S Price: $0.57419 (-3.28%)

Contract Diff Checker

Contract Name:
OnchainCLOBFactory

Contract Source Code:

// SPDX-License-Identifier: BUSL-1.1
// Central Limit Order Book (CLOB) exchange
// (c) Long Gamma Labs, 2023.
pragma solidity ^0.8.26;


import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol";
import {Ownable2Step} from "@openzeppelin/contracts/access/Ownable2Step.sol";


import {Errors} from "./Errors.sol";
import {OnchainCLOB} from "./OnchainCLOB.sol";
import {Proxy} from "./Proxy.sol";
import {IOnchainCLOBFactory} from "./IOnchainCLOBFactory.sol";
import {ITrieFactory} from "./ITrieFactory.sol";


/// @title LOB Factory for  Protocol
/// @dev This contract is responsible for creating OnchainCLOB instances.
contract OnchainCLOBFactory is IOnchainCLOBFactory, Ownable2Step {

    /// @dev An instance of ITrieFactory.
    ITrieFactory immutable trieFactory;
    /// @dev An instance of OnchainCLOB
    OnchainCLOB immutable public lobImplementation;

    /// @dev Constructor for OnchainCLOBFactory.
    /// @param _owner The owner of the contract.
    /// @param _trieFactory The address of the trie factory.
    /// @param _watch_dog The address of the watch dog.
    constructor(
        address _owner,
        address _trieFactory,
        address _watch_dog
    ) Ownable(_owner) {
        require(_trieFactory != address(0), Errors.AddressIsZero());
        require(_watch_dog != address(0), Errors.AddressIsZero());

        trieFactory = ITrieFactory(_trieFactory);

        lobImplementation = new OnchainCLOB(_watch_dog);
    }

    /// @dev A mapping of deployers.
    mapping(address => bool) public deployers;

    /// @dev An event that is emitted when a OnchainCLOB is created.
    event OnchainCLOBCreated(
        address indexed creator,
        address OnchainCLOB,
        address tokenXAddress,
        address tokenYAddress,
        bool supports_native_eth,
        uint256 scaling_token_x,
        uint256 scaling_token_y,
        address administrator,
        address marketmaker,
        address pauser,
        bool should_invoke_on_trade,
        uint64 admin_commission_rate,
        uint64 total_aggressive_commission_rate,
        uint64 total_passive_commission_rate,
        uint64 passive_order_payout
    );

    /// @dev Sets a deployer.
    /// @param deployer The address of the deployer.
    /// @param allowed A boolean indicating whether the deployer is allowed.
    function setDeployer(address deployer, bool allowed) external onlyOwner {
        deployers[deployer] = allowed;
    }

    /// @dev Creates a OnchainCLOB.
    /// @param tokenXAddress The address of token X.
    /// @param tokenYAddress The address of token Y.
    /// @param supports_native_eth A boolean indicating if the contract supports native ETH transactions.
    /// @param scaling_token_x The scaling factor for token X.
    /// @param scaling_token_y The scaling factor for token Y.
    /// @param administrator The address of the administrator.
    /// @param marketmaker The address of the market maker.
    /// @param pauser The address of the pauser.
    /// @param should_invoke_on_trade A boolean indicating whether to invoke on trade.
    /// @param admin_commission_rate The commission rate for the administrator
    /// @param total_aggressive_commission_rate The total commission rate for aggressive orders
    /// @param total_passive_commission_rate The total commission rate for passive orders
    /// @param passive_order_payout Payout for passive orders
    /// @return The address of the created OnchainCLOB.
    function createOnchainCLOB(
        address tokenXAddress,
        address tokenYAddress,
        bool supports_native_eth,
        bool is_token_x_weth,
        uint256 scaling_token_x,
        uint256 scaling_token_y,
        address administrator,
        address marketmaker,
        address pauser,
        bool should_invoke_on_trade,
        uint64 admin_commission_rate,
        uint64 total_aggressive_commission_rate,
        uint64 total_passive_commission_rate,
        uint64 passive_order_payout
    ) external returns (address) {
        require(deployers[msg.sender], Errors.Forbidden());

        bytes memory initializeCallData = abi.encodeWithSignature(
            "initialize(address,address,address,bool,bool,uint256,uint256,address,address,address,bool,uint64,uint64,uint64,uint64)",
            address(trieFactory),
            tokenXAddress,
            tokenYAddress,
            supports_native_eth,
            is_token_x_weth,
            scaling_token_x,
            scaling_token_y,
            administrator,
            marketmaker,
            pauser,
            should_invoke_on_trade,
            admin_commission_rate,
            total_aggressive_commission_rate,
            total_passive_commission_rate,
            passive_order_payout
        );

        Proxy lobProxy = new Proxy(
            address(lobImplementation),
            initializeCallData
        );

        emit OnchainCLOBCreated(
            msg.sender,
            address(lobProxy),
            tokenXAddress,
            tokenYAddress,
            supports_native_eth,
            scaling_token_x,
            scaling_token_y,
            administrator,
            marketmaker,
            pauser,
            should_invoke_on_trade,
            admin_commission_rate,
            total_aggressive_commission_rate,
            total_passive_commission_rate,
            passive_order_payout
        );

        return address(lobProxy);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable2Step.sol)

pragma solidity ^0.8.20;

import {Ownable} from "./Ownable.sol";

/**
 * @dev Contract module which provides access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is specified at deployment time in the constructor for `Ownable`. This
 * can later be changed with {transferOwnership} and {acceptOwnership}.
 *
 * This module is used through inheritance. It will make available all functions
 * from parent (Ownable).
 */
abstract contract Ownable2Step is Ownable {
    address private _pendingOwner;

    event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Returns the address of the pending owner.
     */
    function pendingOwner() public view virtual returns (address) {
        return _pendingOwner;
    }

    /**
     * @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual override onlyOwner {
        _pendingOwner = newOwner;
        emit OwnershipTransferStarted(owner(), newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual override {
        delete _pendingOwner;
        super._transferOwnership(newOwner);
    }

    /**
     * @dev The new owner accepts the ownership transfer.
     */
    function acceptOwnership() public virtual {
        address sender = _msgSender();
        if (pendingOwner() != sender) {
            revert OwnableUnauthorizedAccount(sender);
        }
        _transferOwnership(sender);
    }
}

// SPDX-License-Identifier: BUSL-1.1
// Central Limit Order Book (CLOB) exchange
// (c) Long Gamma Labs, 2023.
pragma solidity ^0.8.26;


contract Errors {
    error AddressIsZero();
    error ArrayLengthMismatch();
    error ChainIsUnstableForTrades();
    error ClaimNotAllowed();
    error CommissionParamTooHigh();
    error Disabled();
    error EmptyOrderError();
    error ExcessiveSignificantFigures();
    error Expired();
    error Forbidden();
    error FractionalNumbersNotAllowed();
    error InsufficientTokenXBalance();
    error InsufficientTokenYBalance();
    error InvalidCommissionRate();
    error InvalidFloatingPointRepresentation();
    error InvalidMarketMaker();
    error InvalidPriceRange();
    error InvalidTransfer();
    error MarketOnlyAndPostOnlyFlagsConflict();
    error MaxCommissionFailure();
    error NativeETHDisabled();
    error NonceExhaustedFailure();
    error NotImplementedYet();
    error OnlyOwnerCanCancelOrders();
    error PointerAlreadyFreed();
    error PriceExceedsMaximumAllowedValue();
    error TransferFailed();
    error UnknownOrderId();
    error UnknownTrader();
    error WrongOwner();
    error ZeroMaxDelayNotAllowed();
    error ZeroRecoveryTimeNotAllowed();
    error ZeroTokenTransferNotAllowed();
    error InvalidPrice();
    error InvalidQuantity();
    error InvalidCommission();
    error InvalidExpiry();
    error OrderExpired();
    error InsufficientBalance();
    error InsufficientAllowance();
    error InvalidOrderId();
    error OrderNotFound();
    error OrderAlreadyCancelled();
    error OrderAlreadyExecuted();
    error InvalidExecutionPrice();
    error InvalidExecutionQuantity();
    error InvalidExecutionCommission();
    error InvalidExecutionOrderId();
    error InvalidExecutionOrderStatus();
    error InvalidExecutionOrderExpiry();
    error InvalidExecutionOrderPrice();
    error InvalidExecutionOrderQuantity();
    error InvalidExecutionOrderCommission();
}

// SPDX-License-Identifier: BUSL-1.1
// Central Limit Order Book (CLOB) exchange
// (c) Long Gamma Labs, 2023.
pragma solidity ^0.8.26;


import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {IERC20Permit} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Permit.sol";
import {IERC165} from "@openzeppelin/contracts/utils/introspection/IERC165.sol";
import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol";
import {Ownable2StepUpgradeable} from "@openzeppelin/contracts-upgradeable/access/Ownable2StepUpgradeable.sol";
import {PausableUpgradeable} from "@openzeppelin/contracts-upgradeable/utils/PausableUpgradeable.sol";
import {ReentrancyGuardUpgradeable} from "@openzeppelin/contracts-upgradeable/utils/ReentrancyGuardUpgradeable.sol";
import {SafeCast} from "@openzeppelin/contracts/utils/math/SafeCast.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {UUPSUpgradeable} from "@openzeppelin/contracts-upgradeable/proxy/utils/UUPSUpgradeable.sol";


import {FixedPointMathLib} from "@solmate/src/utils/FixedPointMathLib.sol";


import {Errors} from "./Errors.sol";
import {FP24} from "./FP24.sol";
import {IWatchDog} from "./IWatchDog.sol";
import {IOnchainCLOB} from "./IOnchainCLOB.sol";
import {ITrie} from "./ITrie.sol";
import {ITrieFactory} from "./ITrieFactory.sol";
import {ITradeConsumer} from "./ITradeConsumer.sol";
import {IWETH} from "./IWETH.sol";


/// @title Trader structure
/// @notice Used to represent a trader's state within the LOB contract
/// @dev Stores trader's unique ID, token balances, and claimable status
struct Trader {
    uint64 trader_id; ///< Unique identifier for the trader
    uint128 token_x; ///< Balance of token X for the trader
    uint128 token_y; ///< Balance of token Y for the trader
    bool claimable; ///< Flag indicating if the trader's orders are claimable "automatically"
}


/// @title Execution Result
/// @notice Structure to store information about the result of aggressive or immediate part of order execution
/// @dev Used to return data about the executed order from execution functions
struct ExecutionResult {
    uint64 order_id;      /// order_id Unique identifier of the order
    uint128 executed_shares;  /// executed_shares Number of shares/tokens executed in the aggressive part
    uint128 executed_value;   /// executed_value Total value of the aggressively executed part of the order
    uint128 aggressive_fee;   /// aggressive_fee Fee for the aggressive execution
}


/// @title Market maker configuration
struct MarketMakerConfig {
    address marketmaker; /// Market maker address
    bool should_invoke_on_trade; /// Invoke the onTrade method for the LP contract after each trade
}


/// @title Limit Order Book (LOB) Contract for  Protocol
/// @notice Implements an on-chain limit order book for trading pairs
/// @dev Manages order placement, execution, and claiming processes
contract OnchainCLOB is IOnchainCLOB, UUPSUpgradeable, Ownable2StepUpgradeable, ReentrancyGuardUpgradeable, PausableUpgradeable {
    using FixedPointMathLib for uint256;
    using SafeCast for uint256;
    using SafeERC20 for IERC20;

    event OrderPlaced(
        address indexed owner,
        uint64 order_id,
        bool indexed isAsk,
        uint128 quantity,
        uint72 price,
        uint128 passive_shares,
        uint128 passive_fee,
        uint128 aggressive_shares,
        uint128 aggressive_value,
        uint128 aggressive_fee,
        bool market_only,
        bool post_only
    );
    event OrderClaimed(
        uint64 order_id,
        uint128 order_shares_remaining,
        uint128 token_x_sent,
        uint128 token_y_sent,
        uint128 passive_payout,
        bool only_claim
    );
    event ClaimableStatusChanged(
        address indexed owner,
        bool status
    );
    event MarketMakerChanged(
        address new_marketmaker,
        address old_marketmaker
    );
    event PauserChanged(
        address new_pauser,
        address old_pauser
    );
    event Deposited(
        address indexed owner,
        uint128 token_x,
        uint128 token_y
    );
    event Withdrawn(
        address indexed owner,
        uint128 token_x,
        uint128 token_y
    );

    uint8 constant nonce_length = 39;
    uint8 constant price_length = 24;
    uint256 constant wad = 1e18;

    uint256 scaling_factor_token_x;
    uint256 scaling_factor_token_y;

    IERC20 token_x;
    IERC20 token_y;
    bool supports_native_eth;
    bool is_token_x_weth;

    ITrie askTrie;
    ITrie bidTrie;

    uint64 admin_commission_rate;
    uint64 total_aggressive_commission_rate;  // for market orders
    uint64 total_passive_commission_rate;  // for out-of-money limit orders
    uint64 passive_order_payout_rate;

    MarketMakerConfig public marketmaker_config;

    address public pauser;
    uint64 public nonce;

    IWatchDog immutable watch_dog;

    uint64 last_used_trader_id;
    mapping (address => Trader) traders;

    uint256 accumulated_fees;

    modifier ensure(uint256 expires) {
        if (block.timestamp > expires) {
            revert Errors.Expired();
        }
        _;
    }

    constructor(address _watch_dog) {
        watch_dog = IWatchDog(_watch_dog);
        _disableInitializers();
    }

    /// @notice Initialize lob contract state
    /// @dev Method is used instead of a constructor to initialize the contract state for compatibility with Upgradeable logic
    /// @param _trie_factory Trie factory
    /// @param _tokenXAddress Token X address
    /// @param _tokenYAddress Token Y address
    /// @param _supports_native_eth Indicates if the contract supports native ETH transactions
    /// @param _is_token_x_weth Indicates if token X is WETH (Wrapped Ether)
    /// @param scaling_token_x Scaling factor for token X
    /// @param scaling_token_y Scaling factor for token Y
    /// @param _administrator Administrator address
    /// @param _marketmaker Market maker address
    /// @param _pauser Pauser address
    /// @param _should_invoke_on_trade Flag indicating whether to invoke the onTrade method for the LP contract after each trade
    /// @param _admin_commission_rate The commission rate for the administrator
    /// @param _total_aggressive_commission_rate The total commission rate for aggressive orders
    /// @param _total_passive_commission_rate The total commission rate for passive orders
    /// @param _passive_order_payout_rate Payout for passive orders
    function initialize(
        address _trie_factory,
        address _tokenXAddress,
        address _tokenYAddress,
        bool _supports_native_eth,
        bool _is_token_x_weth,
        uint256 scaling_token_x,
        uint256 scaling_token_y,
        address _administrator,
        address _marketmaker,
        address _pauser,
        bool _should_invoke_on_trade,
        uint64 _admin_commission_rate,
        uint64 _total_aggressive_commission_rate,
        uint64 _total_passive_commission_rate,
        uint64 _passive_order_payout_rate
    ) public initializer {
        __UUPSUpgradeable_init();
        __Ownable_init(_administrator);
        __Ownable2Step_init();
        __ReentrancyGuard_init();
        __Pausable_init();

        require(_trie_factory != address(0), Errors.AddressIsZero());
        require(_tokenXAddress != address(0), Errors.AddressIsZero());
        require(_tokenYAddress != address(0), Errors.AddressIsZero());

        nonce = (uint64(1) << nonce_length) - uint64(1);
        last_used_trader_id = 0;

        scaling_factor_token_x = scaling_token_x;
        scaling_factor_token_y = scaling_token_y;

        token_x = IERC20(_tokenXAddress);
        token_y = IERC20(_tokenYAddress);
        supports_native_eth = _supports_native_eth;
        is_token_x_weth = _is_token_x_weth;

        ITrieFactory trie_factory = ITrieFactory(_trie_factory);
        address ask_trie_address = trie_factory.createTrie(address(this));
        askTrie = ITrie(ask_trie_address);
        address bid_trie_address = trie_factory.createTrie(address(this));
        bidTrie = ITrie(bid_trie_address);

        pauser = _pauser;
        _changeMarketMaker(_marketmaker, _should_invoke_on_trade);

        uint256 max_rate = 2e17;  // 20%
        require(
            _admin_commission_rate <= 1e18 &&
            _total_aggressive_commission_rate <= max_rate &&
            _total_passive_commission_rate <= max_rate &&
            _passive_order_payout_rate <= max_rate &&
            (_passive_order_payout_rate == 0 || _total_passive_commission_rate == 0),
            Errors.InvalidCommissionRate()
        );

        admin_commission_rate = _admin_commission_rate;
        total_aggressive_commission_rate = _total_aggressive_commission_rate;
        total_passive_commission_rate = _total_passive_commission_rate;
        passive_order_payout_rate = _passive_order_payout_rate;

        accumulated_fees = 1;  // This is a simple trick to avoid zeroing out issue
    }

    /// @notice Returns the contract configuration
    /// @dev This function provides access to the main contract parameters such as scaling factors, commissions, and token addresses
    /// @return _scaling_factor_token_x Scaling factor for token X
    /// @return _scaling_factor_token_y Scaling factor for token Y
    /// @return _token_x Address of token X
    /// @return _token_y Address of token Y
    /// @return _supports_native_eth Indicates if the contract supports native ETH transactions
    /// @return _is_token_x_weth Indicates if token X is WETH (Wrapped Ether)
    /// @return _ask_trie Address of askTrie
    /// @return _bid_trie Address of bidTrie
    /// @return _admin_commission_rate The commission rate for the administrator
    /// @return _total_aggressive_commission_rate The total commission rate for aggressive orders
    /// @return _total_passive_commission_rate The total commission rate for passive orders
    /// @return _passive_order_payout_rate Payout for passive orders
    /// @return _should_invoke_on_trade Flag indicating whether to invoke the onTrade method for the LP contract after each trade
    function getConfig() external view returns (
        uint256 _scaling_factor_token_x,
        uint256 _scaling_factor_token_y,
        address _token_x,
        address _token_y,
        bool _supports_native_eth,
        bool _is_token_x_weth,
        address _ask_trie,
        address _bid_trie,
        uint64 _admin_commission_rate,
        uint64 _total_aggressive_commission_rate,
        uint64 _total_passive_commission_rate,
        uint64 _passive_order_payout_rate,
        bool _should_invoke_on_trade
    ) {
        return (
            scaling_factor_token_x,
            scaling_factor_token_y,
            address(token_x),
            address(token_y),
            supports_native_eth,
            is_token_x_weth,
            address(askTrie),
            address(bidTrie),
            admin_commission_rate,
            total_aggressive_commission_rate,
            total_passive_commission_rate,
            passive_order_payout_rate,
            marketmaker_config.should_invoke_on_trade
        );
    }

    /// @notice Fallback function to handle incoming ETH deposits.
    receive() external payable {
        require(supports_native_eth 
            && (
                (is_token_x_weth && msg.sender == address(token_x))
             ||(!is_token_x_weth && msg.sender == address(token_y))
            ),
            Errors.Forbidden()
        );
    }

    /// @notice Retrieves the balance of a trader by address in tokens stored on the LOB contract
    /// @dev Returns the balances of tokens X and Y, and the claimable status for the specified address
    /// @param address_ The address of the trader for whom the balance is being retrieved
    /// @return token_x Balance of token X for the trader
    /// @return token_y Balance of token Y for the trader
    /// @return claimable Status indicating whether the user's orders can be automatically claimed from other addresses
    function getTraderBalance(address address_) external view returns (uint128, uint128, bool) {
        Trader memory trader = traders[address_];
        if (trader.trader_id == 0) {
            trader.claimable = true;  // true by default
        }
        return (trader.token_x, trader.token_y, trader.claimable);
    }

    /// @notice Allows the administrator to change the market maker address
    /// @param _marketmaker The new address of the market maker
    /// @param _should_invoke_on_trade Flag indicating that the market maker must implement ITradeConsumer
    /// @param _admin_commission_rate The commission rate for the administrator
    /// @dev If the market maker address is null, it can be set by anyone
    function changeMarketMaker(
        address _marketmaker,
        bool _should_invoke_on_trade,
        uint64 _admin_commission_rate
    ) external nonReentrant {
        address administrator = owner();
        require(msg.sender == administrator, Errors.Forbidden());

        _transferFees();

        require(_admin_commission_rate <= 1e18, Errors.InvalidCommissionRate());
        admin_commission_rate = _admin_commission_rate;

        address marketmaker = marketmaker_config.marketmaker;

        if (marketmaker != _marketmaker) {
            emit MarketMakerChanged(_marketmaker, marketmaker);
        }

        _changeMarketMaker(_marketmaker, _should_invoke_on_trade);
    }

    /// @notice The new owner accepts the ownership transfer.
    function acceptOwnership() public override nonReentrant {
        _transferFees();
        super.acceptOwnership();
    }

    /// @notice Sets the claimable status for the trader calling the function
    /// @param status The new claimable status
    function setClaimableStatus(bool status) external nonReentrant whenNotPaused {
        _getOrCreateTraderId(msg.sender);
        traders[msg.sender].claimable = status;
        emit ClaimableStatusChanged(msg.sender, status);
    }

    /// @param isAsk Indicates if the order is a sell order (true) or a buy order (false)
    /// @param quantity The amount of tokens to order divided by the scaling factor. This amount would be multiplied by the scaling factor inside the function
    /// @param price The price per token in the order, no more than 6 significant digits
    /// @param max_commission The maximum commission, which may include passive and/or aggressive fee
    /// @param market_only Indicates if the order should be executed only against existing orders in the market
    /// @param post_only Indicates if the order should be posted only and not executed immediately
    /// @param transfer_executed_tokens Flag for transferring executed tokens (true) or crediting them to the balance (false)
    /// @param expires The time at which the order will expire
    /// @return order_id The identifier of the created order
    /// @return executed_shares Number of executed shares
    /// @return executed_value Executed value
    /// @return aggressive_fee Aggressive fee
    function placeOrder(
        bool isAsk,
        uint128 quantity,
        uint72 price,
        uint128 max_commission,
        bool market_only,
        bool post_only,
        bool transfer_executed_tokens,
        uint256 expires
    ) public payable ensure(expires) whenNotPaused returns (
        uint64 order_id,
        uint128 executed_shares,
        uint128 executed_value,
        uint128 aggressive_fee
    ) {
        ExecutionResult memory result = _placeOrder(
            isAsk,
            quantity,
            price,
            max_commission,
            market_only,
            post_only,
            transfer_executed_tokens
        );
        order_id = result.order_id;
        executed_shares = result.executed_shares;
        executed_value = result.executed_value;
        aggressive_fee = result.aggressive_fee;

        _invokeTradeConsumerCallback(result.executed_shares, isAsk);
    }

    /// @param isAsk Indicates if the order is a sell order (true) or a buy order (false)
    /// @param quantity The amount of tokens to order divided by the scaling factor. This amount would be multiplied by the scaling factor inside the function
    /// @param price The price per token in the order, no more than 6 significant digits
    /// @param max_commission The maximum commission, which may include passive and/or aggressive fee
    /// @param amount_to_approve The amount of tokens to approve divided by the scaling factor. This amount would be multiplied by the scaling factor inside the function
    /// @param market_only Indicates if the order should be executed only against existing orders in the market
    /// @param post_only Indicates if the order should be posted only and not executed immediately
    /// @param transfer_executed_tokens Flag for transferring executed tokens (true) or crediting them to the balance (false)
    /// @param expires The time at which the order will expire
    /// @param v The component V of the signature
    /// @param r The component R of the signature
    /// @param s The component S of the signature
    /// @return order_id The identifier of the created order
    /// @return executed_shares Number of executed shares
    /// @return executed_value Executed value
    /// @return aggressive_fee Aggressive fee
    function placeOrder(
        bool isAsk,
        uint128 quantity,
        uint72 price,
        uint128 max_commission,
        uint128 amount_to_approve,
        bool market_only,
        bool post_only,
        bool transfer_executed_tokens,
        uint256 expires,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public payable ensure(expires) whenNotPaused returns (
        uint64 order_id,
        uint128 executed_shares,
        uint128 executed_value,
        uint128 aggressive_fee
    ) {
        address token_address = isAsk
            ? address(token_x)
            : address(token_y);
        IERC20Permit token = IERC20Permit(token_address);
        uint256 value = isAsk
            ? amount_to_approve * scaling_factor_token_x
            : amount_to_approve * scaling_factor_token_y;

        try token.permit(msg.sender, address(this), value, expires, v, r, s) {} catch {}

        ExecutionResult memory result = _placeOrder(
            isAsk,
            quantity,
            price,
            max_commission,
            market_only,
            post_only,
            transfer_executed_tokens
        );
        order_id = result.order_id;
        executed_shares = result.executed_shares;
        executed_value = result.executed_value;
        aggressive_fee = result.aggressive_fee;

        _invokeTradeConsumerCallback(result.executed_shares, isAsk);
    }

    /// @notice Places a market order with a target token Y
    /// @param isAsk Order direction: true for sell (ask), false for buy (bid)
    /// @param target_token_y_value Target value of token Y for execution
    /// @param price Order price
    /// @param max_commission Maximum commission
    /// @param transfer_executed_tokens Flag for transferring executed tokens
    /// @param expires Time when the order expires
    /// @return executed_shares Number of executed shares
    /// @return executed_value Executed value
    /// @return aggressive_fee Aggressive fee
    function placeMarketOrderWithTargetValue(
        bool isAsk,
        uint128 target_token_y_value,
        uint72 price,
        uint128 max_commission,
        bool transfer_executed_tokens,
        uint256 expires
    ) public payable ensure(expires) whenNotPaused returns (
        uint128 executed_shares,
        uint128 executed_value,
        uint128 aggressive_fee
    ) {
        uint24 packed_price = FP24.packFP24(price);
        uint64 price_id = _genPriceId(packed_price, isAsk);

        uint128 order_quantity;
        uint128 total_fees_and_payout_rate = total_aggressive_commission_rate + passive_order_payout_rate;
        if (isAsk) {
            uint128 adjusted_token_y_value = uint256(target_token_y_value).mulDivDown(
                wad, wad - total_fees_and_payout_rate
            ).toUint128();
            (order_quantity, ) = bidTrie.previewExecuteRight(
                price_id, type(uint128).max, adjusted_token_y_value
            );
        } else {
            uint128 adjusted_token_y_value = uint256(target_token_y_value).mulDivDown(
                wad, wad + total_fees_and_payout_rate
            ).toUint128();
            (order_quantity, ) = askTrie.previewExecuteRight(
                price_id, type(uint128).max, adjusted_token_y_value
            );
        }

        ExecutionResult memory result = _placeOrder(
            isAsk,
            order_quantity,
            price,
            max_commission,
            true,  // market_only
            false, // post_only
            transfer_executed_tokens
        );
        executed_shares = result.executed_shares;
        executed_value = result.executed_value;
        aggressive_fee = result.aggressive_fee;

        _invokeTradeConsumerCallback(result.executed_shares, isAsk);
    }

    /// @notice Places a market order with a target token Y value using EIP-2612 permit
    /// @param isAsk Order direction: true for sell (ask), false for buy (bid)
    /// @param target_token_y_value Target value of token Y for execution
    /// @param price Order price
    /// @param max_commission Maximum commission
    /// @param amount_to_approve The amount of tokens to approve divided by the scaling factor. This amount would be multiplied by the scaling factor inside the function
    /// @param transfer_executed_tokens Flag for transferring executed tokens
    /// @param expires Time when the order expires
    /// @param v Signature component v
    /// @param r Signature component r
    /// @param s Signature component s
    /// @return executed_shares Number of executed shares
    /// @return executed_value Executed value
    /// @return aggressive_fee Aggressive fee
    function placeMarketOrderWithTargetValue(
        bool isAsk,
        uint128 target_token_y_value,
        uint72 price,
        uint128 max_commission,
        uint128 amount_to_approve,
        bool transfer_executed_tokens,
        uint256 expires,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external payable ensure(expires) whenNotPaused returns (
        uint128 executed_shares,
        uint128 executed_value,
        uint128 aggressive_fee
    ) {
        address token_address = isAsk
            ? address(token_x)
            : address(token_y);
        IERC20Permit token = IERC20Permit(token_address);
        uint256 value = isAsk
            ? amount_to_approve * scaling_factor_token_x
            : amount_to_approve * scaling_factor_token_y;

        try token.permit(msg.sender, address(this), value, expires, v, r, s) {} catch {}
        
        return placeMarketOrderWithTargetValue(
            isAsk,
            target_token_y_value,
            price,
            max_commission,
            transfer_executed_tokens,
            expires
        );
    }

    /// @notice Allows a trader to claim or fully cancel the order
    /// @param order_id The identifier of the order to claim
    /// @param only_claim A flag indicating that only the executed part of the order should be sent 
    /// without unnecessarily removing the order.
    /// @param transfer_tokens If true, transfers the tokens to the trader's address
    /// @param expires The time at which the order will expire
    function claimOrder(
        uint64 order_id,
        bool only_claim,
        bool transfer_tokens,
        uint256 expires
    ) public ensure(expires) nonReentrant whenNotPaused {
        _calculateAndSendOrderPayout(msg.sender, order_id, only_claim, transfer_tokens);
    }

    /// @notice Allows batch claiming of orders for multiple addresses
    /// @param addresses Array of trader addresses claiming orders
    /// @param order_ids Array of order IDs corresponding to trader addresses
    /// @param only_claim A flag indicating that only the executed part of the order should be sent 
    /// without unnecessarily removing the order.
    /// @param expires The time at which the order will expire
    function batchClaim(
        address[] memory addresses,
        uint64[] memory order_ids,
        bool only_claim,
        uint256 expires
    ) external ensure(expires) nonReentrant whenNotPaused {
        require(addresses.length == order_ids.length, Errors.ArrayLengthMismatch());
        for (uint i = 0; i < addresses.length; i++) {
            _calculateAndSendOrderPayout(addresses[i], order_ids[i], only_claim, true);
        }
    }

    /// @notice Claiming/canceling an existing order and creating the new one with the same (bid/ask) direction
    /// @param old_order_id The identifier of the order to modify
    /// @param new_quantity The amount of tokens for the new order
    /// @param new_price The price per token for new order, no more than 6 significant digits
    /// @param max_commission The maximum commission, which may include passive and/or aggressive fee
    /// @param post_only Indicates if the order should be posted only and not executed immediately
    /// @param transfer_tokens If true, tokens will be transferred to the order owner
    /// @param expires The time at which the order will expire
    function changeOrder(
        uint64 old_order_id,
        uint128 new_quantity,
        uint72 new_price,
        uint128 max_commission,
        bool post_only,
        bool transfer_tokens,
        uint256 expires
    ) public whenNotPaused returns (uint64 order_id) {
        if (old_order_id > 0x1) {
            claimOrder(old_order_id, false, transfer_tokens, expires);
        }
        if (new_quantity > 0) {
            bool isAsk = (old_order_id & uint64(0x1)) == 0x1;
            (order_id, , , ) = placeOrder(
                isAsk,
                new_quantity,
                new_price,
                max_commission,
                false,
                post_only,
                transfer_tokens,
                expires
            );
        }
    }

    /// @notice Allows batch placing or changing of orders for multiple addresses
    /// @param order_ids Array of order IDs or directions corresponding to orders
    /// @param quantities Array of amounts of tokens for the new orders
    /// @param prices Array of prices per token for new orders, no more than 6 significant digits for every price
    /// @param max_commission_per_order The maximum commission per order, which may include passive and/or aggressive fee
    /// @param post_only Indicates if the order should be posted only and not executed immediately
    /// @param transfer_tokens If true, tokens will be transferred to the order owners
    /// @param expires The time at which the order will expire
    /// @return new_order_ids Array of new order IDs
    function batchChangeOrder(
        uint64[] memory order_ids,
        uint128[] memory quantities,
        uint72[] memory prices,
        uint128 max_commission_per_order,
        bool post_only,
        bool transfer_tokens,
        uint256 expires
    ) external ensure(expires) whenNotPaused returns (uint64[] memory new_order_ids) {
        require(
            order_ids.length == quantities.length && order_ids.length == prices.length,
            Errors.ArrayLengthMismatch()
        );
        new_order_ids = new uint64[](order_ids.length);
        for (uint i = 0; i < order_ids.length; i++) {
            new_order_ids[i] = changeOrder(
                order_ids[i],
                quantities[i],
                prices[i],
                max_commission_per_order,
                post_only,
                transfer_tokens,
                expires
            );
        }
        return new_order_ids;
    }

    /// @notice Deposits the specified amounts of token X and token Y into the trader's balance on the contract
    /// @param token_x_amount The amount of token X to deposit
    /// @param token_y_amount The amount of token Y to deposit
    function depositTokens(
        uint128 token_x_amount,
        uint128 token_y_amount
    ) public nonReentrant whenNotPaused {
        uint256 actual_token_x_to_receive = 0;
        uint256 actual_token_y_to_receive = 0;

        if (token_x_amount > 0) {
            traders[msg.sender].token_x += token_x_amount;
            actual_token_x_to_receive = _convertToActualTokenXAmount(token_x_amount);
        }

        if (token_y_amount > 0) {
            traders[msg.sender].token_y += token_y_amount;
            actual_token_y_to_receive = _convertToActualTokenYAmount(token_y_amount);
        }

        // actual erc20 transactions
        if (actual_token_x_to_receive > 0) {
            _safeTansferFromWithBalanceCheck(token_x, msg.sender, address(this), actual_token_x_to_receive);
        }
        if (actual_token_y_to_receive > 0) {
            _safeTansferFromWithBalanceCheck(token_y, msg.sender, address(this), actual_token_y_to_receive);
        }

        emit Deposited(msg.sender, token_x_amount, token_y_amount);
    }

    /// @notice Deposits the specified amounts of token X and token Y into the trader's balance on the contract
    /// @param token_x_amount The amount of token X to deposit
    /// @param token_y_amount The amount of token Y to deposit
    /// @param v_x The component V of the signature for token X
    /// @param r_x The component R of the signature for token X
    /// @param s_x The component S of the signature for token X
    /// @param v_y The component V of the signature for token Y
    /// @param r_y The component R of the signature for token Y
    /// @param s_y The component S of the signature for token Y
    /// @param expires The time at which the signatures will expire
    function depositTokens(
        uint128 token_x_amount,
        uint128 token_y_amount,
        uint8 v_x,
        bytes32 r_x,
        bytes32 s_x,
        uint8 v_y,
        bytes32 r_y,
        bytes32 s_y,
        uint256 expires
    ) external whenNotPaused {
        if (token_x_amount > 0) {
            IERC20Permit token_x_permit = IERC20Permit(address(token_x));
            try token_x_permit.permit(
                msg.sender,
                address(this),
                token_x_amount * scaling_factor_token_x,
                expires,
                v_x,
                r_x,
                s_x
            ) {} catch {}
        }

        if (token_y_amount > 0) {
            IERC20Permit token_y_permit = IERC20Permit(address(token_y));
            try token_y_permit.permit(
                msg.sender,
                address(this),
                token_y_amount * scaling_factor_token_y,
                expires,
                v_y,
                r_y,
                s_y
            ) {} catch {}
        }

        depositTokens(token_x_amount, token_y_amount);
    }

    /// @notice Withdraws specified amounts of token X and token Y from the trader's balance on the contract
    /// @param withdraw_all If set to true, withdraws all the trader's tokens; otherwise, uses the specified amounts
    /// @param token_x_amount The amount of token X to withdraw (ignored if withdraw_all = true)
    /// @param token_y_amount The amount of token Y to withdraw (ignored if withdraw_all = true)
    function withdrawTokens(
        bool withdraw_all,
        uint128 token_x_amount,
        uint128 token_y_amount
    ) external nonReentrant whenNotPaused {
        uint256 actual_token_x_to_send = 0;
        uint256 actual_token_y_to_send = 0;

        uint128 clients_shares = traders[msg.sender].token_x;
        uint128 clients_value = traders[msg.sender].token_y;

        if (withdraw_all) {
            token_x_amount = clients_shares;
            token_y_amount = clients_value;
        }

        if (token_x_amount > 0) {
            require(clients_shares >= token_x_amount, Errors.InsufficientTokenXBalance());
            unchecked {
                traders[msg.sender].token_x = clients_shares - token_x_amount;
            }

            actual_token_x_to_send = _convertToActualTokenXAmount(token_x_amount);
        }

        if (token_y_amount > 0) {
            require(clients_value >= token_y_amount, Errors.InsufficientTokenYBalance());
            unchecked {
                traders[msg.sender].token_y = clients_value - token_y_amount;
            }

            actual_token_y_to_send = _convertToActualTokenYAmount(token_y_amount);
        }

        // actual erc20 transactions
        if (actual_token_x_to_send > 0) {
            token_x.safeTransfer(msg.sender, actual_token_x_to_send);
        }
        if (actual_token_y_to_send > 0) {
            token_y.safeTransfer(msg.sender, actual_token_y_to_send);
        }

        emit Withdrawn(msg.sender, token_x_amount, token_y_amount);
    }

    /// @notice Returns the accumulated fees.
    /// @return The actual accumulated fees.
    function getAccumulatedFees() external view returns (uint256) {
        return (accumulated_fees - 1);
    }

    /// @notice Transfers the accumulated commissions to the administrator and marketmaker.
    function transferFees() external whenNotPaused {
        _transferFees();
    }

    /// @notice Pause contract
    /// @dev Can be called by administrator and pauser
    function pause() external {
        require(msg.sender == owner() || msg.sender == pauser, Errors.Forbidden());
        _pause();
    }

    /// @notice Unpause contract
    /// @dev Can be called by administrator
    function unpause() external onlyOwner {
        _unpause();
    }

    /// @notice Change pauser by administrator
    /// @param pauser_ New pauser address
    /// @dev Can be called only by administrator
    function changePauser(address pauser_) external onlyOwner {
        if (pauser == pauser_) {
            return;
        }

        emit PauserChanged(pauser_, pauser);
        pauser = pauser_;
    }

    /// @notice Extracts the direction and price from the given order ID.
    /// @param order_id The unique identifier of the order.
    /// @return isAsk A boolean indicating if the order is an ask (true) or a bid (false).
    /// @return price The price of the order.
    function _extractDirectionAndPrice(uint64 order_id) internal pure returns (bool isAsk, uint72 price) {
        // Orders with an order_id ending in 1 are asks, and those ending in 0 are bids.
        isAsk = (order_id & uint64(0x1)) == 0x1;

        uint24 packed_price = uint24(order_id >> (nonce_length + 1));
        if (isAsk) {
            unchecked{
                packed_price = type(uint24).max - packed_price;
            }
        }
        price = FP24.unPackFP24(packed_price);
    }

    function _authorizeUpgrade(address) internal override onlyOwner {}

    /// @param isAsk Indicates if the order is a sell order (true) or a buy order (false)
    /// @param quantity The amount of tokens to order divided by the scaling factor. This amount would be multiplied by the scaling factor inside the function
    /// @param price The price per token in the order, no more than 6 significant digits
    /// @param max_commission The maximum commission, which may include passive and/or aggressive fee
    /// @param market_only Indicates if the order should be executed only against existing orders in the market
    /// @param post_only Indicates if the order should be posted only and not executed immediately
    /// @param transfer_executed_tokens Flag for transferring executed tokens (true) or crediting them to the balance (false)
    /// @return execution_result ExecutionResult structure containing information about the executed order
    function _placeOrder(
        bool isAsk,
        uint128 quantity,
        uint72 price,
        uint128 max_commission,
        bool market_only,
        bool post_only,
        bool transfer_executed_tokens
    ) internal nonReentrant returns (ExecutionResult memory execution_result) {
        require(!market_only || !post_only, Errors.MarketOnlyAndPostOnlyFlagsConflict());
        require(quantity != 0 && price != 0, Errors.ZeroTokenTransferNotAllowed());

        require(
            msg.value == 0 || (supports_native_eth && (isAsk == is_token_x_weth)),
            Errors.NativeETHDisabled()
        );

        uint24 packed_price = FP24.packFP24(price);
        uint64 price_id = _genPriceId(packed_price, isAsk);

        if (post_only) {
            bool aggressive_trade = false;
            if (isAsk) {
                if (price_id <= bidTrie.best_offer()) {
                    aggressive_trade = true;
                }
            } else {
                if (price_id <= askTrie.best_offer()) {
                    aggressive_trade = true;
                }
            }
            if (aggressive_trade) {
                if (msg.value > 0) {
                    _sendETH(msg.sender, msg.value);
                }

                emit OrderPlaced(
                    msg.sender,
                    0x0, // order_id
                    isAsk,
                    quantity,
                    price,
                    0, // passive_shares,
                    0, // passive_fee
                    0, // executed_shares
                    0, // executed_value
                    0, // aggressive_fee
                    false, // market_only,
                    true   // post_only
                );

                return execution_result;
            }
        }

        uint128 x_to_send;
        uint128 y_to_send;

        uint128 x_to_receive;
        uint128 y_to_receive;

        // processing aggressive part
        uint128 executed_shares;
        uint128 executed_value;
        uint128 aggressive_fee;
        if (!post_only) {
            if (isAsk) {
                (executed_shares, executed_value) = bidTrie.executeRight(price_id, quantity);

                x_to_receive = executed_shares;
                y_to_send = executed_value;
            } else {
                (executed_shares, executed_value) = askTrie.executeRight(price_id, quantity);

                x_to_send = executed_shares;
                y_to_receive = executed_value;
            }
            aggressive_fee = _calculateAndTransferTotalAggressiveFeesAndPayout(executed_value);
            y_to_receive += aggressive_fee;

            if (executed_shares > 0){
                require(watch_dog.isChainStable(), Errors.ChainIsUnstableForTrades());
            }

            execution_result.executed_shares = executed_shares;
            execution_result.executed_value = executed_value;
            execution_result.aggressive_fee = aggressive_fee;
        }

        // processing passive part
        uint64 order_id;
        uint128 passive_shares = !market_only ? (quantity - executed_shares) : 0;
        uint128 passive_fee;
        if (passive_shares > 0) {
            order_id = _genOrderId(packed_price, isAsk);
            uint64 trader_id = _getOrCreateTraderId(msg.sender);
            uint128 total_value = passive_shares * price;
            passive_fee = _calculateTotalPassiveCommission(total_value);
            if (isAsk) {
                askTrie.addOrder(trader_id, order_id, passive_shares, total_value);

                x_to_receive += passive_shares;
            } else {
                bidTrie.addOrder(trader_id, order_id, passive_shares, total_value);
                // Orders with an order_id ending in 1 are asks, and those ending in 0 are bids.
                order_id ^= 0x1;

                y_to_receive += total_value + passive_fee;
            }
            execution_result.order_id = order_id;
        }

        require(passive_fee + aggressive_fee <= max_commission, Errors.MaxCommissionFailure());

        emit OrderPlaced(
            msg.sender,
            order_id,
            isAsk,
            quantity,
            price,
            passive_shares,
            passive_fee,
            executed_shares,
            executed_value,
            aggressive_fee,
            market_only,
            post_only
        );

        // actual token transfer
        _handleTokenTransfer(
            msg.sender,
            transfer_executed_tokens,
            x_to_send,
            x_to_receive,
            y_to_send,
            y_to_receive
        );
    }

    /// @notice Change market maker address and should invoke on trade flag
    /// @param _marketmaker New market maker address
    /// @param _should_invoke_on_trade Flag indicating that the market maker must implement ITradeConsumer
    function _changeMarketMaker(
        address _marketmaker,
        bool _should_invoke_on_trade
    ) internal {
        if (_should_invoke_on_trade) {
            IERC165 maker = IERC165(_marketmaker);
            if (!maker.supportsInterface(type(ITradeConsumer).interfaceId)) {
                revert Errors.InvalidMarketMaker();
            }
        }

        require(_marketmaker != address(0), Errors.AddressIsZero());

        marketmaker_config = MarketMakerConfig ({
            marketmaker: _marketmaker,
            should_invoke_on_trade: _should_invoke_on_trade
        });
    }

    /// @notice Transfers the accumulated commissions to the administrator and marketmaker.
    function _transferFees() internal {
        uint256 total_fees = (accumulated_fees - 1) / wad;
        accumulated_fees -= total_fees * wad;

        if (total_fees == 0) {
            return;
        }

        address administrator = owner();

        uint256 admin_fees = total_fees.mulWadUp(admin_commission_rate);

        uint256 marketmaker_fees = total_fees - admin_fees;
        if (marketmaker_fees > 0) {
            traders[marketmaker_config.marketmaker].token_y += marketmaker_fees.toUint128();
        }

        uint256 actual_token_y_to_send = _convertToActualTokenYAmount(admin_fees.toUint128());
        if (actual_token_y_to_send > 0){
            token_y.safeTransfer(administrator, actual_token_y_to_send);
        }
    }

    /// @notice Retrieves or creates a trader ID for a given address.
    /// @param trader_address The address of the trader for whom the ID is to be retrieved or created.
    /// @return trader_id The trader ID associated with the given address.
    function _getOrCreateTraderId(address trader_address) internal returns (uint64 trader_id) {
        trader_id = traders[trader_address].trader_id;
        if (trader_id == 0) {
            // initialize a new Trader structure
            trader_id = ++last_used_trader_id;

            traders[trader_address].trader_id = trader_id;
            traders[trader_address].claimable = true;
        }
    }

    /// @notice Calculates and transfers the total fees and payout.
    /// @param executed_value The value of the executed order.
    /// @return The total aggressive fees calculated and transferred.
    function _calculateAndTransferTotalAggressiveFeesAndPayout(uint128 executed_value) internal 
        returns (uint128) {

        if (executed_value == 0) {
            return 0;
        }

        uint128 total_fees_and_payout_rate = total_aggressive_commission_rate + passive_order_payout_rate;
        if (total_fees_and_payout_rate == 0) {
            return 0;
        }

        uint256 total_aggressive_fees_and_payout = uint256(executed_value).mulWadUp(
            total_fees_and_payout_rate
        );

        accumulated_fees += (
            total_aggressive_fees_and_payout * wad
            - executed_value * uint256(passive_order_payout_rate)
            + executed_value * uint256(total_passive_commission_rate)
        );

        return total_aggressive_fees_and_payout.toUint128();
    }

    /// @notice Calculates the total passive commission for a given value.
    /// @param total_value The total value for which the passive commission is to be calculated.
    /// @return The total passive commission calculated.
    function _calculateTotalPassiveCommission(uint128 total_value) internal view returns (uint128) {
        if (total_passive_commission_rate == 0){
            return 0;
        }
        uint256 total_passive_commissions = uint256(total_value).mulWadUp(total_passive_commission_rate);
        return total_passive_commissions.toUint128();
    }

    /// @notice Calculates the passive order payout or refunded commissions based on the remaining shares.
    /// @param isAsk A boolean flag indicating whether the order is an ask (true) or a bid (false).
    /// @param price The price of the order.
    /// @param remain_shares The remaining shares of the order.
    /// @param total_shares The total shares of the order.
    /// @return refund_value The calculated passive payout or refunded commissions.
    /// @return fee_rounding_error The rounding error in the fee calculation.
    function _calculatePassiveOrderPayoutOrRefundedCommissions(
        bool isAsk,
        uint72 price,
        uint128 remain_shares,
        uint128 total_shares
    ) internal view returns(uint128 refund_value, uint256 fee_rounding_error) {
        if (passive_order_payout_rate > 0) {
            uint256 executed_value = price * (total_shares - remain_shares);
            uint256 passive_payout = executed_value.mulWadDown(passive_order_payout_rate);
            refund_value = passive_payout.toUint128();
            fee_rounding_error = executed_value * passive_order_payout_rate - refund_value * wad;
        } else {
            // Refunding part of the passive commission.
            uint128 executed_value = price * (total_shares - remain_shares);           
            uint256 executed_fees = _calculateTotalPassiveCommission(executed_value);
            fee_rounding_error = executed_fees * wad - executed_value * total_passive_commission_rate;

            if (!isAsk) {
                uint128 total_value = price * total_shares;
                uint128 total_fees = _calculateTotalPassiveCommission(total_value);
                refund_value = total_fees - executed_fees.toUint128();
            }
        }
    }

    /// @notice Decrements the nonce and returns the new value, reverts if nonce reaches zero.
    /// @dev This function is used to ensure unique order identifiers by decrementing the nonce.
    ///      If the nonce reaches zero, the function will revert to prevent identifier collisions.
    /// @return c_nonce The decremented nonce value.
    function _getAndUpdateNonce() internal returns (uint64 c_nonce) {
        c_nonce = nonce;
        unchecked {
            nonce -= 1;
        }
        require(nonce > 0, Errors.NonceExhaustedFailure());
    }
    
    /// @notice Generates a unique price identifier based on the given price and order type.
    /// @param packed_price The FP2 price of the order.
    /// @param isAsk A boolean indicating whether the order is an ask (true) or a bid (false).
    /// @return price_id The generated unique identifier for the price.
    function _genPriceId(uint24 packed_price, bool isAsk) internal pure returns (uint64 price_id) {
        if (isAsk) {
            price_id = uint64(packed_price) << nonce_length;
        } else {
            uint64 max_price = type(uint24).max;
            unchecked {
                price_id = (max_price - packed_price) << nonce_length;
            }
        }
        price_id = price_id << 1 ^ 0x1;
    }
    
    /// @notice Generates a unique order identifier based on the price and order type.
    /// @param packed_price The FP24 price of the order.
    /// @param isAsk A boolean indicating whether the order is an ask (true) or a bid (false).
    /// @return order_id The generated unique identifier for the order.
    function _genOrderId(uint24 packed_price, bool isAsk) internal returns (uint64 order_id) {
        uint64 c_nonce = _getAndUpdateNonce();
        if (isAsk) {
            unchecked {
                order_id = ((uint64(type(uint24).max - packed_price) << nonce_length) | c_nonce);
            }
        } else {
            order_id = ((uint64(packed_price) << nonce_length) | c_nonce);
        }
        order_id = order_id << 1 ^ 0x1;
    }
    
    /// @notice Converts the amount of token X from a simplified representation to the actual ERC20 amount.
    /// @dev Multiplies the amount of token X by the scaling factor to obtain the actual amount.
    /// @param token The amount of token X in a simplified representation.
    /// @return Returns the actual amount of token X after scaling.
    function _convertToActualTokenXAmount(uint128 token) internal view returns (uint256) {
        return token * scaling_factor_token_x;
    }

    /// @notice Converts the amount of token Y from a simplified representation to the actual ERC20 amount.
    /// @dev Multiplies the amount of token Y by the scaling factor to obtain the actual amount.
    /// @param token The amount of token Y in a simplified representation.
    /// @return Returns the actual amount of token Y after scaling.
    function _convertToActualTokenYAmount(uint128 token) internal view returns (uint256) {
        return token * scaling_factor_token_y;
    }

    /// @dev Calculates the payout for an order and, if necessary, transfers the tokens.
    /// @param owner The owner of the order for which the payout is being calculated.
    /// @param order_id The identifier of the order for which the payout is being calculated.
    /// @param only_claim A flag indicating that only the executed part of the order should be sent 
    /// without unnecessarily removing the order.
    /// @param transfer_tokens If true, tokens will be transferred to the order owner.
    function _calculateAndSendOrderPayout(
        address owner,
        uint64 order_id,
        bool only_claim,
        bool transfer_tokens
    ) internal {
        uint64 trader_id = _getOrCreateTraderId(owner);
        require(traders[owner].claimable || (msg.sender == owner), Errors.ClaimNotAllowed());

        (bool isAsk, uint72 price) = _extractDirectionAndPrice(order_id);

        uint128 x_to_send;
        uint128 y_to_send;

        uint128 total_shares;
        uint128 remain_shares;

        uint128 order_shares_remaining = 0;

        if (isAsk) {
            if (only_claim) {
                uint128 executed_shares;
                (executed_shares, order_shares_remaining) = askTrie.claimExecuted(order_id, trader_id);

                total_shares = executed_shares;
                remain_shares = 0;
            } else {
                (total_shares, remain_shares) = askTrie.removeOrder(order_id, trader_id);
            }
            
            uint128 executed_value = (total_shares - remain_shares) * price;
            uint128 fees = _calculateTotalPassiveCommission(executed_value);

            x_to_send = remain_shares;
            y_to_send = executed_value - fees;
        } else {
            if (only_claim) {
                uint128 executed_shares;
                (executed_shares, order_shares_remaining) = bidTrie.claimExecuted(order_id|0x1, trader_id);

                total_shares = executed_shares;
                remain_shares = 0;
            } else {
                (total_shares, remain_shares) = bidTrie.removeOrder(order_id|0x1, trader_id);
            }

            x_to_send = total_shares - remain_shares;
            y_to_send = remain_shares * price;
        }

        (uint128 passive_payout, uint256 fee_rounding_error) = _calculatePassiveOrderPayoutOrRefundedCommissions(
            isAsk, price, remain_shares, total_shares
        );
        emit OrderClaimed(order_id, order_shares_remaining, x_to_send, y_to_send, passive_payout, only_claim);
        y_to_send += passive_payout;
        accumulated_fees += fee_rounding_error;

        require((remain_shares == 0) || (msg.sender == owner), Errors.OnlyOwnerCanCancelOrders());

        _handleTokenTransfer(owner, transfer_tokens, x_to_send, 0, y_to_send, 0);
    }

    /// @dev Handles the transfer of tokens during the execution or claiming/cancelling of an order.
    /// @param client The address of the trader executing the order.
    /// @param transfer_tokens A boolean flag indicating whether to transfer the tokens immediately.
    /// @param x_to_send The amount of token X to send.
    /// @param x_to_receive The amount of token X to receive.
    /// @param y_to_send The amount of token Y to send.
    /// @param y_to_receive The amount of token Y to receive.
    function _handleTokenTransfer(
        address client,
        bool transfer_tokens,
        uint128 x_to_send,
        uint128 x_to_receive,
        uint128 y_to_send,
        uint128 y_to_receive
    ) internal {
        uint256 actual_token_x_to_send = 0;
        uint256 actual_token_x_to_receive = 0;

        uint256 actual_token_y_to_send = 0;
        uint256 actual_token_y_to_receive = 0;

        IWETH weth = is_token_x_weth ? IWETH(address(token_x)) : IWETH(address(token_y));
        
        if (msg.value > 0) {
            if (is_token_x_weth) {
                uint128 extra_x = (msg.value / scaling_factor_token_x).toUint128();
                uint256 actual_value = _convertToActualTokenXAmount(extra_x);

                x_to_send += extra_x;

                uint256 rounded_value = msg.value - actual_value;
                actual_token_x_to_send = rounded_value;
            } else {
                uint128 extra_y = (msg.value / scaling_factor_token_y).toUint128();
                uint256 actual_value = _convertToActualTokenYAmount(extra_y);

                y_to_send += extra_y;

                uint256 rounded_value = msg.value - actual_value;
                actual_token_y_to_send = rounded_value;
            }
        }

        // processing token_x
        if (x_to_send > x_to_receive) {
            uint128 shares_to_send;
            unchecked {
                shares_to_send = x_to_send - x_to_receive;
            }
            if (transfer_tokens) {
                actual_token_x_to_send += _convertToActualTokenXAmount(shares_to_send);
            } else {
                traders[client].token_x += shares_to_send;
                emit Deposited(client, shares_to_send, 0);
            }
        } else if (x_to_send < x_to_receive) {
            uint128 shares_to_receive;
            unchecked {
                shares_to_receive = x_to_receive - x_to_send;
            }
            uint128 clients_shares = traders[client].token_x;
            if (clients_shares >= shares_to_receive) {
                unchecked {
                    traders[client].token_x -= shares_to_receive;
                }
                emit Withdrawn(client, shares_to_receive, 0);
            } else {
                unchecked {
                    shares_to_receive -= clients_shares;
                }
                actual_token_x_to_receive = _convertToActualTokenXAmount(shares_to_receive);

                traders[client].token_x = 0;
                emit Withdrawn(client, clients_shares, 0);
            }
        }

        // processing token_y
        if (y_to_send > y_to_receive) {
            uint128 value_to_send;
            unchecked {
                value_to_send = y_to_send - y_to_receive;
            }
            if (transfer_tokens) {
                actual_token_y_to_send += _convertToActualTokenYAmount(value_to_send);
            } else {
                traders[client].token_y += value_to_send;
                emit Deposited(client, 0, value_to_send);
            }
        } else if (y_to_send < y_to_receive) {
            uint128 value_to_receive;
            unchecked {
                value_to_receive = y_to_receive - y_to_send;
            }
            uint128 clients_value = traders[client].token_y;
            if (clients_value >= value_to_receive) {
                unchecked {
                    traders[client].token_y -= value_to_receive;
                }
                emit Withdrawn(client, 0, value_to_receive);
            } else {
                unchecked {
                    value_to_receive -= clients_value;
                }
                actual_token_y_to_receive = _convertToActualTokenYAmount(value_to_receive);

                traders[client].token_y = 0;
                emit Withdrawn(client, 0, clients_value);
            }
        }

        // Withdrawing WETH
        if (supports_native_eth) {
            uint256 value_to_withdraw;

            if (is_token_x_weth && (actual_token_x_to_send > address(this).balance)) {
                value_to_withdraw = actual_token_x_to_send - address(this).balance;
            }

            if (!is_token_x_weth && (actual_token_y_to_send > address(this).balance)) {
                value_to_withdraw = actual_token_y_to_send - address(this).balance;
            }

            if (value_to_withdraw > 0) {
                weth.withdraw(value_to_withdraw);
            }
        }

        // actual erc20 transactions
        if (actual_token_x_to_send > 0) {
            if (supports_native_eth && is_token_x_weth) {
                _sendETH(client, actual_token_x_to_send);
            } else {
                token_x.safeTransfer(client, actual_token_x_to_send);
            }
        }
        if (actual_token_x_to_receive > 0) {
            _safeTansferFromWithBalanceCheck(token_x, client, address(this), actual_token_x_to_receive);
        }
        if (actual_token_y_to_send > 0) {
            if (supports_native_eth && !is_token_x_weth) {
                _sendETH(client, actual_token_y_to_send);
            } else {
                token_y.safeTransfer(client, actual_token_y_to_send);
            }
        }
        if (actual_token_y_to_receive > 0) {
            _safeTansferFromWithBalanceCheck(token_y, client, address(this), actual_token_y_to_receive);
        }

        // Depositing WETH
        if (address(this).balance > 0) {
            weth.deposit{value: address(this).balance}();
        }
    }

    /// @dev Transfer tokens safely with balance check
    /// @param token Token contract
    /// @param from The address from which tokens are sent
    /// @param to The address to which tokens are sent
    /// @param value Amount of tokens
    function _safeTansferFromWithBalanceCheck(IERC20 token, address from, address to, uint256 value) internal {
        uint256 balance_before = token.balanceOf(address(this));
        token.safeTransferFrom(from, to, value);
        uint256 balance_after = token.balanceOf(address(this));
        require(balance_after - balance_before == value, Errors.InvalidTransfer());
    }

    /// @notice Sends ETH to the specified address
    /// @dev Uses a low-level call to send ETH, which allows bypassing the 2300 gas limit imposed by transfer function
    /// @param to The recipient address for ETH
    /// @param value The amount of ETH to send (in wei)
    function _sendETH(address to, uint256 value) internal {
        (bool success, ) = to.call{value: value}("");
        require(success, Errors.TransferFailed());
    }

    /// @dev Invoke TradeConsumer onTrade callback if executed shares are greater than zero, msg.sender is not
    /// market maker and should_invoke_on_trade is true
    /// @param executed_shares Executed shares
    /// @param isAsk A boolean indicating whether the order is an ask (true) or a bid (false)
    function _invokeTradeConsumerCallback(uint128 executed_shares, bool isAsk) internal {
        if (executed_shares == 0)
            return;

        if (marketmaker_config.should_invoke_on_trade && msg.sender != marketmaker_config.marketmaker) {
            ITradeConsumer(marketmaker_config.marketmaker).onTrade(isAsk);
        }
    }
}

// SPDX-License-Identifier: BUSL-1.1
// Central Limit Order Book (CLOB) exchange
// (c) Long Gamma Labs, 2023.
pragma solidity ^0.8.26;


import {ERC1967Proxy} from "@openzeppelin/contracts/proxy/ERC1967/ERC1967Proxy.sol";


contract Proxy is ERC1967Proxy {
    constructor(address _implementation, bytes memory _data) ERC1967Proxy(_implementation, _data) {}
}

// SPDX-License-Identifier: BUSL-1.1
// Central Limit Order Book (CLOB) exchange
// (c) Long Gamma Labs, 2023.
pragma solidity ^0.8.26;


interface IOnchainCLOBFactory {
    function setDeployer(address deployer, bool allowed) external;
    function createOnchainCLOB(
        address tokenXAddress,
        address tokenYAddress,
        bool supports_native_eth,
        bool is_token_x_weth,
        uint256 scaling_token_x,
        uint256 scaling_token_y,
        address administrator,
        address marketmaker,
        address pauser,
        bool should_invoke_on_trade,
        uint64 admin_commission_rate,
        uint64 total_aggressive_commission_rate,
        uint64 total_passive_commission_rate,
        uint64 passive_order_payout
    ) external returns (address);
}

// SPDX-License-Identifier: BUSL-1.1
// Central Limit Order Book (CLOB) exchange
// (c) Long Gamma Labs, 2023.
pragma solidity ^0.8.26;


interface ITrieFactory {
    function createTrie(address lob) external returns (address);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable2Step.sol)

pragma solidity ^0.8.20;

import {OwnableUpgradeable} from "./OwnableUpgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Contract module which provides access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is specified at deployment time in the constructor for `Ownable`. This
 * can later be changed with {transferOwnership} and {acceptOwnership}.
 *
 * This module is used through inheritance. It will make available all functions
 * from parent (Ownable).
 */
abstract contract Ownable2StepUpgradeable is Initializable, OwnableUpgradeable {
    /// @custom:storage-location erc7201:openzeppelin.storage.Ownable2Step
    struct Ownable2StepStorage {
        address _pendingOwner;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Ownable2Step")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant Ownable2StepStorageLocation = 0x237e158222e3e6968b72b9db0d8043aacf074ad9f650f0d1606b4d82ee432c00;

    function _getOwnable2StepStorage() private pure returns (Ownable2StepStorage storage $) {
        assembly {
            $.slot := Ownable2StepStorageLocation
        }
    }

    event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);

    function __Ownable2Step_init() internal onlyInitializing {
    }

    function __Ownable2Step_init_unchained() internal onlyInitializing {
    }
    /**
     * @dev Returns the address of the pending owner.
     */
    function pendingOwner() public view virtual returns (address) {
        Ownable2StepStorage storage $ = _getOwnable2StepStorage();
        return $._pendingOwner;
    }

    /**
     * @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual override onlyOwner {
        Ownable2StepStorage storage $ = _getOwnable2StepStorage();
        $._pendingOwner = newOwner;
        emit OwnershipTransferStarted(owner(), newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual override {
        Ownable2StepStorage storage $ = _getOwnable2StepStorage();
        delete $._pendingOwner;
        super._transferOwnership(newOwner);
    }

    /**
     * @dev The new owner accepts the ownership transfer.
     */
    function acceptOwnership() public virtual {
        address sender = _msgSender();
        if (pendingOwner() != sender) {
            revert OwnableUnauthorizedAccount(sender);
        }
        _transferOwnership(sender);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Pausable.sol)

pragma solidity ^0.8.20;

import {ContextUpgradeable} from "../utils/ContextUpgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Contract module which allows children to implement an emergency stop
 * mechanism that can be triggered by an authorized account.
 *
 * This module is used through inheritance. It will make available the
 * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
 * the functions of your contract. Note that they will not be pausable by
 * simply including this module, only once the modifiers are put in place.
 */
abstract contract PausableUpgradeable is Initializable, ContextUpgradeable {
    /// @custom:storage-location erc7201:openzeppelin.storage.Pausable
    struct PausableStorage {
        bool _paused;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Pausable")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant PausableStorageLocation = 0xcd5ed15c6e187e77e9aee88184c21f4f2182ab5827cb3b7e07fbedcd63f03300;

    function _getPausableStorage() private pure returns (PausableStorage storage $) {
        assembly {
            $.slot := PausableStorageLocation
        }
    }

    /**
     * @dev Emitted when the pause is triggered by `account`.
     */
    event Paused(address account);

    /**
     * @dev Emitted when the pause is lifted by `account`.
     */
    event Unpaused(address account);

    /**
     * @dev The operation failed because the contract is paused.
     */
    error EnforcedPause();

    /**
     * @dev The operation failed because the contract is not paused.
     */
    error ExpectedPause();

    /**
     * @dev Initializes the contract in unpaused state.
     */
    function __Pausable_init() internal onlyInitializing {
        __Pausable_init_unchained();
    }

    function __Pausable_init_unchained() internal onlyInitializing {
        PausableStorage storage $ = _getPausableStorage();
        $._paused = false;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is not paused.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    modifier whenNotPaused() {
        _requireNotPaused();
        _;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is paused.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    modifier whenPaused() {
        _requirePaused();
        _;
    }

    /**
     * @dev Returns true if the contract is paused, and false otherwise.
     */
    function paused() public view virtual returns (bool) {
        PausableStorage storage $ = _getPausableStorage();
        return $._paused;
    }

    /**
     * @dev Throws if the contract is paused.
     */
    function _requireNotPaused() internal view virtual {
        if (paused()) {
            revert EnforcedPause();
        }
    }

    /**
     * @dev Throws if the contract is not paused.
     */
    function _requirePaused() internal view virtual {
        if (!paused()) {
            revert ExpectedPause();
        }
    }

    /**
     * @dev Triggers stopped state.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    function _pause() internal virtual whenNotPaused {
        PausableStorage storage $ = _getPausableStorage();
        $._paused = true;
        emit Paused(_msgSender());
    }

    /**
     * @dev Returns to normal state.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    function _unpause() internal virtual whenPaused {
        PausableStorage storage $ = _getPausableStorage();
        $._paused = false;
        emit Unpaused(_msgSender());
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/ReentrancyGuard.sol)

pragma solidity ^0.8.20;
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuardUpgradeable is Initializable {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant NOT_ENTERED = 1;
    uint256 private constant ENTERED = 2;

    /// @custom:storage-location erc7201:openzeppelin.storage.ReentrancyGuard
    struct ReentrancyGuardStorage {
        uint256 _status;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.ReentrancyGuard")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant ReentrancyGuardStorageLocation = 0x9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f00;

    function _getReentrancyGuardStorage() private pure returns (ReentrancyGuardStorage storage $) {
        assembly {
            $.slot := ReentrancyGuardStorageLocation
        }
    }

    /**
     * @dev Unauthorized reentrant call.
     */
    error ReentrancyGuardReentrantCall();

    function __ReentrancyGuard_init() internal onlyInitializing {
        __ReentrancyGuard_init_unchained();
    }

    function __ReentrancyGuard_init_unchained() internal onlyInitializing {
        ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage();
        $._status = NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage();
        // On the first call to nonReentrant, _status will be NOT_ENTERED
        if ($._status == ENTERED) {
            revert ReentrancyGuardReentrantCall();
        }

        // Any calls to nonReentrant after this point will fail
        $._status = ENTERED;
    }

    function _nonReentrantAfter() private {
        ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage();
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        $._status = NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage();
        return $._status == ENTERED;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC20Permit} from "../extensions/IERC20Permit.sol";
import {Address} from "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    /**
     * @dev An operation with an ERC20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data);
        if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/UUPSUpgradeable.sol)

pragma solidity ^0.8.20;

import {IERC1822Proxiable} from "@openzeppelin/contracts/interfaces/draft-IERC1822.sol";
import {ERC1967Utils} from "@openzeppelin/contracts/proxy/ERC1967/ERC1967Utils.sol";
import {Initializable} from "./Initializable.sol";

/**
 * @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an
 * {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy.
 *
 * A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is
 * reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing
 * `UUPSUpgradeable` with a custom implementation of upgrades.
 *
 * The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism.
 */
abstract contract UUPSUpgradeable is Initializable, IERC1822Proxiable {
    /// @custom:oz-upgrades-unsafe-allow state-variable-immutable
    address private immutable __self = address(this);

    /**
     * @dev The version of the upgrade interface of the contract. If this getter is missing, both `upgradeTo(address)`
     * and `upgradeToAndCall(address,bytes)` are present, and `upgradeTo` must be used if no function should be called,
     * while `upgradeToAndCall` will invoke the `receive` function if the second argument is the empty byte string.
     * If the getter returns `"5.0.0"`, only `upgradeToAndCall(address,bytes)` is present, and the second argument must
     * be the empty byte string if no function should be called, making it impossible to invoke the `receive` function
     * during an upgrade.
     */
    string public constant UPGRADE_INTERFACE_VERSION = "5.0.0";

    /**
     * @dev The call is from an unauthorized context.
     */
    error UUPSUnauthorizedCallContext();

    /**
     * @dev The storage `slot` is unsupported as a UUID.
     */
    error UUPSUnsupportedProxiableUUID(bytes32 slot);

    /**
     * @dev Check that the execution is being performed through a delegatecall call and that the execution context is
     * a proxy contract with an implementation (as defined in ERC1967) pointing to self. This should only be the case
     * for UUPS and transparent proxies that are using the current contract as their implementation. Execution of a
     * function through ERC1167 minimal proxies (clones) would not normally pass this test, but is not guaranteed to
     * fail.
     */
    modifier onlyProxy() {
        _checkProxy();
        _;
    }

    /**
     * @dev Check that the execution is not being performed through a delegate call. This allows a function to be
     * callable on the implementing contract but not through proxies.
     */
    modifier notDelegated() {
        _checkNotDelegated();
        _;
    }

    function __UUPSUpgradeable_init() internal onlyInitializing {
    }

    function __UUPSUpgradeable_init_unchained() internal onlyInitializing {
    }
    /**
     * @dev Implementation of the ERC1822 {proxiableUUID} function. This returns the storage slot used by the
     * implementation. It is used to validate the implementation's compatibility when performing an upgrade.
     *
     * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
     * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
     * function revert if invoked through a proxy. This is guaranteed by the `notDelegated` modifier.
     */
    function proxiableUUID() external view virtual notDelegated returns (bytes32) {
        return ERC1967Utils.IMPLEMENTATION_SLOT;
    }

    /**
     * @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call
     * encoded in `data`.
     *
     * Calls {_authorizeUpgrade}.
     *
     * Emits an {Upgraded} event.
     *
     * @custom:oz-upgrades-unsafe-allow-reachable delegatecall
     */
    function upgradeToAndCall(address newImplementation, bytes memory data) public payable virtual onlyProxy {
        _authorizeUpgrade(newImplementation);
        _upgradeToAndCallUUPS(newImplementation, data);
    }

    /**
     * @dev Reverts if the execution is not performed via delegatecall or the execution
     * context is not of a proxy with an ERC1967-compliant implementation pointing to self.
     * See {_onlyProxy}.
     */
    function _checkProxy() internal view virtual {
        if (
            address(this) == __self || // Must be called through delegatecall
            ERC1967Utils.getImplementation() != __self // Must be called through an active proxy
        ) {
            revert UUPSUnauthorizedCallContext();
        }
    }

    /**
     * @dev Reverts if the execution is performed via delegatecall.
     * See {notDelegated}.
     */
    function _checkNotDelegated() internal view virtual {
        if (address(this) != __self) {
            // Must not be called through delegatecall
            revert UUPSUnauthorizedCallContext();
        }
    }

    /**
     * @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by
     * {upgradeToAndCall}.
     *
     * Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}.
     *
     * ```solidity
     * function _authorizeUpgrade(address) internal onlyOwner {}
     * ```
     */
    function _authorizeUpgrade(address newImplementation) internal virtual;

    /**
     * @dev Performs an implementation upgrade with a security check for UUPS proxies, and additional setup call.
     *
     * As a security check, {proxiableUUID} is invoked in the new implementation, and the return value
     * is expected to be the implementation slot in ERC1967.
     *
     * Emits an {IERC1967-Upgraded} event.
     */
    function _upgradeToAndCallUUPS(address newImplementation, bytes memory data) private {
        try IERC1822Proxiable(newImplementation).proxiableUUID() returns (bytes32 slot) {
            if (slot != ERC1967Utils.IMPLEMENTATION_SLOT) {
                revert UUPSUnsupportedProxiableUUID(slot);
            }
            ERC1967Utils.upgradeToAndCall(newImplementation, data);
        } catch {
            // The implementation is not UUPS
            revert ERC1967Utils.ERC1967InvalidImplementation(newImplementation);
        }
    }
}

// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;

/// @notice Arithmetic library with operations for fixed-point numbers.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol)
/// @author Inspired by USM (https://github.com/usmfum/USM/blob/master/contracts/WadMath.sol)
library FixedPointMathLib {
    /*//////////////////////////////////////////////////////////////
                    SIMPLIFIED FIXED POINT OPERATIONS
    //////////////////////////////////////////////////////////////*/

    uint256 internal constant MAX_UINT256 = 2**256 - 1;

    uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.

    function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
    }

    function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
    }

    function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
    }

    function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
    }

    /*//////////////////////////////////////////////////////////////
                    LOW LEVEL FIXED POINT OPERATIONS
    //////////////////////////////////////////////////////////////*/

    function mulDivDown(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to require(denominator != 0 && (y == 0 || x <= type(uint256).max / y))
            if iszero(mul(denominator, iszero(mul(y, gt(x, div(MAX_UINT256, y)))))) {
                revert(0, 0)
            }

            // Divide x * y by the denominator.
            z := div(mul(x, y), denominator)
        }
    }

    function mulDivUp(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to require(denominator != 0 && (y == 0 || x <= type(uint256).max / y))
            if iszero(mul(denominator, iszero(mul(y, gt(x, div(MAX_UINT256, y)))))) {
                revert(0, 0)
            }

            // If x * y modulo the denominator is strictly greater than 0,
            // 1 is added to round up the division of x * y by the denominator.
            z := add(gt(mod(mul(x, y), denominator), 0), div(mul(x, y), denominator))
        }
    }

    function rpow(
        uint256 x,
        uint256 n,
        uint256 scalar
    ) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            switch x
            case 0 {
                switch n
                case 0 {
                    // 0 ** 0 = 1
                    z := scalar
                }
                default {
                    // 0 ** n = 0
                    z := 0
                }
            }
            default {
                switch mod(n, 2)
                case 0 {
                    // If n is even, store scalar in z for now.
                    z := scalar
                }
                default {
                    // If n is odd, store x in z for now.
                    z := x
                }

                // Shifting right by 1 is like dividing by 2.
                let half := shr(1, scalar)

                for {
                    // Shift n right by 1 before looping to halve it.
                    n := shr(1, n)
                } n {
                    // Shift n right by 1 each iteration to halve it.
                    n := shr(1, n)
                } {
                    // Revert immediately if x ** 2 would overflow.
                    // Equivalent to iszero(eq(div(xx, x), x)) here.
                    if shr(128, x) {
                        revert(0, 0)
                    }

                    // Store x squared.
                    let xx := mul(x, x)

                    // Round to the nearest number.
                    let xxRound := add(xx, half)

                    // Revert if xx + half overflowed.
                    if lt(xxRound, xx) {
                        revert(0, 0)
                    }

                    // Set x to scaled xxRound.
                    x := div(xxRound, scalar)

                    // If n is even:
                    if mod(n, 2) {
                        // Compute z * x.
                        let zx := mul(z, x)

                        // If z * x overflowed:
                        if iszero(eq(div(zx, x), z)) {
                            // Revert if x is non-zero.
                            if iszero(iszero(x)) {
                                revert(0, 0)
                            }
                        }

                        // Round to the nearest number.
                        let zxRound := add(zx, half)

                        // Revert if zx + half overflowed.
                        if lt(zxRound, zx) {
                            revert(0, 0)
                        }

                        // Return properly scaled zxRound.
                        z := div(zxRound, scalar)
                    }
                }
            }
        }
    }

    /*//////////////////////////////////////////////////////////////
                        GENERAL NUMBER UTILITIES
    //////////////////////////////////////////////////////////////*/

    function sqrt(uint256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            let y := x // We start y at x, which will help us make our initial estimate.

            z := 181 // The "correct" value is 1, but this saves a multiplication later.

            // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
            // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.

            // We check y >= 2^(k + 8) but shift right by k bits
            // each branch to ensure that if x >= 256, then y >= 256.
            if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                y := shr(128, y)
                z := shl(64, z)
            }
            if iszero(lt(y, 0x1000000000000000000)) {
                y := shr(64, y)
                z := shl(32, z)
            }
            if iszero(lt(y, 0x10000000000)) {
                y := shr(32, y)
                z := shl(16, z)
            }
            if iszero(lt(y, 0x1000000)) {
                y := shr(16, y)
                z := shl(8, z)
            }

            // Goal was to get z*z*y within a small factor of x. More iterations could
            // get y in a tighter range. Currently, we will have y in [256, 256*2^16).
            // We ensured y >= 256 so that the relative difference between y and y+1 is small.
            // That's not possible if x < 256 but we can just verify those cases exhaustively.

            // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
            // Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
            // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.

            // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
            // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.

            // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
            // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.

            // There is no overflow risk here since y < 2^136 after the first branch above.
            z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.

            // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))

            // If x+1 is a perfect square, the Babylonian method cycles between
            // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
            // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
            // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
            // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
            z := sub(z, lt(div(x, z), z))
        }
    }

    function unsafeMod(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Mod x by y. Note this will return
            // 0 instead of reverting if y is zero.
            z := mod(x, y)
        }
    }

    function unsafeDiv(uint256 x, uint256 y) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            // Divide x by y. Note this will return
            // 0 instead of reverting if y is zero.
            r := div(x, y)
        }
    }

    function unsafeDivUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Add 1 to x * y if x % y > 0. Note this will
            // return 0 instead of reverting if y is zero.
            z := add(gt(mod(x, y), 0), div(x, y))
        }
    }
}

// SPDX-License-Identifier: BUSL-1.1
// Central Limit Order Book (CLOB) exchange
// (c) Long Gamma Labs, 2023.
pragma solidity ^0.8.26;


import {Errors} from "./Errors.sol";


library FP24 {
    /// @dev Converts a uint72 number into a uint24 floating point representation.
    /// @param a The uint72 number to be converted.
    /// @return p The uint24 floating point representation of the input number.
    function packFP24(uint72 a) internal pure returns (uint24) {
        require(0 < a && a <= 999999000000000000000, Errors.InvalidPriceRange());

        uint72 threshold_number = 999999;
        uint8 e = 0;

        while (a > threshold_number) {
            require(a % 10 == 0, Errors.ExcessiveSignificantFigures());
            a /= 10;
            e++;
        }

        uint24 p = (uint24(e) << 20) | uint24(a);
        return p;
    }

    /// @dev Converts a uint24 floating point number into a uint72 number.
    /// @param p The uint24 floating point number to be converted.
    /// @return a The uint72 number representation of the input floating point number.
    function unPackFP24(uint24 p) internal pure returns (uint72) {
        uint72 e = uint72(p >> 20);
        uint72 a = uint72(p & 0xfffff);

        require(0 < a && a <= 999999, Errors.InvalidFloatingPointRepresentation());
        a *= uint72(10 ** e);

        return a;
    }
}

// SPDX-License-Identifier: BUSL-1.1
// Central Limit Order Book (CLOB) exchange
// (c) Long Gamma Labs, 2023.
pragma solidity ^0.8.26;


interface IWatchDog {
   function touch() external;
   function isChainStable() external view returns (bool);
}

// SPDX-License-Identifier: BUSL-1.1
// Central Limit Order Book (CLOB) exchange
// (c) Long Gamma Labs, 2023.
pragma solidity ^0.8.26;


interface IOnchainCLOB {
    function getConfig() external view returns (
        uint256 _scaling_factor_token_x,
        uint256 _scaling_factor_token_y,
        address _token_x,
        address _token_y,
        bool _supports_native_eth,
        bool _is_token_x_weth,
        address _ask_trie,
        address _bid_trie,
        uint64 _admin_commission_rate,
        uint64 _total_aggressive_commission_rate,
        uint64 _total_passive_commission_rate,
        uint64 _passive_order_payout_rate,
        bool _should_invoke_on_trade
    );

    receive() external payable;

    function getTraderBalance(address address_) external view returns (uint128, uint128, bool);

    function changeMarketMaker(
        address _marketmaker,
        bool _should_invoke_on_trade,
        uint64 _admin_commission_rate
    ) external;

    function setClaimableStatus(bool status) external;

    function placeOrder(
        bool isAsk,
        uint128 quantity,
        uint72 price,
        uint128 max_commission,
        bool market_only,
        bool post_only,
        bool transfer_executed_tokens,
        uint256 expires
    ) external payable returns (
        uint64 order_id,
        uint128 executed_shares,
        uint128 executed_value,
        uint128 aggressive_fee
    );

    function placeOrder(
        bool isAsk,
        uint128 quantity,
        uint72 price,
        uint128 max_commission,
        uint128 amount_to_approve,
        bool market_only,
        bool post_only,
        bool transfer_executed_tokens,
        uint256 expires,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external payable returns (
        uint64 order_id,
        uint128 executed_shares,
        uint128 executed_value,
        uint128 aggressive_fee
    );

    function placeMarketOrderWithTargetValue(
        bool isAsk,
        uint128 target_token_y_value,
        uint72 price,
        uint128 max_commission,
        uint128 amount_to_approve,
        bool transfer_executed_tokens,
        uint256 expires,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external payable returns (
        uint128 executed_shares,
        uint128 executed_value,
        uint128 aggressive_fee
    );

    function placeMarketOrderWithTargetValue(
        bool isAsk,
        uint128 target_token_y_value,
        uint72 price,
        uint128 max_commission,
        bool transfer_executed_tokens,
        uint256 expires
    ) external payable returns (
        uint128 executed_shares,
        uint128 executed_value,
        uint128 aggressive_fee
    );

    function claimOrder(
        uint64 order_id,
        bool only_claim,
        bool transfer_tokens,
        uint256 expires
    ) external;

    function batchClaim(
        address[] memory addresses,
        uint64[] memory order_ids,
        bool only_claim,
        uint256 expires
    ) external;

    function changeOrder(
        uint64 old_order_id, 
        uint128 new_quantity, 
        uint72 new_price,
        uint128 max_commission,
        bool post_only,
        bool transfer_tokens,
        uint256 expires
    ) external returns (uint64);

    function batchChangeOrder(
        uint64[] memory order_ids, 
        uint128[] memory quantities, 
        uint72[] memory prices,
        uint128 max_commission_per_order,
        bool post_only,
        bool transfer_tokens,
        uint256 expires
    ) external returns (uint64[] memory new_order_ids);

    function depositTokens(uint128 token_x_amount, uint128 token_y_amount) external;

    function depositTokens(
        uint128 token_x_amount,
        uint128 token_y_amount,
        uint8 v_x,
        bytes32 r_x,
        bytes32 s_x,
        uint8 v_y,
        bytes32 r_y,
        bytes32 s_y,
        uint256 expires
    ) external;

    function withdrawTokens(bool withdraw_all, uint128 token_x_amount, uint128 token_y_amount) external;

    function getAccumulatedFees() external returns (uint256);

    function transferFees() external;
}

// SPDX-License-Identifier: BUSL-1.1
// Central Limit Order Book (CLOB) exchange
// (c) Long Gamma Labs, 2023.
pragma solidity ^0.8.26;


interface ITrie {
    function best_offer() external view returns (uint64);
    function rightmost_map() external view returns (uint64);
    function addOrder(uint64 trader_id, uint64 order_id, uint128 shares, uint128 value) external;
    function removeOrder(uint64 order_id, uint64 order_trader_id) external returns (uint128 total_shares, uint128 remain_shares);
    function claimExecuted(uint64 order_id, uint64 order_trader_id) external returns (uint128 executed_shares, uint128 remain_shares);
    function getOrderInfo(uint64 order_id) external view returns (uint128 total_shares, uint128 remain_shares);
    function executeRight(uint64 order_id, uint128 order_total_shares) external returns (uint128 executed_shares, uint128 executed_value);
    function previewExecuteRight(uint64 order_id, uint128 max_shares, uint128 max_value) external view returns (uint128 executed_shares, uint128 executed_value);
    function assembleOrderbookFromOrders(uint24 max_price_levels) external view returns (uint24[] memory array_price_ids, uint128[] memory array_shares);
}

// SPDX-License-Identifier: BUSL-1.1
// Central Limit Order Book (CLOB) exchange
// (c) Long Gamma Labs, 2023.
pragma solidity ^0.8.0;


interface ITradeConsumer {
   function onTrade(bool isAsk) external;
}

// SPDX-License-Identifier: BUSL-1.1
// Central Limit Order Book (CLOB) exchange
// (c) Long Gamma Labs, 2023.
pragma solidity ^0.8.26;


interface IWETH {
    function deposit() external payable;
    function withdraw(uint wad) external;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/ERC1967/ERC1967Proxy.sol)

pragma solidity ^0.8.20;

import {Proxy} from "../Proxy.sol";
import {ERC1967Utils} from "./ERC1967Utils.sol";

/**
 * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an
 * implementation address that can be changed. This address is stored in storage in the location specified by
 * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the
 * implementation behind the proxy.
 */
contract ERC1967Proxy is Proxy {
    /**
     * @dev Initializes the upgradeable proxy with an initial implementation specified by `implementation`.
     *
     * If `_data` is nonempty, it's used as data in a delegate call to `implementation`. This will typically be an
     * encoded function call, and allows initializing the storage of the proxy like a Solidity constructor.
     *
     * Requirements:
     *
     * - If `data` is empty, `msg.value` must be zero.
     */
    constructor(address implementation, bytes memory _data) payable {
        ERC1967Utils.upgradeToAndCall(implementation, _data);
    }

    /**
     * @dev Returns the current implementation address.
     *
     * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using
     * the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
     * `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc`
     */
    function _implementation() internal view virtual override returns (address) {
        return ERC1967Utils.getImplementation();
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {ContextUpgradeable} from "../utils/ContextUpgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
    /// @custom:storage-location erc7201:openzeppelin.storage.Ownable
    struct OwnableStorage {
        address _owner;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Ownable")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant OwnableStorageLocation = 0x9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c199300;

    function _getOwnableStorage() private pure returns (OwnableStorage storage $) {
        assembly {
            $.slot := OwnableStorageLocation
        }
    }

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    function __Ownable_init(address initialOwner) internal onlyInitializing {
        __Ownable_init_unchained(initialOwner);
    }

    function __Ownable_init_unchained(address initialOwner) internal onlyInitializing {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        OwnableStorage storage $ = _getOwnableStorage();
        return $._owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        OwnableStorage storage $ = _getOwnableStorage();
        address oldOwner = $._owner;
        $._owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol)

pragma solidity ^0.8.20;

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
 * case an upgrade adds a module that needs to be initialized.
 *
 * For example:
 *
 * [.hljs-theme-light.nopadding]
 * ```solidity
 * contract MyToken is ERC20Upgradeable {
 *     function initialize() initializer public {
 *         __ERC20_init("MyToken", "MTK");
 *     }
 * }
 *
 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
 *     function initializeV2() reinitializer(2) public {
 *         __ERC20Permit_init("MyToken");
 *     }
 * }
 * ```
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 *
 * [CAUTION]
 * ====
 * Avoid leaving a contract uninitialized.
 *
 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * /// @custom:oz-upgrades-unsafe-allow constructor
 * constructor() {
 *     _disableInitializers();
 * }
 * ```
 * ====
 */
abstract contract Initializable {
    /**
     * @dev Storage of the initializable contract.
     *
     * It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions
     * when using with upgradeable contracts.
     *
     * @custom:storage-location erc7201:openzeppelin.storage.Initializable
     */
    struct InitializableStorage {
        /**
         * @dev Indicates that the contract has been initialized.
         */
        uint64 _initialized;
        /**
         * @dev Indicates that the contract is in the process of being initialized.
         */
        bool _initializing;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00;

    /**
     * @dev The contract is already initialized.
     */
    error InvalidInitialization();

    /**
     * @dev The contract is not initializing.
     */
    error NotInitializing();

    /**
     * @dev Triggered when the contract has been initialized or reinitialized.
     */
    event Initialized(uint64 version);

    /**
     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
     * `onlyInitializing` functions can be used to initialize parent contracts.
     *
     * Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any
     * number of times. This behavior in the constructor can be useful during testing and is not expected to be used in
     * production.
     *
     * Emits an {Initialized} event.
     */
    modifier initializer() {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        // Cache values to avoid duplicated sloads
        bool isTopLevelCall = !$._initializing;
        uint64 initialized = $._initialized;

        // Allowed calls:
        // - initialSetup: the contract is not in the initializing state and no previous version was
        //                 initialized
        // - construction: the contract is initialized at version 1 (no reininitialization) and the
        //                 current contract is just being deployed
        bool initialSetup = initialized == 0 && isTopLevelCall;
        bool construction = initialized == 1 && address(this).code.length == 0;

        if (!initialSetup && !construction) {
            revert InvalidInitialization();
        }
        $._initialized = 1;
        if (isTopLevelCall) {
            $._initializing = true;
        }
        _;
        if (isTopLevelCall) {
            $._initializing = false;
            emit Initialized(1);
        }
    }

    /**
     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
     * used to initialize parent contracts.
     *
     * A reinitializer may be used after the original initialization step. This is essential to configure modules that
     * are added through upgrades and that require initialization.
     *
     * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
     * cannot be nested. If one is invoked in the context of another, execution will revert.
     *
     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
     * a contract, executing them in the right order is up to the developer or operator.
     *
     * WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization.
     *
     * Emits an {Initialized} event.
     */
    modifier reinitializer(uint64 version) {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        if ($._initializing || $._initialized >= version) {
            revert InvalidInitialization();
        }
        $._initialized = version;
        $._initializing = true;
        _;
        $._initializing = false;
        emit Initialized(version);
    }

    /**
     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
     * {initializer} and {reinitializer} modifiers, directly or indirectly.
     */
    modifier onlyInitializing() {
        _checkInitializing();
        _;
    }

    /**
     * @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}.
     */
    function _checkInitializing() internal view virtual {
        if (!_isInitializing()) {
            revert NotInitializing();
        }
    }

    /**
     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
     * through proxies.
     *
     * Emits an {Initialized} event the first time it is successfully executed.
     */
    function _disableInitializers() internal virtual {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        if ($._initializing) {
            revert InvalidInitialization();
        }
        if ($._initialized != type(uint64).max) {
            $._initialized = type(uint64).max;
            emit Initialized(type(uint64).max);
        }
    }

    /**
     * @dev Returns the highest version that has been initialized. See {reinitializer}.
     */
    function _getInitializedVersion() internal view returns (uint64) {
        return _getInitializableStorage()._initialized;
    }

    /**
     * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
     */
    function _isInitializing() internal view returns (bool) {
        return _getInitializableStorage()._initializing;
    }

    /**
     * @dev Returns a pointer to the storage namespace.
     */
    // solhint-disable-next-line var-name-mixedcase
    function _getInitializableStorage() private pure returns (InitializableStorage storage $) {
        assembly {
            $.slot := INITIALIZABLE_STORAGE
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract ContextUpgradeable is Initializable {
    function __Context_init() internal onlyInitializing {
    }

    function __Context_init_unchained() internal onlyInitializing {
    }
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error AddressInsufficientBalance(address account);

    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedInnerCall();

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert AddressInsufficientBalance(address(this));
        }

        (bool success, ) = recipient.call{value: amount}("");
        if (!success) {
            revert FailedInnerCall();
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {FailedInnerCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert AddressInsufficientBalance(address(this));
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
     * unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {FailedInnerCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert FailedInnerCall();
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC1822.sol)

pragma solidity ^0.8.20;

/**
 * @dev ERC1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified
 * proxy whose upgrades are fully controlled by the current implementation.
 */
interface IERC1822Proxiable {
    /**
     * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation
     * address.
     *
     * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
     * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
     * function revert if invoked through a proxy.
     */
    function proxiableUUID() external view returns (bytes32);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/ERC1967/ERC1967Utils.sol)

pragma solidity ^0.8.20;

import {IBeacon} from "../beacon/IBeacon.sol";
import {Address} from "../../utils/Address.sol";
import {StorageSlot} from "../../utils/StorageSlot.sol";

/**
 * @dev This abstract contract provides getters and event emitting update functions for
 * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
 */
library ERC1967Utils {
    // We re-declare ERC-1967 events here because they can't be used directly from IERC1967.
    // This will be fixed in Solidity 0.8.21. At that point we should remove these events.
    /**
     * @dev Emitted when the implementation is upgraded.
     */
    event Upgraded(address indexed implementation);

    /**
     * @dev Emitted when the admin account has changed.
     */
    event AdminChanged(address previousAdmin, address newAdmin);

    /**
     * @dev Emitted when the beacon is changed.
     */
    event BeaconUpgraded(address indexed beacon);

    /**
     * @dev Storage slot with the address of the current implementation.
     * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1.
     */
    // solhint-disable-next-line private-vars-leading-underscore
    bytes32 internal constant IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;

    /**
     * @dev The `implementation` of the proxy is invalid.
     */
    error ERC1967InvalidImplementation(address implementation);

    /**
     * @dev The `admin` of the proxy is invalid.
     */
    error ERC1967InvalidAdmin(address admin);

    /**
     * @dev The `beacon` of the proxy is invalid.
     */
    error ERC1967InvalidBeacon(address beacon);

    /**
     * @dev An upgrade function sees `msg.value > 0` that may be lost.
     */
    error ERC1967NonPayable();

    /**
     * @dev Returns the current implementation address.
     */
    function getImplementation() internal view returns (address) {
        return StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value;
    }

    /**
     * @dev Stores a new address in the EIP1967 implementation slot.
     */
    function _setImplementation(address newImplementation) private {
        if (newImplementation.code.length == 0) {
            revert ERC1967InvalidImplementation(newImplementation);
        }
        StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value = newImplementation;
    }

    /**
     * @dev Performs implementation upgrade with additional setup call if data is nonempty.
     * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected
     * to avoid stuck value in the contract.
     *
     * Emits an {IERC1967-Upgraded} event.
     */
    function upgradeToAndCall(address newImplementation, bytes memory data) internal {
        _setImplementation(newImplementation);
        emit Upgraded(newImplementation);

        if (data.length > 0) {
            Address.functionDelegateCall(newImplementation, data);
        } else {
            _checkNonPayable();
        }
    }

    /**
     * @dev Storage slot with the admin of the contract.
     * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1.
     */
    // solhint-disable-next-line private-vars-leading-underscore
    bytes32 internal constant ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;

    /**
     * @dev Returns the current admin.
     *
     * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using
     * the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
     * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
     */
    function getAdmin() internal view returns (address) {
        return StorageSlot.getAddressSlot(ADMIN_SLOT).value;
    }

    /**
     * @dev Stores a new address in the EIP1967 admin slot.
     */
    function _setAdmin(address newAdmin) private {
        if (newAdmin == address(0)) {
            revert ERC1967InvalidAdmin(address(0));
        }
        StorageSlot.getAddressSlot(ADMIN_SLOT).value = newAdmin;
    }

    /**
     * @dev Changes the admin of the proxy.
     *
     * Emits an {IERC1967-AdminChanged} event.
     */
    function changeAdmin(address newAdmin) internal {
        emit AdminChanged(getAdmin(), newAdmin);
        _setAdmin(newAdmin);
    }

    /**
     * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
     * This is the keccak-256 hash of "eip1967.proxy.beacon" subtracted by 1.
     */
    // solhint-disable-next-line private-vars-leading-underscore
    bytes32 internal constant BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;

    /**
     * @dev Returns the current beacon.
     */
    function getBeacon() internal view returns (address) {
        return StorageSlot.getAddressSlot(BEACON_SLOT).value;
    }

    /**
     * @dev Stores a new beacon in the EIP1967 beacon slot.
     */
    function _setBeacon(address newBeacon) private {
        if (newBeacon.code.length == 0) {
            revert ERC1967InvalidBeacon(newBeacon);
        }

        StorageSlot.getAddressSlot(BEACON_SLOT).value = newBeacon;

        address beaconImplementation = IBeacon(newBeacon).implementation();
        if (beaconImplementation.code.length == 0) {
            revert ERC1967InvalidImplementation(beaconImplementation);
        }
    }

    /**
     * @dev Change the beacon and trigger a setup call if data is nonempty.
     * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected
     * to avoid stuck value in the contract.
     *
     * Emits an {IERC1967-BeaconUpgraded} event.
     *
     * CAUTION: Invoking this function has no effect on an instance of {BeaconProxy} since v5, since
     * it uses an immutable beacon without looking at the value of the ERC-1967 beacon slot for
     * efficiency.
     */
    function upgradeBeaconToAndCall(address newBeacon, bytes memory data) internal {
        _setBeacon(newBeacon);
        emit BeaconUpgraded(newBeacon);

        if (data.length > 0) {
            Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
        } else {
            _checkNonPayable();
        }
    }

    /**
     * @dev Reverts if `msg.value` is not zero. It can be used to avoid `msg.value` stuck in the contract
     * if an upgrade doesn't perform an initialization call.
     */
    function _checkNonPayable() private {
        if (msg.value > 0) {
            revert ERC1967NonPayable();
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/Proxy.sol)

pragma solidity ^0.8.20;

/**
 * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
 * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
 * be specified by overriding the virtual {_implementation} function.
 *
 * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
 * different contract through the {_delegate} function.
 *
 * The success and return data of the delegated call will be returned back to the caller of the proxy.
 */
abstract contract Proxy {
    /**
     * @dev Delegates the current call to `implementation`.
     *
     * This function does not return to its internal call site, it will return directly to the external caller.
     */
    function _delegate(address implementation) internal virtual {
        assembly {
            // Copy msg.data. We take full control of memory in this inline assembly
            // block because it will not return to Solidity code. We overwrite the
            // Solidity scratch pad at memory position 0.
            calldatacopy(0, 0, calldatasize())

            // Call the implementation.
            // out and outsize are 0 because we don't know the size yet.
            let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)

            // Copy the returned data.
            returndatacopy(0, 0, returndatasize())

            switch result
            // delegatecall returns 0 on error.
            case 0 {
                revert(0, returndatasize())
            }
            default {
                return(0, returndatasize())
            }
        }
    }

    /**
     * @dev This is a virtual function that should be overridden so it returns the address to which the fallback
     * function and {_fallback} should delegate.
     */
    function _implementation() internal view virtual returns (address);

    /**
     * @dev Delegates the current call to the address returned by `_implementation()`.
     *
     * This function does not return to its internal call site, it will return directly to the external caller.
     */
    function _fallback() internal virtual {
        _delegate(_implementation());
    }

    /**
     * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
     * function in the contract matches the call data.
     */
    fallback() external payable virtual {
        _fallback();
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/beacon/IBeacon.sol)

pragma solidity ^0.8.20;

/**
 * @dev This is the interface that {BeaconProxy} expects of its beacon.
 */
interface IBeacon {
    /**
     * @dev Must return an address that can be used as a delegate call target.
     *
     * {UpgradeableBeacon} will check that this address is a contract.
     */
    function implementation() external view returns (address);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(newImplementation.code.length > 0);
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := store.slot
        }
    }
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):