Contract Name:
FluidLiquidityResolver
Contract Source Code:
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 amount
) external returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.21;
interface IProxy {
function setAdmin(address newAdmin_) external;
function setDummyImplementation(address newDummyImplementation_) external;
function addImplementation(address implementation_, bytes4[] calldata sigs_) external;
function removeImplementation(address implementation_) external;
function getAdmin() external view returns (address);
function getDummyImplementation() external view returns (address);
function getImplementationSigs(address impl_) external view returns (bytes4[] memory);
function getSigsImplementation(bytes4 sig_) external view returns (address);
function readFromStorage(bytes32 slot_) external view returns (uint256 result_);
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.21;
/// @title library that represents a number in BigNumber(coefficient and exponent) format to store in smaller bits.
/// @notice the number is divided into two parts: a coefficient and an exponent. This comes at a cost of losing some precision
/// at the end of the number because the exponent simply fills it with zeroes. This precision is oftentimes negligible and can
/// result in significant gas cost reduction due to storage space reduction.
/// Also note, a valid big number is as follows: if the exponent is > 0, then coefficient last bits should be occupied to have max precision.
/// @dev roundUp is more like a increase 1, which happens everytime for the same number.
/// roundDown simply sets trailing digits after coefficientSize to zero (floor), only once for the same number.
library BigMathMinified {
/// @dev constants to use for `roundUp` input param to increase readability
bool internal constant ROUND_DOWN = false;
bool internal constant ROUND_UP = true;
/// @dev converts `normal` number to BigNumber with `exponent` and `coefficient` (or precision).
/// e.g.:
/// 5035703444687813576399599 (normal) = (coefficient[32bits], exponent[8bits])[40bits]
/// 5035703444687813576399599 (decimal) => 10000101010010110100000011111011110010100110100000000011100101001101001101011101111 (binary)
/// => 10000101010010110100000011111011000000000000000000000000000000000000000000000000000
/// ^-------------------- 51(exponent) -------------- ^
/// coefficient = 1000,0101,0100,1011,0100,0000,1111,1011 (2236301563)
/// exponent = 0011,0011 (51)
/// bigNumber = 1000,0101,0100,1011,0100,0000,1111,1011,0011,0011 (572493200179)
///
/// @param normal number which needs to be converted into Big Number
/// @param coefficientSize at max how many bits of precision there should be (64 = uint64 (64 bits precision))
/// @param exponentSize at max how many bits of exponent there should be (8 = uint8 (8 bits exponent))
/// @param roundUp signals if result should be rounded down or up
/// @return bigNumber converted bigNumber (coefficient << exponent)
function toBigNumber(
uint256 normal,
uint256 coefficientSize,
uint256 exponentSize,
bool roundUp
) internal pure returns (uint256 bigNumber) {
assembly {
let lastBit_
let number_ := normal
if gt(number_, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF) {
number_ := shr(0x80, number_)
lastBit_ := 0x80
}
if gt(number_, 0xFFFFFFFFFFFFFFFF) {
number_ := shr(0x40, number_)
lastBit_ := add(lastBit_, 0x40)
}
if gt(number_, 0xFFFFFFFF) {
number_ := shr(0x20, number_)
lastBit_ := add(lastBit_, 0x20)
}
if gt(number_, 0xFFFF) {
number_ := shr(0x10, number_)
lastBit_ := add(lastBit_, 0x10)
}
if gt(number_, 0xFF) {
number_ := shr(0x8, number_)
lastBit_ := add(lastBit_, 0x8)
}
if gt(number_, 0xF) {
number_ := shr(0x4, number_)
lastBit_ := add(lastBit_, 0x4)
}
if gt(number_, 0x3) {
number_ := shr(0x2, number_)
lastBit_ := add(lastBit_, 0x2)
}
if gt(number_, 0x1) {
lastBit_ := add(lastBit_, 1)
}
if gt(number_, 0) {
lastBit_ := add(lastBit_, 1)
}
if lt(lastBit_, coefficientSize) {
// for throw exception
lastBit_ := coefficientSize
}
let exponent := sub(lastBit_, coefficientSize)
let coefficient := shr(exponent, normal)
if and(roundUp, gt(exponent, 0)) {
// rounding up is only needed if exponent is > 0, as otherwise the coefficient fully holds the original number
coefficient := add(coefficient, 1)
if eq(shl(coefficientSize, 1), coefficient) {
// case were coefficient was e.g. 111, with adding 1 it became 1000 (in binary) and coefficientSize 3 bits
// final coefficient would exceed it's size. -> reduce coefficent to 100 and increase exponent by 1.
coefficient := shl(sub(coefficientSize, 1), 1)
exponent := add(exponent, 1)
}
}
if iszero(lt(exponent, shl(exponentSize, 1))) {
// if exponent is >= exponentSize, the normal number is too big to fit within
// BigNumber with too small sizes for coefficient and exponent
revert(0, 0)
}
bigNumber := shl(exponentSize, coefficient)
bigNumber := add(bigNumber, exponent)
}
}
/// @dev get `normal` number from `bigNumber`, `exponentSize` and `exponentMask`
function fromBigNumber(
uint256 bigNumber,
uint256 exponentSize,
uint256 exponentMask
) internal pure returns (uint256 normal) {
assembly {
let coefficient := shr(exponentSize, bigNumber)
let exponent := and(bigNumber, exponentMask)
normal := shl(exponent, coefficient)
}
}
/// @dev gets the most significant bit `lastBit` of a `normal` number (length of given number of binary format).
/// e.g.
/// 5035703444687813576399599 = 10000101010010110100000011111011110010100110100000000011100101001101001101011101111
/// lastBit = ^--------------------------------- 83 ----------------------------------------^
function mostSignificantBit(uint256 normal) internal pure returns (uint lastBit) {
assembly {
let number_ := normal
if gt(normal, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF) {
number_ := shr(0x80, number_)
lastBit := 0x80
}
if gt(number_, 0xFFFFFFFFFFFFFFFF) {
number_ := shr(0x40, number_)
lastBit := add(lastBit, 0x40)
}
if gt(number_, 0xFFFFFFFF) {
number_ := shr(0x20, number_)
lastBit := add(lastBit, 0x20)
}
if gt(number_, 0xFFFF) {
number_ := shr(0x10, number_)
lastBit := add(lastBit, 0x10)
}
if gt(number_, 0xFF) {
number_ := shr(0x8, number_)
lastBit := add(lastBit, 0x8)
}
if gt(number_, 0xF) {
number_ := shr(0x4, number_)
lastBit := add(lastBit, 0x4)
}
if gt(number_, 0x3) {
number_ := shr(0x2, number_)
lastBit := add(lastBit, 0x2)
}
if gt(number_, 0x1) {
lastBit := add(lastBit, 1)
}
if gt(number_, 0) {
lastBit := add(lastBit, 1)
}
}
}
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.21;
library LibsErrorTypes {
/***********************************|
| LiquidityCalcs |
|__________________________________*/
/// @notice thrown when supply or borrow exchange price is zero at calc token data (token not configured yet)
uint256 internal constant LiquidityCalcs__ExchangePriceZero = 70001;
/// @notice thrown when rate data is set to a version that is not implemented
uint256 internal constant LiquidityCalcs__UnsupportedRateVersion = 70002;
/// @notice thrown when the calculated borrow rate turns negative. This should never happen.
uint256 internal constant LiquidityCalcs__BorrowRateNegative = 70003;
/***********************************|
| SafeTransfer |
|__________________________________*/
/// @notice thrown when safe transfer from for an ERC20 fails
uint256 internal constant SafeTransfer__TransferFromFailed = 71001;
/// @notice thrown when safe transfer for an ERC20 fails
uint256 internal constant SafeTransfer__TransferFailed = 71002;
/***********************************|
| SafeApprove |
|__________________________________*/
/// @notice thrown when safe approve from for an ERC20 fails
uint256 internal constant SafeApprove__ApproveFailed = 81001;
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.21;
import { LibsErrorTypes as ErrorTypes } from "./errorTypes.sol";
import { LiquiditySlotsLink } from "./liquiditySlotsLink.sol";
import { BigMathMinified } from "./bigMathMinified.sol";
/// @notice implements calculation methods used for Fluid liquidity such as updated exchange prices,
/// borrow rate, withdrawal / borrow limits, revenue amount.
library LiquidityCalcs {
error FluidLiquidityCalcsError(uint256 errorId_);
/// @notice emitted if the calculated borrow rate surpassed max borrow rate (16 bits) and was capped at maximum value 65535
event BorrowRateMaxCap();
/// @dev constants as from Liquidity variables.sol
uint256 internal constant EXCHANGE_PRICES_PRECISION = 1e12;
/// @dev Ignoring leap years
uint256 internal constant SECONDS_PER_YEAR = 365 days;
// constants used for BigMath conversion from and to storage
uint256 internal constant DEFAULT_EXPONENT_SIZE = 8;
uint256 internal constant DEFAULT_EXPONENT_MASK = 0xFF;
uint256 internal constant FOUR_DECIMALS = 1e4;
uint256 internal constant TWELVE_DECIMALS = 1e12;
uint256 internal constant X14 = 0x3fff;
uint256 internal constant X15 = 0x7fff;
uint256 internal constant X16 = 0xffff;
uint256 internal constant X18 = 0x3ffff;
uint256 internal constant X24 = 0xffffff;
uint256 internal constant X33 = 0x1ffffffff;
uint256 internal constant X64 = 0xffffffffffffffff;
///////////////////////////////////////////////////////////////////////////
////////// CALC EXCHANGE PRICES /////////
///////////////////////////////////////////////////////////////////////////
/// @dev calculates interest (exchange prices) for a token given its' exchangePricesAndConfig from storage.
/// @param exchangePricesAndConfig_ exchange prices and config packed uint256 read from storage
/// @return supplyExchangePrice_ updated supplyExchangePrice
/// @return borrowExchangePrice_ updated borrowExchangePrice
function calcExchangePrices(
uint256 exchangePricesAndConfig_
) internal view returns (uint256 supplyExchangePrice_, uint256 borrowExchangePrice_) {
// Extracting exchange prices
supplyExchangePrice_ =
(exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_SUPPLY_EXCHANGE_PRICE) &
X64;
borrowExchangePrice_ =
(exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_BORROW_EXCHANGE_PRICE) &
X64;
if (supplyExchangePrice_ == 0 || borrowExchangePrice_ == 0) {
revert FluidLiquidityCalcsError(ErrorTypes.LiquidityCalcs__ExchangePriceZero);
}
uint256 temp_ = exchangePricesAndConfig_ & X16; // temp_ = borrowRate
unchecked {
// last timestamp can not be > current timestamp
uint256 secondsSinceLastUpdate_ = block.timestamp -
((exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_LAST_TIMESTAMP) & X33);
uint256 borrowRatio_ = (exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_BORROW_RATIO) &
X15;
if (secondsSinceLastUpdate_ == 0 || temp_ == 0 || borrowRatio_ == 1) {
// if no time passed, borrow rate is 0, or no raw borrowings: no exchange price update needed
// (if borrowRatio_ == 1 means there is only borrowInterestFree, as first bit is 1 and rest is 0)
return (supplyExchangePrice_, borrowExchangePrice_);
}
// calculate new borrow exchange price.
// formula borrowExchangePriceIncrease: previous price * borrow rate * secondsSinceLastUpdate_.
// nominator is max uint112 (uint64 * uint16 * uint32). Divisor can not be 0.
borrowExchangePrice_ +=
(borrowExchangePrice_ * temp_ * secondsSinceLastUpdate_) /
(SECONDS_PER_YEAR * FOUR_DECIMALS);
// FOR SUPPLY EXCHANGE PRICE:
// all yield paid by borrowers (in mode with interest) goes to suppliers in mode with interest.
// formula: previous price * supply rate * secondsSinceLastUpdate_.
// where supply rate = (borrow rate - revenueFee%) * ratioSupplyYield. And
// ratioSupplyYield = utilization * supplyRatio * borrowRatio
//
// Example:
// supplyRawInterest is 80, supplyInterestFree is 20. totalSupply is 100. BorrowedRawInterest is 50.
// BorrowInterestFree is 10. TotalBorrow is 60. borrow rate 40%, revenueFee 10%.
// yield is 10 (so half a year must have passed).
// supplyRawInterest must become worth 89. totalSupply must become 109. BorrowedRawInterest must become 60.
// borrowInterestFree must still be 10. supplyInterestFree still 20. totalBorrow 70.
// supplyExchangePrice would have to go from 1 to 1,125 (+ 0.125). borrowExchangePrice from 1 to 1,2 (+0.2).
// utilization is 60%. supplyRatio = 20 / 80 = 25% (only 80% of lenders receiving yield).
// borrowRatio = 10 / 50 = 20% (only 83,333% of borrowers paying yield):
// x of borrowers paying yield = 100% - (20 / (100 + 20)) = 100% - 16.6666666% = 83,333%.
// ratioSupplyYield = 60% * 83,33333% * (100% + 20%) = 62,5%
// supplyRate = (40% * (100% - 10%)) * = 36% * 62,5% = 22.5%
// increase in supplyExchangePrice, assuming 100 as previous price.
// 100 * 22,5% * 1/2 (half a year) = 0,1125.
// cross-check supplyRawInterest worth = 80 * 1.1125 = 89. totalSupply worth = 89 + 20.
// -------------- 1. calculate ratioSupplyYield --------------------------------
// step1: utilization * supplyRatio (or actually part of lenders receiving yield)
// temp_ => supplyRatio (in 1e2: 100% = 10_000; 1% = 100 -> max value 16_383)
// if first bit 0 then ratio is supplyInterestFree / supplyWithInterest (supplyWithInterest is bigger)
// else ratio is supplyWithInterest / supplyInterestFree (supplyInterestFree is bigger)
temp_ = (exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_SUPPLY_RATIO) & X15;
if (temp_ == 1) {
// if no raw supply: no exchange price update needed
// (if supplyRatio_ == 1 means there is only supplyInterestFree, as first bit is 1 and rest is 0)
return (supplyExchangePrice_, borrowExchangePrice_);
}
// ratioSupplyYield precision is 1e27 as 100% for increased precision when supplyInterestFree > supplyWithInterest
if (temp_ & 1 == 1) {
// ratio is supplyWithInterest / supplyInterestFree (supplyInterestFree is bigger)
temp_ = temp_ >> 1;
// Note: case where temp_ == 0 (only supplyInterestFree, no yield) already covered by early return
// in the if statement a little above.
// based on above example but supplyRawInterest is 20, supplyInterestFree is 80. no fee.
// supplyRawInterest must become worth 30. totalSupply must become 110.
// supplyExchangePrice would have to go from 1 to 1,5. borrowExchangePrice from 1 to 1,2.
// so ratioSupplyYield must come out as 2.5 (250%).
// supplyRatio would be (20 * 10_000 / 80) = 2500. but must be inverted.
temp_ = (1e27 * FOUR_DECIMALS) / temp_; // e.g. 1e31 / 2500 = 4e27. (* 1e27 for precision)
// e.g. 5_000 * (1e27 + 4e27) / 1e27 = 25_000 (=250%).
temp_ =
// utilization * (100% + 100% / supplyRatio)
(((exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_UTILIZATION) & X14) *
(1e27 + temp_)) / // extract utilization (max 16_383 so there is no way this can overflow).
(FOUR_DECIMALS);
// max possible value of temp_ here is 16383 * (1e27 + 1e31) / 1e4 = ~1.64e31
} else {
// ratio is supplyInterestFree / supplyWithInterest (supplyWithInterest is bigger)
temp_ = temp_ >> 1;
// if temp_ == 0 then only supplyWithInterest => full yield. temp_ is already 0
// e.g. 5_000 * 10_000 + (20 * 10_000 / 80) / 10_000 = 5000 * 12500 / 10000 = 6250 (=62.5%).
temp_ =
// 1e27 * utilization * (100% + supplyRatio) / 100%
(1e27 *
((exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_UTILIZATION) & X14) * // extract utilization (max 16_383 so there is no way this can overflow).
(FOUR_DECIMALS + temp_)) /
(FOUR_DECIMALS * FOUR_DECIMALS);
// max possible temp_ value: 1e27 * 16383 * 2e4 / 1e8 = 3.2766e27
}
// from here temp_ => ratioSupplyYield (utilization * supplyRatio part) scaled by 1e27. max possible value ~1.64e31
// step2 of ratioSupplyYield: add borrowRatio (only x% of borrowers paying yield)
if (borrowRatio_ & 1 == 1) {
// ratio is borrowWithInterest / borrowInterestFree (borrowInterestFree is bigger)
borrowRatio_ = borrowRatio_ >> 1;
// borrowRatio_ => x of total bororwers paying yield. scale to 1e27.
// Note: case where borrowRatio_ == 0 (only borrowInterestFree, no yield) already covered
// at the beginning of the method by early return if `borrowRatio_ == 1`.
// based on above example but borrowRawInterest is 10, borrowInterestFree is 50. no fee. borrowRatio = 20%.
// so only 16.66% of borrowers are paying yield. so the 100% - part of the formula is not needed.
// x of borrowers paying yield = (borrowRatio / (100 + borrowRatio)) = 16.6666666%
// borrowRatio_ => x of total bororwers paying yield. scale to 1e27.
borrowRatio_ = (borrowRatio_ * 1e27) / (FOUR_DECIMALS + borrowRatio_);
// max value here for borrowRatio_ is (1e31 / (1e4 + 1e4))= 5e26 (= 50% of borrowers paying yield).
} else {
// ratio is borrowInterestFree / borrowWithInterest (borrowWithInterest is bigger)
borrowRatio_ = borrowRatio_ >> 1;
// borrowRatio_ => x of total bororwers paying yield. scale to 1e27.
// x of borrowers paying yield = 100% - (borrowRatio / (100 + borrowRatio)) = 100% - 16.6666666% = 83,333%.
borrowRatio_ = (1e27 - ((borrowRatio_ * 1e27) / (FOUR_DECIMALS + borrowRatio_)));
// borrowRatio can never be > 100%. so max subtraction can be 100% - 100% / 200%.
// or if borrowRatio_ is 0 -> 100% - 0. or if borrowRatio_ is 1 -> 100% - 1 / 101.
// max value here for borrowRatio_ is 1e27 - 0 = 1e27 (= 100% of borrowers paying yield).
}
// temp_ => ratioSupplyYield. scaled down from 1e25 = 1% each to normal percent precision 1e2 = 1%.
// max nominator value is ~1.64e31 * 1e27 = 1.64e58. max result = 1.64e8
temp_ = (FOUR_DECIMALS * temp_ * borrowRatio_) / 1e54;
// 2. calculate supply rate
// temp_ => supply rate (borrow rate - revenueFee%) * ratioSupplyYield.
// division part is done in next step to increase precision. (divided by 2x FOUR_DECIMALS, fee + borrowRate)
// Note that all calculation divisions for supplyExchangePrice are rounded down.
// Note supply rate can be bigger than the borrowRate, e.g. if there are only few lenders with interest
// but more suppliers not earning interest.
temp_ = ((exchangePricesAndConfig_ & X16) * // borrow rate
temp_ * // ratioSupplyYield
(FOUR_DECIMALS - ((exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_FEE) & X14))); // revenueFee
// fee can not be > 100%. max possible = 65535 * ~1.64e8 * 1e4 =~1.074774e17.
// 3. calculate increase in supply exchange price
supplyExchangePrice_ += ((supplyExchangePrice_ * temp_ * secondsSinceLastUpdate_) /
(SECONDS_PER_YEAR * FOUR_DECIMALS * FOUR_DECIMALS * FOUR_DECIMALS));
// max possible nominator = max uint 64 * 1.074774e17 * max uint32 = ~8.52e45. Denominator can not be 0.
}
}
///////////////////////////////////////////////////////////////////////////
////////// CALC REVENUE /////////
///////////////////////////////////////////////////////////////////////////
/// @dev gets the `revenueAmount_` for a token given its' totalAmounts and exchangePricesAndConfig from storage
/// and the current balance of the Fluid liquidity contract for the token.
/// @param totalAmounts_ total amounts packed uint256 read from storage
/// @param exchangePricesAndConfig_ exchange prices and config packed uint256 read from storage
/// @param liquidityTokenBalance_ current balance of Liquidity contract (IERC20(token_).balanceOf(address(this)))
/// @return revenueAmount_ collectable revenue amount
function calcRevenue(
uint256 totalAmounts_,
uint256 exchangePricesAndConfig_,
uint256 liquidityTokenBalance_
) internal view returns (uint256 revenueAmount_) {
// @dev no need to super-optimize this method as it is only used by admin
// calculate the new exchange prices based on earned interest
(uint256 supplyExchangePrice_, uint256 borrowExchangePrice_) = calcExchangePrices(exchangePricesAndConfig_);
// total supply = interest free + with interest converted from raw
uint256 totalSupply_ = getTotalSupply(totalAmounts_, supplyExchangePrice_);
if (totalSupply_ > 0) {
// available revenue: balanceOf(token) + totalBorrowings - totalLendings.
revenueAmount_ = liquidityTokenBalance_ + getTotalBorrow(totalAmounts_, borrowExchangePrice_);
// ensure there is no possible case because of rounding etc. where this would revert,
// explicitly check if >
revenueAmount_ = revenueAmount_ > totalSupply_ ? revenueAmount_ - totalSupply_ : 0;
// Note: if utilization > 100% (totalSupply < totalBorrow), then all the amount above 100% utilization
// can only be revenue.
} else {
// if supply is 0, then rest of balance can be withdrawn as revenue so that no amounts get stuck
revenueAmount_ = liquidityTokenBalance_;
}
}
///////////////////////////////////////////////////////////////////////////
////////// CALC LIMITS /////////
///////////////////////////////////////////////////////////////////////////
/// @dev calculates withdrawal limit before an operate execution:
/// amount of user supply that must stay supplied (not amount that can be withdrawn).
/// i.e. if user has supplied 100m and can withdraw 5M, this method returns the 95M, not the withdrawable amount 5M
/// @param userSupplyData_ user supply data packed uint256 from storage
/// @param userSupply_ current user supply amount already extracted from `userSupplyData_` and converted from BigMath
/// @return currentWithdrawalLimit_ current withdrawal limit updated for expansion since last interaction.
/// returned value is in raw for with interest mode, normal amount for interest free mode!
function calcWithdrawalLimitBeforeOperate(
uint256 userSupplyData_,
uint256 userSupply_
) internal view returns (uint256 currentWithdrawalLimit_) {
// @dev must support handling the case where timestamp is 0 (config is set but no interactions yet).
// first tx where timestamp is 0 will enter `if (lastWithdrawalLimit_ == 0)` because lastWithdrawalLimit_ is not set yet.
// returning max withdrawal allowed, which is not exactly right but doesn't matter because the first interaction must be
// a deposit anyway. Important is that it would not revert.
// Note the first time a deposit brings the user supply amount to above the base withdrawal limit, the active limit
// is the fully expanded limit immediately.
// extract last set withdrawal limit
uint256 lastWithdrawalLimit_ = (userSupplyData_ >>
LiquiditySlotsLink.BITS_USER_SUPPLY_PREVIOUS_WITHDRAWAL_LIMIT) & X64;
lastWithdrawalLimit_ =
(lastWithdrawalLimit_ >> DEFAULT_EXPONENT_SIZE) <<
(lastWithdrawalLimit_ & DEFAULT_EXPONENT_MASK);
if (lastWithdrawalLimit_ == 0) {
// withdrawal limit is not activated. Max withdrawal allowed
return 0;
}
uint256 maxWithdrawableLimit_;
uint256 temp_;
unchecked {
// extract max withdrawable percent of user supply and
// calculate maximum withdrawable amount expandPercentage of user supply at full expansion duration elapsed
// e.g.: if 10% expandPercentage, meaning 10% is withdrawable after full expandDuration has elapsed.
// userSupply_ needs to be atleast 1e73 to overflow max limit of ~1e77 in uint256 (no token in existence where this is possible).
maxWithdrawableLimit_ =
(((userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_EXPAND_PERCENT) & X14) * userSupply_) /
FOUR_DECIMALS;
// time elapsed since last withdrawal limit was set (in seconds)
// @dev last process timestamp is guaranteed to exist for withdrawal, as a supply must have happened before.
// last timestamp can not be > current timestamp
temp_ =
block.timestamp -
((userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_LAST_UPDATE_TIMESTAMP) & X33);
}
// calculate withdrawable amount of expandPercent that is elapsed of expandDuration.
// e.g. if 60% of expandDuration has elapsed, then user should be able to withdraw 6% of user supply, down to 94%.
// Note: no explicit check for this needed, it is covered by setting minWithdrawalLimit_ if needed.
temp_ =
(maxWithdrawableLimit_ * temp_) /
// extract expand duration: After this, decrement won't happen (user can withdraw 100% of withdraw limit)
((userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_EXPAND_DURATION) & X24); // expand duration can never be 0
// calculate expanded withdrawal limit: last withdrawal limit - withdrawable amount.
// Note: withdrawable amount here can grow bigger than userSupply if timeElapsed is a lot bigger than expandDuration,
// which would cause the subtraction `lastWithdrawalLimit_ - withdrawableAmount_` to revert. In that case, set 0
// which will cause minimum (fully expanded) withdrawal limit to be set in lines below.
unchecked {
// underflow explicitly checked & handled
currentWithdrawalLimit_ = lastWithdrawalLimit_ > temp_ ? lastWithdrawalLimit_ - temp_ : 0;
// calculate minimum withdrawal limit: minimum amount of user supply that must stay supplied at full expansion.
// subtraction can not underflow as maxWithdrawableLimit_ is a percentage amount (<=100%) of userSupply_
temp_ = userSupply_ - maxWithdrawableLimit_;
}
// if withdrawal limit is decreased below minimum then set minimum
// (e.g. when more than expandDuration time has elapsed)
if (temp_ > currentWithdrawalLimit_) {
currentWithdrawalLimit_ = temp_;
}
}
/// @dev calculates withdrawal limit after an operate execution:
/// amount of user supply that must stay supplied (not amount that can be withdrawn).
/// i.e. if user has supplied 100m and can withdraw 5M, this method returns the 95M, not the withdrawable amount 5M
/// @param userSupplyData_ user supply data packed uint256 from storage
/// @param userSupply_ current user supply amount already extracted from `userSupplyData_` and added / subtracted with the executed operate amount
/// @param newWithdrawalLimit_ current withdrawal limit updated for expansion since last interaction, result from `calcWithdrawalLimitBeforeOperate`
/// @return withdrawalLimit_ updated withdrawal limit that should be written to storage. returned value is in
/// raw for with interest mode, normal amount for interest free mode!
function calcWithdrawalLimitAfterOperate(
uint256 userSupplyData_,
uint256 userSupply_,
uint256 newWithdrawalLimit_
) internal pure returns (uint256) {
// temp_ => base withdrawal limit. below this, maximum withdrawals are allowed
uint256 temp_ = (userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_BASE_WITHDRAWAL_LIMIT) & X18;
temp_ = (temp_ >> DEFAULT_EXPONENT_SIZE) << (temp_ & DEFAULT_EXPONENT_MASK);
// if user supply is below base limit then max withdrawals are allowed
if (userSupply_ < temp_) {
return 0;
}
// temp_ => withdrawal limit expandPercent (is in 1e2 decimals)
temp_ = (userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_EXPAND_PERCENT) & X14;
unchecked {
// temp_ => minimum withdrawal limit: userSupply - max withdrawable limit (userSupply * expandPercent))
// userSupply_ needs to be atleast 1e73 to overflow max limit of ~1e77 in uint256 (no token in existence where this is possible).
// subtraction can not underflow as maxWithdrawableLimit_ is a percentage amount (<=100%) of userSupply_
temp_ = userSupply_ - ((userSupply_ * temp_) / FOUR_DECIMALS);
}
// if new (before operation) withdrawal limit is less than minimum limit then set minimum limit.
// e.g. can happen on new deposits. withdrawal limit is instantly fully expanded in a scenario where
// increased deposit amount outpaces withrawals.
if (temp_ > newWithdrawalLimit_) {
return temp_;
}
return newWithdrawalLimit_;
}
/// @dev calculates borrow limit before an operate execution:
/// total amount user borrow can reach (not borrowable amount in current operation).
/// i.e. if user has borrowed 50M and can still borrow 5M, this method returns the total 55M, not the borrowable amount 5M
/// @param userBorrowData_ user borrow data packed uint256 from storage
/// @param userBorrow_ current user borrow amount already extracted from `userBorrowData_`
/// @return currentBorrowLimit_ current borrow limit updated for expansion since last interaction. returned value is in
/// raw for with interest mode, normal amount for interest free mode!
function calcBorrowLimitBeforeOperate(
uint256 userBorrowData_,
uint256 userBorrow_
) internal view returns (uint256 currentBorrowLimit_) {
// @dev must support handling the case where timestamp is 0 (config is set but no interactions yet) -> base limit.
// first tx where timestamp is 0 will enter `if (maxExpandedBorrowLimit_ < baseBorrowLimit_)` because `userBorrow_` and thus
// `maxExpansionLimit_` and thus `maxExpandedBorrowLimit_` is 0 and `baseBorrowLimit_` can not be 0.
// temp_ = extract borrow expand percent (is in 1e2 decimals)
uint256 temp_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_EXPAND_PERCENT) & X14;
uint256 maxExpansionLimit_;
uint256 maxExpandedBorrowLimit_;
unchecked {
// calculate max expansion limit: Max amount limit can expand to since last interaction
// userBorrow_ needs to be atleast 1e73 to overflow max limit of ~1e77 in uint256 (no token in existence where this is possible).
maxExpansionLimit_ = ((userBorrow_ * temp_) / FOUR_DECIMALS);
// calculate max borrow limit: Max point limit can increase to since last interaction
maxExpandedBorrowLimit_ = userBorrow_ + maxExpansionLimit_;
}
// currentBorrowLimit_ = extract base borrow limit
currentBorrowLimit_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_BASE_BORROW_LIMIT) & X18;
currentBorrowLimit_ =
(currentBorrowLimit_ >> DEFAULT_EXPONENT_SIZE) <<
(currentBorrowLimit_ & DEFAULT_EXPONENT_MASK);
if (maxExpandedBorrowLimit_ < currentBorrowLimit_) {
return currentBorrowLimit_;
}
// time elapsed since last borrow limit was set (in seconds)
unchecked {
// temp_ = timeElapsed_ (last timestamp can not be > current timestamp)
temp_ =
block.timestamp -
((userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_LAST_UPDATE_TIMESTAMP) & X33); // extract last update timestamp
}
// currentBorrowLimit_ = expandedBorrowableAmount + extract last set borrow limit
currentBorrowLimit_ =
// calculate borrow limit expansion since last interaction for `expandPercent` that is elapsed of `expandDuration`.
// divisor is extract expand duration (after this, full expansion to expandPercentage happened).
((maxExpansionLimit_ * temp_) /
((userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_EXPAND_DURATION) & X24)) + // expand duration can never be 0
// extract last set borrow limit
BigMathMinified.fromBigNumber(
(userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_PREVIOUS_BORROW_LIMIT) & X64,
DEFAULT_EXPONENT_SIZE,
DEFAULT_EXPONENT_MASK
);
// if timeElapsed is bigger than expandDuration, new borrow limit would be > max expansion,
// so set to `maxExpandedBorrowLimit_` in that case.
// also covers the case where last process timestamp = 0 (timeElapsed would simply be very big)
if (currentBorrowLimit_ > maxExpandedBorrowLimit_) {
currentBorrowLimit_ = maxExpandedBorrowLimit_;
}
// temp_ = extract hard max borrow limit. Above this user can never borrow (not expandable above)
temp_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_MAX_BORROW_LIMIT) & X18;
temp_ = (temp_ >> DEFAULT_EXPONENT_SIZE) << (temp_ & DEFAULT_EXPONENT_MASK);
if (currentBorrowLimit_ > temp_) {
currentBorrowLimit_ = temp_;
}
}
/// @dev calculates borrow limit after an operate execution:
/// total amount user borrow can reach (not borrowable amount in current operation).
/// i.e. if user has borrowed 50M and can still borrow 5M, this method returns the total 55M, not the borrowable amount 5M
/// @param userBorrowData_ user borrow data packed uint256 from storage
/// @param userBorrow_ current user borrow amount already extracted from `userBorrowData_` and added / subtracted with the executed operate amount
/// @param newBorrowLimit_ current borrow limit updated for expansion since last interaction, result from `calcBorrowLimitBeforeOperate`
/// @return borrowLimit_ updated borrow limit that should be written to storage.
/// returned value is in raw for with interest mode, normal amount for interest free mode!
function calcBorrowLimitAfterOperate(
uint256 userBorrowData_,
uint256 userBorrow_,
uint256 newBorrowLimit_
) internal pure returns (uint256 borrowLimit_) {
// temp_ = extract borrow expand percent
uint256 temp_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_EXPAND_PERCENT) & X14; // (is in 1e2 decimals)
unchecked {
// borrowLimit_ = calculate maximum borrow limit at full expansion.
// userBorrow_ needs to be at least 1e73 to overflow max limit of ~1e77 in uint256 (no token in existence where this is possible).
borrowLimit_ = userBorrow_ + ((userBorrow_ * temp_) / FOUR_DECIMALS);
}
// temp_ = extract base borrow limit
temp_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_BASE_BORROW_LIMIT) & X18;
temp_ = (temp_ >> DEFAULT_EXPONENT_SIZE) << (temp_ & DEFAULT_EXPONENT_MASK);
if (borrowLimit_ < temp_) {
// below base limit, borrow limit is always base limit
return temp_;
}
// temp_ = extract hard max borrow limit. Above this user can never borrow (not expandable above)
temp_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_MAX_BORROW_LIMIT) & X18;
temp_ = (temp_ >> DEFAULT_EXPONENT_SIZE) << (temp_ & DEFAULT_EXPONENT_MASK);
// make sure fully expanded borrow limit is not above hard max borrow limit
if (borrowLimit_ > temp_) {
borrowLimit_ = temp_;
}
// if new borrow limit (from before operate) is > max borrow limit, set max borrow limit.
// (e.g. on a repay shrinking instantly to fully expanded borrow limit from new borrow amount. shrinking is instant)
if (newBorrowLimit_ > borrowLimit_) {
return borrowLimit_;
}
return newBorrowLimit_;
}
///////////////////////////////////////////////////////////////////////////
////////// CALC RATES /////////
///////////////////////////////////////////////////////////////////////////
/// @dev Calculates new borrow rate from utilization for a token
/// @param rateData_ rate data packed uint256 from storage for the token
/// @param utilization_ totalBorrow / totalSupply. 1e4 = 100% utilization
/// @return rate_ rate for that particular token in 1e2 precision (e.g. 5% rate = 500)
function calcBorrowRateFromUtilization(uint256 rateData_, uint256 utilization_) internal returns (uint256 rate_) {
// extract rate version: 4 bits (0xF) starting from bit 0
uint256 rateVersion_ = (rateData_ & 0xF);
if (rateVersion_ == 1) {
rate_ = calcRateV1(rateData_, utilization_);
} else if (rateVersion_ == 2) {
rate_ = calcRateV2(rateData_, utilization_);
} else {
revert FluidLiquidityCalcsError(ErrorTypes.LiquidityCalcs__UnsupportedRateVersion);
}
if (rate_ > X16) {
// hard cap for borrow rate at maximum value 16 bits (65535) to make sure it does not overflow storage space.
// this is unlikely to ever happen if configs stay within expected levels.
rate_ = X16;
// emit event to more easily become aware
emit BorrowRateMaxCap();
}
}
/// @dev calculates the borrow rate based on utilization for rate data version 1 (with one kink) in 1e2 precision
/// @param rateData_ rate data packed uint256 from storage for the token
/// @param utilization_ in 1e2 (100% = 1e4)
/// @return rate_ rate in 1e2 precision
function calcRateV1(uint256 rateData_, uint256 utilization_) internal pure returns (uint256 rate_) {
/// For rate v1 (one kink) ------------------------------------------------------
/// Next 16 bits => 4 - 19 => Rate at utilization 0% (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)
/// Next 16 bits => 20- 35 => Utilization at kink1 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)
/// Next 16 bits => 36- 51 => Rate at utilization kink1 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)
/// Next 16 bits => 52- 67 => Rate at utilization 100% (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)
/// Last 188 bits => 68-255 => blank, might come in use in future
// y = mx + c.
// y is borrow rate
// x is utilization
// m = slope (m can also be negative for declining rates)
// c is constant (c can be negative)
uint256 y1_;
uint256 y2_;
uint256 x1_;
uint256 x2_;
// extract kink1: 16 bits (0xFFFF) starting from bit 20
// kink is in 1e2, same as utilization, so no conversion needed for direct comparison of the two
uint256 kink1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V1_UTILIZATION_AT_KINK) & X16;
if (utilization_ < kink1_) {
// if utilization is less than kink
y1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_ZERO) & X16;
y2_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_KINK) & X16;
x1_ = 0; // 0%
x2_ = kink1_;
} else {
// else utilization is greater than kink
y1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_KINK) & X16;
y2_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_MAX) & X16;
x1_ = kink1_;
x2_ = FOUR_DECIMALS; // 100%
}
int256 constant_;
int256 slope_;
unchecked {
// calculating slope with twelve decimal precision. m = (y2 - y1) / (x2 - x1).
// utilization of x2 can not be <= utilization of x1 (so no underflow or 0 divisor)
// y is in 1e2 so can not overflow when multiplied with TWELVE_DECIMALS
slope_ = (int256(y2_ - y1_) * int256(TWELVE_DECIMALS)) / int256((x2_ - x1_));
// calculating constant at 12 decimal precision. slope is already in 12 decimal hence only multiple with y1. c = y - mx.
// maximum y1_ value is 65535. 65535 * 1e12 can not overflow int256
// maximum slope is 65535 - 0 * TWELVE_DECIMALS / 1 = 65535 * 1e12;
// maximum x1_ is 100% (9_999 actually) => slope_ * x1_ can not overflow int256
// subtraction most extreme case would be 0 - max value slope_ * x1_ => can not underflow int256
constant_ = int256(y1_ * TWELVE_DECIMALS) - (slope_ * int256(x1_));
// calculating new borrow rate
// - slope_ max value is 65535 * 1e12,
// - utilization max value is let's say 500% (extreme case where borrow rate increases borrow amount without new supply)
// - constant max value is 65535 * 1e12
// so max values are 65535 * 1e12 * 50_000 + 65535 * 1e12 -> 3.2768*10^21, which easily fits int256
// divisor TWELVE_DECIMALS can not be 0
slope_ = (slope_ * int256(utilization_)) + constant_; // reusing `slope_` as variable for gas savings
if (slope_ < 0) {
revert FluidLiquidityCalcsError(ErrorTypes.LiquidityCalcs__BorrowRateNegative);
}
rate_ = uint256(slope_) / TWELVE_DECIMALS;
}
}
/// @dev calculates the borrow rate based on utilization for rate data version 2 (with two kinks) in 1e4 precision
/// @param rateData_ rate data packed uint256 from storage for the token
/// @param utilization_ in 1e2 (100% = 1e4)
/// @return rate_ rate in 1e4 precision
function calcRateV2(uint256 rateData_, uint256 utilization_) internal pure returns (uint256 rate_) {
/// For rate v2 (two kinks) -----------------------------------------------------
/// Next 16 bits => 4 - 19 => Rate at utilization 0% (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)
/// Next 16 bits => 20- 35 => Utilization at kink1 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)
/// Next 16 bits => 36- 51 => Rate at utilization kink1 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)
/// Next 16 bits => 52- 67 => Utilization at kink2 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)
/// Next 16 bits => 68- 83 => Rate at utilization kink2 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)
/// Next 16 bits => 84- 99 => Rate at utilization 100% (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)
/// Last 156 bits => 100-255 => blank, might come in use in future
// y = mx + c.
// y is borrow rate
// x is utilization
// m = slope (m can also be negative for declining rates)
// c is constant (c can be negative)
uint256 y1_;
uint256 y2_;
uint256 x1_;
uint256 x2_;
// extract kink1: 16 bits (0xFFFF) starting from bit 20
// kink is in 1e2, same as utilization, so no conversion needed for direct comparison of the two
uint256 kink1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_UTILIZATION_AT_KINK1) & X16;
if (utilization_ < kink1_) {
// if utilization is less than kink1
y1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_ZERO) & X16;
y2_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_KINK1) & X16;
x1_ = 0; // 0%
x2_ = kink1_;
} else {
// extract kink2: 16 bits (0xFFFF) starting from bit 52
uint256 kink2_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_UTILIZATION_AT_KINK2) & X16;
if (utilization_ < kink2_) {
// if utilization is less than kink2
y1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_KINK1) & X16;
y2_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_KINK2) & X16;
x1_ = kink1_;
x2_ = kink2_;
} else {
// else utilization is greater than kink2
y1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_KINK2) & X16;
y2_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_MAX) & X16;
x1_ = kink2_;
x2_ = FOUR_DECIMALS;
}
}
int256 constant_;
int256 slope_;
unchecked {
// calculating slope with twelve decimal precision. m = (y2 - y1) / (x2 - x1).
// utilization of x2 can not be <= utilization of x1 (so no underflow or 0 divisor)
// y is in 1e2 so can not overflow when multiplied with TWELVE_DECIMALS
slope_ = (int256(y2_ - y1_) * int256(TWELVE_DECIMALS)) / int256((x2_ - x1_));
// calculating constant at 12 decimal precision. slope is already in 12 decimal hence only multiple with y1. c = y - mx.
// maximum y1_ value is 65535. 65535 * 1e12 can not overflow int256
// maximum slope is 65535 - 0 * TWELVE_DECIMALS / 1 = 65535 * 1e12;
// maximum x1_ is 100% (9_999 actually) => slope_ * x1_ can not overflow int256
// subtraction most extreme case would be 0 - max value slope_ * x1_ => can not underflow int256
constant_ = int256(y1_ * TWELVE_DECIMALS) - (slope_ * int256(x1_));
// calculating new borrow rate
// - slope_ max value is 65535 * 1e12,
// - utilization max value is let's say 500% (extreme case where borrow rate increases borrow amount without new supply)
// - constant max value is 65535 * 1e12
// so max values are 65535 * 1e12 * 50_000 + 65535 * 1e12 -> 3.2768*10^21, which easily fits int256
// divisor TWELVE_DECIMALS can not be 0
slope_ = (slope_ * int256(utilization_)) + constant_; // reusing `slope_` as variable for gas savings
if (slope_ < 0) {
revert FluidLiquidityCalcsError(ErrorTypes.LiquidityCalcs__BorrowRateNegative);
}
rate_ = uint256(slope_) / TWELVE_DECIMALS;
}
}
/// @dev reads the total supply out of Liquidity packed storage `totalAmounts_` for `supplyExchangePrice_`
function getTotalSupply(
uint256 totalAmounts_,
uint256 supplyExchangePrice_
) internal pure returns (uint256 totalSupply_) {
// totalSupply_ => supplyInterestFree
totalSupply_ = (totalAmounts_ >> LiquiditySlotsLink.BITS_TOTAL_AMOUNTS_SUPPLY_INTEREST_FREE) & X64;
totalSupply_ = (totalSupply_ >> DEFAULT_EXPONENT_SIZE) << (totalSupply_ & DEFAULT_EXPONENT_MASK);
uint256 totalSupplyRaw_ = totalAmounts_ & X64; // no shifting as supplyRaw is first 64 bits
totalSupplyRaw_ = (totalSupplyRaw_ >> DEFAULT_EXPONENT_SIZE) << (totalSupplyRaw_ & DEFAULT_EXPONENT_MASK);
// totalSupply = supplyInterestFree + supplyRawInterest normalized from raw
totalSupply_ += ((totalSupplyRaw_ * supplyExchangePrice_) / EXCHANGE_PRICES_PRECISION);
}
/// @dev reads the total borrow out of Liquidity packed storage `totalAmounts_` for `borrowExchangePrice_`
function getTotalBorrow(
uint256 totalAmounts_,
uint256 borrowExchangePrice_
) internal pure returns (uint256 totalBorrow_) {
// totalBorrow_ => borrowInterestFree
// no & mask needed for borrow interest free as it occupies the last bits in the storage slot
totalBorrow_ = (totalAmounts_ >> LiquiditySlotsLink.BITS_TOTAL_AMOUNTS_BORROW_INTEREST_FREE);
totalBorrow_ = (totalBorrow_ >> DEFAULT_EXPONENT_SIZE) << (totalBorrow_ & DEFAULT_EXPONENT_MASK);
uint256 totalBorrowRaw_ = (totalAmounts_ >> LiquiditySlotsLink.BITS_TOTAL_AMOUNTS_BORROW_WITH_INTEREST) & X64;
totalBorrowRaw_ = (totalBorrowRaw_ >> DEFAULT_EXPONENT_SIZE) << (totalBorrowRaw_ & DEFAULT_EXPONENT_MASK);
// totalBorrow = borrowInterestFree + borrowRawInterest normalized from raw
totalBorrow_ += ((totalBorrowRaw_ * borrowExchangePrice_) / EXCHANGE_PRICES_PRECISION);
}
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.21;
/// @notice library that helps in reading / working with storage slot data of Fluid Liquidity.
/// @dev as all data for Fluid Liquidity is internal, any data must be fetched directly through manual
/// slot reading through this library or, if gas usage is less important, through the FluidLiquidityResolver.
library LiquiditySlotsLink {
/// @dev storage slot for status at Liquidity
uint256 internal constant LIQUIDITY_STATUS_SLOT = 1;
/// @dev storage slot for auths mapping at Liquidity
uint256 internal constant LIQUIDITY_AUTHS_MAPPING_SLOT = 2;
/// @dev storage slot for guardians mapping at Liquidity
uint256 internal constant LIQUIDITY_GUARDIANS_MAPPING_SLOT = 3;
/// @dev storage slot for user class mapping at Liquidity
uint256 internal constant LIQUIDITY_USER_CLASS_MAPPING_SLOT = 4;
/// @dev storage slot for exchangePricesAndConfig mapping at Liquidity
uint256 internal constant LIQUIDITY_EXCHANGE_PRICES_MAPPING_SLOT = 5;
/// @dev storage slot for rateData mapping at Liquidity
uint256 internal constant LIQUIDITY_RATE_DATA_MAPPING_SLOT = 6;
/// @dev storage slot for totalAmounts mapping at Liquidity
uint256 internal constant LIQUIDITY_TOTAL_AMOUNTS_MAPPING_SLOT = 7;
/// @dev storage slot for user supply double mapping at Liquidity
uint256 internal constant LIQUIDITY_USER_SUPPLY_DOUBLE_MAPPING_SLOT = 8;
/// @dev storage slot for user borrow double mapping at Liquidity
uint256 internal constant LIQUIDITY_USER_BORROW_DOUBLE_MAPPING_SLOT = 9;
/// @dev storage slot for listed tokens array at Liquidity
uint256 internal constant LIQUIDITY_LISTED_TOKENS_ARRAY_SLOT = 10;
/// @dev storage slot for listed tokens array at Liquidity
uint256 internal constant LIQUIDITY_CONFIGS2_MAPPING_SLOT = 11;
// --------------------------------
// @dev stacked uint256 storage slots bits position data for each:
// ExchangePricesAndConfig
uint256 internal constant BITS_EXCHANGE_PRICES_BORROW_RATE = 0;
uint256 internal constant BITS_EXCHANGE_PRICES_FEE = 16;
uint256 internal constant BITS_EXCHANGE_PRICES_UTILIZATION = 30;
uint256 internal constant BITS_EXCHANGE_PRICES_UPDATE_THRESHOLD = 44;
uint256 internal constant BITS_EXCHANGE_PRICES_LAST_TIMESTAMP = 58;
uint256 internal constant BITS_EXCHANGE_PRICES_SUPPLY_EXCHANGE_PRICE = 91;
uint256 internal constant BITS_EXCHANGE_PRICES_BORROW_EXCHANGE_PRICE = 155;
uint256 internal constant BITS_EXCHANGE_PRICES_SUPPLY_RATIO = 219;
uint256 internal constant BITS_EXCHANGE_PRICES_BORROW_RATIO = 234;
uint256 internal constant BITS_EXCHANGE_PRICES_USES_CONFIGS2 = 249;
// RateData:
uint256 internal constant BITS_RATE_DATA_VERSION = 0;
// RateData: V1
uint256 internal constant BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_ZERO = 4;
uint256 internal constant BITS_RATE_DATA_V1_UTILIZATION_AT_KINK = 20;
uint256 internal constant BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_KINK = 36;
uint256 internal constant BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_MAX = 52;
// RateData: V2
uint256 internal constant BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_ZERO = 4;
uint256 internal constant BITS_RATE_DATA_V2_UTILIZATION_AT_KINK1 = 20;
uint256 internal constant BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_KINK1 = 36;
uint256 internal constant BITS_RATE_DATA_V2_UTILIZATION_AT_KINK2 = 52;
uint256 internal constant BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_KINK2 = 68;
uint256 internal constant BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_MAX = 84;
// TotalAmounts
uint256 internal constant BITS_TOTAL_AMOUNTS_SUPPLY_WITH_INTEREST = 0;
uint256 internal constant BITS_TOTAL_AMOUNTS_SUPPLY_INTEREST_FREE = 64;
uint256 internal constant BITS_TOTAL_AMOUNTS_BORROW_WITH_INTEREST = 128;
uint256 internal constant BITS_TOTAL_AMOUNTS_BORROW_INTEREST_FREE = 192;
// UserSupplyData
uint256 internal constant BITS_USER_SUPPLY_MODE = 0;
uint256 internal constant BITS_USER_SUPPLY_AMOUNT = 1;
uint256 internal constant BITS_USER_SUPPLY_PREVIOUS_WITHDRAWAL_LIMIT = 65;
uint256 internal constant BITS_USER_SUPPLY_LAST_UPDATE_TIMESTAMP = 129;
uint256 internal constant BITS_USER_SUPPLY_EXPAND_PERCENT = 162;
uint256 internal constant BITS_USER_SUPPLY_EXPAND_DURATION = 176;
uint256 internal constant BITS_USER_SUPPLY_BASE_WITHDRAWAL_LIMIT = 200;
uint256 internal constant BITS_USER_SUPPLY_IS_PAUSED = 255;
// UserBorrowData
uint256 internal constant BITS_USER_BORROW_MODE = 0;
uint256 internal constant BITS_USER_BORROW_AMOUNT = 1;
uint256 internal constant BITS_USER_BORROW_PREVIOUS_BORROW_LIMIT = 65;
uint256 internal constant BITS_USER_BORROW_LAST_UPDATE_TIMESTAMP = 129;
uint256 internal constant BITS_USER_BORROW_EXPAND_PERCENT = 162;
uint256 internal constant BITS_USER_BORROW_EXPAND_DURATION = 176;
uint256 internal constant BITS_USER_BORROW_BASE_BORROW_LIMIT = 200;
uint256 internal constant BITS_USER_BORROW_MAX_BORROW_LIMIT = 218;
uint256 internal constant BITS_USER_BORROW_IS_PAUSED = 255;
// Configs2
uint256 internal constant BITS_CONFIGS2_MAX_UTILIZATION = 0;
// --------------------------------
/// @notice Calculating the slot ID for Liquidity contract for single mapping at `slot_` for `key_`
function calculateMappingStorageSlot(uint256 slot_, address key_) internal pure returns (bytes32) {
return keccak256(abi.encode(key_, slot_));
}
/// @notice Calculating the slot ID for Liquidity contract for double mapping at `slot_` for `key1_` and `key2_`
function calculateDoubleMappingStorageSlot(
uint256 slot_,
address key1_,
address key2_
) internal pure returns (bytes32) {
bytes32 intermediateSlot_ = keccak256(abi.encode(key1_, slot_));
return keccak256(abi.encode(key2_, intermediateSlot_));
}
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.21;
abstract contract Structs {
struct AddressBool {
address addr;
bool value;
}
struct AddressUint256 {
address addr;
uint256 value;
}
/// @notice struct to set borrow rate data for version 1
struct RateDataV1Params {
///
/// @param token for rate data
address token;
///
/// @param kink in borrow rate. in 1e2: 100% = 10_000; 1% = 100
/// utilization below kink usually means slow increase in rate, once utilization is above kink borrow rate increases fast
uint256 kink;
///
/// @param rateAtUtilizationZero desired borrow rate when utilization is zero. in 1e2: 100% = 10_000; 1% = 100
/// i.e. constant minimum borrow rate
/// e.g. at utilization = 0.01% rate could still be at least 4% (rateAtUtilizationZero would be 400 then)
uint256 rateAtUtilizationZero;
///
/// @param rateAtUtilizationKink borrow rate when utilization is at kink. in 1e2: 100% = 10_000; 1% = 100
/// e.g. when rate should be 7% at kink then rateAtUtilizationKink would be 700
uint256 rateAtUtilizationKink;
///
/// @param rateAtUtilizationMax borrow rate when utilization is maximum at 100%. in 1e2: 100% = 10_000; 1% = 100
/// e.g. when rate should be 125% at 100% then rateAtUtilizationMax would be 12_500
uint256 rateAtUtilizationMax;
}
/// @notice struct to set borrow rate data for version 2
struct RateDataV2Params {
///
/// @param token for rate data
address token;
///
/// @param kink1 first kink in borrow rate. in 1e2: 100% = 10_000; 1% = 100
/// utilization below kink 1 usually means slow increase in rate, once utilization is above kink 1 borrow rate increases faster
uint256 kink1;
///
/// @param kink2 second kink in borrow rate. in 1e2: 100% = 10_000; 1% = 100
/// utilization below kink 2 usually means slow / medium increase in rate, once utilization is above kink 2 borrow rate increases fast
uint256 kink2;
///
/// @param rateAtUtilizationZero desired borrow rate when utilization is zero. in 1e2: 100% = 10_000; 1% = 100
/// i.e. constant minimum borrow rate
/// e.g. at utilization = 0.01% rate could still be at least 4% (rateAtUtilizationZero would be 400 then)
uint256 rateAtUtilizationZero;
///
/// @param rateAtUtilizationKink1 desired borrow rate when utilization is at first kink. in 1e2: 100% = 10_000; 1% = 100
/// e.g. when rate should be 7% at first kink then rateAtUtilizationKink would be 700
uint256 rateAtUtilizationKink1;
///
/// @param rateAtUtilizationKink2 desired borrow rate when utilization is at second kink. in 1e2: 100% = 10_000; 1% = 100
/// e.g. when rate should be 7% at second kink then rateAtUtilizationKink would be 1_200
uint256 rateAtUtilizationKink2;
///
/// @param rateAtUtilizationMax desired borrow rate when utilization is maximum at 100%. in 1e2: 100% = 10_000; 1% = 100
/// e.g. when rate should be 125% at 100% then rateAtUtilizationMax would be 12_500
uint256 rateAtUtilizationMax;
}
/// @notice struct to set token config
struct TokenConfig {
///
/// @param token address
address token;
///
/// @param fee charges on borrower's interest. in 1e2: 100% = 10_000; 1% = 100
uint256 fee;
///
/// @param threshold on when to update the storage slot. in 1e2: 100% = 10_000; 1% = 100
uint256 threshold;
///
/// @param maxUtilization maximum allowed utilization. in 1e2: 100% = 10_000; 1% = 100
/// set to 100% to disable and have default limit of 100% (avoiding SLOAD).
uint256 maxUtilization;
}
/// @notice struct to set user supply & withdrawal config
struct UserSupplyConfig {
///
/// @param user address
address user;
///
/// @param token address
address token;
///
/// @param mode: 0 = without interest. 1 = with interest
uint8 mode;
///
/// @param expandPercent withdrawal limit expand percent. in 1e2: 100% = 10_000; 1% = 100
/// Also used to calculate rate at which withdrawal limit should decrease (instant).
uint256 expandPercent;
///
/// @param expandDuration withdrawal limit expand duration in seconds.
/// used to calculate rate together with expandPercent
uint256 expandDuration;
///
/// @param baseWithdrawalLimit base limit, below this, user can withdraw the entire amount.
/// amount in raw (to be multiplied with exchange price) or normal depends on configured mode in user config for the token:
/// with interest -> raw, without interest -> normal
uint256 baseWithdrawalLimit;
}
/// @notice struct to set user borrow & payback config
struct UserBorrowConfig {
///
/// @param user address
address user;
///
/// @param token address
address token;
///
/// @param mode: 0 = without interest. 1 = with interest
uint8 mode;
///
/// @param expandPercent debt limit expand percent. in 1e2: 100% = 10_000; 1% = 100
/// Also used to calculate rate at which debt limit should decrease (instant).
uint256 expandPercent;
///
/// @param expandDuration debt limit expand duration in seconds.
/// used to calculate rate together with expandPercent
uint256 expandDuration;
///
/// @param baseDebtCeiling base borrow limit. until here, borrow limit remains as baseDebtCeiling
/// (user can borrow until this point at once without stepped expansion). Above this, automated limit comes in place.
/// amount in raw (to be multiplied with exchange price) or normal depends on configured mode in user config for the token:
/// with interest -> raw, without interest -> normal
uint256 baseDebtCeiling;
///
/// @param maxDebtCeiling max borrow ceiling, maximum amount the user can borrow.
/// amount in raw (to be multiplied with exchange price) or normal depends on configured mode in user config for the token:
/// with interest -> raw, without interest -> normal
uint256 maxDebtCeiling;
}
}
//SPDX-License-Identifier: MIT
pragma solidity 0.8.21;
import { IProxy } from "../../infiniteProxy/interfaces/iProxy.sol";
import { Structs as AdminModuleStructs } from "../adminModule/structs.sol";
interface IFluidLiquidityAdmin {
/// @notice adds/removes auths. Auths generally could be contracts which can have restricted actions defined on contract.
/// auths can be helpful in reducing governance overhead where it's not needed.
/// @param authsStatus_ array of structs setting allowed status for an address.
/// status true => add auth, false => remove auth
function updateAuths(AdminModuleStructs.AddressBool[] calldata authsStatus_) external;
/// @notice adds/removes guardians. Only callable by Governance.
/// @param guardiansStatus_ array of structs setting allowed status for an address.
/// status true => add guardian, false => remove guardian
function updateGuardians(AdminModuleStructs.AddressBool[] calldata guardiansStatus_) external;
/// @notice changes the revenue collector address (contract that is sent revenue). Only callable by Governance.
/// @param revenueCollector_ new revenue collector address
function updateRevenueCollector(address revenueCollector_) external;
/// @notice changes current status, e.g. for pausing or unpausing all user operations. Only callable by Auths.
/// @param newStatus_ new status
/// status = 2 -> pause, status = 1 -> resume.
function changeStatus(uint256 newStatus_) external;
/// @notice update tokens rate data version 1. Only callable by Auths.
/// @param tokensRateData_ array of RateDataV1Params with rate data to set for each token
function updateRateDataV1s(AdminModuleStructs.RateDataV1Params[] calldata tokensRateData_) external;
/// @notice update tokens rate data version 2. Only callable by Auths.
/// @param tokensRateData_ array of RateDataV2Params with rate data to set for each token
function updateRateDataV2s(AdminModuleStructs.RateDataV2Params[] calldata tokensRateData_) external;
/// @notice updates token configs: fee charge on borrowers interest & storage update utilization threshold.
/// Only callable by Auths.
/// @param tokenConfigs_ contains token address, fee & utilization threshold
function updateTokenConfigs(AdminModuleStructs.TokenConfig[] calldata tokenConfigs_) external;
/// @notice updates user classes: 0 is for new protocols, 1 is for established protocols.
/// Only callable by Auths.
/// @param userClasses_ struct array of uint256 value to assign for each user address
function updateUserClasses(AdminModuleStructs.AddressUint256[] calldata userClasses_) external;
/// @notice sets user supply configs per token basis. Eg: with interest or interest-free and automated limits.
/// Only callable by Auths.
/// @param userSupplyConfigs_ struct array containing user supply config, see `UserSupplyConfig` struct for more info
function updateUserSupplyConfigs(AdminModuleStructs.UserSupplyConfig[] memory userSupplyConfigs_) external;
/// @notice sets a new withdrawal limit as the current limit for a certain user
/// @param user_ user address for which to update the withdrawal limit
/// @param token_ token address for which to update the withdrawal limit
/// @param newLimit_ new limit until which user supply can decrease to.
/// Important: input in raw. Must account for exchange price in input param calculation.
/// Note any limit that is < max expansion or > current user supply will set max expansion limit or
/// current user supply as limit respectively.
/// - set 0 to make maximum possible withdrawable: instant full expansion, and if that goes
/// below base limit then fully down to 0.
/// - set type(uint256).max to make current withdrawable 0 (sets current user supply as limit).
function updateUserWithdrawalLimit(address user_, address token_, uint256 newLimit_) external;
/// @notice setting user borrow configs per token basis. Eg: with interest or interest-free and automated limits.
/// Only callable by Auths.
/// @param userBorrowConfigs_ struct array containing user borrow config, see `UserBorrowConfig` struct for more info
function updateUserBorrowConfigs(AdminModuleStructs.UserBorrowConfig[] memory userBorrowConfigs_) external;
/// @notice pause operations for a particular user in class 0 (class 1 users can't be paused by guardians).
/// Only callable by Guardians.
/// @param user_ address of user to pause operations for
/// @param supplyTokens_ token addresses to pause withdrawals for
/// @param borrowTokens_ token addresses to pause borrowings for
function pauseUser(address user_, address[] calldata supplyTokens_, address[] calldata borrowTokens_) external;
/// @notice unpause operations for a particular user in class 0 (class 1 users can't be paused by guardians).
/// Only callable by Guardians.
/// @param user_ address of user to unpause operations for
/// @param supplyTokens_ token addresses to unpause withdrawals for
/// @param borrowTokens_ token addresses to unpause borrowings for
function unpauseUser(address user_, address[] calldata supplyTokens_, address[] calldata borrowTokens_) external;
/// @notice collects revenue for tokens to configured revenueCollector address.
/// @param tokens_ array of tokens to collect revenue for
/// @dev Note that this can revert if token balance is < revenueAmount (utilization > 100%)
function collectRevenue(address[] calldata tokens_) external;
/// @notice gets the current updated exchange prices for n tokens and updates all prices, rates related data in storage.
/// @param tokens_ tokens to update exchange prices for
/// @return supplyExchangePrices_ new supply rates of overall system for each token
/// @return borrowExchangePrices_ new borrow rates of overall system for each token
function updateExchangePrices(
address[] calldata tokens_
) external returns (uint256[] memory supplyExchangePrices_, uint256[] memory borrowExchangePrices_);
}
interface IFluidLiquidityLogic is IFluidLiquidityAdmin {
/// @notice Single function which handles supply, withdraw, borrow & payback
/// @param token_ address of token (0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE for native)
/// @param supplyAmount_ if +ve then supply, if -ve then withdraw, if 0 then nothing
/// @param borrowAmount_ if +ve then borrow, if -ve then payback, if 0 then nothing
/// @param withdrawTo_ if withdrawal then to which address
/// @param borrowTo_ if borrow then to which address
/// @param callbackData_ callback data passed to `liquidityCallback` method of protocol
/// @return memVar3_ updated supplyExchangePrice
/// @return memVar4_ updated borrowExchangePrice
/// @dev to trigger skipping in / out transfers (gas optimization):
/// - ` callbackData_` MUST be encoded so that "from" address is the last 20 bytes in the last 32 bytes slot,
/// also for native token operations where liquidityCallback is not triggered!
/// from address must come at last position if there is more data. I.e. encode like:
/// abi.encode(otherVar1, otherVar2, FROM_ADDRESS). Note dynamic types used with abi.encode come at the end
/// so if dynamic types are needed, you must use abi.encodePacked to ensure the from address is at the end.
/// - this "from" address must match withdrawTo_ or borrowTo_ and must be == `msg.sender`
/// - `callbackData_` must in addition to the from address as described above include bytes32 SKIP_TRANSFERS
/// in the slot before (bytes 32 to 63)
/// - `msg.value` must be 0.
/// - Amounts must be either:
/// - supply(+) == borrow(+), withdraw(-) == payback(-).
/// - Liquidity must be on the winning side (deposit < borrow OR payback < withdraw).
function operate(
address token_,
int256 supplyAmount_,
int256 borrowAmount_,
address withdrawTo_,
address borrowTo_,
bytes calldata callbackData_
) external payable returns (uint256 memVar3_, uint256 memVar4_);
}
interface IFluidLiquidity is IProxy, IFluidLiquidityLogic {}
//SPDX-License-Identifier: MIT
pragma solidity 0.8.21;
import { Structs as LiquidityStructs } from "../../../periphery/resolvers/liquidity/structs.sol";
interface IFluidLiquidityResolver {
/// @notice gets the `revenueAmount_` for a `token_`.
function getRevenue(address token_) external view returns (uint256 revenueAmount_);
/// @notice address of contract that gets sent the revenue. Configurable by governance
function getRevenueCollector() external view returns (address);
/// @notice Liquidity contract paused status: status = 1 -> normal. status = 2 -> paused.
function getStatus() external view returns (uint256);
/// @notice checks if `auth_` is an allowed auth on Liquidity.
/// Auths can set most config values. E.g. contracts that automate certain flows like e.g. adding a new fToken.
/// Governance can add/remove auths. Governance is auth by default.
function isAuth(address auth_) external view returns (uint256);
/// @notice checks if `guardian_` is an allowed Guardian on Liquidity.
/// Guardians can pause lower class users.
/// Governance can add/remove guardians. Governance is guardian by default.
function isGuardian(address guardian_) external view returns (uint256);
/// @notice gets user class for `user_`. Class defines which protocols can be paused by guardians.
/// Currently there are 2 classes: 0 can be paused by guardians. 1 cannot be paused by guardians.
/// New protocols are added as class 0 and will be upgraded to 1 over time.
function getUserClass(address user_) external view returns (uint256);
/// @notice gets exchangePricesAndConfig packed uint256 storage slot for `token_`.
function getExchangePricesAndConfig(address token_) external view returns (uint256);
/// @notice gets rateConfig packed uint256 storage slot for `token_`.
function getRateConfig(address token_) external view returns (uint256);
/// @notice gets totalAmounts packed uint256 storage slot for `token_`.
function getTotalAmounts(address token_) external view returns (uint256);
/// @notice gets configs2 packed uint256 storage slot for `token_`.
function getConfigs2(address token_) external view returns (uint256);
/// @notice gets userSupply data packed uint256 storage slot for `user_` and `token_`.
function getUserSupply(address user_, address token_) external view returns (uint256);
/// @notice gets userBorrow data packed uint256 storage slot for `user_` and `token_`.
function getUserBorrow(address user_, address token_) external view returns (uint256);
/// @notice returns all `listedTokens_` at the Liquidity contract. Once configured, a token can never be removed.
function listedTokens() external view returns (address[] memory listedTokens_);
/// @notice get the Rate config data `rateData_` for a `token_` compiled from the packed uint256 rateConfig storage slot
function getTokenRateData(address token_) external view returns (LiquidityStructs.RateData memory rateData_);
/// @notice get the Rate config datas `rateDatas_` for multiple `tokens_` compiled from the packed uint256 rateConfig storage slot
function getTokensRateData(
address[] calldata tokens_
) external view returns (LiquidityStructs.RateData[] memory rateDatas_);
/// @notice returns general data for `token_` such as rates, exchange prices, utilization, fee, total amounts etc.
function getOverallTokenData(
address token_
) external view returns (LiquidityStructs.OverallTokenData memory overallTokenData_);
/// @notice returns general data for multiple `tokens_` such as rates, exchange prices, utilization, fee, total amounts etc.
function getOverallTokensData(
address[] calldata tokens_
) external view returns (LiquidityStructs.OverallTokenData[] memory overallTokensData_);
/// @notice returns general data for all `listedTokens()` such as rates, exchange prices, utilization, fee, total amounts etc.
function getAllOverallTokensData()
external
view
returns (LiquidityStructs.OverallTokenData[] memory overallTokensData_);
/// @notice returns `user_` supply data and general data (such as rates, exchange prices, utilization, fee, total amounts etc.) for `token_`
function getUserSupplyData(
address user_,
address token_
)
external
view
returns (
LiquidityStructs.UserSupplyData memory userSupplyData_,
LiquidityStructs.OverallTokenData memory overallTokenData_
);
/// @notice returns `user_` supply data and general data (such as rates, exchange prices, utilization, fee, total amounts etc.) for multiple `tokens_`
function getUserMultipleSupplyData(
address user_,
address[] calldata tokens_
)
external
view
returns (
LiquidityStructs.UserSupplyData[] memory userSuppliesData_,
LiquidityStructs.OverallTokenData[] memory overallTokensData_
);
/// @notice returns `user_` borrow data and general data (such as rates, exchange prices, utilization, fee, total amounts etc.) for `token_`
function getUserBorrowData(
address user_,
address token_
)
external
view
returns (
LiquidityStructs.UserBorrowData memory userBorrowData_,
LiquidityStructs.OverallTokenData memory overallTokenData_
);
/// @notice returns `user_` borrow data and general data (such as rates, exchange prices, utilization, fee, total amounts etc.) for multiple `tokens_`
function getUserMultipleBorrowData(
address user_,
address[] calldata tokens_
)
external
view
returns (
LiquidityStructs.UserBorrowData[] memory userBorrowingsData_,
LiquidityStructs.OverallTokenData[] memory overallTokensData_
);
/// @notice returns `user_` supply data and general data (such as rates, exchange prices, utilization, fee, total amounts etc.) for multiple `supplyTokens_`
/// and returns `user_` borrow data and general data (such as rates, exchange prices, utilization, fee, total amounts etc.) for multiple `borrowTokens_`
function getUserMultipleBorrowSupplyData(
address user_,
address[] calldata supplyTokens_,
address[] calldata borrowTokens_
)
external
view
returns (
LiquidityStructs.UserSupplyData[] memory userSuppliesData_,
LiquidityStructs.OverallTokenData[] memory overallSupplyTokensData_,
LiquidityStructs.UserBorrowData[] memory userBorrowingsData_,
LiquidityStructs.OverallTokenData[] memory overallBorrowTokensData_
);
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.21;
import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { LiquidityCalcs } from "../../../libraries/liquidityCalcs.sol";
import { BigMathMinified } from "../../../libraries/bigMathMinified.sol";
import { LiquiditySlotsLink } from "../../../libraries/liquiditySlotsLink.sol";
import { IFluidLiquidity } from "../../../liquidity/interfaces/iLiquidity.sol";
import { IFluidLiquidityResolver } from "./iLiquidityResolver.sol";
import { Structs } from "./structs.sol";
import { Variables } from "./variables.sol";
interface TokenInterface {
function balanceOf(address) external view returns (uint);
}
/// @notice Fluid Liquidity resolver
/// Implements various view-only methods to give easy access to Liquidity data.
contract FluidLiquidityResolver is IFluidLiquidityResolver, Variables, Structs {
/// @dev address that is mapped to the chain native token
address internal constant _NATIVE_TOKEN_ADDRESS = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;
/// @notice thrown if an input param address is zero
error FluidLiquidityResolver__AddressZero();
constructor(IFluidLiquidity liquidity_) Variables(liquidity_) {
if (address(liquidity_) == address(0)) {
revert FluidLiquidityResolver__AddressZero();
}
}
/// @inheritdoc IFluidLiquidityResolver
function getRevenueCollector() public view returns (address) {
return address(uint160(LIQUIDITY.readFromStorage(bytes32(0))));
}
/// @inheritdoc IFluidLiquidityResolver
function getRevenue(address token_) public view returns (uint256 revenueAmount_) {
uint256 liquidityTokenBalance_ = token_ == _NATIVE_TOKEN_ADDRESS
? address(LIQUIDITY).balance
: IERC20(token_).balanceOf(address(LIQUIDITY));
uint256 exchangePricesAndConfig_ = getExchangePricesAndConfig(token_);
if (exchangePricesAndConfig_ == 0) {
return 0;
}
return LiquidityCalcs.calcRevenue(getTotalAmounts(token_), exchangePricesAndConfig_, liquidityTokenBalance_);
}
/// @inheritdoc IFluidLiquidityResolver
function getStatus() public view returns (uint256) {
return LIQUIDITY.readFromStorage(bytes32(LiquiditySlotsLink.LIQUIDITY_STATUS_SLOT));
}
/// @inheritdoc IFluidLiquidityResolver
function isAuth(address auth_) public view returns (uint256) {
return
LIQUIDITY.readFromStorage(
LiquiditySlotsLink.calculateMappingStorageSlot(LiquiditySlotsLink.LIQUIDITY_AUTHS_MAPPING_SLOT, auth_)
);
}
/// @inheritdoc IFluidLiquidityResolver
function isGuardian(address guardian_) public view returns (uint256) {
return
LIQUIDITY.readFromStorage(
LiquiditySlotsLink.calculateMappingStorageSlot(
LiquiditySlotsLink.LIQUIDITY_GUARDIANS_MAPPING_SLOT,
guardian_
)
);
}
/// @inheritdoc IFluidLiquidityResolver
function getUserClass(address user_) public view returns (uint256) {
return
LIQUIDITY.readFromStorage(
LiquiditySlotsLink.calculateMappingStorageSlot(
LiquiditySlotsLink.LIQUIDITY_USER_CLASS_MAPPING_SLOT,
user_
)
);
}
/// @inheritdoc IFluidLiquidityResolver
function getExchangePricesAndConfig(address token_) public view returns (uint256) {
return
LIQUIDITY.readFromStorage(
LiquiditySlotsLink.calculateMappingStorageSlot(
LiquiditySlotsLink.LIQUIDITY_EXCHANGE_PRICES_MAPPING_SLOT,
token_
)
);
}
/// @inheritdoc IFluidLiquidityResolver
function getRateConfig(address token_) public view returns (uint256) {
return
LIQUIDITY.readFromStorage(
LiquiditySlotsLink.calculateMappingStorageSlot(
LiquiditySlotsLink.LIQUIDITY_RATE_DATA_MAPPING_SLOT,
token_
)
);
}
/// @inheritdoc IFluidLiquidityResolver
function getTotalAmounts(address token_) public view returns (uint256) {
return
LIQUIDITY.readFromStorage(
LiquiditySlotsLink.calculateMappingStorageSlot(
LiquiditySlotsLink.LIQUIDITY_TOTAL_AMOUNTS_MAPPING_SLOT,
token_
)
);
}
/// @inheritdoc IFluidLiquidityResolver
function getConfigs2(address token_) public view returns (uint256) {
return
LIQUIDITY.readFromStorage(
LiquiditySlotsLink.calculateMappingStorageSlot(
LiquiditySlotsLink.LIQUIDITY_CONFIGS2_MAPPING_SLOT,
token_
)
);
}
/// @inheritdoc IFluidLiquidityResolver
function getUserSupply(address user_, address token_) public view returns (uint256) {
return
LIQUIDITY.readFromStorage(
LiquiditySlotsLink.calculateDoubleMappingStorageSlot(
LiquiditySlotsLink.LIQUIDITY_USER_SUPPLY_DOUBLE_MAPPING_SLOT,
user_,
token_
)
);
}
/// @inheritdoc IFluidLiquidityResolver
function getUserBorrow(address user_, address token_) public view returns (uint256) {
return
LIQUIDITY.readFromStorage(
LiquiditySlotsLink.calculateDoubleMappingStorageSlot(
LiquiditySlotsLink.LIQUIDITY_USER_BORROW_DOUBLE_MAPPING_SLOT,
user_,
token_
)
);
}
/// @inheritdoc IFluidLiquidityResolver
function listedTokens() public view returns (address[] memory listedTokens_) {
uint256 length_ = LIQUIDITY.readFromStorage(bytes32(LiquiditySlotsLink.LIQUIDITY_LISTED_TOKENS_ARRAY_SLOT));
listedTokens_ = new address[](length_);
uint256 startingSlotForArrayElements_ = uint256(
keccak256(abi.encode(LiquiditySlotsLink.LIQUIDITY_LISTED_TOKENS_ARRAY_SLOT))
);
for (uint256 i; i < length_; i++) {
listedTokens_[i] = address(uint160(LIQUIDITY.readFromStorage(bytes32(startingSlotForArrayElements_ + i))));
}
}
/// @inheritdoc IFluidLiquidityResolver
function getTokenRateData(address token_) public view returns (RateData memory rateData_) {
uint256 rateConfig_ = getRateConfig(token_);
rateData_.version = rateConfig_ & 0xF;
if (rateData_.version == 1) {
rateData_.rateDataV1.token = token_;
rateData_.rateDataV1.rateAtUtilizationZero =
(rateConfig_ >> LiquiditySlotsLink.BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_ZERO) &
X16;
rateData_.rateDataV1.kink = (rateConfig_ >> LiquiditySlotsLink.BITS_RATE_DATA_V1_UTILIZATION_AT_KINK) & X16;
rateData_.rateDataV1.rateAtUtilizationKink =
(rateConfig_ >> LiquiditySlotsLink.BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_KINK) &
X16;
rateData_.rateDataV1.rateAtUtilizationMax =
(rateConfig_ >> LiquiditySlotsLink.BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_MAX) &
X16;
} else if (rateData_.version == 2) {
rateData_.rateDataV2.token = token_;
rateData_.rateDataV2.rateAtUtilizationZero =
(rateConfig_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_ZERO) &
X16;
rateData_.rateDataV2.kink1 =
(rateConfig_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_UTILIZATION_AT_KINK1) &
X16;
rateData_.rateDataV2.rateAtUtilizationKink1 =
(rateConfig_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_KINK1) &
X16;
rateData_.rateDataV2.kink2 =
(rateConfig_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_UTILIZATION_AT_KINK2) &
X16;
rateData_.rateDataV2.rateAtUtilizationKink2 =
(rateConfig_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_KINK2) &
X16;
rateData_.rateDataV2.rateAtUtilizationMax =
(rateConfig_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_MAX) &
X16;
} else if (rateData_.version > 0) {
// when version is 0 -> token not configured yet. do not revert, just return 0 for all values
revert("not-valid-rate-version");
}
}
/// @inheritdoc IFluidLiquidityResolver
function getTokensRateData(address[] calldata tokens_) public view returns (RateData[] memory rateDatas_) {
uint256 length_ = tokens_.length;
rateDatas_ = new RateData[](length_);
for (uint256 i; i < length_; i++) {
rateDatas_[i] = getTokenRateData(tokens_[i]);
}
}
/// @inheritdoc IFluidLiquidityResolver
function getOverallTokenData(
address token_
) public view returns (Structs.OverallTokenData memory overallTokenData_) {
overallTokenData_.rateData = getTokenRateData(token_);
uint256 exchangePriceAndConfig_ = getExchangePricesAndConfig(token_);
if (exchangePriceAndConfig_ > 0) {
uint256 totalAmounts_ = getTotalAmounts(token_);
(overallTokenData_.supplyExchangePrice, overallTokenData_.borrowExchangePrice) = LiquidityCalcs
.calcExchangePrices(exchangePriceAndConfig_);
overallTokenData_.borrowRate = exchangePriceAndConfig_ & X16;
overallTokenData_.fee = (exchangePriceAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_FEE) & X14;
overallTokenData_.lastStoredUtilization =
(exchangePriceAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_UTILIZATION) &
X14;
overallTokenData_.storageUpdateThreshold =
(exchangePriceAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_UPDATE_THRESHOLD) &
X14;
overallTokenData_.lastUpdateTimestamp =
(exchangePriceAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_LAST_TIMESTAMP) &
X33;
overallTokenData_.maxUtilization = FOUR_DECIMALS;
if ((exchangePriceAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_USES_CONFIGS2) & 1 == 1) {
overallTokenData_.maxUtilization = getConfigs2(token_) & X14;
}
// Extract supply & borrow amounts
uint256 temp_ = totalAmounts_ & X64;
overallTokenData_.supplyRawInterest = (temp_ >> DEFAULT_EXPONENT_SIZE) << (temp_ & DEFAULT_EXPONENT_MASK);
temp_ = (totalAmounts_ >> LiquiditySlotsLink.BITS_TOTAL_AMOUNTS_SUPPLY_INTEREST_FREE) & X64;
overallTokenData_.supplyInterestFree = (temp_ >> DEFAULT_EXPONENT_SIZE) << (temp_ & DEFAULT_EXPONENT_MASK);
temp_ = (totalAmounts_ >> LiquiditySlotsLink.BITS_TOTAL_AMOUNTS_BORROW_WITH_INTEREST) & X64;
overallTokenData_.borrowRawInterest = (temp_ >> DEFAULT_EXPONENT_SIZE) << (temp_ & DEFAULT_EXPONENT_MASK);
// no & mask needed for borrow interest free as it occupies the last bits in the storage slot
temp_ = (totalAmounts_ >> LiquiditySlotsLink.BITS_TOTAL_AMOUNTS_BORROW_INTEREST_FREE);
overallTokenData_.borrowInterestFree = (temp_ >> DEFAULT_EXPONENT_SIZE) << (temp_ & DEFAULT_EXPONENT_MASK);
uint256 supplyWithInterest_;
uint256 borrowWithInterest_;
if (overallTokenData_.supplyRawInterest > 0) {
// use old exchange prices for supply rate to be at same level as borrow rate from storage.
// Note the rate here can be a tiny bit with higher precision because we use borrowWithInterest_ / supplyWithInterest_
// which has higher precision than the utilization used from storage in LiquidityCalcs
supplyWithInterest_ =
(overallTokenData_.supplyRawInterest *
((exchangePriceAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_SUPPLY_EXCHANGE_PRICE) &
X64)) /
EXCHANGE_PRICES_PRECISION; // normalized from raw
borrowWithInterest_ =
(overallTokenData_.borrowRawInterest *
((exchangePriceAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_BORROW_EXCHANGE_PRICE) &
X64)) /
EXCHANGE_PRICES_PRECISION; // normalized from raw
overallTokenData_.supplyRate = supplyWithInterest_ == 0
? 0
: (overallTokenData_.borrowRate * (FOUR_DECIMALS - overallTokenData_.fee) * borrowWithInterest_) /
(supplyWithInterest_ * FOUR_DECIMALS);
}
supplyWithInterest_ =
(overallTokenData_.supplyRawInterest * overallTokenData_.supplyExchangePrice) /
EXCHANGE_PRICES_PRECISION; // normalized from raw
overallTokenData_.totalSupply = supplyWithInterest_ + overallTokenData_.supplyInterestFree;
borrowWithInterest_ =
(overallTokenData_.borrowRawInterest * overallTokenData_.borrowExchangePrice) /
EXCHANGE_PRICES_PRECISION; // normalized from raw
overallTokenData_.totalBorrow = borrowWithInterest_ + overallTokenData_.borrowInterestFree;
overallTokenData_.revenue = getRevenue(token_);
}
}
/// @inheritdoc IFluidLiquidityResolver
function getOverallTokensData(
address[] memory tokens_
) public view returns (Structs.OverallTokenData[] memory overallTokensData_) {
uint256 length_ = tokens_.length;
overallTokensData_ = new Structs.OverallTokenData[](length_);
for (uint256 i; i < length_; i++) {
overallTokensData_[i] = getOverallTokenData(tokens_[i]);
}
}
/// @inheritdoc IFluidLiquidityResolver
function getAllOverallTokensData() public view returns (Structs.OverallTokenData[] memory overallTokensData_) {
return getOverallTokensData(listedTokens());
}
/// @inheritdoc IFluidLiquidityResolver
function getUserSupplyData(
address user_,
address token_
)
public
view
returns (Structs.UserSupplyData memory userSupplyData_, Structs.OverallTokenData memory overallTokenData_)
{
overallTokenData_ = getOverallTokenData(token_);
uint256 userSupply_ = getUserSupply(user_, token_);
if (userSupply_ > 0) {
// if userSupply_ == 0 -> user not configured yet for token at Liquidity
userSupplyData_.modeWithInterest = userSupply_ & 1 == 1;
userSupplyData_.supply = BigMathMinified.fromBigNumber(
(userSupply_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_AMOUNT) & X64,
DEFAULT_EXPONENT_SIZE,
DEFAULT_EXPONENT_MASK
);
// get updated expanded withdrawal limit
userSupplyData_.withdrawalLimit = LiquidityCalcs.calcWithdrawalLimitBeforeOperate(
userSupply_,
userSupplyData_.supply
);
userSupplyData_.lastUpdateTimestamp =
(userSupply_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_LAST_UPDATE_TIMESTAMP) &
X33;
userSupplyData_.expandPercent = (userSupply_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_EXPAND_PERCENT) & X14;
userSupplyData_.expandDuration = (userSupply_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_EXPAND_DURATION) & X24;
userSupplyData_.baseWithdrawalLimit = BigMathMinified.fromBigNumber(
(userSupply_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_BASE_WITHDRAWAL_LIMIT) & X18,
DEFAULT_EXPONENT_SIZE,
DEFAULT_EXPONENT_MASK
);
if (userSupplyData_.modeWithInterest) {
// convert raw amounts to normal for withInterest mode
userSupplyData_.supply =
(userSupplyData_.supply * overallTokenData_.supplyExchangePrice) /
EXCHANGE_PRICES_PRECISION;
userSupplyData_.withdrawalLimit =
(userSupplyData_.withdrawalLimit * overallTokenData_.supplyExchangePrice) /
EXCHANGE_PRICES_PRECISION;
userSupplyData_.baseWithdrawalLimit =
(userSupplyData_.baseWithdrawalLimit * overallTokenData_.supplyExchangePrice) /
EXCHANGE_PRICES_PRECISION;
}
userSupplyData_.withdrawableUntilLimit = userSupplyData_.supply > userSupplyData_.withdrawalLimit
? userSupplyData_.supply - userSupplyData_.withdrawalLimit
: 0;
uint balanceOf_ = token_ == _NATIVE_TOKEN_ADDRESS
? address(LIQUIDITY).balance
: TokenInterface(token_).balanceOf(address(LIQUIDITY));
userSupplyData_.withdrawable = balanceOf_ > userSupplyData_.withdrawableUntilLimit
? userSupplyData_.withdrawableUntilLimit
: balanceOf_;
}
}
/// @inheritdoc IFluidLiquidityResolver
function getUserMultipleSupplyData(
address user_,
address[] calldata tokens_
)
public
view
returns (
Structs.UserSupplyData[] memory userSuppliesData_,
Structs.OverallTokenData[] memory overallTokensData_
)
{
uint256 length_ = tokens_.length;
userSuppliesData_ = new Structs.UserSupplyData[](length_);
overallTokensData_ = new Structs.OverallTokenData[](length_);
for (uint256 i; i < length_; i++) {
(userSuppliesData_[i], overallTokensData_[i]) = getUserSupplyData(user_, tokens_[i]);
}
}
/// @inheritdoc IFluidLiquidityResolver
function getUserBorrowData(
address user_,
address token_
)
public
view
returns (Structs.UserBorrowData memory userBorrowData_, Structs.OverallTokenData memory overallTokenData_)
{
overallTokenData_ = getOverallTokenData(token_);
uint256 userBorrow_ = getUserBorrow(user_, token_);
if (userBorrow_ > 0) {
// if userBorrow_ == 0 -> user not configured yet for token at Liquidity
userBorrowData_.modeWithInterest = userBorrow_ & 1 == 1;
userBorrowData_.borrow = BigMathMinified.fromBigNumber(
(userBorrow_ >> LiquiditySlotsLink.BITS_USER_BORROW_AMOUNT) & X64,
DEFAULT_EXPONENT_SIZE,
DEFAULT_EXPONENT_MASK
);
// get updated expanded borrow limit
userBorrowData_.borrowLimit = LiquidityCalcs.calcBorrowLimitBeforeOperate(
userBorrow_,
userBorrowData_.borrow
);
userBorrowData_.lastUpdateTimestamp =
(userBorrow_ >> LiquiditySlotsLink.BITS_USER_BORROW_LAST_UPDATE_TIMESTAMP) &
X33;
userBorrowData_.expandPercent = (userBorrow_ >> LiquiditySlotsLink.BITS_USER_BORROW_EXPAND_PERCENT) & X14;
userBorrowData_.expandDuration = (userBorrow_ >> LiquiditySlotsLink.BITS_USER_BORROW_EXPAND_DURATION) & X24;
userBorrowData_.baseBorrowLimit = BigMathMinified.fromBigNumber(
(userBorrow_ >> LiquiditySlotsLink.BITS_USER_BORROW_BASE_BORROW_LIMIT) & X18,
DEFAULT_EXPONENT_SIZE,
DEFAULT_EXPONENT_MASK
);
userBorrowData_.maxBorrowLimit = BigMathMinified.fromBigNumber(
(userBorrow_ >> LiquiditySlotsLink.BITS_USER_BORROW_MAX_BORROW_LIMIT) & X18,
DEFAULT_EXPONENT_SIZE,
DEFAULT_EXPONENT_MASK
);
if (userBorrowData_.modeWithInterest) {
// convert raw amounts to normal for withInterest mode
userBorrowData_.borrow =
(userBorrowData_.borrow * overallTokenData_.borrowExchangePrice) /
EXCHANGE_PRICES_PRECISION;
userBorrowData_.borrowLimit =
(userBorrowData_.borrowLimit * overallTokenData_.borrowExchangePrice) /
EXCHANGE_PRICES_PRECISION;
userBorrowData_.baseBorrowLimit =
(userBorrowData_.baseBorrowLimit * overallTokenData_.borrowExchangePrice) /
EXCHANGE_PRICES_PRECISION;
userBorrowData_.maxBorrowLimit =
(userBorrowData_.maxBorrowLimit * overallTokenData_.borrowExchangePrice) /
EXCHANGE_PRICES_PRECISION;
}
userBorrowData_.borrowLimitUtilization =
(overallTokenData_.maxUtilization * overallTokenData_.totalSupply) /
1e4;
// uncollected revenue is counting towards available balanceOf.
// because of this "borrowable" would be showing an amount that can go above 100% utilization, causing a revert.
// need to take into consideration the borrowable amount until the max utilization limit, which depends on the total
// borrow amount (not user specific)
uint borrowableUntilUtilizationLimit_ = userBorrowData_.borrowLimitUtilization >
overallTokenData_.totalBorrow
? userBorrowData_.borrowLimitUtilization - overallTokenData_.totalBorrow
: 0;
uint borrowableUntilBorrowLimit_ = userBorrowData_.borrowLimit > userBorrowData_.borrow
? userBorrowData_.borrowLimit - userBorrowData_.borrow
: 0;
userBorrowData_.borrowableUntilLimit = borrowableUntilBorrowLimit_ > borrowableUntilUtilizationLimit_
? borrowableUntilUtilizationLimit_
: borrowableUntilBorrowLimit_;
// if available balance at Liquidity is less than the borrowableUntilLimit amount, then the balance is
// the limiting borrowable amount.
uint balanceOf_ = token_ == _NATIVE_TOKEN_ADDRESS
? address(LIQUIDITY).balance
: TokenInterface(token_).balanceOf(address(LIQUIDITY));
userBorrowData_.borrowable = balanceOf_ > userBorrowData_.borrowableUntilLimit
? userBorrowData_.borrowableUntilLimit
: balanceOf_;
}
}
/// @inheritdoc IFluidLiquidityResolver
function getUserMultipleBorrowData(
address user_,
address[] calldata tokens_
)
public
view
returns (
Structs.UserBorrowData[] memory userBorrowingsData_,
Structs.OverallTokenData[] memory overallTokensData_
)
{
uint256 length_ = tokens_.length;
userBorrowingsData_ = new UserBorrowData[](length_);
overallTokensData_ = new Structs.OverallTokenData[](length_);
for (uint256 i; i < length_; i++) {
(userBorrowingsData_[i], overallTokensData_[i]) = getUserBorrowData(user_, tokens_[i]);
}
}
/// @inheritdoc IFluidLiquidityResolver
function getUserMultipleBorrowSupplyData(
address user_,
address[] calldata supplyTokens_,
address[] calldata borrowTokens_
)
public
view
returns (
Structs.UserSupplyData[] memory userSuppliesData_,
Structs.OverallTokenData[] memory overallSupplyTokensData_,
Structs.UserBorrowData[] memory userBorrowingsData_,
Structs.OverallTokenData[] memory overallBorrowTokensData_
)
{
uint256 length_ = supplyTokens_.length;
userSuppliesData_ = new Structs.UserSupplyData[](length_);
overallSupplyTokensData_ = new Structs.OverallTokenData[](length_);
for (uint256 i; i < length_; i++) {
(userSuppliesData_[i], overallSupplyTokensData_[i]) = getUserSupplyData(user_, supplyTokens_[i]);
}
length_ = borrowTokens_.length;
userBorrowingsData_ = new UserBorrowData[](length_);
overallBorrowTokensData_ = new Structs.OverallTokenData[](length_);
for (uint256 i; i < length_; i++) {
(userBorrowingsData_[i], overallBorrowTokensData_[i]) = getUserBorrowData(user_, borrowTokens_[i]);
}
}
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.21;
import { Structs as AdminModuleStructs } from "../../../liquidity/adminModule/structs.sol";
abstract contract Structs {
struct RateData {
uint256 version;
AdminModuleStructs.RateDataV1Params rateDataV1;
AdminModuleStructs.RateDataV2Params rateDataV2;
}
struct OverallTokenData {
uint256 borrowRate;
uint256 supplyRate;
uint256 fee; // revenue fee
uint256 lastStoredUtilization;
uint256 storageUpdateThreshold;
uint256 lastUpdateTimestamp;
uint256 supplyExchangePrice;
uint256 borrowExchangePrice;
uint256 supplyRawInterest;
uint256 supplyInterestFree;
uint256 borrowRawInterest;
uint256 borrowInterestFree;
uint256 totalSupply;
uint256 totalBorrow;
uint256 revenue;
uint256 maxUtilization; // maximum allowed utilization
RateData rateData;
}
// amounts are always in normal (for withInterest already multiplied with exchange price)
struct UserSupplyData {
bool modeWithInterest; // true if mode = with interest, false = without interest
uint256 supply; // user supply amount
// the withdrawal limit (e.g. if 10% is the limit, and 100M is supplied, it would be 90M)
uint256 withdrawalLimit;
uint256 lastUpdateTimestamp;
uint256 expandPercent; // withdrawal limit expand percent in 1e2
uint256 expandDuration; // withdrawal limit expand duration in seconds
uint256 baseWithdrawalLimit;
// the current actual max withdrawable amount (e.g. if 10% is the limit, and 100M is supplied, it would be 10M)
uint256 withdrawableUntilLimit;
uint256 withdrawable; // actual currently withdrawable amount (supply - withdrawal Limit) & considering balance
}
// amounts are always in normal (for withInterest already multiplied with exchange price)
struct UserBorrowData {
bool modeWithInterest; // true if mode = with interest, false = without interest
uint256 borrow; // user borrow amount
uint256 borrowLimit;
uint256 lastUpdateTimestamp;
uint256 expandPercent;
uint256 expandDuration;
uint256 baseBorrowLimit;
uint256 maxBorrowLimit;
uint256 borrowableUntilLimit; // borrowable amount until any borrow limit (incl. max utilization limit)
uint256 borrowable; // actual currently borrowable amount (borrow limit - already borrowed) & considering balance, max utilization
uint256 borrowLimitUtilization; // borrow limit for `maxUtilization`
}
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.21;
import { IFluidLiquidity } from "../../../liquidity/interfaces/iLiquidity.sol";
contract Variables {
/// @dev Storage slot with the admin of the contract. Logic from "proxy.sol".
/// This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
/// validated in the constructor.
bytes32 internal constant GOVERNANCE_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
uint256 internal constant EXCHANGE_PRICES_PRECISION = 1e12;
/// @dev Ignoring leap years
uint256 internal constant SECONDS_PER_YEAR = 365 days;
// constants used for BigMath conversion from and to storage
uint256 internal constant SMALL_COEFFICIENT_SIZE = 10;
uint256 internal constant DEFAULT_COEFFICIENT_SIZE = 56;
uint256 internal constant DEFAULT_EXPONENT_SIZE = 8;
uint256 internal constant DEFAULT_EXPONENT_MASK = 0xFF;
uint256 internal constant FOUR_DECIMALS = 10000;
uint256 internal constant X8 = 0xff;
uint256 internal constant X14 = 0x3fff;
uint256 internal constant X16 = 0xffff;
uint256 internal constant X18 = 0x3ffff;
uint256 internal constant X24 = 0xffffff;
uint256 internal constant X33 = 0x1ffffffff;
uint256 internal constant X64 = 0xffffffffffffffff;
/// @notice address of the liquidity contract
IFluidLiquidity public immutable LIQUIDITY;
constructor(IFluidLiquidity liquidity_) {
LIQUIDITY = IFluidLiquidity(liquidity_);
}
}