Contract Source Code:
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC5267.sol)
pragma solidity ^0.8.0;
interface IERC5267 {
/**
* @dev MAY be emitted to signal that the domain could have changed.
*/
event EIP712DomainChanged();
/**
* @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
* signature.
*/
function eip712Domain()
external
view
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which allows children to implement an emergency stop
* mechanism that can be triggered by an authorized account.
*
* This module is used through inheritance. It will make available the
* modifiers `whenNotPaused` and `whenPaused`, which can be applied to
* the functions of your contract. Note that they will not be pausable by
* simply including this module, only once the modifiers are put in place.
*/
abstract contract Pausable is Context {
/**
* @dev Emitted when the pause is triggered by `account`.
*/
event Paused(address account);
/**
* @dev Emitted when the pause is lifted by `account`.
*/
event Unpaused(address account);
bool private _paused;
/**
* @dev Initializes the contract in unpaused state.
*/
constructor() {
_paused = false;
}
/**
* @dev Modifier to make a function callable only when the contract is not paused.
*
* Requirements:
*
* - The contract must not be paused.
*/
modifier whenNotPaused() {
_requireNotPaused();
_;
}
/**
* @dev Modifier to make a function callable only when the contract is paused.
*
* Requirements:
*
* - The contract must be paused.
*/
modifier whenPaused() {
_requirePaused();
_;
}
/**
* @dev Returns true if the contract is paused, and false otherwise.
*/
function paused() public view virtual returns (bool) {
return _paused;
}
/**
* @dev Throws if the contract is paused.
*/
function _requireNotPaused() internal view virtual {
require(!paused(), "Pausable: paused");
}
/**
* @dev Throws if the contract is not paused.
*/
function _requirePaused() internal view virtual {
require(paused(), "Pausable: not paused");
}
/**
* @dev Triggers stopped state.
*
* Requirements:
*
* - The contract must not be paused.
*/
function _pause() internal virtual whenNotPaused {
_paused = true;
emit Paused(_msgSender());
}
/**
* @dev Returns to normal state.
*
* Requirements:
*
* - The contract must be paused.
*/
function _unpause() internal virtual whenPaused {
_paused = false;
emit Unpaused(_msgSender());
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/ERC20.sol)
pragma solidity ^0.8.0;
import "./IERC20.sol";
import "./extensions/IERC20Metadata.sol";
import "../../utils/Context.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* The default value of {decimals} is 18. To change this, you should override
* this function so it returns a different value.
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC20
* applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
contract ERC20 is Context, IERC20, IERC20Metadata {
mapping(address => uint256) private _balances;
mapping(address => mapping(address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* All two of these values are immutable: they can only be set once during
* construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual override returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the default value returned by this function, unless
* it's overridden.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual override returns (uint8) {
return 18;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual override returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual override returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address to, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_transfer(owner, to, amount);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_approve(owner, spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
* - the caller must have allowance for ``from``'s tokens of at least
* `amount`.
*/
function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, amount);
_transfer(from, to, amount);
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, allowance(owner, spender) + addedValue);
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
address owner = _msgSender();
uint256 currentAllowance = allowance(owner, spender);
require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
unchecked {
_approve(owner, spender, currentAllowance - subtractedValue);
}
return true;
}
/**
* @dev Moves `amount` of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
*/
function _transfer(address from, address to, uint256 amount) internal virtual {
require(from != address(0), "ERC20: transfer from the zero address");
require(to != address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(from, to, amount);
uint256 fromBalance = _balances[from];
require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
unchecked {
_balances[from] = fromBalance - amount;
// Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
// decrementing then incrementing.
_balances[to] += amount;
}
emit Transfer(from, to, amount);
_afterTokenTransfer(from, to, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply += amount;
unchecked {
// Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
_balances[account] += amount;
}
emit Transfer(address(0), account, amount);
_afterTokenTransfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
uint256 accountBalance = _balances[account];
require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
unchecked {
_balances[account] = accountBalance - amount;
// Overflow not possible: amount <= accountBalance <= totalSupply.
_totalSupply -= amount;
}
emit Transfer(account, address(0), amount);
_afterTokenTransfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(address owner, address spender, uint256 amount) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Updates `owner` s allowance for `spender` based on spent `amount`.
*
* Does not update the allowance amount in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Might emit an {Approval} event.
*/
function _spendAllowance(address owner, address spender, uint256 amount) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance != type(uint256).max) {
require(currentAllowance >= amount, "ERC20: insufficient allowance");
unchecked {
_approve(owner, spender, currentAllowance - amount);
}
}
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {}
/**
* @dev Hook that is called after any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* has been transferred to `to`.
* - when `from` is zero, `amount` tokens have been minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens have been burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/ERC20Permit.sol)
pragma solidity ^0.8.0;
import "./IERC20Permit.sol";
import "../ERC20.sol";
import "../../../utils/cryptography/ECDSA.sol";
import "../../../utils/cryptography/EIP712.sol";
import "../../../utils/Counters.sol";
/**
* @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* _Available since v3.4._
*/
abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712 {
using Counters for Counters.Counter;
mapping(address => Counters.Counter) private _nonces;
// solhint-disable-next-line var-name-mixedcase
bytes32 private constant _PERMIT_TYPEHASH =
keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
/**
* @dev In previous versions `_PERMIT_TYPEHASH` was declared as `immutable`.
* However, to ensure consistency with the upgradeable transpiler, we will continue
* to reserve a slot.
* @custom:oz-renamed-from _PERMIT_TYPEHASH
*/
// solhint-disable-next-line var-name-mixedcase
bytes32 private _PERMIT_TYPEHASH_DEPRECATED_SLOT;
/**
* @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
*
* It's a good idea to use the same `name` that is defined as the ERC20 token name.
*/
constructor(string memory name) EIP712(name, "1") {}
/**
* @inheritdoc IERC20Permit
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) public virtual override {
require(block.timestamp <= deadline, "ERC20Permit: expired deadline");
bytes32 structHash = keccak256(abi.encode(_PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline));
bytes32 hash = _hashTypedDataV4(structHash);
address signer = ECDSA.recover(hash, v, r, s);
require(signer == owner, "ERC20Permit: invalid signature");
_approve(owner, spender, value);
}
/**
* @inheritdoc IERC20Permit
*/
function nonces(address owner) public view virtual override returns (uint256) {
return _nonces[owner].current();
}
/**
* @inheritdoc IERC20Permit
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view override returns (bytes32) {
return _domainSeparatorV4();
}
/**
* @dev "Consume a nonce": return the current value and increment.
*
* _Available since v4.1._
*/
function _useNonce(address owner) internal virtual returns (uint256 current) {
Counters.Counter storage nonce = _nonces[owner];
current = nonce.current();
nonce.increment();
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*
* _Available since v4.1._
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
* Revert on invalid signature.
*/
function safePermit(
IERC20Permit token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return
success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Counters.sol)
pragma solidity ^0.8.0;
/**
* @title Counters
* @author Matt Condon (@shrugs)
* @dev Provides counters that can only be incremented, decremented or reset. This can be used e.g. to track the number
* of elements in a mapping, issuing ERC721 ids, or counting request ids.
*
* Include with `using Counters for Counters.Counter;`
*/
library Counters {
struct Counter {
// This variable should never be directly accessed by users of the library: interactions must be restricted to
// the library's function. As of Solidity v0.5.2, this cannot be enforced, though there is a proposal to add
// this feature: see https://github.com/ethereum/solidity/issues/4637
uint256 _value; // default: 0
}
function current(Counter storage counter) internal view returns (uint256) {
return counter._value;
}
function increment(Counter storage counter) internal {
unchecked {
counter._value += 1;
}
}
function decrement(Counter storage counter) internal {
uint256 value = counter._value;
require(value > 0, "Counter: decrement overflow");
unchecked {
counter._value = value - 1;
}
}
function reset(Counter storage counter) internal {
counter._value = 0;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.0;
import "../Strings.sol";
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS,
InvalidSignatureV // Deprecated in v4.8
}
function _throwError(RecoverError error) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert("ECDSA: invalid signature");
} else if (error == RecoverError.InvalidSignatureLength) {
revert("ECDSA: invalid signature length");
} else if (error == RecoverError.InvalidSignatureS) {
revert("ECDSA: invalid signature 's' value");
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature` or error string. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
/// @solidity memory-safe-assembly
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength);
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, signature);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*
* _Available since v4.2._
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, r, vs);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature);
}
return (signer, RecoverError.NoError);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, v, r, s);
_throwError(error);
return recovered;
}
/**
* @dev Returns an Ethereum Signed Message, created from a `hash`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
// 32 is the length in bytes of hash,
// enforced by the type signature above
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, "\x19Ethereum Signed Message:\n32")
mstore(0x1c, hash)
message := keccak256(0x00, 0x3c)
}
}
/**
* @dev Returns an Ethereum Signed Message, created from `s`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
}
/**
* @dev Returns an Ethereum Signed Typed Data, created from a
* `domainSeparator` and a `structHash`. This produces hash corresponding
* to the one signed with the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
* JSON-RPC method as part of EIP-712.
*
* See {recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
/// @solidity memory-safe-assembly
assembly {
let ptr := mload(0x40)
mstore(ptr, "\x19\x01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
data := keccak256(ptr, 0x42)
}
}
/**
* @dev Returns an Ethereum Signed Data with intended validator, created from a
* `validator` and `data` according to the version 0 of EIP-191.
*
* See {recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19\x00", validator, data));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/EIP712.sol)
pragma solidity ^0.8.8;
import "./ECDSA.sol";
import "../ShortStrings.sol";
import "../../interfaces/IERC5267.sol";
/**
* @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
*
* The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible,
* thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding
* they need in their contracts using a combination of `abi.encode` and `keccak256`.
*
* This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
* scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
* ({_hashTypedDataV4}).
*
* The implementation of the domain separator was designed to be as efficient as possible while still properly updating
* the chain id to protect against replay attacks on an eventual fork of the chain.
*
* NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
* https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
*
* NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
* separator of the implementation contract. This will cause the `_domainSeparatorV4` function to always rebuild the
* separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
*
* _Available since v3.4._
*
* @custom:oz-upgrades-unsafe-allow state-variable-immutable state-variable-assignment
*/
abstract contract EIP712 is IERC5267 {
using ShortStrings for *;
bytes32 private constant _TYPE_HASH =
keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
// Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
// invalidate the cached domain separator if the chain id changes.
bytes32 private immutable _cachedDomainSeparator;
uint256 private immutable _cachedChainId;
address private immutable _cachedThis;
bytes32 private immutable _hashedName;
bytes32 private immutable _hashedVersion;
ShortString private immutable _name;
ShortString private immutable _version;
string private _nameFallback;
string private _versionFallback;
/**
* @dev Initializes the domain separator and parameter caches.
*
* The meaning of `name` and `version` is specified in
* https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
*
* - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
* - `version`: the current major version of the signing domain.
*
* NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
* contract upgrade].
*/
constructor(string memory name, string memory version) {
_name = name.toShortStringWithFallback(_nameFallback);
_version = version.toShortStringWithFallback(_versionFallback);
_hashedName = keccak256(bytes(name));
_hashedVersion = keccak256(bytes(version));
_cachedChainId = block.chainid;
_cachedDomainSeparator = _buildDomainSeparator();
_cachedThis = address(this);
}
/**
* @dev Returns the domain separator for the current chain.
*/
function _domainSeparatorV4() internal view returns (bytes32) {
if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
return _cachedDomainSeparator;
} else {
return _buildDomainSeparator();
}
}
function _buildDomainSeparator() private view returns (bytes32) {
return keccak256(abi.encode(_TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
}
/**
* @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
* function returns the hash of the fully encoded EIP712 message for this domain.
*
* This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
*
* ```solidity
* bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
* keccak256("Mail(address to,string contents)"),
* mailTo,
* keccak256(bytes(mailContents))
* )));
* address signer = ECDSA.recover(digest, signature);
* ```
*/
function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
return ECDSA.toTypedDataHash(_domainSeparatorV4(), structHash);
}
/**
* @dev See {EIP-5267}.
*
* _Available since v4.9._
*/
function eip712Domain()
public
view
virtual
override
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
)
{
return (
hex"0f", // 01111
_name.toStringWithFallback(_nameFallback),
_version.toStringWithFallback(_versionFallback),
block.chainid,
address(this),
bytes32(0),
new uint256[](0)
);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1, "Math: mulDiv overflow");
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/ShortStrings.sol)
pragma solidity ^0.8.8;
import "./StorageSlot.sol";
// | string | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA |
// | length | 0x BB |
type ShortString is bytes32;
/**
* @dev This library provides functions to convert short memory strings
* into a `ShortString` type that can be used as an immutable variable.
*
* Strings of arbitrary length can be optimized using this library if
* they are short enough (up to 31 bytes) by packing them with their
* length (1 byte) in a single EVM word (32 bytes). Additionally, a
* fallback mechanism can be used for every other case.
*
* Usage example:
*
* ```solidity
* contract Named {
* using ShortStrings for *;
*
* ShortString private immutable _name;
* string private _nameFallback;
*
* constructor(string memory contractName) {
* _name = contractName.toShortStringWithFallback(_nameFallback);
* }
*
* function name() external view returns (string memory) {
* return _name.toStringWithFallback(_nameFallback);
* }
* }
* ```
*/
library ShortStrings {
// Used as an identifier for strings longer than 31 bytes.
bytes32 private constant _FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;
error StringTooLong(string str);
error InvalidShortString();
/**
* @dev Encode a string of at most 31 chars into a `ShortString`.
*
* This will trigger a `StringTooLong` error is the input string is too long.
*/
function toShortString(string memory str) internal pure returns (ShortString) {
bytes memory bstr = bytes(str);
if (bstr.length > 31) {
revert StringTooLong(str);
}
return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
}
/**
* @dev Decode a `ShortString` back to a "normal" string.
*/
function toString(ShortString sstr) internal pure returns (string memory) {
uint256 len = byteLength(sstr);
// using `new string(len)` would work locally but is not memory safe.
string memory str = new string(32);
/// @solidity memory-safe-assembly
assembly {
mstore(str, len)
mstore(add(str, 0x20), sstr)
}
return str;
}
/**
* @dev Return the length of a `ShortString`.
*/
function byteLength(ShortString sstr) internal pure returns (uint256) {
uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
if (result > 31) {
revert InvalidShortString();
}
return result;
}
/**
* @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
*/
function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
if (bytes(value).length < 32) {
return toShortString(value);
} else {
StorageSlot.getStringSlot(store).value = value;
return ShortString.wrap(_FALLBACK_SENTINEL);
}
}
/**
* @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
*/
function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
if (ShortString.unwrap(value) != _FALLBACK_SENTINEL) {
return toString(value);
} else {
return store;
}
}
/**
* @dev Return the length of a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
*
* WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
* actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
*/
function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
if (ShortString.unwrap(value) != _FALLBACK_SENTINEL) {
return byteLength(value);
} else {
return bytes(store).length;
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
pragma solidity ^0.8.0;
/**
* @dev Library for reading and writing primitive types to specific storage slots.
*
* Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
* This library helps with reading and writing to such slots without the need for inline assembly.
*
* The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
*
* Example usage to set ERC1967 implementation slot:
* ```solidity
* contract ERC1967 {
* bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
*
* function _getImplementation() internal view returns (address) {
* return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
* }
*
* function _setImplementation(address newImplementation) internal {
* require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
* StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
* }
* }
* ```
*
* _Available since v4.1 for `address`, `bool`, `bytes32`, `uint256`._
* _Available since v4.9 for `string`, `bytes`._
*/
library StorageSlot {
struct AddressSlot {
address value;
}
struct BooleanSlot {
bool value;
}
struct Bytes32Slot {
bytes32 value;
}
struct Uint256Slot {
uint256 value;
}
struct StringSlot {
string value;
}
struct BytesSlot {
bytes value;
}
/**
* @dev Returns an `AddressSlot` with member `value` located at `slot`.
*/
function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `BooleanSlot` with member `value` located at `slot`.
*/
function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
*/
function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `Uint256Slot` with member `value` located at `slot`.
*/
function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` with member `value` located at `slot`.
*/
function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` representation of the string storage pointer `store`.
*/
function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := store.slot
}
}
/**
* @dev Returns an `BytesSlot` with member `value` located at `slot`.
*/
function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
*/
function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := store.slot
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
import "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toString(int256 value) internal pure returns (string memory) {
return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return keccak256(bytes(a)) == keccak256(bytes(b));
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Callback for IUniswapV3PoolActions#swap
/// @notice Any contract that calls IUniswapV3PoolActions#swap must implement this interface
interface IUniswapV3SwapCallback {
/// @notice Called to `msg.sender` after executing a swap via IUniswapV3Pool#swap.
/// @dev In the implementation you must pay the pool tokens owed for the swap.
/// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory.
/// amount0Delta and amount1Delta can both be 0 if no tokens were swapped.
/// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by
/// the end of the swap. If positive, the callback must send that amount of token0 to the pool.
/// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by
/// the end of the swap. If positive, the callback must send that amount of token1 to the pool.
/// @param data Any data passed through by the caller via the IUniswapV3PoolActions#swap call
function uniswapV3SwapCallback(
int256 amount0Delta,
int256 amount1Delta,
bytes calldata data
) external;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.4.0;
/// @title FixedPoint96
/// @notice A library for handling binary fixed point numbers, see https://en.wikipedia.org/wiki/Q_(number_format)
/// @dev Used in SqrtPriceMath.sol
library FixedPoint96 {
uint8 internal constant RESOLUTION = 96;
uint256 internal constant Q96 = 0x1000000000000000000000000;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Immutable state
/// @notice Functions that return immutable state of the router
interface IPeripheryImmutableState {
/// @return Returns the address of the Uniswap V3 factory
function factory() external view returns (address);
/// @return Returns the address of WETH9
function WETH9() external view returns (address);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.5;
pragma abicoder v2;
import '@uniswap/v3-core/contracts/interfaces/callback/IUniswapV3SwapCallback.sol';
/// @title Router token swapping functionality
/// @notice Functions for swapping tokens via Uniswap V3
interface ISwapRouter is IUniswapV3SwapCallback {
struct ExactInputSingleParams {
address tokenIn;
address tokenOut;
uint24 fee;
address recipient;
uint256 deadline;
uint256 amountIn;
uint256 amountOutMinimum;
uint160 sqrtPriceLimitX96;
}
/// @notice Swaps `amountIn` of one token for as much as possible of another token
/// @param params The parameters necessary for the swap, encoded as `ExactInputSingleParams` in calldata
/// @return amountOut The amount of the received token
function exactInputSingle(ExactInputSingleParams calldata params) external payable returns (uint256 amountOut);
struct ExactInputParams {
bytes path;
address recipient;
uint256 deadline;
uint256 amountIn;
uint256 amountOutMinimum;
}
/// @notice Swaps `amountIn` of one token for as much as possible of another along the specified path
/// @param params The parameters necessary for the multi-hop swap, encoded as `ExactInputParams` in calldata
/// @return amountOut The amount of the received token
function exactInput(ExactInputParams calldata params) external payable returns (uint256 amountOut);
struct ExactOutputSingleParams {
address tokenIn;
address tokenOut;
uint24 fee;
address recipient;
uint256 deadline;
uint256 amountOut;
uint256 amountInMaximum;
uint160 sqrtPriceLimitX96;
}
/// @notice Swaps as little as possible of one token for `amountOut` of another token
/// @param params The parameters necessary for the swap, encoded as `ExactOutputSingleParams` in calldata
/// @return amountIn The amount of the input token
function exactOutputSingle(ExactOutputSingleParams calldata params) external payable returns (uint256 amountIn);
struct ExactOutputParams {
bytes path;
address recipient;
uint256 deadline;
uint256 amountOut;
uint256 amountInMaximum;
}
/// @notice Swaps as little as possible of one token for `amountOut` of another along the specified path (reversed)
/// @param params The parameters necessary for the multi-hop swap, encoded as `ExactOutputParams` in calldata
/// @return amountIn The amount of the input token
function exactOutput(ExactOutputParams calldata params) external payable returns (uint256 amountIn);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;
import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "@openzeppelin/contracts/token/ERC20/extensions/ERC20Permit.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/security/Pausable.sol";
import "./interfaces/IDecentralizedIndex.sol";
import "./interfaces/IFlashLoanRecipient.sol";
import "./interfaces/IProtocolFeeRouter.sol";
import "./interfaces/ITokenRewards.sol";
import "./interfaces/IUniswapV2Factory.sol";
import "./interfaces/IUniswapV2Router02.sol";
import "./StakingPoolToken.sol";
abstract contract DecentralizedIndex is
IDecentralizedIndex,
ERC20,
ERC20Permit,
Pausable
{
using SafeERC20 for IERC20;
uint256 constant DEN = 10000;
uint256 constant SWAP_DELAY = 20; // seconds
address public STABLECOIN;
IProtocolFeeRouter PROTOCOL_FEE_ROUTER;
uint256 public constant override FLASH_FEE = 10; // 10 STABLECOIN
address public immutable override PAIRED_LP_TOKEN;
address immutable V2_ROUTER;
address V2_POOL;
address immutable WETH;
IndexType public immutable override indexType;
uint256 public immutable override created;
address public immutable override lpStakingPool;
address public immutable override lpRewardsToken;
address public override partner;
Fees public fees;
IndexAssetInfo[] public indexTokens;
mapping(address => bool) _isTokenInIndex;
mapping(address => uint256) _fundTokenIdx;
mapping(address => bool) public whiteListArb;
uint256 _partnerFirstWrapped;
uint256 _lastSwap;
bool _swapping;
bool _swapAndFeeOn = true;
bool _unlocked = true;
bool _initialized;
event FlashLoan(
address indexed executor,
address indexed recipient,
address token,
uint256 amount
);
event Buy(
address indexed user,
uint indexed buyFee,
address token,
uint256 amount
);
event Sell(
address indexed user,
uint indexed sellFee,
address token,
uint256 amount
);
modifier lock() {
require(_unlocked, "LOCKED");
_unlocked = false;
_;
_unlocked = true;
}
modifier onlyPartner() {
require(_msgSender() == partner, "PARTNER");
_;
}
modifier onlyRewards() {
require(
_msgSender() == StakingPoolToken(lpStakingPool).poolRewards(),
"REWARDS"
);
_;
}
modifier noSwapOrFee() {
_swapAndFeeOn = false;
_;
_swapAndFeeOn = true;
}
constructor(
IndexType _idxType,
IDeploy.Deploy memory _deploy
) ERC20(_deploy._name, _deploy._symbol) ERC20Permit(_deploy._name) {
require(_deploy._fees.buy <= (DEN * 20) / 100, "lte20%");
require(_deploy._fees.sell <= (DEN * 20) / 100, "lte20%");
require(_deploy._fees.burn <= (DEN * 70) / 100, "lte70%");
require(_deploy._fees.bond <= (DEN * 99) / 100, "lt99%");
require(_deploy._fees.debond <= (DEN * 99) / 100, "lt99%");
require(_deploy._fees.partner <= (DEN * 5) / 100, "lte5%");
STABLECOIN = _deploy._stableCoin;
PROTOCOL_FEE_ROUTER = IProtocolFeeRouter(_deploy._feeRouter);
WETH = IUniswapV2Router02(_deploy._v2Router).WETH();
indexType = _idxType;
created = block.timestamp;
fees = _deploy._fees;
partner = _deploy._partner;
lpRewardsToken = _deploy._lpRewardsToken;
V2_ROUTER = _deploy._v2Router;
address _finalPairedLpToken = _deploy._pairedLpToken == address(0)
? STABLECOIN
: _deploy._pairedLpToken;
PAIRED_LP_TOKEN = _finalPairedLpToken;
lpStakingPool = address(
new StakingPoolToken(
IDeploy.DeployStakinPool({
_name: string(abi.encodePacked("Staked ", _deploy._name)),
_symbol: string(abi.encodePacked("s", _deploy._symbol)),
_pairedLpToken: _finalPairedLpToken,
_stakingToken: address(0),
_rewardsToken: _deploy._lpRewardsToken,
_stakeUserRestriction: _deploy._stakeRestriction
? _msgSender()
: address(0),
_feeRouter: address(PROTOCOL_FEE_ROUTER),
_WETH: WETH,
_stableCoin: STABLECOIN,
_v2Router: _deploy._v2Router,
_quoter: _deploy._quoter,
_routerv3: _deploy._routerv3
})
)
);
emit Create(address(this), _msgSender());
// IBlast(0x4300000000000000000000000000000000000002)
// .configureClaimableGas();
// IBlast(0x2536FE9ab3F511540F2f9e2eC2A805005C3Dd800)
// .configurePointsOperator(_msgSender());
// IBlast(0x4300000000000000000000000000000000000002).configureGovernor(
// _msgSender()
// );
}
function initialize() external {
require(!_initialized, "INITED");
address _v2Pool = IUniswapV2Factory(
IUniswapV2Router02(V2_ROUTER).factory()
).createPair(address(this), PAIRED_LP_TOKEN);
V2_POOL = _v2Pool;
StakingPoolToken(lpStakingPool).init(V2_POOL);
_initialized = true;
}
function _transfer(
address _from,
address _to,
uint256 _amount
) internal virtual override {
bool isArbBot = whiteListArb[msg.sender];
bool _buy = _from == V2_POOL && _to != address(V2_ROUTER);
bool _sell = _to == V2_POOL;
uint256 _fee;
if (!_swapping && _swapAndFeeOn) {
if (_from != V2_POOL) {
_processPreSwapFeesAndSwap();
}
if (_buy && fees.buy > 0) {
if (isArbBot) {
_fee = (_amount * (fees.buy / 2)) / DEN;
} else {
_fee = (_amount * fees.buy) / DEN;
}
super._transfer(_from, address(this), _fee);
emit Buy(msg.sender, _fee, address(this), _amount);
}
if (_sell && fees.sell > 0) {
if (isArbBot) {
_fee = (_amount * (fees.sell / 2)) / DEN;
} else {
_fee = (_amount * fees.sell) / DEN;
}
super._transfer(_from, address(this), _fee);
emit Sell(msg.sender, _fee, address(this), _amount);
}
}
_processBurnFee(_fee);
super._transfer(_from, _to, _amount - _fee);
}
function _processPreSwapFeesAndSwap() internal {
bool _passesSwapDelay = block.timestamp > _lastSwap + SWAP_DELAY;
uint256 _bal = balanceOf(address(this));
uint256 _lpBal = balanceOf(V2_POOL);
uint256 _min = (_lpBal * 1) / 100; // 1% LP bal
if (_passesSwapDelay && _bal >= _min && _lpBal > 0) {
_swapping = true;
_lastSwap = block.timestamp;
uint256 _totalAmt = _bal >= _min * 25
? _min * 25
: _bal >= _min * 10
? _min * 10
: _min;
uint256 _partnerAmt;
if (fees.partner > 0 && partner != address(0)) {
_partnerAmt = (_totalAmt * fees.partner) / DEN;
super._transfer(address(this), partner, _partnerAmt);
}
_feeSwap(_totalAmt - _partnerAmt);
_swapping = false;
}
}
function _processBurnFee(uint256 _amtToProcess) internal {
if (_amtToProcess == 0 || fees.burn == 0) {
return;
}
_burn(address(this), (_amtToProcess * fees.burn) / DEN);
}
function _feeSwap(uint256 _amount) internal {
address[] memory path = new address[](2);
path[0] = address(this);
path[1] = PAIRED_LP_TOKEN;
_approve(address(this), V2_ROUTER, _amount);
address _rewards = StakingPoolToken(lpStakingPool).poolRewards();
uint256 _pairedLpBalBefore = IERC20(PAIRED_LP_TOKEN).balanceOf(
address(this)
);
address _recipient = PAIRED_LP_TOKEN == lpRewardsToken
? address(this)
: _rewards;
IUniswapV2Router02(V2_ROUTER)
.swapExactTokensForTokensSupportingFeeOnTransferTokens(
_amount,
0,
path,
_recipient,
block.timestamp
);
if (PAIRED_LP_TOKEN == lpRewardsToken) {
uint256 _newPairedLpTkns = IERC20(PAIRED_LP_TOKEN).balanceOf(
address(this)
) - _pairedLpBalBefore;
if (_newPairedLpTkns > 0) {
IERC20(PAIRED_LP_TOKEN).safeIncreaseAllowance(
_rewards,
_newPairedLpTkns
);
ITokenRewards(_rewards).depositRewards(_newPairedLpTkns);
}
} else if (IERC20(PAIRED_LP_TOKEN).balanceOf(_rewards) > 0) {
ITokenRewards(_rewards).depositFromPairedLpToken(0, 0);
}
}
function _transferFromAndValidate(
IERC20 _token,
address _sender,
uint256 _amount
) internal {
uint256 _balanceBefore = _token.balanceOf(address(this));
_token.transferFrom(_sender, address(this), _amount);
require(
_token.balanceOf(address(this)) >= _balanceBefore + _amount,
"TFRVAL"
);
}
function _bond() internal {
if (_partnerFirstWrapped == 0 && _msgSender() == partner) {
_partnerFirstWrapped = block.timestamp;
}
}
function _canWrapFeeFree(address _wrapper) internal view returns (bool) {
return
_isFirstIn() ||
(_wrapper == partner &&
_partnerFirstWrapped == 0 &&
block.timestamp <= created + 7 days);
}
function _isFirstIn() internal view returns (bool) {
return totalSupply() == 0;
}
function _isLastOut(uint256 _debondAmount) internal view returns (bool) {
return _debondAmount >= (totalSupply() * 98) / 100;
}
function processPreSwapFeesAndSwap() external override onlyRewards {
_processPreSwapFeesAndSwap();
}
function BOND_FEE() external view override returns (uint256) {
return fees.bond;
}
function DEBOND_FEE() external view override returns (uint256) {
return fees.debond;
}
function isAsset(address _token) public view override returns (bool) {
return _isTokenInIndex[_token];
}
function getAllAssets()
external
view
override
returns (IndexAssetInfo[] memory)
{
return indexTokens;
}
function burn(uint256 _amount) external lock {
_burn(_msgSender(), _amount);
}
function addLiquidityV2(
uint256 _idxLPTokens,
uint256 _pairedLPTokens,
uint256 _slippage, // 100 == 10%, 1000 == 100%
uint256 _deadline
) external override lock noSwapOrFee whenNotPaused {
uint256 _idxTokensBefore = balanceOf(address(this));
uint256 _pairedBefore = IERC20(PAIRED_LP_TOKEN).balanceOf(
address(this)
);
super._transfer(_msgSender(), address(this), _idxLPTokens);
_approve(address(this), V2_ROUTER, _idxLPTokens);
IERC20(PAIRED_LP_TOKEN).transferFrom(
_msgSender(),
address(this),
_pairedLPTokens
);
IERC20(PAIRED_LP_TOKEN).safeIncreaseAllowance(
V2_ROUTER,
_pairedLPTokens
);
IUniswapV2Router02(V2_ROUTER).addLiquidity(
address(this),
PAIRED_LP_TOKEN,
_idxLPTokens,
_pairedLPTokens,
(_idxLPTokens * (1000 - _slippage)) / 1000,
(_pairedLPTokens * (1000 - _slippage)) / 1000,
_msgSender(),
_deadline
);
uint256 _remainingAllowance = IERC20(PAIRED_LP_TOKEN).allowance(
address(this),
V2_ROUTER
);
if (_remainingAllowance > 0) {
IERC20(PAIRED_LP_TOKEN).safeDecreaseAllowance(
V2_ROUTER,
_remainingAllowance
);
}
// check & refund excess tokens from LPing
if (balanceOf(address(this)) > _idxTokensBefore) {
super._transfer(
address(this),
_msgSender(),
balanceOf(address(this)) - _idxTokensBefore
);
}
if (IERC20(PAIRED_LP_TOKEN).balanceOf(address(this)) > _pairedBefore) {
IERC20(PAIRED_LP_TOKEN).transfer(
_msgSender(),
IERC20(PAIRED_LP_TOKEN).balanceOf(address(this)) - _pairedBefore
);
}
emit AddLiquidity(_msgSender(), _idxLPTokens, _pairedLPTokens);
}
function removeLiquidityV2(
uint256 _lpTokens,
uint256 _minIdxTokens, // 0 == 100% slippage
uint256 _minPairedLpToken, // 0 == 100% slippage
uint256 _deadline
) external override lock noSwapOrFee whenNotPaused {
_lpTokens = _lpTokens == 0
? IERC20(V2_POOL).balanceOf(_msgSender())
: _lpTokens;
require(_lpTokens > 0, "LPREM");
IERC20(V2_POOL).transferFrom(_msgSender(), address(this), _lpTokens);
IERC20(V2_POOL).safeIncreaseAllowance(V2_ROUTER, _lpTokens);
IUniswapV2Router02(V2_ROUTER).removeLiquidity(
address(this),
PAIRED_LP_TOKEN,
_lpTokens,
_minIdxTokens,
_minPairedLpToken,
_msgSender(),
_deadline
);
emit RemoveLiquidity(_msgSender(), _lpTokens);
}
function flash(
address _recipient,
address _token,
uint256 _amount,
bytes calldata _data
) external override lock whenNotPaused {
require(_isTokenInIndex[_token], "ONLYPODTKN");
bool isArbBot = whiteListArb[msg.sender];
if (isArbBot) {
uint256 _balance = IERC20(_token).balanceOf(address(this));
IERC20(_token).transfer(_recipient, _amount);
IFlashLoanRecipient(_recipient).callback(_data);
require(
IERC20(_token).balanceOf(address(this)) >= _balance,
"FLASHAFTER"
);
emit FlashLoan(_msgSender(), _recipient, _token, _amount);
} else {
uint256 _amountSTABLECOIN = FLASH_FEE *
10 ** IERC20Metadata(STABLECOIN).decimals();
address _rewards = StakingPoolToken(lpStakingPool).poolRewards();
address _feeRecipient = lpRewardsToken == STABLECOIN
? address(this)
: PAIRED_LP_TOKEN == STABLECOIN
? _rewards
: partner;
IERC20(STABLECOIN).transferFrom(
_msgSender(),
_feeRecipient,
_amountSTABLECOIN
);
if (lpRewardsToken == STABLECOIN) {
IERC20(STABLECOIN).safeIncreaseAllowance(
_rewards,
_amountSTABLECOIN
);
ITokenRewards(_rewards).depositRewards(_amountSTABLECOIN);
}
uint256 _balance = IERC20(_token).balanceOf(address(this));
IERC20(_token).transfer(_recipient, _amount);
IFlashLoanRecipient(_recipient).callback(_data);
require(
IERC20(_token).balanceOf(address(this)) >= _balance,
"FLASHAFTER"
);
emit FlashLoan(_msgSender(), _recipient, _token, _amount);
}
}
function setPartner(address _partner) external onlyPartner {
partner = _partner;
}
function setPartnerFee(uint256 _fee) external onlyPartner {
require(_fee < fees.partner, "LTCUR");
fees.partner = _fee;
}
function setBurnFee(uint256 _fee) external onlyPartner {
require(_fee <= (DEN * 70) / 100, "lte70%");
fees.burn = _fee;
}
function setBuyFee(uint256 _fee) external onlyPartner {
require(_fee <= (DEN * 20) / 100, "lte20%");
fees.buy = _fee;
}
function setSellFee(uint256 _fee) external onlyPartner {
require(_fee <= (DEN * 20) / 100, "lte20%");
fees.sell = _fee;
}
function setBondFee(uint256 _fee) external onlyPartner {
require(_fee <= (DEN * 99) / 100, "lt99%");
fees.bond = _fee;
}
function setDebondFee(uint256 _fee) external onlyPartner {
require(_fee <= (DEN * 99) / 100, "lt99%");
fees.debond = _fee;
}
function rescueERC20(address _token) external lock onlyPartner {
IERC20(_token).transfer(
partner,
IERC20(_token).balanceOf(address(this))
);
}
function rescueETH() external lock onlyPartner {
require(address(this).balance > 0, "NOETH");
(bool _sent, ) = partner.call{value: address(this).balance}("");
require(_sent, "SENT");
}
function setWhitelistArb(address arb, bool isAllow) external onlyPartner {
whiteListArb[arb] = isAllow;
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.5;
/// @title Callback for IPoolActions#swap
/// @notice Any contract that calls IPoolActions#swap must implement this interface
interface ISwapCallback {
/// @notice Called to `msg.sender` after executing a swap via IPool#swap.
/// @dev In the implementation you must pay the pool tokens owed for the swap.
/// The caller of this method must be checked to be a Pool deployed by the canonical PoolFactory.
/// amount0Delta and amount1Delta can both be 0 if no tokens were swapped.
/// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by
/// the end of the swap. If positive, the callback must send that amount of token0 to the pool.
/// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by
/// the end of the swap. If positive, the callback must send that amount of token1 to the pool.
/// @param data Any data passed through by the caller via the IPoolActions#swap call
function uniswapV3SwapCallback(int256 amount0Delta, int256 amount1Delta, bytes calldata data) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
interface IDecentralizedIndex is IERC20 {
enum IndexType {
WEIGHTED,
UNWEIGHTED
}
// all fees: 1 == 0.01%, 10 == 0.1%, 100 == 1%
struct Fees {
uint256 burn;
uint256 bond;
uint256 debond;
uint256 buy;
uint256 sell;
uint256 partner;
}
struct IndexAssetInfo {
address token;
uint256 weighting;
uint256 basePriceUSDX96;
address c1; // arbitrary contract/address field we can use for an index
uint256 q1; // arbitrary quantity/number field we can use for an index
}
event Create(address indexed newIdx, address indexed wallet);
event Bond(
address indexed wallet,
address indexed token,
uint256 amountTokensBonded,
uint256 amountTokensMinted,
uint256 indexed feesBond
);
event Debond(
address indexed wallet,
uint256 amountDebonded,
uint256 indexed feesDebond
);
event AddLiquidity(
address indexed wallet,
uint256 amountTokens,
uint256 amountDAI
);
event RemoveLiquidity(address indexed wallet, uint256 amountLiquidity);
function BOND_FEE() external view returns (uint256);
function DEBOND_FEE() external view returns (uint256);
function STABLECOIN() external view returns (address);
function FLASH_FEE() external view returns (uint256);
function PAIRED_LP_TOKEN() external view returns (address);
function indexType() external view returns (IndexType);
function created() external view returns (uint256);
function lpStakingPool() external view returns (address);
function lpRewardsToken() external view returns (address);
function partner() external view returns (address);
function isAsset(address token) external view returns (bool);
function getAllAssets() external view returns (IndexAssetInfo[] memory);
function getInitialAmount(
address sToken,
uint256 sAmount,
address tToken
) external view returns (uint256);
function processPreSwapFeesAndSwap() external;
function bond(
address token,
uint256 amount,
uint256 amountMintMin
) external;
function debond(
uint256 amount,
address[] memory token,
uint8[] memory percentage
) external;
function addLiquidityV2(
uint256 idxTokens,
uint256 daiTokens,
uint256 slippage,
uint256 deadline
) external;
function removeLiquidityV2(
uint256 lpTokens,
uint256 minTokens,
uint256 minDAI,
uint256 deadline
) external;
function flash(
address recipient,
address token,
uint256 amount,
bytes calldata data
) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "./IDecentralizedIndex.sol";
interface IDeploy {
struct DeployStakinPool {
string _name;
string _symbol;
address _pairedLpToken;
address _stakingToken;
address _rewardsToken;
address _stakeUserRestriction;
address _feeRouter;
address _WETH;
address _stableCoin;
address _v2Router;
address _quoter;
address _routerv3;
}
struct Deploy {
string _name;
string _symbol;
IDecentralizedIndex.Fees _fees;
address[] _tokens;
uint256[] _weights;
address _partner;
address _pairedLpToken;
address _lpRewardsToken;
address _v2Router;
bool _stakeRestriction;
address _stableCoin;
address _feeRouter;
address _quoter;
address _routerv3;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;
interface IFlashLoanRecipient {
function callback(bytes calldata data) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;
import './IProtocolFees.sol';
interface IProtocolFeeRouter {
function protocolFees() external view returns (IProtocolFees);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;
interface IProtocolFees {
event SetYieldAdmin(uint256 newFee);
event SetYieldBurn(uint256 newFee);
function DEN() external view returns (uint256);
function yieldAdmin() external view returns (uint256);
function yieldBurn() external view returns (uint256);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.5;
pragma abicoder v2;
/// @title QuoterV2 Interface
/// @notice Supports quoting the calculated amounts from exact input or exact output swaps.
/// @notice For each pool also tells you the number of initialized ticks crossed and the sqrt price of the pool after the swap.
/// @dev These functions are not marked view because they rely on calling non-view functions and reverting
/// to compute the result. They are also not gas efficient and should not be called on-chain.
interface IQuoterV2 {
/// @notice Returns the amount out received for a given exact input swap without executing the swap
/// @param path The path of the swap, i.e. each token pair and the pool fee
/// @param amountIn The amount of the first token to swap
/// @return amountOut The amount of the last token that would be received
/// @return sqrtPriceX96AfterList List of the sqrt price after the swap for each pool in the path
/// @return initializedTicksCrossedList List of the initialized ticks that the swap crossed for each pool in the path
/// @return gasEstimate The estimate of the gas that the swap consumes
function quoteExactInput(bytes memory path, uint256 amountIn)
external
returns (
uint256 amountOut,
uint160[] memory sqrtPriceX96AfterList,
uint32[] memory initializedTicksCrossedList,
uint256 gasEstimate
);
struct QuoteExactInputSingleParams {
address tokenIn;
address tokenOut;
uint256 amountIn;
uint24 fee;
uint160 sqrtPriceLimitX96;
}
/// @notice Returns the amount out received for a given exact input but for a swap of a single pool
/// @param params The params for the quote, encoded as `QuoteExactInputSingleParams`
/// tokenIn The token being swapped in
/// tokenOut The token being swapped out
/// fee The fee of the token pool to consider for the pair
/// amountIn The desired input amount
/// sqrtPriceLimitX96 The price limit of the pool that cannot be exceeded by the swap
/// @return amountOut The amount of `tokenOut` that would be received
/// @return sqrtPriceX96After The sqrt price of the pool after the swap
/// @return initializedTicksCrossed The number of initialized ticks that the swap crossed
/// @return gasEstimate The estimate of the gas that the swap consumes
function quoteExactInputSingle(QuoteExactInputSingleParams memory params)
external
returns (
uint256 amountOut,
uint160 sqrtPriceX96After,
uint32 initializedTicksCrossed,
uint256 gasEstimate
);
/// @notice Returns the amount in required for a given exact output swap without executing the swap
/// @param path The path of the swap, i.e. each token pair and the pool fee. Path must be provided in reverse order
/// @param amountOut The amount of the last token to receive
/// @return amountIn The amount of first token required to be paid
/// @return sqrtPriceX96AfterList List of the sqrt price after the swap for each pool in the path
/// @return initializedTicksCrossedList List of the initialized ticks that the swap crossed for each pool in the path
/// @return gasEstimate The estimate of the gas that the swap consumes
function quoteExactOutput(bytes memory path, uint256 amountOut)
external
returns (
uint256 amountIn,
uint160[] memory sqrtPriceX96AfterList,
uint32[] memory initializedTicksCrossedList,
uint256 gasEstimate
);
struct QuoteExactOutputSingleParams {
address tokenIn;
address tokenOut;
uint256 amount;
uint24 fee;
uint160 sqrtPriceLimitX96;
}
/// @notice Returns the amount in required to receive the given exact output amount but for a swap of a single pool
/// @param params The params for the quote, encoded as `QuoteExactOutputSingleParams`
/// tokenIn The token being swapped in
/// tokenOut The token being swapped out
/// fee The fee of the token pool to consider for the pair
/// amountOut The desired output amount
/// sqrtPriceLimitX96 The price limit of the pool that cannot be exceeded by the swap
/// @return amountIn The amount required as the input for the swap in order to receive `amountOut`
/// @return sqrtPriceX96After The sqrt price of the pool after the swap
/// @return initializedTicksCrossed The number of initialized ticks that the swap crossed
/// @return gasEstimate The estimate of the gas that the swap consumes
function quoteExactOutputSingle(QuoteExactOutputSingleParams memory params)
external
returns (
uint256 amountIn,
uint160 sqrtPriceX96After,
uint32 initializedTicksCrossed,
uint256 gasEstimate
);
function factory() external returns(address);
function WETH9() external returns(address);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;
interface IStakingPoolToken {
event Stake(address indexed executor, address indexed user, uint256 amount);
event Unstake(address indexed user, uint256 amount);
function indexFund() external view returns (address);
function stakingToken() external view returns (address);
function poolRewards() external view returns (address);
function stakeUserRestriction() external view returns (address);
function stake(address user, uint256 amount) external;
function unstake(uint256 amount) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;
import '@openzeppelin/contracts/token/ERC20/IERC20.sol';
interface ITOKEN is IERC20 {
event Burn(address indexed user, uint256 amount);
function burn(uint256 amount) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;
interface ITokenRewards {
event AddShares(address indexed wallet, uint256 amount);
event RemoveShares(address indexed wallet, uint256 amount);
event ClaimReward(address indexed wallet);
event DistributeReward(address indexed wallet, uint256 amount);
event DepositRewards(address indexed wallet, uint256 amount);
function totalShares() external view returns (uint256);
function totalStakers() external view returns (uint256);
function rewardsToken() external view returns (address);
function trackingToken() external view returns (address);
function depositFromPairedLpToken(
uint256 amount,
uint256 slippageOverride
) external;
function depositRewards(uint256 amount) external;
function claimReward(address wallet) external;
function setShares(
address wallet,
uint256 amount,
bool sharesRemoving
) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;
interface IUniswapV2Factory {
function feeTo() external view returns (address owner);
function yieldTo() external view returns (address owner);
function yieldCut() external view returns (uint);
function WETH() external view returns (address);
function ws() external view returns (address);
function createPair(
address tokenA,
address tokenB
) external returns (address pair);
function getPair(
address tokenA,
address tokenB
) external view returns (address pair);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;
interface IUniswapV2Pair {
function token0() external view returns (address);
function token1() external view returns (address);
function balanceOf(address user) external view returns (uint);
function totalSupply() external view returns (uint);
function kLast() external view returns (uint);
function getReserves()
external
view
returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;
interface IUniswapV2Router02 {
function factory() external view returns (address);
function WETH() external view returns (address);
function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) external pure returns (uint amountOut);
function getAmountsOut(uint amountIn, address[] calldata path) external view returns (uint[] memory amounts);
function getAmountsIn(uint amountOut, address[] calldata path) external view returns (uint[] memory amounts);
function addLiquidity(
address tokenA,
address tokenB,
uint amountADesired,
uint amountBDesired,
uint amountAMin,
uint amountBMin,
address to,
uint deadline
) external returns (uint amountA, uint amountB, uint liquidity);
function removeLiquidity(
address tokenA,
address tokenB,
uint liquidity,
uint amountAMin,
uint amountBMin,
address to,
uint deadline
) external returns (uint amountA, uint amountB);
function swapETHForExactTokens(
uint256 amountOut,
address[] calldata path,
address to,
uint256 deadline
) external payable returns (uint256[] memory amounts);
function swapExactTokensForTokens(
uint amountIn,
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external returns (uint[] memory amounts);
function swapExactETHForTokens(uint256 amountOutMin, address[] calldata path, address to, uint256 deadline)
external
payable
returns (uint256[] memory amounts);
function swapExactTokensForTokensSupportingFeeOnTransferTokens(
uint amountIn,
uint amountOutMin,
address[] calldata path,
address to,
uint deadline
) external;
function removeLiquidityETH(
address token,
uint liquidity,
uint amountTokenMin,
uint amountETHMin,
address to,
uint deadline
) external returns (uint amountToken, uint amountETH);
function quote(uint256 amountA, uint256 reserveA, uint256 reserveB) external view returns (uint256 amountB);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.5;
pragma abicoder v2;
import "./callback/ISwapCallback.sol";
/// @title Router token swapping functionality
/// @notice Functions for swapping tokens via Thruster CLMM
interface IUniswapV3Router is ISwapCallback {
struct ExactInputSingleParams {
address tokenIn;
address tokenOut;
uint24 fee;
address recipient;
// uint256 deadline;
uint256 amountIn;
uint256 amountOutMinimum;
uint160 sqrtPriceLimitX96;
}
/// @notice Swaps `amountIn` of one token for as much as possible of another token
/// @param params The parameters necessary for the swap, encoded as `ExactInputSingleParams` in calldata
/// @return amountOut The amount of the received token
function exactInputSingle(
ExactInputSingleParams calldata params
) external payable returns (uint256 amountOut);
struct ExactInputParams {
bytes path;
address recipient;
uint256 deadline;
uint256 amountIn;
uint256 amountOutMinimum;
}
/// @notice Swaps `amountIn` of one token for as much as possible of another along the specified path
/// @param params The parameters necessary for the multi-hop swap, encoded as `ExactInputParams` in calldata
/// @return amountOut The amount of the received token
function exactInput(
ExactInputParams calldata params
) external payable returns (uint256 amountOut);
struct ExactOutputSingleParams {
address tokenIn;
address tokenOut;
uint24 fee;
address recipient;
uint256 deadline;
uint256 amountOut;
uint256 amountInMaximum;
uint160 sqrtPriceLimitX96;
}
/// @notice Swaps as little as possible of one token for `amountOut` of another token
/// @param params The parameters necessary for the swap, encoded as `ExactOutputSingleParams` in calldata
/// @return amountIn The amount of the input token
function exactOutputSingle(
ExactOutputSingleParams calldata params
) external payable returns (uint256 amountIn);
struct ExactOutputParams {
bytes path;
address recipient;
uint256 deadline;
uint256 amountOut;
uint256 amountInMaximum;
}
/// @notice Swaps as little as possible of one token for `amountOut` of another along the specified path (reversed)
/// @param params The parameters necessary for the multi-hop swap, encoded as `ExactOutputParams` in calldata
/// @return amountIn The amount of the input token
function exactOutput(
ExactOutputParams calldata params
) external payable returns (uint256 amountIn);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.5;
pragma abicoder v2;
import "./callback/ISwapCallback.sol";
interface IUniswapV3RouterALT is ISwapCallback {
struct ExactInputSingleParams {
address tokenIn;
address tokenOut;
uint24 fee;
address recipient;
uint256 deadline;
uint256 amountIn;
uint256 amountOutMinimum;
uint160 sqrtPriceLimitX96;
}
function exactInputSingle(
ExactInputSingleParams calldata params
) external payable returns (uint256 amountOut);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;
interface IV3TwapUtilities {
function getV3Pool(
address v3Factory,
address token0,
address token1,
uint24 poolFee
) external view returns (address);
function getPoolPriceUSDX96(
address pricePool,
address nativeStablePool,
address WETH9
) external view returns (uint256);
function sqrtPriceX96FromPoolAndInterval(
address pool
) external view returns (uint160);
function priceX96FromSqrtPriceX96(
uint160 sqrtPriceX96
) external pure returns (uint256);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;
// ----------------------------------------------------------------------------
// BokkyPooBah's DateTime Library v1.00
//
// A gas-efficient Solidity date and time library
//
// https://github.com/bokkypoobah/BokkyPooBahsDateTimeLibrary
//
// Tested date range 1970/01/01 to 2345/12/31
//
// Conventions:
// Unit | Range | Notes
// :-------- |:-------------:|:-----
// timestamp | >= 0 | Unix timestamp, number of seconds since 1970/01/01 00:00:00 UTC
// year | 1970 ... 2345 |
// month | 1 ... 12 |
// day | 1 ... 31 |
// hour | 0 ... 23 |
// minute | 0 ... 59 |
// second | 0 ... 59 |
// dayOfWeek | 1 ... 7 | 1 = Monday, ..., 7 = Sunday
//
//
// Enjoy. (c) BokkyPooBah / Bok Consulting Pty Ltd 2018.
//
// GNU Lesser General Public License 3.0
// https://www.gnu.org/licenses/lgpl-3.0.en.html
// ----------------------------------------------------------------------------
library BokkyPooBahsDateTimeLibrary {
uint constant SECONDS_PER_DAY = 24 * 60 * 60;
int constant OFFSET19700101 = 2440588;
// ------------------------------------------------------------------------
// Calculate year/month/day from the number of days since 1970/01/01 using
// the date conversion algorithm from
// http://aa.usno.navy.mil/faq/docs/JD_Formula.php
// and adding the offset 2440588 so that 1970/01/01 is day 0
//
// int L = days + 68569 + offset
// int N = 4 * L / 146097
// L = L - (146097 * N + 3) / 4
// year = 4000 * (L + 1) / 1461001
// L = L - 1461 * year / 4 + 31
// month = 80 * L / 2447
// dd = L - 2447 * month / 80
// L = month / 11
// month = month + 2 - 12 * L
// year = 100 * (N - 49) + year + L
// ------------------------------------------------------------------------
function _daysToDate(
uint _days
) internal pure returns (uint year, uint month, uint day) {
int __days = int(_days);
int L = __days + 68569 + OFFSET19700101;
int N = (4 * L) / 146097;
L = L - (146097 * N + 3) / 4;
int _year = (4000 * (L + 1)) / 1461001;
L = L - (1461 * _year) / 4 + 31;
int _month = (80 * L) / 2447;
int _day = L - (2447 * _month) / 80;
L = _month / 11;
_month = _month + 2 - 12 * L;
_year = 100 * (N - 49) + _year + L;
year = uint(_year);
month = uint(_month);
day = uint(_day);
}
function timestampToDate(
uint timestamp
) internal pure returns (uint year, uint month, uint day) {
(year, month, day) = _daysToDate(timestamp / SECONDS_PER_DAY);
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Provides functions for deriving a pool address from the factory, tokens, and the fee
library PoolAddress {
bytes32 internal constant POOL_INIT_CODE_HASH =
0xe34f199b19b2b4f47f68442619d555527d244f78a3297ea89325f843f87b8b54;
/// @notice The identifying key of the pool
struct PoolKey {
address token0;
address token1;
uint24 fee;
}
/// @notice Returns PoolKey: the ordered tokens with the matched fee levels
/// @param tokenA The first token of a pool, unsorted
/// @param tokenB The second token of a pool, unsorted
/// @param fee The fee level of the pool
/// @return Poolkey The pool details with ordered token0 and token1 assignments
function getPoolKey(
address tokenA,
address tokenB,
uint24 fee
) internal pure returns (PoolKey memory) {
if (tokenA > tokenB) (tokenA, tokenB) = (tokenB, tokenA);
return PoolKey({ token0: tokenA, token1: tokenB, fee: fee });
}
/// @notice Deterministically computes the pool address given the factory and PoolKey
/// @param factory The Uniswap V3 factory contract address
/// @param key The PoolKey
/// @return pool The contract address of the V3 pool
function computeAddress(
address factory,
PoolKey memory key
) internal pure returns (address pool) {
require(key.token0 < key.token1);
pool = address(
uint160(
uint256(
keccak256(
abi.encodePacked(
hex'ff',
factory,
keccak256(abi.encode(key.token0, key.token1, key.fee)),
POOL_INIT_CODE_HASH
)
)
)
)
);
}
}
// https://peapods.finance
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;
import "@uniswap/v3-core/contracts/libraries/FixedPoint96.sol";
import "./interfaces/IUniswapV2Pair.sol";
import "./interfaces/IV3TwapUtilities.sol";
import "./DecentralizedIndex.sol";
contract Potion is DecentralizedIndex {
using SafeERC20 for IERC20;
IUniswapV2Factory immutable V2_FACTORY;
uint256 _totalWeights;
constructor(
IDeploy.Deploy memory _deploy
) DecentralizedIndex(IndexType.WEIGHTED, _deploy) {
V2_FACTORY = IUniswapV2Factory(
IUniswapV2Router02(_deploy._v2Router).factory()
);
require(_deploy._tokens.length == _deploy._weights.length, "INIT");
for (uint256 _i; _i < _deploy._tokens.length; _i++) {
require(!_isTokenInIndex[_deploy._tokens[_i]], "DUP");
require(_deploy._weights[_i] > 0, "WVAL");
indexTokens.push(
IndexAssetInfo({
token: _deploy._tokens[_i],
basePriceUSDX96: 0,
weighting: _deploy._weights[_i],
c1: address(0),
q1: 0 // amountsPerIdxTokenX96
})
);
_totalWeights += _deploy._weights[_i];
_fundTokenIdx[_deploy._tokens[_i]] = _i;
_isTokenInIndex[_deploy._tokens[_i]] = true;
}
// at idx == 0, need to find X in [1/X = tokenWeightAtIdx/totalWeights]
// at idx > 0, need to find Y in (Y/X = tokenWeightAtIdx/totalWeights)
uint256 _xX96 = (FixedPoint96.Q96 * _totalWeights) /
_deploy._weights[0];
for (uint256 _i; _i < _deploy._tokens.length; _i++) {
indexTokens[_i].q1 =
(_deploy._weights[_i] *
_xX96 *
10 ** IERC20Metadata(_deploy._tokens[_i]).decimals()) /
_totalWeights;
}
}
function _getNativePriceUSDX96() internal view returns (uint256) {
IUniswapV2Pair _nativeStablePool = IUniswapV2Pair(
V2_FACTORY.getPair(STABLECOIN, WETH)
);
address _token0 = _nativeStablePool.token0();
(uint8 _decimals0, uint8 _decimals1) = (
IERC20Metadata(_token0).decimals(),
IERC20Metadata(_nativeStablePool.token1()).decimals()
);
(uint112 _res0, uint112 _res1, ) = _nativeStablePool.getReserves();
return
_token0 == STABLECOIN
? (FixedPoint96.Q96 * _res0 * 10 ** _decimals1) /
_res1 /
10 ** _decimals0
: (FixedPoint96.Q96 * _res1 * 10 ** _decimals0) /
_res0 /
10 ** _decimals1;
}
function _getTokenPriceUSDX96(
address _token
) internal view returns (uint256) {
if (_token == WETH) {
return _getNativePriceUSDX96();
}
IUniswapV2Pair _pool = IUniswapV2Pair(V2_FACTORY.getPair(_token, WETH));
address _token0 = _pool.token0();
uint8 _decimals0 = IERC20Metadata(_token0).decimals();
uint8 _decimals1 = IERC20Metadata(_pool.token1()).decimals();
(uint112 _res0, uint112 _res1, ) = _pool.getReserves();
uint256 _nativePriceUSDX96 = _getNativePriceUSDX96();
return
_token0 == WETH
? (_nativePriceUSDX96 * _res0 * 10 ** _decimals1) /
_res1 /
10 ** _decimals0
: (_nativePriceUSDX96 * _res1 * 10 ** _decimals0) /
_res0 /
10 ** _decimals1;
}
function bond(
address _token,
uint256 _amount,
uint256 _amountMintMin
) external override lock noSwapOrFee whenNotPaused {
require(_isTokenInIndex[_token], "INVALIDTOKEN");
uint256 _tokenIdx = _fundTokenIdx[_token];
uint256 _tokenCurSupply = IERC20(_token).balanceOf(address(this));
bool _firstIn = _isFirstIn();
uint256 _tokenAmtSupplyRatioX96 = _firstIn
? FixedPoint96.Q96
: (_amount * FixedPoint96.Q96) / _tokenCurSupply;
uint256 _tokensMinted;
if (_firstIn) {
_tokensMinted =
(_amount * FixedPoint96.Q96 * 10 ** decimals()) /
indexTokens[_tokenIdx].q1;
} else {
_tokensMinted =
(totalSupply() * _tokenAmtSupplyRatioX96) /
FixedPoint96.Q96;
}
uint256 _feeTokens = _canWrapFeeFree(_msgSender())
? 0
: (_tokensMinted * fees.bond) / DEN;
require(_tokensMinted - _feeTokens >= _amountMintMin, "MIN");
_mint(_msgSender(), _tokensMinted - _feeTokens);
if (_feeTokens > 0) {
_mint(address(this), _feeTokens);
_processBurnFee(_feeTokens);
}
for (uint256 _i; _i < indexTokens.length; _i++) {
uint256 _transferAmt = _firstIn
? getInitialAmount(_token, _amount, indexTokens[_i].token)
: (IERC20(indexTokens[_i].token).balanceOf(address(this)) *
_tokenAmtSupplyRatioX96) / FixedPoint96.Q96;
_transferFromAndValidate(
IERC20(indexTokens[_i].token),
_msgSender(),
_transferAmt
);
}
_bond();
emit Bond(_msgSender(), _token, _amount, _tokensMinted, _feeTokens);
}
function debond(
uint256 _amount,
address[] memory,
uint8[] memory
) external override lock noSwapOrFee whenNotPaused {
uint256 _amountAfterFee = _isLastOut(_amount)
? _amount
: (_amount * (DEN - fees.debond)) / DEN;
uint256 _percAfterFeeX96 = (_amountAfterFee * FixedPoint96.Q96) /
totalSupply();
super._transfer(_msgSender(), address(this), _amount);
_burn(address(this), _amountAfterFee);
_processBurnFee(_amount - _amountAfterFee);
for (uint256 _i; _i < indexTokens.length; _i++) {
uint256 _tokenSupply = IERC20(indexTokens[_i].token).balanceOf(
address(this)
);
uint256 _debondAmount = (_tokenSupply * _percAfterFeeX96) /
FixedPoint96.Q96;
if (_debondAmount > 0) {
IERC20(indexTokens[_i].token).transfer(
_msgSender(),
_debondAmount
);
}
}
emit Debond(_msgSender(), _amount, _amount - _amountAfterFee);
}
function getInitialAmount(
address _sourceToken,
uint256 _sourceAmount,
address _targetToken
) public view override returns (uint256) {
uint256 _sourceTokenIdx = _fundTokenIdx[_sourceToken];
uint256 _targetTokenIdx = _fundTokenIdx[_targetToken];
return
(_sourceAmount *
indexTokens[_targetTokenIdx].weighting *
10 ** IERC20Metadata(_targetToken).decimals()) /
indexTokens[_sourceTokenIdx].weighting /
10 ** IERC20Metadata(_sourceToken).decimals();
}
function pause() public {
require(msg.sender == partner, "ACCESS_ERR");
_pause();
}
function unpause() public {
require(msg.sender == partner, "ACCESS_ERR");
_unpause();
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;
import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "./interfaces/IStakingPoolToken.sol";
import "./interfaces/IDeploy.sol";
import "./TokenRewards.sol";
interface IBlast {
enum YieldMode {
AUTOMATIC,
VOID,
CLAIMABLE
}
enum GasMode {
VOID,
CLAIMABLE
}
function configure(YieldMode) external returns (uint256);
function configureClaimableYield() external;
function configureClaimableGas() external;
function configureGovernor(address _governor) external;
function configurePointsOperator(address operator) external;
function claimYield(address contractAddress, address recipientOfYield, uint256 amount) external returns (uint256);
function claimAllYield(address contractAddress, address recipientOfYield) external returns (uint256);
function claim(address recipient, uint256 amount) external returns (uint256);
function getClaimableAmount(address account) external view returns (uint256);
}
contract StakingPoolToken is IStakingPoolToken, ERC20 {
using SafeERC20 for IERC20;
address public immutable override indexFund;
address public override stakingToken;
address public immutable override poolRewards;
address public override stakeUserRestriction;
bool _initialized;
modifier onlyRestricted() {
require(_msgSender() == stakeUserRestriction, "RESUSERAUTH");
_;
}
constructor(
IDeploy.DeployStakinPool memory _deploy
) ERC20(_deploy._name, _deploy._symbol) {
indexFund = _msgSender();
stakingToken = _deploy._stakingToken;
stakeUserRestriction = _deploy._stakeUserRestriction;
poolRewards = address(
new TokenRewards(
_deploy._feeRouter,
indexFund,
_deploy._pairedLpToken,
address(this),
_deploy._rewardsToken,
_deploy._WETH,
_deploy._stableCoin,
_deploy._v2Router,
_deploy._quoter,
_deploy._routerv3
)
);
}
function init(address _lpForStaking) external {
require(!_initialized, "INITED");
stakingToken = _lpForStaking;
_initialized = true;
}
function stake(address _user, uint256 _amount) external override {
if (stakeUserRestriction != address(0)) {
require(_user == stakeUserRestriction, "RESTRICT");
}
_mint(_user, _amount);
IERC20(stakingToken).transferFrom(_msgSender(), address(this), _amount);
emit Stake(_msgSender(), _user, _amount);
}
function unstake(uint256 _amount) external override {
_burn(_msgSender(), _amount);
IERC20(stakingToken).transfer(_msgSender(), _amount);
emit Unstake(_msgSender(), _amount);
}
function removeStakeUserRestriction() external onlyRestricted {
stakeUserRestriction = address(0);
}
function setStakeUserRestriction(address _user) external onlyRestricted {
stakeUserRestriction = _user;
}
function _afterTokenTransfer(
address _from,
address _to,
uint256 _amount
) internal override {
if (_from != address(0) && _from != address(0xdead)) {
TokenRewards(poolRewards).setShares(_from, _amount, true);
}
if (_to != address(0) && _to != address(0xdead)) {
TokenRewards(poolRewards).setShares(_to, _amount, false);
}
}
function withdrawERC20(address token) external {
require(
msg.sender == IDecentralizedIndex(indexFund).partner(),
"ACCESS_ERR"
);
IERC20(token).transfer(
IDecentralizedIndex(indexFund).partner(),
IERC20(token).balanceOf(address(this))
);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/utils/Context.sol";
import "@uniswap/v3-core/contracts/libraries/FixedPoint96.sol";
import "@uniswap/v3-periphery/contracts/interfaces/ISwapRouter.sol";
import "@uniswap/v3-periphery/contracts/interfaces/IPeripheryImmutableState.sol";
import "./interfaces/IDecentralizedIndex.sol";
import "./interfaces/ITOKEN.sol";
import "./interfaces/IQuoterV2.sol";
import "./interfaces/IProtocolFees.sol";
import "./interfaces/IProtocolFeeRouter.sol";
import "./interfaces/ITokenRewards.sol";
import "./interfaces/IUniswapV2Router02.sol";
import "./interfaces/IUniswapV3Router.sol";
import "./libraries/BokkyPooBahsDateTimeLibrary.sol";
import "./libraries/PoolAddress.sol";
import "./interfaces/IUniswapV3RouterALT.sol";
contract TokenRewards is ITokenRewards, Context {
using SafeERC20 for IERC20;
address public WETH;
address public STABLECOIN;
address public v2Router;
uint256 _swapSlippage = 10; // 1%
uint256 constant PRECISION = 10 ** 36;
uint24 constant REWARDS_POOL_FEE = 10000; // 1%
address immutable INDEX_FUND;
address immutable PAIRED_LP_TOKEN;
IProtocolFeeRouter immutable PROTOCOL_FEE_ROUTER;
IQuoterV2 public quoter;
IUniswapV3Router public routerV3;
struct Reward {
uint256 excluded;
uint256 realized;
}
enum SWAP {
V2,
V3_500,
V3_3000
}
address public immutable override trackingToken;
address public immutable override rewardsToken;
uint256 public override totalShares;
uint256 public override totalStakers;
mapping(address => uint256) public shares;
mapping(address => Reward) public rewards;
uint256 _rewardsSwapSlippage = 10; // 1%
uint256 _rewardsPerShare;
uint256 public rewardsDistributed;
uint256 public rewardsDeposited;
modifier onlyTrackingToken() {
require(_msgSender() == trackingToken, "UNAUTHORIZED");
_;
}
constructor(
address _feeRouter,
address _indexFund,
address _pairedLpToken,
address _trackingToken,
address _rewardsToken,
address _WETH,
address _stableCoin,
address _v2Router,
address _quoter,
address _routerv3
) {
PROTOCOL_FEE_ROUTER = IProtocolFeeRouter(_feeRouter);
INDEX_FUND = _indexFund;
PAIRED_LP_TOKEN = _pairedLpToken;
trackingToken = _trackingToken;
rewardsToken = _rewardsToken;
WETH = _WETH;
STABLECOIN = _stableCoin;
v2Router = _v2Router;
quoter = IQuoterV2(_quoter);
routerV3 = IUniswapV3Router(_routerv3);
}
function setShares(
address _wallet,
uint256 _amount,
bool _sharesRemoving
) external override onlyTrackingToken {
_setShares(_wallet, _amount, _sharesRemoving);
}
function _setShares(
address _wallet,
uint256 _amount,
bool _sharesRemoving
) internal {
_processFeesIfApplicable();
if (_sharesRemoving) {
_removeShares(_wallet, _amount);
emit RemoveShares(_wallet, _amount);
} else {
_addShares(_wallet, _amount);
emit AddShares(_wallet, _amount);
}
}
function _addShares(address _wallet, uint256 _amount) internal {
if (shares[_wallet] > 0) {
_distributeReward(_wallet);
}
uint256 sharesBefore = shares[_wallet];
totalShares += _amount;
shares[_wallet] += _amount;
if (sharesBefore == 0 && shares[_wallet] > 0) {
totalStakers++;
}
rewards[_wallet].excluded = _cumulativeRewards(shares[_wallet]);
}
function _removeShares(address _wallet, uint256 _amount) internal {
require(shares[_wallet] > 0 && _amount <= shares[_wallet], "REMOVE");
_distributeReward(_wallet);
totalShares -= _amount;
shares[_wallet] -= _amount;
if (shares[_wallet] == 0) {
totalStakers--;
}
rewards[_wallet].excluded = _cumulativeRewards(shares[_wallet]);
}
function _processFeesIfApplicable() internal {
IDecentralizedIndex(INDEX_FUND).processPreSwapFeesAndSwap();
if (
rewardsToken != PAIRED_LP_TOKEN &&
IERC20(PAIRED_LP_TOKEN).balanceOf(address(this)) > 0
) {
depositFromPairedLpToken(0, 0);
}
}
function depositFromPairedLpToken(
uint256 _amountTknDepositing,
uint256 /*_slippageOverride*/
) public override {
require(PAIRED_LP_TOKEN != rewardsToken, "LPREWSAME");
if (_amountTknDepositing > 0) {
IERC20(PAIRED_LP_TOKEN).transferFrom(
_msgSender(),
address(this),
_amountTknDepositing
);
}
uint256 _amountTkn = IERC20(PAIRED_LP_TOKEN).balanceOf(address(this));
require(_amountTkn > 0, "NEEDTKN");
uint256 _rewardsBalBefore = IERC20(rewardsToken).balanceOf(
address(this)
);
uint256 _adminAmt;
(uint256 _yieldAdminFee, ) = _getYieldFees();
if (_yieldAdminFee > 0) {
_adminAmt =
(_amountTkn * _yieldAdminFee) /
PROTOCOL_FEE_ROUTER.protocolFees().DEN();
_amountTkn -= _adminAmt;
}
IERC20(PAIRED_LP_TOKEN).safeIncreaseAllowance(v2Router, _amountTkn);
uint rewardBalance;
if (PAIRED_LP_TOKEN == STABLECOIN) {
rewardBalance = _swapper(STABLECOIN, _amountTkn);
}
if (PAIRED_LP_TOKEN != STABLECOIN) {
IDecentralizedIndex.IndexAssetInfo[]
memory baseAssets = IDecentralizedIndex(PAIRED_LP_TOKEN)
.getAllAssets();
uint baseTokenBefore = IERC20(baseAssets[0].token).balanceOf(
address(this)
);
address[] memory token = new address[](1);
token[0] = address(0);
uint8[] memory percentage = new uint8[](1);
percentage[0] = 0;
IDecentralizedIndex(PAIRED_LP_TOKEN).debond(
_amountTkn,
token,
percentage
);
uint baseTokenAfter = IERC20(baseAssets[0].token).balanceOf(
address(this)
);
rewardBalance = _swapper(
baseAssets[0].token,
baseTokenAfter - baseTokenBefore
);
if (_adminAmt > 0) {
uint refundAmount;
try
IERC20(PAIRED_LP_TOKEN).transfer(
IDecentralizedIndex(INDEX_FUND).partner(),
_adminAmt
)
{
refundAmount = 0;
} catch {
refundAmount = _adminAmt;
}
IERC20(PAIRED_LP_TOKEN).transfer(
IDecentralizedIndex(INDEX_FUND).partner(),
refundAmount
);
}
}
_depositRewards(
IERC20(rewardsToken).balanceOf(address(this)) - _rewardsBalBefore
);
}
function depositRewards(uint256 _amount) external override {
require(_amount > 0, "DEPAM");
uint256 _rewardsBalBefore = IERC20(rewardsToken).balanceOf(
address(this)
);
IERC20(rewardsToken).transferFrom(_msgSender(), address(this), _amount);
_depositRewards(
IERC20(rewardsToken).balanceOf(address(this)) - _rewardsBalBefore
);
}
function _depositRewards(uint256 _amountTotal) internal {
if (_amountTotal == 0) {
return;
}
if (totalShares == 0) {
_burnRewards(_amountTotal);
return;
}
uint256 _depositAmount = _amountTotal;
(, uint256 _yieldBurnFee) = _getYieldFees();
if (_yieldBurnFee > 0) {
uint256 _burnAmount = (_amountTotal * _yieldBurnFee) /
PROTOCOL_FEE_ROUTER.protocolFees().DEN();
if (_burnAmount > 0) {
_burnRewards(_burnAmount);
_depositAmount -= _burnAmount;
}
}
rewardsDeposited += _depositAmount;
_rewardsPerShare += (PRECISION * _depositAmount) / totalShares;
emit DepositRewards(_msgSender(), _depositAmount);
}
function _distributeReward(address _wallet) internal {
if (shares[_wallet] == 0) {
return;
}
uint256 _amount = getUnpaid(_wallet);
rewards[_wallet].realized += _amount;
rewards[_wallet].excluded = _cumulativeRewards(shares[_wallet]);
if (_amount > 0) {
rewardsDistributed += _amount;
IERC20(rewardsToken).transfer(_wallet, _amount);
emit DistributeReward(_wallet, _amount);
}
}
function _burnRewards(uint256 _burnAmount) internal {
try ITOKEN(rewardsToken).burn(_burnAmount) {} catch {
IERC20(rewardsToken).transfer(address(0xdead), _burnAmount);
}
}
function _getYieldFees()
internal
view
returns (uint256 _admin, uint256 _burn)
{
IProtocolFees _fees = PROTOCOL_FEE_ROUTER.protocolFees();
if (address(_fees) != address(0)) {
_admin = _fees.yieldAdmin();
_burn = _fees.yieldBurn();
}
}
function claimReward(address _wallet) external override {
_distributeReward(_wallet);
emit ClaimReward(_wallet);
}
function getUnpaid(address _wallet) public view returns (uint256) {
if (shares[_wallet] == 0) {
return 0;
}
uint256 earnedRewards = _cumulativeRewards(shares[_wallet]);
uint256 rewardsExcluded = rewards[_wallet].excluded;
if (earnedRewards <= rewardsExcluded) {
return 0;
}
return earnedRewards - rewardsExcluded;
}
function _cumulativeRewards(
uint256 _share
) internal view returns (uint256) {
return (_share * _rewardsPerShare) / PRECISION;
}
function _swapper(
address token,
uint amount
) internal returns (uint swappedRewards) {
if (token != WETH) {
address[] memory path = new address[](2);
path[0] = token;
path[1] = WETH;
swappedRewards = _swap(path, amount);
path[0] = WETH;
path[1] = rewardsToken;
swappedRewards = _swap(path, IERC20(WETH).balanceOf(address(this)));
}
if (token == WETH) {
address[] memory path = new address[](2);
path[0] = WETH;
path[1] = rewardsToken;
swappedRewards = _swap(path, amount);
}
}
function _swap(address[] memory path, uint amount) internal returns (uint) {
uint balanceBefore = IERC20(path[path.length - 1]).balanceOf(
address(this)
);
(SWAP decision, uint24 fee, uint amountOut) = decider(
amount,
path[0],
path[1]
);
uint amountOutMin = (amountOut * (1000 - _swapSlippage)) / 1000;
if (decision == SWAP.V2) {
IERC20(path[0]).approve(address(v2Router), amount);
IUniswapV2Router02(v2Router).swapExactTokensForTokens(
amount,
amountOutMin,
path,
address(this),
block.timestamp
);
} else {
_swapV3Single(
path[0],
fee,
path[1],
amount,
_swapSlippage,
address(this)
);
}
uint balanceAfter = IERC20(path[path.length - 1]).balanceOf(
address(this)
);
return balanceAfter - balanceBefore;
}
function changeSwapSlippage(uint _newSlippage) external {
require(
msg.sender == IDecentralizedIndex(INDEX_FUND).partner(),
"ACCESS_ERR"
);
_swapSlippage = _newSlippage;
}
function decider(
uint amount,
address tokenA,
address tokenB
) internal returns (SWAP decision, uint24, uint) {
uint256 amount1 = getQuote(tokenA, tokenB, amount, 500); //fee 0.5%
uint256 amount2 = getQuote(tokenA, tokenB, amount, 3000); //fe 3.0%
address[] memory path = new address[](2);
path[0] = tokenA;
path[1] = tokenB;
uint256 amount3;
try IUniswapV2Router02(v2Router).getAmountsOut(amount, path) returns (
uint256[] memory result
) {
amount3 = result[1];
} catch {
amount3 = 0;
}
uint maxAmount = amount1;
uint24 fee = 500;
decision = SWAP.V3_500;
if (amount2 > maxAmount) {
maxAmount = amount2;
decision = SWAP.V3_3000;
fee = 3000;
}
if (amount3 > maxAmount) {
maxAmount = amount3;
decision = SWAP.V2;
fee = 0;
}
return (decision, fee, maxAmount);
}
function getQuote(
address tokenIn,
address tokenOut,
uint256 amountIn,
uint24 fee
) internal returns (uint256) {
uint256 amountOut;
IQuoterV2.QuoteExactInputSingleParams memory params = IQuoterV2
.QuoteExactInputSingleParams({
tokenIn: tokenIn,
tokenOut: tokenOut,
amountIn: amountIn,
fee: fee,
sqrtPriceLimitX96: 0
});
try quoter.quoteExactInputSingle(params) returns (
uint256 out,
uint160,
uint32,
uint256
) {
amountOut = out;
} catch {
amountOut = 0;
}
return amountOut;
}
function _swapV3Single(
address _in,
uint24 _fee,
address _out,
uint256 _amountIn,
uint256 _slippage,
address recipient
) internal {
IERC20(_in).safeIncreaseAllowance(address(routerV3), _amountIn);
uint _amountOutMin = getQuote(_in, _out, _amountIn, _fee);
try IUniswapV3Router(routerV3).exactInputSingle(
IUniswapV3Router.ExactInputSingleParams({
tokenIn: _in,
tokenOut: _out,
fee: _fee,
recipient: recipient,
amountIn: _amountIn,
amountOutMinimum: _amountOutMin -
((_amountOutMin * _slippage) / 1000),
sqrtPriceLimitX96: 0
})
) {
} catch {
IUniswapV3RouterALT(address(routerV3)).exactInputSingle(
IUniswapV3RouterALT.ExactInputSingleParams({
tokenIn: _in,
tokenOut: _out,
fee: _fee,
recipient: recipient,
deadline: block.timestamp,
amountIn: _amountIn,
amountOutMinimum: _amountOutMin -
((_amountOutMin * _slippage) / 1000),
sqrtPriceLimitX96: 0
}));
}
}
}