S Price: $0.487325 (-1.32%)
    /

    Contract Diff Checker

    Contract Name:
    ItemNFT

    Contract Source Code:

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
    
    pragma solidity ^0.8.20;
    
    import {ContextUpgradeable} from "../utils/ContextUpgradeable.sol";
    import {Initializable} from "../proxy/utils/Initializable.sol";
    
    /**
     * @dev Contract module which provides a basic access control mechanism, where
     * there is an account (an owner) that can be granted exclusive access to
     * specific functions.
     *
     * The initial owner is set to the address provided by the deployer. This can
     * later be changed with {transferOwnership}.
     *
     * This module is used through inheritance. It will make available the modifier
     * `onlyOwner`, which can be applied to your functions to restrict their use to
     * the owner.
     */
    abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
        /// @custom:storage-location erc7201:openzeppelin.storage.Ownable
        struct OwnableStorage {
            address _owner;
        }
    
        // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Ownable")) - 1)) & ~bytes32(uint256(0xff))
        bytes32 private constant OwnableStorageLocation = 0x9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c199300;
    
        function _getOwnableStorage() private pure returns (OwnableStorage storage $) {
            assembly ("memory-safe") {
                $.slot := OwnableStorageLocation
            }
        }
    
        /**
         * @dev The caller account is not authorized to perform an operation.
         */
        error OwnableUnauthorizedAccount(address account);
    
        /**
         * @dev The owner is not a valid owner account. (eg. `address(0)`)
         */
        error OwnableInvalidOwner(address owner);
    
        event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
    
        /**
         * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
         */
        function __Ownable_init(address initialOwner) internal onlyInitializing {
            __Ownable_init_unchained(initialOwner);
        }
    
        function __Ownable_init_unchained(address initialOwner) internal onlyInitializing {
            if (initialOwner == address(0)) {
                revert OwnableInvalidOwner(address(0));
            }
            _transferOwnership(initialOwner);
        }
    
        /**
         * @dev Throws if called by any account other than the owner.
         */
        modifier onlyOwner() {
            _checkOwner();
            _;
        }
    
        /**
         * @dev Returns the address of the current owner.
         */
        function owner() public view virtual returns (address) {
            OwnableStorage storage $ = _getOwnableStorage();
            return $._owner;
        }
    
        /**
         * @dev Throws if the sender is not the owner.
         */
        function _checkOwner() internal view virtual {
            if (owner() != _msgSender()) {
                revert OwnableUnauthorizedAccount(_msgSender());
            }
        }
    
        /**
         * @dev Leaves the contract without owner. It will not be possible to call
         * `onlyOwner` functions. Can only be called by the current owner.
         *
         * NOTE: Renouncing ownership will leave the contract without an owner,
         * thereby disabling any functionality that is only available to the owner.
         */
        function renounceOwnership() public virtual onlyOwner {
            _transferOwnership(address(0));
        }
    
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Can only be called by the current owner.
         */
        function transferOwnership(address newOwner) public virtual onlyOwner {
            if (newOwner == address(0)) {
                revert OwnableInvalidOwner(address(0));
            }
            _transferOwnership(newOwner);
        }
    
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Internal function without access restriction.
         */
        function _transferOwnership(address newOwner) internal virtual {
            OwnableStorage storage $ = _getOwnableStorage();
            address oldOwner = $._owner;
            $._owner = newOwner;
            emit OwnershipTransferred(oldOwner, newOwner);
        }
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol)
    
    pragma solidity ^0.8.20;
    
    /**
     * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
     * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
     * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
     * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
     *
     * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
     * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
     * case an upgrade adds a module that needs to be initialized.
     *
     * For example:
     *
     * [.hljs-theme-light.nopadding]
     * ```solidity
     * contract MyToken is ERC20Upgradeable {
     *     function initialize() initializer public {
     *         __ERC20_init("MyToken", "MTK");
     *     }
     * }
     *
     * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
     *     function initializeV2() reinitializer(2) public {
     *         __ERC20Permit_init("MyToken");
     *     }
     * }
     * ```
     *
     * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
     * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
     *
     * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
     * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
     *
     * [CAUTION]
     * ====
     * Avoid leaving a contract uninitialized.
     *
     * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
     * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
     * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
     *
     * [.hljs-theme-light.nopadding]
     * ```
     * /// @custom:oz-upgrades-unsafe-allow constructor
     * constructor() {
     *     _disableInitializers();
     * }
     * ```
     * ====
     */
    abstract contract Initializable {
        /**
         * @dev Storage of the initializable contract.
         *
         * It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions
         * when using with upgradeable contracts.
         *
         * @custom:storage-location erc7201:openzeppelin.storage.Initializable
         */
        struct InitializableStorage {
            /**
             * @dev Indicates that the contract has been initialized.
             */
            uint64 _initialized;
            /**
             * @dev Indicates that the contract is in the process of being initialized.
             */
            bool _initializing;
        }
    
        // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff))
        bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00;
    
        /**
         * @dev The contract is already initialized.
         */
        error InvalidInitialization();
    
        /**
         * @dev The contract is not initializing.
         */
        error NotInitializing();
    
        /**
         * @dev Triggered when the contract has been initialized or reinitialized.
         */
        event Initialized(uint64 version);
    
        /**
         * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
         * `onlyInitializing` functions can be used to initialize parent contracts.
         *
         * Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any
         * number of times. This behavior in the constructor can be useful during testing and is not expected to be used in
         * production.
         *
         * Emits an {Initialized} event.
         */
        modifier initializer() {
            // solhint-disable-next-line var-name-mixedcase
            InitializableStorage storage $ = _getInitializableStorage();
    
            // Cache values to avoid duplicated sloads
            bool isTopLevelCall = !$._initializing;
            uint64 initialized = $._initialized;
    
            // Allowed calls:
            // - initialSetup: the contract is not in the initializing state and no previous version was
            //                 initialized
            // - construction: the contract is initialized at version 1 (no reininitialization) and the
            //                 current contract is just being deployed
            bool initialSetup = initialized == 0 && isTopLevelCall;
            bool construction = initialized == 1 && address(this).code.length == 0;
    
            if (!initialSetup && !construction) {
                revert InvalidInitialization();
            }
            $._initialized = 1;
            if (isTopLevelCall) {
                $._initializing = true;
            }
            _;
            if (isTopLevelCall) {
                $._initializing = false;
                emit Initialized(1);
            }
        }
    
        /**
         * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
         * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
         * used to initialize parent contracts.
         *
         * A reinitializer may be used after the original initialization step. This is essential to configure modules that
         * are added through upgrades and that require initialization.
         *
         * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
         * cannot be nested. If one is invoked in the context of another, execution will revert.
         *
         * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
         * a contract, executing them in the right order is up to the developer or operator.
         *
         * WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization.
         *
         * Emits an {Initialized} event.
         */
        modifier reinitializer(uint64 version) {
            // solhint-disable-next-line var-name-mixedcase
            InitializableStorage storage $ = _getInitializableStorage();
    
            if ($._initializing || $._initialized >= version) {
                revert InvalidInitialization();
            }
            $._initialized = version;
            $._initializing = true;
            _;
            $._initializing = false;
            emit Initialized(version);
        }
    
        /**
         * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
         * {initializer} and {reinitializer} modifiers, directly or indirectly.
         */
        modifier onlyInitializing() {
            _checkInitializing();
            _;
        }
    
        /**
         * @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}.
         */
        function _checkInitializing() internal view virtual {
            if (!_isInitializing()) {
                revert NotInitializing();
            }
        }
    
        /**
         * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
         * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
         * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
         * through proxies.
         *
         * Emits an {Initialized} event the first time it is successfully executed.
         */
        function _disableInitializers() internal virtual {
            // solhint-disable-next-line var-name-mixedcase
            InitializableStorage storage $ = _getInitializableStorage();
    
            if ($._initializing) {
                revert InvalidInitialization();
            }
            if ($._initialized != type(uint64).max) {
                $._initialized = type(uint64).max;
                emit Initialized(type(uint64).max);
            }
        }
    
        /**
         * @dev Returns the highest version that has been initialized. See {reinitializer}.
         */
        function _getInitializedVersion() internal view returns (uint64) {
            return _getInitializableStorage()._initialized;
        }
    
        /**
         * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
         */
        function _isInitializing() internal view returns (bool) {
            return _getInitializableStorage()._initializing;
        }
    
        /**
         * @dev Returns a pointer to the storage namespace.
         */
        // solhint-disable-next-line var-name-mixedcase
        function _getInitializableStorage() private pure returns (InitializableStorage storage $) {
            assembly ("memory-safe") {
                $.slot := INITIALIZABLE_STORAGE
            }
        }
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.1.0) (proxy/utils/UUPSUpgradeable.sol)
    
    pragma solidity ^0.8.20;
    
    import {IERC1822Proxiable} from "@openzeppelin/contracts/interfaces/draft-IERC1822.sol";
    import {ERC1967Utils} from "@openzeppelin/contracts/proxy/ERC1967/ERC1967Utils.sol";
    import {Initializable} from "./Initializable.sol";
    
    /**
     * @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an
     * {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy.
     *
     * A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is
     * reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing
     * `UUPSUpgradeable` with a custom implementation of upgrades.
     *
     * The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism.
     */
    abstract contract UUPSUpgradeable is Initializable, IERC1822Proxiable {
        /// @custom:oz-upgrades-unsafe-allow state-variable-immutable
        address private immutable __self = address(this);
    
        /**
         * @dev The version of the upgrade interface of the contract. If this getter is missing, both `upgradeTo(address)`
         * and `upgradeToAndCall(address,bytes)` are present, and `upgradeTo` must be used if no function should be called,
         * while `upgradeToAndCall` will invoke the `receive` function if the second argument is the empty byte string.
         * If the getter returns `"5.0.0"`, only `upgradeToAndCall(address,bytes)` is present, and the second argument must
         * be the empty byte string if no function should be called, making it impossible to invoke the `receive` function
         * during an upgrade.
         */
        string public constant UPGRADE_INTERFACE_VERSION = "5.0.0";
    
        /**
         * @dev The call is from an unauthorized context.
         */
        error UUPSUnauthorizedCallContext();
    
        /**
         * @dev The storage `slot` is unsupported as a UUID.
         */
        error UUPSUnsupportedProxiableUUID(bytes32 slot);
    
        /**
         * @dev Check that the execution is being performed through a delegatecall call and that the execution context is
         * a proxy contract with an implementation (as defined in ERC-1967) pointing to self. This should only be the case
         * for UUPS and transparent proxies that are using the current contract as their implementation. Execution of a
         * function through ERC-1167 minimal proxies (clones) would not normally pass this test, but is not guaranteed to
         * fail.
         */
        modifier onlyProxy() {
            _checkProxy();
            _;
        }
    
        /**
         * @dev Check that the execution is not being performed through a delegate call. This allows a function to be
         * callable on the implementing contract but not through proxies.
         */
        modifier notDelegated() {
            _checkNotDelegated();
            _;
        }
    
        function __UUPSUpgradeable_init() internal onlyInitializing {
        }
    
        function __UUPSUpgradeable_init_unchained() internal onlyInitializing {
        }
        /**
         * @dev Implementation of the ERC-1822 {proxiableUUID} function. This returns the storage slot used by the
         * implementation. It is used to validate the implementation's compatibility when performing an upgrade.
         *
         * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
         * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
         * function revert if invoked through a proxy. This is guaranteed by the `notDelegated` modifier.
         */
        function proxiableUUID() external view virtual notDelegated returns (bytes32) {
            return ERC1967Utils.IMPLEMENTATION_SLOT;
        }
    
        /**
         * @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call
         * encoded in `data`.
         *
         * Calls {_authorizeUpgrade}.
         *
         * Emits an {Upgraded} event.
         *
         * @custom:oz-upgrades-unsafe-allow-reachable delegatecall
         */
        function upgradeToAndCall(address newImplementation, bytes memory data) public payable virtual onlyProxy {
            _authorizeUpgrade(newImplementation);
            _upgradeToAndCallUUPS(newImplementation, data);
        }
    
        /**
         * @dev Reverts if the execution is not performed via delegatecall or the execution
         * context is not of a proxy with an ERC-1967 compliant implementation pointing to self.
         * See {_onlyProxy}.
         */
        function _checkProxy() internal view virtual {
            if (
                address(this) == __self || // Must be called through delegatecall
                ERC1967Utils.getImplementation() != __self // Must be called through an active proxy
            ) {
                revert UUPSUnauthorizedCallContext();
            }
        }
    
        /**
         * @dev Reverts if the execution is performed via delegatecall.
         * See {notDelegated}.
         */
        function _checkNotDelegated() internal view virtual {
            if (address(this) != __self) {
                // Must not be called through delegatecall
                revert UUPSUnauthorizedCallContext();
            }
        }
    
        /**
         * @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by
         * {upgradeToAndCall}.
         *
         * Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}.
         *
         * ```solidity
         * function _authorizeUpgrade(address) internal onlyOwner {}
         * ```
         */
        function _authorizeUpgrade(address newImplementation) internal virtual;
    
        /**
         * @dev Performs an implementation upgrade with a security check for UUPS proxies, and additional setup call.
         *
         * As a security check, {proxiableUUID} is invoked in the new implementation, and the return value
         * is expected to be the implementation slot in ERC-1967.
         *
         * Emits an {IERC1967-Upgraded} event.
         */
        function _upgradeToAndCallUUPS(address newImplementation, bytes memory data) private {
            try IERC1822Proxiable(newImplementation).proxiableUUID() returns (bytes32 slot) {
                if (slot != ERC1967Utils.IMPLEMENTATION_SLOT) {
                    revert UUPSUnsupportedProxiableUUID(slot);
                }
                ERC1967Utils.upgradeToAndCall(newImplementation, data);
            } catch {
                // The implementation is not UUPS
                revert ERC1967Utils.ERC1967InvalidImplementation(newImplementation);
            }
        }
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC1155/ERC1155.sol)
    
    pragma solidity ^0.8.20;
    
    import {IERC1155} from "@openzeppelin/contracts/token/ERC1155/IERC1155.sol";
    import {IERC1155MetadataURI} from "@openzeppelin/contracts/token/ERC1155/extensions/IERC1155MetadataURI.sol";
    import {ERC1155Utils} from "@openzeppelin/contracts/token/ERC1155/utils/ERC1155Utils.sol";
    import {ContextUpgradeable} from "../../utils/ContextUpgradeable.sol";
    import {IERC165} from "@openzeppelin/contracts/utils/introspection/IERC165.sol";
    import {ERC165Upgradeable} from "../../utils/introspection/ERC165Upgradeable.sol";
    import {Arrays} from "@openzeppelin/contracts/utils/Arrays.sol";
    import {IERC1155Errors} from "@openzeppelin/contracts/interfaces/draft-IERC6093.sol";
    import {Initializable} from "../../proxy/utils/Initializable.sol";
    
    /**
     * @dev Implementation of the basic standard multi-token.
     * See https://eips.ethereum.org/EIPS/eip-1155
     * Originally based on code by Enjin: https://github.com/enjin/erc-1155
     */
    abstract contract ERC1155Upgradeable is Initializable, ContextUpgradeable, ERC165Upgradeable, IERC1155, IERC1155MetadataURI, IERC1155Errors {
        using Arrays for uint256[];
        using Arrays for address[];
    
        /// @custom:storage-location erc7201:openzeppelin.storage.ERC1155
        struct ERC1155Storage {
            mapping(uint256 id => mapping(address account => uint256)) _balances;
    
            mapping(address account => mapping(address operator => bool)) _operatorApprovals;
    
            // Used as the URI for all token types by relying on ID substitution, e.g. https://token-cdn-domain/{id}.json
            string _uri;
        }
    
        // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.ERC1155")) - 1)) & ~bytes32(uint256(0xff))
        bytes32 private constant ERC1155StorageLocation = 0x88be536d5240c274a3b1d3a1be54482fd9caa294f08c62a7cde569f49a3c4500;
    
        function _getERC1155Storage() private pure returns (ERC1155Storage storage $) {
            assembly ("memory-safe") {
                $.slot := ERC1155StorageLocation
            }
        }
    
        /**
         * @dev See {_setURI}.
         */
        function __ERC1155_init(string memory uri_) internal onlyInitializing {
            __ERC1155_init_unchained(uri_);
        }
    
        function __ERC1155_init_unchained(string memory uri_) internal onlyInitializing {
            _setURI(uri_);
        }
    
        /**
         * @dev See {IERC165-supportsInterface}.
         */
        function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165Upgradeable, IERC165) returns (bool) {
            return
                interfaceId == type(IERC1155).interfaceId ||
                interfaceId == type(IERC1155MetadataURI).interfaceId ||
                super.supportsInterface(interfaceId);
        }
    
        /**
         * @dev See {IERC1155MetadataURI-uri}.
         *
         * This implementation returns the same URI for *all* token types. It relies
         * on the token type ID substitution mechanism
         * https://eips.ethereum.org/EIPS/eip-1155#metadata[defined in the ERC].
         *
         * Clients calling this function must replace the `\{id\}` substring with the
         * actual token type ID.
         */
        function uri(uint256 /* id */) public view virtual returns (string memory) {
            ERC1155Storage storage $ = _getERC1155Storage();
            return $._uri;
        }
    
        /**
         * @dev See {IERC1155-balanceOf}.
         */
        function balanceOf(address account, uint256 id) public view virtual returns (uint256) {
            ERC1155Storage storage $ = _getERC1155Storage();
            return $._balances[id][account];
        }
    
        /**
         * @dev See {IERC1155-balanceOfBatch}.
         *
         * Requirements:
         *
         * - `accounts` and `ids` must have the same length.
         */
        function balanceOfBatch(
            address[] memory accounts,
            uint256[] memory ids
        ) public view virtual returns (uint256[] memory) {
            if (accounts.length != ids.length) {
                revert ERC1155InvalidArrayLength(ids.length, accounts.length);
            }
    
            uint256[] memory batchBalances = new uint256[](accounts.length);
    
            for (uint256 i = 0; i < accounts.length; ++i) {
                batchBalances[i] = balanceOf(accounts.unsafeMemoryAccess(i), ids.unsafeMemoryAccess(i));
            }
    
            return batchBalances;
        }
    
        /**
         * @dev See {IERC1155-setApprovalForAll}.
         */
        function setApprovalForAll(address operator, bool approved) public virtual {
            _setApprovalForAll(_msgSender(), operator, approved);
        }
    
        /**
         * @dev See {IERC1155-isApprovedForAll}.
         */
        function isApprovedForAll(address account, address operator) public view virtual returns (bool) {
            ERC1155Storage storage $ = _getERC1155Storage();
            return $._operatorApprovals[account][operator];
        }
    
        /**
         * @dev See {IERC1155-safeTransferFrom}.
         */
        function safeTransferFrom(address from, address to, uint256 id, uint256 value, bytes memory data) public virtual {
            address sender = _msgSender();
            if (from != sender && !isApprovedForAll(from, sender)) {
                revert ERC1155MissingApprovalForAll(sender, from);
            }
            _safeTransferFrom(from, to, id, value, data);
        }
    
        /**
         * @dev See {IERC1155-safeBatchTransferFrom}.
         */
        function safeBatchTransferFrom(
            address from,
            address to,
            uint256[] memory ids,
            uint256[] memory values,
            bytes memory data
        ) public virtual {
            address sender = _msgSender();
            if (from != sender && !isApprovedForAll(from, sender)) {
                revert ERC1155MissingApprovalForAll(sender, from);
            }
            _safeBatchTransferFrom(from, to, ids, values, data);
        }
    
        /**
         * @dev Transfers a `value` amount of tokens of type `id` from `from` to `to`. Will mint (or burn) if `from`
         * (or `to`) is the zero address.
         *
         * Emits a {TransferSingle} event if the arrays contain one element, and {TransferBatch} otherwise.
         *
         * Requirements:
         *
         * - If `to` refers to a smart contract, it must implement either {IERC1155Receiver-onERC1155Received}
         *   or {IERC1155Receiver-onERC1155BatchReceived} and return the acceptance magic value.
         * - `ids` and `values` must have the same length.
         *
         * NOTE: The ERC-1155 acceptance check is not performed in this function. See {_updateWithAcceptanceCheck} instead.
         */
        function _update(address from, address to, uint256[] memory ids, uint256[] memory values) internal virtual {
            ERC1155Storage storage $ = _getERC1155Storage();
            if (ids.length != values.length) {
                revert ERC1155InvalidArrayLength(ids.length, values.length);
            }
    
            address operator = _msgSender();
    
            for (uint256 i = 0; i < ids.length; ++i) {
                uint256 id = ids.unsafeMemoryAccess(i);
                uint256 value = values.unsafeMemoryAccess(i);
    
                if (from != address(0)) {
                    uint256 fromBalance = $._balances[id][from];
                    if (fromBalance < value) {
                        revert ERC1155InsufficientBalance(from, fromBalance, value, id);
                    }
                    unchecked {
                        // Overflow not possible: value <= fromBalance
                        $._balances[id][from] = fromBalance - value;
                    }
                }
    
                if (to != address(0)) {
                    $._balances[id][to] += value;
                }
            }
    
            if (ids.length == 1) {
                uint256 id = ids.unsafeMemoryAccess(0);
                uint256 value = values.unsafeMemoryAccess(0);
                emit TransferSingle(operator, from, to, id, value);
            } else {
                emit TransferBatch(operator, from, to, ids, values);
            }
        }
    
        /**
         * @dev Version of {_update} that performs the token acceptance check by calling
         * {IERC1155Receiver-onERC1155Received} or {IERC1155Receiver-onERC1155BatchReceived} on the receiver address if it
         * contains code (eg. is a smart contract at the moment of execution).
         *
         * IMPORTANT: Overriding this function is discouraged because it poses a reentrancy risk from the receiver. So any
         * update to the contract state after this function would break the check-effect-interaction pattern. Consider
         * overriding {_update} instead.
         */
        function _updateWithAcceptanceCheck(
            address from,
            address to,
            uint256[] memory ids,
            uint256[] memory values,
            bytes memory data
        ) internal virtual {
            _update(from, to, ids, values);
            if (to != address(0)) {
                address operator = _msgSender();
                if (ids.length == 1) {
                    uint256 id = ids.unsafeMemoryAccess(0);
                    uint256 value = values.unsafeMemoryAccess(0);
                    ERC1155Utils.checkOnERC1155Received(operator, from, to, id, value, data);
                } else {
                    ERC1155Utils.checkOnERC1155BatchReceived(operator, from, to, ids, values, data);
                }
            }
        }
    
        /**
         * @dev Transfers a `value` tokens of token type `id` from `from` to `to`.
         *
         * Emits a {TransferSingle} event.
         *
         * Requirements:
         *
         * - `to` cannot be the zero address.
         * - `from` must have a balance of tokens of type `id` of at least `value` amount.
         * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
         * acceptance magic value.
         */
        function _safeTransferFrom(address from, address to, uint256 id, uint256 value, bytes memory data) internal {
            if (to == address(0)) {
                revert ERC1155InvalidReceiver(address(0));
            }
            if (from == address(0)) {
                revert ERC1155InvalidSender(address(0));
            }
            (uint256[] memory ids, uint256[] memory values) = _asSingletonArrays(id, value);
            _updateWithAcceptanceCheck(from, to, ids, values, data);
        }
    
        /**
         * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_safeTransferFrom}.
         *
         * Emits a {TransferBatch} event.
         *
         * Requirements:
         *
         * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
         * acceptance magic value.
         * - `ids` and `values` must have the same length.
         */
        function _safeBatchTransferFrom(
            address from,
            address to,
            uint256[] memory ids,
            uint256[] memory values,
            bytes memory data
        ) internal {
            if (to == address(0)) {
                revert ERC1155InvalidReceiver(address(0));
            }
            if (from == address(0)) {
                revert ERC1155InvalidSender(address(0));
            }
            _updateWithAcceptanceCheck(from, to, ids, values, data);
        }
    
        /**
         * @dev Sets a new URI for all token types, by relying on the token type ID
         * substitution mechanism
         * https://eips.ethereum.org/EIPS/eip-1155#metadata[defined in the ERC].
         *
         * By this mechanism, any occurrence of the `\{id\}` substring in either the
         * URI or any of the values in the JSON file at said URI will be replaced by
         * clients with the token type ID.
         *
         * For example, the `https://token-cdn-domain/\{id\}.json` URI would be
         * interpreted by clients as
         * `https://token-cdn-domain/000000000000000000000000000000000000000000000000000000000004cce0.json`
         * for token type ID 0x4cce0.
         *
         * See {uri}.
         *
         * Because these URIs cannot be meaningfully represented by the {URI} event,
         * this function emits no events.
         */
        function _setURI(string memory newuri) internal virtual {
            ERC1155Storage storage $ = _getERC1155Storage();
            $._uri = newuri;
        }
    
        /**
         * @dev Creates a `value` amount of tokens of type `id`, and assigns them to `to`.
         *
         * Emits a {TransferSingle} event.
         *
         * Requirements:
         *
         * - `to` cannot be the zero address.
         * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
         * acceptance magic value.
         */
        function _mint(address to, uint256 id, uint256 value, bytes memory data) internal {
            if (to == address(0)) {
                revert ERC1155InvalidReceiver(address(0));
            }
            (uint256[] memory ids, uint256[] memory values) = _asSingletonArrays(id, value);
            _updateWithAcceptanceCheck(address(0), to, ids, values, data);
        }
    
        /**
         * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_mint}.
         *
         * Emits a {TransferBatch} event.
         *
         * Requirements:
         *
         * - `ids` and `values` must have the same length.
         * - `to` cannot be the zero address.
         * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
         * acceptance magic value.
         */
        function _mintBatch(address to, uint256[] memory ids, uint256[] memory values, bytes memory data) internal {
            if (to == address(0)) {
                revert ERC1155InvalidReceiver(address(0));
            }
            _updateWithAcceptanceCheck(address(0), to, ids, values, data);
        }
    
        /**
         * @dev Destroys a `value` amount of tokens of type `id` from `from`
         *
         * Emits a {TransferSingle} event.
         *
         * Requirements:
         *
         * - `from` cannot be the zero address.
         * - `from` must have at least `value` amount of tokens of type `id`.
         */
        function _burn(address from, uint256 id, uint256 value) internal {
            if (from == address(0)) {
                revert ERC1155InvalidSender(address(0));
            }
            (uint256[] memory ids, uint256[] memory values) = _asSingletonArrays(id, value);
            _updateWithAcceptanceCheck(from, address(0), ids, values, "");
        }
    
        /**
         * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_burn}.
         *
         * Emits a {TransferBatch} event.
         *
         * Requirements:
         *
         * - `from` cannot be the zero address.
         * - `from` must have at least `value` amount of tokens of type `id`.
         * - `ids` and `values` must have the same length.
         */
        function _burnBatch(address from, uint256[] memory ids, uint256[] memory values) internal {
            if (from == address(0)) {
                revert ERC1155InvalidSender(address(0));
            }
            _updateWithAcceptanceCheck(from, address(0), ids, values, "");
        }
    
        /**
         * @dev Approve `operator` to operate on all of `owner` tokens
         *
         * Emits an {ApprovalForAll} event.
         *
         * Requirements:
         *
         * - `operator` cannot be the zero address.
         */
        function _setApprovalForAll(address owner, address operator, bool approved) internal virtual {
            ERC1155Storage storage $ = _getERC1155Storage();
            if (operator == address(0)) {
                revert ERC1155InvalidOperator(address(0));
            }
            $._operatorApprovals[owner][operator] = approved;
            emit ApprovalForAll(owner, operator, approved);
        }
    
        /**
         * @dev Creates an array in memory with only one value for each of the elements provided.
         */
        function _asSingletonArrays(
            uint256 element1,
            uint256 element2
        ) private pure returns (uint256[] memory array1, uint256[] memory array2) {
            assembly ("memory-safe") {
                // Load the free memory pointer
                array1 := mload(0x40)
                // Set array length to 1
                mstore(array1, 1)
                // Store the single element at the next word after the length (where content starts)
                mstore(add(array1, 0x20), element1)
    
                // Repeat for next array locating it right after the first array
                array2 := add(array1, 0x40)
                mstore(array2, 1)
                mstore(add(array2, 0x20), element2)
    
                // Update the free memory pointer by pointing after the second array
                mstore(0x40, add(array2, 0x40))
            }
        }
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
    
    pragma solidity ^0.8.20;
    import {Initializable} from "../proxy/utils/Initializable.sol";
    
    /**
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    abstract contract ContextUpgradeable is Initializable {
        function __Context_init() internal onlyInitializing {
        }
    
        function __Context_init_unchained() internal onlyInitializing {
        }
        function _msgSender() internal view virtual returns (address) {
            return msg.sender;
        }
    
        function _msgData() internal view virtual returns (bytes calldata) {
            return msg.data;
        }
    
        function _contextSuffixLength() internal view virtual returns (uint256) {
            return 0;
        }
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/ERC165.sol)
    
    pragma solidity ^0.8.20;
    
    import {IERC165} from "@openzeppelin/contracts/utils/introspection/IERC165.sol";
    import {Initializable} from "../../proxy/utils/Initializable.sol";
    
    /**
     * @dev Implementation of the {IERC165} interface.
     *
     * Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check
     * for the additional interface id that will be supported. For example:
     *
     * ```solidity
     * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
     *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
     * }
     * ```
     */
    abstract contract ERC165Upgradeable is Initializable, IERC165 {
        function __ERC165_init() internal onlyInitializing {
        }
    
        function __ERC165_init_unchained() internal onlyInitializing {
        }
        /**
         * @dev See {IERC165-supportsInterface}.
         */
        function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
            return interfaceId == type(IERC165).interfaceId;
        }
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC1822.sol)
    
    pragma solidity ^0.8.20;
    
    /**
     * @dev ERC-1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified
     * proxy whose upgrades are fully controlled by the current implementation.
     */
    interface IERC1822Proxiable {
        /**
         * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation
         * address.
         *
         * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
         * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
         * function revert if invoked through a proxy.
         */
        function proxiableUUID() external view returns (bytes32);
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol)
    pragma solidity ^0.8.20;
    
    /**
     * @dev Standard ERC-20 Errors
     * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
     */
    interface IERC20Errors {
        /**
         * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
         * @param sender Address whose tokens are being transferred.
         * @param balance Current balance for the interacting account.
         * @param needed Minimum amount required to perform a transfer.
         */
        error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
    
        /**
         * @dev Indicates a failure with the token `sender`. Used in transfers.
         * @param sender Address whose tokens are being transferred.
         */
        error ERC20InvalidSender(address sender);
    
        /**
         * @dev Indicates a failure with the token `receiver`. Used in transfers.
         * @param receiver Address to which tokens are being transferred.
         */
        error ERC20InvalidReceiver(address receiver);
    
        /**
         * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
         * @param spender Address that may be allowed to operate on tokens without being their owner.
         * @param allowance Amount of tokens a `spender` is allowed to operate with.
         * @param needed Minimum amount required to perform a transfer.
         */
        error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
    
        /**
         * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
         * @param approver Address initiating an approval operation.
         */
        error ERC20InvalidApprover(address approver);
    
        /**
         * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
         * @param spender Address that may be allowed to operate on tokens without being their owner.
         */
        error ERC20InvalidSpender(address spender);
    }
    
    /**
     * @dev Standard ERC-721 Errors
     * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
     */
    interface IERC721Errors {
        /**
         * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
         * Used in balance queries.
         * @param owner Address of the current owner of a token.
         */
        error ERC721InvalidOwner(address owner);
    
        /**
         * @dev Indicates a `tokenId` whose `owner` is the zero address.
         * @param tokenId Identifier number of a token.
         */
        error ERC721NonexistentToken(uint256 tokenId);
    
        /**
         * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
         * @param sender Address whose tokens are being transferred.
         * @param tokenId Identifier number of a token.
         * @param owner Address of the current owner of a token.
         */
        error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);
    
        /**
         * @dev Indicates a failure with the token `sender`. Used in transfers.
         * @param sender Address whose tokens are being transferred.
         */
        error ERC721InvalidSender(address sender);
    
        /**
         * @dev Indicates a failure with the token `receiver`. Used in transfers.
         * @param receiver Address to which tokens are being transferred.
         */
        error ERC721InvalidReceiver(address receiver);
    
        /**
         * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
         * @param operator Address that may be allowed to operate on tokens without being their owner.
         * @param tokenId Identifier number of a token.
         */
        error ERC721InsufficientApproval(address operator, uint256 tokenId);
    
        /**
         * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
         * @param approver Address initiating an approval operation.
         */
        error ERC721InvalidApprover(address approver);
    
        /**
         * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
         * @param operator Address that may be allowed to operate on tokens without being their owner.
         */
        error ERC721InvalidOperator(address operator);
    }
    
    /**
     * @dev Standard ERC-1155 Errors
     * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
     */
    interface IERC1155Errors {
        /**
         * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
         * @param sender Address whose tokens are being transferred.
         * @param balance Current balance for the interacting account.
         * @param needed Minimum amount required to perform a transfer.
         * @param tokenId Identifier number of a token.
         */
        error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);
    
        /**
         * @dev Indicates a failure with the token `sender`. Used in transfers.
         * @param sender Address whose tokens are being transferred.
         */
        error ERC1155InvalidSender(address sender);
    
        /**
         * @dev Indicates a failure with the token `receiver`. Used in transfers.
         * @param receiver Address to which tokens are being transferred.
         */
        error ERC1155InvalidReceiver(address receiver);
    
        /**
         * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
         * @param operator Address that may be allowed to operate on tokens without being their owner.
         * @param owner Address of the current owner of a token.
         */
        error ERC1155MissingApprovalForAll(address operator, address owner);
    
        /**
         * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
         * @param approver Address initiating an approval operation.
         */
        error ERC1155InvalidApprover(address approver);
    
        /**
         * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
         * @param operator Address that may be allowed to operate on tokens without being their owner.
         */
        error ERC1155InvalidOperator(address operator);
    
        /**
         * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
         * Used in batch transfers.
         * @param idsLength Length of the array of token identifiers
         * @param valuesLength Length of the array of token amounts
         */
        error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC1967.sol)
    
    pragma solidity ^0.8.20;
    
    /**
     * @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC.
     */
    interface IERC1967 {
        /**
         * @dev Emitted when the implementation is upgraded.
         */
        event Upgraded(address indexed implementation);
    
        /**
         * @dev Emitted when the admin account has changed.
         */
        event AdminChanged(address previousAdmin, address newAdmin);
    
        /**
         * @dev Emitted when the beacon is changed.
         */
        event BeaconUpgraded(address indexed beacon);
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC2981.sol)
    
    pragma solidity ^0.8.20;
    
    import {IERC165} from "../utils/introspection/IERC165.sol";
    
    /**
     * @dev Interface for the NFT Royalty Standard.
     *
     * A standardized way to retrieve royalty payment information for non-fungible tokens (NFTs) to enable universal
     * support for royalty payments across all NFT marketplaces and ecosystem participants.
     */
    interface IERC2981 is IERC165 {
        /**
         * @dev Returns how much royalty is owed and to whom, based on a sale price that may be denominated in any unit of
         * exchange. The royalty amount is denominated and should be paid in that same unit of exchange.
         *
         * NOTE: ERC-2981 allows setting the royalty to 100% of the price. In that case all the price would be sent to the
         * royalty receiver and 0 tokens to the seller. Contracts dealing with royalty should consider empty transfers.
         */
        function royaltyInfo(
            uint256 tokenId,
            uint256 salePrice
        ) external view returns (address receiver, uint256 royaltyAmount);
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (proxy/beacon/IBeacon.sol)
    
    pragma solidity ^0.8.20;
    
    /**
     * @dev This is the interface that {BeaconProxy} expects of its beacon.
     */
    interface IBeacon {
        /**
         * @dev Must return an address that can be used as a delegate call target.
         *
         * {UpgradeableBeacon} will check that this address is a contract.
         */
        function implementation() external view returns (address);
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.1.0) (proxy/ERC1967/ERC1967Utils.sol)
    
    pragma solidity ^0.8.21;
    
    import {IBeacon} from "../beacon/IBeacon.sol";
    import {IERC1967} from "../../interfaces/IERC1967.sol";
    import {Address} from "../../utils/Address.sol";
    import {StorageSlot} from "../../utils/StorageSlot.sol";
    
    /**
     * @dev This library provides getters and event emitting update functions for
     * https://eips.ethereum.org/EIPS/eip-1967[ERC-1967] slots.
     */
    library ERC1967Utils {
        /**
         * @dev Storage slot with the address of the current implementation.
         * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1.
         */
        // solhint-disable-next-line private-vars-leading-underscore
        bytes32 internal constant IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
    
        /**
         * @dev The `implementation` of the proxy is invalid.
         */
        error ERC1967InvalidImplementation(address implementation);
    
        /**
         * @dev The `admin` of the proxy is invalid.
         */
        error ERC1967InvalidAdmin(address admin);
    
        /**
         * @dev The `beacon` of the proxy is invalid.
         */
        error ERC1967InvalidBeacon(address beacon);
    
        /**
         * @dev An upgrade function sees `msg.value > 0` that may be lost.
         */
        error ERC1967NonPayable();
    
        /**
         * @dev Returns the current implementation address.
         */
        function getImplementation() internal view returns (address) {
            return StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value;
        }
    
        /**
         * @dev Stores a new address in the ERC-1967 implementation slot.
         */
        function _setImplementation(address newImplementation) private {
            if (newImplementation.code.length == 0) {
                revert ERC1967InvalidImplementation(newImplementation);
            }
            StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value = newImplementation;
        }
    
        /**
         * @dev Performs implementation upgrade with additional setup call if data is nonempty.
         * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected
         * to avoid stuck value in the contract.
         *
         * Emits an {IERC1967-Upgraded} event.
         */
        function upgradeToAndCall(address newImplementation, bytes memory data) internal {
            _setImplementation(newImplementation);
            emit IERC1967.Upgraded(newImplementation);
    
            if (data.length > 0) {
                Address.functionDelegateCall(newImplementation, data);
            } else {
                _checkNonPayable();
            }
        }
    
        /**
         * @dev Storage slot with the admin of the contract.
         * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1.
         */
        // solhint-disable-next-line private-vars-leading-underscore
        bytes32 internal constant ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
    
        /**
         * @dev Returns the current admin.
         *
         * TIP: To get this value clients can read directly from the storage slot shown below (specified by ERC-1967) using
         * the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
         * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
         */
        function getAdmin() internal view returns (address) {
            return StorageSlot.getAddressSlot(ADMIN_SLOT).value;
        }
    
        /**
         * @dev Stores a new address in the ERC-1967 admin slot.
         */
        function _setAdmin(address newAdmin) private {
            if (newAdmin == address(0)) {
                revert ERC1967InvalidAdmin(address(0));
            }
            StorageSlot.getAddressSlot(ADMIN_SLOT).value = newAdmin;
        }
    
        /**
         * @dev Changes the admin of the proxy.
         *
         * Emits an {IERC1967-AdminChanged} event.
         */
        function changeAdmin(address newAdmin) internal {
            emit IERC1967.AdminChanged(getAdmin(), newAdmin);
            _setAdmin(newAdmin);
        }
    
        /**
         * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
         * This is the keccak-256 hash of "eip1967.proxy.beacon" subtracted by 1.
         */
        // solhint-disable-next-line private-vars-leading-underscore
        bytes32 internal constant BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
    
        /**
         * @dev Returns the current beacon.
         */
        function getBeacon() internal view returns (address) {
            return StorageSlot.getAddressSlot(BEACON_SLOT).value;
        }
    
        /**
         * @dev Stores a new beacon in the ERC-1967 beacon slot.
         */
        function _setBeacon(address newBeacon) private {
            if (newBeacon.code.length == 0) {
                revert ERC1967InvalidBeacon(newBeacon);
            }
    
            StorageSlot.getAddressSlot(BEACON_SLOT).value = newBeacon;
    
            address beaconImplementation = IBeacon(newBeacon).implementation();
            if (beaconImplementation.code.length == 0) {
                revert ERC1967InvalidImplementation(beaconImplementation);
            }
        }
    
        /**
         * @dev Change the beacon and trigger a setup call if data is nonempty.
         * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected
         * to avoid stuck value in the contract.
         *
         * Emits an {IERC1967-BeaconUpgraded} event.
         *
         * CAUTION: Invoking this function has no effect on an instance of {BeaconProxy} since v5, since
         * it uses an immutable beacon without looking at the value of the ERC-1967 beacon slot for
         * efficiency.
         */
        function upgradeBeaconToAndCall(address newBeacon, bytes memory data) internal {
            _setBeacon(newBeacon);
            emit IERC1967.BeaconUpgraded(newBeacon);
    
            if (data.length > 0) {
                Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
            } else {
                _checkNonPayable();
            }
        }
    
        /**
         * @dev Reverts if `msg.value` is not zero. It can be used to avoid `msg.value` stuck in the contract
         * if an upgrade doesn't perform an initialization call.
         */
        function _checkNonPayable() private {
            if (msg.value > 0) {
                revert ERC1967NonPayable();
            }
        }
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC1155/extensions/IERC1155MetadataURI.sol)
    
    pragma solidity ^0.8.20;
    
    import {IERC1155} from "../IERC1155.sol";
    
    /**
     * @dev Interface of the optional ERC1155MetadataExtension interface, as defined
     * in the https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[ERC].
     */
    interface IERC1155MetadataURI is IERC1155 {
        /**
         * @dev Returns the URI for token type `id`.
         *
         * If the `\{id\}` substring is present in the URI, it must be replaced by
         * clients with the actual token type ID.
         */
        function uri(uint256 id) external view returns (string memory);
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC1155/IERC1155.sol)
    
    pragma solidity ^0.8.20;
    
    import {IERC165} from "../../utils/introspection/IERC165.sol";
    
    /**
     * @dev Required interface of an ERC-1155 compliant contract, as defined in the
     * https://eips.ethereum.org/EIPS/eip-1155[ERC].
     */
    interface IERC1155 is IERC165 {
        /**
         * @dev Emitted when `value` amount of tokens of type `id` are transferred from `from` to `to` by `operator`.
         */
        event TransferSingle(address indexed operator, address indexed from, address indexed to, uint256 id, uint256 value);
    
        /**
         * @dev Equivalent to multiple {TransferSingle} events, where `operator`, `from` and `to` are the same for all
         * transfers.
         */
        event TransferBatch(
            address indexed operator,
            address indexed from,
            address indexed to,
            uint256[] ids,
            uint256[] values
        );
    
        /**
         * @dev Emitted when `account` grants or revokes permission to `operator` to transfer their tokens, according to
         * `approved`.
         */
        event ApprovalForAll(address indexed account, address indexed operator, bool approved);
    
        /**
         * @dev Emitted when the URI for token type `id` changes to `value`, if it is a non-programmatic URI.
         *
         * If an {URI} event was emitted for `id`, the standard
         * https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[guarantees] that `value` will equal the value
         * returned by {IERC1155MetadataURI-uri}.
         */
        event URI(string value, uint256 indexed id);
    
        /**
         * @dev Returns the value of tokens of token type `id` owned by `account`.
         */
        function balanceOf(address account, uint256 id) external view returns (uint256);
    
        /**
         * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {balanceOf}.
         *
         * Requirements:
         *
         * - `accounts` and `ids` must have the same length.
         */
        function balanceOfBatch(
            address[] calldata accounts,
            uint256[] calldata ids
        ) external view returns (uint256[] memory);
    
        /**
         * @dev Grants or revokes permission to `operator` to transfer the caller's tokens, according to `approved`,
         *
         * Emits an {ApprovalForAll} event.
         *
         * Requirements:
         *
         * - `operator` cannot be the zero address.
         */
        function setApprovalForAll(address operator, bool approved) external;
    
        /**
         * @dev Returns true if `operator` is approved to transfer ``account``'s tokens.
         *
         * See {setApprovalForAll}.
         */
        function isApprovedForAll(address account, address operator) external view returns (bool);
    
        /**
         * @dev Transfers a `value` amount of tokens of type `id` from `from` to `to`.
         *
         * WARNING: This function can potentially allow a reentrancy attack when transferring tokens
         * to an untrusted contract, when invoking {onERC1155Received} on the receiver.
         * Ensure to follow the checks-effects-interactions pattern and consider employing
         * reentrancy guards when interacting with untrusted contracts.
         *
         * Emits a {TransferSingle} event.
         *
         * Requirements:
         *
         * - `to` cannot be the zero address.
         * - If the caller is not `from`, it must have been approved to spend ``from``'s tokens via {setApprovalForAll}.
         * - `from` must have a balance of tokens of type `id` of at least `value` amount.
         * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
         * acceptance magic value.
         */
        function safeTransferFrom(address from, address to, uint256 id, uint256 value, bytes calldata data) external;
    
        /**
         * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {safeTransferFrom}.
         *
         * WARNING: This function can potentially allow a reentrancy attack when transferring tokens
         * to an untrusted contract, when invoking {onERC1155BatchReceived} on the receiver.
         * Ensure to follow the checks-effects-interactions pattern and consider employing
         * reentrancy guards when interacting with untrusted contracts.
         *
         * Emits either a {TransferSingle} or a {TransferBatch} event, depending on the length of the array arguments.
         *
         * Requirements:
         *
         * - `ids` and `values` must have the same length.
         * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
         * acceptance magic value.
         */
        function safeBatchTransferFrom(
            address from,
            address to,
            uint256[] calldata ids,
            uint256[] calldata values,
            bytes calldata data
        ) external;
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC1155/IERC1155Receiver.sol)
    
    pragma solidity ^0.8.20;
    
    import {IERC165} from "../../utils/introspection/IERC165.sol";
    
    /**
     * @dev Interface that must be implemented by smart contracts in order to receive
     * ERC-1155 token transfers.
     */
    interface IERC1155Receiver is IERC165 {
        /**
         * @dev Handles the receipt of a single ERC-1155 token type. This function is
         * called at the end of a `safeTransferFrom` after the balance has been updated.
         *
         * NOTE: To accept the transfer, this must return
         * `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))`
         * (i.e. 0xf23a6e61, or its own function selector).
         *
         * @param operator The address which initiated the transfer (i.e. msg.sender)
         * @param from The address which previously owned the token
         * @param id The ID of the token being transferred
         * @param value The amount of tokens being transferred
         * @param data Additional data with no specified format
         * @return `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` if transfer is allowed
         */
        function onERC1155Received(
            address operator,
            address from,
            uint256 id,
            uint256 value,
            bytes calldata data
        ) external returns (bytes4);
    
        /**
         * @dev Handles the receipt of a multiple ERC-1155 token types. This function
         * is called at the end of a `safeBatchTransferFrom` after the balances have
         * been updated.
         *
         * NOTE: To accept the transfer(s), this must return
         * `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))`
         * (i.e. 0xbc197c81, or its own function selector).
         *
         * @param operator The address which initiated the batch transfer (i.e. msg.sender)
         * @param from The address which previously owned the token
         * @param ids An array containing ids of each token being transferred (order and length must match values array)
         * @param values An array containing amounts of each token being transferred (order and length must match ids array)
         * @param data Additional data with no specified format
         * @return `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` if transfer is allowed
         */
        function onERC1155BatchReceived(
            address operator,
            address from,
            uint256[] calldata ids,
            uint256[] calldata values,
            bytes calldata data
        ) external returns (bytes4);
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC1155/utils/ERC1155Utils.sol)
    
    pragma solidity ^0.8.20;
    
    import {IERC1155Receiver} from "../IERC1155Receiver.sol";
    import {IERC1155Errors} from "../../../interfaces/draft-IERC6093.sol";
    
    /**
     * @dev Library that provide common ERC-1155 utility functions.
     *
     * See https://eips.ethereum.org/EIPS/eip-1155[ERC-1155].
     *
     * _Available since v5.1._
     */
    library ERC1155Utils {
        /**
         * @dev Performs an acceptance check for the provided `operator` by calling {IERC1155-onERC1155Received}
         * on the `to` address. The `operator` is generally the address that initiated the token transfer (i.e. `msg.sender`).
         *
         * The acceptance call is not executed and treated as a no-op if the target address doesn't contain code (i.e. an EOA).
         * Otherwise, the recipient must implement {IERC1155Receiver-onERC1155Received} and return the acceptance magic value to accept
         * the transfer.
         */
        function checkOnERC1155Received(
            address operator,
            address from,
            address to,
            uint256 id,
            uint256 value,
            bytes memory data
        ) internal {
            if (to.code.length > 0) {
                try IERC1155Receiver(to).onERC1155Received(operator, from, id, value, data) returns (bytes4 response) {
                    if (response != IERC1155Receiver.onERC1155Received.selector) {
                        // Tokens rejected
                        revert IERC1155Errors.ERC1155InvalidReceiver(to);
                    }
                } catch (bytes memory reason) {
                    if (reason.length == 0) {
                        // non-IERC1155Receiver implementer
                        revert IERC1155Errors.ERC1155InvalidReceiver(to);
                    } else {
                        assembly ("memory-safe") {
                            revert(add(32, reason), mload(reason))
                        }
                    }
                }
            }
        }
    
        /**
         * @dev Performs a batch acceptance check for the provided `operator` by calling {IERC1155-onERC1155BatchReceived}
         * on the `to` address. The `operator` is generally the address that initiated the token transfer (i.e. `msg.sender`).
         *
         * The acceptance call is not executed and treated as a no-op if the target address doesn't contain code (i.e. an EOA).
         * Otherwise, the recipient must implement {IERC1155Receiver-onERC1155Received} and return the acceptance magic value to accept
         * the transfer.
         */
        function checkOnERC1155BatchReceived(
            address operator,
            address from,
            address to,
            uint256[] memory ids,
            uint256[] memory values,
            bytes memory data
        ) internal {
            if (to.code.length > 0) {
                try IERC1155Receiver(to).onERC1155BatchReceived(operator, from, ids, values, data) returns (
                    bytes4 response
                ) {
                    if (response != IERC1155Receiver.onERC1155BatchReceived.selector) {
                        // Tokens rejected
                        revert IERC1155Errors.ERC1155InvalidReceiver(to);
                    }
                } catch (bytes memory reason) {
                    if (reason.length == 0) {
                        // non-IERC1155Receiver implementer
                        revert IERC1155Errors.ERC1155InvalidReceiver(to);
                    } else {
                        assembly ("memory-safe") {
                            revert(add(32, reason), mload(reason))
                        }
                    }
                }
            }
        }
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.1.0) (utils/Address.sol)
    
    pragma solidity ^0.8.20;
    
    import {Errors} from "./Errors.sol";
    
    /**
     * @dev Collection of functions related to the address type
     */
    library Address {
        /**
         * @dev There's no code at `target` (it is not a contract).
         */
        error AddressEmptyCode(address target);
    
        /**
         * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
         * `recipient`, forwarding all available gas and reverting on errors.
         *
         * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
         * of certain opcodes, possibly making contracts go over the 2300 gas limit
         * imposed by `transfer`, making them unable to receive funds via
         * `transfer`. {sendValue} removes this limitation.
         *
         * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
         *
         * IMPORTANT: because control is transferred to `recipient`, care must be
         * taken to not create reentrancy vulnerabilities. Consider using
         * {ReentrancyGuard} or the
         * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
         */
        function sendValue(address payable recipient, uint256 amount) internal {
            if (address(this).balance < amount) {
                revert Errors.InsufficientBalance(address(this).balance, amount);
            }
    
            (bool success, ) = recipient.call{value: amount}("");
            if (!success) {
                revert Errors.FailedCall();
            }
        }
    
        /**
         * @dev Performs a Solidity function call using a low level `call`. A
         * plain `call` is an unsafe replacement for a function call: use this
         * function instead.
         *
         * If `target` reverts with a revert reason or custom error, it is bubbled
         * up by this function (like regular Solidity function calls). However, if
         * the call reverted with no returned reason, this function reverts with a
         * {Errors.FailedCall} error.
         *
         * Returns the raw returned data. To convert to the expected return value,
         * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
         *
         * Requirements:
         *
         * - `target` must be a contract.
         * - calling `target` with `data` must not revert.
         */
        function functionCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0);
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but also transferring `value` wei to `target`.
         *
         * Requirements:
         *
         * - the calling contract must have an ETH balance of at least `value`.
         * - the called Solidity function must be `payable`.
         */
        function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
            if (address(this).balance < value) {
                revert Errors.InsufficientBalance(address(this).balance, value);
            }
            (bool success, bytes memory returndata) = target.call{value: value}(data);
            return verifyCallResultFromTarget(target, success, returndata);
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a static call.
         */
        function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
            (bool success, bytes memory returndata) = target.staticcall(data);
            return verifyCallResultFromTarget(target, success, returndata);
        }
    
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a delegate call.
         */
        function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
            (bool success, bytes memory returndata) = target.delegatecall(data);
            return verifyCallResultFromTarget(target, success, returndata);
        }
    
        /**
         * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
         * was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case
         * of an unsuccessful call.
         */
        function verifyCallResultFromTarget(
            address target,
            bool success,
            bytes memory returndata
        ) internal view returns (bytes memory) {
            if (!success) {
                _revert(returndata);
            } else {
                // only check if target is a contract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                if (returndata.length == 0 && target.code.length == 0) {
                    revert AddressEmptyCode(target);
                }
                return returndata;
            }
        }
    
        /**
         * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
         * revert reason or with a default {Errors.FailedCall} error.
         */
        function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
            if (!success) {
                _revert(returndata);
            } else {
                return returndata;
            }
        }
    
        /**
         * @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}.
         */
        function _revert(bytes memory returndata) private pure {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly
                assembly ("memory-safe") {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert Errors.FailedCall();
            }
        }
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.1.0) (utils/Arrays.sol)
    // This file was procedurally generated from scripts/generate/templates/Arrays.js.
    
    pragma solidity ^0.8.20;
    
    import {Comparators} from "./Comparators.sol";
    import {SlotDerivation} from "./SlotDerivation.sol";
    import {StorageSlot} from "./StorageSlot.sol";
    import {Math} from "./math/Math.sol";
    
    /**
     * @dev Collection of functions related to array types.
     */
    library Arrays {
        using SlotDerivation for bytes32;
        using StorageSlot for bytes32;
    
        /**
         * @dev Sort an array of uint256 (in memory) following the provided comparator function.
         *
         * This function does the sorting "in place", meaning that it overrides the input. The object is returned for
         * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
         *
         * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
         * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
         * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
         * consume more gas than is available in a block, leading to potential DoS.
         *
         * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
         */
        function sort(
            uint256[] memory array,
            function(uint256, uint256) pure returns (bool) comp
        ) internal pure returns (uint256[] memory) {
            _quickSort(_begin(array), _end(array), comp);
            return array;
        }
    
        /**
         * @dev Variant of {sort} that sorts an array of uint256 in increasing order.
         */
        function sort(uint256[] memory array) internal pure returns (uint256[] memory) {
            sort(array, Comparators.lt);
            return array;
        }
    
        /**
         * @dev Sort an array of address (in memory) following the provided comparator function.
         *
         * This function does the sorting "in place", meaning that it overrides the input. The object is returned for
         * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
         *
         * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
         * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
         * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
         * consume more gas than is available in a block, leading to potential DoS.
         *
         * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
         */
        function sort(
            address[] memory array,
            function(address, address) pure returns (bool) comp
        ) internal pure returns (address[] memory) {
            sort(_castToUint256Array(array), _castToUint256Comp(comp));
            return array;
        }
    
        /**
         * @dev Variant of {sort} that sorts an array of address in increasing order.
         */
        function sort(address[] memory array) internal pure returns (address[] memory) {
            sort(_castToUint256Array(array), Comparators.lt);
            return array;
        }
    
        /**
         * @dev Sort an array of bytes32 (in memory) following the provided comparator function.
         *
         * This function does the sorting "in place", meaning that it overrides the input. The object is returned for
         * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
         *
         * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
         * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
         * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
         * consume more gas than is available in a block, leading to potential DoS.
         *
         * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
         */
        function sort(
            bytes32[] memory array,
            function(bytes32, bytes32) pure returns (bool) comp
        ) internal pure returns (bytes32[] memory) {
            sort(_castToUint256Array(array), _castToUint256Comp(comp));
            return array;
        }
    
        /**
         * @dev Variant of {sort} that sorts an array of bytes32 in increasing order.
         */
        function sort(bytes32[] memory array) internal pure returns (bytes32[] memory) {
            sort(_castToUint256Array(array), Comparators.lt);
            return array;
        }
    
        /**
         * @dev Performs a quick sort of a segment of memory. The segment sorted starts at `begin` (inclusive), and stops
         * at end (exclusive). Sorting follows the `comp` comparator.
         *
         * Invariant: `begin <= end`. This is the case when initially called by {sort} and is preserved in subcalls.
         *
         * IMPORTANT: Memory locations between `begin` and `end` are not validated/zeroed. This function should
         * be used only if the limits are within a memory array.
         */
        function _quickSort(uint256 begin, uint256 end, function(uint256, uint256) pure returns (bool) comp) private pure {
            unchecked {
                if (end - begin < 0x40) return;
    
                // Use first element as pivot
                uint256 pivot = _mload(begin);
                // Position where the pivot should be at the end of the loop
                uint256 pos = begin;
    
                for (uint256 it = begin + 0x20; it < end; it += 0x20) {
                    if (comp(_mload(it), pivot)) {
                        // If the value stored at the iterator's position comes before the pivot, we increment the
                        // position of the pivot and move the value there.
                        pos += 0x20;
                        _swap(pos, it);
                    }
                }
    
                _swap(begin, pos); // Swap pivot into place
                _quickSort(begin, pos, comp); // Sort the left side of the pivot
                _quickSort(pos + 0x20, end, comp); // Sort the right side of the pivot
            }
        }
    
        /**
         * @dev Pointer to the memory location of the first element of `array`.
         */
        function _begin(uint256[] memory array) private pure returns (uint256 ptr) {
            assembly ("memory-safe") {
                ptr := add(array, 0x20)
            }
        }
    
        /**
         * @dev Pointer to the memory location of the first memory word (32bytes) after `array`. This is the memory word
         * that comes just after the last element of the array.
         */
        function _end(uint256[] memory array) private pure returns (uint256 ptr) {
            unchecked {
                return _begin(array) + array.length * 0x20;
            }
        }
    
        /**
         * @dev Load memory word (as a uint256) at location `ptr`.
         */
        function _mload(uint256 ptr) private pure returns (uint256 value) {
            assembly ("memory-safe") {
                value := mload(ptr)
            }
        }
    
        /**
         * @dev Swaps the elements memory location `ptr1` and `ptr2`.
         */
        function _swap(uint256 ptr1, uint256 ptr2) private pure {
            assembly ("memory-safe") {
                let value1 := mload(ptr1)
                let value2 := mload(ptr2)
                mstore(ptr1, value2)
                mstore(ptr2, value1)
            }
        }
    
        /// @dev Helper: low level cast address memory array to uint256 memory array
        function _castToUint256Array(address[] memory input) private pure returns (uint256[] memory output) {
            assembly ("memory-safe") {
                output := input
            }
        }
    
        /// @dev Helper: low level cast bytes32 memory array to uint256 memory array
        function _castToUint256Array(bytes32[] memory input) private pure returns (uint256[] memory output) {
            assembly ("memory-safe") {
                output := input
            }
        }
    
        /// @dev Helper: low level cast address comp function to uint256 comp function
        function _castToUint256Comp(
            function(address, address) pure returns (bool) input
        ) private pure returns (function(uint256, uint256) pure returns (bool) output) {
            assembly ("memory-safe") {
                output := input
            }
        }
    
        /// @dev Helper: low level cast bytes32 comp function to uint256 comp function
        function _castToUint256Comp(
            function(bytes32, bytes32) pure returns (bool) input
        ) private pure returns (function(uint256, uint256) pure returns (bool) output) {
            assembly ("memory-safe") {
                output := input
            }
        }
    
        /**
         * @dev Searches a sorted `array` and returns the first index that contains
         * a value greater or equal to `element`. If no such index exists (i.e. all
         * values in the array are strictly less than `element`), the array length is
         * returned. Time complexity O(log n).
         *
         * NOTE: The `array` is expected to be sorted in ascending order, and to
         * contain no repeated elements.
         *
         * IMPORTANT: Deprecated. This implementation behaves as {lowerBound} but lacks
         * support for repeated elements in the array. The {lowerBound} function should
         * be used instead.
         */
        function findUpperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
            uint256 low = 0;
            uint256 high = array.length;
    
            if (high == 0) {
                return 0;
            }
    
            while (low < high) {
                uint256 mid = Math.average(low, high);
    
                // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
                // because Math.average rounds towards zero (it does integer division with truncation).
                if (unsafeAccess(array, mid).value > element) {
                    high = mid;
                } else {
                    low = mid + 1;
                }
            }
    
            // At this point `low` is the exclusive upper bound. We will return the inclusive upper bound.
            if (low > 0 && unsafeAccess(array, low - 1).value == element) {
                return low - 1;
            } else {
                return low;
            }
        }
    
        /**
         * @dev Searches an `array` sorted in ascending order and returns the first
         * index that contains a value greater or equal than `element`. If no such index
         * exists (i.e. all values in the array are strictly less than `element`), the array
         * length is returned. Time complexity O(log n).
         *
         * See C++'s https://en.cppreference.com/w/cpp/algorithm/lower_bound[lower_bound].
         */
        function lowerBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
            uint256 low = 0;
            uint256 high = array.length;
    
            if (high == 0) {
                return 0;
            }
    
            while (low < high) {
                uint256 mid = Math.average(low, high);
    
                // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
                // because Math.average rounds towards zero (it does integer division with truncation).
                if (unsafeAccess(array, mid).value < element) {
                    // this cannot overflow because mid < high
                    unchecked {
                        low = mid + 1;
                    }
                } else {
                    high = mid;
                }
            }
    
            return low;
        }
    
        /**
         * @dev Searches an `array` sorted in ascending order and returns the first
         * index that contains a value strictly greater than `element`. If no such index
         * exists (i.e. all values in the array are strictly less than `element`), the array
         * length is returned. Time complexity O(log n).
         *
         * See C++'s https://en.cppreference.com/w/cpp/algorithm/upper_bound[upper_bound].
         */
        function upperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
            uint256 low = 0;
            uint256 high = array.length;
    
            if (high == 0) {
                return 0;
            }
    
            while (low < high) {
                uint256 mid = Math.average(low, high);
    
                // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
                // because Math.average rounds towards zero (it does integer division with truncation).
                if (unsafeAccess(array, mid).value > element) {
                    high = mid;
                } else {
                    // this cannot overflow because mid < high
                    unchecked {
                        low = mid + 1;
                    }
                }
            }
    
            return low;
        }
    
        /**
         * @dev Same as {lowerBound}, but with an array in memory.
         */
        function lowerBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) {
            uint256 low = 0;
            uint256 high = array.length;
    
            if (high == 0) {
                return 0;
            }
    
            while (low < high) {
                uint256 mid = Math.average(low, high);
    
                // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
                // because Math.average rounds towards zero (it does integer division with truncation).
                if (unsafeMemoryAccess(array, mid) < element) {
                    // this cannot overflow because mid < high
                    unchecked {
                        low = mid + 1;
                    }
                } else {
                    high = mid;
                }
            }
    
            return low;
        }
    
        /**
         * @dev Same as {upperBound}, but with an array in memory.
         */
        function upperBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) {
            uint256 low = 0;
            uint256 high = array.length;
    
            if (high == 0) {
                return 0;
            }
    
            while (low < high) {
                uint256 mid = Math.average(low, high);
    
                // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
                // because Math.average rounds towards zero (it does integer division with truncation).
                if (unsafeMemoryAccess(array, mid) > element) {
                    high = mid;
                } else {
                    // this cannot overflow because mid < high
                    unchecked {
                        low = mid + 1;
                    }
                }
            }
    
            return low;
        }
    
        /**
         * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
         *
         * WARNING: Only use if you are certain `pos` is lower than the array length.
         */
        function unsafeAccess(address[] storage arr, uint256 pos) internal pure returns (StorageSlot.AddressSlot storage) {
            bytes32 slot;
            assembly ("memory-safe") {
                slot := arr.slot
            }
            return slot.deriveArray().offset(pos).getAddressSlot();
        }
    
        /**
         * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
         *
         * WARNING: Only use if you are certain `pos` is lower than the array length.
         */
        function unsafeAccess(bytes32[] storage arr, uint256 pos) internal pure returns (StorageSlot.Bytes32Slot storage) {
            bytes32 slot;
            assembly ("memory-safe") {
                slot := arr.slot
            }
            return slot.deriveArray().offset(pos).getBytes32Slot();
        }
    
        /**
         * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
         *
         * WARNING: Only use if you are certain `pos` is lower than the array length.
         */
        function unsafeAccess(uint256[] storage arr, uint256 pos) internal pure returns (StorageSlot.Uint256Slot storage) {
            bytes32 slot;
            assembly ("memory-safe") {
                slot := arr.slot
            }
            return slot.deriveArray().offset(pos).getUint256Slot();
        }
    
        /**
         * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
         *
         * WARNING: Only use if you are certain `pos` is lower than the array length.
         */
        function unsafeMemoryAccess(address[] memory arr, uint256 pos) internal pure returns (address res) {
            assembly ("memory-safe") {
                res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
            }
        }
    
        /**
         * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
         *
         * WARNING: Only use if you are certain `pos` is lower than the array length.
         */
        function unsafeMemoryAccess(bytes32[] memory arr, uint256 pos) internal pure returns (bytes32 res) {
            assembly ("memory-safe") {
                res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
            }
        }
    
        /**
         * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
         *
         * WARNING: Only use if you are certain `pos` is lower than the array length.
         */
        function unsafeMemoryAccess(uint256[] memory arr, uint256 pos) internal pure returns (uint256 res) {
            assembly ("memory-safe") {
                res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
            }
        }
    
        /**
         * @dev Helper to set the length of an dynamic array. Directly writing to `.length` is forbidden.
         *
         * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
         */
        function unsafeSetLength(address[] storage array, uint256 len) internal {
            assembly ("memory-safe") {
                sstore(array.slot, len)
            }
        }
    
        /**
         * @dev Helper to set the length of an dynamic array. Directly writing to `.length` is forbidden.
         *
         * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
         */
        function unsafeSetLength(bytes32[] storage array, uint256 len) internal {
            assembly ("memory-safe") {
                sstore(array.slot, len)
            }
        }
    
        /**
         * @dev Helper to set the length of an dynamic array. Directly writing to `.length` is forbidden.
         *
         * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
         */
        function unsafeSetLength(uint256[] storage array, uint256 len) internal {
            assembly ("memory-safe") {
                sstore(array.slot, len)
            }
        }
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.1.0) (utils/Comparators.sol)
    
    pragma solidity ^0.8.20;
    
    /**
     * @dev Provides a set of functions to compare values.
     *
     * _Available since v5.1._
     */
    library Comparators {
        function lt(uint256 a, uint256 b) internal pure returns (bool) {
            return a < b;
        }
    
        function gt(uint256 a, uint256 b) internal pure returns (bool) {
            return a > b;
        }
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol)
    
    pragma solidity ^0.8.20;
    
    /**
     * @dev Collection of common custom errors used in multiple contracts
     *
     * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
     * It is recommended to avoid relying on the error API for critical functionality.
     *
     * _Available since v5.1._
     */
    library Errors {
        /**
         * @dev The ETH balance of the account is not enough to perform the operation.
         */
        error InsufficientBalance(uint256 balance, uint256 needed);
    
        /**
         * @dev A call to an address target failed. The target may have reverted.
         */
        error FailedCall();
    
        /**
         * @dev The deployment failed.
         */
        error FailedDeployment();
    
        /**
         * @dev A necessary precompile is missing.
         */
        error MissingPrecompile(address);
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)
    
    pragma solidity ^0.8.20;
    
    /**
     * @dev Interface of the ERC-165 standard, as defined in the
     * https://eips.ethereum.org/EIPS/eip-165[ERC].
     *
     * Implementers can declare support of contract interfaces, which can then be
     * queried by others ({ERC165Checker}).
     *
     * For an implementation, see {ERC165}.
     */
    interface IERC165 {
        /**
         * @dev Returns true if this contract implements the interface defined by
         * `interfaceId`. See the corresponding
         * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
         * to learn more about how these ids are created.
         *
         * This function call must use less than 30 000 gas.
         */
        function supportsInterface(bytes4 interfaceId) external view returns (bool);
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)
    
    pragma solidity ^0.8.20;
    
    import {Panic} from "../Panic.sol";
    import {SafeCast} from "./SafeCast.sol";
    
    /**
     * @dev Standard math utilities missing in the Solidity language.
     */
    library Math {
        enum Rounding {
            Floor, // Toward negative infinity
            Ceil, // Toward positive infinity
            Trunc, // Toward zero
            Expand // Away from zero
        }
    
        /**
         * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
         */
        function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
            unchecked {
                uint256 c = a + b;
                if (c < a) return (false, 0);
                return (true, c);
            }
        }
    
        /**
         * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
         */
        function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
            unchecked {
                if (b > a) return (false, 0);
                return (true, a - b);
            }
        }
    
        /**
         * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
         */
        function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
            unchecked {
                // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
                // benefit is lost if 'b' is also tested.
                // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
                if (a == 0) return (true, 0);
                uint256 c = a * b;
                if (c / a != b) return (false, 0);
                return (true, c);
            }
        }
    
        /**
         * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
         */
        function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
            unchecked {
                if (b == 0) return (false, 0);
                return (true, a / b);
            }
        }
    
        /**
         * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
         */
        function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
            unchecked {
                if (b == 0) return (false, 0);
                return (true, a % b);
            }
        }
    
        /**
         * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
         *
         * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
         * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
         * one branch when needed, making this function more expensive.
         */
        function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
            unchecked {
                // branchless ternary works because:
                // b ^ (a ^ b) == a
                // b ^ 0 == b
                return b ^ ((a ^ b) * SafeCast.toUint(condition));
            }
        }
    
        /**
         * @dev Returns the largest of two numbers.
         */
        function max(uint256 a, uint256 b) internal pure returns (uint256) {
            return ternary(a > b, a, b);
        }
    
        /**
         * @dev Returns the smallest of two numbers.
         */
        function min(uint256 a, uint256 b) internal pure returns (uint256) {
            return ternary(a < b, a, b);
        }
    
        /**
         * @dev Returns the average of two numbers. The result is rounded towards
         * zero.
         */
        function average(uint256 a, uint256 b) internal pure returns (uint256) {
            // (a + b) / 2 can overflow.
            return (a & b) + (a ^ b) / 2;
        }
    
        /**
         * @dev Returns the ceiling of the division of two numbers.
         *
         * This differs from standard division with `/` in that it rounds towards infinity instead
         * of rounding towards zero.
         */
        function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
            if (b == 0) {
                // Guarantee the same behavior as in a regular Solidity division.
                Panic.panic(Panic.DIVISION_BY_ZERO);
            }
    
            // The following calculation ensures accurate ceiling division without overflow.
            // Since a is non-zero, (a - 1) / b will not overflow.
            // The largest possible result occurs when (a - 1) / b is type(uint256).max,
            // but the largest value we can obtain is type(uint256).max - 1, which happens
            // when a = type(uint256).max and b = 1.
            unchecked {
                return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
            }
        }
    
        /**
         * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
         * denominator == 0.
         *
         * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
         * Uniswap Labs also under MIT license.
         */
        function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
            unchecked {
                // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
                // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                // variables such that product = prod1 * 2²⁵⁶ + prod0.
                uint256 prod0 = x * y; // Least significant 256 bits of the product
                uint256 prod1; // Most significant 256 bits of the product
                assembly ("memory-safe") {
                    let mm := mulmod(x, y, not(0))
                    prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                }
    
                // Handle non-overflow cases, 256 by 256 division.
                if (prod1 == 0) {
                    // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                    // The surrounding unchecked block does not change this fact.
                    // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                    return prod0 / denominator;
                }
    
                // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
                if (denominator <= prod1) {
                    Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
                }
    
                ///////////////////////////////////////////////
                // 512 by 256 division.
                ///////////////////////////////////////////////
    
                // Make division exact by subtracting the remainder from [prod1 prod0].
                uint256 remainder;
                assembly ("memory-safe") {
                    // Compute remainder using mulmod.
                    remainder := mulmod(x, y, denominator)
    
                    // Subtract 256 bit number from 512 bit number.
                    prod1 := sub(prod1, gt(remainder, prod0))
                    prod0 := sub(prod0, remainder)
                }
    
                // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
                // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
    
                uint256 twos = denominator & (0 - denominator);
                assembly ("memory-safe") {
                    // Divide denominator by twos.
                    denominator := div(denominator, twos)
    
                    // Divide [prod1 prod0] by twos.
                    prod0 := div(prod0, twos)
    
                    // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                    twos := add(div(sub(0, twos), twos), 1)
                }
    
                // Shift in bits from prod1 into prod0.
                prod0 |= prod1 * twos;
    
                // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
                // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
                // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
                uint256 inverse = (3 * denominator) ^ 2;
    
                // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
                // works in modular arithmetic, doubling the correct bits in each step.
                inverse *= 2 - denominator * inverse; // inverse mod 2⁸
                inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
                inverse *= 2 - denominator * inverse; // inverse mod 2³²
                inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
                inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
                inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
    
                // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
                // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
                // is no longer required.
                result = prod0 * inverse;
                return result;
            }
        }
    
        /**
         * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
         */
        function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
            return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
        }
    
        /**
         * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
         *
         * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
         * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
         *
         * If the input value is not inversible, 0 is returned.
         *
         * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
         * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
         */
        function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
            unchecked {
                if (n == 0) return 0;
    
                // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
                // Used to compute integers x and y such that: ax + ny = gcd(a, n).
                // When the gcd is 1, then the inverse of a modulo n exists and it's x.
                // ax + ny = 1
                // ax = 1 + (-y)n
                // ax ≡ 1 (mod n) # x is the inverse of a modulo n
    
                // If the remainder is 0 the gcd is n right away.
                uint256 remainder = a % n;
                uint256 gcd = n;
    
                // Therefore the initial coefficients are:
                // ax + ny = gcd(a, n) = n
                // 0a + 1n = n
                int256 x = 0;
                int256 y = 1;
    
                while (remainder != 0) {
                    uint256 quotient = gcd / remainder;
    
                    (gcd, remainder) = (
                        // The old remainder is the next gcd to try.
                        remainder,
                        // Compute the next remainder.
                        // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                        // where gcd is at most n (capped to type(uint256).max)
                        gcd - remainder * quotient
                    );
    
                    (x, y) = (
                        // Increment the coefficient of a.
                        y,
                        // Decrement the coefficient of n.
                        // Can overflow, but the result is casted to uint256 so that the
                        // next value of y is "wrapped around" to a value between 0 and n - 1.
                        x - y * int256(quotient)
                    );
                }
    
                if (gcd != 1) return 0; // No inverse exists.
                return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
            }
        }
    
        /**
         * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
         *
         * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
         * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
         * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
         *
         * NOTE: this function does NOT check that `p` is a prime greater than `2`.
         */
        function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
            unchecked {
                return Math.modExp(a, p - 2, p);
            }
        }
    
        /**
         * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
         *
         * Requirements:
         * - modulus can't be zero
         * - underlying staticcall to precompile must succeed
         *
         * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
         * sure the chain you're using it on supports the precompiled contract for modular exponentiation
         * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
         * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
         * interpreted as 0.
         */
        function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
            (bool success, uint256 result) = tryModExp(b, e, m);
            if (!success) {
                Panic.panic(Panic.DIVISION_BY_ZERO);
            }
            return result;
        }
    
        /**
         * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
         * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
         * to operate modulo 0 or if the underlying precompile reverted.
         *
         * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
         * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
         * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
         * of a revert, but the result may be incorrectly interpreted as 0.
         */
        function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
            if (m == 0) return (false, 0);
            assembly ("memory-safe") {
                let ptr := mload(0x40)
                // | Offset    | Content    | Content (Hex)                                                      |
                // |-----------|------------|--------------------------------------------------------------------|
                // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
                // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
                // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
                // | 0x60:0x7f | value of b | 0x<.............................................................b> |
                // | 0x80:0x9f | value of e | 0x<.............................................................e> |
                // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
                mstore(ptr, 0x20)
                mstore(add(ptr, 0x20), 0x20)
                mstore(add(ptr, 0x40), 0x20)
                mstore(add(ptr, 0x60), b)
                mstore(add(ptr, 0x80), e)
                mstore(add(ptr, 0xa0), m)
    
                // Given the result < m, it's guaranteed to fit in 32 bytes,
                // so we can use the memory scratch space located at offset 0.
                success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
                result := mload(0x00)
            }
        }
    
        /**
         * @dev Variant of {modExp} that supports inputs of arbitrary length.
         */
        function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
            (bool success, bytes memory result) = tryModExp(b, e, m);
            if (!success) {
                Panic.panic(Panic.DIVISION_BY_ZERO);
            }
            return result;
        }
    
        /**
         * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
         */
        function tryModExp(
            bytes memory b,
            bytes memory e,
            bytes memory m
        ) internal view returns (bool success, bytes memory result) {
            if (_zeroBytes(m)) return (false, new bytes(0));
    
            uint256 mLen = m.length;
    
            // Encode call args in result and move the free memory pointer
            result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
    
            assembly ("memory-safe") {
                let dataPtr := add(result, 0x20)
                // Write result on top of args to avoid allocating extra memory.
                success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
                // Overwrite the length.
                // result.length > returndatasize() is guaranteed because returndatasize() == m.length
                mstore(result, mLen)
                // Set the memory pointer after the returned data.
                mstore(0x40, add(dataPtr, mLen))
            }
        }
    
        /**
         * @dev Returns whether the provided byte array is zero.
         */
        function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
            for (uint256 i = 0; i < byteArray.length; ++i) {
                if (byteArray[i] != 0) {
                    return false;
                }
            }
            return true;
        }
    
        /**
         * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
         * towards zero.
         *
         * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
         * using integer operations.
         */
        function sqrt(uint256 a) internal pure returns (uint256) {
            unchecked {
                // Take care of easy edge cases when a == 0 or a == 1
                if (a <= 1) {
                    return a;
                }
    
                // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
                // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
                // the current value as `ε_n = | x_n - sqrt(a) |`.
                //
                // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
                // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
                // bigger than any uint256.
                //
                // By noticing that
                // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
                // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
                // to the msb function.
                uint256 aa = a;
                uint256 xn = 1;
    
                if (aa >= (1 << 128)) {
                    aa >>= 128;
                    xn <<= 64;
                }
                if (aa >= (1 << 64)) {
                    aa >>= 64;
                    xn <<= 32;
                }
                if (aa >= (1 << 32)) {
                    aa >>= 32;
                    xn <<= 16;
                }
                if (aa >= (1 << 16)) {
                    aa >>= 16;
                    xn <<= 8;
                }
                if (aa >= (1 << 8)) {
                    aa >>= 8;
                    xn <<= 4;
                }
                if (aa >= (1 << 4)) {
                    aa >>= 4;
                    xn <<= 2;
                }
                if (aa >= (1 << 2)) {
                    xn <<= 1;
                }
    
                // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
                //
                // We can refine our estimation by noticing that the middle of that interval minimizes the error.
                // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
                // This is going to be our x_0 (and ε_0)
                xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
    
                // From here, Newton's method give us:
                // x_{n+1} = (x_n + a / x_n) / 2
                //
                // One should note that:
                // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
                //              = ((x_n² + a) / (2 * x_n))² - a
                //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
                //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
                //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
                //              = (x_n² - a)² / (2 * x_n)²
                //              = ((x_n² - a) / (2 * x_n))²
                //              ≥ 0
                // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
                //
                // This gives us the proof of quadratic convergence of the sequence:
                // ε_{n+1} = | x_{n+1} - sqrt(a) |
                //         = | (x_n + a / x_n) / 2 - sqrt(a) |
                //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
                //         = | (x_n - sqrt(a))² / (2 * x_n) |
                //         = | ε_n² / (2 * x_n) |
                //         = ε_n² / | (2 * x_n) |
                //
                // For the first iteration, we have a special case where x_0 is known:
                // ε_1 = ε_0² / | (2 * x_0) |
                //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
                //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
                //     ≤ 2**(e-3) / 3
                //     ≤ 2**(e-3-log2(3))
                //     ≤ 2**(e-4.5)
                //
                // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
                // ε_{n+1} = ε_n² / | (2 * x_n) |
                //         ≤ (2**(e-k))² / (2 * 2**(e-1))
                //         ≤ 2**(2*e-2*k) / 2**e
                //         ≤ 2**(e-2*k)
                xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
                xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
                xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
                xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
                xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
                xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72
    
                // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
                // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
                // sqrt(a) or sqrt(a) + 1.
                return xn - SafeCast.toUint(xn > a / xn);
            }
        }
    
        /**
         * @dev Calculates sqrt(a), following the selected rounding direction.
         */
        function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = sqrt(a);
                return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
            }
        }
    
        /**
         * @dev Return the log in base 2 of a positive value rounded towards zero.
         * Returns 0 if given 0.
         */
        function log2(uint256 value) internal pure returns (uint256) {
            uint256 result = 0;
            uint256 exp;
            unchecked {
                exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
                value >>= exp;
                result += exp;
    
                exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
                value >>= exp;
                result += exp;
    
                exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
                value >>= exp;
                result += exp;
    
                exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
                value >>= exp;
                result += exp;
    
                exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
                value >>= exp;
                result += exp;
    
                exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
                value >>= exp;
                result += exp;
    
                exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
                value >>= exp;
                result += exp;
    
                result += SafeCast.toUint(value > 1);
            }
            return result;
        }
    
        /**
         * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
         * Returns 0 if given 0.
         */
        function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = log2(value);
                return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
            }
        }
    
        /**
         * @dev Return the log in base 10 of a positive value rounded towards zero.
         * Returns 0 if given 0.
         */
        function log10(uint256 value) internal pure returns (uint256) {
            uint256 result = 0;
            unchecked {
                if (value >= 10 ** 64) {
                    value /= 10 ** 64;
                    result += 64;
                }
                if (value >= 10 ** 32) {
                    value /= 10 ** 32;
                    result += 32;
                }
                if (value >= 10 ** 16) {
                    value /= 10 ** 16;
                    result += 16;
                }
                if (value >= 10 ** 8) {
                    value /= 10 ** 8;
                    result += 8;
                }
                if (value >= 10 ** 4) {
                    value /= 10 ** 4;
                    result += 4;
                }
                if (value >= 10 ** 2) {
                    value /= 10 ** 2;
                    result += 2;
                }
                if (value >= 10 ** 1) {
                    result += 1;
                }
            }
            return result;
        }
    
        /**
         * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
         * Returns 0 if given 0.
         */
        function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = log10(value);
                return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
            }
        }
    
        /**
         * @dev Return the log in base 256 of a positive value rounded towards zero.
         * Returns 0 if given 0.
         *
         * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
         */
        function log256(uint256 value) internal pure returns (uint256) {
            uint256 result = 0;
            uint256 isGt;
            unchecked {
                isGt = SafeCast.toUint(value > (1 << 128) - 1);
                value >>= isGt * 128;
                result += isGt * 16;
    
                isGt = SafeCast.toUint(value > (1 << 64) - 1);
                value >>= isGt * 64;
                result += isGt * 8;
    
                isGt = SafeCast.toUint(value > (1 << 32) - 1);
                value >>= isGt * 32;
                result += isGt * 4;
    
                isGt = SafeCast.toUint(value > (1 << 16) - 1);
                value >>= isGt * 16;
                result += isGt * 2;
    
                result += SafeCast.toUint(value > (1 << 8) - 1);
            }
            return result;
        }
    
        /**
         * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
         * Returns 0 if given 0.
         */
        function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = log256(value);
                return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
            }
        }
    
        /**
         * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
         */
        function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
            return uint8(rounding) % 2 == 1;
        }
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
    // This file was procedurally generated from scripts/generate/templates/SafeCast.js.
    
    pragma solidity ^0.8.20;
    
    /**
     * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
     * checks.
     *
     * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
     * easily result in undesired exploitation or bugs, since developers usually
     * assume that overflows raise errors. `SafeCast` restores this intuition by
     * reverting the transaction when such an operation overflows.
     *
     * Using this library instead of the unchecked operations eliminates an entire
     * class of bugs, so it's recommended to use it always.
     */
    library SafeCast {
        /**
         * @dev Value doesn't fit in an uint of `bits` size.
         */
        error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
    
        /**
         * @dev An int value doesn't fit in an uint of `bits` size.
         */
        error SafeCastOverflowedIntToUint(int256 value);
    
        /**
         * @dev Value doesn't fit in an int of `bits` size.
         */
        error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
    
        /**
         * @dev An uint value doesn't fit in an int of `bits` size.
         */
        error SafeCastOverflowedUintToInt(uint256 value);
    
        /**
         * @dev Returns the downcasted uint248 from uint256, reverting on
         * overflow (when the input is greater than largest uint248).
         *
         * Counterpart to Solidity's `uint248` operator.
         *
         * Requirements:
         *
         * - input must fit into 248 bits
         */
        function toUint248(uint256 value) internal pure returns (uint248) {
            if (value > type(uint248).max) {
                revert SafeCastOverflowedUintDowncast(248, value);
            }
            return uint248(value);
        }
    
        /**
         * @dev Returns the downcasted uint240 from uint256, reverting on
         * overflow (when the input is greater than largest uint240).
         *
         * Counterpart to Solidity's `uint240` operator.
         *
         * Requirements:
         *
         * - input must fit into 240 bits
         */
        function toUint240(uint256 value) internal pure returns (uint240) {
            if (value > type(uint240).max) {
                revert SafeCastOverflowedUintDowncast(240, value);
            }
            return uint240(value);
        }
    
        /**
         * @dev Returns the downcasted uint232 from uint256, reverting on
         * overflow (when the input is greater than largest uint232).
         *
         * Counterpart to Solidity's `uint232` operator.
         *
         * Requirements:
         *
         * - input must fit into 232 bits
         */
        function toUint232(uint256 value) internal pure returns (uint232) {
            if (value > type(uint232).max) {
                revert SafeCastOverflowedUintDowncast(232, value);
            }
            return uint232(value);
        }
    
        /**
         * @dev Returns the downcasted uint224 from uint256, reverting on
         * overflow (when the input is greater than largest uint224).
         *
         * Counterpart to Solidity's `uint224` operator.
         *
         * Requirements:
         *
         * - input must fit into 224 bits
         */
        function toUint224(uint256 value) internal pure returns (uint224) {
            if (value > type(uint224).max) {
                revert SafeCastOverflowedUintDowncast(224, value);
            }
            return uint224(value);
        }
    
        /**
         * @dev Returns the downcasted uint216 from uint256, reverting on
         * overflow (when the input is greater than largest uint216).
         *
         * Counterpart to Solidity's `uint216` operator.
         *
         * Requirements:
         *
         * - input must fit into 216 bits
         */
        function toUint216(uint256 value) internal pure returns (uint216) {
            if (value > type(uint216).max) {
                revert SafeCastOverflowedUintDowncast(216, value);
            }
            return uint216(value);
        }
    
        /**
         * @dev Returns the downcasted uint208 from uint256, reverting on
         * overflow (when the input is greater than largest uint208).
         *
         * Counterpart to Solidity's `uint208` operator.
         *
         * Requirements:
         *
         * - input must fit into 208 bits
         */
        function toUint208(uint256 value) internal pure returns (uint208) {
            if (value > type(uint208).max) {
                revert SafeCastOverflowedUintDowncast(208, value);
            }
            return uint208(value);
        }
    
        /**
         * @dev Returns the downcasted uint200 from uint256, reverting on
         * overflow (when the input is greater than largest uint200).
         *
         * Counterpart to Solidity's `uint200` operator.
         *
         * Requirements:
         *
         * - input must fit into 200 bits
         */
        function toUint200(uint256 value) internal pure returns (uint200) {
            if (value > type(uint200).max) {
                revert SafeCastOverflowedUintDowncast(200, value);
            }
            return uint200(value);
        }
    
        /**
         * @dev Returns the downcasted uint192 from uint256, reverting on
         * overflow (when the input is greater than largest uint192).
         *
         * Counterpart to Solidity's `uint192` operator.
         *
         * Requirements:
         *
         * - input must fit into 192 bits
         */
        function toUint192(uint256 value) internal pure returns (uint192) {
            if (value > type(uint192).max) {
                revert SafeCastOverflowedUintDowncast(192, value);
            }
            return uint192(value);
        }
    
        /**
         * @dev Returns the downcasted uint184 from uint256, reverting on
         * overflow (when the input is greater than largest uint184).
         *
         * Counterpart to Solidity's `uint184` operator.
         *
         * Requirements:
         *
         * - input must fit into 184 bits
         */
        function toUint184(uint256 value) internal pure returns (uint184) {
            if (value > type(uint184).max) {
                revert SafeCastOverflowedUintDowncast(184, value);
            }
            return uint184(value);
        }
    
        /**
         * @dev Returns the downcasted uint176 from uint256, reverting on
         * overflow (when the input is greater than largest uint176).
         *
         * Counterpart to Solidity's `uint176` operator.
         *
         * Requirements:
         *
         * - input must fit into 176 bits
         */
        function toUint176(uint256 value) internal pure returns (uint176) {
            if (value > type(uint176).max) {
                revert SafeCastOverflowedUintDowncast(176, value);
            }
            return uint176(value);
        }
    
        /**
         * @dev Returns the downcasted uint168 from uint256, reverting on
         * overflow (when the input is greater than largest uint168).
         *
         * Counterpart to Solidity's `uint168` operator.
         *
         * Requirements:
         *
         * - input must fit into 168 bits
         */
        function toUint168(uint256 value) internal pure returns (uint168) {
            if (value > type(uint168).max) {
                revert SafeCastOverflowedUintDowncast(168, value);
            }
            return uint168(value);
        }
    
        /**
         * @dev Returns the downcasted uint160 from uint256, reverting on
         * overflow (when the input is greater than largest uint160).
         *
         * Counterpart to Solidity's `uint160` operator.
         *
         * Requirements:
         *
         * - input must fit into 160 bits
         */
        function toUint160(uint256 value) internal pure returns (uint160) {
            if (value > type(uint160).max) {
                revert SafeCastOverflowedUintDowncast(160, value);
            }
            return uint160(value);
        }
    
        /**
         * @dev Returns the downcasted uint152 from uint256, reverting on
         * overflow (when the input is greater than largest uint152).
         *
         * Counterpart to Solidity's `uint152` operator.
         *
         * Requirements:
         *
         * - input must fit into 152 bits
         */
        function toUint152(uint256 value) internal pure returns (uint152) {
            if (value > type(uint152).max) {
                revert SafeCastOverflowedUintDowncast(152, value);
            }
            return uint152(value);
        }
    
        /**
         * @dev Returns the downcasted uint144 from uint256, reverting on
         * overflow (when the input is greater than largest uint144).
         *
         * Counterpart to Solidity's `uint144` operator.
         *
         * Requirements:
         *
         * - input must fit into 144 bits
         */
        function toUint144(uint256 value) internal pure returns (uint144) {
            if (value > type(uint144).max) {
                revert SafeCastOverflowedUintDowncast(144, value);
            }
            return uint144(value);
        }
    
        /**
         * @dev Returns the downcasted uint136 from uint256, reverting on
         * overflow (when the input is greater than largest uint136).
         *
         * Counterpart to Solidity's `uint136` operator.
         *
         * Requirements:
         *
         * - input must fit into 136 bits
         */
        function toUint136(uint256 value) internal pure returns (uint136) {
            if (value > type(uint136).max) {
                revert SafeCastOverflowedUintDowncast(136, value);
            }
            return uint136(value);
        }
    
        /**
         * @dev Returns the downcasted uint128 from uint256, reverting on
         * overflow (when the input is greater than largest uint128).
         *
         * Counterpart to Solidity's `uint128` operator.
         *
         * Requirements:
         *
         * - input must fit into 128 bits
         */
        function toUint128(uint256 value) internal pure returns (uint128) {
            if (value > type(uint128).max) {
                revert SafeCastOverflowedUintDowncast(128, value);
            }
            return uint128(value);
        }
    
        /**
         * @dev Returns the downcasted uint120 from uint256, reverting on
         * overflow (when the input is greater than largest uint120).
         *
         * Counterpart to Solidity's `uint120` operator.
         *
         * Requirements:
         *
         * - input must fit into 120 bits
         */
        function toUint120(uint256 value) internal pure returns (uint120) {
            if (value > type(uint120).max) {
                revert SafeCastOverflowedUintDowncast(120, value);
            }
            return uint120(value);
        }
    
        /**
         * @dev Returns the downcasted uint112 from uint256, reverting on
         * overflow (when the input is greater than largest uint112).
         *
         * Counterpart to Solidity's `uint112` operator.
         *
         * Requirements:
         *
         * - input must fit into 112 bits
         */
        function toUint112(uint256 value) internal pure returns (uint112) {
            if (value > type(uint112).max) {
                revert SafeCastOverflowedUintDowncast(112, value);
            }
            return uint112(value);
        }
    
        /**
         * @dev Returns the downcasted uint104 from uint256, reverting on
         * overflow (when the input is greater than largest uint104).
         *
         * Counterpart to Solidity's `uint104` operator.
         *
         * Requirements:
         *
         * - input must fit into 104 bits
         */
        function toUint104(uint256 value) internal pure returns (uint104) {
            if (value > type(uint104).max) {
                revert SafeCastOverflowedUintDowncast(104, value);
            }
            return uint104(value);
        }
    
        /**
         * @dev Returns the downcasted uint96 from uint256, reverting on
         * overflow (when the input is greater than largest uint96).
         *
         * Counterpart to Solidity's `uint96` operator.
         *
         * Requirements:
         *
         * - input must fit into 96 bits
         */
        function toUint96(uint256 value) internal pure returns (uint96) {
            if (value > type(uint96).max) {
                revert SafeCastOverflowedUintDowncast(96, value);
            }
            return uint96(value);
        }
    
        /**
         * @dev Returns the downcasted uint88 from uint256, reverting on
         * overflow (when the input is greater than largest uint88).
         *
         * Counterpart to Solidity's `uint88` operator.
         *
         * Requirements:
         *
         * - input must fit into 88 bits
         */
        function toUint88(uint256 value) internal pure returns (uint88) {
            if (value > type(uint88).max) {
                revert SafeCastOverflowedUintDowncast(88, value);
            }
            return uint88(value);
        }
    
        /**
         * @dev Returns the downcasted uint80 from uint256, reverting on
         * overflow (when the input is greater than largest uint80).
         *
         * Counterpart to Solidity's `uint80` operator.
         *
         * Requirements:
         *
         * - input must fit into 80 bits
         */
        function toUint80(uint256 value) internal pure returns (uint80) {
            if (value > type(uint80).max) {
                revert SafeCastOverflowedUintDowncast(80, value);
            }
            return uint80(value);
        }
    
        /**
         * @dev Returns the downcasted uint72 from uint256, reverting on
         * overflow (when the input is greater than largest uint72).
         *
         * Counterpart to Solidity's `uint72` operator.
         *
         * Requirements:
         *
         * - input must fit into 72 bits
         */
        function toUint72(uint256 value) internal pure returns (uint72) {
            if (value > type(uint72).max) {
                revert SafeCastOverflowedUintDowncast(72, value);
            }
            return uint72(value);
        }
    
        /**
         * @dev Returns the downcasted uint64 from uint256, reverting on
         * overflow (when the input is greater than largest uint64).
         *
         * Counterpart to Solidity's `uint64` operator.
         *
         * Requirements:
         *
         * - input must fit into 64 bits
         */
        function toUint64(uint256 value) internal pure returns (uint64) {
            if (value > type(uint64).max) {
                revert SafeCastOverflowedUintDowncast(64, value);
            }
            return uint64(value);
        }
    
        /**
         * @dev Returns the downcasted uint56 from uint256, reverting on
         * overflow (when the input is greater than largest uint56).
         *
         * Counterpart to Solidity's `uint56` operator.
         *
         * Requirements:
         *
         * - input must fit into 56 bits
         */
        function toUint56(uint256 value) internal pure returns (uint56) {
            if (value > type(uint56).max) {
                revert SafeCastOverflowedUintDowncast(56, value);
            }
            return uint56(value);
        }
    
        /**
         * @dev Returns the downcasted uint48 from uint256, reverting on
         * overflow (when the input is greater than largest uint48).
         *
         * Counterpart to Solidity's `uint48` operator.
         *
         * Requirements:
         *
         * - input must fit into 48 bits
         */
        function toUint48(uint256 value) internal pure returns (uint48) {
            if (value > type(uint48).max) {
                revert SafeCastOverflowedUintDowncast(48, value);
            }
            return uint48(value);
        }
    
        /**
         * @dev Returns the downcasted uint40 from uint256, reverting on
         * overflow (when the input is greater than largest uint40).
         *
         * Counterpart to Solidity's `uint40` operator.
         *
         * Requirements:
         *
         * - input must fit into 40 bits
         */
        function toUint40(uint256 value) internal pure returns (uint40) {
            if (value > type(uint40).max) {
                revert SafeCastOverflowedUintDowncast(40, value);
            }
            return uint40(value);
        }
    
        /**
         * @dev Returns the downcasted uint32 from uint256, reverting on
         * overflow (when the input is greater than largest uint32).
         *
         * Counterpart to Solidity's `uint32` operator.
         *
         * Requirements:
         *
         * - input must fit into 32 bits
         */
        function toUint32(uint256 value) internal pure returns (uint32) {
            if (value > type(uint32).max) {
                revert SafeCastOverflowedUintDowncast(32, value);
            }
            return uint32(value);
        }
    
        /**
         * @dev Returns the downcasted uint24 from uint256, reverting on
         * overflow (when the input is greater than largest uint24).
         *
         * Counterpart to Solidity's `uint24` operator.
         *
         * Requirements:
         *
         * - input must fit into 24 bits
         */
        function toUint24(uint256 value) internal pure returns (uint24) {
            if (value > type(uint24).max) {
                revert SafeCastOverflowedUintDowncast(24, value);
            }
            return uint24(value);
        }
    
        /**
         * @dev Returns the downcasted uint16 from uint256, reverting on
         * overflow (when the input is greater than largest uint16).
         *
         * Counterpart to Solidity's `uint16` operator.
         *
         * Requirements:
         *
         * - input must fit into 16 bits
         */
        function toUint16(uint256 value) internal pure returns (uint16) {
            if (value > type(uint16).max) {
                revert SafeCastOverflowedUintDowncast(16, value);
            }
            return uint16(value);
        }
    
        /**
         * @dev Returns the downcasted uint8 from uint256, reverting on
         * overflow (when the input is greater than largest uint8).
         *
         * Counterpart to Solidity's `uint8` operator.
         *
         * Requirements:
         *
         * - input must fit into 8 bits
         */
        function toUint8(uint256 value) internal pure returns (uint8) {
            if (value > type(uint8).max) {
                revert SafeCastOverflowedUintDowncast(8, value);
            }
            return uint8(value);
        }
    
        /**
         * @dev Converts a signed int256 into an unsigned uint256.
         *
         * Requirements:
         *
         * - input must be greater than or equal to 0.
         */
        function toUint256(int256 value) internal pure returns (uint256) {
            if (value < 0) {
                revert SafeCastOverflowedIntToUint(value);
            }
            return uint256(value);
        }
    
        /**
         * @dev Returns the downcasted int248 from int256, reverting on
         * overflow (when the input is less than smallest int248 or
         * greater than largest int248).
         *
         * Counterpart to Solidity's `int248` operator.
         *
         * Requirements:
         *
         * - input must fit into 248 bits
         */
        function toInt248(int256 value) internal pure returns (int248 downcasted) {
            downcasted = int248(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(248, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int240 from int256, reverting on
         * overflow (when the input is less than smallest int240 or
         * greater than largest int240).
         *
         * Counterpart to Solidity's `int240` operator.
         *
         * Requirements:
         *
         * - input must fit into 240 bits
         */
        function toInt240(int256 value) internal pure returns (int240 downcasted) {
            downcasted = int240(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(240, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int232 from int256, reverting on
         * overflow (when the input is less than smallest int232 or
         * greater than largest int232).
         *
         * Counterpart to Solidity's `int232` operator.
         *
         * Requirements:
         *
         * - input must fit into 232 bits
         */
        function toInt232(int256 value) internal pure returns (int232 downcasted) {
            downcasted = int232(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(232, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int224 from int256, reverting on
         * overflow (when the input is less than smallest int224 or
         * greater than largest int224).
         *
         * Counterpart to Solidity's `int224` operator.
         *
         * Requirements:
         *
         * - input must fit into 224 bits
         */
        function toInt224(int256 value) internal pure returns (int224 downcasted) {
            downcasted = int224(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(224, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int216 from int256, reverting on
         * overflow (when the input is less than smallest int216 or
         * greater than largest int216).
         *
         * Counterpart to Solidity's `int216` operator.
         *
         * Requirements:
         *
         * - input must fit into 216 bits
         */
        function toInt216(int256 value) internal pure returns (int216 downcasted) {
            downcasted = int216(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(216, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int208 from int256, reverting on
         * overflow (when the input is less than smallest int208 or
         * greater than largest int208).
         *
         * Counterpart to Solidity's `int208` operator.
         *
         * Requirements:
         *
         * - input must fit into 208 bits
         */
        function toInt208(int256 value) internal pure returns (int208 downcasted) {
            downcasted = int208(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(208, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int200 from int256, reverting on
         * overflow (when the input is less than smallest int200 or
         * greater than largest int200).
         *
         * Counterpart to Solidity's `int200` operator.
         *
         * Requirements:
         *
         * - input must fit into 200 bits
         */
        function toInt200(int256 value) internal pure returns (int200 downcasted) {
            downcasted = int200(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(200, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int192 from int256, reverting on
         * overflow (when the input is less than smallest int192 or
         * greater than largest int192).
         *
         * Counterpart to Solidity's `int192` operator.
         *
         * Requirements:
         *
         * - input must fit into 192 bits
         */
        function toInt192(int256 value) internal pure returns (int192 downcasted) {
            downcasted = int192(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(192, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int184 from int256, reverting on
         * overflow (when the input is less than smallest int184 or
         * greater than largest int184).
         *
         * Counterpart to Solidity's `int184` operator.
         *
         * Requirements:
         *
         * - input must fit into 184 bits
         */
        function toInt184(int256 value) internal pure returns (int184 downcasted) {
            downcasted = int184(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(184, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int176 from int256, reverting on
         * overflow (when the input is less than smallest int176 or
         * greater than largest int176).
         *
         * Counterpart to Solidity's `int176` operator.
         *
         * Requirements:
         *
         * - input must fit into 176 bits
         */
        function toInt176(int256 value) internal pure returns (int176 downcasted) {
            downcasted = int176(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(176, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int168 from int256, reverting on
         * overflow (when the input is less than smallest int168 or
         * greater than largest int168).
         *
         * Counterpart to Solidity's `int168` operator.
         *
         * Requirements:
         *
         * - input must fit into 168 bits
         */
        function toInt168(int256 value) internal pure returns (int168 downcasted) {
            downcasted = int168(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(168, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int160 from int256, reverting on
         * overflow (when the input is less than smallest int160 or
         * greater than largest int160).
         *
         * Counterpart to Solidity's `int160` operator.
         *
         * Requirements:
         *
         * - input must fit into 160 bits
         */
        function toInt160(int256 value) internal pure returns (int160 downcasted) {
            downcasted = int160(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(160, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int152 from int256, reverting on
         * overflow (when the input is less than smallest int152 or
         * greater than largest int152).
         *
         * Counterpart to Solidity's `int152` operator.
         *
         * Requirements:
         *
         * - input must fit into 152 bits
         */
        function toInt152(int256 value) internal pure returns (int152 downcasted) {
            downcasted = int152(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(152, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int144 from int256, reverting on
         * overflow (when the input is less than smallest int144 or
         * greater than largest int144).
         *
         * Counterpart to Solidity's `int144` operator.
         *
         * Requirements:
         *
         * - input must fit into 144 bits
         */
        function toInt144(int256 value) internal pure returns (int144 downcasted) {
            downcasted = int144(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(144, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int136 from int256, reverting on
         * overflow (when the input is less than smallest int136 or
         * greater than largest int136).
         *
         * Counterpart to Solidity's `int136` operator.
         *
         * Requirements:
         *
         * - input must fit into 136 bits
         */
        function toInt136(int256 value) internal pure returns (int136 downcasted) {
            downcasted = int136(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(136, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int128 from int256, reverting on
         * overflow (when the input is less than smallest int128 or
         * greater than largest int128).
         *
         * Counterpart to Solidity's `int128` operator.
         *
         * Requirements:
         *
         * - input must fit into 128 bits
         */
        function toInt128(int256 value) internal pure returns (int128 downcasted) {
            downcasted = int128(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(128, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int120 from int256, reverting on
         * overflow (when the input is less than smallest int120 or
         * greater than largest int120).
         *
         * Counterpart to Solidity's `int120` operator.
         *
         * Requirements:
         *
         * - input must fit into 120 bits
         */
        function toInt120(int256 value) internal pure returns (int120 downcasted) {
            downcasted = int120(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(120, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int112 from int256, reverting on
         * overflow (when the input is less than smallest int112 or
         * greater than largest int112).
         *
         * Counterpart to Solidity's `int112` operator.
         *
         * Requirements:
         *
         * - input must fit into 112 bits
         */
        function toInt112(int256 value) internal pure returns (int112 downcasted) {
            downcasted = int112(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(112, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int104 from int256, reverting on
         * overflow (when the input is less than smallest int104 or
         * greater than largest int104).
         *
         * Counterpart to Solidity's `int104` operator.
         *
         * Requirements:
         *
         * - input must fit into 104 bits
         */
        function toInt104(int256 value) internal pure returns (int104 downcasted) {
            downcasted = int104(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(104, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int96 from int256, reverting on
         * overflow (when the input is less than smallest int96 or
         * greater than largest int96).
         *
         * Counterpart to Solidity's `int96` operator.
         *
         * Requirements:
         *
         * - input must fit into 96 bits
         */
        function toInt96(int256 value) internal pure returns (int96 downcasted) {
            downcasted = int96(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(96, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int88 from int256, reverting on
         * overflow (when the input is less than smallest int88 or
         * greater than largest int88).
         *
         * Counterpart to Solidity's `int88` operator.
         *
         * Requirements:
         *
         * - input must fit into 88 bits
         */
        function toInt88(int256 value) internal pure returns (int88 downcasted) {
            downcasted = int88(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(88, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int80 from int256, reverting on
         * overflow (when the input is less than smallest int80 or
         * greater than largest int80).
         *
         * Counterpart to Solidity's `int80` operator.
         *
         * Requirements:
         *
         * - input must fit into 80 bits
         */
        function toInt80(int256 value) internal pure returns (int80 downcasted) {
            downcasted = int80(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(80, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int72 from int256, reverting on
         * overflow (when the input is less than smallest int72 or
         * greater than largest int72).
         *
         * Counterpart to Solidity's `int72` operator.
         *
         * Requirements:
         *
         * - input must fit into 72 bits
         */
        function toInt72(int256 value) internal pure returns (int72 downcasted) {
            downcasted = int72(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(72, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int64 from int256, reverting on
         * overflow (when the input is less than smallest int64 or
         * greater than largest int64).
         *
         * Counterpart to Solidity's `int64` operator.
         *
         * Requirements:
         *
         * - input must fit into 64 bits
         */
        function toInt64(int256 value) internal pure returns (int64 downcasted) {
            downcasted = int64(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(64, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int56 from int256, reverting on
         * overflow (when the input is less than smallest int56 or
         * greater than largest int56).
         *
         * Counterpart to Solidity's `int56` operator.
         *
         * Requirements:
         *
         * - input must fit into 56 bits
         */
        function toInt56(int256 value) internal pure returns (int56 downcasted) {
            downcasted = int56(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(56, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int48 from int256, reverting on
         * overflow (when the input is less than smallest int48 or
         * greater than largest int48).
         *
         * Counterpart to Solidity's `int48` operator.
         *
         * Requirements:
         *
         * - input must fit into 48 bits
         */
        function toInt48(int256 value) internal pure returns (int48 downcasted) {
            downcasted = int48(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(48, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int40 from int256, reverting on
         * overflow (when the input is less than smallest int40 or
         * greater than largest int40).
         *
         * Counterpart to Solidity's `int40` operator.
         *
         * Requirements:
         *
         * - input must fit into 40 bits
         */
        function toInt40(int256 value) internal pure returns (int40 downcasted) {
            downcasted = int40(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(40, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int32 from int256, reverting on
         * overflow (when the input is less than smallest int32 or
         * greater than largest int32).
         *
         * Counterpart to Solidity's `int32` operator.
         *
         * Requirements:
         *
         * - input must fit into 32 bits
         */
        function toInt32(int256 value) internal pure returns (int32 downcasted) {
            downcasted = int32(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(32, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int24 from int256, reverting on
         * overflow (when the input is less than smallest int24 or
         * greater than largest int24).
         *
         * Counterpart to Solidity's `int24` operator.
         *
         * Requirements:
         *
         * - input must fit into 24 bits
         */
        function toInt24(int256 value) internal pure returns (int24 downcasted) {
            downcasted = int24(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(24, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int16 from int256, reverting on
         * overflow (when the input is less than smallest int16 or
         * greater than largest int16).
         *
         * Counterpart to Solidity's `int16` operator.
         *
         * Requirements:
         *
         * - input must fit into 16 bits
         */
        function toInt16(int256 value) internal pure returns (int16 downcasted) {
            downcasted = int16(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(16, value);
            }
        }
    
        /**
         * @dev Returns the downcasted int8 from int256, reverting on
         * overflow (when the input is less than smallest int8 or
         * greater than largest int8).
         *
         * Counterpart to Solidity's `int8` operator.
         *
         * Requirements:
         *
         * - input must fit into 8 bits
         */
        function toInt8(int256 value) internal pure returns (int8 downcasted) {
            downcasted = int8(value);
            if (downcasted != value) {
                revert SafeCastOverflowedIntDowncast(8, value);
            }
        }
    
        /**
         * @dev Converts an unsigned uint256 into a signed int256.
         *
         * Requirements:
         *
         * - input must be less than or equal to maxInt256.
         */
        function toInt256(uint256 value) internal pure returns (int256) {
            // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
            if (value > uint256(type(int256).max)) {
                revert SafeCastOverflowedUintToInt(value);
            }
            return int256(value);
        }
    
        /**
         * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
         */
        function toUint(bool b) internal pure returns (uint256 u) {
            assembly ("memory-safe") {
                u := iszero(iszero(b))
            }
        }
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)
    
    pragma solidity ^0.8.20;
    
    /**
     * @dev Helper library for emitting standardized panic codes.
     *
     * ```solidity
     * contract Example {
     *      using Panic for uint256;
     *
     *      // Use any of the declared internal constants
     *      function foo() { Panic.GENERIC.panic(); }
     *
     *      // Alternatively
     *      function foo() { Panic.panic(Panic.GENERIC); }
     * }
     * ```
     *
     * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
     *
     * _Available since v5.1._
     */
    // slither-disable-next-line unused-state
    library Panic {
        /// @dev generic / unspecified error
        uint256 internal constant GENERIC = 0x00;
        /// @dev used by the assert() builtin
        uint256 internal constant ASSERT = 0x01;
        /// @dev arithmetic underflow or overflow
        uint256 internal constant UNDER_OVERFLOW = 0x11;
        /// @dev division or modulo by zero
        uint256 internal constant DIVISION_BY_ZERO = 0x12;
        /// @dev enum conversion error
        uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
        /// @dev invalid encoding in storage
        uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
        /// @dev empty array pop
        uint256 internal constant EMPTY_ARRAY_POP = 0x31;
        /// @dev array out of bounds access
        uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
        /// @dev resource error (too large allocation or too large array)
        uint256 internal constant RESOURCE_ERROR = 0x41;
        /// @dev calling invalid internal function
        uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
    
        /// @dev Reverts with a panic code. Recommended to use with
        /// the internal constants with predefined codes.
        function panic(uint256 code) internal pure {
            assembly ("memory-safe") {
                mstore(0x00, 0x4e487b71)
                mstore(0x20, code)
                revert(0x1c, 0x24)
            }
        }
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.1.0) (utils/SlotDerivation.sol)
    // This file was procedurally generated from scripts/generate/templates/SlotDerivation.js.
    
    pragma solidity ^0.8.20;
    
    /**
     * @dev Library for computing storage (and transient storage) locations from namespaces and deriving slots
     * corresponding to standard patterns. The derivation method for array and mapping matches the storage layout used by
     * the solidity language / compiler.
     *
     * See https://docs.soliditylang.org/en/v0.8.20/internals/layout_in_storage.html#mappings-and-dynamic-arrays[Solidity docs for mappings and dynamic arrays.].
     *
     * Example usage:
     * ```solidity
     * contract Example {
     *     // Add the library methods
     *     using StorageSlot for bytes32;
     *     using SlotDerivation for bytes32;
     *
     *     // Declare a namespace
     *     string private constant _NAMESPACE = "<namespace>" // eg. OpenZeppelin.Slot
     *
     *     function setValueInNamespace(uint256 key, address newValue) internal {
     *         _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value = newValue;
     *     }
     *
     *     function getValueInNamespace(uint256 key) internal view returns (address) {
     *         return _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value;
     *     }
     * }
     * ```
     *
     * TIP: Consider using this library along with {StorageSlot}.
     *
     * NOTE: This library provides a way to manipulate storage locations in a non-standard way. Tooling for checking
     * upgrade safety will ignore the slots accessed through this library.
     *
     * _Available since v5.1._
     */
    library SlotDerivation {
        /**
         * @dev Derive an ERC-7201 slot from a string (namespace).
         */
        function erc7201Slot(string memory namespace) internal pure returns (bytes32 slot) {
            assembly ("memory-safe") {
                mstore(0x00, sub(keccak256(add(namespace, 0x20), mload(namespace)), 1))
                slot := and(keccak256(0x00, 0x20), not(0xff))
            }
        }
    
        /**
         * @dev Add an offset to a slot to get the n-th element of a structure or an array.
         */
        function offset(bytes32 slot, uint256 pos) internal pure returns (bytes32 result) {
            unchecked {
                return bytes32(uint256(slot) + pos);
            }
        }
    
        /**
         * @dev Derive the location of the first element in an array from the slot where the length is stored.
         */
        function deriveArray(bytes32 slot) internal pure returns (bytes32 result) {
            assembly ("memory-safe") {
                mstore(0x00, slot)
                result := keccak256(0x00, 0x20)
            }
        }
    
        /**
         * @dev Derive the location of a mapping element from the key.
         */
        function deriveMapping(bytes32 slot, address key) internal pure returns (bytes32 result) {
            assembly ("memory-safe") {
                mstore(0x00, and(key, shr(96, not(0))))
                mstore(0x20, slot)
                result := keccak256(0x00, 0x40)
            }
        }
    
        /**
         * @dev Derive the location of a mapping element from the key.
         */
        function deriveMapping(bytes32 slot, bool key) internal pure returns (bytes32 result) {
            assembly ("memory-safe") {
                mstore(0x00, iszero(iszero(key)))
                mstore(0x20, slot)
                result := keccak256(0x00, 0x40)
            }
        }
    
        /**
         * @dev Derive the location of a mapping element from the key.
         */
        function deriveMapping(bytes32 slot, bytes32 key) internal pure returns (bytes32 result) {
            assembly ("memory-safe") {
                mstore(0x00, key)
                mstore(0x20, slot)
                result := keccak256(0x00, 0x40)
            }
        }
    
        /**
         * @dev Derive the location of a mapping element from the key.
         */
        function deriveMapping(bytes32 slot, uint256 key) internal pure returns (bytes32 result) {
            assembly ("memory-safe") {
                mstore(0x00, key)
                mstore(0x20, slot)
                result := keccak256(0x00, 0x40)
            }
        }
    
        /**
         * @dev Derive the location of a mapping element from the key.
         */
        function deriveMapping(bytes32 slot, int256 key) internal pure returns (bytes32 result) {
            assembly ("memory-safe") {
                mstore(0x00, key)
                mstore(0x20, slot)
                result := keccak256(0x00, 0x40)
            }
        }
    
        /**
         * @dev Derive the location of a mapping element from the key.
         */
        function deriveMapping(bytes32 slot, string memory key) internal pure returns (bytes32 result) {
            assembly ("memory-safe") {
                let length := mload(key)
                let begin := add(key, 0x20)
                let end := add(begin, length)
                let cache := mload(end)
                mstore(end, slot)
                result := keccak256(begin, add(length, 0x20))
                mstore(end, cache)
            }
        }
    
        /**
         * @dev Derive the location of a mapping element from the key.
         */
        function deriveMapping(bytes32 slot, bytes memory key) internal pure returns (bytes32 result) {
            assembly ("memory-safe") {
                let length := mload(key)
                let begin := add(key, 0x20)
                let end := add(begin, length)
                let cache := mload(end)
                mstore(end, slot)
                result := keccak256(begin, add(length, 0x20))
                mstore(end, cache)
            }
        }
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
    // This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
    
    pragma solidity ^0.8.20;
    
    /**
     * @dev Library for reading and writing primitive types to specific storage slots.
     *
     * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
     * This library helps with reading and writing to such slots without the need for inline assembly.
     *
     * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
     *
     * Example usage to set ERC-1967 implementation slot:
     * ```solidity
     * contract ERC1967 {
     *     // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
     *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
     *
     *     function _getImplementation() internal view returns (address) {
     *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
     *     }
     *
     *     function _setImplementation(address newImplementation) internal {
     *         require(newImplementation.code.length > 0);
     *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
     *     }
     * }
     * ```
     *
     * TIP: Consider using this library along with {SlotDerivation}.
     */
    library StorageSlot {
        struct AddressSlot {
            address value;
        }
    
        struct BooleanSlot {
            bool value;
        }
    
        struct Bytes32Slot {
            bytes32 value;
        }
    
        struct Uint256Slot {
            uint256 value;
        }
    
        struct Int256Slot {
            int256 value;
        }
    
        struct StringSlot {
            string value;
        }
    
        struct BytesSlot {
            bytes value;
        }
    
        /**
         * @dev Returns an `AddressSlot` with member `value` located at `slot`.
         */
        function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
            assembly ("memory-safe") {
                r.slot := slot
            }
        }
    
        /**
         * @dev Returns a `BooleanSlot` with member `value` located at `slot`.
         */
        function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
            assembly ("memory-safe") {
                r.slot := slot
            }
        }
    
        /**
         * @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
         */
        function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
            assembly ("memory-safe") {
                r.slot := slot
            }
        }
    
        /**
         * @dev Returns a `Uint256Slot` with member `value` located at `slot`.
         */
        function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
            assembly ("memory-safe") {
                r.slot := slot
            }
        }
    
        /**
         * @dev Returns a `Int256Slot` with member `value` located at `slot`.
         */
        function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
            assembly ("memory-safe") {
                r.slot := slot
            }
        }
    
        /**
         * @dev Returns a `StringSlot` with member `value` located at `slot`.
         */
        function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
            assembly ("memory-safe") {
                r.slot := slot
            }
        }
    
        /**
         * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
         */
        function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
            assembly ("memory-safe") {
                r.slot := store.slot
            }
        }
    
        /**
         * @dev Returns a `BytesSlot` with member `value` located at `slot`.
         */
        function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
            assembly ("memory-safe") {
                r.slot := slot
            }
        }
    
        /**
         * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
         */
        function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
            assembly ("memory-safe") {
                r.slot := store.slot
            }
        }
    }

    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.28;
    
    import {UUPSUpgradeable} from "@openzeppelin/contracts-upgradeable/proxy/utils/UUPSUpgradeable.sol";
    import {OwnableUpgradeable} from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
    
    contract AdminAccess is UUPSUpgradeable, OwnableUpgradeable {
      mapping(address admin => bool isAdmin) private _admins;
      mapping(address admin => bool isAdmin) private _promotionalAdmins;
    
      /// @custom:oz-upgrades-unsafe-allow constructor
      constructor() {
        _disableInitializers();
      }
    
      function initialize(address[] calldata admins, address[] calldata promotionalAdmins) public initializer {
        __Ownable_init(_msgSender());
        __UUPSUpgradeable_init();
    
        _updateAdmins(admins, true);
        _updatePromotionalAdmins(promotionalAdmins, true);
      }
    
      function _updateAdmins(address[] calldata admins, bool hasAdmin) internal {
        uint256 bounds = admins.length;
        for (uint256 i; i < bounds; ++i) {
          _admins[admins[i]] = hasAdmin;
        }
      }
    
      function _updatePromotionalAdmins(address[] calldata promotionalAdmins, bool hasAdmin) internal {
        uint256 bounds = promotionalAdmins.length;
        for (uint256 i; i < bounds; ++i) {
          _promotionalAdmins[promotionalAdmins[i]] = hasAdmin;
        }
      }
    
      function isAdmin(address admin) external view returns (bool) {
        return _admins[admin];
      }
    
      function addAdmins(address[] calldata admins) external onlyOwner {
        _updateAdmins(admins, true);
      }
    
      function removeAdmins(address[] calldata admins) external onlyOwner {
        _updateAdmins(admins, false);
      }
    
      function isPromotionalAdmin(address admin) external view returns (bool) {
        return _promotionalAdmins[admin];
      }
    
      function addPromotionalAdmins(address[] calldata admins) external onlyOwner {
        _updatePromotionalAdmins(admins, true);
      }
    
      function removePromotionalAdmins(address[] calldata admins) external onlyOwner {
        _updatePromotionalAdmins(admins, false);
      }
    
      // solhint-disable-next-line no-empty-blocks
      function _authorizeUpgrade(address newImplementation) internal override onlyOwner {}
    }

    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.28;
    
    import {Skill, Attire, CombatStyle, CombatStats} from "./misc.sol";
    import {GuaranteedReward, RandomReward} from "./rewards.sol";
    
    enum ActionQueueStrategy {
      OVERWRITE,
      APPEND,
      KEEP_LAST_IN_PROGRESS
    }
    
    struct QueuedActionInput {
      Attire attire;
      uint16 actionId;
      uint16 regenerateId; // Food (combat), maybe something for non-combat later
      uint16 choiceId; // Melee/Ranged/Magic (combat), logs, ore (non-combat)
      uint16 rightHandEquipmentTokenId; // Axe/Sword/bow, can be empty
      uint16 leftHandEquipmentTokenId; // Shield, can be empty
      uint24 timespan; // How long to queue the action for
      uint8 combatStyle; // CombatStyle specific style of combat
      uint40 petId; // id of the pet (can be empty)
    }
    
    struct QueuedAction {
      uint16 actionId;
      uint16 regenerateId; // Food (combat), maybe something for non-combat later
      uint16 choiceId; // Melee/Ranged/Magic (combat), logs, ore (non-combat)
      uint16 rightHandEquipmentTokenId; // Axe/Sword/bow, can be empty
      uint16 leftHandEquipmentTokenId; // Shield, can be empty
      uint24 timespan; // How long to queue the action for
      uint24 prevProcessedTime; // How long the action has been processed for previously
      uint24 prevProcessedXPTime; // How much XP has been gained for this action so far
      uint64 queueId; // id of this queued action
      bytes1 packed; // 1st bit is isValid (not used yet), 2nd bit is for hasPet (decides if the 2nd storage slot is read)
      uint8 combatStyle;
      uint24 reserved;
      // Next storage slot
      uint40 petId; // id of the pet (can be empty)
    }
    
    // This is only used as an input arg (and events)
    struct ActionInput {
      uint16 actionId;
      ActionInfo info;
      GuaranteedReward[] guaranteedRewards;
      RandomReward[] randomRewards;
      CombatStats combatStats;
    }
    
    struct ActionInfo {
      uint8 skill;
      bool actionChoiceRequired; // If true, then the user must choose an action choice
      uint24 xpPerHour;
      uint32 minXP;
      uint24 numSpawned; // Mostly for combat, capped respawn rate for xp/drops. Per hour, base 10000
      uint16 handItemTokenIdRangeMin; // Inclusive
      uint16 handItemTokenIdRangeMax; // Inclusive
      uint8 successPercent; // 0-100
      uint8 worldLocation; // 0 is the main starting world
      bool isFullModeOnly;
      bool isAvailable;
      uint16 questPrerequisiteId;
    }
    
    uint16 constant ACTIONCHOICE_MELEE_BASIC_SWORD = 1500;
    uint16 constant ACTIONCHOICE_MAGIC_SHADOW_BLAST = 2000;
    uint16 constant ACTIONCHOICE_RANGED_BASIC_BOW = 3000;
    
    // Allows for 2, 4 or 8 hour respawn time
    uint256 constant SPAWN_MUL = 1000;
    uint256 constant RATE_MUL = 1000;
    uint256 constant GUAR_MUL = 10; // Guaranteeded reward multiplier (1 decimal, allows for 2 hour action times)
    
    uint256 constant MAX_QUEUEABLE_ACTIONS = 3; // Available slots to queue actions

    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.28;
    
    import "./actions.sol";
    import "./items.sol";
    import "./misc.sol";
    import "./players.sol";
    import "./rewards.sol";
    import "./quests.sol";
    import "./promotions.sol";
    import "./clans.sol";
    import "./pets.sol";

    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.28;
    
    import {IBank} from "../interfaces/IBank.sol";
    
    enum ClanRank {
      NONE, // Not in a clan
      COMMONER, // Member of the clan
      SCOUT, // Invite and kick commoners
      COLONEL, // Can launch attacks and assign combatants
      TREASURER, // Can withdraw from bank
      LEADER, // Can edit clan details
      OWNER // Can do everything and transfer ownership
    }
    
    enum BattleResultEnum {
      DRAW,
      WIN,
      LOSE
    }
    
    struct ClanBattleInfo {
      uint40 lastClanIdAttackOtherClanIdCooldownTimestamp;
      uint8 numReattacks;
      uint40 lastOtherClanIdAttackClanIdCooldownTimestamp;
      uint8 numReattacksOtherClan;
    }
    
    // Packed for gas efficiency
    struct Vault {
      bool claimed; // Only applies to the first one, if it's claimed without the second one being claimed
      uint40 timestamp;
      uint80 amount;
      uint40 timestamp1;
      uint80 amount1;
    }
    
    struct VaultClanInfo {
      IBank bank;
      uint96 totalBrushLocked;
      // New storage slot
      uint40 attackingCooldownTimestamp;
      uint40 assignCombatantsCooldownTimestamp;
      bool currentlyAttacking;
      uint24 defendingVaultsOffset;
      uint40 blockAttacksTimestamp;
      uint8 blockAttacksCooldownHours;
      bool isInMMRArray;
      uint40 superAttackCooldownTimestamp;
      uint64[] playerIds;
      Vault[] defendingVaults; // Append only, and use defendingVaultsOffset to decide where the real start is
    }
    
    uint256 constant MAX_CLAN_COMBATANTS = 20;
    uint256 constant CLAN_WARS_GAS_PRICE_WINDOW_SIZE = 4;
    
    bool constant XP_EMITTED_ELSEWHERE = true;

    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.28;
    
    uint16 constant NONE = 0;
    
    uint16 constant COMBAT_BASE = 2048;
    // Melee
    uint16 constant SWORD_BASE = COMBAT_BASE;
    uint16 constant BRONZE_SWORD = SWORD_BASE;
    
    // Woodcutting (2816 - 3071)
    uint16 constant WOODCUTTING_BASE = 2816;
    uint16 constant BRONZE_AXE = WOODCUTTING_BASE;
    
    // Firemaking (3328 - 3583)
    uint16 constant FIRE_BASE = 3328;
    uint16 constant MAGIC_FIRE_STARTER = FIRE_BASE;
    uint16 constant FIRE_MAX = FIRE_BASE + 255;
    
    // Fishing (3072 - 3327)
    uint16 constant FISHING_BASE = 3072;
    uint16 constant NET_STICK = FISHING_BASE;
    
    // Mining (2560 - 2815)
    uint16 constant MINING_BASE = 2560;
    uint16 constant BRONZE_PICKAXE = MINING_BASE;
    
    // Magic
    uint16 constant STAFF_BASE = COMBAT_BASE + 50;
    uint16 constant TOTEM_STAFF = STAFF_BASE;
    
    // Ranged
    uint16 constant BOW_BASE = COMBAT_BASE + 100;
    uint16 constant BASIC_BOW = BOW_BASE;
    
    // Cooked fish
    uint16 constant COOKED_FISH_BASE = 11008;
    uint16 constant COOKED_FEOLA = COOKED_FISH_BASE + 3;
    
    // Scrolls
    uint16 constant SCROLL_BASE = 12032;
    uint16 constant SHADOW_SCROLL = SCROLL_BASE;
    
    // Boosts
    uint16 constant BOOST_BASE = 12800;
    uint16 constant COMBAT_BOOST = BOOST_BASE;
    uint16 constant XP_BOOST = BOOST_BASE + 1;
    uint16 constant GATHERING_BOOST = BOOST_BASE + 2;
    uint16 constant SKILL_BOOST = BOOST_BASE + 3;
    uint16 constant ABSENCE_BOOST = BOOST_BASE + 4;
    uint16 constant LUCKY_POTION = BOOST_BASE + 5;
    uint16 constant LUCK_OF_THE_DRAW = BOOST_BASE + 6;
    uint16 constant PRAY_TO_THE_BEARDIE = BOOST_BASE + 7;
    uint16 constant PRAY_TO_THE_BEARDIE_2 = BOOST_BASE + 8;
    uint16 constant PRAY_TO_THE_BEARDIE_3 = BOOST_BASE + 9;
    uint16 constant BOOST_RESERVED_1 = BOOST_BASE + 10;
    uint16 constant BOOST_RESERVED_2 = BOOST_BASE + 11;
    uint16 constant BOOST_RESERVED_3 = BOOST_BASE + 12;
    uint16 constant GO_OUTSIDE = BOOST_BASE + 13;
    uint16 constant RAINING_RARES = BOOST_BASE + 14;
    uint16 constant CLAN_BOOSTER = BOOST_BASE + 15;
    uint16 constant CLAN_BOOSTER_2 = BOOST_BASE + 16;
    uint16 constant CLAN_BOOSTER_3 = BOOST_BASE + 17;
    uint16 constant BOOST_RESERVED_4 = BOOST_BASE + 18;
    uint16 constant BOOST_RESERVED_5 = BOOST_BASE + 19;
    uint16 constant BOOST_RESERVED_6 = BOOST_BASE + 20;
    uint16 constant BOOST_MAX = 13055;
    
    // Eggs
    uint16 constant EGG_BASE = 12544;
    uint16 constant SECRET_EGG_1_TIER1 = EGG_BASE;
    uint16 constant SECRET_EGG_2_TIER1 = EGG_BASE + 1;
    uint16 constant EGG_MAX = 12799;
    
    // Miscs
    uint16 constant MISC_BASE = 65535;
    uint16 constant RAID_PASS = MISC_BASE - 1;
    
    struct BulkTransferInfo {
      uint256[] tokenIds;
      uint256[] amounts;
      address to;
    }

    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.28;
    
    enum BoostType {
      NONE,
      ANY_XP,
      COMBAT_XP,
      NON_COMBAT_XP,
      GATHERING,
      ABSENCE,
      PASSIVE_SKIP_CHANCE,
      // Clan wars
      PVP_BLOCK,
      PVP_REATTACK,
      PVP_SUPER_ATTACK,
      // Combat stats
      COMBAT_FIXED
    }
    
    struct Equipment {
      uint16 itemTokenId;
      uint24 amount;
    }
    
    enum Skill {
      NONE,
      COMBAT, // This is a helper which incorporates all combat skills, attack <-> magic, defence, health etc
      MELEE,
      RANGED,
      MAGIC,
      DEFENCE,
      HEALTH,
      RESERVED_COMBAT,
      MINING,
      WOODCUTTING,
      FISHING,
      SMITHING,
      THIEVING,
      CRAFTING,
      COOKING,
      FIREMAKING,
      FARMING,
      ALCHEMY,
      FLETCHING,
      FORGING,
      RESERVED2,
      RESERVED3,
      RESERVED4,
      RESERVED5,
      RESERVED6,
      RESERVED7,
      RESERVED8,
      RESERVED9,
      RESERVED10,
      RESERVED11,
      RESERVED12,
      RESERVED13,
      RESERVED14,
      RESERVED15,
      RESERVED16,
      RESERVED17,
      RESERVED18,
      RESERVED19,
      RESERVED20,
      TRAVELING // Helper Skill for travelling
    }
    
    struct Attire {
      uint16 head;
      uint16 neck;
      uint16 body;
      uint16 arms;
      uint16 legs;
      uint16 feet;
      uint16 ring;
      uint16 reserved1;
    }
    
    struct CombatStats {
      // From skill points
      int16 meleeAttack;
      int16 magicAttack;
      int16 rangedAttack;
      int16 health;
      // These include equipment
      int16 meleeDefence;
      int16 magicDefence;
      int16 rangedDefence;
    }
    
    enum CombatStyle {
      NONE,
      ATTACK,
      DEFENCE
    }

    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.28;
    
    import {Skill} from "./misc.sol";
    
    enum PetSkin {
      NONE,
      DEFAULT,
      OG,
      ONEKIN,
      FROST,
      CRYSTAL,
      ANNIV1,
      KRAGSTYR
    }
    
    enum PetEnhancementType {
      NONE,
      MELEE,
      MAGIC,
      RANGED,
      DEFENCE,
      HEALTH,
      MELEE_AND_DEFENCE,
      MAGIC_AND_DEFENCE,
      RANGED_AND_DEFENCE
    }
    
    struct Pet {
      Skill skillEnhancement1;
      uint8 skillFixedEnhancement1;
      uint8 skillPercentageEnhancement1;
      Skill skillEnhancement2;
      uint8 skillFixedEnhancement2;
      uint8 skillPercentageEnhancement2;
      uint40 lastAssignmentTimestamp;
      address owner; // Will be used as an optimization to avoid having to look up the owner of the pet in another storage slot
      bool isTransferable;
      // New storage slot
      uint24 baseId;
      // These are used when training a pet
      uint40 lastTrainedTimestamp;
      uint8 skillFixedEnhancementMax1; // The maximum possible value for skillFixedEnhancement1 when training
      uint8 skillFixedEnhancementMax2;
      uint8 skillPercentageEnhancementMax1;
      uint8 skillPercentageEnhancementMax2;
      uint64 xp;
    }
    
    struct BasePetMetadata {
      string description;
      uint8 tier;
      PetSkin skin;
      PetEnhancementType enhancementType;
      Skill skillEnhancement1;
      uint8 skillFixedMin1;
      uint8 skillFixedMax1;
      uint8 skillFixedIncrement1;
      uint8 skillPercentageMin1;
      uint8 skillPercentageMax1;
      uint8 skillPercentageIncrement1;
      uint8 skillMinLevel1;
      Skill skillEnhancement2;
      uint8 skillFixedMin2;
      uint8 skillFixedMax2;
      uint8 skillFixedIncrement2;
      uint8 skillPercentageMin2;
      uint8 skillPercentageMax2;
      uint8 skillPercentageIncrement2;
      uint8 skillMinLevel2;
      uint16 fixedStarThreshold;
      uint16 percentageStarThreshold;
      bool isTransferable;
    }

    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.28;
    
    import {QueuedAction} from "./actions.sol";
    import {Skill, BoostType, CombatStats, Equipment} from "./misc.sol";
    import {PlayerQuest} from "./quests.sol";
    
    // 4 bytes for each level. 0x00000000 is the first level, 0x00000054 is the second, etc.
    bytes constant XP_BYTES = hex"0000000000000054000000AE0000010E00000176000001E60000025E000002DE00000368000003FD0000049B00000546000005FC000006C000000792000008730000096400000A6600000B7B00000CA400000DE100000F36000010A200001229000013CB0000158B0000176B0000196E00001B9400001DE20000205A000022FF000025D5000028DD00002C1E00002F99000033540000375200003B9A000040300000451900004A5C00004FFF0000560900005C810000637000006ADD000072D100007B570000847900008E42000098BE0000A3F90000B0020000BCE70000CAB80000D9860000E9630000FA6200010C990001201D0001350600014B6F0001637300017D2E000198C10001B64E0001D5F80001F7E600021C430002433B00026CFD000299BE0002C9B30002FD180003342B00036F320003AE730003F23D00043AE3000488BE0004DC2F0005359B000595700005FC2400066A360006E02D00075E990007E6160008774C000912EB0009B9B4000A6C74000B2C06000BF956000CD561000DC134000EBDF3000FCCD40010EF2400122648001373BF0014D9230016582C0017F2B00019AAA9001B8234001D7B95001F99390021DDBC00244BE60026E6B60029B15F002CAF51002FE43A0033540D00370303003AF5A4003F30CC0043B9B0004895E3004DCB600053609100595C53005FC6030066A585006E034D0075E86C007E5E980087703B0091287D009B935300A6BD8F00B2B4EE00BF882800CD470500DC026F00EBCC8500FCB8B7010EDBD5";
    uint256 constant MAX_LEVEL = 140; // Original max level
    uint256 constant MAX_LEVEL_1 = 160; // TODO: Update later
    uint256 constant MAX_LEVEL_2 = 190; // TODO: Update later
    
    enum EquipPosition {
      NONE,
      HEAD,
      NECK,
      BODY,
      ARMS,
      LEGS,
      FEET,
      RING,
      SPARE2,
      LEFT_HAND,
      RIGHT_HAND,
      BOTH_HANDS,
      QUIVER,
      MAGIC_BAG,
      FOOD,
      AUX, // wood, seeds  etc..
      BOOST_VIAL,
      EXTRA_BOOST_VIAL,
      GLOBAL_BOOST_VIAL,
      CLAN_BOOST_VIAL,
      PASSIVE_BOOST_VIAL,
      LOCKED_VAULT,
      TERRITORY
    }
    
    struct Player {
      uint40 currentActionStartTimestamp; // The in-progress start time of the first queued action
      Skill currentActionProcessedSkill1; // The skill that the queued action has already gained XP in
      uint24 currentActionProcessedXPGained1; // The amount of XP that the queued action has already gained
      Skill currentActionProcessedSkill2;
      uint24 currentActionProcessedXPGained2;
      Skill currentActionProcessedSkill3;
      uint24 currentActionProcessedXPGained3;
      uint16 currentActionProcessedFoodConsumed;
      uint16 currentActionProcessedBaseInputItemsConsumedNum; // e.g scrolls, crafting materials etc
      Skill skillBoosted1; // The first skill that is boosted
      Skill skillBoosted2; // The second skill that is boosted (if applicable)
      uint48 totalXP;
      uint16 totalLevel; // Doesn't not automatically add new skills to it
      bytes1 packedData; // Contains worldLocation in first 6 bits (0 is the main starting randomnessBeacon), and full mode unlocked in the upper most bit
      // TODO: Can be up to 7
      QueuedAction[] actionQueue;
      string name; // Raw name
    }
    
    struct Item {
      EquipPosition equipPosition;
      bytes1 packedData; // 0x1 exists, upper most bit is full mode
      uint16 questPrerequisiteId;
      // Can it be transferred?
      bool isTransferable; // TODO: Move into packedData
      // Food
      uint16 healthRestored;
      // Boost vial
      BoostType boostType;
      uint16 boostValue; // Varies, could be the % increase
      uint24 boostDuration; // How long the effect of the boost last
      // Combat stats
      int16 meleeAttack;
      int16 magicAttack;
      int16 rangedAttack;
      int16 meleeDefence;
      int16 magicDefence;
      int16 rangedDefence;
      int16 health;
      // Minimum requirements in this skill to use this item (can be NONE)
      Skill skill;
      uint32 minXP;
    }
    
    // Used for events
    struct BoostInfo {
      uint40 startTime;
      uint24 duration;
      uint16 value;
      uint16 itemTokenId; // Get the effect of it
      BoostType boostType;
    }
    
    struct PlayerBoostInfo {
      uint40 startTime;
      uint24 duration;
      uint16 value;
      uint16 itemTokenId; // Get the effect of it
      BoostType boostType;
      // Another boost slot (for global/clan boosts this is the "last", for users it is the "extra")
      uint40 extraOrLastStartTime;
      uint24 extraOrLastDuration;
      uint16 extraOrLastValue;
      uint16 extraOrLastItemTokenId;
      BoostType extraOrLastBoostType;
      uint40 cooldown; // Just put here for packing
    }
    
    // This is effectively a ratio to produce 1 of outputTokenId.
    // Available choices that can be undertaken for an action
    struct ActionChoiceInput {
      uint8 skill; // Skill that this action choice is related to
      uint24 rate; // Rate of output produced per hour (base 1000) 3 decimals
      uint24 xpPerHour;
      uint16[] inputTokenIds;
      uint24[] inputAmounts;
      uint16 outputTokenId;
      uint8 outputAmount;
      uint8 successPercent; // 0-100
      uint16 handItemTokenIdRangeMin; // Inclusive
      uint16 handItemTokenIdRangeMax; // Inclusive
      bool isFullModeOnly;
      bool isAvailable;
      uint16 questPrerequisiteId;
      uint8[] skills; // Skills required to do this action choice
      uint32[] skillMinXPs; // Min XP in the corresponding skills to be able to do this action choice
      int16[] skillDiffs; // How much the skill is increased/decreased by this action choice
    }
    
    struct ActionChoice {
      uint8 skill; // Skill that this action choice is related to
      uint24 rate; // Rate of output produced per hour (base 1000) 3 decimals
      uint24 xpPerHour;
      uint16 inputTokenId1;
      uint24 inputAmount1;
      uint16 inputTokenId2;
      uint24 inputAmount2;
      uint16 inputTokenId3;
      uint24 inputAmount3;
      uint16 outputTokenId;
      uint8 outputAmount;
      uint8 successPercent; // 0-100
      uint8 skill1; // Skills required to do this action choice, commonly the same as skill
      uint32 skillMinXP1; // Min XP in the skill to be able to do this action choice
      int16 skillDiff1; // How much the skill is increased/decreased by this action choice
      uint8 skill2;
      uint32 skillMinXP2;
      int16 skillDiff2;
      uint8 skill3;
      uint32 skillMinXP3;
      int16 skillDiff3;
      uint16 handItemTokenIdRangeMin; // Inclusive
      uint16 handItemTokenIdRangeMax; // Inclusive
      uint16 questPrerequisiteId;
      // FullMode is last bit, first 6 bits is worldLocation,
      // 2nd last bit is if there are other skills in next storage slot to check,
      // 3rd last bit if the input amounts should be used
      bytes1 packedData;
    }
    
    // Must be in the same order as Skill enum
    struct PackedXP {
      uint40 melee;
      uint40 ranged;
      uint40 magic;
      uint40 defence;
      uint40 health;
      uint40 reservedCombat;
      bytes2 packedDataIsMaxed; // 2 bits per skill to indicate whether the maxed skill is reached. I think this was added in case we added a new max level which a user had already passed so old & new levels are the same and it would not trigger a level up event.
      // Next slot
      uint40 mining;
      uint40 woodcutting;
      uint40 fishing;
      uint40 smithing;
      uint40 thieving;
      uint40 crafting;
      bytes2 packedDataIsMaxed1; // 2 bits per skill to indicate whether the maxed skill is reached
      // Next slot
      uint40 cooking;
      uint40 firemaking;
      uint40 farming;
      uint40 alchemy;
      uint40 fletching;
      uint40 forging;
      bytes2 packedDataIsMaxed2; // 2 bits per skill to indicate whether the maxed skill is reached
    }
    
    struct AvatarInfo {
      string name;
      string description;
      string imageURI;
      Skill[2] startSkills; // Can be NONE
    }
    
    struct PastRandomRewardInfo {
      uint16 itemTokenId;
      uint24 amount;
      uint64 queueId;
    }
    
    struct PendingQueuedActionEquipmentState {
      uint256[] consumedItemTokenIds;
      uint256[] consumedAmounts;
      uint256[] producedItemTokenIds;
      uint256[] producedAmounts;
    }
    
    struct PendingQueuedActionMetadata {
      uint32 xpGained; // total xp gained
      uint32 rolls;
      bool died;
      uint16 actionId;
      uint64 queueId;
      uint24 elapsedTime;
      uint24 xpElapsedTime;
      uint8 checkpoint;
    }
    
    struct PendingQueuedActionData {
      // The amount of XP that the queued action has already gained
      Skill skill1;
      uint24 xpGained1;
      Skill skill2; // Most likely health
      uint24 xpGained2;
      Skill skill3; // Could come
      uint24 xpGained3;
      // How much food is consumed in the current action so far
      uint16 foodConsumed;
      // How many base consumables are consumed in the current action so far
      uint16 baseInputItemsConsumedNum;
    }
    
    struct PendingQueuedActionProcessed {
      // XP gained during this session
      Skill[] skills;
      uint32[] xpGainedSkills;
      // Data for the current action which has been previously processed, this is used to store on the Player
      PendingQueuedActionData currentAction;
    }
    
    struct QuestState {
      uint256[] consumedItemTokenIds;
      uint256[] consumedAmounts;
      uint256[] rewardItemTokenIds;
      uint256[] rewardAmounts;
      PlayerQuest[] activeQuestInfo;
      uint256[] questsCompleted;
      Skill[] skills; // Skills gained XP in
      uint32[] xpGainedSkills; // XP gained in these skills
    }
    
    struct LotteryWinnerInfo {
      uint16 lotteryId;
      uint24 raffleId;
      uint16 itemTokenId;
      uint16 amount;
      bool instantConsume;
      uint64 playerId;
    }
    
    struct PendingQueuedActionState {
      // These 2 are in sync. Separated to reduce gas/deployment costs as these are passed down many layers.
      PendingQueuedActionEquipmentState[] equipmentStates;
      PendingQueuedActionMetadata[] actionMetadatas;
      QueuedAction[] remainingQueuedActions;
      PastRandomRewardInfo[] producedPastRandomRewards;
      uint256[] xpRewardItemTokenIds;
      uint256[] xpRewardAmounts;
      uint256[] dailyRewardItemTokenIds;
      uint256[] dailyRewardAmounts;
      PendingQueuedActionProcessed processedData;
      bytes32 dailyRewardMask;
      QuestState quests;
      uint256 numPastRandomRewardInstancesToRemove;
      uint8 worldLocation;
      LotteryWinnerInfo lotteryWinner;
    }
    
    struct FullAttireBonusInput {
      Skill skill;
      uint8 bonusXPPercent;
      uint8 bonusRewardsPercent; // 3 = 3%
      uint16[5] itemTokenIds; // 0 = head, 1 = body, 2 arms, 3 body, 4 = feet
    }
    
    // Contains everything you need to create an item
    struct ItemInput {
      CombatStats combatStats;
      uint16 tokenId;
      EquipPosition equipPosition;
      bool isTransferable;
      bool isFullModeOnly;
      bool isAvailable;
      uint16 questPrerequisiteId;
      // Minimum requirements in this skill
      Skill skill;
      uint32 minXP;
      // Food
      uint16 healthRestored;
      // Boost
      BoostType boostType;
      uint16 boostValue; // Varies, could be the % increase
      uint24 boostDuration; // How long the effect of the boost vial last
      // uri
      string metadataURI;
      string name;
    }
    
    /* Order head, neck, body, arms, legs, feet, ring, reserved1,
       leftHandEquipment, rightHandEquipment,
       Not used yet: input1, input2,input3, regenerate, reserved2, reserved3 */
    struct CheckpointEquipments {
      uint16[16] itemTokenIds;
      uint16[16] balances;
    }
    
    struct ActivePlayerInfo {
      uint64 playerId;
      uint40 checkpoint;
      uint24 timespan;
      uint24 timespan1;
      uint24 timespan2;
    }
    
    uint8 constant START_LEVEL = 17; // Needs updating when there is a new skill. Only useful for new heroes.
    
    uint256 constant MAX_UNIQUE_TICKETS = 64;
    // Used in a bunch of places
    uint256 constant IS_FULL_MODE_BIT = 7;
    
    // Passive/Instant/InstantVRF/Actions/ActionChoices/Item action
    uint256 constant IS_AVAILABLE_BIT = 6;
    
    // Passive actions
    uint256 constant HAS_RANDOM_REWARDS_BIT = 5;
    
    // The rest use world location for first 4 bits
    
    // Queued action
    uint256 constant HAS_PET_BIT = 2;
    uint256 constant IS_VALID_BIT = 1;

    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.28;
    
    enum Promotion {
      NONE,
      STARTER,
      HALLOWEEN_2023,
      XMAS_2023,
      HALLOWEEN_2024,
      HOLIDAY4, // Just have placeholders for now
      HOLIDAY5,
      HOLIDAY6,
      HOLIDAY7,
      HOLIDAY8,
      HOLIDAY9,
      HOLIDAY10
    }
    
    enum PromotionMintStatus {
      NONE,
      SUCCESS,
      PROMOTION_ALREADY_CLAIMED,
      ORACLE_NOT_CALLED,
      MINTING_OUTSIDE_AVAILABLE_DATE,
      PLAYER_DOES_NOT_QUALIFY,
      PLAYER_NOT_HIT_ENOUGH_CLAIMS_FOR_STREAK_BONUS,
      DEPENDENT_QUEST_NOT_COMPLETED
    }
    
    struct PromotionInfoInput {
      Promotion promotion;
      uint40 startTime;
      uint40 endTime; // Exclusive
      uint8 numDailyRandomItemsToPick; // Number of items to pick
      uint40 minTotalXP; // Minimum xp required to claim
      uint256 tokenCost; // Cost in brush to start the promotion, max 16mil
      // Special promotion specific (like 1kin)
      uint8 redeemCodeLength; // Length of the redeem code
      bool adminOnly; // Only admins can mint the promotion, like for 1kin (Not used yet)
      bool promotionTiedToUser; // If the promotion is tied to a user
      bool promotionTiedToPlayer; // If the promotion is tied to the player
      bool promotionMustOwnPlayer; // Must own the player to get the promotion
      // Evolution specific
      bool evolvedHeroOnly; // Only allow evolved heroes to claim
      // Multiday specific
      bool isMultiday; // The promotion is multi-day
      uint256 brushCostMissedDay; // Cost in brush to mint the promotion if they miss a day (in ether), max 25.6 (base 100)
      uint8 numDaysHitNeededForStreakBonus; // How many days to hit for the streak bonus
      uint8 numDaysClaimablePeriodStreakBonus; // If there is a streak bonus, how many days to claim it after the promotion ends. If no final day bonus, set to 0
      uint8 numRandomStreakBonusItemsToPick1; // Number of items to pick for the streak bonus
      uint8 numRandomStreakBonusItemsToPick2; // Number of random items to pick for the streak bonus
      uint16[] randomStreakBonusItemTokenIds1;
      uint32[] randomStreakBonusAmounts1;
      uint16[] randomStreakBonusItemTokenIds2;
      uint32[] randomStreakBonusAmounts2;
      uint16[] guaranteedStreakBonusItemTokenIds;
      uint16[] guaranteedStreakBonusAmounts;
      // Single and multiday
      uint16[] guaranteedItemTokenIds; // Guaranteed items for the promotions each day, if empty then they are handled in a specific way for the promotion like daily rewards
      uint32[] guaranteedAmounts; // Corresponding amounts to the itemTokenIds
      uint16[] randomItemTokenIds; // Possible items for the promotions each day, if empty then they are handled in a specific way for the promotion like daily rewards
      uint32[] randomAmounts; // Corresponding amounts to the randomItemTokenIds
      // Quests
      uint16 questPrerequisiteId;
    }
    
    struct PromotionInfo {
      Promotion promotion;
      uint40 startTime;
      uint8 numDays;
      uint8 numDailyRandomItemsToPick; // Number of items to pick
      uint40 minTotalXP; // Minimum xp required to claim
      uint24 tokenCost; // Cost in brush to mint the promotion (in ether), max 16mil
      // Quests
      uint16 questPrerequisiteId;
      // Special promotion specific (like 1kin), could pack these these later
      uint8 redeemCodeLength; // Length of the redeem code
      bool adminOnly; // Only admins can mint the promotion, like for 1kin
      bool promotionTiedToUser; // If the promotion is tied to a user
      bool promotionTiedToPlayer; // If the promotion is tied to the player
      bool promotionMustOwnPlayer; // Must own the player to get the promotion
      // Evolution specific
      bool evolvedHeroOnly; // Only allow evolved heroes to claim
      // Multiday specific
      bool isMultiday; // The promotion is multi-day
      uint8 brushCostMissedDay; // Cost in brush to mint the promotion if they miss a day (in ether), max 25.5, base 100
      uint8 numDaysHitNeededForStreakBonus; // How many days to hit for the streak bonus
      uint8 numDaysClaimablePeriodStreakBonus; // If there is a streak bonus, how many days to claim it after the promotion ends. If no final day bonus, set to 0
      uint8 numRandomStreakBonusItemsToPick1; // Number of items to pick for the streak bonus
      uint8 numRandomStreakBonusItemsToPick2; // Number of random items to pick for the streak bonus
      // Misc
      uint16[] randomStreakBonusItemTokenIds1;
      uint32[] randomStreakBonusAmounts1;
      uint16[] randomStreakBonusItemTokenIds2; // Not used yet
      uint32[] randomStreakBonusAmounts2; // Not used yet
      uint16[] guaranteedStreakBonusItemTokenIds; // Not used yet
      uint16[] guaranteedStreakBonusAmounts; // Not used yet
      // Single and multiday
      uint16[] guaranteedItemTokenIds; // Guaranteed items for the promotions each day, if empty then they are handled in a specific way for the promotion like daily rewards
      uint32[] guaranteedAmounts; // Corresponding amounts to the itemTokenIds
      uint16[] randomItemTokenIds; // Possible items for the promotions each day, if empty then they are handled in a specific way for the promotion like daily rewards
      uint32[] randomAmounts; // Corresponding amounts to the randomItemTokenIds
    }
    
    uint256 constant BRUSH_COST_MISSED_DAY_MUL = 10;

    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.28;
    
    import {Skill} from "./misc.sol";
    
    struct QuestInput {
      uint16 dependentQuestId; // The quest that must be completed before this one can be started
      uint16 actionId1; // action to do
      uint16 actionNum1; // how many (up to 65535)
      uint16 actionId2; // another action to do
      uint16 actionNum2; // how many (up to 65535)
      uint16 actionChoiceId; // actionChoice to perform
      uint16 actionChoiceNum; // how many to do (base number), (up to 65535)
      Skill skillReward; // The skill to reward XP to
      uint24 skillXPGained; // The amount of XP to give (up to 65535)
      uint16 rewardItemTokenId1; // Reward an item
      uint16 rewardAmount1; // amount of the reward (up to 65535)
      uint16 rewardItemTokenId2; // Reward another item
      uint16 rewardAmount2; // amount of the reward (up to 65535)
      uint16 burnItemTokenId; // Burn an item
      uint16 burnAmount; // amount of the burn (up to 65535)
      uint16 questId; // Unique id for this quest
      bool isFullModeOnly; // If true this quest requires the user be evolved
      uint8 worldLocation; // 0 is the main starting world
    }
    
    struct Quest {
      uint16 dependentQuestId; // The quest that must be completed before this one can be started
      uint16 actionId1; // action to do
      uint16 actionNum1; // how many (up to 65535)
      uint16 actionId2; // another action to do
      uint16 actionNum2; // how many (up to 65535)
      uint16 actionChoiceId; // actionChoice to perform
      uint16 actionChoiceNum; // how many to do (base number), (up to 65535)
      Skill skillReward; // The skill to reward XP to
      uint24 skillXPGained; // The amount of XP to give (up to 65535)
      uint16 rewardItemTokenId1; // Reward an item
      uint16 rewardAmount1; // amount of the reward (up to 65535)
      uint16 rewardItemTokenId2; // Reward another item
      uint16 rewardAmount2; // amount of the reward (up to 65535)
      uint16 burnItemTokenId; // Burn an item
      uint16 burnAmount; // amount of the burn (up to 65535)
      uint16 reserved; // Reserved for future use (previously was questId and cleared)
      bytes1 packedData; // FullMode is last bit, first 6 bits is worldLocation
    }
    
    struct PlayerQuest {
      uint32 questId;
      uint16 actionCompletedNum1;
      uint16 actionCompletedNum2;
      uint16 actionChoiceCompletedNum;
      uint16 burnCompletedAmount;
    }
    
    uint256 constant QUEST_PURSE_STRINGS = 5; // MAKE SURE THIS MATCHES definitions

    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.28;
    
    import {BoostType, Equipment} from "./misc.sol";
    
    struct GuaranteedReward {
      uint16 itemTokenId;
      uint16 rate; // num per hour (base 10, 1 decimal) for actions and num per duration for passive actions
    }
    
    struct RandomReward {
      uint16 itemTokenId;
      uint16 chance; // out of 65535
      uint8 amount; // out of 255
    }
    
    struct PendingRandomReward {
      uint16 actionId;
      uint40 startTime;
      uint24 xpElapsedTime;
      uint16 boostItemTokenId;
      uint24 elapsedTime;
      uint40 boostStartTime; // When the boost was started
      uint24 sentinelElapsedTime;
      // Full equipment at the time this was generated
      uint8 fullAttireBonusRewardsPercent;
      uint64 queueId; // TODO: Could reduce this if more stuff is needed
    }
    
    struct ActionRewards {
      uint16 guaranteedRewardTokenId1;
      uint16 guaranteedRewardRate1; // Num per hour base 10 (1 decimal) for actions (Max 6553.5 per hour), num per duration for passive actions
      uint16 guaranteedRewardTokenId2;
      uint16 guaranteedRewardRate2;
      uint16 guaranteedRewardTokenId3;
      uint16 guaranteedRewardRate3;
      // Random chance rewards
      uint16 randomRewardTokenId1;
      uint16 randomRewardChance1; // out of 65535
      uint8 randomRewardAmount1; // out of 255
      uint16 randomRewardTokenId2;
      uint16 randomRewardChance2;
      uint8 randomRewardAmount2;
      uint16 randomRewardTokenId3;
      uint16 randomRewardChance3;
      uint8 randomRewardAmount3;
      uint16 randomRewardTokenId4;
      uint16 randomRewardChance4;
      uint8 randomRewardAmount4;
      // No more room in this storage slot!
    }
    
    struct XPThresholdReward {
      uint32 xpThreshold;
      Equipment[] rewards;
    }
    
    enum InstantVRFActionType {
      NONE,
      GENERIC,
      FORGING,
      EGG
    }
    
    struct InstantVRFActionInput {
      uint16 actionId;
      uint16[] inputTokenIds;
      uint24[] inputAmounts;
      bytes data;
      InstantVRFActionType actionType;
      bool isFullModeOnly;
      bool isAvailable;
      uint16 questPrerequisiteId;
    }
    
    struct InstantVRFRandomReward {
      uint16 itemTokenId;
      uint16 chance; // out of 65535
      uint16 amount; // out of 65535
    }
    
    uint256 constant MAX_GUARANTEED_REWARDS_PER_ACTION = 3;
    uint256 constant MAX_RANDOM_REWARDS_PER_ACTION = 4;
    uint256 constant MAX_REWARDS_PER_ACTION = MAX_GUARANTEED_REWARDS_PER_ACTION + MAX_RANDOM_REWARDS_PER_ACTION;
    uint256 constant MAX_CONSUMED_PER_ACTION = 3;
    uint256 constant MAX_QUEST_REWARDS = 2;
    
    uint256 constant TIER_1_DAILY_REWARD_START_XP = 0;
    uint256 constant TIER_2_DAILY_REWARD_START_XP = 7_650;
    uint256 constant TIER_3_DAILY_REWARD_START_XP = 33_913;
    uint256 constant TIER_4_DAILY_REWARD_START_XP = 195_864;
    uint256 constant TIER_5_DAILY_REWARD_START_XP = 784_726;
    uint256 constant TIER_6_DAILY_REWARD_START_XP = 2_219_451;
    
    // 4 bytes for each threshold, starts at 500 xp in decimal
    bytes constant XP_THRESHOLD_REWARDS = hex"00000000000001F4000003E8000009C40000138800002710000075300000C350000186A00001D4C0000493E0000557300007A120000927C0000B71B0000DBBA0000F424000124F800016E360001B7740001E8480002625A0002932E0002DC6C0003567E0003D0900004C4B40005B8D80006ACFC0007A1200008954400098968000A7D8C000B71B0000C65D4000D59F8000E4E1C0";

    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.28;
    
    interface IBank {
      function initialize() external;
    
      function initializeAddresses(
        uint256 clanId,
        address bankRegistry,
        address bankRelay,
        address playerNFT,
        address itemNFT,
        address clans,
        address players,
        address lockedBankVaults,
        address raids
      ) external;
    
      function depositToken(address sender, address from, uint256 playerId, address token, uint256 amount) external;
    
      function setAllowBreachedCapacity(bool allow) external;
    }

    //SPDX-License-Identifier: MIT
    pragma solidity ^0.8.28;
    
    interface IBankFactory {
      function getBankAddress(uint256 clanId) external view returns (address);
    
      function getCreatedHere(address bank) external view returns (bool);
    
      function createBank(address from, uint256 clanId) external returns (address);
    }

    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.28;
    
    import {Item} from "../globals/players.sol";
    
    interface IItemNFT {
      function balanceOfs(address account, uint16[] memory ids) external view returns (uint256[] memory);
    
      function balanceOfs10(address account, uint16[10] memory ids) external view returns (uint256[] memory);
    
      function balanceOf(address account, uint256 id) external view returns (uint256);
    
      function getItem(uint16 tokenId) external view returns (Item memory);
    
      function getItems(uint16[] calldata tokenIds) external view returns (Item[] memory);
    
      function totalSupply(uint256 id) external view returns (uint256); // ERC1155Supply
    
      function totalSupply() external view returns (uint256); // ERC1155Supply
    
      function mint(address to, uint256 id, uint256 quantity) external;
    
      function mintBatch(address to, uint256[] calldata ids, uint256[] calldata quantities) external;
    
      function burn(address account, uint256 id, uint256 value) external;
    
      function burnBatch(address account, uint256[] calldata ids, uint256[] calldata values) external;
    
      function getTimestampFirstMint(uint256 id) external view returns (uint256);
    
      function exists(uint256 id) external view returns (bool);
    }

    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.28;
    
    import "../globals/misc.sol";
    import "../globals/players.sol";
    
    interface IPlayers {
      function clearEverythingBeforeTokenTransfer(address from, uint256 tokenId) external;
    
      function beforeTokenTransferTo(address to, uint256 tokenId) external;
    
      function getURI(
        uint256 playerId,
        string calldata name,
        string calldata avatarName,
        string calldata avatarDescription,
        string calldata imageURI
      ) external view returns (string memory);
    
      function mintedPlayer(
        address from,
        uint256 playerId,
        Skill[2] calldata startSkills,
        bool makeActive,
        uint256[] calldata startingItemTokenIds,
        uint256[] calldata startingAmounts
      ) external;
    
      function upgradePlayer(uint256 playerId) external;
    
      function isPlayerEvolved(uint256 playerId) external view returns (bool);
    
      function isOwnerOfPlayerAndActive(address from, uint256 playerId) external view returns (bool);
    
      function getAlphaCombatParams() external view returns (uint8 alphaCombat, uint8 betaCombat, uint8 alphaCombatHealing);
    
      function getActivePlayer(address owner) external view returns (uint256 playerId);
    
      function getPlayerXP(uint256 playerId, Skill skill) external view returns (uint256 xp);
    
      function getLevel(uint256 playerId, Skill skill) external view returns (uint256 level);
    
      function getTotalXP(uint256 playerId) external view returns (uint256 totalXP);
    
      function getTotalLevel(uint256 playerId) external view returns (uint256 totalLevel);
    
      function getActiveBoost(uint256 playerId) external view returns (PlayerBoostInfo memory);
    
      function modifyXP(address from, uint256 playerId, Skill skill, uint56 xp, bool skipEffects) external;
    
      function beforeItemNFTTransfer(address from, address to, uint256[] calldata ids, uint256[] calldata amounts) external;
    }

    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.28;
    
    import {ERC1155Upgradeable} from "@openzeppelin/contracts-upgradeable/token/ERC1155/ERC1155Upgradeable.sol";
    
    import {UUPSUpgradeable} from "@openzeppelin/contracts-upgradeable/proxy/utils/UUPSUpgradeable.sol";
    import {OwnableUpgradeable} from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
    import {IERC2981, IERC165} from "@openzeppelin/contracts/interfaces/IERC2981.sol";
    
    import {IItemNFT} from "./interfaces/IItemNFT.sol";
    import {IPlayers} from "./interfaces/IPlayers.sol";
    import {ItemNFTLibrary} from "./ItemNFTLibrary.sol";
    import {IBankFactory} from "./interfaces/IBankFactory.sol";
    import {AdminAccess} from "./AdminAccess.sol";
    
    import {BoostType, BulkTransferInfo, CombatStats, EquipPosition, Item, ItemInput, Skill, IS_FULL_MODE_BIT, IS_AVAILABLE_BIT} from "./globals/all.sol";
    
    // The NFT contract contains data related to the items and who owns them
    contract ItemNFT is UUPSUpgradeable, OwnableUpgradeable, ERC1155Upgradeable, IERC2981, IItemNFT {
      event AddItems(ItemInput[] items);
      event EditItems(ItemInput[] items);
      event RemoveItems(uint16[] tokenIds);
    
      error IdTooHigh();
      error ItemNotTransferable();
      error InvalidTokenId();
      error ItemAlreadyExists();
      error ItemDoesNotExist(uint16);
      error EquipmentPositionShouldNotChange();
      error NotMinter();
      error NotBurner();
      error LengthMismatch();
    
      struct ItemInfo {
        uint40 timestampFirstMint;
        uint216 balance; // can be smaller if we want to pack more data
      }
    
      uint16 private _totalSupplyAll;
      string private _baseURI;
    
      AdminAccess private _adminAccess;
      bool private _isBeta;
      IBankFactory private _bankFactory;
      IPlayers private _players;
    
      // Royalties
      address private _royaltyReceiver;
      uint8 private _royaltyFee; // base 1000, highest is 25.5
    
      mapping(uint256 itemId => ItemInfo itemInfo) private _itemInfos; // (timestampFirstMint, balance)
      mapping(uint256 itemId => string tokenURI) private _tokenURIs;
      mapping(uint256 itemId => CombatStats combatStats) private _combatStats;
      mapping(uint256 itemId => Item item) private _items;
      mapping(address account => bool isApproved) private _approvals;
    
      modifier onlyMinters() {
        address sender = _msgSender();
        require(_isApproved(sender) || (_adminAccess.isAdmin(sender) && _isBeta), NotMinter());
        _;
      }
    
      modifier onlyBurners(address from) {
        address sender = _msgSender();
        require(sender == from || isApprovedForAll(from, sender), NotBurner());
        _;
      }
    
      /// @custom:oz-upgrades-unsafe-allow constructor
      constructor() {
        _disableInitializers();
      }
    
      function initialize(
        address royaltyReceiver,
        string calldata baseURI,
        AdminAccess adminAccess,
        bool isBeta
      ) external initializer {
        __Ownable_init(_msgSender());
        __UUPSUpgradeable_init();
        __ERC1155_init("");
    
        _baseURI = baseURI;
        _royaltyFee = 30; // 3%
        _royaltyReceiver = royaltyReceiver;
        _adminAccess = adminAccess;
        _isBeta = isBeta;
      }
    
      function mint(address to, uint256 tokenId, uint256 amount) external override onlyMinters {
        _mintItem(to, tokenId, amount);
      }
    
      function mintBatch(address to, uint256[] calldata ids, uint256[] calldata amounts) external override onlyMinters {
        _mintBatchItems(to, ids, amounts);
      }
    
      function burnBatch(
        address from,
        uint256[] calldata tokenIds,
        uint256[] calldata amounts
      ) external override onlyBurners(from) {
        _burnBatch(from, tokenIds, amounts);
      }
    
      function burn(address from, uint256 tokenId, uint256 amount) external override onlyBurners(from) {
        _burn(from, tokenId, amount);
      }
    
      function _getMinRequirement(uint16 tokenId) private view returns (Skill, uint32, bool isFullModeOnly) {
        Item memory item = _items[tokenId];
        return (item.skill, item.minXP, _isItemFullMode(tokenId));
      }
    
      function _isItemFullMode(uint256 tokenId) private view returns (bool) {
        return uint8(_items[tokenId].packedData >> IS_FULL_MODE_BIT) & 1 == 1;
      }
    
      // TODO: Not used yet
      function _isItemAvailable(uint16 tokenId) private view returns (bool) {
        return uint8(_items[tokenId].packedData >> IS_AVAILABLE_BIT) & 1 == 1;
      }
    
      function _premint(uint256 tokenId, uint256 amount) private returns (uint256 numNewUniqueItems) {
        require(tokenId < type(uint16).max, IdTooHigh());
        uint256 existingBalance = _itemInfos[tokenId].balance;
        if (existingBalance == 0) {
          // Brand new item
          _itemInfos[tokenId].timestampFirstMint = uint40(block.timestamp);
          numNewUniqueItems++;
        }
        _itemInfos[tokenId].balance = uint216(existingBalance + amount);
      }
    
      function _mintItem(address to, uint256 tokenId, uint256 amount) internal {
        uint256 newlyMintedItems = _premint(tokenId, amount);
        if (newlyMintedItems != 0) {
          ++_totalSupplyAll;
        }
        _mint(to, uint256(tokenId), amount, "");
      }
    
      function _mintBatchItems(address to, uint256[] memory tokenIds, uint256[] memory amounts) internal {
        uint256 numNewItems;
        uint256 tokenIdsLength = tokenIds.length;
        for (uint256 i; i < tokenIdsLength; ++i) {
          numNewItems = numNewItems + _premint(tokenIds[i], amounts[i]);
        }
        if (numNewItems != 0) {
          _totalSupplyAll += uint16(numNewItems);
        }
        _mintBatch(to, tokenIds, amounts, "");
      }
    
      function safeBulkTransfer(BulkTransferInfo[] calldata nftsInfo) external {
        if (nftsInfo.length == 0) {
          return;
        }
        for (uint256 i = 0; i < nftsInfo.length; ++i) {
          BulkTransferInfo memory nftInfo = nftsInfo[i];
          address to = nftInfo.to;
          if (nftInfo.tokenIds.length == 1) {
            safeTransferFrom(_msgSender(), to, nftInfo.tokenIds[0], nftInfo.amounts[0], "");
          } else {
            safeBatchTransferFrom(_msgSender(), to, nftInfo.tokenIds, nftInfo.amounts, "");
          }
        }
      }
    
      function _getItem(uint16 tokenId) private view returns (Item storage) {
        require(exists(tokenId), ItemDoesNotExist(tokenId));
        return _items[tokenId];
      }
    
      // If an item is burnt, remove it from the total
      function _removeAnyBurntFromTotal(uint256[] memory ids, uint256[] memory amounts) private {
        uint256 totalSupplyDelta;
        for (uint256 i = 0; i < ids.length; ++i) {
          uint256 newBalance = _itemInfos[ids[i]].balance - amounts[i];
          if (newBalance == 0) {
            ++totalSupplyDelta;
          }
          _itemInfos[ids[i]].balance = uint216(newBalance);
        }
        _totalSupplyAll -= uint16(totalSupplyDelta);
      }
    
      function _checkIsTransferable(address from, uint256[] memory ids) private view {
        bool anyNonTransferable;
        for (uint256 i = 0; i < ids.length; ++i) {
          if (exists(ids[i]) && !_items[ids[i]].isTransferable) {
            anyNonTransferable = true;
            break;
          }
        }
    
        // Check if this is from a bank, that's the only place it's allowed to transfer non-transferable items
        require(!anyNonTransferable || _bankFactory.getCreatedHere(from), ItemNotTransferable());
      }
    
      function _update(address from, address to, uint256[] memory ids, uint256[] memory amounts) internal virtual override {
        if (amounts.length != 0 && from != to) {
          bool isBurnt = to == address(0) || to == address(0xdEaD);
          bool isMinted = from == address(0);
          if (isBurnt) {
            _removeAnyBurntFromTotal(ids, amounts);
          } else if (!isMinted) {
            _checkIsTransferable(from, ids);
          }
          _players.beforeItemNFTTransfer(from, to, ids, amounts);
        }
        super._update(from, to, ids, amounts);
      }
    
      function _setItem(ItemInput calldata input) private {
        require(input.tokenId != 0, InvalidTokenId());
        ItemNFTLibrary.setItem(input, _items[input.tokenId]);
        _tokenURIs[input.tokenId] = input.metadataURI;
      }
    
      function _editItem(ItemInput calldata inputItem) private {
        require(exists(inputItem.tokenId), ItemDoesNotExist(inputItem.tokenId));
        EquipPosition oldPosition = _items[inputItem.tokenId].equipPosition;
        EquipPosition newPosition = inputItem.equipPosition;
    
        bool isRightHandPositionSwapWithBothHands = (oldPosition == EquipPosition.RIGHT_HAND &&
          newPosition == EquipPosition.BOTH_HANDS) ||
          (oldPosition == EquipPosition.BOTH_HANDS && newPosition == EquipPosition.RIGHT_HAND);
    
        // Allowed to go from BOTH_HANDS to RIGHT_HAND or RIGHT_HAND to BOTH_HANDS
        require(
          oldPosition == newPosition || oldPosition == EquipPosition.NONE || isRightHandPositionSwapWithBothHands,
          EquipmentPositionShouldNotChange()
        );
        _setItem(inputItem);
      }
    
      function _isApproved(address account) private view returns (bool) {
        return _approvals[account];
      }
    
      function uri(uint256 tokenId) public view virtual override returns (string memory) {
        require(exists(tokenId), ItemDoesNotExist(uint16(tokenId)));
        return string(abi.encodePacked(_baseURI, _tokenURIs[tokenId]));
      }
    
      function exists(uint256 tokenId) public view override returns (bool) {
        return _items[tokenId].packedData != 0;
      }
    
      function totalSupply(uint256 tokenId) external view override returns (uint256) {
        return _itemInfos[tokenId].balance;
      }
    
      function totalSupply() external view override returns (uint256) {
        return _totalSupplyAll;
      }
    
      function getItem(uint16 tokenId) external view override returns (Item memory) {
        return _getItem(tokenId);
      }
    
      function getItems(uint16[] calldata tokenIds) external view override returns (Item[] memory items) {
        uint256 tokenIdsLength = tokenIds.length;
        items = new Item[](tokenIdsLength);
        for (uint256 i; i < tokenIdsLength; ++i) {
          items[i] = _getItem(tokenIds[i]);
        }
      }
    
      function getTimestampFirstMint(uint256 tokenId) external view override returns (uint256) {
        return _itemInfos[tokenId].timestampFirstMint;
      }
    
      function getEquipPositionAndMinRequirement(
        uint16 item
      ) external view returns (Skill skill, uint32 minXP, EquipPosition equipPosition, bool isFullModeOnly) {
        (skill, minXP, isFullModeOnly) = _getMinRequirement(item);
        equipPosition = getEquipPosition(item);
      }
    
      function getMinRequirements(
        uint16[] calldata tokenIds
      ) external view returns (Skill[] memory skills, uint32[] memory minXPs, bool[] memory isFullModeOnly) {
        skills = new Skill[](tokenIds.length);
        minXPs = new uint32[](tokenIds.length);
        isFullModeOnly = new bool[](tokenIds.length);
        uint256 tokenIdsLength = tokenIds.length;
        for (uint256 i; i < tokenIdsLength; ++i) {
          (skills[i], minXPs[i], isFullModeOnly[i]) = _getMinRequirement(tokenIds[i]);
        }
      }
    
      function getEquipPositions(uint16[] calldata tokenIds) external view returns (EquipPosition[] memory equipPositions) {
        uint256 tokenIdsLength = tokenIds.length;
        equipPositions = new EquipPosition[](tokenIdsLength);
        for (uint256 i; i < tokenIdsLength; ++i) {
          equipPositions[i] = getEquipPosition(tokenIds[i]);
        }
      }
    
      function getEquipPosition(uint16 tokenId) public view returns (EquipPosition) {
        require(exists(tokenId), ItemDoesNotExist(uint16(tokenId)));
        return _items[tokenId].equipPosition;
      }
    
      /**
       * @dev See {IERC1155-balanceOfBatch}. This implementation is not standard ERC1155, it's optimized for the single account case
       */
      function balanceOfs(
        address account,
        uint16[] memory ids
      ) external view override returns (uint256[] memory batchBalances) {
        batchBalances = new uint256[](ids.length);
        for (uint256 i = 0; i < ids.length; ++i) {
          batchBalances[i] = balanceOf(account, ids[i]);
        }
      }
    
      function balanceOfs10(
        address account,
        uint16[10] memory ids
      ) external view override returns (uint256[] memory batchBalances) {
        batchBalances = new uint256[](ids.length);
        for (uint256 i = 0; i < ids.length; ++i) {
          batchBalances[i] = balanceOf(account, ids[i]);
        }
      }
    
      function balanceOf(address account, uint256 id) public view override(IItemNFT, ERC1155Upgradeable) returns (uint256) {
        return ERC1155Upgradeable.balanceOf(account, id);
      }
    
      function royaltyInfo(
        uint256 /*tokenId*/,
        uint256 salePrice
      ) external view override returns (address receiver, uint256 royaltyAmount) {
        uint256 amount = (salePrice * _royaltyFee) / 1000;
        return (_royaltyReceiver, amount);
      }
    
      function getBoostInfo(
        uint16 tokenId
      ) external view returns (BoostType boostType, uint16 boostValue, uint24 boostDuration) {
        Item storage item = _getItem(tokenId);
        return (item.boostType, item.boostValue, item.boostDuration);
      }
    
      /**
       * @dev See {IERC1155-isApprovedForAll}.
       */
      function isApprovedForAll(address account, address operator) public view virtual override returns (bool) {
        return super.isApprovedForAll(account, operator) || _approvals[operator];
      }
    
      function supportsInterface(bytes4 interfaceId) public view override(IERC165, ERC1155Upgradeable) returns (bool) {
        return interfaceId == type(IERC2981).interfaceId || super.supportsInterface(interfaceId);
      }
    
      function name() external view returns (string memory) {
        return string(abi.encodePacked("Estfor Items", _isBeta ? " (Beta)" : ""));
      }
    
      function symbol() external view returns (string memory) {
        return string(abi.encodePacked("EK_I", _isBeta ? "B" : ""));
      }
    
      function addItems(ItemInput[] calldata inputItems) external onlyOwner {
        uint256 length = inputItems.length;
        for (uint256 i; i < length; ++i) {
          require(!exists(inputItems[i].tokenId), ItemAlreadyExists());
          _setItem(inputItems[i]);
        }
    
        emit AddItems(inputItems);
      }
    
      function editItems(ItemInput[] calldata inputItems) external onlyOwner {
        for (uint256 i = 0; i < inputItems.length; ++i) {
          _editItem(inputItems[i]);
        }
    
        emit EditItems(inputItems);
      }
    
      // This should be only used when an item is not in active use
      // because it could mess up queued actions potentially
      function removeItems(uint16[] calldata itemTokenIds) external onlyOwner {
        for (uint256 i = 0; i < itemTokenIds.length; ++i) {
          require(exists(itemTokenIds[i]), ItemDoesNotExist(itemTokenIds[i]));
          delete _items[itemTokenIds[i]];
          delete _tokenURIs[itemTokenIds[i]];
        }
    
        emit RemoveItems(itemTokenIds);
      }
    
      function initializeAddresses(IBankFactory bankFactory, IPlayers players) external onlyOwner {
        _bankFactory = bankFactory;
        _players = players;
      }
    
      function setApproved(address[] calldata accounts, bool isApproved) external onlyOwner {
        for (uint256 i = 0; i < accounts.length; ++i) {
          _approvals[accounts[i]] = isApproved;
        }
      }
    
      function setBaseURI(string calldata baseURI) external onlyOwner {
        _baseURI = baseURI;
      }
    
      function airdrop(address[] calldata tos, uint256 tokenId, uint256[] calldata amounts) external onlyOwner {
        require(tos.length == amounts.length, LengthMismatch());
        for (uint256 i = 0; i < tos.length; ++i) {
          _mintItem(tos[i], tokenId, amounts[i]);
        }
      }
    
      // solhint-disable-next-line no-empty-blocks
      function _authorizeUpgrade(address newImplementation) internal override onlyOwner {}
    }

    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.28;
    
    // solhint-disable-next-line no-global-import
    import "./globals/players.sol";
    
    // This file contains methods for interacting with the item NFT, used to decrease implementation deployment bytecode code.
    library ItemNFTLibrary {
      function setItem(ItemInput calldata inputItem, Item storage item) external {
        bool hasCombat;
        CombatStats calldata combatStats = inputItem.combatStats;
        assembly ("memory-safe") {
          hasCombat := not(iszero(combatStats))
        }
        item.equipPosition = inputItem.equipPosition;
        item.isTransferable = inputItem.isTransferable;
    
        bytes1 packedData = bytes1(uint8(0x1)); // Exists
        packedData = packedData | bytes1(uint8(inputItem.isFullModeOnly ? 1 << IS_FULL_MODE_BIT : 0));
        if (inputItem.isAvailable) {
          packedData |= bytes1(uint8(1 << IS_AVAILABLE_BIT));
        }
    
        item.packedData = packedData;
    
        item.questPrerequisiteId = inputItem.questPrerequisiteId;
    
        if (hasCombat) {
          // Combat stats
          item.meleeAttack = inputItem.combatStats.meleeAttack;
          item.rangedAttack = inputItem.combatStats.rangedAttack;
          item.magicAttack = inputItem.combatStats.magicAttack;
          item.meleeDefence = inputItem.combatStats.meleeDefence;
          item.rangedDefence = inputItem.combatStats.rangedDefence;
          item.magicDefence = inputItem.combatStats.magicDefence;
          item.health = inputItem.combatStats.health;
        }
    
        if (inputItem.healthRestored != 0) {
          item.healthRestored = inputItem.healthRestored;
        }
    
        if (inputItem.boostType != BoostType.NONE) {
          item.boostType = inputItem.boostType;
          item.boostValue = inputItem.boostValue;
          item.boostDuration = inputItem.boostDuration;
        }
    
        item.minXP = inputItem.minXP;
        item.skill = inputItem.skill;
      }
    }

    Please enter a contract address above to load the contract details and source code.

    Context size (optional):