Contract Diff Checker

Contract Name:
MasterChef

Contract Source Code:

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)

pragma solidity ^0.8.0;

import "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor() {
        _transferOwnership(_msgSender());
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions anymore. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby removing any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";
import "../extensions/draft-IERC20Permit.sol";
import "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    function safeTransfer(
        IERC20 token,
        address to,
        uint256 value
    ) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    function safeTransferFrom(
        IERC20 token,
        address from,
        address to,
        uint256 value
    ) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    function safeIncreaseAllowance(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        uint256 newAllowance = token.allowance(address(this), spender) + value;
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
    }

    function safeDecreaseAllowance(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
            uint256 newAllowance = oldAllowance - value;
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
        }
    }

    function safePermit(
        IERC20Permit token,
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        uint256 nonceBefore = token.nonces(owner);
        token.permit(owner, spender, value, deadline, v, r, s);
        uint256 nonceAfter = token.nonces(owner);
        require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        if (returndata.length > 0) {
            // Return data is optional
            require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC721/IERC721.sol)

pragma solidity ^0.8.0;

import "../../utils/introspection/IERC165.sol";

/**
 * @dev Required interface of an ERC721 compliant contract.
 */
interface IERC721 is IERC165 {
    /**
     * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
     */
    event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
     */
    event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
     */
    event ApprovalForAll(address indexed owner, address indexed operator, bool approved);

    /**
     * @dev Returns the number of tokens in ``owner``'s account.
     */
    function balanceOf(address owner) external view returns (uint256 balance);

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) external view returns (address owner);

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId,
        bytes calldata data
    ) external;

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
     * are aware of the ERC721 protocol to prevent tokens from being forever locked.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId
    ) external;

    /**
     * @dev Transfers `tokenId` token from `from` to `to`.
     *
     * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
     * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
     * understand this adds an external call which potentially creates a reentrancy vulnerability.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 tokenId
    ) external;

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) external;

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the caller.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool _approved) external;

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) external view returns (address operator);

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}
     */
    function isApprovedForAll(address owner, address operator) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC721/IERC721Receiver.sol)

pragma solidity ^0.8.0;

/**
 * @title ERC721 token receiver interface
 * @dev Interface for any contract that wants to support safeTransfers
 * from ERC721 asset contracts.
 */
interface IERC721Receiver {
    /**
     * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
     * by `operator` from `from`, this function is called.
     *
     * It must return its Solidity selector to confirm the token transfer.
     * If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted.
     *
     * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
     */
    function onERC721Received(
        address operator,
        address from,
        uint256 tokenId,
        bytes calldata data
    ) external returns (bytes4);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1);

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator,
        Rounding rounding
    ) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10**64) {
                value /= 10**64;
                result += 64;
            }
            if (value >= 10**32) {
                value /= 10**32;
                result += 32;
            }
            if (value >= 10**16) {
                value /= 10**16;
                result += 16;
            }
            if (value >= 10**8) {
                value /= 10**8;
                result += 8;
            }
            if (value >= 10**4) {
                value /= 10**4;
                result += 4;
            }
            if (value >= 10**2) {
                value /= 10**2;
                result += 2;
            }
            if (value >= 10**1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
        }
    }
}

// SPDX-License-Identifier: MIT

pragma solidity 0.8.13;


interface IMasterchef {
    struct PoolInfo {
        uint256 accRewardPerShare;
        uint256 accRewardPerShareExtra;
        uint256 lastRewardTime;
    }

    function setDistributionRate(uint256 amount) external;

    function setDistributionRateExtra(uint256 amount) external;

    function updatePool() external returns (PoolInfo memory pool);
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.13;

interface IMinter {
    function update_period() external returns (uint);
    function check() external view returns(bool);
    function period() external view returns(uint);
    function active_period() external view returns(uint);
}

// SPDX-License-Identifier: MIT

pragma solidity >=0.8.0;

interface IVesting {
    struct UserVestingInfo {
        uint256 amount;
        uint256 start;
        uint256 claimed;
        uint256 vestingCliffSnapshot;
        uint256 vestingPeriodSnapshot;
    }

    event VestingCliffChanged(uint256 newValue);
    event VestingPeriodChanged(uint256 newValue);

    event VestedTokens(address indexed user, uint256 amount);
    event Claimed(address indexed user, uint256 vestingId, uint256 amount);

    function TOKEN() external view returns (address);
    function vestingCliff() external view returns (uint256);
    function vestingPeriod() external view returns (uint256);

    function vestTokensFor(address user, uint256 amount) external;
    function claimAll() external;
    function claim(uint256 vestingId) external;
    function claimableTotal(address user) external view returns(uint256 total);
    function claimable(
        address user,
        uint256 vestingId
    ) external view returns (uint256);
    function userVestingInfo(
        address user
    ) external view returns (UserVestingInfo[] memory);
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.13;

interface IVotingEscrow {

    struct Point {
        int128 bias;
        int128 slope; // # -dweight / dt
        uint256 ts;
        uint256 blk; // block
    }

    struct LockedBalance {
        int128 amount;
        uint start;
        uint end;
    }

    function create_lock_for(uint _value, uint _lock_duration, address _to) external returns (uint);

    function locked(uint id) external view returns(LockedBalance memory);
    function tokenOfOwnerByIndex(address _owner, uint _tokenIndex) external view returns (uint);

    function token() external view returns (address);
    function team() external returns (address);
    function epoch() external view returns (uint);
    function point_history(uint loc) external view returns (Point memory);
    function user_point_history(uint tokenId, uint loc) external view returns (Point memory);
    function user_point_epoch(uint tokenId) external view returns (uint);

    function ownerOf(uint) external view returns (address);
    function isApprovedOrOwner(address, uint) external view returns (bool);
    function transferFrom(address, address, uint) external;

    function voted(uint) external view returns (bool);
    function attachments(uint) external view returns (uint);
    function voting(uint tokenId) external;
    function abstain(uint tokenId) external;
    function attach(uint tokenId) external;
    function detach(uint tokenId) external;

    function checkpoint() external;
    function deposit_for(uint tokenId, uint value) external;

    function balanceOfAtNFT(uint _tokenId, uint _block) external view returns (uint);
    function balanceOfNFT(uint _id) external view returns (uint);
    function balanceOf(address _owner) external view returns (uint);
    function totalSupply() external view returns (uint);
    function supply() external view returns (uint);


    function decimals() external view returns(uint8);
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.13;

library Constants {
    uint256 internal constant EPOCH_LENGTH = 1 hours; // 7 days;
}

// SPDX-License-Identifier: MIT

pragma solidity 0.8.13;

import "@openzeppelin/contracts/token/ERC721/IERC721.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {IERC721Receiver} from "@openzeppelin/contracts/token/ERC721/IERC721Receiver.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/utils/math/Math.sol";

import {IVotingEscrow} from "./interfaces/IVotingEscrow.sol";
import {IVesting} from "./interfaces/IVesting.sol";
import {IMinter} from "./interfaces/IMinter.sol";
import {IMasterchef} from "./interfaces/IMasterchef.sol";
import {Constants} from "./libraries/Constants.sol";

contract MasterChef is Ownable, IMasterchef {
    using SafeERC20 for IERC20;

    struct UserInfo {
        uint256 amount;
        uint256 rewardDebt;
        uint256 rewardDebtExtra;
        uint256[] tokenIds;
        mapping(uint256 => uint256) tokenIndices;
    }

    /// @notice Address of reward token contract.
    IERC20 public TOKEN;
    /// @notice Address of the NFT token for each MCV2 pool.
    IERC721 public NFT;

    uint256 public constant LOCK_DURATION = 2 * 365 * 86400;
    uint256 public constant PERCENT_PRECISION = 10_000;

    uint256 public veShare;
    address public votingEscrow;
    address public vesting;

    address public minter;

    /// @notice Info of each MCV2 pool.
    PoolInfo public poolInfo;

    /// @notice Mapping from token ID to owner address
    mapping(uint256 => address) public tokenOwner;

    /// @notice Info of each user that stakes nft tokens.
    mapping(address => UserInfo) public userInfo;

    /// @notice Keeper register. Return true if 'address' is a keeper.
    mapping(address => bool) public isKeeper;

    uint256 private _totalRewards;
    uint256 private _totalRewardsExtra;

    uint256 public rewardPerSecond;
    uint256 public rewardPerSecondExtra;
    uint256 private ACC_TOKEN_PRECISION;

    uint256 public distributePeriod;
    uint256 public lastDistributedTime;
    uint256 public lastDistributedTimeExtra;

    event VeShareChanged(uint256 newValue);
    event Deposit(address indexed user, uint256[] tokenIds, address indexed to);
    event Withdraw(
        address indexed user,
        uint256[] tokenIds,
        address indexed to
    );
    event Harvest(address indexed user, uint256 amount);
    event HarvestExtra(address indexed user, uint256 amount);
    event LogUpdatePool(
        uint256 lastRewardTime,
        uint256 nftSupply,
        uint256 accRewardPerShare,
        uint256 accRewardPerShareExtra
    );
    event LogRewardPerSecond(uint256 rewardPerSecond);
    event LogRewardPerSecondExtra(uint256 rewardPerSecond);
    event EmergencyWithdraw(address indexed user, uint256[] tokenIds, address indexed to);

    modifier onlyKeeper() {
        require(msg.sender == owner() || isKeeper[msg.sender], "not keeper");
        _;
    }

    constructor(
        IERC20 _TOKEN,
        IERC721 _NFT,
        address _minter,
        address _vesting,
        address _votingEscrow,
        uint256 _veShare
    ) {
        require(_veShare <= PERCENT_PRECISION, "bad percent");

        TOKEN = _TOKEN;
        NFT = _NFT;

        veShare = _veShare;
        vesting = _vesting;
        votingEscrow = _votingEscrow;

        minter = _minter;

        distributePeriod = Constants.EPOCH_LENGTH;
        ACC_TOKEN_PRECISION = 1e12;
        poolInfo = PoolInfo({
            lastRewardTime: block.timestamp,
            accRewardPerShare: 0,
            accRewardPerShareExtra: 0
        });

        emit VeShareChanged(_veShare);
    }

    /// @notice change VE reward share
    /// @param newValue new share value
    function setVestingEscrowShare(uint256 newValue) external onlyOwner {
        require(newValue <= PERCENT_PRECISION, "bad percent");

        veShare = newValue;

        emit VeShareChanged(newValue);
    }

    /// @notice add keepers
    function addKeeper(address[] calldata _keepers) external onlyOwner {
        uint256 i = 0;
        uint256 len = _keepers.length;

        for (i; i < len; i++) {
            address _keeper = _keepers[i];
            if (!isKeeper[_keeper]) {
                isKeeper[_keeper] = true;
            }
        }
    }

    /// @notice remove keepers
    function removeKeeper(address[] calldata _keepers) external onlyOwner {
        uint256 i = 0;
        uint256 len = _keepers.length;

        for (i; i < len; i++) {
            address _keeper = _keepers[i];
            if (isKeeper[_keeper]) {
                isKeeper[_keeper] = false;
            }
        }
    }

    /// @notice Sets the reward per second to be distributed. Can only be called by the owner.
    /// @param _rewardPerSecond The amount of Reward to be distributed per second.
    function setRewardPerSecond(uint256 _rewardPerSecond) public onlyOwner {
        updatePool();
        if (lastDistributedTime > block.timestamp) {
            uint256 notDistributed = rewardPerSecond *
                (lastDistributedTime - block.timestamp);
            lastDistributedTime =
                block.timestamp +
                notDistributed /
                _rewardPerSecond;
        }
        rewardPerSecond = _rewardPerSecond;
        emit LogRewardPerSecond(_rewardPerSecond);
    }

    /// @notice Sets the extra-reward per second to be distributed. Can only be called by the owner.
    /// @param _rewardPerSecondExtra The amount of extra-Reward to be distributed per second.
    function setRewardPerSecondExtra(uint256 _rewardPerSecondExtra) public onlyOwner {
        updatePool();
        if (lastDistributedTimeExtra > block.timestamp) {
            uint256 notDistributed = rewardPerSecondExtra *
                (lastDistributedTimeExtra - block.timestamp);
            lastDistributedTimeExtra =
                block.timestamp +
                notDistributed /
                _rewardPerSecondExtra;
        }
        rewardPerSecondExtra = _rewardPerSecondExtra;
        emit LogRewardPerSecondExtra(_rewardPerSecondExtra);
    }

    /// @notice add rewards to the pool
    /// @param amount of rewards
    function setDistributionRate(uint256 amount) public onlyKeeper {
        updatePool();
        uint256 notDistributed;
        if (lastDistributedTime > 0 && block.timestamp < lastDistributedTime) {
            notDistributed =
                rewardPerSecond *
                (lastDistributedTime - block.timestamp);
        }

        amount = amount + notDistributed;
        uint256 _rewardPerSecond = amount / distributePeriod;
        rewardPerSecond = _rewardPerSecond;
        lastDistributedTime = block.timestamp + distributePeriod;
        emit LogRewardPerSecond(_rewardPerSecond);
    }

    /// @notice add extra-rewards to the pool
    /// @param amount of extra-rewards
    function setDistributionRateExtra(uint256 amount) public onlyKeeper {
        updatePool();
        uint256 notDistributed;
        if (lastDistributedTimeExtra > 0 && block.timestamp < lastDistributedTimeExtra) {
            notDistributed =
                rewardPerSecondExtra *
                (lastDistributedTimeExtra - block.timestamp);
        }

        amount = amount + notDistributed;
        uint256 _rewardPerSecondExtra = amount / distributePeriod;
        rewardPerSecondExtra = _rewardPerSecondExtra;
        lastDistributedTimeExtra = block.timestamp + distributePeriod;
        emit LogRewardPerSecondExtra(_rewardPerSecondExtra);
    }

    /// @notice View function to see pending TOKEN on frontend.
    /// @param _user Address of user.
    /// @return pending TOKEN reward for a given user.
    function pendingReward(
        address _user
    ) external view returns (uint256 pending) {
        PoolInfo memory pool = poolInfo;
        UserInfo storage user = userInfo[_user];
        uint256 accRewardPerShare = pool.accRewardPerShare;
        uint256 nftSupply = NFT.balanceOf(address(this));
        if (
            block.timestamp > pool.lastRewardTime &&
            nftSupply != 0 &&
            lastDistributedTime > 0 &&
            getRightBoarder() > pool.lastRewardTime
        ) {
            uint256 time = getRightBoarder() - pool.lastRewardTime;
            uint256 reward = time * rewardPerSecond;
            accRewardPerShare =
                accRewardPerShare +
                ((reward * ACC_TOKEN_PRECISION) / nftSupply);
        }
        uint256 accumulatedReward = 
            (user.amount * accRewardPerShare) / ACC_TOKEN_PRECISION;
        return accumulatedReward - user.rewardDebt;
    }

    /// @notice View function to see pending extra TOKEN reward on frontend.
    /// @param _user Address of user.
    /// @return pending TOKEN extra reward for a given user.
    function pendingRewardExtra(
        address _user
    ) external view returns (uint256 pending) {
        PoolInfo memory pool = poolInfo;
        UserInfo storage user = userInfo[_user];
        uint256 accRewardPerShareExtra = pool.accRewardPerShareExtra;
        uint256 nftSupply = NFT.balanceOf(address(this));
        if (
            block.timestamp > pool.lastRewardTime &&
            nftSupply != 0 &&
            lastDistributedTimeExtra > 0 &&
            getRightBoarderExtra() > pool.lastRewardTime
        ) {
            uint256 time = getRightBoarderExtra() - pool.lastRewardTime;
            uint256 reward = time * rewardPerSecondExtra;
            accRewardPerShareExtra =
                accRewardPerShareExtra +
                ((reward * ACC_TOKEN_PRECISION) / nftSupply);
        }
        uint256 accumulatedReward = 
            (user.amount * accRewardPerShareExtra) / ACC_TOKEN_PRECISION;
        return accumulatedReward - user.rewardDebtExtra;
    }

    /// @dev Check the end of period to limit rewards distribution
    function getRightBoarder() public view returns (uint256) {
        return Math.min(block.timestamp, lastDistributedTime);
    }

    /// @dev Check the end of period to limit extra rewards distribution
    function getRightBoarderExtra() public view returns (uint256) {
        return Math.min(block.timestamp, lastDistributedTimeExtra);
    }

    /// @notice View function to see TOKEN Ids on frontend.
    /// @param _user Address of user.
    /// @return tokenIds Staked Token Ids for a given user.
    function stakedTokenIds(
        address _user
    ) external view returns (uint256[] memory tokenIds) {
        tokenIds = userInfo[_user].tokenIds;
    }

    /// @notice Update reward variables of the given pool.
    /// @return pool Returns the pool that was updated.
    function updatePool() public returns (PoolInfo memory pool) {
        pool = poolInfo;
        if (block.timestamp > pool.lastRewardTime) {
            uint256 nftSupply = NFT.balanceOf(address(this));

            if (lastDistributedTime > 0) {
                uint256 rightBoarder = getRightBoarder();
                uint256 time = rightBoarder > pool.lastRewardTime
                    ? rightBoarder - pool.lastRewardTime
                    : 0;
                if (nftSupply > 0 && time > 0) {
                    uint256 reward = time * rewardPerSecond;
                    pool.accRewardPerShare =
                        pool.accRewardPerShare +
                        (reward * ACC_TOKEN_PRECISION) /
                        nftSupply;

                    _totalRewards += reward;
                } else lastDistributedTime += time;
            }

            if (lastDistributedTimeExtra > 0) {
                uint256 rightBoarder = getRightBoarderExtra();
                uint256 time = rightBoarder > pool.lastRewardTime
                    ? rightBoarder - pool.lastRewardTime
                    : 0;
                if (nftSupply > 0 && time > 0) {
                    uint256 reward = time * rewardPerSecondExtra;
                    pool.accRewardPerShareExtra =
                        pool.accRewardPerShareExtra +
                        (reward * ACC_TOKEN_PRECISION) /
                        nftSupply;

                    _totalRewardsExtra += reward;

                } else lastDistributedTimeExtra += time;
            }

            pool.lastRewardTime = block.timestamp;
            poolInfo = pool;

            emit LogUpdatePool(
                pool.lastRewardTime,
                nftSupply,
                pool.accRewardPerShare,
                pool.accRewardPerShareExtra
            );
        }
    }

    function totalRewards() external view returns(uint256) {
        uint256 rightBoarder = getRightBoarder();
        uint256 time = rightBoarder > poolInfo.lastRewardTime
            ? rightBoarder - poolInfo.lastRewardTime
            : 0;
        uint256 reward = time * rewardPerSecond;

        return _totalRewards + reward;
    }

    function totalRewardsExtra() external view returns(uint256) {
        uint256 rightBoarder = getRightBoarderExtra();
        uint256 time = rightBoarder > poolInfo.lastRewardTime
            ? rightBoarder - poolInfo.lastRewardTime
            : 0;
        uint256 reward = time * rewardPerSecondExtra;

        return _totalRewardsExtra + reward;
    }

    /// @notice Deposit nft tokens to MCV2 for token allocation.
    /// @param tokenIds NFT tokenIds to deposit.
    function deposit(uint256[] calldata tokenIds) public {
        PoolInfo memory pool = updatePool();
        UserInfo storage user = userInfo[msg.sender];

        if(user.amount > 0) {
            // calculate & transfer main rewards
            uint256 pending = user.amount * pool.accRewardPerShare / ACC_TOKEN_PRECISION - user.rewardDebt;
            if(pending > 0) TOKEN.safeTransfer(msg.sender, pending);

            // calculate & transfer extra rewards
            pending = user.amount * pool.accRewardPerShareExtra / ACC_TOKEN_PRECISION - user.rewardDebtExtra;
            _sendExtraRewards(msg.sender, pending);
        }

        // Effects
        for (uint256 i = 0; i < tokenIds.length; i++) {
            require(NFT.ownerOf(tokenIds[i]) == msg.sender, "CHEF: !NFT Owner");

            user.tokenIndices[tokenIds[i]] = user.tokenIds.length;
            user.tokenIds.push(tokenIds[i]);
            tokenOwner[tokenIds[i]] = msg.sender;

            NFT.transferFrom(msg.sender, address(this), tokenIds[i]);
        }

        user.amount = user.amount + tokenIds.length;
        user.rewardDebt = user.amount * pool.accRewardPerShare / ACC_TOKEN_PRECISION;
        user.rewardDebtExtra = user.amount * pool.accRewardPerShareExtra / ACC_TOKEN_PRECISION;

        emit Deposit(msg.sender, tokenIds, msg.sender);
    }

    /// @notice Withdraw NFT tokens from MCV2.
    /// @param tokenIds NFT token ids to withdraw.
    function withdraw(uint256[] calldata tokenIds) public {
        PoolInfo memory pool = updatePool();
        UserInfo storage user = userInfo[msg.sender];

        if(user.amount > 0) {
            // calculate & transfer main rewards
            uint256 pending = user.amount * pool.accRewardPerShare / ACC_TOKEN_PRECISION - user.rewardDebt;
            if(pending > 0) TOKEN.safeTransfer(msg.sender, pending);

            // calculate & transfer extra rewards
            pending = user.amount * pool.accRewardPerShareExtra / ACC_TOKEN_PRECISION - user.rewardDebtExtra;
            _sendExtraRewards(msg.sender, pending);
        }

        // Effects
        require(user.amount >= tokenIds.length);
        user.amount = user.amount - tokenIds.length;
        user.rewardDebt = user.amount * pool.accRewardPerShare / ACC_TOKEN_PRECISION;
        user.rewardDebtExtra = user.amount * pool.accRewardPerShareExtra / ACC_TOKEN_PRECISION;

        for (uint256 i = 0; i < tokenIds.length; i++) {
            require(tokenOwner[tokenIds[i]] == msg.sender, "CHEF: !NFT Owner");
            NFT.transferFrom(address(this), msg.sender, tokenIds[i]);
            uint256 lastTokenId = user.tokenIds[user.tokenIds.length - 1];
            user.tokenIds[user.tokenIndices[tokenIds[i]]] = lastTokenId;
            user.tokenIndices[lastTokenId] = user.tokenIndices[tokenIds[i]];
            user.tokenIds.pop();
            delete user.tokenIndices[tokenIds[i]];
            delete tokenOwner[tokenIds[i]];
        }

        emit Withdraw(msg.sender, tokenIds, msg.sender);
    }

    /// @notice Harvest proceeds for transaction sender.
    function harvest() public {
        PoolInfo memory pool = updatePool();
        UserInfo storage user = userInfo[msg.sender];
        uint256 accumulatedReward =
            (user.amount * (pool.accRewardPerShare)) / ACC_TOKEN_PRECISION;
        uint256 _pendingReward = accumulatedReward - user.rewardDebt;

        // Effects
        user.rewardDebt = accumulatedReward;

        // Interactions
        TOKEN.safeTransfer(msg.sender, _pendingReward);

        emit Harvest(msg.sender, _pendingReward);
    }

    /// @notice Harvest proceeds for transaction sender.
    function harvestExtra() public {
        PoolInfo memory pool = updatePool();
        UserInfo storage user = userInfo[msg.sender];
        uint256 accumulatedReward = 
            (user.amount * (pool.accRewardPerShareExtra)) / ACC_TOKEN_PRECISION;
        uint256 _pendingReward = accumulatedReward - user.rewardDebtExtra;

        // Effects
        user.rewardDebtExtra = accumulatedReward;

        _sendExtraRewards(msg.sender, _pendingReward);
    }

    function onERC721Received(
        address,
        address,
        uint256,
        bytes calldata
    ) external pure returns (bytes4) {
        return IERC721Receiver.onERC721Received.selector;
    }

    function emergencyWithdraw() external {
        uint256[] memory tokenIds = userInfo[msg.sender].tokenIds;

        delete(userInfo[msg.sender]);

        for (uint256 i = 0; i < tokenIds.length; i++) {
            delete tokenOwner[tokenIds[i]];
            delete userInfo[msg.sender].tokenIndices[tokenIds[i]];
            NFT.transferFrom(address(this), msg.sender, tokenIds[i]);
        }

        emit EmergencyWithdraw(msg.sender, tokenIds, msg.sender);
    }

    function _sendExtraRewards(address user, uint256 pending) internal {
        // Interactions
        if (pending != 0) {
            uint256 veShareAmount = (veShare * pending) /
                PERCENT_PRECISION;
            if (veShareAmount > 0) {
                TOKEN.safeApprove(votingEscrow, 0);
                TOKEN.safeApprove(votingEscrow, veShareAmount);

                IVotingEscrow(votingEscrow).create_lock_for(
                    veShareAmount,
                    LOCK_DURATION,
                    user
                );
            }

            uint256 vestingAmount = pending - veShareAmount;
            if (vestingAmount > 0) {
                TOKEN.safeApprove(vesting, vestingAmount);

                IVesting(vesting).vestTokensFor(user, vestingAmount);
            }
        }

        emit HarvestExtra(user, pending);
    }
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):