Contract Name:
OptionPricingLinearV2
Contract Source Code:
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.13;
// Libraries
import {SafeMath} from "../../../libraries/math/SafeMath.sol";
import {BlackScholes} from "./external/BlackScholes.sol";
// Contracts
import {Ownable} from "openzeppelin-contracts/contracts/access/Ownable.sol";
contract OptionPricingLinearV2 is Ownable {
using SafeMath for uint256;
// The offset for volatility calculation in 1e4 precision
uint256 public volatilityOffset;
// The multiplier for volatility calculation in 1e4 precision
uint256 public volatilityMultiplier;
// The % of the price of asset which is the minimum option price possible in 1e8 precision
uint256 public minOptionPricePercentage;
// The decimal precision for volatility calculation
uint256 public constant VOLATILITY_PRECISION = 1e4;
// Time to expiry => volatility
mapping(uint256 => uint256) public ttlToVol;
// IV Setter addresses
mapping(address => bool) public ivSetter;
error NotIVSetter();
error Vol_Not_Set();
error ArrayLengthMismatch();
constructor(uint256 _volatilityOffset, uint256 _volatilityMultiplier, uint256 _minOptionPricePercentage)
Ownable(msg.sender)
{
volatilityOffset = _volatilityOffset;
volatilityMultiplier = _volatilityMultiplier;
minOptionPricePercentage = _minOptionPricePercentage;
ivSetter[msg.sender] = true;
}
/*---- GOVERNANCE FUNCTIONS ----*/
/// @notice Updates the IV setter
/// @param _setter Address of the setter
/// @param _status Status to set
/// @dev Only the owner of the contract can call this function
function updateIVSetter(address _setter, bool _status) external onlyOwner {
ivSetter[_setter] = _status;
}
/// @notice Updates the implied volatility (IV) for the given time to expirations (TTLs).
/// @param _ttls The TTLs to update the IV for.
/// @param _ttlIV The new IVs for the given TTLs.
/// @dev Only the IV SETTER can call this function.
function updateIVs(uint256[] calldata _ttls, uint256[] calldata _ttlIV) external {
if (!ivSetter[msg.sender]) revert NotIVSetter();
if (_ttls.length != _ttlIV.length) revert ArrayLengthMismatch();
for (uint256 i; i < _ttls.length; i++) {
ttlToVol[_ttls[i]] = _ttlIV[i];
}
}
/// @notice updates the offset for volatility calculation
/// @param _volatilityOffset the new offset
/// @return whether offset was updated
function updateVolatilityOffset(uint256 _volatilityOffset) external onlyOwner returns (bool) {
volatilityOffset = _volatilityOffset;
return true;
}
/// @notice updates the multiplier for volatility calculation
/// @param _volatilityMultiplier the new multiplier
/// @return whether multiplier was updated
function updateVolatilityMultiplier(uint256 _volatilityMultiplier) external onlyOwner returns (bool) {
volatilityMultiplier = _volatilityMultiplier;
return true;
}
/// @notice updates % of the price of asset which is the minimum option price possible
/// @param _minOptionPricePercentage the new %
/// @return whether % was updated
function updateMinOptionPricePercentage(uint256 _minOptionPricePercentage) external onlyOwner returns (bool) {
minOptionPricePercentage = _minOptionPricePercentage;
return true;
}
/*---- VIEWS ----*/
/// @notice computes the option price (with liquidity multiplier)
/// @param hook the address of the hook
/// @param isPut is put option
/// @param expiry expiry timestamp
/// @param strike strike price
/// @param lastPrice current price
function getOptionPrice(address hook, bool isPut, uint256 expiry, uint256 ttl, uint256 strike, uint256 lastPrice)
external
view
returns (uint256)
{
uint256 timeToExpiry = expiry.sub(block.timestamp).div(864);
uint256 volatility = ttlToVol[ttl];
if (volatility == 0) revert Vol_Not_Set();
volatility = getVolatility(strike, lastPrice, volatility);
uint256 optionPrice = BlackScholes.calculate(isPut ? 1 : 0, lastPrice, strike, timeToExpiry, 0, volatility) // 0 - Put, 1 - Call
// Number of days to expiry mul by 100
.div(BlackScholes.DIVISOR);
uint256 minOptionPrice = lastPrice.mul(minOptionPricePercentage).div(1e10);
if (minOptionPrice > optionPrice) {
return minOptionPrice;
}
return optionPrice;
}
/// @notice computes the option price (with liquidity multiplier)
/// @param hook the address of the hook
/// @param isPut is put option
/// @param ttl time to live for the option
/// @param strike strike price
/// @param lastPrice current price
function getOptionPriceViaTTL(address hook, bool isPut, uint256 ttl, uint256 strike, uint256 lastPrice)
external
view
returns (uint256)
{
uint256 timeToExpiry = ttl.div(864);
uint256 volatility = ttlToVol[ttl];
if (volatility == 0) revert();
volatility = getVolatility(strike, lastPrice, volatility);
uint256 optionPrice = BlackScholes.calculate(isPut ? 1 : 0, lastPrice, strike, timeToExpiry, 0, volatility) // 0 - Put, 1 - Call
// Number of days to expiry mul by 100
.div(BlackScholes.DIVISOR);
uint256 minOptionPrice = lastPrice.mul(minOptionPricePercentage).div(1e10);
if (minOptionPrice > optionPrice) {
return minOptionPrice;
}
return optionPrice;
}
/// @notice computes the volatility for a strike
/// @param strike strike price
/// @param lastPrice current price
/// @param volatility volatility
function getVolatility(uint256 strike, uint256 lastPrice, uint256 volatility) public view returns (uint256) {
uint256 percentageDifference = strike.mul(1e2).mul(VOLATILITY_PRECISION).div(lastPrice); // 1e4 in percentage precision (1e6 is 100%)
if (strike > lastPrice) {
percentageDifference = percentageDifference.sub(1e6);
} else {
percentageDifference = uint256(1e6).sub(percentageDifference);
}
uint256 scaleFactor =
volatilityOffset + (percentageDifference.mul(volatilityMultiplier).div(VOLATILITY_PRECISION));
return (volatility.mul(scaleFactor).div(VOLATILITY_PRECISION));
}
}
pragma solidity ^0.8.13;
/**
* @title SafeMath
* @dev Math operations with safety checks that throw on error
*/
library SafeMath {
/**
* @dev Multiplies two numbers, throws on overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256 c) {
if (a == 0) {
return 0;
}
c = a * b;
assert(c / a == b);
return c;
}
/**
* @dev Integer division of two numbers, truncating the quotient.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
// assert(b > 0); // Solidity automatically throws when dividing by 0
// uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return a / b;
}
/**
* @dev Subtracts two numbers, throws on overflow (i.e. if subtrahend is greater than minuend).
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
assert(b <= a);
return a - b;
}
/**
* @dev Adds two numbers, throws on overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256 c) {
c = a + b;
assert(c >= a);
return c;
}
}
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.13;
// Libraries
import {ABDKMathQuad} from "./ABDKMathQuad.sol";
/// @title Black-Scholes option pricing formula and supporting statistical functions
/// @author Dopex
/// @notice This library implements the Black-Scholes model to price options.
/// See - https://en.wikipedia.org/wiki/Black%E2%80%93Scholes_model
/// @dev Implements the following implementation - https://cseweb.ucsd.edu/~goguen/courses/130/SayBlackScholes.html
/// Uses the ABDKMathQuad(https://github.com/abdk-consulting/abdk-libraries-solidity/blob/master/ABDKMathQuad.md)
/// library to make precise calculations. It uses a DIVISOR (1e16) for maintaining precision in constants.
library BlackScholes {
uint8 internal constant OPTION_TYPE_CALL = 0;
uint8 internal constant OPTION_TYPE_PUT = 1;
uint256 internal constant DIVISOR = 10 ** 16;
/**
* @notice The function that uses the Black-Scholes equation to calculate the option price
* See http://en.wikipedia.org/wiki/Black%E2%80%93Scholes_model#Black-Scholes_formula
* NOTE: The different parts of the equation are broken down to separate functions as using
* ABDKMathQuad makes small equations verbose.
* @param optionType Type of option - 0 = call, 1 = put
* @param price Stock price
* @param strike Strike price
* @param timeToExpiry Time to expiry in days
* @param riskFreeRate Risk-free rate
* @param volatility Volatility on the asset
* @return Option price based on the Black-Scholes model
*/
function calculate(
uint8 optionType,
uint256 price,
uint256 strike,
uint256 timeToExpiry,
uint256 riskFreeRate,
uint256 volatility
) internal pure returns (uint256) {
bytes16 S = ABDKMathQuad.fromUInt(price);
bytes16 X = ABDKMathQuad.fromUInt(strike);
bytes16 T = ABDKMathQuad.div(
ABDKMathQuad.fromUInt(timeToExpiry),
ABDKMathQuad.fromUInt(36500) // 365 * 10 ^ DAYS_PRECISION
);
bytes16 r = ABDKMathQuad.div(ABDKMathQuad.fromUInt(riskFreeRate), ABDKMathQuad.fromUInt(10000));
bytes16 v = ABDKMathQuad.div(ABDKMathQuad.fromUInt(volatility), ABDKMathQuad.fromUInt(100));
bytes16 d1 = ABDKMathQuad.div(
ABDKMathQuad.add(
ABDKMathQuad.ln(ABDKMathQuad.div(S, X)),
ABDKMathQuad.mul(
ABDKMathQuad.add(r, ABDKMathQuad.mul(v, ABDKMathQuad.div(v, ABDKMathQuad.fromUInt(2)))), T
)
),
ABDKMathQuad.mul(v, ABDKMathQuad.sqrt(T))
);
bytes16 d2 = ABDKMathQuad.sub(d1, ABDKMathQuad.mul(v, ABDKMathQuad.sqrt(T)));
if (optionType == OPTION_TYPE_CALL) {
return ABDKMathQuad.toUInt(
ABDKMathQuad.mul(_calculateCallTimeDecay(S, d1, X, r, T, d2), ABDKMathQuad.fromUInt(DIVISOR))
);
} else if (optionType == OPTION_TYPE_PUT) {
return ABDKMathQuad.toUInt(
ABDKMathQuad.mul(_calculatePutTimeDecay(X, r, T, d2, S, d1), ABDKMathQuad.fromUInt(DIVISOR))
);
} else {
return 0;
}
}
/// @dev Function to caluclate the call time decay
/// From the implementation page(https://cseweb.ucsd.edu/~goguen/courses/130/SayBlackScholes.html); part of the equation
/// ( S * CND(d1)-X * Math.exp(-r * T) * CND(d2) );
function _calculateCallTimeDecay(bytes16 S, bytes16 d1, bytes16 X, bytes16 r, bytes16 T, bytes16 d2)
internal
pure
returns (bytes16)
{
return ABDKMathQuad.sub(
ABDKMathQuad.mul(S, CND(d1)),
ABDKMathQuad.mul(ABDKMathQuad.mul(X, ABDKMathQuad.exp(ABDKMathQuad.mul(ABDKMathQuad.neg(r), T))), CND(d2))
);
}
/// @dev Function to caluclate the put time decay
/// From the implementation page(https://cseweb.ucsd.edu/~goguen/courses/130/SayBlackScholes.html); part of the equation -
/// ( X * Math.exp(-r * T) * CND(-d2) - S * CND(-d1) );
function _calculatePutTimeDecay(bytes16 X, bytes16 r, bytes16 T, bytes16 d2, bytes16 S, bytes16 d1)
internal
pure
returns (bytes16)
{
bytes16 price_part1 = ABDKMathQuad.mul(
ABDKMathQuad.mul(X, ABDKMathQuad.exp(ABDKMathQuad.mul(ABDKMathQuad.neg(r), T))), CND(ABDKMathQuad.neg(d2))
);
bytes16 price_part2 = ABDKMathQuad.mul(S, CND(ABDKMathQuad.neg(d1)));
bytes16 price = ABDKMathQuad.sub(price_part1, price_part2);
return price;
}
/**
* @notice Normal cumulative distribution function.
* See http://en.wikipedia.org/wiki/Normal_distribution#Cumulative_distribution_function
* From the implementation page(https://cseweb.ucsd.edu/~goguen/courses/130/SayBlackScholes.html); part of the equation -
* "k = 1 / (1 + .2316419 * x); return ( 1 - Math.exp(-x * x / 2)/ Math.sqrt(2*Math.PI) * k * (.31938153 + k * (-.356563782 + k * (1.781477937 + k * (-1.821255978 + k * 1.330274429)))) );"
* NOTE: The different parts of the equation are broken down to separate functions as using
* ABDKMathQuad makes small equations verbose.
*/
function CND(bytes16 x) internal pure returns (bytes16) {
if (ABDKMathQuad.toInt(x) < 0) {
return (ABDKMathQuad.sub(ABDKMathQuad.fromUInt(1), CND(ABDKMathQuad.neg(x))));
} else {
bytes16 k = ABDKMathQuad.div(
ABDKMathQuad.fromUInt(1),
ABDKMathQuad.add(
ABDKMathQuad.fromUInt(1),
ABDKMathQuad.mul(
ABDKMathQuad.div(ABDKMathQuad.fromUInt(2316419000000000), ABDKMathQuad.fromUInt(DIVISOR)), x
)
)
);
bytes16 CND_part2 = _getCNDPart2(k, x);
return ABDKMathQuad.sub(ABDKMathQuad.fromUInt(1), CND_part2);
}
}
function _getCNDPart2(bytes16 k, bytes16 x) internal pure returns (bytes16) {
return ABDKMathQuad.mul(_getCNDPart2_1(x), _getCNDPart2_2(k));
}
function _getCNDPart2_1(bytes16 x) internal pure returns (bytes16) {
return ABDKMathQuad.div(
ABDKMathQuad.exp(ABDKMathQuad.mul(ABDKMathQuad.neg(x), ABDKMathQuad.div(x, ABDKMathQuad.fromUInt(2)))),
ABDKMathQuad.sqrt(
ABDKMathQuad.mul(
ABDKMathQuad.fromUInt(2),
ABDKMathQuad.div(ABDKMathQuad.fromUInt(31415926530000000), ABDKMathQuad.fromUInt(DIVISOR))
)
)
);
}
function _getCNDPart2_2(bytes16 k) internal pure returns (bytes16) {
return ABDKMathQuad.mul(
ABDKMathQuad.add(
ABDKMathQuad.div(ABDKMathQuad.fromUInt(3193815300000000), ABDKMathQuad.fromUInt(DIVISOR)),
ABDKMathQuad.mul(
k,
ABDKMathQuad.add(
ABDKMathQuad.neg(
ABDKMathQuad.div(ABDKMathQuad.fromUInt(3565637820000000), ABDKMathQuad.fromUInt(DIVISOR))
),
ABDKMathQuad.mul(
k,
ABDKMathQuad.add(
ABDKMathQuad.div(
ABDKMathQuad.fromUInt(17814779370000000), ABDKMathQuad.fromUInt(DIVISOR)
),
_getCNDPart2_2_1(k)
)
)
)
)
),
k
);
}
function _getCNDPart2_2_1(bytes16 k) internal pure returns (bytes16) {
return ABDKMathQuad.mul(
k,
ABDKMathQuad.add(
ABDKMathQuad.neg(
ABDKMathQuad.div(ABDKMathQuad.fromUInt(18212559780000000), ABDKMathQuad.fromUInt(DIVISOR))
),
ABDKMathQuad.mul(
k, ABDKMathQuad.div(ABDKMathQuad.fromUInt(13302744290000000), ABDKMathQuad.fromUInt(DIVISOR))
)
)
);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: BSD-4-Clause
/*
* ABDK Math Quad Smart Contract Library. Copyright © 2019 by ABDK Consulting.
* Author: Mikhail Vladimirov <[email protected]>
*/
pragma solidity ^0.8.13;
/**
* Smart contract library of mathematical functions operating with IEEE 754
* quadruple-precision binary floating-point numbers (quadruple precision
* numbers). As long as quadruple precision numbers are 16-bytes long, they are
* represented by bytes16 type.
*/
library ABDKMathQuad {
/*
* 0.
*/
bytes16 private constant POSITIVE_ZERO = 0x00000000000000000000000000000000;
/*
* -0.
*/
bytes16 private constant NEGATIVE_ZERO = 0x80000000000000000000000000000000;
/*
* +Infinity.
*/
bytes16 private constant POSITIVE_INFINITY = 0x7FFF0000000000000000000000000000;
/*
* -Infinity.
*/
bytes16 private constant NEGATIVE_INFINITY = 0xFFFF0000000000000000000000000000;
/*
* Canonical NaN value.
*/
bytes16 private constant NaN = 0x7FFF8000000000000000000000000000;
/**
* Convert signed 256-bit integer number into quadruple precision number.
*
* @param x signed 256-bit integer number
* @return quadruple precision number
*/
function fromInt(int256 x) internal pure returns (bytes16) {
unchecked {
if (x == 0) {
return bytes16(0);
} else {
// We rely on overflow behavior here
uint256 result = uint256(x > 0 ? x : -x);
uint256 msb = mostSignificantBit(result);
if (msb < 112) result <<= 112 - msb;
else if (msb > 112) result >>= msb - 112;
result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112);
if (x < 0) result |= 0x80000000000000000000000000000000;
return bytes16(uint128(result));
}
}
}
/**
* Convert quadruple precision number into signed 256-bit integer number
* rounding towards zero. Revert on overflow.
*
* @param x quadruple precision number
* @return signed 256-bit integer number
*/
function toInt(bytes16 x) internal pure returns (int256) {
unchecked {
uint256 exponent = (uint128(x) >> 112) & 0x7FFF;
require(exponent <= 16638); // Overflow
if (exponent < 16383) return 0; // Underflow
uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000;
if (exponent < 16495) result >>= 16495 - exponent;
else if (exponent > 16495) result <<= exponent - 16495;
if (uint128(x) >= 0x80000000000000000000000000000000) {
// Negative
require(result <= 0x8000000000000000000000000000000000000000000000000000000000000000);
return -int256(result); // We rely on overflow behavior here
} else {
require(result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
return int256(result);
}
}
}
/**
* Convert unsigned 256-bit integer number into quadruple precision number.
*
* @param x unsigned 256-bit integer number
* @return quadruple precision number
*/
function fromUInt(uint256 x) internal pure returns (bytes16) {
unchecked {
if (x == 0) {
return bytes16(0);
} else {
uint256 result = x;
uint256 msb = mostSignificantBit(result);
if (msb < 112) result <<= 112 - msb;
else if (msb > 112) result >>= msb - 112;
result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112);
return bytes16(uint128(result));
}
}
}
/**
* Convert quadruple precision number into unsigned 256-bit integer number
* rounding towards zero. Revert on underflow. Note, that negative floating
* point numbers in range (-1.0 .. 0.0) may be converted to unsigned integer
* without error, because they are rounded to zero.
*
* @param x quadruple precision number
* @return unsigned 256-bit integer number
*/
function toUInt(bytes16 x) internal pure returns (uint256) {
unchecked {
uint256 exponent = (uint128(x) >> 112) & 0x7FFF;
if (exponent < 16383) return 0; // Underflow
require(uint128(x) < 0x80000000000000000000000000000000); // Negative
require(exponent <= 16638); // Overflow
uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000;
if (exponent < 16495) result >>= 16495 - exponent;
else if (exponent > 16495) result <<= exponent - 16495;
return result;
}
}
/**
* Convert signed 128.128 bit fixed point number into quadruple precision
* number.
*
* @param x signed 128.128 bit fixed point number
* @return quadruple precision number
*/
function from128x128(int256 x) internal pure returns (bytes16) {
unchecked {
if (x == 0) {
return bytes16(0);
} else {
// We rely on overflow behavior here
uint256 result = uint256(x > 0 ? x : -x);
uint256 msb = mostSignificantBit(result);
if (msb < 112) result <<= 112 - msb;
else if (msb > 112) result >>= msb - 112;
result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16255 + msb) << 112);
if (x < 0) result |= 0x80000000000000000000000000000000;
return bytes16(uint128(result));
}
}
}
/**
* Convert quadruple precision number into signed 128.128 bit fixed point
* number. Revert on overflow.
*
* @param x quadruple precision number
* @return signed 128.128 bit fixed point number
*/
function to128x128(bytes16 x) internal pure returns (int256) {
unchecked {
uint256 exponent = (uint128(x) >> 112) & 0x7FFF;
require(exponent <= 16510); // Overflow
if (exponent < 16255) return 0; // Underflow
uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000;
if (exponent < 16367) result >>= 16367 - exponent;
else if (exponent > 16367) result <<= exponent - 16367;
if (uint128(x) >= 0x80000000000000000000000000000000) {
// Negative
require(result <= 0x8000000000000000000000000000000000000000000000000000000000000000);
return -int256(result); // We rely on overflow behavior here
} else {
require(result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
return int256(result);
}
}
}
/**
* Convert signed 64.64 bit fixed point number into quadruple precision
* number.
*
* @param x signed 64.64 bit fixed point number
* @return quadruple precision number
*/
function from64x64(int128 x) internal pure returns (bytes16) {
unchecked {
if (x == 0) {
return bytes16(0);
} else {
// We rely on overflow behavior here
uint256 result = uint128(x > 0 ? x : -x);
uint256 msb = mostSignificantBit(result);
if (msb < 112) result <<= 112 - msb;
else if (msb > 112) result >>= msb - 112;
result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16319 + msb) << 112);
if (x < 0) result |= 0x80000000000000000000000000000000;
return bytes16(uint128(result));
}
}
}
/**
* Convert quadruple precision number into signed 64.64 bit fixed point
* number. Revert on overflow.
*
* @param x quadruple precision number
* @return signed 64.64 bit fixed point number
*/
function to64x64(bytes16 x) internal pure returns (int128) {
unchecked {
uint256 exponent = (uint128(x) >> 112) & 0x7FFF;
require(exponent <= 16446); // Overflow
if (exponent < 16319) return 0; // Underflow
uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000;
if (exponent < 16431) result >>= 16431 - exponent;
else if (exponent > 16431) result <<= exponent - 16431;
if (uint128(x) >= 0x80000000000000000000000000000000) {
// Negative
require(result <= 0x80000000000000000000000000000000);
return -int128(int256(result)); // We rely on overflow behavior here
} else {
require(result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
return int128(int256(result));
}
}
}
/**
* Convert octuple precision number into quadruple precision number.
*
* @param x octuple precision number
* @return quadruple precision number
*/
function fromOctuple(bytes32 x) internal pure returns (bytes16) {
unchecked {
bool negative = x & 0x8000000000000000000000000000000000000000000000000000000000000000 > 0;
uint256 exponent = (uint256(x) >> 236) & 0x7FFFF;
uint256 significand = uint256(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
if (exponent == 0x7FFFF) {
if (significand > 0) return NaN;
else return negative ? NEGATIVE_INFINITY : POSITIVE_INFINITY;
}
if (exponent > 278526) {
return negative ? NEGATIVE_INFINITY : POSITIVE_INFINITY;
} else if (exponent < 245649) {
return negative ? NEGATIVE_ZERO : POSITIVE_ZERO;
} else if (exponent < 245761) {
significand = (significand | 0x100000000000000000000000000000000000000000000000000000000000)
>> (245885 - exponent);
exponent = 0;
} else {
significand >>= 124;
exponent -= 245760;
}
uint128 result = uint128(significand | (exponent << 112));
if (negative) result |= 0x80000000000000000000000000000000;
return bytes16(result);
}
}
/**
* Convert quadruple precision number into octuple precision number.
*
* @param x quadruple precision number
* @return octuple precision number
*/
function toOctuple(bytes16 x) internal pure returns (bytes32) {
unchecked {
uint256 exponent = (uint128(x) >> 112) & 0x7FFF;
uint256 result = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
if (exponent == 0x7FFF) {
exponent = 0x7FFFF;
} // Infinity or NaN
else if (exponent == 0) {
if (result > 0) {
uint256 msb = mostSignificantBit(result);
result = (result << (236 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
exponent = 245649 + msb;
}
} else {
result <<= 124;
exponent += 245760;
}
result |= exponent << 236;
if (uint128(x) >= 0x80000000000000000000000000000000) {
result |= 0x8000000000000000000000000000000000000000000000000000000000000000;
}
return bytes32(result);
}
}
/**
* Convert double precision number into quadruple precision number.
*
* @param x double precision number
* @return quadruple precision number
*/
function fromDouble(bytes8 x) internal pure returns (bytes16) {
unchecked {
uint256 exponent = (uint64(x) >> 52) & 0x7FF;
uint256 result = uint64(x) & 0xFFFFFFFFFFFFF;
if (exponent == 0x7FF) {
exponent = 0x7FFF;
} // Infinity or NaN
else if (exponent == 0) {
if (result > 0) {
uint256 msb = mostSignificantBit(result);
result = (result << (112 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
exponent = 15309 + msb;
}
} else {
result <<= 60;
exponent += 15360;
}
result |= exponent << 112;
if (x & 0x8000000000000000 > 0) {
result |= 0x80000000000000000000000000000000;
}
return bytes16(uint128(result));
}
}
/**
* Convert quadruple precision number into double precision number.
*
* @param x quadruple precision number
* @return double precision number
*/
function toDouble(bytes16 x) internal pure returns (bytes8) {
unchecked {
bool negative = uint128(x) >= 0x80000000000000000000000000000000;
uint256 exponent = (uint128(x) >> 112) & 0x7FFF;
uint256 significand = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
if (exponent == 0x7FFF) {
if (significand > 0) {
return 0x7FF8000000000000;
}
// NaN
else {
return negative
? bytes8(0xFFF0000000000000) // -Infinity
: bytes8(0x7FF0000000000000);
} // Infinity
}
if (exponent > 17406) {
return negative
? bytes8(0xFFF0000000000000) // -Infinity
: bytes8(0x7FF0000000000000);
}
// Infinity
else if (exponent < 15309) {
return negative
? bytes8(0x8000000000000000) // -0
: bytes8(0x0000000000000000);
}
// 0
else if (exponent < 15361) {
significand = (significand | 0x10000000000000000000000000000) >> (15421 - exponent);
exponent = 0;
} else {
significand >>= 60;
exponent -= 15360;
}
uint64 result = uint64(significand | (exponent << 52));
if (negative) result |= 0x8000000000000000;
return bytes8(result);
}
}
/**
* Test whether given quadruple precision number is NaN.
*
* @param x quadruple precision number
* @return true if x is NaN, false otherwise
*/
function isNaN(bytes16 x) internal pure returns (bool) {
unchecked {
return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF > 0x7FFF0000000000000000000000000000;
}
}
/**
* Test whether given quadruple precision number is positive or negative
* infinity.
*
* @param x quadruple precision number
* @return true if x is positive or negative infinity, false otherwise
*/
function isInfinity(bytes16 x) internal pure returns (bool) {
unchecked {
return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0x7FFF0000000000000000000000000000;
}
}
/**
* Calculate sign of x, i.e. -1 if x is negative, 0 if x if zero, and 1 if x
* is positive. Note that sign (-0) is zero. Revert if x is NaN.
*
* @param x quadruple precision number
* @return sign of x
*/
function sign(bytes16 x) internal pure returns (int8) {
unchecked {
uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN
if (absoluteX == 0) {
return 0;
} else if (uint128(x) >= 0x80000000000000000000000000000000) {
return -1;
} else {
return 1;
}
}
}
/**
* Calculate sign (x - y). Revert if either argument is NaN, or both
* arguments are infinities of the same sign.
*
* @param x quadruple precision number
* @param y quadruple precision number
* @return sign (x - y)
*/
function cmp(bytes16 x, bytes16 y) internal pure returns (int8) {
unchecked {
uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN
uint128 absoluteY = uint128(y) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
require(absoluteY <= 0x7FFF0000000000000000000000000000); // Not NaN
// Not infinities of the same sign
require(x != y || absoluteX < 0x7FFF0000000000000000000000000000);
if (x == y) {
return 0;
} else {
bool negativeX = uint128(x) >= 0x80000000000000000000000000000000;
bool negativeY = uint128(y) >= 0x80000000000000000000000000000000;
if (negativeX) {
if (negativeY) return absoluteX > absoluteY ? -1 : int8(1);
else return -1;
} else {
if (negativeY) return 1;
else return absoluteX > absoluteY ? int8(1) : -1;
}
}
}
}
/**
* Test whether x equals y. NaN, infinity, and -infinity are not equal to
* anything.
*
* @param x quadruple precision number
* @param y quadruple precision number
* @return true if x equals to y, false otherwise
*/
function eq(bytes16 x, bytes16 y) internal pure returns (bool) {
unchecked {
if (x == y) {
return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF < 0x7FFF0000000000000000000000000000;
} else {
return false;
}
}
}
/**
* Calculate x + y. Special values behave in the following way:
*
* NaN + x = NaN for any x.
* Infinity + x = Infinity for any finite x.
* -Infinity + x = -Infinity for any finite x.
* Infinity + Infinity = Infinity.
* -Infinity + -Infinity = -Infinity.
* Infinity + -Infinity = -Infinity + Infinity = NaN.
*
* @param x quadruple precision number
* @param y quadruple precision number
* @return quadruple precision number
*/
function add(bytes16 x, bytes16 y) internal pure returns (bytes16) {
unchecked {
uint256 xExponent = (uint128(x) >> 112) & 0x7FFF;
uint256 yExponent = (uint128(y) >> 112) & 0x7FFF;
if (xExponent == 0x7FFF) {
if (yExponent == 0x7FFF) {
if (x == y) return x;
else return NaN;
} else {
return x;
}
} else if (yExponent == 0x7FFF) {
return y;
} else {
bool xSign = uint128(x) >= 0x80000000000000000000000000000000;
uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
if (xExponent == 0) xExponent = 1;
else xSignifier |= 0x10000000000000000000000000000;
bool ySign = uint128(y) >= 0x80000000000000000000000000000000;
uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
if (yExponent == 0) yExponent = 1;
else ySignifier |= 0x10000000000000000000000000000;
if (xSignifier == 0) {
return y == NEGATIVE_ZERO ? POSITIVE_ZERO : y;
} else if (ySignifier == 0) {
return x == NEGATIVE_ZERO ? POSITIVE_ZERO : x;
} else {
int256 delta = int256(xExponent) - int256(yExponent);
if (xSign == ySign) {
if (delta > 112) {
return x;
} else if (delta > 0) {
ySignifier >>= uint256(delta);
} else if (delta < -112) {
return y;
} else if (delta < 0) {
xSignifier >>= uint256(-delta);
xExponent = yExponent;
}
xSignifier += ySignifier;
if (xSignifier >= 0x20000000000000000000000000000) {
xSignifier >>= 1;
xExponent += 1;
}
if (xExponent == 0x7FFF) {
return xSign ? NEGATIVE_INFINITY : POSITIVE_INFINITY;
} else {
if (xSignifier < 0x10000000000000000000000000000) {
xExponent = 0;
} else {
xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
}
return bytes16(
uint128(
(xSign ? 0x80000000000000000000000000000000 : 0) | (xExponent << 112) | xSignifier
)
);
}
} else {
if (delta > 0) {
xSignifier <<= 1;
xExponent -= 1;
} else if (delta < 0) {
ySignifier <<= 1;
xExponent = yExponent - 1;
}
if (delta > 112) {
ySignifier = 1;
} else if (delta > 1) {
ySignifier = ((ySignifier - 1) >> uint256(delta - 1)) + 1;
} else if (delta < -112) {
xSignifier = 1;
} else if (delta < -1) {
xSignifier = ((xSignifier - 1) >> uint256(-delta - 1)) + 1;
}
if (xSignifier >= ySignifier) {
xSignifier -= ySignifier;
} else {
xSignifier = ySignifier - xSignifier;
xSign = ySign;
}
if (xSignifier == 0) return POSITIVE_ZERO;
uint256 msb = mostSignificantBit(xSignifier);
if (msb == 113) {
xSignifier = (xSignifier >> 1) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
xExponent += 1;
} else if (msb < 112) {
uint256 shift = 112 - msb;
if (xExponent > shift) {
xSignifier = (xSignifier << shift) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
xExponent -= shift;
} else {
xSignifier <<= xExponent - 1;
xExponent = 0;
}
} else {
xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
}
if (xExponent == 0x7FFF) {
return xSign ? NEGATIVE_INFINITY : POSITIVE_INFINITY;
} else {
return bytes16(
uint128(
(xSign ? 0x80000000000000000000000000000000 : 0) | (xExponent << 112) | xSignifier
)
);
}
}
}
}
}
}
/**
* Calculate x - y. Special values behave in the following way:
*
* NaN - x = NaN for any x.
* Infinity - x = Infinity for any finite x.
* -Infinity - x = -Infinity for any finite x.
* Infinity - -Infinity = Infinity.
* -Infinity - Infinity = -Infinity.
* Infinity - Infinity = -Infinity - -Infinity = NaN.
*
* @param x quadruple precision number
* @param y quadruple precision number
* @return quadruple precision number
*/
function sub(bytes16 x, bytes16 y) internal pure returns (bytes16) {
unchecked {
return add(x, y ^ 0x80000000000000000000000000000000);
}
}
/**
* Calculate x * y. Special values behave in the following way:
*
* NaN * x = NaN for any x.
* Infinity * x = Infinity for any finite positive x.
* Infinity * x = -Infinity for any finite negative x.
* -Infinity * x = -Infinity for any finite positive x.
* -Infinity * x = Infinity for any finite negative x.
* Infinity * 0 = NaN.
* -Infinity * 0 = NaN.
* Infinity * Infinity = Infinity.
* Infinity * -Infinity = -Infinity.
* -Infinity * Infinity = -Infinity.
* -Infinity * -Infinity = Infinity.
*
* @param x quadruple precision number
* @param y quadruple precision number
* @return quadruple precision number
*/
function mul(bytes16 x, bytes16 y) internal pure returns (bytes16) {
unchecked {
uint256 xExponent = (uint128(x) >> 112) & 0x7FFF;
uint256 yExponent = (uint128(y) >> 112) & 0x7FFF;
if (xExponent == 0x7FFF) {
if (yExponent == 0x7FFF) {
if (x == y) {
return x ^ (y & 0x80000000000000000000000000000000);
} else if (x ^ y == 0x80000000000000000000000000000000) {
return x | y;
} else {
return NaN;
}
} else {
if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN;
else return x ^ (y & 0x80000000000000000000000000000000);
}
} else if (yExponent == 0x7FFF) {
if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN;
else return y ^ (x & 0x80000000000000000000000000000000);
} else {
uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
if (xExponent == 0) xExponent = 1;
else xSignifier |= 0x10000000000000000000000000000;
uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
if (yExponent == 0) yExponent = 1;
else ySignifier |= 0x10000000000000000000000000000;
xSignifier *= ySignifier;
if (xSignifier == 0) {
return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? NEGATIVE_ZERO : POSITIVE_ZERO;
}
xExponent += yExponent;
uint256 msb = xSignifier >= 0x200000000000000000000000000000000000000000000000000000000
? 225
: xSignifier >= 0x100000000000000000000000000000000000000000000000000000000
? 224
: mostSignificantBit(xSignifier);
if (xExponent + msb < 16496) {
// Underflow
xExponent = 0;
xSignifier = 0;
} else if (xExponent + msb < 16608) {
// Subnormal
if (xExponent < 16496) {
xSignifier >>= 16496 - xExponent;
} else if (xExponent > 16496) {
xSignifier <<= xExponent - 16496;
}
xExponent = 0;
} else if (xExponent + msb > 49373) {
xExponent = 0x7FFF;
xSignifier = 0;
} else {
if (msb > 112) xSignifier >>= msb - 112;
else if (msb < 112) xSignifier <<= 112 - msb;
xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
xExponent = xExponent + msb - 16607;
}
return bytes16(
uint128(uint128((x ^ y) & 0x80000000000000000000000000000000) | (xExponent << 112) | xSignifier)
);
}
}
}
/**
* Calculate x / y. Special values behave in the following way:
*
* NaN / x = NaN for any x.
* x / NaN = NaN for any x.
* Infinity / x = Infinity for any finite non-negative x.
* Infinity / x = -Infinity for any finite negative x including -0.
* -Infinity / x = -Infinity for any finite non-negative x.
* -Infinity / x = Infinity for any finite negative x including -0.
* x / Infinity = 0 for any finite non-negative x.
* x / -Infinity = -0 for any finite non-negative x.
* x / Infinity = -0 for any finite non-negative x including -0.
* x / -Infinity = 0 for any finite non-negative x including -0.
*
* Infinity / Infinity = NaN.
* Infinity / -Infinity = -NaN.
* -Infinity / Infinity = -NaN.
* -Infinity / -Infinity = NaN.
*
* Division by zero behaves in the following way:
*
* x / 0 = Infinity for any finite positive x.
* x / -0 = -Infinity for any finite positive x.
* x / 0 = -Infinity for any finite negative x.
* x / -0 = Infinity for any finite negative x.
* 0 / 0 = NaN.
* 0 / -0 = NaN.
* -0 / 0 = NaN.
* -0 / -0 = NaN.
*
* @param x quadruple precision number
* @param y quadruple precision number
* @return quadruple precision number
*/
function div(bytes16 x, bytes16 y) internal pure returns (bytes16) {
unchecked {
uint256 xExponent = (uint128(x) >> 112) & 0x7FFF;
uint256 yExponent = (uint128(y) >> 112) & 0x7FFF;
if (xExponent == 0x7FFF) {
if (yExponent == 0x7FFF) return NaN;
else return x ^ (y & 0x80000000000000000000000000000000);
} else if (yExponent == 0x7FFF) {
if (y & 0x0000FFFFFFFFFFFFFFFFFFFFFFFFFFFF != 0) return NaN;
else return POSITIVE_ZERO | ((x ^ y) & 0x80000000000000000000000000000000);
} else if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) {
if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN;
else return POSITIVE_INFINITY | ((x ^ y) & 0x80000000000000000000000000000000);
} else {
uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
if (yExponent == 0) yExponent = 1;
else ySignifier |= 0x10000000000000000000000000000;
uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
if (xExponent == 0) {
if (xSignifier != 0) {
uint256 shift = 226 - mostSignificantBit(xSignifier);
xSignifier <<= shift;
xExponent = 1;
yExponent += shift - 114;
}
} else {
xSignifier = (xSignifier | 0x10000000000000000000000000000) << 114;
}
xSignifier = xSignifier / ySignifier;
if (xSignifier == 0) {
return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? NEGATIVE_ZERO : POSITIVE_ZERO;
}
assert(xSignifier >= 0x1000000000000000000000000000);
uint256 msb = xSignifier >= 0x80000000000000000000000000000
? mostSignificantBit(xSignifier)
: xSignifier >= 0x40000000000000000000000000000
? 114
: xSignifier >= 0x20000000000000000000000000000 ? 113 : 112;
if (xExponent + msb > yExponent + 16497) {
// Overflow
xExponent = 0x7FFF;
xSignifier = 0;
} else if (xExponent + msb + 16380 < yExponent) {
// Underflow
xExponent = 0;
xSignifier = 0;
} else if (xExponent + msb + 16268 < yExponent) {
// Subnormal
if (xExponent + 16380 > yExponent) {
xSignifier <<= xExponent + 16380 - yExponent;
} else if (xExponent + 16380 < yExponent) {
xSignifier >>= yExponent - xExponent - 16380;
}
xExponent = 0;
} else {
// Normal
if (msb > 112) xSignifier >>= msb - 112;
xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
xExponent = xExponent + msb + 16269 - yExponent;
}
return bytes16(
uint128(uint128((x ^ y) & 0x80000000000000000000000000000000) | (xExponent << 112) | xSignifier)
);
}
}
}
/**
* Calculate -x.
*
* @param x quadruple precision number
* @return quadruple precision number
*/
function neg(bytes16 x) internal pure returns (bytes16) {
unchecked {
return x ^ 0x80000000000000000000000000000000;
}
}
/**
* Calculate |x|.
*
* @param x quadruple precision number
* @return quadruple precision number
*/
function abs(bytes16 x) internal pure returns (bytes16) {
unchecked {
return x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
}
}
/**
* Calculate square root of x. Return NaN on negative x excluding -0.
*
* @param x quadruple precision number
* @return quadruple precision number
*/
function sqrt(bytes16 x) internal pure returns (bytes16) {
unchecked {
if (uint128(x) > 0x80000000000000000000000000000000) {
return NaN;
} else {
uint256 xExponent = (uint128(x) >> 112) & 0x7FFF;
if (xExponent == 0x7FFF) {
return x;
} else {
uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
if (xExponent == 0) xExponent = 1;
else xSignifier |= 0x10000000000000000000000000000;
if (xSignifier == 0) return POSITIVE_ZERO;
bool oddExponent = xExponent & 0x1 == 0;
xExponent = (xExponent + 16383) >> 1;
if (oddExponent) {
if (xSignifier >= 0x10000000000000000000000000000) {
xSignifier <<= 113;
} else {
uint256 msb = mostSignificantBit(xSignifier);
uint256 shift = (226 - msb) & 0xFE;
xSignifier <<= shift;
xExponent -= (shift - 112) >> 1;
}
} else {
if (xSignifier >= 0x10000000000000000000000000000) {
xSignifier <<= 112;
} else {
uint256 msb = mostSignificantBit(xSignifier);
uint256 shift = (225 - msb) & 0xFE;
xSignifier <<= shift;
xExponent -= (shift - 112) >> 1;
}
}
uint256 r = 0x10000000000000000000000000000;
r = (r + xSignifier / r) >> 1;
r = (r + xSignifier / r) >> 1;
r = (r + xSignifier / r) >> 1;
r = (r + xSignifier / r) >> 1;
r = (r + xSignifier / r) >> 1;
r = (r + xSignifier / r) >> 1;
r = (r + xSignifier / r) >> 1; // Seven iterations should be enough
uint256 r1 = xSignifier / r;
if (r1 < r) r = r1;
return bytes16(uint128((xExponent << 112) | (r & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF)));
}
}
}
}
/**
* Calculate binary logarithm of x. Return NaN on negative x excluding -0.
*
* @param x quadruple precision number
* @return quadruple precision number
*/
function log_2(bytes16 x) internal pure returns (bytes16) {
unchecked {
if (uint128(x) > 0x80000000000000000000000000000000) {
return NaN;
} else if (x == 0x3FFF0000000000000000000000000000) {
return POSITIVE_ZERO;
} else {
uint256 xExponent = (uint128(x) >> 112) & 0x7FFF;
if (xExponent == 0x7FFF) {
return x;
} else {
uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
if (xExponent == 0) xExponent = 1;
else xSignifier |= 0x10000000000000000000000000000;
if (xSignifier == 0) return NEGATIVE_INFINITY;
bool resultNegative;
uint256 resultExponent = 16495;
uint256 resultSignifier;
if (xExponent >= 0x3FFF) {
resultNegative = false;
resultSignifier = xExponent - 0x3FFF;
xSignifier <<= 15;
} else {
resultNegative = true;
if (xSignifier >= 0x10000000000000000000000000000) {
resultSignifier = 0x3FFE - xExponent;
xSignifier <<= 15;
} else {
uint256 msb = mostSignificantBit(xSignifier);
resultSignifier = 16493 - msb;
xSignifier <<= 127 - msb;
}
}
if (xSignifier == 0x80000000000000000000000000000000) {
if (resultNegative) resultSignifier += 1;
uint256 shift = 112 - mostSignificantBit(resultSignifier);
resultSignifier <<= shift;
resultExponent -= shift;
} else {
uint256 bb = resultNegative ? 1 : 0;
while (resultSignifier < 0x10000000000000000000000000000) {
resultSignifier <<= 1;
resultExponent -= 1;
xSignifier *= xSignifier;
uint256 b = xSignifier >> 255;
resultSignifier += b ^ bb;
xSignifier >>= 127 + b;
}
}
return bytes16(
uint128(
(resultNegative ? 0x80000000000000000000000000000000 : 0) | (resultExponent << 112)
| (resultSignifier & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
)
);
}
}
}
}
/**
* Calculate natural logarithm of x. Return NaN on negative x excluding -0.
*
* @param x quadruple precision number
* @return quadruple precision number
*/
function ln(bytes16 x) internal pure returns (bytes16) {
unchecked {
return mul(log_2(x), 0x3FFE62E42FEFA39EF35793C7673007E5);
}
}
/**
* Calculate 2^x.
*
* @param x quadruple precision number
* @return quadruple precision number
*/
function pow_2(bytes16 x) internal pure returns (bytes16) {
unchecked {
bool xNegative = uint128(x) > 0x80000000000000000000000000000000;
uint256 xExponent = (uint128(x) >> 112) & 0x7FFF;
uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
if (xExponent == 0x7FFF && xSignifier != 0) {
return NaN;
} else if (xExponent > 16397) {
return xNegative ? POSITIVE_ZERO : POSITIVE_INFINITY;
} else if (xExponent < 16255) {
return 0x3FFF0000000000000000000000000000;
} else {
if (xExponent == 0) xExponent = 1;
else xSignifier |= 0x10000000000000000000000000000;
if (xExponent > 16367) xSignifier <<= xExponent - 16367;
else if (xExponent < 16367) xSignifier >>= 16367 - xExponent;
if (xNegative && xSignifier > 0x406E00000000000000000000000000000000) return POSITIVE_ZERO;
if (!xNegative && xSignifier > 0x3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF) return POSITIVE_INFINITY;
uint256 resultExponent = xSignifier >> 128;
xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
if (xNegative && xSignifier != 0) {
xSignifier = ~xSignifier;
resultExponent += 1;
}
uint256 resultSignifier = 0x80000000000000000000000000000000;
if (xSignifier & 0x80000000000000000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x16A09E667F3BCC908B2FB1366EA957D3E) >> 128;
}
if (xSignifier & 0x40000000000000000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x1306FE0A31B7152DE8D5A46305C85EDEC) >> 128;
}
if (xSignifier & 0x20000000000000000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x1172B83C7D517ADCDF7C8C50EB14A791F) >> 128;
}
if (xSignifier & 0x10000000000000000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x10B5586CF9890F6298B92B71842A98363) >> 128;
}
if (xSignifier & 0x8000000000000000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x1059B0D31585743AE7C548EB68CA417FD) >> 128;
}
if (xSignifier & 0x4000000000000000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x102C9A3E778060EE6F7CACA4F7A29BDE8) >> 128;
}
if (xSignifier & 0x2000000000000000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x10163DA9FB33356D84A66AE336DCDFA3F) >> 128;
}
if (xSignifier & 0x1000000000000000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x100B1AFA5ABCBED6129AB13EC11DC9543) >> 128;
}
if (xSignifier & 0x800000000000000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x10058C86DA1C09EA1FF19D294CF2F679B) >> 128;
}
if (xSignifier & 0x400000000000000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x1002C605E2E8CEC506D21BFC89A23A00F) >> 128;
}
if (xSignifier & 0x200000000000000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x100162F3904051FA128BCA9C55C31E5DF) >> 128;
}
if (xSignifier & 0x100000000000000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x1000B175EFFDC76BA38E31671CA939725) >> 128;
}
if (xSignifier & 0x80000000000000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x100058BA01FB9F96D6CACD4B180917C3D) >> 128;
}
if (xSignifier & 0x40000000000000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x10002C5CC37DA9491D0985C348C68E7B3) >> 128;
}
if (xSignifier & 0x20000000000000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x1000162E525EE054754457D5995292026) >> 128;
}
if (xSignifier & 0x10000000000000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x10000B17255775C040618BF4A4ADE83FC) >> 128;
}
if (xSignifier & 0x8000000000000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB) >> 128;
}
if (xSignifier & 0x4000000000000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9) >> 128;
}
if (xSignifier & 0x2000000000000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x10000162E43F4F831060E02D839A9D16D) >> 128;
}
if (xSignifier & 0x1000000000000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x100000B1721BCFC99D9F890EA06911763) >> 128;
}
if (xSignifier & 0x800000000000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x10000058B90CF1E6D97F9CA14DBCC1628) >> 128;
}
if (xSignifier & 0x400000000000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x1000002C5C863B73F016468F6BAC5CA2B) >> 128;
}
if (xSignifier & 0x200000000000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x100000162E430E5A18F6119E3C02282A5) >> 128;
}
if (xSignifier & 0x100000000000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x1000000B1721835514B86E6D96EFD1BFE) >> 128;
}
if (xSignifier & 0x80000000000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x100000058B90C0B48C6BE5DF846C5B2EF) >> 128;
}
if (xSignifier & 0x40000000000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x10000002C5C8601CC6B9E94213C72737A) >> 128;
}
if (xSignifier & 0x20000000000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x1000000162E42FFF037DF38AA2B219F06) >> 128;
}
if (xSignifier & 0x10000000000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x10000000B17217FBA9C739AA5819F44F9) >> 128;
}
if (xSignifier & 0x8000000000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x1000000058B90BFCDEE5ACD3C1CEDC823) >> 128;
}
if (xSignifier & 0x4000000000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x100000002C5C85FE31F35A6A30DA1BE50) >> 128;
}
if (xSignifier & 0x2000000000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x10000000162E42FF0999CE3541B9FFFCF) >> 128;
}
if (xSignifier & 0x1000000000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x100000000B17217F80F4EF5AADDA45554) >> 128;
}
if (xSignifier & 0x800000000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x10000000058B90BFBF8479BD5A81B51AD) >> 128;
}
if (xSignifier & 0x400000000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x1000000002C5C85FDF84BD62AE30A74CC) >> 128;
}
if (xSignifier & 0x200000000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x100000000162E42FEFB2FED257559BDAA) >> 128;
}
if (xSignifier & 0x100000000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x1000000000B17217F7D5A7716BBA4A9AE) >> 128;
}
if (xSignifier & 0x80000000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x100000000058B90BFBE9DDBAC5E109CCE) >> 128;
}
if (xSignifier & 0x40000000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x10000000002C5C85FDF4B15DE6F17EB0D) >> 128;
}
if (xSignifier & 0x20000000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x1000000000162E42FEFA494F1478FDE05) >> 128;
}
if (xSignifier & 0x10000000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x10000000000B17217F7D20CF927C8E94C) >> 128;
}
if (xSignifier & 0x8000000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x1000000000058B90BFBE8F71CB4E4B33D) >> 128;
}
if (xSignifier & 0x4000000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x100000000002C5C85FDF477B662B26945) >> 128;
}
if (xSignifier & 0x2000000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x10000000000162E42FEFA3AE53369388C) >> 128;
}
if (xSignifier & 0x1000000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x100000000000B17217F7D1D351A389D40) >> 128;
}
if (xSignifier & 0x800000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x10000000000058B90BFBE8E8B2D3D4EDE) >> 128;
}
if (xSignifier & 0x400000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x1000000000002C5C85FDF4741BEA6E77E) >> 128;
}
if (xSignifier & 0x200000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x100000000000162E42FEFA39FE95583C2) >> 128;
}
if (xSignifier & 0x100000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x1000000000000B17217F7D1CFB72B45E1) >> 128;
}
if (xSignifier & 0x80000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x100000000000058B90BFBE8E7CC35C3F0) >> 128;
}
if (xSignifier & 0x40000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x10000000000002C5C85FDF473E242EA38) >> 128;
}
if (xSignifier & 0x20000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x1000000000000162E42FEFA39F02B772C) >> 128;
}
if (xSignifier & 0x10000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x10000000000000B17217F7D1CF7D83C1A) >> 128;
}
if (xSignifier & 0x8000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x1000000000000058B90BFBE8E7BDCBE2E) >> 128;
}
if (xSignifier & 0x4000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x100000000000002C5C85FDF473DEA871F) >> 128;
}
if (xSignifier & 0x2000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x10000000000000162E42FEFA39EF44D91) >> 128;
}
if (xSignifier & 0x1000000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x100000000000000B17217F7D1CF79E949) >> 128;
}
if (xSignifier & 0x800000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x10000000000000058B90BFBE8E7BCE544) >> 128;
}
if (xSignifier & 0x400000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x1000000000000002C5C85FDF473DE6ECA) >> 128;
}
if (xSignifier & 0x200000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x100000000000000162E42FEFA39EF366F) >> 128;
}
if (xSignifier & 0x100000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x1000000000000000B17217F7D1CF79AFA) >> 128;
}
if (xSignifier & 0x80000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x100000000000000058B90BFBE8E7BCD6D) >> 128;
}
if (xSignifier & 0x40000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x10000000000000002C5C85FDF473DE6B2) >> 128;
}
if (xSignifier & 0x20000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x1000000000000000162E42FEFA39EF358) >> 128;
}
if (xSignifier & 0x10000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x10000000000000000B17217F7D1CF79AB) >> 128;
}
if (xSignifier & 0x8000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x1000000000000000058B90BFBE8E7BCD5) >> 128;
}
if (xSignifier & 0x4000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x100000000000000002C5C85FDF473DE6A) >> 128;
}
if (xSignifier & 0x2000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x10000000000000000162E42FEFA39EF34) >> 128;
}
if (xSignifier & 0x1000000000000000 > 0) {
resultSignifier = (resultSignifier * 0x100000000000000000B17217F7D1CF799) >> 128;
}
if (xSignifier & 0x800000000000000 > 0) {
resultSignifier = (resultSignifier * 0x10000000000000000058B90BFBE8E7BCC) >> 128;
}
if (xSignifier & 0x400000000000000 > 0) {
resultSignifier = (resultSignifier * 0x1000000000000000002C5C85FDF473DE5) >> 128;
}
if (xSignifier & 0x200000000000000 > 0) {
resultSignifier = (resultSignifier * 0x100000000000000000162E42FEFA39EF2) >> 128;
}
if (xSignifier & 0x100000000000000 > 0) {
resultSignifier = (resultSignifier * 0x1000000000000000000B17217F7D1CF78) >> 128;
}
if (xSignifier & 0x80000000000000 > 0) {
resultSignifier = (resultSignifier * 0x100000000000000000058B90BFBE8E7BB) >> 128;
}
if (xSignifier & 0x40000000000000 > 0) {
resultSignifier = (resultSignifier * 0x10000000000000000002C5C85FDF473DD) >> 128;
}
if (xSignifier & 0x20000000000000 > 0) {
resultSignifier = (resultSignifier * 0x1000000000000000000162E42FEFA39EE) >> 128;
}
if (xSignifier & 0x10000000000000 > 0) {
resultSignifier = (resultSignifier * 0x10000000000000000000B17217F7D1CF6) >> 128;
}
if (xSignifier & 0x8000000000000 > 0) {
resultSignifier = (resultSignifier * 0x1000000000000000000058B90BFBE8E7A) >> 128;
}
if (xSignifier & 0x4000000000000 > 0) {
resultSignifier = (resultSignifier * 0x100000000000000000002C5C85FDF473C) >> 128;
}
if (xSignifier & 0x2000000000000 > 0) {
resultSignifier = (resultSignifier * 0x10000000000000000000162E42FEFA39D) >> 128;
}
if (xSignifier & 0x1000000000000 > 0) {
resultSignifier = (resultSignifier * 0x100000000000000000000B17217F7D1CE) >> 128;
}
if (xSignifier & 0x800000000000 > 0) {
resultSignifier = (resultSignifier * 0x10000000000000000000058B90BFBE8E6) >> 128;
}
if (xSignifier & 0x400000000000 > 0) {
resultSignifier = (resultSignifier * 0x1000000000000000000002C5C85FDF472) >> 128;
}
if (xSignifier & 0x200000000000 > 0) {
resultSignifier = (resultSignifier * 0x100000000000000000000162E42FEFA38) >> 128;
}
if (xSignifier & 0x100000000000 > 0) {
resultSignifier = (resultSignifier * 0x1000000000000000000000B17217F7D1B) >> 128;
}
if (xSignifier & 0x80000000000 > 0) {
resultSignifier = (resultSignifier * 0x100000000000000000000058B90BFBE8D) >> 128;
}
if (xSignifier & 0x40000000000 > 0) {
resultSignifier = (resultSignifier * 0x10000000000000000000002C5C85FDF46) >> 128;
}
if (xSignifier & 0x20000000000 > 0) {
resultSignifier = (resultSignifier * 0x1000000000000000000000162E42FEFA2) >> 128;
}
if (xSignifier & 0x10000000000 > 0) {
resultSignifier = (resultSignifier * 0x10000000000000000000000B17217F7D0) >> 128;
}
if (xSignifier & 0x8000000000 > 0) {
resultSignifier = (resultSignifier * 0x1000000000000000000000058B90BFBE7) >> 128;
}
if (xSignifier & 0x4000000000 > 0) {
resultSignifier = (resultSignifier * 0x100000000000000000000002C5C85FDF3) >> 128;
}
if (xSignifier & 0x2000000000 > 0) {
resultSignifier = (resultSignifier * 0x10000000000000000000000162E42FEF9) >> 128;
}
if (xSignifier & 0x1000000000 > 0) {
resultSignifier = (resultSignifier * 0x100000000000000000000000B17217F7C) >> 128;
}
if (xSignifier & 0x800000000 > 0) {
resultSignifier = (resultSignifier * 0x10000000000000000000000058B90BFBD) >> 128;
}
if (xSignifier & 0x400000000 > 0) {
resultSignifier = (resultSignifier * 0x1000000000000000000000002C5C85FDE) >> 128;
}
if (xSignifier & 0x200000000 > 0) {
resultSignifier = (resultSignifier * 0x100000000000000000000000162E42FEE) >> 128;
}
if (xSignifier & 0x100000000 > 0) {
resultSignifier = (resultSignifier * 0x1000000000000000000000000B17217F6) >> 128;
}
if (xSignifier & 0x80000000 > 0) {
resultSignifier = (resultSignifier * 0x100000000000000000000000058B90BFA) >> 128;
}
if (xSignifier & 0x40000000 > 0) {
resultSignifier = (resultSignifier * 0x10000000000000000000000002C5C85FC) >> 128;
}
if (xSignifier & 0x20000000 > 0) {
resultSignifier = (resultSignifier * 0x1000000000000000000000000162E42FD) >> 128;
}
if (xSignifier & 0x10000000 > 0) {
resultSignifier = (resultSignifier * 0x10000000000000000000000000B17217E) >> 128;
}
if (xSignifier & 0x8000000 > 0) {
resultSignifier = (resultSignifier * 0x1000000000000000000000000058B90BE) >> 128;
}
if (xSignifier & 0x4000000 > 0) {
resultSignifier = (resultSignifier * 0x100000000000000000000000002C5C85E) >> 128;
}
if (xSignifier & 0x2000000 > 0) {
resultSignifier = (resultSignifier * 0x10000000000000000000000000162E42E) >> 128;
}
if (xSignifier & 0x1000000 > 0) {
resultSignifier = (resultSignifier * 0x100000000000000000000000000B17216) >> 128;
}
if (xSignifier & 0x800000 > 0) {
resultSignifier = (resultSignifier * 0x10000000000000000000000000058B90A) >> 128;
}
if (xSignifier & 0x400000 > 0) {
resultSignifier = (resultSignifier * 0x1000000000000000000000000002C5C84) >> 128;
}
if (xSignifier & 0x200000 > 0) {
resultSignifier = (resultSignifier * 0x100000000000000000000000000162E41) >> 128;
}
if (xSignifier & 0x100000 > 0) {
resultSignifier = (resultSignifier * 0x1000000000000000000000000000B1720) >> 128;
}
if (xSignifier & 0x80000 > 0) {
resultSignifier = (resultSignifier * 0x100000000000000000000000000058B8F) >> 128;
}
if (xSignifier & 0x40000 > 0) {
resultSignifier = (resultSignifier * 0x10000000000000000000000000002C5C7) >> 128;
}
if (xSignifier & 0x20000 > 0) {
resultSignifier = (resultSignifier * 0x1000000000000000000000000000162E3) >> 128;
}
if (xSignifier & 0x10000 > 0) {
resultSignifier = (resultSignifier * 0x10000000000000000000000000000B171) >> 128;
}
if (xSignifier & 0x8000 > 0) {
resultSignifier = (resultSignifier * 0x1000000000000000000000000000058B8) >> 128;
}
if (xSignifier & 0x4000 > 0) {
resultSignifier = (resultSignifier * 0x100000000000000000000000000002C5B) >> 128;
}
if (xSignifier & 0x2000 > 0) {
resultSignifier = (resultSignifier * 0x10000000000000000000000000000162D) >> 128;
}
if (xSignifier & 0x1000 > 0) {
resultSignifier = (resultSignifier * 0x100000000000000000000000000000B16) >> 128;
}
if (xSignifier & 0x800 > 0) {
resultSignifier = (resultSignifier * 0x10000000000000000000000000000058A) >> 128;
}
if (xSignifier & 0x400 > 0) {
resultSignifier = (resultSignifier * 0x1000000000000000000000000000002C4) >> 128;
}
if (xSignifier & 0x200 > 0) {
resultSignifier = (resultSignifier * 0x100000000000000000000000000000161) >> 128;
}
if (xSignifier & 0x100 > 0) {
resultSignifier = (resultSignifier * 0x1000000000000000000000000000000B0) >> 128;
}
if (xSignifier & 0x80 > 0) {
resultSignifier = (resultSignifier * 0x100000000000000000000000000000057) >> 128;
}
if (xSignifier & 0x40 > 0) {
resultSignifier = (resultSignifier * 0x10000000000000000000000000000002B) >> 128;
}
if (xSignifier & 0x20 > 0) {
resultSignifier = (resultSignifier * 0x100000000000000000000000000000015) >> 128;
}
if (xSignifier & 0x10 > 0) {
resultSignifier = (resultSignifier * 0x10000000000000000000000000000000A) >> 128;
}
if (xSignifier & 0x8 > 0) {
resultSignifier = (resultSignifier * 0x100000000000000000000000000000004) >> 128;
}
if (xSignifier & 0x4 > 0) {
resultSignifier = (resultSignifier * 0x100000000000000000000000000000001) >> 128;
}
if (!xNegative) {
resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
resultExponent += 0x3FFF;
} else if (resultExponent <= 0x3FFE) {
resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
resultExponent = 0x3FFF - resultExponent;
} else {
resultSignifier = resultSignifier >> (resultExponent - 16367);
resultExponent = 0;
}
return bytes16(uint128((resultExponent << 112) | resultSignifier));
}
}
}
/**
* Calculate e^x.
*
* @param x quadruple precision number
* @return quadruple precision number
*/
function exp(bytes16 x) internal pure returns (bytes16) {
unchecked {
return pow_2(mul(x, 0x3FFF71547652B82FE1777D0FFDA0D23A));
}
}
/**
* Get index of the most significant non-zero bit in binary representation of
* x. Reverts if x is zero.
*
* @return index of the most significant non-zero bit in binary representation
* of x
*/
function mostSignificantBit(uint256 x) private pure returns (uint256) {
unchecked {
require(x > 0);
uint256 result = 0;
if (x >= 0x100000000000000000000000000000000) {
x >>= 128;
result += 128;
}
if (x >= 0x10000000000000000) {
x >>= 64;
result += 64;
}
if (x >= 0x100000000) {
x >>= 32;
result += 32;
}
if (x >= 0x10000) {
x >>= 16;
result += 16;
}
if (x >= 0x100) {
x >>= 8;
result += 8;
}
if (x >= 0x10) {
x >>= 4;
result += 4;
}
if (x >= 0x4) {
x >>= 2;
result += 2;
}
if (x >= 0x2) result += 1; // No need to shift x anymore
return result;
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}