Contract Name:
OneJumpOracleV2
Contract Source Code:
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface AggregatorV3Interface {
function decimals() external view returns (uint8);
function description() external view returns (string memory);
function version() external view returns (uint256);
function getRoundData(uint80 _roundId)
external
view
returns (
uint80 roundId,
int256 answer,
uint256 startedAt,
uint256 updatedAt,
uint80 answeredInRound
);
function latestRoundData()
external
view
returns (
uint80 roundId,
int256 answer,
uint256 startedAt,
uint256 updatedAt,
uint80 answeredInRound
);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable2Step.sol)
pragma solidity ^0.8.0;
import "./OwnableUpgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";
/**
* @dev Contract module which provides access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership} and {acceptOwnership}.
*
* This module is used through inheritance. It will make available all functions
* from parent (Ownable).
*/
abstract contract Ownable2StepUpgradeable is Initializable, OwnableUpgradeable {
address private _pendingOwner;
event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);
function __Ownable2Step_init() internal onlyInitializing {
__Ownable_init_unchained();
}
function __Ownable2Step_init_unchained() internal onlyInitializing {
}
/**
* @dev Returns the address of the pending owner.
*/
function pendingOwner() public view virtual returns (address) {
return _pendingOwner;
}
/**
* @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual override onlyOwner {
_pendingOwner = newOwner;
emit OwnershipTransferStarted(owner(), newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual override {
delete _pendingOwner;
super._transferOwnership(newOwner);
}
/**
* @dev The new owner accepts the ownership transfer.
*/
function acceptOwnership() public virtual {
address sender = _msgSender();
require(pendingOwner() == sender, "Ownable2Step: caller is not the new owner");
_transferOwnership(sender);
}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[49] private __gap;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/ContextUpgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
function __Ownable_init() internal onlyInitializing {
__Ownable_init_unchained();
}
function __Ownable_init_unchained() internal onlyInitializing {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[49] private __gap;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol)
pragma solidity ^0.8.2;
import "../../utils/AddressUpgradeable.sol";
/**
* @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
* behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
* external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
* function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
*
* The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
* reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
* case an upgrade adds a module that needs to be initialized.
*
* For example:
*
* [.hljs-theme-light.nopadding]
* ```solidity
* contract MyToken is ERC20Upgradeable {
* function initialize() initializer public {
* __ERC20_init("MyToken", "MTK");
* }
* }
*
* contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
* function initializeV2() reinitializer(2) public {
* __ERC20Permit_init("MyToken");
* }
* }
* ```
*
* TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
* possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
*
* CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
* that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
*
* [CAUTION]
* ====
* Avoid leaving a contract uninitialized.
*
* An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
* contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
* the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
*
* [.hljs-theme-light.nopadding]
* ```
* /// @custom:oz-upgrades-unsafe-allow constructor
* constructor() {
* _disableInitializers();
* }
* ```
* ====
*/
abstract contract Initializable {
/**
* @dev Indicates that the contract has been initialized.
* @custom:oz-retyped-from bool
*/
uint8 private _initialized;
/**
* @dev Indicates that the contract is in the process of being initialized.
*/
bool private _initializing;
/**
* @dev Triggered when the contract has been initialized or reinitialized.
*/
event Initialized(uint8 version);
/**
* @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
* `onlyInitializing` functions can be used to initialize parent contracts.
*
* Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
* constructor.
*
* Emits an {Initialized} event.
*/
modifier initializer() {
bool isTopLevelCall = !_initializing;
require(
(isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
"Initializable: contract is already initialized"
);
_initialized = 1;
if (isTopLevelCall) {
_initializing = true;
}
_;
if (isTopLevelCall) {
_initializing = false;
emit Initialized(1);
}
}
/**
* @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
* contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
* used to initialize parent contracts.
*
* A reinitializer may be used after the original initialization step. This is essential to configure modules that
* are added through upgrades and that require initialization.
*
* When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
* cannot be nested. If one is invoked in the context of another, execution will revert.
*
* Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
* a contract, executing them in the right order is up to the developer or operator.
*
* WARNING: setting the version to 255 will prevent any future reinitialization.
*
* Emits an {Initialized} event.
*/
modifier reinitializer(uint8 version) {
require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
_initialized = version;
_initializing = true;
_;
_initializing = false;
emit Initialized(version);
}
/**
* @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
* {initializer} and {reinitializer} modifiers, directly or indirectly.
*/
modifier onlyInitializing() {
require(_initializing, "Initializable: contract is not initializing");
_;
}
/**
* @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
* Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
* to any version. It is recommended to use this to lock implementation contracts that are designed to be called
* through proxies.
*
* Emits an {Initialized} event the first time it is successfully executed.
*/
function _disableInitializers() internal virtual {
require(!_initializing, "Initializable: contract is initializing");
if (_initialized != type(uint8).max) {
_initialized = type(uint8).max;
emit Initialized(type(uint8).max);
}
}
/**
* @dev Returns the highest version that has been initialized. See {reinitializer}.
*/
function _getInitializedVersion() internal view returns (uint8) {
return _initialized;
}
/**
* @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
*/
function _isInitializing() internal view returns (bool) {
return _initializing;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library AddressUpgradeable {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol)
pragma solidity ^0.8.0;
import {Initializable} from "../proxy/utils/Initializable.sol";
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract ContextUpgradeable is Initializable {
function __Context_init() internal onlyInitializing {
}
function __Context_init_unchained() internal onlyInitializing {
}
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[50] private __gap;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)
pragma solidity ^0.8.0;
/**
* @dev External interface of AccessControl declared to support ERC165 detection.
*/
interface IAccessControl {
/**
* @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
*
* `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
* {RoleAdminChanged} not being emitted signaling this.
*
* _Available since v3.1._
*/
event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
/**
* @dev Emitted when `account` is granted `role`.
*
* `sender` is the account that originated the contract call, an admin role
* bearer except when using {AccessControl-_setupRole}.
*/
event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Emitted when `account` is revoked `role`.
*
* `sender` is the account that originated the contract call:
* - if using `revokeRole`, it is the admin role bearer
* - if using `renounceRole`, it is the role bearer (i.e. `account`)
*/
event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) external view returns (bool);
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {AccessControl-_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) external view returns (bytes32);
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function grantRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function revokeRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been granted `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `account`.
*/
function renounceRole(bytes32 role, address account) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*
* _Available since v4.1._
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
// SPDX-License-Identifier: BSD-3-Clause
pragma solidity 0.8.25;
import "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
import "@openzeppelin/contracts-upgradeable/access/Ownable2StepUpgradeable.sol";
import "./IAccessControlManagerV8.sol";
/**
* @title AccessControlledV8
* @author Enclabs
* @notice This contract is helper between access control manager and actual contract. This contract further inherited by other contract (using solidity 0.8.13)
* to integrate access controlled mechanism. It provides initialise methods and verifying access methods.
*/
abstract contract AccessControlledV8 is Initializable, Ownable2StepUpgradeable {
/// @notice Access control manager contract
IAccessControlManagerV8 private _accessControlManager;
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[49] private __gap;
/// @notice Emitted when access control manager contract address is changed
event NewAccessControlManager(address oldAccessControlManager, address newAccessControlManager);
/// @notice Thrown when the action is prohibited by AccessControlManager
error Unauthorized(address sender, address calledContract, string methodSignature);
function __AccessControlled_init(address accessControlManager_) internal onlyInitializing {
__Ownable2Step_init();
__AccessControlled_init_unchained(accessControlManager_);
}
function __AccessControlled_init_unchained(address accessControlManager_) internal onlyInitializing {
_setAccessControlManager(accessControlManager_);
}
/**
* @notice Sets the address of AccessControlManager
* @dev Admin function to set address of AccessControlManager
* @param accessControlManager_ The new address of the AccessControlManager
* @custom:event Emits NewAccessControlManager event
* @custom:access Only Governance
*/
function setAccessControlManager(address accessControlManager_) external onlyOwner {
_setAccessControlManager(accessControlManager_);
}
/**
* @notice Returns the address of the access control manager contract
*/
function accessControlManager() external view returns (IAccessControlManagerV8) {
return _accessControlManager;
}
/**
* @dev Internal function to set address of AccessControlManager
* @param accessControlManager_ The new address of the AccessControlManager
*/
function _setAccessControlManager(address accessControlManager_) internal {
require(address(accessControlManager_) != address(0), "invalid acess control manager address");
address oldAccessControlManager = address(_accessControlManager);
_accessControlManager = IAccessControlManagerV8(accessControlManager_);
emit NewAccessControlManager(oldAccessControlManager, accessControlManager_);
}
/**
* @notice Reverts if the call is not allowed by AccessControlManager
* @param signature Method signature
*/
function _checkAccessAllowed(string memory signature) internal view {
bool isAllowedToCall = _accessControlManager.isAllowedToCall(msg.sender, signature);
if (!isAllowedToCall) {
revert Unauthorized(msg.sender, address(this), signature);
}
}
}
// SPDX-License-Identifier: BSD-3-Clause
pragma solidity ^0.8.25;
import "@openzeppelin/contracts/access/IAccessControl.sol";
/**
* @title IAccessControlManagerV8
* @author Enclabs
* @notice Interface implemented by the `AccessControlManagerV8` contract.
*/
interface IAccessControlManagerV8 is IAccessControl {
function giveCallPermission(address contractAddress, string calldata functionSig, address accountToPermit) external;
function revokeCallPermission(
address contractAddress,
string calldata functionSig,
address accountToRevoke
) external;
function isAllowedToCall(address account, string calldata functionSig) external view returns (bool);
function hasPermission(
address account,
address contractAddress,
string calldata functionSig
) external view returns (bool);
}
// SPDX-License-Identifier: BSD-3-Clause
pragma solidity ^0.8.25;
interface OracleInterface {
function getPrice(address asset) external view returns (uint256);
}
interface ResilientOracleInterface is OracleInterface {
function updatePrice(address vToken) external;
function updateAssetPrice(address asset) external;
function getUnderlyingPrice(address vToken) external view returns (uint256);
}
interface TwapInterface is OracleInterface {
function updateTwap(address asset) external returns (uint256);
}
interface BoundValidatorInterface {
function validatePriceWithAnchorPrice(
address asset,
uint256 reporterPrice,
uint256 anchorPrice
) external view returns (bool);
}
// SPDX-License-Identifier: BSD-3-Clause
pragma solidity ^0.8.25;
import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
interface VBep20Interface is IERC20Metadata {
/**
* @notice Underlying asset for this VToken
*/
function underlying() external view returns (address);
}
// SPDX-License-Identifier: BSD-3-Clause
pragma solidity 0.8.25;
import "../Interfaces/VBep20Interface.sol";
import "../Interfaces/OracleInterface.sol";
import "@chainlink/contracts/src/v0.8/interfaces/AggregatorV3Interface.sol";
import "../Governance/AccessControlledV8.sol";
/**
* @title OneJumpOracleV2
* @author Enclabs
* @notice This oracle fetches prices of assets from the Chainlink oracle.
*/
contract OneJumpOracleV2 is AccessControlledV8, OracleInterface {
struct TokenConfig {
/// @notice Underlying token address, which can't be a null address
/// @notice Used to check if a token is supported
/// @notice 0xbBbBBBBbbBBBbbbBbbBbbbbBBbBbbbbBbBbbBBbB address for native tokens
/// (e.g BNB for BNB chain, ETH for Ethereum network)
address asset;
/// @notice Chainlink feed address
address feed;
/// @notice Underlying asset address
address underlyingAsset;
/// @notice Price expiration period of this asset in seconds
uint256 maxStalePeriod;
}
/// @notice Address of Resilient Oracle
/// @custom:oz-upgrades-unsafe-allow state-variable-immutable
OracleInterface public immutable RESILIENT_ORACLE;
/// @notice Set this as asset address for native token on each chain.
/// This is the underlying address for vBNB on BNB chain or an underlying asset for a native market on any chain.
address public constant NATIVE_TOKEN_ADDR = 0xbBbBBBBbbBBBbbbBbbBbbbbBBbBbbbbBbBbbBBbB;
/// @notice Manually set an override price, useful under extenuating conditions such as price feed failure
mapping(address => uint256) public prices;
/// @notice Token config by assets
mapping(address => TokenConfig) public tokenConfigs;
/// @notice Emit when a price is manually set
event PricePosted(address indexed asset, uint256 previousPriceMantissa, uint256 newPriceMantissa);
/// @notice Emit when a token config is added
event TokenConfigAdded(address indexed asset, address feed, address underlyingAsset, uint256 maxStalePeriod);
/// @notice Thrown if the token address is invalid
error InvalidTokenAddress();
modifier notNullAddress(address someone) {
if (someone == address(0)) revert("can't be zero address");
_;
}
/// @notice Constructor for the implementation contract.
/// @custom:oz-upgrades-unsafe-allow constructor
constructor(address resilientOracle) {
RESILIENT_ORACLE = OracleInterface(resilientOracle);
_disableInitializers();
}
/**
* @notice Initializes the owner of the contract
* @param accessControlManager_ Address of the access control manager contract
*/
function initialize(address accessControlManager_) external initializer {
__AccessControlled_init(accessControlManager_);
}
/**
* @notice Add multiple token configs at the same time
* @param tokenConfigs_ config array
* @custom:access Only Governance
* @custom:error Zero length error thrown, if length of the array in parameter is 0
*/
function setTokenConfigs(TokenConfig[] memory tokenConfigs_) external {
if (tokenConfigs_.length == 0) revert("length can't be 0");
uint256 numTokenConfigs = tokenConfigs_.length;
for (uint256 i; i < numTokenConfigs; ) {
setTokenConfig(tokenConfigs_[i]);
unchecked {
++i;
}
}
}
/**
* @notice Add single token config. asset & feed cannot be null addresses and maxStalePeriod must be positive
* @param tokenConfig Token config struct
* @custom:access Only Governance
* @custom:error NotNullAddress error is thrown if asset address is null
* @custom:error NotNullAddress error is thrown if token feed address is null
* @custom:error Range error is thrown if maxStale period of token is not greater than zero
* @custom:event Emits TokenConfigAdded event on successfully setting of the token config
*/
function setTokenConfig(
TokenConfig memory tokenConfig
) public notNullAddress(tokenConfig.asset) notNullAddress(tokenConfig.feed) {
_checkAccessAllowed("setTokenConfig(TokenConfig)");
tokenConfigs[tokenConfig.asset] = tokenConfig;
emit TokenConfigAdded(tokenConfig.asset, tokenConfig.feed, tokenConfig.underlyingAsset, tokenConfig.maxStalePeriod);
}
/**
* @notice Gets the price of a asset from the chainlink oracle
* @param asset Address of the asset
* @return Price in USD from Chainlink or a manually set price for the asset
*/
function getPrice(address asset) public view virtual returns (uint256) {
if (address(tokenConfigs[asset].asset) == address(0)) revert InvalidTokenAddress();
// get underlying token amount for 1 correlated token scaled by underlying token decimals
uint256 underlyingAmount = _getUnderlyingAmount(tokenConfigs[asset].asset, tokenConfigs[asset].underlyingAsset);
// oracle returns (36 - asset decimal) scaled price
uint256 underlyingUSDPrice = RESILIENT_ORACLE.getPrice(tokenConfigs[asset].underlyingAsset);
IERC20Metadata token = IERC20Metadata(tokenConfigs[asset].asset);
uint256 decimals = token.decimals();
// underlyingAmount (for 1 correlated token) * underlyingUSDPrice / decimals(correlated token)
return (underlyingAmount * underlyingUSDPrice) / (10 ** decimals);
}
/**
* @notice Gets the Chainlink price for a given asset
* @param asset address of the asset
* @param decimals decimals of the asset
* @return price Asset price in USD or a manually set price of the asset
*/
function _getPriceInternal(address asset, uint256 decimals) internal view returns (uint256 price) {
uint256 tokenPrice = prices[asset];
if (tokenPrice != 0) {
price = tokenPrice;
} else {
price = _getChainlinkPrice(asset);
}
uint256 decimalDelta = 18 - decimals;
return price * (10 ** decimalDelta);
}
/**
* @notice Get the Chainlink price for an asset, revert if token config doesn't exist
* @dev The precision of the price feed is used to ensure the returned price has 18 decimals of precision
* @param asset Address of the asset
* @return price Price in USD, with 18 decimals of precision
* @custom:error NotNullAddress error is thrown if the asset address is null
* @custom:error Price error is thrown if the Chainlink price of asset is not greater than zero
* @custom:error Timing error is thrown if current timestamp is less than the last updatedAt timestamp
* @custom:error Timing error is thrown if time difference between current time and last updated time
* is greater than maxStalePeriod
*/
function _getChainlinkPrice(
address asset
) private view notNullAddress(tokenConfigs[asset].asset) returns (uint256) {
TokenConfig memory tokenConfig = tokenConfigs[asset];
AggregatorV3Interface feed = AggregatorV3Interface(tokenConfig.feed);
// note: maxStalePeriod cannot be 0
uint256 maxStalePeriod = tokenConfig.maxStalePeriod;
// Chainlink USD-denominated feeds store answers at 8 decimals, mostly
uint256 decimalDelta = 18 - feed.decimals();
(, int256 answer, , uint256 updatedAt, ) = feed.latestRoundData();
if (answer <= 0) revert("chainlink price must be positive");
if (block.timestamp < updatedAt) revert("updatedAt exceeds block time");
uint256 deltaTime;
unchecked {
deltaTime = block.timestamp - updatedAt;
}
if (deltaTime > maxStalePeriod) revert("chainlink price expired");
return uint256(answer) * (10 ** decimalDelta);
}
/**
* @notice Fetches the amount of the underlying token for 1 correlated token, using the intermediate oracle
* @return amount The amount of the underlying token for 1 correlated token scaled by the underlying token decimals
*/
function _getUnderlyingAmount(address asset, address underlyingAsset) internal view returns (uint256) {
uint256 underlyingDecimals = IERC20Metadata(underlyingAsset).decimals();
uint256 correlatedDecimals = IERC20Metadata(asset).decimals();
//uint256 underlyingAmount = RESILIENT_ORACLE.getPrice(asset);
uint256 underlyingAmount = _getPriceInternal(asset, correlatedDecimals);
return (underlyingAmount * (10 ** correlatedDecimals)) / (10 ** (36 - underlyingDecimals));
}
}