+ (attributes[uint(IStatController.ATTRIBUTES.LIGHTNING_DMG_FACTOR)]).toUint() * DMG_FACTOR;
}
{
result +=
(attributes[uint(IStatController.ATTRIBUTES.AR_FACTOR)]).toUint() * AR_FACTOR
+ (attributes[uint(IStatController.ATTRIBUTES.LIFE_STOLEN_PER_HIT)]).toUint() * LIFE_STOLEN_PER_HIT
+ (attributes[uint(IStatController.ATTRIBUTES.MANA_AFTER_KILL)]).toUint() * MANA_AFTER_KILL
+ (attributes[uint(IStatController.ATTRIBUTES.DAMAGE_REDUCTION)]).toUint() * DAMAGE_REDUCTION
+ (attributes[uint(IStatController.ATTRIBUTES.REFLECT_DAMAGE_MELEE)]).toUint() * REFLECT_DAMAGE
+ (attributes[uint(IStatController.ATTRIBUTES.REFLECT_DAMAGE_MAGIC)]).toUint() * REFLECT_DAMAGE
+ (attributes[uint(IStatController.ATTRIBUTES.RESIST_TO_STATUSES)]).toUint() * RESIST_TO_STATUSES;
}
}
return result;
}
function itemScore(int32[] memory attributes, uint16 baseDurability) internal pure returns (uint) {
return attributesScore(attributes, false) + baseDurability * DURABILITY_SCORE;
}
function heroScore(int32[] memory attributes, uint level) internal pure returns (uint) {
return attributesScore(attributes, true) + level * HERO_LEVEL_SCORE;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/structs/EnumerableMap.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableMap.js.
pragma solidity ^0.8.20;
import {EnumerableSet} from "./EnumerableSet.sol";
/**
* @dev Library for managing an enumerable variant of Solidity's
* https://solidity.readthedocs.io/en/latest/types.html#mapping-types[`mapping`]
* type.
*
* Maps have the following properties:
*
* - Entries are added, removed, and checked for existence in constant time
* (O(1)).
* - Entries are enumerated in O(n). No guarantees are made on the ordering.
*
* ```solidity
* contract Example {
* // Add the library methods
* using EnumerableMap for EnumerableMap.UintToAddressMap;
*
* // Declare a set state variable
* EnumerableMap.UintToAddressMap private myMap;
* }
* ```
*
* The following map types are supported:
*
* - `uint256 -> address` (`UintToAddressMap`) since v3.0.0
* - `address -> uint256` (`AddressToUintMap`) since v4.6.0
* - `bytes32 -> bytes32` (`Bytes32ToBytes32Map`) since v4.6.0
* - `uint256 -> uint256` (`UintToUintMap`) since v4.7.0
* - `bytes32 -> uint256` (`Bytes32ToUintMap`) since v4.7.0
*
* [WARNING]
* ====
* Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
* unusable.
* See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
*
* In order to clean an EnumerableMap, you can either remove all elements one by one or create a fresh instance using an
* array of EnumerableMap.
* ====
*/
library EnumerableMap {
using EnumerableSet for EnumerableSet.Bytes32Set;
// To implement this library for multiple types with as little code repetition as possible, we write it in
// terms of a generic Map type with bytes32 keys and values. The Map implementation uses private functions,
// and user-facing implementations such as `UintToAddressMap` are just wrappers around the underlying Map.
// This means that we can only create new EnumerableMaps for types that fit in bytes32.
/**
* @dev Query for a nonexistent map key.
*/
error EnumerableMapNonexistentKey(bytes32 key);
struct Bytes32ToBytes32Map {
// Storage of keys
EnumerableSet.Bytes32Set _keys;
mapping(bytes32 key => bytes32) _values;
}
/**
* @dev Adds a key-value pair to a map, or updates the value for an existing
* key. O(1).
*
* Returns true if the key was added to the map, that is if it was not
* already present.
*/
function set(Bytes32ToBytes32Map storage map, bytes32 key, bytes32 value) internal returns (bool) {
map._values[key] = value;
return map._keys.add(key);
}
/**
* @dev Removes a key-value pair from a map. O(1).
*
* Returns true if the key was removed from the map, that is if it was present.
*/
function remove(Bytes32ToBytes32Map storage map, bytes32 key) internal returns (bool) {
delete map._values[key];
return map._keys.remove(key);
}
/**
* @dev Returns true if the key is in the map. O(1).
*/
function contains(Bytes32ToBytes32Map storage map, bytes32 key) internal view returns (bool) {
return map._keys.contains(key);
}
/**
* @dev Returns the number of key-value pairs in the map. O(1).
*/
function length(Bytes32ToBytes32Map storage map) internal view returns (uint256) {
return map._keys.length();
}
/**
* @dev Returns the key-value pair stored at position `index` in the map. O(1).
*
* Note that there are no guarantees on the ordering of entries inside the
* array, and it may change when more entries are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(Bytes32ToBytes32Map storage map, uint256 index) internal view returns (bytes32, bytes32) {
bytes32 key = map._keys.at(index);
return (key, map._values[key]);
}
/**
* @dev Tries to returns the value associated with `key`. O(1).
* Does not revert if `key` is not in the map.
*/
function tryGet(Bytes32ToBytes32Map storage map, bytes32 key) internal view returns (bool, bytes32) {
bytes32 value = map._values[key];
if (value == bytes32(0)) {
return (contains(map, key), bytes32(0));
} else {
return (true, value);
}
}
/**
* @dev Returns the value associated with `key`. O(1).
*
* Requirements:
*
* - `key` must be in the map.
*/
function get(Bytes32ToBytes32Map storage map, bytes32 key) internal view returns (bytes32) {
bytes32 value = map._values[key];
if (value == 0 && !contains(map, key)) {
revert EnumerableMapNonexistentKey(key);
}
return value;
}
/**
* @dev Return the an array containing all the keys
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the map grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function keys(Bytes32ToBytes32Map storage map) internal view returns (bytes32[] memory) {
return map._keys.values();
}
// UintToUintMap
struct UintToUintMap {
Bytes32ToBytes32Map _inner;
}
/**
* @dev Adds a key-value pair to a map, or updates the value for an existing
* key. O(1).
*
* Returns true if the key was added to the map, that is if it was not
* already present.
*/
function set(UintToUintMap storage map, uint256 key, uint256 value) internal returns (bool) {
return set(map._inner, bytes32(key), bytes32(value));
}
/**
* @dev Removes a value from a map. O(1).
*
* Returns true if the key was removed from the map, that is if it was present.
*/
function remove(UintToUintMap storage map, uint256 key) internal returns (bool) {
return remove(map._inner, bytes32(key));
}
/**
* @dev Returns true if the key is in the map. O(1).
*/
function contains(UintToUintMap storage map, uint256 key) internal view returns (bool) {
return contains(map._inner, bytes32(key));
}
/**
* @dev Returns the number of elements in the map. O(1).
*/
function length(UintToUintMap storage map) internal view returns (uint256) {
return length(map._inner);
}
/**
* @dev Returns the element stored at position `index` in the map. O(1).
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(UintToUintMap storage map, uint256 index) internal view returns (uint256, uint256) {
(bytes32 key, bytes32 value) = at(map._inner, index);
return (uint256(key), uint256(value));
}
/**
* @dev Tries to returns the value associated with `key`. O(1).
* Does not revert if `key` is not in the map.
*/
function tryGet(UintToUintMap storage map, uint256 key) internal view returns (bool, uint256) {
(bool success, bytes32 value) = tryGet(map._inner, bytes32(key));
return (success, uint256(value));
}
/**
* @dev Returns the value associated with `key`. O(1).
*
* Requirements:
*
* - `key` must be in the map.
*/
function get(UintToUintMap storage map, uint256 key) internal view returns (uint256) {
return uint256(get(map._inner, bytes32(key)));
}
/**
* @dev Return the an array containing all the keys
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the map grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function keys(UintToUintMap storage map) internal view returns (uint256[] memory) {
bytes32[] memory store = keys(map._inner);
uint256[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
// UintToAddressMap
struct UintToAddressMap {
Bytes32ToBytes32Map _inner;
}
/**
* @dev Adds a key-value pair to a map, or updates the value for an existing
* key. O(1).
*
* Returns true if the key was added to the map, that is if it was not
* already present.
*/
function set(UintToAddressMap storage map, uint256 key, address value) internal returns (bool) {
return set(map._inner, bytes32(key), bytes32(uint256(uint160(value))));
}
/**
* @dev Removes a value from a map. O(1).
*
* Returns true if the key was removed from the map, that is if it was present.
*/
function remove(UintToAddressMap storage map, uint256 key) internal returns (bool) {
return remove(map._inner, bytes32(key));
}
/**
* @dev Returns true if the key is in the map. O(1).
*/
function contains(UintToAddressMap storage map, uint256 key) internal view returns (bool) {
return contains(map._inner, bytes32(key));
}
/**
* @dev Returns the number of elements in the map. O(1).
*/
function length(UintToAddressMap storage map) internal view returns (uint256) {
return length(map._inner);
}
/**
* @dev Returns the element stored at position `index` in the map. O(1).
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(UintToAddressMap storage map, uint256 index) internal view returns (uint256, address) {
(bytes32 key, bytes32 value) = at(map._inner, index);
return (uint256(key), address(uint160(uint256(value))));
}
/**
* @dev Tries to returns the value associated with `key`. O(1).
* Does not revert if `key` is not in the map.
*/
function tryGet(UintToAddressMap storage map, uint256 key) internal view returns (bool, address) {
(bool success, bytes32 value) = tryGet(map._inner, bytes32(key));
return (success, address(uint160(uint256(value))));
}
/**
* @dev Returns the value associated with `key`. O(1).
*
* Requirements:
*
* - `key` must be in the map.
*/
function get(UintToAddressMap storage map, uint256 key) internal view returns (address) {
return address(uint160(uint256(get(map._inner, bytes32(key)))));
}
/**
* @dev Return the an array containing all the keys
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the map grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function keys(UintToAddressMap storage map) internal view returns (uint256[] memory) {
bytes32[] memory store = keys(map._inner);
uint256[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
// AddressToUintMap
struct AddressToUintMap {
Bytes32ToBytes32Map _inner;
}
/**
* @dev Adds a key-value pair to a map, or updates the value for an existing
* key. O(1).
*
* Returns true if the key was added to the map, that is if it was not
* already present.
*/
function set(AddressToUintMap storage map, address key, uint256 value) internal returns (bool) {
return set(map._inner, bytes32(uint256(uint160(key))), bytes32(value));
}
/**
* @dev Removes a value from a map. O(1).
*
* Returns true if the key was removed from the map, that is if it was present.
*/
function remove(AddressToUintMap storage map, address key) internal returns (bool) {
return remove(map._inner, bytes32(uint256(uint160(key))));
}
/**
* @dev Returns true if the key is in the map. O(1).
*/
function contains(AddressToUintMap storage map, address key) internal view returns (bool) {
return contains(map._inner, bytes32(uint256(uint160(key))));
}
/**
* @dev Returns the number of elements in the map. O(1).
*/
function length(AddressToUintMap storage map) internal view returns (uint256) {
return length(map._inner);
}
/**
* @dev Returns the element stored at position `index` in the map. O(1).
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(AddressToUintMap storage map, uint256 index) internal view returns (address, uint256) {
(bytes32 key, bytes32 value) = at(map._inner, index);
return (address(uint160(uint256(key))), uint256(value));
}
/**
* @dev Tries to returns the value associated with `key`. O(1).
* Does not revert if `key` is not in the map.
*/
function tryGet(AddressToUintMap storage map, address key) internal view returns (bool, uint256) {
(bool success, bytes32 value) = tryGet(map._inner, bytes32(uint256(uint160(key))));
return (success, uint256(value));
}
/**
* @dev Returns the value associated with `key`. O(1).
*
* Requirements:
*
* - `key` must be in the map.
*/
function get(AddressToUintMap storage map, address key) internal view returns (uint256) {
return uint256(get(map._inner, bytes32(uint256(uint160(key)))));
}
/**
* @dev Return the an array containing all the keys
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the map grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function keys(AddressToUintMap storage map) internal view returns (address[] memory) {
bytes32[] memory store = keys(map._inner);
address[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
// Bytes32ToUintMap
struct Bytes32ToUintMap {
Bytes32ToBytes32Map _inner;
}
/**
* @dev Adds a key-value pair to a map, or updates the value for an existing
* key. O(1).
*
* Returns true if the key was added to the map, that is if it was not
* already present.
*/
function set(Bytes32ToUintMap storage map, bytes32 key, uint256 value) internal returns (bool) {
return set(map._inner, key, bytes32(value));
}
/**
* @dev Removes a value from a map. O(1).
*
* Returns true if the key was removed from the map, that is if it was present.
*/
function remove(Bytes32ToUintMap storage map, bytes32 key) internal returns (bool) {
return remove(map._inner, key);
}
/**
* @dev Returns true if the key is in the map. O(1).
*/
function contains(Bytes32ToUintMap storage map, bytes32 key) internal view returns (bool) {
return contains(map._inner, key);
}
/**
* @dev Returns the number of elements in the map. O(1).
*/
function length(Bytes32ToUintMap storage map) internal view returns (uint256) {
return length(map._inner);
}
/**
* @dev Returns the element stored at position `index` in the map. O(1).
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(Bytes32ToUintMap storage map, uint256 index) internal view returns (bytes32, uint256) {
(bytes32 key, bytes32 value) = at(map._inner, index);
return (key, uint256(value));
}
/**
* @dev Tries to returns the value associated with `key`. O(1).
* Does not revert if `key` is not in the map.
*/
function tryGet(Bytes32ToUintMap storage map, bytes32 key) internal view returns (bool, uint256) {
(bool success, bytes32 value) = tryGet(map._inner, key);
return (success, uint256(value));
}
/**
* @dev Returns the value associated with `key`. O(1).
*
* Requirements:
*
* - `key` must be in the map.
*/
function get(Bytes32ToUintMap storage map, bytes32 key) internal view returns (uint256) {
return uint256(get(map._inner, key));
}
/**
* @dev Return the an array containing all the keys
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the map grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function keys(Bytes32ToUintMap storage map) internal view returns (bytes32[] memory) {
bytes32[] memory store = keys(map._inner);
bytes32[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/structs/EnumerableSet.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.
pragma solidity ^0.8.20;
/**
* @dev Library for managing
* https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
* types.
*
* Sets have the following properties:
*
* - Elements are added, removed, and checked for existence in constant time
* (O(1)).
* - Elements are enumerated in O(n). No guarantees are made on the ordering.
*
* ```solidity
* contract Example {
* // Add the library methods
* using EnumerableSet for EnumerableSet.AddressSet;
*
* // Declare a set state variable
* EnumerableSet.AddressSet private mySet;
* }
* ```
*
* As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
* and `uint256` (`UintSet`) are supported.
*
* [WARNING]
* ====
* Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
* unusable.
* See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
*
* In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
* array of EnumerableSet.
* ====
*/
library EnumerableSet {
// To implement this library for multiple types with as little code
// repetition as possible, we write it in terms of a generic Set type with
// bytes32 values.
// The Set implementation uses private functions, and user-facing
// implementations (such as AddressSet) are just wrappers around the
// underlying Set.
// This means that we can only create new EnumerableSets for types that fit
// in bytes32.
struct Set {
// Storage of set values
bytes32[] _values;
// Position is the index of the value in the `values` array plus 1.
// Position 0 is used to mean a value is not in the set.
mapping(bytes32 value => uint256) _positions;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function _add(Set storage set, bytes32 value) private returns (bool) {
if (!_contains(set, value)) {
set._values.push(value);
// The value is stored at length-1, but we add 1 to all indexes
// and use 0 as a sentinel value
set._positions[value] = set._values.length;
return true;
} else {
return false;
}
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function _remove(Set storage set, bytes32 value) private returns (bool) {
// We cache the value's position to prevent multiple reads from the same storage slot
uint256 position = set._positions[value];
if (position != 0) {
// Equivalent to contains(set, value)
// To delete an element from the _values array in O(1), we swap the element to delete with the last one in
// the array, and then remove the last element (sometimes called as 'swap and pop').
// This modifies the order of the array, as noted in {at}.
uint256 valueIndex = position - 1;
uint256 lastIndex = set._values.length - 1;
if (valueIndex != lastIndex) {
bytes32 lastValue = set._values[lastIndex];
// Move the lastValue to the index where the value to delete is
set._values[valueIndex] = lastValue;
// Update the tracked position of the lastValue (that was just moved)
set._positions[lastValue] = position;
}
// Delete the slot where the moved value was stored
set._values.pop();
// Delete the tracked position for the deleted slot
delete set._positions[value];
return true;
} else {
return false;
}
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function _contains(Set storage set, bytes32 value) private view returns (bool) {
return set._positions[value] != 0;
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function _length(Set storage set) private view returns (uint256) {
return set._values.length;
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function _at(Set storage set, uint256 index) private view returns (bytes32) {
return set._values[index];
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function _values(Set storage set) private view returns (bytes32[] memory) {
return set._values;
}
// Bytes32Set
struct Bytes32Set {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _add(set._inner, value);
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _remove(set._inner, value);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
return _contains(set._inner, value);
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(Bytes32Set storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
return _at(set._inner, index);
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
bytes32[] memory store = _values(set._inner);
bytes32[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
// AddressSet
struct AddressSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(AddressSet storage set, address value) internal returns (bool) {
return _add(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(AddressSet storage set, address value) internal returns (bool) {
return _remove(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(AddressSet storage set, address value) internal view returns (bool) {
return _contains(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(AddressSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(AddressSet storage set, uint256 index) internal view returns (address) {
return address(uint160(uint256(_at(set._inner, index))));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(AddressSet storage set) internal view returns (address[] memory) {
bytes32[] memory store = _values(set._inner);
address[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
// UintSet
struct UintSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(UintSet storage set, uint256 value) internal returns (bool) {
return _add(set._inner, bytes32(value));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(UintSet storage set, uint256 value) internal returns (bool) {
return _remove(set._inner, bytes32(value));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(UintSet storage set, uint256 value) internal view returns (bool) {
return _contains(set._inner, bytes32(value));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(UintSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(UintSet storage set, uint256 index) internal view returns (uint256) {
return uint256(_at(set._inner, index));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(UintSet storage set) internal view returns (uint256[] memory) {
bytes32[] memory store = _values(set._inner);
uint256[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
/**
* @dev Muldiv operation overflow.
*/
error MathOverflowedMulDiv();
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
return a / b;
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return a == 0 ? 0 : (a - 1) / b + 1;
}
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
if (denominator <= prod1) {
revert MathOverflowedMulDiv();
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
/// @notice Library for generating pseudorandom numbers.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibPRNG.sol)
/// @author LazyShuffler based on NextShuffler by aschlosberg (divergencearran)
/// (https://github.com/divergencetech/ethier/blob/main/contracts/random/NextShuffler.sol)
library LibPRNG {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CUSTOM ERRORS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The initial length must be greater than zero and less than `2**32 - 1`.
error InvalidInitialLazyShufflerLength();
/// @dev The new length must not be less than the current length.
error InvalidNewLazyShufflerLength();
/// @dev The lazy shuffler has not been initialized.
error LazyShufflerNotInitialized();
/// @dev Cannot double initialize the lazy shuffler.
error LazyShufflerAlreadyInitialized();
/// @dev The lazy shuffle has finished.
error LazyShuffleFinished();
/// @dev The queried index is out of bounds.
error LazyShufflerGetOutOfBounds();
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CONSTANTS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The scalar of ETH and most ERC20s.
uint256 internal constant WAD = 1e18;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* STRUCTS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev A pseudorandom number state in memory.
struct PRNG {
uint256 state;
}
/// @dev A lazy Fisher-Yates shuffler for a range `[0..n)` in storage.
struct LazyShuffler {
// Bits Layout:
// - [0..31] `numShuffled`
// - [32..223] `permutationSlot`
// - [224..255] `length`
uint256 _state;
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Seeds the `prng` with `state`.
function seed(PRNG memory prng, uint256 state) internal pure {
/// @solidity memory-safe-assembly
assembly {
mstore(prng, state)
}
}
/// @dev Returns the next pseudorandom uint256.
/// All bits of the returned uint256 pass the NIST Statistical Test Suite.
function next(PRNG memory prng) internal pure returns (uint256 result) {
// We simply use `keccak256` for a great balance between
// runtime gas costs, bytecode size, and statistical properties.
//
// A high-quality LCG with a 32-byte state
// is only about 30% more gas efficient during runtime,
// but requires a 32-byte multiplier, which can cause bytecode bloat
// when this function is inlined.
//
// Using this method is about 2x more efficient than
// `nextRandomness = uint256(keccak256(abi.encode(randomness)))`.
/// @solidity memory-safe-assembly
assembly {
result := keccak256(prng, 0x20)
mstore(prng, result)
}
}
/// @dev Returns a pseudorandom uint256, uniformly distributed
/// between 0 (inclusive) and `upper` (exclusive).
/// If your modulus is big, this method is recommended
/// for uniform sampling to avoid modulo bias.
/// For uniform sampling across all uint256 values,
/// or for small enough moduli such that the bias is neligible,
/// use {next} instead.
function uniform(PRNG memory prng, uint256 upper) internal pure returns (uint256 result) {
/// @solidity memory-safe-assembly
assembly {
for {} 1 {} {
result := keccak256(prng, 0x20)
mstore(prng, result)
if iszero(lt(result, mod(sub(0, upper), upper))) { break }
}
result := mod(result, upper)
}
}
/// @dev Shuffles the array in-place with Fisher-Yates shuffle.
function shuffle(PRNG memory prng, uint256[] memory a) internal pure {
/// @solidity memory-safe-assembly
assembly {
let n := mload(a)
let w := not(0)
let mask := shr(128, w)
if n {
for { a := add(a, 0x20) } 1 {} {
// We can just directly use `keccak256`, cuz
// the other approaches don't save much.
let r := keccak256(prng, 0x20)
mstore(prng, r)
// Note that there will be a very tiny modulo bias
// if the length of the array is not a power of 2.
// For all practical purposes, it is negligible
// and will not be a fairness or security concern.
{
let j := add(a, shl(5, mod(shr(128, r), n)))
n := add(n, w) // `sub(n, 1)`.
if iszero(n) { break }
let i := add(a, shl(5, n))
let t := mload(i)
mstore(i, mload(j))
mstore(j, t)
}
{
let j := add(a, shl(5, mod(and(r, mask), n)))
n := add(n, w) // `sub(n, 1)`.
if iszero(n) { break }
let i := add(a, shl(5, n))
let t := mload(i)
mstore(i, mload(j))
mstore(j, t)
}
}
}
}
}
/// @dev Shuffles the bytes in-place with Fisher-Yates shuffle.
function shuffle(PRNG memory prng, bytes memory a) internal pure {
/// @solidity memory-safe-assembly
assembly {
let n := mload(a)
let w := not(0)
let mask := shr(128, w)
if n {
let b := add(a, 0x01)
for { a := add(a, 0x20) } 1 {} {
// We can just directly use `keccak256`, cuz
// the other approaches don't save much.
let r := keccak256(prng, 0x20)
mstore(prng, r)
// Note that there will be a very tiny modulo bias
// if the length of the array is not a power of 2.
// For all practical purposes, it is negligible
// and will not be a fairness or security concern.
{
let o := mod(shr(128, r), n)
n := add(n, w) // `sub(n, 1)`.
if iszero(n) { break }
let t := mload(add(b, n))
mstore8(add(a, n), mload(add(b, o)))
mstore8(add(a, o), t)
}
{
let o := mod(and(r, mask), n)
n := add(n, w) // `sub(n, 1)`.
if iszero(n) { break }
let t := mload(add(b, n))
mstore8(add(a, n), mload(add(b, o)))
mstore8(add(a, o), t)
}
}
}
}
}
/// @dev Returns a sample from the standard normal distribution denominated in `WAD`.
function standardNormalWad(PRNG memory prng) internal pure returns (int256 result) {
/// @solidity memory-safe-assembly
assembly {
// Technically, this is the Irwin-Hall distribution with 20 samples.
// The chance of drawing a sample outside 10 σ from the standard normal distribution
// is ≈ 0.000000000000000000000015, which is insignificant for most practical purposes.
// Passes the Kolmogorov-Smirnov test for 200k samples. Uses about 322 gas.
result := keccak256(prng, 0x20)
mstore(prng, result)
let n := 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff43 // Prime.
let a := 0x100000000000000000000000000000051 // Prime and a primitive root of `n`.
let m := 0x1fffffffffffffff1fffffffffffffff1fffffffffffffff1fffffffffffffff
let s := 0x1000000000000000100000000000000010000000000000001
let r1 := mulmod(result, a, n)
let r2 := mulmod(r1, a, n)
let r3 := mulmod(r2, a, n)
// forgefmt: disable-next-item
result := sub(sar(96, mul(26614938895861601847173011183,
add(add(shr(192, mul(s, add(and(m, result), and(m, r1)))),
shr(192, mul(s, add(and(m, r2), and(m, r3))))),
shr(192, mul(s, and(m, mulmod(r3, a, n))))))), 7745966692414833770)
}
}
/// @dev Returns a sample from the unit exponential distribution denominated in `WAD`.
function exponentialWad(PRNG memory prng) internal pure returns (uint256 result) {
/// @solidity memory-safe-assembly
assembly {
// Passes the Kolmogorov-Smirnov test for 200k samples.
// Gas usage varies, starting from about 172+ gas.
let r := keccak256(prng, 0x20)
mstore(prng, r)
let p := shl(129, r)
let w := shl(1, r)
if iszero(gt(w, p)) {
let n := 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff43 // Prime.
let a := 0x100000000000000000000000000000051 // Prime and a primitive root of `n`.
for {} 1 {} {
r := mulmod(r, a, n)
if iszero(lt(shl(129, r), w)) {
r := mulmod(r, a, n)
result := add(1000000000000000000, result)
w := shl(1, r)
p := shl(129, r)
if iszero(lt(w, p)) { break }
continue
}
w := shl(1, r)
if iszero(lt(w, shl(129, r))) { break }
}
}
result := add(div(p, shl(129, 170141183460469231732)), result)
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* STORAGE-BASED RANGE LAZY SHUFFLING OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Initializes the state for lazy-shuffling the range `[0..n)`.
/// Reverts if `n == 0 || n >= 2**32 - 1`.
/// Reverts if `$` has already been initialized.
/// If you need to reduce the length after initialization, just use a fresh new `$`.
function initialize(LazyShuffler storage $, uint256 n) internal {
/// @solidity memory-safe-assembly
assembly {
if iszero(lt(sub(n, 1), 0xfffffffe)) {
mstore(0x00, 0x83b53941) // `InvalidInitialLazyShufflerLength()`.
revert(0x1c, 0x04)
}
if sload($.slot) {
mstore(0x00, 0x0c9f11f2) // `LazyShufflerAlreadyInitialized()`.
revert(0x1c, 0x04)
}
mstore(0x00, $.slot)
sstore($.slot, or(shl(224, n), shl(32, shr(64, keccak256(0x00, 0x20)))))
}
}
/// @dev Increases the length of `$`.
/// Reverts if `$` has not been initialized.
function grow(LazyShuffler storage $, uint256 n) internal {
/// @solidity memory-safe-assembly
assembly {
let state := sload($.slot) // The packed value at `$`.
// If the new length is smaller than the old length, revert.
if lt(n, shr(224, state)) {
mstore(0x00, 0xbed37c6e) // `InvalidNewLazyShufflerLength()`.
revert(0x1c, 0x04)
}
if iszero(state) {
mstore(0x00, 0x1ead2566) // `LazyShufflerNotInitialized()`.
revert(0x1c, 0x04)
}
sstore($.slot, or(shl(224, n), shr(32, shl(32, state))))
}
}
/// @dev Restarts the shuffler by setting `numShuffled` to zero,
/// such that all elements can be drawn again.
/// Restarting does NOT clear the internal permutation, nor changes the length.
/// Even with the same sequence of randomness, reshuffling can yield different results.
function restart(LazyShuffler storage $) internal {
/// @solidity memory-safe-assembly
assembly {
let state := sload($.slot)
if iszero(state) {
mstore(0x00, 0x1ead2566) // `LazyShufflerNotInitialized()`.
revert(0x1c, 0x04)
}
sstore($.slot, shl(32, shr(32, state)))
}
}
/// @dev Returns the number of elements that have been shuffled.
function numShuffled(LazyShuffler storage $) internal view returns (uint256 result) {
/// @solidity memory-safe-assembly
assembly {
result := and(0xffffffff, sload($.slot))
}
}
/// @dev Returns the length of `$`.
/// Returns zero if `$` is not initialized, else a non-zero value less than `2**32 - 1`.
function length(LazyShuffler storage $) internal view returns (uint256 result) {
/// @solidity memory-safe-assembly
assembly {
result := shr(224, sload($.slot))
}
}
/// @dev Returns if `$` has been initialized.
function initialized(LazyShuffler storage $) internal view returns (bool result) {
/// @solidity memory-safe-assembly
assembly {
result := iszero(iszero(sload($.slot)))
}
}
/// @dev Returns if there are any more elements left to shuffle.
/// Reverts if `$` is not initialized.
function finished(LazyShuffler storage $) internal view returns (bool result) {
/// @solidity memory-safe-assembly
assembly {
let state := sload($.slot) // The packed value at `$`.
if iszero(state) {
mstore(0x00, 0x1ead2566) // `LazyShufflerNotInitialized()`.
revert(0x1c, 0x04)
}
result := eq(shr(224, state), and(0xffffffff, state))
}
}
/// @dev Returns the current value stored at `index`, accounting for all historical shuffling.
/// Reverts if `index` is greater than or equal to the `length` of `$`.
function get(LazyShuffler storage $, uint256 index) internal view returns (uint256 result) {
/// @solidity memory-safe-assembly
assembly {
let state := sload($.slot) // The packed value at `$`.
let n := shr(224, state) // Length of `$`.
if iszero(lt(index, n)) {
mstore(0x00, 0x61367cc4) // `LazyShufflerGetOutOfBounds()`.
revert(0x1c, 0x04)
}
let u32 := gt(n, 0xfffe)
let s := add(shr(sub(4, u32), index), shr(64, shl(32, state))) // Bucket slot.
let o := shl(add(4, u32), and(index, shr(u32, 15))) // Bucket slot offset (bits).
let m := sub(shl(shl(u32, 16), 1), 1) // Value mask.
result := and(m, shr(o, sload(s)))
result := xor(index, mul(xor(index, sub(result, 1)), iszero(iszero(result))))
}
}
/// @dev Does a single Fisher-Yates shuffle step, increments the `numShuffled` in `$`,
/// and returns the next value in the shuffled range.
/// `randomness` can be taken from a good-enough source, or a higher quality source like VRF.
/// Reverts if there are no more values to shuffle, which includes the case if `$` is not initialized.
function next(LazyShuffler storage $, uint256 randomness) internal returns (uint256 chosen) {
/// @solidity memory-safe-assembly
assembly {
function _get(u32_, state_, i_) -> _value {
let s_ := add(shr(sub(4, u32_), i_), shr(64, shl(32, state_))) // Bucket slot.
let o_ := shl(add(4, u32_), and(i_, shr(u32_, 15))) // Bucket slot offset (bits).
let m_ := sub(shl(shl(u32_, 16), 1), 1) // Value mask.
_value := and(m_, shr(o_, sload(s_)))
_value := xor(i_, mul(xor(i_, sub(_value, 1)), iszero(iszero(_value))))
}
function _set(u32_, state_, i_, value_) {
let s_ := add(shr(sub(4, u32_), i_), shr(64, shl(32, state_))) // Bucket slot.
let o_ := shl(add(4, u32_), and(i_, shr(u32_, 15))) // Bucket slot offset (bits).
let m_ := sub(shl(shl(u32_, 16), 1), 1) // Value mask.
let v_ := sload(s_) // Bucket slot value.
value_ := mul(iszero(eq(i_, value_)), add(value_, 1))
sstore(s_, xor(v_, shl(o_, and(m_, xor(shr(o_, v_), value_)))))
}
let state := sload($.slot) // The packed value at `$`.
let shuffled := and(0xffffffff, state) // Number of elements shuffled.
let n := shr(224, state) // Length of `$`.
let remainder := sub(n, shuffled) // Number of elements left to shuffle.
if iszero(remainder) {
mstore(0x00, 0x51065f79) // `LazyShuffleFinished()`.
revert(0x1c, 0x04)
}
mstore(0x00, randomness) // (Re)hash the randomness so that we don't
mstore(0x20, shuffled) // need to expect guarantees on its distribution.
let index := add(mod(keccak256(0x00, 0x40), remainder), shuffled)
chosen := _get(gt(n, 0xfffe), state, index)
_set(gt(n, 0xfffe), state, index, _get(gt(n, 0xfffe), state, shuffled))
_set(gt(n, 0xfffe), state, shuffled, chosen)
sstore($.slot, add(1, state)) // Increment the `numShuffled` by 1, and store it.
}
}
}