Contract Name:
AlgebraFactory
Contract Source Code:
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/AccessControl.sol)
pragma solidity ^0.8.0;
import "./IAccessControl.sol";
import "../utils/Context.sol";
import "../utils/Strings.sol";
import "../utils/introspection/ERC165.sol";
/**
* @dev Contract module that allows children to implement role-based access
* control mechanisms. This is a lightweight version that doesn't allow enumerating role
* members except through off-chain means by accessing the contract event logs. Some
* applications may benefit from on-chain enumerability, for those cases see
* {AccessControlEnumerable}.
*
* Roles are referred to by their `bytes32` identifier. These should be exposed
* in the external API and be unique. The best way to achieve this is by
* using `public constant` hash digests:
*
* ```solidity
* bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
* ```
*
* Roles can be used to represent a set of permissions. To restrict access to a
* function call, use {hasRole}:
*
* ```solidity
* function foo() public {
* require(hasRole(MY_ROLE, msg.sender));
* ...
* }
* ```
*
* Roles can be granted and revoked dynamically via the {grantRole} and
* {revokeRole} functions. Each role has an associated admin role, and only
* accounts that have a role's admin role can call {grantRole} and {revokeRole}.
*
* By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
* that only accounts with this role will be able to grant or revoke other
* roles. More complex role relationships can be created by using
* {_setRoleAdmin}.
*
* WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
* grant and revoke this role. Extra precautions should be taken to secure
* accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
* to enforce additional security measures for this role.
*/
abstract contract AccessControl is Context, IAccessControl, ERC165 {
struct RoleData {
mapping(address => bool) members;
bytes32 adminRole;
}
mapping(bytes32 => RoleData) private _roles;
bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
/**
* @dev Modifier that checks that an account has a specific role. Reverts
* with a standardized message including the required role.
*
* The format of the revert reason is given by the following regular expression:
*
* /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
*
* _Available since v4.1._
*/
modifier onlyRole(bytes32 role) {
_checkRole(role);
_;
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) public view virtual override returns (bool) {
return _roles[role].members[account];
}
/**
* @dev Revert with a standard message if `_msgSender()` is missing `role`.
* Overriding this function changes the behavior of the {onlyRole} modifier.
*
* Format of the revert message is described in {_checkRole}.
*
* _Available since v4.6._
*/
function _checkRole(bytes32 role) internal view virtual {
_checkRole(role, _msgSender());
}
/**
* @dev Revert with a standard message if `account` is missing `role`.
*
* The format of the revert reason is given by the following regular expression:
*
* /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
*/
function _checkRole(bytes32 role, address account) internal view virtual {
if (!hasRole(role, account)) {
revert(
string(
abi.encodePacked(
"AccessControl: account ",
Strings.toHexString(account),
" is missing role ",
Strings.toHexString(uint256(role), 32)
)
)
);
}
}
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {
return _roles[role].adminRole;
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleGranted} event.
*/
function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
_grantRole(role, account);
}
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleRevoked} event.
*/
function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
_revokeRole(role, account);
}
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been revoked `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `account`.
*
* May emit a {RoleRevoked} event.
*/
function renounceRole(bytes32 role, address account) public virtual override {
require(account == _msgSender(), "AccessControl: can only renounce roles for self");
_revokeRole(role, account);
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event. Note that unlike {grantRole}, this function doesn't perform any
* checks on the calling account.
*
* May emit a {RoleGranted} event.
*
* [WARNING]
* ====
* This function should only be called from the constructor when setting
* up the initial roles for the system.
*
* Using this function in any other way is effectively circumventing the admin
* system imposed by {AccessControl}.
* ====
*
* NOTE: This function is deprecated in favor of {_grantRole}.
*/
function _setupRole(bytes32 role, address account) internal virtual {
_grantRole(role, account);
}
/**
* @dev Sets `adminRole` as ``role``'s admin role.
*
* Emits a {RoleAdminChanged} event.
*/
function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
bytes32 previousAdminRole = getRoleAdmin(role);
_roles[role].adminRole = adminRole;
emit RoleAdminChanged(role, previousAdminRole, adminRole);
}
/**
* @dev Grants `role` to `account`.
*
* Internal function without access restriction.
*
* May emit a {RoleGranted} event.
*/
function _grantRole(bytes32 role, address account) internal virtual {
if (!hasRole(role, account)) {
_roles[role].members[account] = true;
emit RoleGranted(role, account, _msgSender());
}
}
/**
* @dev Revokes `role` from `account`.
*
* Internal function without access restriction.
*
* May emit a {RoleRevoked} event.
*/
function _revokeRole(bytes32 role, address account) internal virtual {
if (hasRole(role, account)) {
_roles[role].members[account] = false;
emit RoleRevoked(role, account, _msgSender());
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (access/AccessControlEnumerable.sol)
pragma solidity ^0.8.0;
import "./IAccessControlEnumerable.sol";
import "./AccessControl.sol";
import "../utils/structs/EnumerableSet.sol";
/**
* @dev Extension of {AccessControl} that allows enumerating the members of each role.
*/
abstract contract AccessControlEnumerable is IAccessControlEnumerable, AccessControl {
using EnumerableSet for EnumerableSet.AddressSet;
mapping(bytes32 => EnumerableSet.AddressSet) private _roleMembers;
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IAccessControlEnumerable).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @dev Returns one of the accounts that have `role`. `index` must be a
* value between 0 and {getRoleMemberCount}, non-inclusive.
*
* Role bearers are not sorted in any particular way, and their ordering may
* change at any point.
*
* WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure
* you perform all queries on the same block. See the following
* https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post]
* for more information.
*/
function getRoleMember(bytes32 role, uint256 index) public view virtual override returns (address) {
return _roleMembers[role].at(index);
}
/**
* @dev Returns the number of accounts that have `role`. Can be used
* together with {getRoleMember} to enumerate all bearers of a role.
*/
function getRoleMemberCount(bytes32 role) public view virtual override returns (uint256) {
return _roleMembers[role].length();
}
/**
* @dev Overload {_grantRole} to track enumerable memberships
*/
function _grantRole(bytes32 role, address account) internal virtual override {
super._grantRole(role, account);
_roleMembers[role].add(account);
}
/**
* @dev Overload {_revokeRole} to track enumerable memberships
*/
function _revokeRole(bytes32 role, address account) internal virtual override {
super._revokeRole(role, account);
_roleMembers[role].remove(account);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)
pragma solidity ^0.8.0;
/**
* @dev External interface of AccessControl declared to support ERC165 detection.
*/
interface IAccessControl {
/**
* @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
*
* `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
* {RoleAdminChanged} not being emitted signaling this.
*
* _Available since v3.1._
*/
event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
/**
* @dev Emitted when `account` is granted `role`.
*
* `sender` is the account that originated the contract call, an admin role
* bearer except when using {AccessControl-_setupRole}.
*/
event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Emitted when `account` is revoked `role`.
*
* `sender` is the account that originated the contract call:
* - if using `revokeRole`, it is the admin role bearer
* - if using `renounceRole`, it is the role bearer (i.e. `account`)
*/
event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) external view returns (bool);
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {AccessControl-_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) external view returns (bytes32);
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function grantRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function revokeRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been granted `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `account`.
*/
function renounceRole(bytes32 role, address account) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/IAccessControlEnumerable.sol)
pragma solidity ^0.8.0;
import "./IAccessControl.sol";
/**
* @dev External interface of AccessControlEnumerable declared to support ERC165 detection.
*/
interface IAccessControlEnumerable is IAccessControl {
/**
* @dev Returns one of the accounts that have `role`. `index` must be a
* value between 0 and {getRoleMemberCount}, non-inclusive.
*
* Role bearers are not sorted in any particular way, and their ordering may
* change at any point.
*
* WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure
* you perform all queries on the same block. See the following
* https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post]
* for more information.
*/
function getRoleMember(bytes32 role, uint256 index) external view returns (address);
/**
* @dev Returns the number of accounts that have `role`. Can be used
* together with {getRoleMember} to enumerate all bearers of a role.
*/
function getRoleMemberCount(bytes32 role) external view returns (uint256);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable2Step.sol)
pragma solidity ^0.8.0;
import "./Ownable.sol";
/**
* @dev Contract module which provides access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership} and {acceptOwnership}.
*
* This module is used through inheritance. It will make available all functions
* from parent (Ownable).
*/
abstract contract Ownable2Step is Ownable {
address private _pendingOwner;
event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);
/**
* @dev Returns the address of the pending owner.
*/
function pendingOwner() public view virtual returns (address) {
return _pendingOwner;
}
/**
* @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual override onlyOwner {
_pendingOwner = newOwner;
emit OwnershipTransferStarted(owner(), newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual override {
delete _pendingOwner;
super._transferOwnership(newOwner);
}
/**
* @dev The new owner accepts the ownership transfer.
*/
function acceptOwnership() public virtual {
address sender = _msgSender();
require(pendingOwner() == sender, "Ownable2Step: caller is not the new owner");
_transferOwnership(sender);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
pragma solidity ^0.8.0;
import "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*
* Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1, "Math: mulDiv overflow");
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
import "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toString(int256 value) internal pure returns (string memory) {
return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return keccak256(bytes(a)) == keccak256(bytes(b));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/structs/EnumerableSet.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.
pragma solidity ^0.8.0;
/**
* @dev Library for managing
* https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
* types.
*
* Sets have the following properties:
*
* - Elements are added, removed, and checked for existence in constant time
* (O(1)).
* - Elements are enumerated in O(n). No guarantees are made on the ordering.
*
* ```solidity
* contract Example {
* // Add the library methods
* using EnumerableSet for EnumerableSet.AddressSet;
*
* // Declare a set state variable
* EnumerableSet.AddressSet private mySet;
* }
* ```
*
* As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
* and `uint256` (`UintSet`) are supported.
*
* [WARNING]
* ====
* Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
* unusable.
* See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
*
* In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
* array of EnumerableSet.
* ====
*/
library EnumerableSet {
// To implement this library for multiple types with as little code
// repetition as possible, we write it in terms of a generic Set type with
// bytes32 values.
// The Set implementation uses private functions, and user-facing
// implementations (such as AddressSet) are just wrappers around the
// underlying Set.
// This means that we can only create new EnumerableSets for types that fit
// in bytes32.
struct Set {
// Storage of set values
bytes32[] _values;
// Position of the value in the `values` array, plus 1 because index 0
// means a value is not in the set.
mapping(bytes32 => uint256) _indexes;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function _add(Set storage set, bytes32 value) private returns (bool) {
if (!_contains(set, value)) {
set._values.push(value);
// The value is stored at length-1, but we add 1 to all indexes
// and use 0 as a sentinel value
set._indexes[value] = set._values.length;
return true;
} else {
return false;
}
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function _remove(Set storage set, bytes32 value) private returns (bool) {
// We read and store the value's index to prevent multiple reads from the same storage slot
uint256 valueIndex = set._indexes[value];
if (valueIndex != 0) {
// Equivalent to contains(set, value)
// To delete an element from the _values array in O(1), we swap the element to delete with the last one in
// the array, and then remove the last element (sometimes called as 'swap and pop').
// This modifies the order of the array, as noted in {at}.
uint256 toDeleteIndex = valueIndex - 1;
uint256 lastIndex = set._values.length - 1;
if (lastIndex != toDeleteIndex) {
bytes32 lastValue = set._values[lastIndex];
// Move the last value to the index where the value to delete is
set._values[toDeleteIndex] = lastValue;
// Update the index for the moved value
set._indexes[lastValue] = valueIndex; // Replace lastValue's index to valueIndex
}
// Delete the slot where the moved value was stored
set._values.pop();
// Delete the index for the deleted slot
delete set._indexes[value];
return true;
} else {
return false;
}
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function _contains(Set storage set, bytes32 value) private view returns (bool) {
return set._indexes[value] != 0;
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function _length(Set storage set) private view returns (uint256) {
return set._values.length;
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function _at(Set storage set, uint256 index) private view returns (bytes32) {
return set._values[index];
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function _values(Set storage set) private view returns (bytes32[] memory) {
return set._values;
}
// Bytes32Set
struct Bytes32Set {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _add(set._inner, value);
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _remove(set._inner, value);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
return _contains(set._inner, value);
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(Bytes32Set storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
return _at(set._inner, index);
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
bytes32[] memory store = _values(set._inner);
bytes32[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
// AddressSet
struct AddressSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(AddressSet storage set, address value) internal returns (bool) {
return _add(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(AddressSet storage set, address value) internal returns (bool) {
return _remove(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(AddressSet storage set, address value) internal view returns (bool) {
return _contains(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(AddressSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(AddressSet storage set, uint256 index) internal view returns (address) {
return address(uint160(uint256(_at(set._inner, index))));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(AddressSet storage set) internal view returns (address[] memory) {
bytes32[] memory store = _values(set._inner);
address[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
// UintSet
struct UintSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(UintSet storage set, uint256 value) internal returns (bool) {
return _add(set._inner, bytes32(value));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(UintSet storage set, uint256 value) internal returns (bool) {
return _remove(set._inner, bytes32(value));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(UintSet storage set, uint256 value) internal view returns (bool) {
return _contains(set._inner, bytes32(value));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(UintSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(UintSet storage set, uint256 index) internal view returns (uint256) {
return uint256(_at(set._inner, index));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(UintSet storage set) internal view returns (uint256[] memory) {
bytes32[] memory store = _values(set._inner);
uint256[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity =0.8.20;
import './libraries/SafeTransfer.sol';
import './libraries/FullMath.sol';
import './interfaces/IAlgebraFactory.sol';
import './interfaces/vault/IAlgebraCommunityVault.sol';
/// @title Algebra community fee vault
/// @notice Community fee from pools is sent here, if it is enabled
/// @dev Role system is used to withdraw tokens
/// @dev Version: Algebra Integral 1.0
contract AlgebraCommunityVault is IAlgebraCommunityVault {
/// @dev The role can be granted in AlgebraFactory
bytes32 public constant COMMUNITY_FEE_WITHDRAWER_ROLE = keccak256('COMMUNITY_FEE_WITHDRAWER');
/// @dev The role can be granted in AlgebraFactory
bytes32 public constant COMMUNITY_FEE_VAULT_ADMINISTRATOR = keccak256('COMMUNITY_FEE_VAULT_ADMINISTRATOR');
address private immutable factory;
/// @notice Address to which community fees are sent from vault
address public communityFeeReceiver;
/// @notice The percentage of the protocol fee that Algebra will receive
/// @dev Value in thousandths,i.e. 1e-3
uint16 public algebraFee;
/// @notice Represents whether there is a new Algebra fee proposal or not
bool public hasNewAlgebraFeeProposal;
/// @notice Suggested Algebra fee value
uint16 public proposedNewAlgebraFee;
/// @notice Address of recipient Algebra part of community fee
address public algebraFeeReceiver;
/// @notice Address of Algebra fee manager
address public algebraFeeManager;
address private _pendingAlgebraFeeManager;
uint16 private constant ALGEBRA_FEE_DENOMINATOR = 1000;
modifier onlyAdministrator() {
require(IAlgebraFactory(factory).hasRoleOrOwner(COMMUNITY_FEE_VAULT_ADMINISTRATOR, msg.sender), 'only administrator');
_;
}
modifier onlyWithdrawer() {
require(msg.sender == algebraFeeManager || IAlgebraFactory(factory).hasRoleOrOwner(COMMUNITY_FEE_WITHDRAWER_ROLE, msg.sender), 'only withdrawer');
_;
}
modifier onlyAlgebraFeeManager() {
require(msg.sender == algebraFeeManager, 'only algebra fee manager');
_;
}
constructor(address _factory, address _algebraFeeManager) {
(factory, algebraFeeManager) = (_factory, _algebraFeeManager);
}
/// @inheritdoc IAlgebraCommunityVault
function withdraw(address token, uint256 amount) external override onlyWithdrawer {
(uint16 _algebraFee, address _algebraFeeReceiver, address _communityFeeReceiver) = _readAndVerifyWithdrawSettings();
_withdraw(token, _communityFeeReceiver, amount, _algebraFee, _algebraFeeReceiver);
}
/// @inheritdoc IAlgebraCommunityVault
function withdrawTokens(WithdrawTokensParams[] calldata params) external override onlyWithdrawer {
uint256 paramsLength = params.length;
(uint16 _algebraFee, address _algebraFeeReceiver, address _communityFeeReceiver) = _readAndVerifyWithdrawSettings();
unchecked {
for (uint256 i; i < paramsLength; ++i) _withdraw(params[i].token, _communityFeeReceiver, params[i].amount, _algebraFee, _algebraFeeReceiver);
}
}
function _readAndVerifyWithdrawSettings() private view returns (uint16 _algebraFee, address _algebraFeeReceiver, address _communityFeeReceiver) {
(_algebraFee, _algebraFeeReceiver, _communityFeeReceiver) = (algebraFee, algebraFeeReceiver, communityFeeReceiver);
if (_algebraFee != 0) require(_algebraFeeReceiver != address(0), 'invalid algebra fee receiver');
require(_communityFeeReceiver != address(0), 'invalid receiver');
}
function _withdraw(address token, address to, uint256 amount, uint16 _algebraFee, address _algebraFeeReceiver) private {
uint256 withdrawAmount = amount;
if (_algebraFee != 0) {
uint256 algebraFeeAmount = FullMath.mulDivRoundingUp(withdrawAmount, _algebraFee, ALGEBRA_FEE_DENOMINATOR);
withdrawAmount -= algebraFeeAmount;
SafeTransfer.safeTransfer(token, _algebraFeeReceiver, algebraFeeAmount);
emit AlgebraTokensWithdrawal(token, _algebraFeeReceiver, algebraFeeAmount);
}
SafeTransfer.safeTransfer(token, to, withdrawAmount);
emit TokensWithdrawal(token, to, withdrawAmount);
}
// ### algebra factory owner permissioned actions ###
/// @inheritdoc IAlgebraCommunityVault
function acceptAlgebraFeeChangeProposal(uint16 newAlgebraFee) external override onlyAdministrator {
require(hasNewAlgebraFeeProposal, 'not proposed');
require(newAlgebraFee == proposedNewAlgebraFee, 'invalid new fee');
// note that the new value will be used for previously accumulated tokens that have not yet been withdrawn
algebraFee = newAlgebraFee;
(proposedNewAlgebraFee, hasNewAlgebraFeeProposal) = (0, false);
emit AlgebraFee(newAlgebraFee);
}
/// @inheritdoc IAlgebraCommunityVault
function changeCommunityFeeReceiver(address newCommunityFeeReceiver) external override onlyAdministrator {
require(newCommunityFeeReceiver != address(0));
require(newCommunityFeeReceiver != communityFeeReceiver);
communityFeeReceiver = newCommunityFeeReceiver;
emit CommunityFeeReceiver(newCommunityFeeReceiver);
}
// ### algebra fee manager permissioned actions ###
/// @inheritdoc IAlgebraCommunityVault
function transferAlgebraFeeManagerRole(address _newAlgebraFeeManager) external override onlyAlgebraFeeManager {
_pendingAlgebraFeeManager = _newAlgebraFeeManager;
emit PendingAlgebraFeeManager(_newAlgebraFeeManager);
}
/// @inheritdoc IAlgebraCommunityVault
function acceptAlgebraFeeManagerRole() external override {
require(msg.sender == _pendingAlgebraFeeManager);
(_pendingAlgebraFeeManager, algebraFeeManager) = (address(0), msg.sender);
emit AlgebraFeeManager(msg.sender);
}
/// @inheritdoc IAlgebraCommunityVault
function proposeAlgebraFeeChange(uint16 newAlgebraFee) external override onlyAlgebraFeeManager {
require(newAlgebraFee <= ALGEBRA_FEE_DENOMINATOR);
require(newAlgebraFee != proposedNewAlgebraFee && newAlgebraFee != algebraFee);
(proposedNewAlgebraFee, hasNewAlgebraFeeProposal) = (newAlgebraFee, true);
emit AlgebraFeeProposal(newAlgebraFee);
}
/// @inheritdoc IAlgebraCommunityVault
function cancelAlgebraFeeChangeProposal() external override onlyAlgebraFeeManager {
(proposedNewAlgebraFee, hasNewAlgebraFeeProposal) = (0, false);
emit CancelAlgebraFeeProposal();
}
/// @inheritdoc IAlgebraCommunityVault
function changeAlgebraFeeReceiver(address newAlgebraFeeReceiver) external override onlyAlgebraFeeManager {
require(newAlgebraFeeReceiver != address(0));
require(newAlgebraFeeReceiver != algebraFeeReceiver);
algebraFeeReceiver = newAlgebraFeeReceiver;
emit AlgebraFeeReceiver(newAlgebraFeeReceiver);
}
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity =0.8.20;
import './libraries/Constants.sol';
import './interfaces/IAlgebraFactory.sol';
import './interfaces/IAlgebraPoolDeployer.sol';
import './interfaces/vault/IAlgebraVaultFactory.sol';
import './interfaces/plugin/IAlgebraPluginFactory.sol';
import './AlgebraCommunityVault.sol';
import '@openzeppelin/contracts/access/Ownable2Step.sol';
import '@openzeppelin/contracts/access/AccessControlEnumerable.sol';
/// @title Algebra factory
/// @notice Is used to deploy pools and its plugins
/// @dev Version: Algebra Integral 1.0
contract AlgebraFactory is IAlgebraFactory, Ownable2Step, AccessControlEnumerable {
/// @inheritdoc IAlgebraFactory
bytes32 public constant override POOLS_ADMINISTRATOR_ROLE = keccak256('POOLS_ADMINISTRATOR'); // it`s here for the public visibility of the value
/// @inheritdoc IAlgebraFactory
address public immutable override poolDeployer;
/// @inheritdoc IAlgebraFactory
uint16 public override defaultCommunityFee;
/// @inheritdoc IAlgebraFactory
uint16 public override defaultFee;
/// @inheritdoc IAlgebraFactory
int24 public override defaultTickspacing;
/// @inheritdoc IAlgebraFactory
uint256 public override renounceOwnershipStartTimestamp;
/// @dev time delay before ownership renouncement can be finished
uint256 private constant RENOUNCE_OWNERSHIP_DELAY = 1 days;
/// @inheritdoc IAlgebraFactory
IAlgebraPluginFactory public defaultPluginFactory;
/// @inheritdoc IAlgebraFactory
IAlgebraVaultFactory public vaultFactory;
/// @inheritdoc IAlgebraFactory
mapping(address => mapping(address => address)) public override poolByPair;
/// @inheritdoc IAlgebraFactory
/// @dev keccak256 of AlgebraPool init bytecode. Used to compute pool address deterministically
bytes32 public constant POOL_INIT_CODE_HASH = 0xf96d2474815c32e070cd63233f06af5413efc5dcb430aee4ff18cc29007c562d;
constructor(address _poolDeployer) {
require(_poolDeployer != address(0));
poolDeployer = _poolDeployer;
defaultTickspacing = Constants.INIT_DEFAULT_TICK_SPACING;
defaultFee = Constants.INIT_DEFAULT_FEE;
emit DefaultTickspacing(Constants.INIT_DEFAULT_TICK_SPACING);
emit DefaultFee(Constants.INIT_DEFAULT_FEE);
}
/// @inheritdoc IAlgebraFactory
function owner() public view override(IAlgebraFactory, Ownable) returns (address) {
return super.owner();
}
/// @inheritdoc IAlgebraFactory
function hasRoleOrOwner(bytes32 role, address account) public view override returns (bool) {
return (owner() == account || super.hasRole(role, account));
}
/// @inheritdoc IAlgebraFactory
function defaultConfigurationForPool(
address pool
) external view override returns (uint16 communityFee, int24 tickSpacing, uint16 fee, address communityVault) {
if (address(vaultFactory) != address(0)) {
communityVault = vaultFactory.getVaultForPool(pool);
}
return (defaultCommunityFee, defaultTickspacing, defaultFee, communityVault);
}
/// @inheritdoc IAlgebraFactory
function computePoolAddress(address token0, address token1) public view override returns (address pool) {
pool = address(uint160(uint256(keccak256(abi.encodePacked(hex'ff', poolDeployer, keccak256(abi.encode(token0, token1)), POOL_INIT_CODE_HASH)))));
}
/// @inheritdoc IAlgebraFactory
function createPool(address tokenA, address tokenB) external override returns (address pool) {
require(tokenA != tokenB);
(address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA);
require(token0 != address(0));
require(poolByPair[token0][token1] == address(0));
address defaultPlugin;
if (address(defaultPluginFactory) != address(0)) {
defaultPlugin = defaultPluginFactory.createPlugin(computePoolAddress(token0, token1), token0, token1);
}
pool = IAlgebraPoolDeployer(poolDeployer).deploy(defaultPlugin, token0, token1);
poolByPair[token0][token1] = pool; // to avoid future addresses comparison we are populating the mapping twice
poolByPair[token1][token0] = pool;
emit Pool(token0, token1, pool);
if (address(vaultFactory) != address(0)) {
vaultFactory.createVaultForPool(pool);
}
}
/// @inheritdoc IAlgebraFactory
function setDefaultCommunityFee(uint16 newDefaultCommunityFee) external override onlyOwner {
require(newDefaultCommunityFee <= Constants.MAX_COMMUNITY_FEE);
require(defaultCommunityFee != newDefaultCommunityFee);
if (newDefaultCommunityFee != 0) require(address(vaultFactory) != address(0));
defaultCommunityFee = newDefaultCommunityFee;
emit DefaultCommunityFee(newDefaultCommunityFee);
}
/// @inheritdoc IAlgebraFactory
function setDefaultFee(uint16 newDefaultFee) external override onlyOwner {
require(newDefaultFee <= Constants.MAX_DEFAULT_FEE);
require(defaultFee != newDefaultFee);
defaultFee = newDefaultFee;
emit DefaultFee(newDefaultFee);
}
/// @inheritdoc IAlgebraFactory
function setDefaultTickspacing(int24 newDefaultTickspacing) external override onlyOwner {
require(newDefaultTickspacing >= Constants.MIN_TICK_SPACING);
require(newDefaultTickspacing <= Constants.MAX_TICK_SPACING);
require(newDefaultTickspacing != defaultTickspacing);
defaultTickspacing = newDefaultTickspacing;
emit DefaultTickspacing(newDefaultTickspacing);
}
/// @inheritdoc IAlgebraFactory
function setDefaultPluginFactory(address newDefaultPluginFactory) external override onlyOwner {
require(newDefaultPluginFactory != address(defaultPluginFactory));
defaultPluginFactory = IAlgebraPluginFactory(newDefaultPluginFactory);
emit DefaultPluginFactory(newDefaultPluginFactory);
}
/// @inheritdoc IAlgebraFactory
function setVaultFactory(address newVaultFactory) external override onlyOwner {
require(newVaultFactory != address(vaultFactory));
if (newVaultFactory == address(0)) require(defaultCommunityFee == 0);
vaultFactory = IAlgebraVaultFactory(newVaultFactory);
emit VaultFactory(newVaultFactory);
}
/// @inheritdoc IAlgebraFactory
function startRenounceOwnership() external override onlyOwner {
require(renounceOwnershipStartTimestamp == 0);
renounceOwnershipStartTimestamp = block.timestamp;
emit RenounceOwnershipStart(renounceOwnershipStartTimestamp, renounceOwnershipStartTimestamp + RENOUNCE_OWNERSHIP_DELAY);
}
/// @inheritdoc IAlgebraFactory
function stopRenounceOwnership() external override onlyOwner {
require(renounceOwnershipStartTimestamp != 0);
renounceOwnershipStartTimestamp = 0;
emit RenounceOwnershipStop(block.timestamp);
}
/// @dev Leaves the contract without owner. It will not be possible to call `onlyOwner` functions anymore.
/// Can only be called by the current owner if RENOUNCE_OWNERSHIP_DELAY seconds
/// have passed since the call to the startRenounceOwnership() function.
function renounceOwnership() public override onlyOwner {
require(renounceOwnershipStartTimestamp != 0);
require(block.timestamp - renounceOwnershipStartTimestamp >= RENOUNCE_OWNERSHIP_DELAY);
renounceOwnershipStartTimestamp = 0;
super.renounceOwnership();
emit RenounceOwnershipFinish(block.timestamp);
}
/// @dev Transfers ownership of the contract to a new account (`newOwner`).
/// Modified to fit with the role mechanism.
function _transferOwnership(address newOwner) internal override {
_revokeRole(DEFAULT_ADMIN_ROLE, owner());
super._transferOwnership(newOwner);
if (owner() != address(0)) {
_grantRole(DEFAULT_ADMIN_ROLE, owner());
}
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
pragma abicoder v2;
import './plugin/IAlgebraPluginFactory.sol';
import './vault/IAlgebraVaultFactory.sol';
/// @title The interface for the Algebra Factory
/// @dev Credit to Uniswap Labs under GPL-2.0-or-later license:
/// https://github.com/Uniswap/v3-core/tree/main/contracts/interfaces
interface IAlgebraFactory {
/// @notice Emitted when a process of ownership renounce is started
/// @param timestamp The timestamp of event
/// @param finishTimestamp The timestamp when ownership renounce will be possible to finish
event RenounceOwnershipStart(uint256 timestamp, uint256 finishTimestamp);
/// @notice Emitted when a process of ownership renounce cancelled
/// @param timestamp The timestamp of event
event RenounceOwnershipStop(uint256 timestamp);
/// @notice Emitted when a process of ownership renounce finished
/// @param timestamp The timestamp of ownership renouncement
event RenounceOwnershipFinish(uint256 timestamp);
/// @notice Emitted when a pool is created
/// @param token0 The first token of the pool by address sort order
/// @param token1 The second token of the pool by address sort order
/// @param pool The address of the created pool
event Pool(address indexed token0, address indexed token1, address pool);
/// @notice Emitted when the default community fee is changed
/// @param newDefaultCommunityFee The new default community fee value
event DefaultCommunityFee(uint16 newDefaultCommunityFee);
/// @notice Emitted when the default tickspacing is changed
/// @param newDefaultTickspacing The new default tickspacing value
event DefaultTickspacing(int24 newDefaultTickspacing);
/// @notice Emitted when the default fee is changed
/// @param newDefaultFee The new default fee value
event DefaultFee(uint16 newDefaultFee);
/// @notice Emitted when the defaultPluginFactory address is changed
/// @param defaultPluginFactoryAddress The new defaultPluginFactory address
event DefaultPluginFactory(address defaultPluginFactoryAddress);
/// @notice Emitted when the vaultFactory address is changed
/// @param newVaultFactory The new vaultFactory address
event VaultFactory(address newVaultFactory);
/// @notice role that can change communityFee and tickspacing in pools
/// @return The hash corresponding to this role
function POOLS_ADMINISTRATOR_ROLE() external view returns (bytes32);
/// @notice Returns `true` if `account` has been granted `role` or `account` is owner.
/// @param role The hash corresponding to the role
/// @param account The address for which the role is checked
/// @return bool Whether the address has this role or the owner role or not
function hasRoleOrOwner(bytes32 role, address account) external view returns (bool);
/// @notice Returns the current owner of the factory
/// @dev Can be changed by the current owner via transferOwnership(address newOwner)
/// @return The address of the factory owner
function owner() external view returns (address);
/// @notice Returns the current poolDeployerAddress
/// @return The address of the poolDeployer
function poolDeployer() external view returns (address);
/// @notice Returns the default community fee
/// @return Fee which will be set at the creation of the pool
function defaultCommunityFee() external view returns (uint16);
/// @notice Returns the default fee
/// @return Fee which will be set at the creation of the pool
function defaultFee() external view returns (uint16);
/// @notice Returns the default tickspacing
/// @return Tickspacing which will be set at the creation of the pool
function defaultTickspacing() external view returns (int24);
/// @notice Return the current pluginFactory address
/// @dev This contract is used to automatically set a plugin address in new liquidity pools
/// @return Algebra plugin factory
function defaultPluginFactory() external view returns (IAlgebraPluginFactory);
/// @notice Return the current vaultFactory address
/// @dev This contract is used to automatically set a vault address in new liquidity pools
/// @return Algebra vault factory
function vaultFactory() external view returns (IAlgebraVaultFactory);
/// @notice Returns the default communityFee, tickspacing, fee and communityFeeVault for pool
/// @param pool the address of liquidity pool
/// @return communityFee which will be set at the creation of the pool
/// @return tickSpacing which will be set at the creation of the pool
/// @return fee which will be set at the creation of the pool
/// @return communityFeeVault the address of communityFeeVault
function defaultConfigurationForPool(
address pool
) external view returns (uint16 communityFee, int24 tickSpacing, uint16 fee, address communityFeeVault);
/// @notice Deterministically computes the pool address given the token0 and token1
/// @dev The method does not check if such a pool has been created
/// @param token0 first token
/// @param token1 second token
/// @return pool The contract address of the Algebra pool
function computePoolAddress(address token0, address token1) external view returns (address pool);
/// @notice Returns the pool address for a given pair of tokens, or address 0 if it does not exist
/// @dev tokenA and tokenB may be passed in either token0/token1 or token1/token0 order
/// @param tokenA The contract address of either token0 or token1
/// @param tokenB The contract address of the other token
/// @return pool The pool address
function poolByPair(address tokenA, address tokenB) external view returns (address pool);
/// @notice returns keccak256 of AlgebraPool init bytecode.
/// @dev the hash value changes with any change in the pool bytecode
/// @return Keccak256 hash of AlgebraPool contract init bytecode
function POOL_INIT_CODE_HASH() external view returns (bytes32);
/// @return timestamp The timestamp of the beginning of the renounceOwnership process
function renounceOwnershipStartTimestamp() external view returns (uint256 timestamp);
/// @notice Creates a pool for the given two tokens
/// @param tokenA One of the two tokens in the desired pool
/// @param tokenB The other of the two tokens in the desired pool
/// @dev tokenA and tokenB may be passed in either order: token0/token1 or token1/token0.
/// The call will revert if the pool already exists or the token arguments are invalid.
/// @return pool The address of the newly created pool
function createPool(address tokenA, address tokenB) external returns (address pool);
/// @dev updates default community fee for new pools
/// @param newDefaultCommunityFee The new community fee, _must_ be <= MAX_COMMUNITY_FEE
function setDefaultCommunityFee(uint16 newDefaultCommunityFee) external;
/// @dev updates default fee for new pools
/// @param newDefaultFee The new fee, _must_ be <= MAX_DEFAULT_FEE
function setDefaultFee(uint16 newDefaultFee) external;
/// @dev updates default tickspacing for new pools
/// @param newDefaultTickspacing The new tickspacing, _must_ be <= MAX_TICK_SPACING and >= MIN_TICK_SPACING
function setDefaultTickspacing(int24 newDefaultTickspacing) external;
/// @dev updates pluginFactory address
/// @param newDefaultPluginFactory address of new plugin factory
function setDefaultPluginFactory(address newDefaultPluginFactory) external;
/// @dev updates vaultFactory address
/// @param newVaultFactory address of new vault factory
function setVaultFactory(address newVaultFactory) external;
/// @notice Starts process of renounceOwnership. After that, a certain period
/// of time must pass before the ownership renounce can be completed.
function startRenounceOwnership() external;
/// @notice Stops process of renounceOwnership and removes timer.
function stopRenounceOwnership() external;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title An interface for a contract that is capable of deploying Algebra Pools
/// @notice A contract that constructs a pool must implement this to pass arguments to the pool
/// @dev This is used to avoid having constructor arguments in the pool contract, which results in the init code hash
/// of the pool being constant allowing the CREATE2 address of the pool to be cheaply computed on-chain.
/// Credit to Uniswap Labs under GPL-2.0-or-later license:
/// https://github.com/Uniswap/v3-core/tree/main/contracts/interfaces
interface IAlgebraPoolDeployer {
/// @notice Get the parameters to be used in constructing the pool, set transiently during pool creation.
/// @dev Called by the pool constructor to fetch the parameters of the pool
/// @return plugin The pool associated plugin (if any)
/// @return factory The Algebra Factory address
/// @return token0 The first token of the pool by address sort order
/// @return token1 The second token of the pool by address sort order
function getDeployParameters() external view returns (address plugin, address factory, address token0, address token1);
/// @dev Deploys a pool with the given parameters by transiently setting the parameters in cache.
/// @param plugin The pool associated plugin (if any)
/// @param token0 The first token of the pool by address sort order
/// @param token1 The second token of the pool by address sort order
/// @return pool The deployed pool's address
function deploy(address plugin, address token0, address token1) external returns (address pool);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title An interface for a contract that is capable of deploying Algebra plugins
/// @dev Such a factory is needed if the plugin should be automatically created and connected to each new pool
interface IAlgebraPluginFactory {
/// @notice Deploys new plugin contract for pool
/// @param pool The address of the pool for which the new plugin will be created
/// @param token0 First token of the pool
/// @param token1 Second token of the pool
/// @return New plugin address
function createPlugin(address pool, address token0, address token1) external returns (address);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.8.4;
/// @title Errors emitted by a pool
/// @notice Contains custom errors emitted by the pool
/// @dev Custom errors are separated from the common pool interface for compatibility with older versions of Solidity
interface IAlgebraPoolErrors {
// #### pool errors ####
/// @notice Emitted by the reentrancy guard
error locked();
/// @notice Emitted if arithmetic error occurred
error arithmeticError();
/// @notice Emitted if an attempt is made to initialize the pool twice
error alreadyInitialized();
/// @notice Emitted if an attempt is made to mint or swap in uninitialized pool
error notInitialized();
/// @notice Emitted if 0 is passed as amountRequired to swap function
error zeroAmountRequired();
/// @notice Emitted if invalid amount is passed as amountRequired to swap function
error invalidAmountRequired();
/// @notice Emitted if the pool received fewer tokens than it should have
error insufficientInputAmount();
/// @notice Emitted if there was an attempt to mint zero liquidity
error zeroLiquidityDesired();
/// @notice Emitted if actual amount of liquidity is zero (due to insufficient amount of tokens received)
error zeroLiquidityActual();
/// @notice Emitted if the pool received fewer tokens0 after flash than it should have
error flashInsufficientPaid0();
/// @notice Emitted if the pool received fewer tokens1 after flash than it should have
error flashInsufficientPaid1();
/// @notice Emitted if limitSqrtPrice param is incorrect
error invalidLimitSqrtPrice();
/// @notice Tick must be divisible by tickspacing
error tickIsNotSpaced();
/// @notice Emitted if a method is called that is accessible only to the factory owner or dedicated role
error notAllowed();
/// @notice Emitted if new tick spacing exceeds max allowed value
error invalidNewTickSpacing();
/// @notice Emitted if new community fee exceeds max allowed value
error invalidNewCommunityFee();
/// @notice Emitted if an attempt is made to manually change the fee value, but dynamic fee is enabled
error dynamicFeeActive();
/// @notice Emitted if an attempt is made by plugin to change the fee value, but dynamic fee is disabled
error dynamicFeeDisabled();
/// @notice Emitted if an attempt is made to change the plugin configuration, but the plugin is not connected
error pluginIsNotConnected();
/// @notice Emitted if a plugin returns invalid selector after hook call
/// @param expectedSelector The expected selector
error invalidHookResponse(bytes4 expectedSelector);
// #### LiquidityMath errors ####
/// @notice Emitted if liquidity underflows
error liquiditySub();
/// @notice Emitted if liquidity overflows
error liquidityAdd();
// #### TickManagement errors ####
/// @notice Emitted if the topTick param not greater then the bottomTick param
error topTickLowerOrEqBottomTick();
/// @notice Emitted if the bottomTick param is lower than min allowed value
error bottomTickLowerThanMIN();
/// @notice Emitted if the topTick param is greater than max allowed value
error topTickAboveMAX();
/// @notice Emitted if the liquidity value associated with the tick exceeds MAX_LIQUIDITY_PER_TICK
error liquidityOverflow();
/// @notice Emitted if an attempt is made to interact with an uninitialized tick
error tickIsNotInitialized();
/// @notice Emitted if there is an attempt to insert a new tick into the list of ticks with incorrect indexes of the previous and next ticks
error tickInvalidLinks();
// #### SafeTransfer errors ####
/// @notice Emitted if token transfer failed internally
error transferFailed();
// #### TickMath errors ####
/// @notice Emitted if tick is greater than the maximum or less than the minimum allowed value
error tickOutOfRange();
/// @notice Emitted if price is greater than the maximum or less than the minimum allowed value
error priceOutOfRange();
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title The interface for the Algebra community fee vault
/// @notice Community fee from pools is sent here, if it is enabled
/// @dev Version: Algebra Integral
interface IAlgebraCommunityVault {
/// @notice Event emitted when a fees has been claimed
/// @param token The address of token fee
/// @param to The address where claimed rewards were sent to
/// @param amount The amount of fees tokens claimed by communityFeeReceiver
event TokensWithdrawal(address indexed token, address indexed to, uint256 amount);
/// @notice Event emitted when a fees has been claimed
/// @param token The address of token fee
/// @param to The address where claimed rewards were sent to
/// @param amount The amount of fees tokens claimed by Algebra
event AlgebraTokensWithdrawal(address indexed token, address indexed to, uint256 amount);
/// @notice Emitted when a AlgebraFeeReceiver address changed
/// @param newAlgebraFeeReceiver New Algebra fee receiver address
event AlgebraFeeReceiver(address newAlgebraFeeReceiver);
/// @notice Emitted when a AlgebraFeeManager address change proposed
/// @param pendingAlgebraFeeManager New pending Algebra fee manager address
event PendingAlgebraFeeManager(address pendingAlgebraFeeManager);
/// @notice Emitted when a new Algebra fee value proposed
/// @param proposedNewAlgebraFee The new proposed Algebra fee value
event AlgebraFeeProposal(uint16 proposedNewAlgebraFee);
/// @notice Emitted when a Algebra fee proposal canceled
event CancelAlgebraFeeProposal();
/// @notice Emitted when a AlgebraFeeManager address changed
/// @param newAlgebraFeeManager New Algebra fee manager address
event AlgebraFeeManager(address newAlgebraFeeManager);
/// @notice Emitted when the Algebra fee is changed
/// @param newAlgebraFee The new Algebra fee value
event AlgebraFee(uint16 newAlgebraFee);
/// @notice Emitted when a CommunityFeeReceiver address changed
/// @param newCommunityFeeReceiver New fee receiver address
event CommunityFeeReceiver(address newCommunityFeeReceiver);
/// @notice Withdraw protocol fees from vault
/// @dev Can only be called by algebraFeeManager or communityFeeReceiver
/// @param token The token address
/// @param amount The amount of token
function withdraw(address token, uint256 amount) external;
struct WithdrawTokensParams {
address token;
uint256 amount;
}
/// @notice Withdraw protocol fees from vault. Used to claim fees for multiple tokens
/// @dev Can be called by algebraFeeManager or communityFeeReceiver
/// @param params Array of WithdrawTokensParams objects containing token addresses and amounts to withdraw
function withdrawTokens(WithdrawTokensParams[] calldata params) external;
// ### algebra factory owner permissioned actions ###
/// @notice Accepts the proposed new Algebra fee
/// @dev Can only be called by the factory owner.
/// The new value will also be used for previously accumulated tokens that have not yet been withdrawn
/// @param newAlgebraFee New Algebra fee value
function acceptAlgebraFeeChangeProposal(uint16 newAlgebraFee) external;
/// @notice Change community fee receiver address
/// @dev Can only be called by the factory owner
/// @param newCommunityFeeReceiver New community fee receiver address
function changeCommunityFeeReceiver(address newCommunityFeeReceiver) external;
// ### algebra fee manager permissioned actions ###
/// @notice Transfers Algebra fee manager role
/// @param _newAlgebraFeeManager new Algebra fee manager address
function transferAlgebraFeeManagerRole(address _newAlgebraFeeManager) external;
/// @notice accept Algebra FeeManager role
function acceptAlgebraFeeManagerRole() external;
/// @notice Proposes new Algebra fee value for protocol
/// @dev the new value will also be used for previously accumulated tokens that have not yet been withdrawn
/// @param newAlgebraFee new Algebra fee value
function proposeAlgebraFeeChange(uint16 newAlgebraFee) external;
/// @notice Cancels Algebra fee change proposal
function cancelAlgebraFeeChangeProposal() external;
/// @notice Change Algebra community fee part receiver
/// @param newAlgebraFeeReceiver The address of new Algebra fee receiver
function changeAlgebraFeeReceiver(address newAlgebraFeeReceiver) external;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title The interface for the Algebra Vault Factory
/// @notice This contract can be used for automatic vaults creation
/// @dev Version: Algebra Integral
interface IAlgebraVaultFactory {
/// @notice returns address of the community fee vault for the pool
/// @param pool the address of Algebra Integral pool
/// @return communityFeeVault the address of community fee vault
function getVaultForPool(address pool) external view returns (address communityFeeVault);
/// @notice creates the community fee vault for the pool if needed
/// @param pool the address of Algebra Integral pool
/// @return communityFeeVault the address of community fee vault
function createVaultForPool(address pool) external returns (address communityFeeVault);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0 <0.9.0;
/// @title Contains common constants for Algebra contracts
/// @dev Constants moved to the library, not the base contract, to further emphasize their constant nature
library Constants {
uint8 internal constant RESOLUTION = 96;
uint256 internal constant Q96 = 1 << 96;
uint256 internal constant Q128 = 1 << 128;
uint24 internal constant FEE_DENOMINATOR = 1e6;
uint16 internal constant FLASH_FEE = 0.01e4; // fee for flash loan in hundredths of a bip (0.01%)
uint16 internal constant INIT_DEFAULT_FEE = 0.05e4; // init default fee value in hundredths of a bip (0.05%)
uint16 internal constant MAX_DEFAULT_FEE = 5e4; // max default fee value in hundredths of a bip (5%)
int24 internal constant INIT_DEFAULT_TICK_SPACING = 60;
int24 internal constant MAX_TICK_SPACING = 500;
int24 internal constant MIN_TICK_SPACING = 1;
// the frequency with which the accumulated community fees are sent to the vault
uint32 internal constant COMMUNITY_FEE_TRANSFER_FREQUENCY = 8 hours;
// max(uint128) / (MAX_TICK - MIN_TICK)
uint128 internal constant MAX_LIQUIDITY_PER_TICK = 191757638537527648490752896198553;
uint16 internal constant MAX_COMMUNITY_FEE = 1e3; // 100%
uint256 internal constant COMMUNITY_FEE_DENOMINATOR = 1e3;
// role that can change settings in pools
bytes32 internal constant POOLS_ADMINISTRATOR_ROLE = keccak256('POOLS_ADMINISTRATOR');
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/// @title Contains 512-bit math functions
/// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision
/// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits
library FullMath {
/// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
/// @param a The multiplicand
/// @param b The multiplier
/// @param denominator The divisor
/// @return result The 256-bit result
/// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv
function mulDiv(uint256 a, uint256 b, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = a * b
// Compute the product mod 2**256 and mod 2**256 - 1
// then use the Chinese Remainder Theorem to reconstruct
// the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2**256 + prod0
uint256 prod0 = a * b; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(a, b, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Make sure the result is less than 2**256.
// Also prevents denominator == 0
require(denominator > prod1);
// Handle non-overflow cases, 256 by 256 division
if (prod1 == 0) {
assembly {
result := div(prod0, denominator)
}
return result;
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0]
// Compute remainder using mulmod
// Subtract 256 bit remainder from 512 bit number
assembly {
let remainder := mulmod(a, b, denominator)
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator
// Compute largest power of two divisor of denominator.
// Always >= 1.
uint256 twos = (0 - denominator) & denominator;
// Divide denominator by power of two
assembly {
denominator := div(denominator, twos)
}
// Divide [prod1 prod0] by the factors of two
assembly {
prod0 := div(prod0, twos)
}
// Shift in bits from prod1 into prod0. For this we need
// to flip `twos` such that it is 2**256 / twos.
// If twos is zero, then it becomes one
assembly {
twos := add(div(sub(0, twos), twos), 1)
}
prod0 |= prod1 * twos;
// Invert denominator mod 2**256
// Now that denominator is an odd number, it has an inverse
// modulo 2**256 such that denominator * inv = 1 mod 2**256.
// Compute the inverse by starting with a seed that is correct
// correct for four bits. That is, denominator * inv = 1 mod 2**4
uint256 inv = (3 * denominator) ^ 2;
// Now use Newton-Raphson iteration to improve the precision.
// Thanks to Hensel's lifting lemma, this also works in modular
// arithmetic, doubling the correct bits in each step.
inv *= 2 - denominator * inv; // inverse mod 2**8
inv *= 2 - denominator * inv; // inverse mod 2**16
inv *= 2 - denominator * inv; // inverse mod 2**32
inv *= 2 - denominator * inv; // inverse mod 2**64
inv *= 2 - denominator * inv; // inverse mod 2**128
inv *= 2 - denominator * inv; // inverse mod 2**256
// Because the division is now exact we can divide by multiplying
// with the modular inverse of denominator. This will give us the
// correct result modulo 2**256. Since the preconditions guarantee
// that the outcome is less than 2**256, this is the final result.
// We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inv;
return result;
}
}
/// @notice Calculates ceil(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
/// @param a The multiplicand
/// @param b The multiplier
/// @param denominator The divisor
/// @return result The 256-bit result
function mulDivRoundingUp(uint256 a, uint256 b, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
if (a == 0 || ((result = a * b) / a == b)) {
require(denominator > 0);
assembly {
result := add(div(result, denominator), gt(mod(result, denominator), 0))
}
} else {
result = mulDiv(a, b, denominator);
if (mulmod(a, b, denominator) > 0) {
require(result < type(uint256).max);
result++;
}
}
}
}
/// @notice Returns ceil(x / y)
/// @dev division by 0 has unspecified behavior, and must be checked externally
/// @param x The dividend
/// @param y The divisor
/// @return z The quotient, ceil(x / y)
function unsafeDivRoundingUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
assembly {
z := add(div(x, y), gt(mod(x, y), 0))
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.4 <0.9.0;
import '../interfaces/pool/IAlgebraPoolErrors.sol';
/// @title SafeTransfer
/// @notice Safe ERC20 transfer library that gracefully handles missing return values.
/// @dev Credit to Solmate under MIT license: https://github.com/transmissions11/solmate/blob/ed67feda67b24fdeff8ad1032360f0ee6047ba0a/src/utils/SafeTransferLib.sol
/// @dev Please note that this library does not check if the token has a code! That responsibility is delegated to the caller.
library SafeTransfer {
/// @notice Transfers tokens to a recipient
/// @dev Calls transfer on token contract, errors with transferFailed() if transfer fails
/// @param token The contract address of the token which will be transferred
/// @param to The recipient of the transfer
/// @param amount The amount of the token to transfer
function safeTransfer(address token, address to, uint256 amount) internal {
bool success;
assembly {
let freeMemoryPointer := mload(0x40) // we will need to restore 0x40 slot
mstore(0x00, 0xa9059cbb00000000000000000000000000000000000000000000000000000000) // "transfer(address,uint256)" selector
mstore(0x04, and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // append cleaned "to" address
mstore(0x24, amount)
// now we use 0x00 - 0x44 bytes (68), freeMemoryPointer is dirty
success := call(gas(), token, 0, 0, 0x44, 0, 0x20)
success := and(
// set success to true if call isn't reverted and returned exactly 1 (can't just be non-zero data) or nothing
or(and(eq(mload(0), 1), eq(returndatasize(), 32)), iszero(returndatasize())),
success
)
mstore(0x40, freeMemoryPointer) // restore the freeMemoryPointer
}
if (!success) revert IAlgebraPoolErrors.transferFailed();
}
}