S Price: $0.76283 (-5.54%)
    /

    Contract Diff Checker

    Contract Name:
    Blacksail_Vault

    Contract Source Code:

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
    
    pragma solidity ^0.8.20;
    
    import {Context} from "../utils/Context.sol";
    
    /**
     * @dev Contract module which provides a basic access control mechanism, where
     * there is an account (an owner) that can be granted exclusive access to
     * specific functions.
     *
     * The initial owner is set to the address provided by the deployer. This can
     * later be changed with {transferOwnership}.
     *
     * This module is used through inheritance. It will make available the modifier
     * `onlyOwner`, which can be applied to your functions to restrict their use to
     * the owner.
     */
    abstract contract Ownable is Context {
        address private _owner;
    
        /**
         * @dev The caller account is not authorized to perform an operation.
         */
        error OwnableUnauthorizedAccount(address account);
    
        /**
         * @dev The owner is not a valid owner account. (eg. `address(0)`)
         */
        error OwnableInvalidOwner(address owner);
    
        event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
    
        /**
         * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
         */
        constructor(address initialOwner) {
            if (initialOwner == address(0)) {
                revert OwnableInvalidOwner(address(0));
            }
            _transferOwnership(initialOwner);
        }
    
        /**
         * @dev Throws if called by any account other than the owner.
         */
        modifier onlyOwner() {
            _checkOwner();
            _;
        }
    
        /**
         * @dev Returns the address of the current owner.
         */
        function owner() public view virtual returns (address) {
            return _owner;
        }
    
        /**
         * @dev Throws if the sender is not the owner.
         */
        function _checkOwner() internal view virtual {
            if (owner() != _msgSender()) {
                revert OwnableUnauthorizedAccount(_msgSender());
            }
        }
    
        /**
         * @dev Leaves the contract without owner. It will not be possible to call
         * `onlyOwner` functions. Can only be called by the current owner.
         *
         * NOTE: Renouncing ownership will leave the contract without an owner,
         * thereby disabling any functionality that is only available to the owner.
         */
        function renounceOwnership() public virtual onlyOwner {
            _transferOwnership(address(0));
        }
    
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Can only be called by the current owner.
         */
        function transferOwnership(address newOwner) public virtual onlyOwner {
            if (newOwner == address(0)) {
                revert OwnableInvalidOwner(address(0));
            }
            _transferOwnership(newOwner);
        }
    
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Internal function without access restriction.
         */
        function _transferOwnership(address newOwner) internal virtual {
            address oldOwner = _owner;
            _owner = newOwner;
            emit OwnershipTransferred(oldOwner, newOwner);
        }
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol)
    pragma solidity ^0.8.20;
    
    /**
     * @dev Standard ERC-20 Errors
     * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
     */
    interface IERC20Errors {
        /**
         * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
         * @param sender Address whose tokens are being transferred.
         * @param balance Current balance for the interacting account.
         * @param needed Minimum amount required to perform a transfer.
         */
        error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
    
        /**
         * @dev Indicates a failure with the token `sender`. Used in transfers.
         * @param sender Address whose tokens are being transferred.
         */
        error ERC20InvalidSender(address sender);
    
        /**
         * @dev Indicates a failure with the token `receiver`. Used in transfers.
         * @param receiver Address to which tokens are being transferred.
         */
        error ERC20InvalidReceiver(address receiver);
    
        /**
         * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
         * @param spender Address that may be allowed to operate on tokens without being their owner.
         * @param allowance Amount of tokens a `spender` is allowed to operate with.
         * @param needed Minimum amount required to perform a transfer.
         */
        error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
    
        /**
         * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
         * @param approver Address initiating an approval operation.
         */
        error ERC20InvalidApprover(address approver);
    
        /**
         * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
         * @param spender Address that may be allowed to operate on tokens without being their owner.
         */
        error ERC20InvalidSpender(address spender);
    }
    
    /**
     * @dev Standard ERC-721 Errors
     * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
     */
    interface IERC721Errors {
        /**
         * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
         * Used in balance queries.
         * @param owner Address of the current owner of a token.
         */
        error ERC721InvalidOwner(address owner);
    
        /**
         * @dev Indicates a `tokenId` whose `owner` is the zero address.
         * @param tokenId Identifier number of a token.
         */
        error ERC721NonexistentToken(uint256 tokenId);
    
        /**
         * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
         * @param sender Address whose tokens are being transferred.
         * @param tokenId Identifier number of a token.
         * @param owner Address of the current owner of a token.
         */
        error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);
    
        /**
         * @dev Indicates a failure with the token `sender`. Used in transfers.
         * @param sender Address whose tokens are being transferred.
         */
        error ERC721InvalidSender(address sender);
    
        /**
         * @dev Indicates a failure with the token `receiver`. Used in transfers.
         * @param receiver Address to which tokens are being transferred.
         */
        error ERC721InvalidReceiver(address receiver);
    
        /**
         * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
         * @param operator Address that may be allowed to operate on tokens without being their owner.
         * @param tokenId Identifier number of a token.
         */
        error ERC721InsufficientApproval(address operator, uint256 tokenId);
    
        /**
         * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
         * @param approver Address initiating an approval operation.
         */
        error ERC721InvalidApprover(address approver);
    
        /**
         * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
         * @param operator Address that may be allowed to operate on tokens without being their owner.
         */
        error ERC721InvalidOperator(address operator);
    }
    
    /**
     * @dev Standard ERC-1155 Errors
     * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
     */
    interface IERC1155Errors {
        /**
         * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
         * @param sender Address whose tokens are being transferred.
         * @param balance Current balance for the interacting account.
         * @param needed Minimum amount required to perform a transfer.
         * @param tokenId Identifier number of a token.
         */
        error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);
    
        /**
         * @dev Indicates a failure with the token `sender`. Used in transfers.
         * @param sender Address whose tokens are being transferred.
         */
        error ERC1155InvalidSender(address sender);
    
        /**
         * @dev Indicates a failure with the token `receiver`. Used in transfers.
         * @param receiver Address to which tokens are being transferred.
         */
        error ERC1155InvalidReceiver(address receiver);
    
        /**
         * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
         * @param operator Address that may be allowed to operate on tokens without being their owner.
         * @param owner Address of the current owner of a token.
         */
        error ERC1155MissingApprovalForAll(address operator, address owner);
    
        /**
         * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
         * @param approver Address initiating an approval operation.
         */
        error ERC1155InvalidApprover(address approver);
    
        /**
         * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
         * @param operator Address that may be allowed to operate on tokens without being their owner.
         */
        error ERC1155InvalidOperator(address operator);
    
        /**
         * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
         * Used in batch transfers.
         * @param idsLength Length of the array of token identifiers
         * @param valuesLength Length of the array of token amounts
         */
        error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol)
    
    pragma solidity ^0.8.20;
    
    import {IERC20} from "./IERC20.sol";
    import {IERC165} from "./IERC165.sol";
    
    /**
     * @title IERC1363
     * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
     *
     * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
     * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
     */
    interface IERC1363 is IERC20, IERC165 {
        /*
         * Note: the ERC-165 identifier for this interface is 0xb0202a11.
         * 0xb0202a11 ===
         *   bytes4(keccak256('transferAndCall(address,uint256)')) ^
         *   bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
         *   bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
         *   bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
         *   bytes4(keccak256('approveAndCall(address,uint256)')) ^
         *   bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
         */
    
        /**
         * @dev Moves a `value` amount of tokens from the caller's account to `to`
         * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
         * @param to The address which you want to transfer to.
         * @param value The amount of tokens to be transferred.
         * @return A boolean value indicating whether the operation succeeded unless throwing.
         */
        function transferAndCall(address to, uint256 value) external returns (bool);
    
        /**
         * @dev Moves a `value` amount of tokens from the caller's account to `to`
         * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
         * @param to The address which you want to transfer to.
         * @param value The amount of tokens to be transferred.
         * @param data Additional data with no specified format, sent in call to `to`.
         * @return A boolean value indicating whether the operation succeeded unless throwing.
         */
        function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);
    
        /**
         * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
         * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
         * @param from The address which you want to send tokens from.
         * @param to The address which you want to transfer to.
         * @param value The amount of tokens to be transferred.
         * @return A boolean value indicating whether the operation succeeded unless throwing.
         */
        function transferFromAndCall(address from, address to, uint256 value) external returns (bool);
    
        /**
         * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
         * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
         * @param from The address which you want to send tokens from.
         * @param to The address which you want to transfer to.
         * @param value The amount of tokens to be transferred.
         * @param data Additional data with no specified format, sent in call to `to`.
         * @return A boolean value indicating whether the operation succeeded unless throwing.
         */
        function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);
    
        /**
         * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
         * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
         * @param spender The address which will spend the funds.
         * @param value The amount of tokens to be spent.
         * @return A boolean value indicating whether the operation succeeded unless throwing.
         */
        function approveAndCall(address spender, uint256 value) external returns (bool);
    
        /**
         * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
         * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
         * @param spender The address which will spend the funds.
         * @param value The amount of tokens to be spent.
         * @param data Additional data with no specified format, sent in call to `spender`.
         * @return A boolean value indicating whether the operation succeeded unless throwing.
         */
        function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)
    
    pragma solidity ^0.8.20;
    
    import {IERC165} from "../utils/introspection/IERC165.sol";

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)
    
    pragma solidity ^0.8.20;
    
    import {IERC20} from "../token/ERC20/IERC20.sol";

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/ERC20.sol)
    
    pragma solidity ^0.8.20;
    
    import {IERC20} from "./IERC20.sol";
    import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
    import {Context} from "../../utils/Context.sol";
    import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";
    
    /**
     * @dev Implementation of the {IERC20} interface.
     *
     * This implementation is agnostic to the way tokens are created. This means
     * that a supply mechanism has to be added in a derived contract using {_mint}.
     *
     * TIP: For a detailed writeup see our guide
     * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
     * to implement supply mechanisms].
     *
     * The default value of {decimals} is 18. To change this, you should override
     * this function so it returns a different value.
     *
     * We have followed general OpenZeppelin Contracts guidelines: functions revert
     * instead returning `false` on failure. This behavior is nonetheless
     * conventional and does not conflict with the expectations of ERC-20
     * applications.
     */
    abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
        mapping(address account => uint256) private _balances;
    
        mapping(address account => mapping(address spender => uint256)) private _allowances;
    
        uint256 private _totalSupply;
    
        string private _name;
        string private _symbol;
    
        /**
         * @dev Sets the values for {name} and {symbol}.
         *
         * All two of these values are immutable: they can only be set once during
         * construction.
         */
        constructor(string memory name_, string memory symbol_) {
            _name = name_;
            _symbol = symbol_;
        }
    
        /**
         * @dev Returns the name of the token.
         */
        function name() public view virtual returns (string memory) {
            return _name;
        }
    
        /**
         * @dev Returns the symbol of the token, usually a shorter version of the
         * name.
         */
        function symbol() public view virtual returns (string memory) {
            return _symbol;
        }
    
        /**
         * @dev Returns the number of decimals used to get its user representation.
         * For example, if `decimals` equals `2`, a balance of `505` tokens should
         * be displayed to a user as `5.05` (`505 / 10 ** 2`).
         *
         * Tokens usually opt for a value of 18, imitating the relationship between
         * Ether and Wei. This is the default value returned by this function, unless
         * it's overridden.
         *
         * NOTE: This information is only used for _display_ purposes: it in
         * no way affects any of the arithmetic of the contract, including
         * {IERC20-balanceOf} and {IERC20-transfer}.
         */
        function decimals() public view virtual returns (uint8) {
            return 18;
        }
    
        /**
         * @dev See {IERC20-totalSupply}.
         */
        function totalSupply() public view virtual returns (uint256) {
            return _totalSupply;
        }
    
        /**
         * @dev See {IERC20-balanceOf}.
         */
        function balanceOf(address account) public view virtual returns (uint256) {
            return _balances[account];
        }
    
        /**
         * @dev See {IERC20-transfer}.
         *
         * Requirements:
         *
         * - `to` cannot be the zero address.
         * - the caller must have a balance of at least `value`.
         */
        function transfer(address to, uint256 value) public virtual returns (bool) {
            address owner = _msgSender();
            _transfer(owner, to, value);
            return true;
        }
    
        /**
         * @dev See {IERC20-allowance}.
         */
        function allowance(address owner, address spender) public view virtual returns (uint256) {
            return _allowances[owner][spender];
        }
    
        /**
         * @dev See {IERC20-approve}.
         *
         * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
         * `transferFrom`. This is semantically equivalent to an infinite approval.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function approve(address spender, uint256 value) public virtual returns (bool) {
            address owner = _msgSender();
            _approve(owner, spender, value);
            return true;
        }
    
        /**
         * @dev See {IERC20-transferFrom}.
         *
         * Skips emitting an {Approval} event indicating an allowance update. This is not
         * required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
         *
         * NOTE: Does not update the allowance if the current allowance
         * is the maximum `uint256`.
         *
         * Requirements:
         *
         * - `from` and `to` cannot be the zero address.
         * - `from` must have a balance of at least `value`.
         * - the caller must have allowance for ``from``'s tokens of at least
         * `value`.
         */
        function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
            address spender = _msgSender();
            _spendAllowance(from, spender, value);
            _transfer(from, to, value);
            return true;
        }
    
        /**
         * @dev Moves a `value` amount of tokens from `from` to `to`.
         *
         * This internal function is equivalent to {transfer}, and can be used to
         * e.g. implement automatic token fees, slashing mechanisms, etc.
         *
         * Emits a {Transfer} event.
         *
         * NOTE: This function is not virtual, {_update} should be overridden instead.
         */
        function _transfer(address from, address to, uint256 value) internal {
            if (from == address(0)) {
                revert ERC20InvalidSender(address(0));
            }
            if (to == address(0)) {
                revert ERC20InvalidReceiver(address(0));
            }
            _update(from, to, value);
        }
    
        /**
         * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
         * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
         * this function.
         *
         * Emits a {Transfer} event.
         */
        function _update(address from, address to, uint256 value) internal virtual {
            if (from == address(0)) {
                // Overflow check required: The rest of the code assumes that totalSupply never overflows
                _totalSupply += value;
            } else {
                uint256 fromBalance = _balances[from];
                if (fromBalance < value) {
                    revert ERC20InsufficientBalance(from, fromBalance, value);
                }
                unchecked {
                    // Overflow not possible: value <= fromBalance <= totalSupply.
                    _balances[from] = fromBalance - value;
                }
            }
    
            if (to == address(0)) {
                unchecked {
                    // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                    _totalSupply -= value;
                }
            } else {
                unchecked {
                    // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                    _balances[to] += value;
                }
            }
    
            emit Transfer(from, to, value);
        }
    
        /**
         * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
         * Relies on the `_update` mechanism
         *
         * Emits a {Transfer} event with `from` set to the zero address.
         *
         * NOTE: This function is not virtual, {_update} should be overridden instead.
         */
        function _mint(address account, uint256 value) internal {
            if (account == address(0)) {
                revert ERC20InvalidReceiver(address(0));
            }
            _update(address(0), account, value);
        }
    
        /**
         * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
         * Relies on the `_update` mechanism.
         *
         * Emits a {Transfer} event with `to` set to the zero address.
         *
         * NOTE: This function is not virtual, {_update} should be overridden instead
         */
        function _burn(address account, uint256 value) internal {
            if (account == address(0)) {
                revert ERC20InvalidSender(address(0));
            }
            _update(account, address(0), value);
        }
    
        /**
         * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
         *
         * This internal function is equivalent to `approve`, and can be used to
         * e.g. set automatic allowances for certain subsystems, etc.
         *
         * Emits an {Approval} event.
         *
         * Requirements:
         *
         * - `owner` cannot be the zero address.
         * - `spender` cannot be the zero address.
         *
         * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
         */
        function _approve(address owner, address spender, uint256 value) internal {
            _approve(owner, spender, value, true);
        }
    
        /**
         * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
         *
         * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
         * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
         * `Approval` event during `transferFrom` operations.
         *
         * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
         * true using the following override:
         *
         * ```solidity
         * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
         *     super._approve(owner, spender, value, true);
         * }
         * ```
         *
         * Requirements are the same as {_approve}.
         */
        function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
            if (owner == address(0)) {
                revert ERC20InvalidApprover(address(0));
            }
            if (spender == address(0)) {
                revert ERC20InvalidSpender(address(0));
            }
            _allowances[owner][spender] = value;
            if (emitEvent) {
                emit Approval(owner, spender, value);
            }
        }
    
        /**
         * @dev Updates `owner` s allowance for `spender` based on spent `value`.
         *
         * Does not update the allowance value in case of infinite allowance.
         * Revert if not enough allowance is available.
         *
         * Does not emit an {Approval} event.
         */
        function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
            uint256 currentAllowance = allowance(owner, spender);
            if (currentAllowance != type(uint256).max) {
                if (currentAllowance < value) {
                    revert ERC20InsufficientAllowance(spender, currentAllowance, value);
                }
                unchecked {
                    _approve(owner, spender, currentAllowance - value, false);
                }
            }
        }
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol)
    
    pragma solidity ^0.8.20;
    
    import {IERC20} from "../IERC20.sol";
    
    /**
     * @dev Interface for the optional metadata functions from the ERC-20 standard.
     */
    interface IERC20Metadata is IERC20 {
        /**
         * @dev Returns the name of the token.
         */
        function name() external view returns (string memory);
    
        /**
         * @dev Returns the symbol of the token.
         */
        function symbol() external view returns (string memory);
    
        /**
         * @dev Returns the decimals places of the token.
         */
        function decimals() external view returns (uint8);
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)
    
    pragma solidity ^0.8.20;
    
    /**
     * @dev Interface of the ERC-20 standard as defined in the ERC.
     */
    interface IERC20 {
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
    
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to {approve}. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
    
        /**
         * @dev Returns the value of tokens in existence.
         */
        function totalSupply() external view returns (uint256);
    
        /**
         * @dev Returns the value of tokens owned by `account`.
         */
        function balanceOf(address account) external view returns (uint256);
    
        /**
         * @dev Moves a `value` amount of tokens from the caller's account to `to`.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transfer(address to, uint256 value) external returns (bool);
    
        /**
         * @dev Returns the remaining number of tokens that `spender` will be
         * allowed to spend on behalf of `owner` through {transferFrom}. This is
         * zero by default.
         *
         * This value changes when {approve} or {transferFrom} are called.
         */
        function allowance(address owner, address spender) external view returns (uint256);
    
        /**
         * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
         * caller's tokens.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * IMPORTANT: Beware that changing an allowance with this method brings the risk
         * that someone may use both the old and the new allowance by unfortunate
         * transaction ordering. One possible solution to mitigate this race
         * condition is to first reduce the spender's allowance to 0 and set the
         * desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         *
         * Emits an {Approval} event.
         */
        function approve(address spender, uint256 value) external returns (bool);
    
        /**
         * @dev Moves a `value` amount of tokens from `from` to `to` using the
         * allowance mechanism. `value` is then deducted from the caller's
         * allowance.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(address from, address to, uint256 value) external returns (bool);
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/utils/SafeERC20.sol)
    
    pragma solidity ^0.8.20;
    
    import {IERC20} from "../IERC20.sol";
    import {IERC1363} from "../../../interfaces/IERC1363.sol";
    import {Address} from "../../../utils/Address.sol";
    
    /**
     * @title SafeERC20
     * @dev Wrappers around ERC-20 operations that throw on failure (when the token
     * contract returns false). Tokens that return no value (and instead revert or
     * throw on failure) are also supported, non-reverting calls are assumed to be
     * successful.
     * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
     * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
     */
    library SafeERC20 {
        /**
         * @dev An operation with an ERC-20 token failed.
         */
        error SafeERC20FailedOperation(address token);
    
        /**
         * @dev Indicates a failed `decreaseAllowance` request.
         */
        error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
    
        /**
         * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
         * non-reverting calls are assumed to be successful.
         */
        function safeTransfer(IERC20 token, address to, uint256 value) internal {
            _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
        }
    
        /**
         * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
         * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
         */
        function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
            _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
        }
    
        /**
         * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
         * non-reverting calls are assumed to be successful.
         *
         * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
         * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
         * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
         * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
         */
        function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
            uint256 oldAllowance = token.allowance(address(this), spender);
            forceApprove(token, spender, oldAllowance + value);
        }
    
        /**
         * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
         * value, non-reverting calls are assumed to be successful.
         *
         * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
         * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
         * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
         * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
         */
        function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
            unchecked {
                uint256 currentAllowance = token.allowance(address(this), spender);
                if (currentAllowance < requestedDecrease) {
                    revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
                }
                forceApprove(token, spender, currentAllowance - requestedDecrease);
            }
        }
    
        /**
         * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
         * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
         * to be set to zero before setting it to a non-zero value, such as USDT.
         *
         * NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
         * only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
         * set here.
         */
        function forceApprove(IERC20 token, address spender, uint256 value) internal {
            bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
    
            if (!_callOptionalReturnBool(token, approvalCall)) {
                _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
                _callOptionalReturn(token, approvalCall);
            }
        }
    
        /**
         * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
         * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
         * targeting contracts.
         *
         * Reverts if the returned value is other than `true`.
         */
        function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
            if (to.code.length == 0) {
                safeTransfer(token, to, value);
            } else if (!token.transferAndCall(to, value, data)) {
                revert SafeERC20FailedOperation(address(token));
            }
        }
    
        /**
         * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
         * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
         * targeting contracts.
         *
         * Reverts if the returned value is other than `true`.
         */
        function transferFromAndCallRelaxed(
            IERC1363 token,
            address from,
            address to,
            uint256 value,
            bytes memory data
        ) internal {
            if (to.code.length == 0) {
                safeTransferFrom(token, from, to, value);
            } else if (!token.transferFromAndCall(from, to, value, data)) {
                revert SafeERC20FailedOperation(address(token));
            }
        }
    
        /**
         * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
         * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
         * targeting contracts.
         *
         * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
         * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
         * once without retrying, and relies on the returned value to be true.
         *
         * Reverts if the returned value is other than `true`.
         */
        function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
            if (to.code.length == 0) {
                forceApprove(token, to, value);
            } else if (!token.approveAndCall(to, value, data)) {
                revert SafeERC20FailedOperation(address(token));
            }
        }
    
        /**
         * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
         * on the return value: the return value is optional (but if data is returned, it must not be false).
         * @param token The token targeted by the call.
         * @param data The call data (encoded using abi.encode or one of its variants).
         *
         * This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
         */
        function _callOptionalReturn(IERC20 token, bytes memory data) private {
            uint256 returnSize;
            uint256 returnValue;
            assembly ("memory-safe") {
                let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
                // bubble errors
                if iszero(success) {
                    let ptr := mload(0x40)
                    returndatacopy(ptr, 0, returndatasize())
                    revert(ptr, returndatasize())
                }
                returnSize := returndatasize()
                returnValue := mload(0)
            }
    
            if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
                revert SafeERC20FailedOperation(address(token));
            }
        }
    
        /**
         * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
         * on the return value: the return value is optional (but if data is returned, it must not be false).
         * @param token The token targeted by the call.
         * @param data The call data (encoded using abi.encode or one of its variants).
         *
         * This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
         */
        function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
            bool success;
            uint256 returnSize;
            uint256 returnValue;
            assembly ("memory-safe") {
                success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
                returnSize := returndatasize()
                returnValue := mload(0)
            }
            return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
        }
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.1.0) (utils/Address.sol)
    
    pragma solidity ^0.8.20;
    
    import {Errors} from "./Errors.sol";
    
    /**
     * @dev Collection of functions related to the address type
     */
    library Address {
        /**
         * @dev There's no code at `target` (it is not a contract).
         */
        error AddressEmptyCode(address target);
    
        /**
         * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
         * `recipient`, forwarding all available gas and reverting on errors.
         *
         * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
         * of certain opcodes, possibly making contracts go over the 2300 gas limit
         * imposed by `transfer`, making them unable to receive funds via
         * `transfer`. {sendValue} removes this limitation.
         *
         * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
         *
         * IMPORTANT: because control is transferred to `recipient`, care must be
         * taken to not create reentrancy vulnerabilities. Consider using
         * {ReentrancyGuard} or the
         * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
         */
        function sendValue(address payable recipient, uint256 amount) internal {
            if (address(this).balance < amount) {
                revert Errors.InsufficientBalance(address(this).balance, amount);
            }
    
            (bool success, ) = recipient.call{value: amount}("");
            if (!success) {
                revert Errors.FailedCall();
            }
        }
    
        /**
         * @dev Performs a Solidity function call using a low level `call`. A
         * plain `call` is an unsafe replacement for a function call: use this
         * function instead.
         *
         * If `target` reverts with a revert reason or custom error, it is bubbled
         * up by this function (like regular Solidity function calls). However, if
         * the call reverted with no returned reason, this function reverts with a
         * {Errors.FailedCall} error.
         *
         * Returns the raw returned data. To convert to the expected return value,
         * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
         *
         * Requirements:
         *
         * - `target` must be a contract.
         * - calling `target` with `data` must not revert.
         */
        function functionCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0);
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but also transferring `value` wei to `target`.
         *
         * Requirements:
         *
         * - the calling contract must have an ETH balance of at least `value`.
         * - the called Solidity function must be `payable`.
         */
        function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
            if (address(this).balance < value) {
                revert Errors.InsufficientBalance(address(this).balance, value);
            }
            (bool success, bytes memory returndata) = target.call{value: value}(data);
            return verifyCallResultFromTarget(target, success, returndata);
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a static call.
         */
        function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
            (bool success, bytes memory returndata) = target.staticcall(data);
            return verifyCallResultFromTarget(target, success, returndata);
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a delegate call.
         */
        function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
            (bool success, bytes memory returndata) = target.delegatecall(data);
            return verifyCallResultFromTarget(target, success, returndata);
        }
    
        /**
         * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
         * was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case
         * of an unsuccessful call.
         */
        function verifyCallResultFromTarget(
            address target,
            bool success,
            bytes memory returndata
        ) internal view returns (bytes memory) {
            if (!success) {
                _revert(returndata);
            } else {
                // only check if target is a contract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                if (returndata.length == 0 && target.code.length == 0) {
                    revert AddressEmptyCode(target);
                }
                return returndata;
            }
        }
    
        /**
         * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
         * revert reason or with a default {Errors.FailedCall} error.
         */
        function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
            if (!success) {
                _revert(returndata);
            } else {
                return returndata;
            }
        }
    
        /**
         * @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}.
         */
        function _revert(bytes memory returndata) private pure {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly
                assembly ("memory-safe") {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert Errors.FailedCall();
            }
        }
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
    
    pragma solidity ^0.8.20;
    
    /**
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    abstract contract Context {
        function _msgSender() internal view virtual returns (address) {
            return msg.sender;
        }
    
        function _msgData() internal view virtual returns (bytes calldata) {
            return msg.data;
        }
    
        function _contextSuffixLength() internal view virtual returns (uint256) {
            return 0;
        }
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol)
    
    pragma solidity ^0.8.20;
    
    /**
     * @dev Collection of common custom errors used in multiple contracts
     *
     * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
     * It is recommended to avoid relying on the error API for critical functionality.
     *
     * _Available since v5.1._
     */
    library Errors {
        /**
         * @dev The ETH balance of the account is not enough to perform the operation.
         */
        error InsufficientBalance(uint256 balance, uint256 needed);
    
        /**
         * @dev A call to an address target failed. The target may have reverted.
         */
        error FailedCall();
    
        /**
         * @dev The deployment failed.
         */
        error FailedDeployment();
    
        /**
         * @dev A necessary precompile is missing.
         */
        error MissingPrecompile(address);
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)
    
    pragma solidity ^0.8.20;
    
    /**
     * @dev Interface of the ERC-165 standard, as defined in the
     * https://eips.ethereum.org/EIPS/eip-165[ERC].
     *
     * Implementers can declare support of contract interfaces, which can then be
     * queried by others ({ERC165Checker}).
     *
     * For an implementation, see {ERC165}.
     */
    interface IERC165 {
        /**
         * @dev Returns true if this contract implements the interface defined by
         * `interfaceId`. See the corresponding
         * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
         * to learn more about how these ids are created.
         *
         * This function call must use less than 30 000 gas.
         */
        function supportsInterface(bytes4 interfaceId) external view returns (bool);
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol)
    
    pragma solidity ^0.8.20;
    
    /**
     * @dev Contract module that helps prevent reentrant calls to a function.
     *
     * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
     * available, which can be applied to functions to make sure there are no nested
     * (reentrant) calls to them.
     *
     * Note that because there is a single `nonReentrant` guard, functions marked as
     * `nonReentrant` may not call one another. This can be worked around by making
     * those functions `private`, and then adding `external` `nonReentrant` entry
     * points to them.
     *
     * TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
     * consider using {ReentrancyGuardTransient} instead.
     *
     * TIP: If you would like to learn more about reentrancy and alternative ways
     * to protect against it, check out our blog post
     * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
     */
    abstract contract ReentrancyGuard {
        // Booleans are more expensive than uint256 or any type that takes up a full
        // word because each write operation emits an extra SLOAD to first read the
        // slot's contents, replace the bits taken up by the boolean, and then write
        // back. This is the compiler's defense against contract upgrades and
        // pointer aliasing, and it cannot be disabled.
    
        // The values being non-zero value makes deployment a bit more expensive,
        // but in exchange the refund on every call to nonReentrant will be lower in
        // amount. Since refunds are capped to a percentage of the total
        // transaction's gas, it is best to keep them low in cases like this one, to
        // increase the likelihood of the full refund coming into effect.
        uint256 private constant NOT_ENTERED = 1;
        uint256 private constant ENTERED = 2;
    
        uint256 private _status;
    
        /**
         * @dev Unauthorized reentrant call.
         */
        error ReentrancyGuardReentrantCall();
    
        constructor() {
            _status = NOT_ENTERED;
        }
    
        /**
         * @dev Prevents a contract from calling itself, directly or indirectly.
         * Calling a `nonReentrant` function from another `nonReentrant`
         * function is not supported. It is possible to prevent this from happening
         * by making the `nonReentrant` function external, and making it call a
         * `private` function that does the actual work.
         */
        modifier nonReentrant() {
            _nonReentrantBefore();
            _;
            _nonReentrantAfter();
        }
    
        function _nonReentrantBefore() private {
            // On the first call to nonReentrant, _status will be NOT_ENTERED
            if (_status == ENTERED) {
                revert ReentrancyGuardReentrantCall();
            }
    
            // Any calls to nonReentrant after this point will fail
            _status = ENTERED;
        }
    
        function _nonReentrantAfter() private {
            // By storing the original value once again, a refund is triggered (see
            // https://eips.ethereum.org/EIPS/eip-2200)
            _status = NOT_ENTERED;
        }
    
        /**
         * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
         * `nonReentrant` function in the call stack.
         */
        function _reentrancyGuardEntered() internal view returns (bool) {
            return _status == ENTERED;
        }
    }

    // SPDX-License-Identifier: MIT
    
    pragma solidity 0.8.20;
    
    import '@openzeppelin/contracts/token/ERC20/IERC20.sol';
    
    interface ISailFactory {
        function treasury() external view returns (address);
        function paused() external view returns (bool);
    }
    
    interface ISailCurve {
        function mustStaySAIL(address account) external view returns (uint256);
    }
    
    interface IxSAIL {
        function balanceOf(address account) external view returns (uint256);
        //function notifyRewardAmount(address _rewardsToken, uint256 reward) external; 
    }
    
    interface ISailWhalePrevention {
        function timelockRemaining() external view returns (bool active, uint256 timeleft);
    }
    
    interface ISailStrategy { 
        function vault() external view returns (address);
        function staking_token() external view returns (address);
        function beforeDeposit() external;
        function deposit() external;
        function withdraw(uint256) external;
        function balanceOf() external view returns (uint256);
        function lastHarvest() external view returns (uint256);
        function harvest() external;
        function retireStrat() external;
        function panic() external;
        function pause() external;
        function unpause() external;
        function paused() external view returns (bool);
    }
    
    interface ISailVault {
        function want() external view returns (IERC20);
        function strategy() external view returns (ISailStrategy);
        function balance() external view returns (uint);
        function available() external view returns (uint256);
        function getPricePerFullShare() external view returns (uint256);
        function getAccountInfo(address _account) external view returns (uint256, uint256, string memory);
    }
    
    struct UpgradedStrategy {
        address implementation;
        uint proposedTime;
    }
    
    interface IUniswapRouter {
        function factory() external pure returns (address);
        function WETH() external pure returns (address);
    
        function addLiquidity(
            address tokenA,
            address tokenB,
            uint amountADesired,
            uint amountBDesired,
            uint amountAMin,
            uint amountBMin,
            address to,
            uint deadline
        ) external returns (uint amountA, uint amountB, uint liquidity);
        function addLiquidityETH(
            address token,
            uint amountTokenDesired,
            uint amountTokenMin,
            uint amountETHMin,
            address to,
            uint deadline
        ) external payable returns (uint amountToken, uint amountETH, uint liquidity);
        function swapExactTokensForTokens(
            uint amountIn,
            uint amountOutMin,
            address[] calldata path,
            address to,
            uint deadline
        ) external returns (uint[] memory amounts);
        function swapTokensForExactTokens(
            uint amountOut,
            uint amountInMax,
            address[] calldata path,
            address to,
            uint deadline
        ) external returns (uint[] memory amounts);
        function swapExactTokensForTokensSupportingFeeOnTransferTokens(
            uint amountIn,
            uint amountOutMin,
            address[] calldata path,
            address to,
            uint deadline
        ) external;
        function quote(uint amountA, uint reserveA, uint reserveB) external pure returns (uint amountB);
        function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) external pure returns (uint amountOut);
        function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut) external pure returns (uint amountIn);
        function getAmountsOut(uint amountIn, address[] calldata path) external view returns (uint[] memory amounts);
        function getAmountsIn(uint amountOut, address[] calldata path) external view returns (uint[] memory amounts);
    }
    
    interface IUniswapPair {
       
        function token0() external view returns (address);
        function token1() external view returns (address);
    }
    
    interface IRewardPool {
    
        function deposit(uint256 amount) external;
    
        function withdraw(uint256 amount) external;
    
        function getReward(address user, address[] memory rewards) external;
    
        function earned(address token, address user) external view returns (uint256);
    
        function balanceOf(address account) external view returns (uint256);
    
        function stake() external view returns (address);
    }
    
    interface ISolidlyRouter {
        // Routes
        struct Routes {
            address from;
            address to;
            bool stable;
        }
    
        struct Route {
            address from;
            address to;
            bool stable;
            address factory;
        }
    
        function addLiquidity(
            address tokenA,
            address tokenB,
            bool stable,
            uint amountADesired,
            uint amountBDesired,
            uint amountAMin,
            uint amountBMin,
            address to,
            uint deadline
        ) external returns (uint amountA, uint amountB, uint liquidity);
    
        function addLiquidityETH(
            address token,
            bool stable,
            uint amountTokenDesired,
            uint amountTokenMin,
            uint amountETHMin,
            address to,
            uint deadline
        ) external payable returns (uint amountToken, uint amountETH, uint liquidity);
    
        function removeLiquidity(
            address tokenA,
            address tokenB,
            bool stable,
            uint liquidity,
            uint amountAMin,
            uint amountBMin,
            address to,
            uint deadline
        ) external returns (uint amountA, uint amountB);
    
        function removeLiquidityETH(
            address token,
            bool stable,
            uint liquidity,
            uint amountTokenMin,
            uint amountETHMin,
            address to,
            uint deadline
        ) external returns (uint amountToken, uint amountETH);
    
        function swapExactTokensForTokensSimple(
            uint amountIn,
            uint amountOutMin,
            address tokenFrom,
            address tokenTo,
            bool stable,
            address to,
            uint deadline
        ) external returns (uint[] memory amounts);
    
        function swapExactTokensForTokens(
            uint amountIn,
            uint amountOutMin,
            Routes[] memory route,
            address to,
            uint deadline
        ) external returns (uint[] memory amounts);
    
        function swapExactTokensForTokens(
            uint amountIn,
            uint amountOutMin,
            Route[] memory route,
            address to,
            uint deadline
        ) external returns (uint[] memory amounts);
    
        function getAmountOut(
            uint amountIn,
            address tokenIn,
            address tokenOut
        ) external view returns (uint amount, bool stable);
    
        function getAmountsOut(uint amountIn, Routes[] memory routes) external view returns (uint[] memory amounts);
    
        function getAmountsOut(uint amountIn, Route[] memory routes) external view returns (uint[] memory amounts);
    
        function quoteAddLiquidity(
            address tokenA,
            address tokenB,
            bool stable,
            uint amountADesired,
            uint amountBDesired
        ) external view returns (uint amountA, uint amountB, uint liquidity);
    
        function quoteAddLiquidity(
            address tokenA,
            address tokenB,
            bool stable,
            address _factory,
            uint amountADesired,
            uint amountBDesired
        ) external view returns (uint amountA, uint amountB, uint liquidity);
    
        function defaultFactory() external view returns (address);
    }
    
    interface IEqualizerPool {
        function deposit(uint256 amount) external;
        function withdraw(uint256 amount) external;
        function getReward(address user, address[] memory rewards) external;
        function earned(address token, address user) external view returns (uint256);
        function balanceOf(address account) external view returns (uint256);
        function stake() external view returns (address);
    }

    // SPDX-License-Identifier: MIT
    pragma solidity 0.8.20;
    
    import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
    import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
    import "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
    import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
    import "@openzeppelin/contracts/access/Ownable.sol";
    import "./BlackSail_Interface.sol";
    
    contract Blacksail_Vault is ERC20, ReentrancyGuard, Ownable {
        using SafeERC20 for IERC20;
    
        mapping (address => AccountInfo) public accountData;
        // The last proposed strategy to switch to.
        UpgradedStrategy public stratCandidate;
        // The strategy currently in use by the vault.
        ISailStrategy public strategy;
        // The minimum time it has to pass before a strat candidate can be approved, set to 24 hours
        uint256 constant approvalDelay = 86400;
    
        struct AccountInfo {
            uint256 actionTime;
            uint256 amount;
            string lastAction;
        }
    
        event ProposedStrategyUpgrade(address implementation);
        event UpgradeStrat(address implementation);
        event Deposit(address indexed user, uint256 amount);
        event Withdraw(address indexed user, uint256 amount);
    
        /**
        * @dev Initializes the vault contract.
        * Sets the strategy, vault token name, and symbol.
        * 
        * @param _strategy Address of the strategy contract associated with this vault.
        * @param _name Name of the vault token (e.g., "Vault Token").
        * @param _symbol Symbol of the vault token (e.g., "VT").
        * 
        * Inherits:
        * - ERC20: For managing the vault's token shares.
        * - Ownable: Assigns ownership to the deployer for administrative control. */
        constructor (
            ISailStrategy _strategy,
            string memory _name,
            string memory _symbol
        ) ERC20(_name, _symbol) Ownable(msg.sender) {
            strategy = _strategy;
        }
    
        function want() public view returns (IERC20) {
            return IERC20(strategy.staking_token());
        }
    
        /** @dev Calculates the total value of {token} held in the system, including:
            * Vault balance
            * Strategy contract balance
            * Balances deployed in external contracts. */
        function balance() public view returns (uint) {
            return want().balanceOf(address(this)) + (ISailStrategy(strategy).balanceOf());
        }
    
        /** @dev Determines how much of the vault's tokens can be borrowed. */
        function available() public view returns (uint256) {
            return want().balanceOf(address(this));
        }
    
        /** @dev Provides the value of one vault share in terms of the underlying asset, with 18 decimals, for UI display. */
        function getPricePerFullShare() public view returns (uint256) {
            return totalSupply() == 0 ? 1e18 : balance() * 1e18 / totalSupply();
        }
    
        /** @dev Calls deposit() with the sender's entire balance. */
        function depositAll() external {
            deposit(want().balanceOf(msg.sender));
        }
    
        /**
        * @dev Handles user deposits into the vault.
        * Transfers the specified `_amount` of tokens from the user to the vault, updates the strategy via `earn()`,
        * and mints corresponding shares to the user. Shares represent the user's proportional ownership of the vault.
        * Includes safeguards for deflationary tokens.
        * 
        * Requirements:
        * - `_amount` must be greater than zero.
        * - Caller must approve the vault to transfer their tokens.*/
        function deposit(uint _amount) public nonReentrant {
            require(_amount > 0, "Invalid amount");
            strategy.beforeDeposit();
    
            uint256 _pool = balance();
            want().safeTransferFrom(msg.sender, address(this), _amount);
            earn();
            uint256 _after = balance();
            _amount = _after - _pool; // Additional check for deflationary tokens
            uint256 shares = 0;
            if (totalSupply() == 0) {
                shares = _amount;
            } else {
                shares = (_amount * totalSupply()) / _pool;
            }
    
            emit Deposit(msg.sender, _amount);
            accountData[msg.sender].lastAction = "Deposit";
            accountData[msg.sender].amount += _amount;
            _mint(msg.sender, shares);
        }
    
        /**
        * @dev Transfers available funds from the vault to the strategy for yield optimization.
        * Moves the vault's idle balance to the strategy contract and triggers the strategy's deposit function. */
        function earn() internal {
            uint _bal = available();
            want().safeTransfer(address(strategy), _bal);
            strategy.deposit();
        }
    
        /** @dev Helper to withdraw all funds for the sender. */
        function withdrawAll() external {
            withdraw(balanceOf(msg.sender));
        }
    
        /**
        * @dev Allows a user to withdraw their share of funds from the vault.
        * Burns the user's vault tokens, calculates the proportional amount of underlying tokens, and transfers them back to the user.
        * If there are insufficient funds in the vault, it withdraws the required amount from the strategy.
        * Updates the user's deposit record and ensures safe transfer of tokens.
        * @param _shares The number of vault tokens to redeem for underlying assets. */
        function withdraw(uint256 _shares) public nonReentrant {
            uint256 r = (balance() * _shares) / totalSupply();
            _burn(msg.sender, _shares);
    
            uint b = want().balanceOf(address(this));
            if (b < r) {
                uint _withdraw = r - b;
                strategy.withdraw(_withdraw);
                uint _after = want().balanceOf(address(this));
                uint _diff = _after - b;
                if (_diff < _withdraw) {
                    r = b + _diff;
                }
            }
            
            emit Withdraw(msg.sender, r);
            accountData[msg.sender].lastAction = "Withdraw";
            accountData[msg.sender].amount = 0;
            want().safeTransfer(msg.sender, r);
        }
    
        /**
        * @dev Proposes an upgrade to a new strategy for the vault.
        * Only callable by the owner. Verifies that the new strategy is valid for this vault.
        * The proposed strategy and the current timestamp are stored for later approval.
        * Emits a `ProposedStrategyUpgrade` event.
        * @param _implementation The address of the proposed new strategy.*/
        function proposeStrategyUpgrade(address _implementation) public onlyOwner {
            require(address(this) == ISailStrategy(_implementation).vault(), "Proposal not valid for this Vault");
            stratCandidate = UpgradedStrategy({
                implementation: _implementation,
                proposedTime: block.timestamp
             });
    
            emit ProposedStrategyUpgrade(_implementation);
        }
    
        /**
        * @dev Upgrades the vault to the proposed strategy after the approval delay has passed.
        * Only callable by the owner. Ensures a valid candidate strategy exists and the required delay is met.
        * Retires the current strategy and sets the new strategy as active.
        * Resets the candidate strategy details for safety and calls `earn()` to deploy funds to the new strategy.
        * Emits an `UpgradeStrat` event. */
        function upgradeStrat() public onlyOwner {
            require(stratCandidate.implementation != address(0), "There is no candidate");
            require(stratCandidate.proposedTime + approvalDelay < block.timestamp, "Delay has not passed");
    
            emit UpgradeStrat(stratCandidate.implementation);
    
            strategy.retireStrat();
            strategy = ISailStrategy(stratCandidate.implementation);
            stratCandidate.implementation = address(0);
            stratCandidate.proposedTime = 5000000000;
    
            earn();
        }
    
        function getAccountInfo(address _account) public view returns (uint256, uint256, string memory) {
            AccountInfo storage info = accountData[_account];
            if (totalSupply() > 0) {
                uint256 owns = (balance() * IERC20(address(this)).balanceOf(_account)) / totalSupply();
                uint256 diff = 0;
                if (owns > info.amount) {
                    diff = owns - info.amount;
                }
            return (info.actionTime, diff, info.lastAction);
            } else {
                return (info.actionTime, 0, info.lastAction);
            }
        }
    }

    Please enter a contract address above to load the contract details and source code.

    Context size (optional):