S Price: $0.427748 (-2.17%)

Contract Diff Checker

Contract Name:
SiloV2

Contract Source Code:

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC20Permit} from "../extensions/IERC20Permit.sol";
import {Address} from "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    /**
     * @dev An operation with an ERC20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data);
        if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/extensions/IERC721Enumerable.sol)

pragma solidity ^0.8.20;

import {IERC721} from "../IERC721.sol";

/**
 * @title ERC-721 Non-Fungible Token Standard, optional enumeration extension
 * @dev See https://eips.ethereum.org/EIPS/eip-721
 */
interface IERC721Enumerable is IERC721 {
    /**
     * @dev Returns the total amount of tokens stored by the contract.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns a token ID owned by `owner` at a given `index` of its token list.
     * Use along with {balanceOf} to enumerate all of ``owner``'s tokens.
     */
    function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256);

    /**
     * @dev Returns a token ID at a given `index` of all the tokens stored by the contract.
     * Use along with {totalSupply} to enumerate all tokens.
     */
    function tokenByIndex(uint256 index) external view returns (uint256);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/IERC721.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../../utils/introspection/IERC165.sol";

/**
 * @dev Required interface of an ERC721 compliant contract.
 */
interface IERC721 is IERC165 {
    /**
     * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
     */
    event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
     */
    event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
     */
    event ApprovalForAll(address indexed owner, address indexed operator, bool approved);

    /**
     * @dev Returns the number of tokens in ``owner``'s account.
     */
    function balanceOf(address owner) external view returns (uint256 balance);

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) external view returns (address owner);

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
     *   a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
     * are aware of the ERC721 protocol to prevent tokens from being forever locked.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or
     *   {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
     *   a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Transfers `tokenId` token from `from` to `to`.
     *
     * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
     * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
     * understand this adds an external call which potentially creates a reentrancy vulnerability.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) external;

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the address zero.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool approved) external;

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) external view returns (address operator);

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}
     */
    function isApprovedForAll(address owner, address operator) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/IERC721Receiver.sol)

pragma solidity ^0.8.20;

/**
 * @title ERC721 token receiver interface
 * @dev Interface for any contract that wants to support safeTransfers
 * from ERC721 asset contracts.
 */
interface IERC721Receiver {
    /**
     * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
     * by `operator` from `from`, this function is called.
     *
     * It must return its Solidity selector to confirm the token transfer.
     * If any other value is returned or the interface is not implemented by the recipient, the transfer will be
     * reverted.
     *
     * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
     */
    function onERC721Received(
        address operator,
        address from,
        uint256 tokenId,
        bytes calldata data
    ) external returns (bytes4);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error AddressInsufficientBalance(address account);

    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedInnerCall();

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert AddressInsufficientBalance(address(this));
        }

        (bool success, ) = recipient.call{value: amount}("");
        if (!success) {
            revert FailedInnerCall();
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {FailedInnerCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert AddressInsufficientBalance(address(this));
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
     * unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {FailedInnerCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert FailedInnerCall();
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.14;

import "./Types.sol";

abstract contract AutomateModuleHelper {
    function _resolverModuleArg(
        address _resolverAddress,
        bytes memory _resolverData
    ) internal pure returns (bytes memory) {
        return abi.encode(_resolverAddress, _resolverData);
    }

    function _proxyModuleArg() internal pure returns (bytes memory) {
        return bytes("");
    }

    function _singleExecModuleArg() internal pure returns (bytes memory) {
        return bytes("");
    }

    function _web3FunctionModuleArg(
        string memory _web3FunctionHash,
        bytes memory _web3FunctionArgsHex
    ) internal pure returns (bytes memory) {
        return abi.encode(_web3FunctionHash, _web3FunctionArgsHex);
    }

    function _timeTriggerModuleArg(uint128 _start, uint128 _interval)
        internal
        pure
        returns (bytes memory)
    {
        bytes memory triggerConfig = abi.encode(_start, _interval);

        return abi.encode(TriggerType.TIME, triggerConfig);
    }

    function _cronTriggerModuleArg(string memory _expression)
        internal
        pure
        returns (bytes memory)
    {
        bytes memory triggerConfig = abi.encode(_expression);

        return abi.encode(TriggerType.CRON, triggerConfig);
    }

    function _eventTriggerModuleArg(
        address _address,
        bytes32[][] memory _topics,
        uint256 _blockConfirmations
    ) internal pure returns (bytes memory) {
        bytes memory triggerConfig = abi.encode(
            _address,
            _topics,
            _blockConfirmations
        );

        return abi.encode(TriggerType.EVENT, triggerConfig);
    }

    function _blockTriggerModuleArg() internal pure returns (bytes memory) {
        bytes memory triggerConfig = abi.encode(bytes(""));

        return abi.encode(TriggerType.BLOCK, triggerConfig);
    }
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.14;

import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "./Types.sol";

/**
 * @dev Inherit this contract to allow your smart contract to
 * - Make synchronous fee payments.
 * - Have call restrictions for functions to be automated.
 */
// solhint-disable private-vars-leading-underscore
abstract contract AutomateReady {
    IAutomate public immutable automate;
    address public immutable dedicatedMsgSender;
    address private immutable feeCollector;
    address internal constant ETH = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;

    /**
     * @dev
     * Only tasks created by _taskCreator defined in constructor can call
     * the functions with this modifier.
     */
    modifier onlyDedicatedMsgSender() {
        require(msg.sender == dedicatedMsgSender, "Only dedicated msg.sender");
        _;
    }

    /**
     * @dev
     * _taskCreator is the address which will create tasks for this contract.
     */
    constructor(address _automate, address _taskCreator) {
        automate = IAutomate(_automate);
        IGelato gelato = IGelato(IAutomate(_automate).gelato());

        feeCollector = gelato.feeCollector();

        address proxyModuleAddress = IAutomate(_automate).taskModuleAddresses(
            Module.PROXY
        );

        address opsProxyFactoryAddress = IProxyModule(proxyModuleAddress)
            .opsProxyFactory();

        (dedicatedMsgSender, ) = IOpsProxyFactory(opsProxyFactoryAddress)
            .getProxyOf(_taskCreator);
    }

    /**
     * @dev
     * Transfers fee to gelato for synchronous fee payments.
     *
     * _fee & _feeToken should be queried from IAutomate.getFeeDetails()
     */
    function _transfer(uint256 _fee, address _feeToken) internal {
        if (_feeToken == ETH) {
            (bool success, ) = feeCollector.call{value: _fee}("");
            require(success, "_transfer: ETH transfer failed");
        } else {
            SafeERC20.safeTransfer(IERC20(_feeToken), feeCollector, _fee);
        }
    }

    function _getFeeDetails()
        internal
        view
        returns (uint256 fee, address feeToken)
    {
        (fee, feeToken) = automate.getFeeDetails();
    }
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.14;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "./AutomateReady.sol";
import {AutomateModuleHelper} from "./AutomateModuleHelper.sol";

/**
 * @dev Inherit this contract to allow your smart contract
 * to be a task creator and create tasks.
 */
//solhint-disable const-name-snakecase
//solhint-disable no-empty-blocks
abstract contract AutomateTaskCreator is AutomateModuleHelper, AutomateReady {
    using SafeERC20 for IERC20;

    IGelato1Balance public constant gelato1Balance =
        IGelato1Balance(0x7506C12a824d73D9b08564d5Afc22c949434755e);

    constructor(address _automate) AutomateReady(_automate, address(this)) {}

    function _depositFunds1Balance(
        uint256 _amount,
        address _token,
        address _sponsor
    ) internal {
        if (_token == ETH) {
            ///@dev Only deposit ETH on goerli for now.
            require(block.chainid == 5, "Only deposit ETH on goerli");
            gelato1Balance.depositNative{value: _amount}(_sponsor);
        } else {
            ///@dev Only deposit USDC on polygon for now.
            require(
                block.chainid == 137 &&
                    _token ==
                    address(0x2791Bca1f2de4661ED88A30C99A7a9449Aa84174),
                "Only deposit USDC on polygon"
            );
            IERC20(_token).approve(address(gelato1Balance), _amount);
            gelato1Balance.depositToken(_sponsor, _token, _amount);
        }
    }

    function _createTask(
        address _execAddress,
        bytes memory _execDataOrSelector,
        ModuleData memory _moduleData,
        address _feeToken
    ) internal returns (bytes32) {
        return
            automate.createTask(
                _execAddress,
                _execDataOrSelector,
                _moduleData,
                _feeToken
            );
    }

    function _cancelTask(bytes32 _taskId) internal {
        automate.cancelTask(_taskId);
    }
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.12;

enum Module {
    RESOLVER,
    DEPRECATED_TIME,
    PROXY,
    SINGLE_EXEC,
    WEB3_FUNCTION,
    TRIGGER
}

enum TriggerType {
    TIME,
    CRON,
    EVENT,
    BLOCK
}

struct ModuleData {
    Module[] modules;
    bytes[] args;
}

interface IAutomate {
    function createTask(
        address execAddress,
        bytes calldata execDataOrSelector,
        ModuleData calldata moduleData,
        address feeToken
    ) external returns (bytes32 taskId);

    function cancelTask(bytes32 taskId) external;

    function getFeeDetails() external view returns (uint256, address);

    function gelato() external view returns (address payable);

    function taskModuleAddresses(Module) external view returns (address);
}

interface IProxyModule {
    function opsProxyFactory() external view returns (address);
}

interface IOpsProxyFactory {
    function getProxyOf(address account) external view returns (address, bool);
}

interface IGelato1Balance {
    function depositNative(address _sponsor) external payable;

    function depositToken(
        address _sponsor,
        address _token,
        uint256 _amount
    ) external;
}

interface IGelato {
    function feeCollector() external view returns (address);
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

struct ActionBalance {
    uint256 collateral;
    uint256 debt;
    address collateralToken;
    address debtToken;
    uint256 collateralConverted;
    address collateralConvertedToken;
    string lpUnderlyingBalances;
    string lpUnderlyingTokens;
}

interface IAction {
    function getConfig() external view returns (bytes memory config);

    function checkMaintain(
        bytes memory configuration
    ) external view returns (bool, uint256);

    function checkUpkeep(
        bytes memory configuration
    ) external view returns (bool);

    function extraInfo(
        bytes memory configuration
    ) external view returns (uint256[4] memory info);

    function validateConfig(
        bytes memory configData
    ) external view returns (bool);

    function getMetaData() external view returns (string memory);

    function feeName() external view returns (string memory);

    function name() external view returns (string memory);

    function usesTakeFee() external view returns (bool);

    function showBalances(
        address _silo,
        bytes memory _configurationData
    ) external view returns (ActionBalance memory);

    function showDust(
        address _silo,
        bytes memory _configurationData
    ) external view returns (address[] memory, uint256[] memory);

    function vaultInfo(
        address _silo,
        bytes memory configuration
    ) external view returns (uint256, uint256, uint256, uint256, uint256);

    function actionValid(
        bytes memory _configurationData
    ) external view returns (bool);

}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";

struct PriceOracle {
    address oracle;
    uint256 actionPrice;
}

enum Statuses {
    PAUSED,
    DORMANT,
    MANAGED,
    UNWIND
}

interface ISilo {
    function deposit() external;

    function withdraw(uint256 _requestedOut) external;

    function maintain() external;

    function exitSilo(address caller) external;

    function adminCall(address target, bytes memory data) external;

    function setStrategy(
        address[5] memory input,
        bytes[] memory _configurationData,
        address[] memory _implementations
    ) external;

    function getConfig() external view returns (bytes memory config);

    function withdrawToken(address token, address recipient) external;

    function adjustSiloDelay(uint256 _newDelay) external;

    function SILO_ID() external view returns (uint256);

    function siloDelay() external view returns (uint256);

    function name() external view returns (string memory);

    function lastTimeMaintained() external view returns (uint256);

    function factory() external view returns (address);

    function setName(string memory name) external;

    function deposited() external view returns (bool);

    function isNew() external view returns (bool);

    function status() external view returns (Statuses);

    function setStrategyName(string memory _strategyName) external;

    function setStrategyCategory(uint256 _strategyCategory) external;

    function strategyName() external view returns (string memory);

    function tokenMinimum(address token) external view returns (uint256);

    function strategyCategory() external view returns (uint256);

    // function main() external view returns (uint256);

    // function lastPid() external view returns (uint256);

    function adjustStrategy(
        uint256 _index,
        bytes memory _configurationData,
        address _implementation
    ) external;

    function viewStrategy()
        external
        view
        returns (address[] memory actions, bytes[] memory configData);

    function highRiskAction() external view returns (bool);

    function showActionStackValidity() external view returns (bool, bool);

    function getInputTokens() external view returns (address[5] memory);

    function getStatus() external view returns (Statuses);

    function pause() external;

    function unpause() external;

    function setActive() external;

    function possibleReinvestSilo() external view returns (bool possible);

    function getExtraSiloInfo()
        external
        view
        returns (
            uint256 strategyType,
            uint256 currentBalance,
            uint256 possibleWithdraw,
            uint256 availableBlock,
            uint256 pendingReward,
            uint256 lastPid
        );
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import "@openzeppelin/contracts/token/ERC721/extensions/IERC721Enumerable.sol";

interface ISiloFactory is IERC721Enumerable{
    function tokenMinimum(address _token) external view returns(uint _minimum);
    function balanceOf(address _owner) external view returns(uint);
    function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256);
    function managerFactory() external view returns(address);
    function siloMap(uint _id) external view returns(address);
    function tierManager() external view returns(address);
    function ownerOf(uint _id) external view returns(address);
    function siloToId(address silo) external view returns(uint);
    // function createSilo(address recipient) external returns(uint);
    function setActionStack(uint siloID, address[5] memory input, address[] memory _implementations, bytes[] memory _configurationData) external;
    // function withdraw(uint siloID) external;
    function getFeeInfo(address _action) external view returns(uint fee, address recipient);
    function strategyMaxGas() external view returns(uint);
    function strategyName(string memory _name) external view returns(uint);
    
    function getCatalogue(uint _type) external view returns(string[] memory);
    function getStrategyInputs(uint _id) external view returns(address[5] memory inputs);
    function getStrategyActions(uint _id) external view returns(address[] memory actions);
    function getStrategyConfigurationData(uint _id) external view returns(bytes[] memory configurationData);
    function useCustom(address _action) external view returns(bool);
    // function getFeeList(address _action) external view returns(uint[4] memory);
    function feeRecipient(address _action) external view returns(address);
    function defaultFeeList() external view returns(uint[4] memory);
    function defaultRecipient() external view returns(address);
    // function getTier(address _silo) external view returns(uint);

    function getFeeInfoNoTier(address _action) external view returns(uint[4] memory);
    function highRiskActions(address _action) external view returns(bool);
    function actionValid(address _action) external view returns(bool);
    function strategyValid(uint256 _strategyId) external view returns(bool);
    function skipActionValidTeamCheck(address _user) external view returns(bool);
    function skipActionValidLogicCheck(address _user) external view returns(bool);
    function isSilo(address _silo) external view returns(bool);

    function isSiloManager(address _silo,address _manager) external view returns(bool);

    function currentStrategyId() external view returns(uint);
    function minBalance() external view returns(uint);

    function mainActions(string memory strategyName) external view returns(uint);
    
    function subFactory() external view returns(address);
    function referral() external view returns(address);
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

enum AutoStatus {
    NOT,
    PENDING,
    APPROVED,
    MANUAL,
    LOW,
    NORMAL,
    HIGH
}

interface ISiloManager {
    function owner() external view returns (address);

    function taskId() external view returns (bytes32);

    function getBalance() external view returns (uint96);

    function depositFunds() external payable;

    function cancelAutomate() external;

    function withdrawFunds() external;

    function topupThreshold() external view returns (uint256);

    function topupAmount() external view returns (uint256);
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";

import {AutoStatus} from "./ISiloManager.sol";

struct ManagerInfo {
    address manager;
    bytes32 taskId;
    uint256 currentBalance;
    uint256 topupThreshold;
    uint256 minFunds;
}

interface ISiloManagerFactory {
    function checkManager(
        address _owner,
        address _manager
    ) external view returns (bool);

    function userToManager(address _user) external view returns (address);

    function isManager(address) external view returns (bool);

    function managerCount() external view returns (uint256);

    function siloFactory() external view returns (address);

    function getAutoStatus(address _user) external view returns (AutoStatus);

    function topupThreshold() external view returns (uint256);

    function minFunds() external view returns (uint256);

    function topupAmount() external view returns (uint256);

    function getAutomatorInfo(
        address _manager
    ) external view returns (ManagerInfo memory info);
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

interface ISiloSubFactory {
    function acceptTransfersFrom(address to, address from)
        external
        view
        returns (bool);

    function skipActionValidTeamCheck(address user)
        external
        view
        returns (bool);

    function skipActionValidLogicCheck(address user)
        external
        view
        returns (bool);

    function checkActionsLogicValid(
        address user,
        address[] memory _actions,
        bytes[] memory _configurationData
    ) external view returns (bool);

    function checkActionLogicValid(
        address user,
        address _implementation,
        bytes memory _configurationData
    ) external view returns(bool);
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "./interfaces/IAction.sol";
import "./interfaces/ISiloFactory.sol";
import "./interfaces/ISiloSubFactory.sol";
import {Statuses} from "./interfaces/ISilo.sol";
import "./interfaces/ISiloManagerFactory.sol";
import {Strings} from "@openzeppelin/contracts/utils/Strings.sol";
import "@openzeppelin/contracts/token/ERC721/IERC721Receiver.sol";
import "./gelato/AutomateTaskCreator.sol";

struct ActionInfo {
    bytes configurationData; //things like what token addresses are involved
    address implementation;
}

contract SiloV2 is IERC721Receiver, AutomateTaskCreator {
    bytes32 internal taskId;

    Statuses internal status;

    address public factory;

    ActionInfo[10] internal strategy;

    uint256 internal strategySize;

    bytes internal configurationData; //For silos this will only ever be the input and output token

    address[10] internal tokensInPlay;

    string public name;

    string public strategyName;

    uint256 public strategyCategory;

    uint256 public SILO_ID;
    uint256 public siloDelay; //used to determine how often it is maintained
    uint256 public lastTimeMaintained;

    bool public highRiskAction;
    bool public deposited;
    bool public isNew;

    bool private withdrawLimitAction;

    uint256 internal lastPid;
    uint256 internal main;

    uint256 private withdrawBlock;
    uint256 private withdrawAmount;

    uint256 private constant MAX_UINT256 = 2 ** 256 - 1;

    mapping(address => uint256) public tokenMinimum;

    event StrategyFailed(uint256 siloID, uint256 i);

    event SiloAutoCall(uint256 siloID, bool mode, uint256 task);

    modifier onlyFactory() {
        require(
            msg.sender == factory ||
                msg.sender == ISiloFactory(factory).subFactory(),
            "not factory"
        );
        _;
    }

    modifier onlyOwner() {
        require(
            msg.sender == ISiloFactory(factory).ownerOf(SILO_ID),
            "not owner"
        );
        _;
    }

    constructor(
        uint256 siloID,
        uint256 _main,
        address _factory,
        address gelatoAutomate
    ) AutomateTaskCreator(gelatoAutomate) {
        factory = _factory;
        SILO_ID = siloID;
        isNew = true;
        main = _main;
    }

    function setName(string memory _name) external onlyFactory {
        name = _name;
    }

    function adjustSiloDelay(uint256 _newDelay) external onlyFactory {
        //make sure delay isn't too long or too
        siloDelay = _newDelay;
    }

    function setStrategyName(string memory _strategyName) external onlyFactory {
        strategyName = _strategyName;
    }

    function setStrategyCategory(
        uint256 _strategyCategory
    ) external onlyFactory {
        strategyCategory = _strategyCategory;
    }

    function checkAuto()
        public
        view
        returns (bool autoNeeded, bool act, uint256 task)
    {
        if (status == Statuses.UNWIND) {
            // performData = abi.encode(true, 1);
            act = true;
            task = 1;
            if (
                withdrawAmount > 0 &&
                block.number >= withdrawBlock &&
                withdrawBlock != 0
            ) {
                autoNeeded = true;
            }
        } else {
            act = false;
            task = 0;
            // performData = abi.encode(false, 0);

            if (
                siloDelay != 0 &&
                (deposited || possibleReinvestSilo()) &&
                status == Statuses.MANAGED
            ) {
                //If delay is zero, maintenance is only conditional based
                autoNeeded = (block.timestamp >=
                    (lastTimeMaintained + siloDelay));
                if (autoNeeded) {
                    for (uint256 i; i < strategySize; ) {
                        autoNeeded = IAction(strategy[i].implementation)
                            .checkUpkeep(strategy[i].configurationData);
                        if (!autoNeeded) {
                            return (false, act, task);
                        }
                        unchecked {
                            i++;
                        }
                    }
                }
            }
            if (!autoNeeded) {
                uint256 autoTask;
                //if time up keep is not needed check strategy
                for (uint256 i; i < strategySize; ) {
                    if (i == 0 || (i != 0 && deposited)) {
                        (autoNeeded, autoTask) = IAction(
                            strategy[i].implementation
                        ).checkMaintain(strategy[i].configurationData);

                        if (i == 0 && autoNeeded) {
                            (bool team, bool logic) = showActionStackValidity();

                            if (!logic || !team) {
                                autoNeeded = false;
                            }
                        }
                    }

                    if (autoNeeded) {
                        // performData = abi.encode(
                        //     false,
                        //     (i + 1) * 100 + autoTask
                        // );

                        act = false;
                        task = (i + 1) * 100 + autoTask;

                        break;
                    }
                    unchecked {
                        i++;
                    }
                }
            }
        }
    }

    function createTask() external payable {
        require(taskId == bytes32(""), "already");

        ModuleData memory moduleData = ModuleData({
            modules: new Module[](2),
            args: new bytes[](2)
        });

        moduleData.modules[0] = Module.RESOLVER;
        moduleData.modules[1] = Module.PROXY;

        moduleData.args[0] = _resolverModuleArg(
            address(this),
            abi.encodeCall(this.checker, ())
        );
        moduleData.args[1] = _proxyModuleArg();

        bytes32 id = _createTask(
            address(this),
            abi.encode(this.performAuto.selector),
            moduleData,
            ETH
        );

        taskId = id;
    }

    function checker()
        external
        view
        returns (bool canExec, bytes memory execPayload)
    {
        ISiloFactory SiloFactory = ISiloFactory(factory);
        ISiloSubFactory subFactory = ISiloSubFactory(SiloFactory.subFactory());

        if (status == Statuses.PAUSED) {
            return (false, bytes("no call"));
        }

        if (highRiskAction) {
            //need to check if balance is above the min required  by some percent

            // uint256 balance = taskTreasury.userTokenBalance(address(this), ETH);
            uint256 nativeBalance = address(this).balance;

            uint256 minBalance = ISiloManagerFactory(
                SiloFactory.managerFactory()
            ).minFunds();

            if (nativeBalance < minBalance) {
                if (status == Statuses.MANAGED && deposited) {
                    //high risk silo is currently managed, and manager is underfunded
                    canExec = true;

                    execPayload = abi.encodeCall(this.performAuto, (true, 3));
                    return (canExec, execPayload); //this will change the status of the silo to dormant
                }
            } else if (status == Statuses.DORMANT) {
                //check if balance has returned to a healthy level

                if (nativeBalance > minBalance && possibleReinvestSilo()) {
                    //silo balance has returned to a healthy level and silo is dormant so re enter the strategy
                    (bool team, bool logic) = showActionStackValidity();
                    if (team && logic) {
                        canExec = true;

                        execPayload = abi.encodeCall(
                            this.performAuto,
                            (false, 4)
                        );
                        return (canExec, execPayload);
                    }
                }
            }
        }
        address owner = ISiloFactory(factory).ownerOf(SILO_ID);
        //check to see if any actions in the strategy have been deprecated logically or by the team, and if so have manager make silo exit strategy
        if (
            !canExec &&
            (!subFactory.skipActionValidTeamCheck(owner) ||
                !subFactory.skipActionValidLogicCheck(owner))
        ) {
            (bool team, bool logic) = showActionStackValidity();
            if (
                (!subFactory.skipActionValidTeamCheck(owner) && !team) ||
                (!subFactory.skipActionValidLogicCheck(owner) && !logic)
            ) {
                if (status == Statuses.MANAGED) {
                    canExec = true;

                    execPayload = abi.encodeCall(this.performAuto, (true, 5));

                    return (canExec, execPayload);
                }
            }
        }

        if (!canExec) {
            bool act;
            uint256 task;
            (canExec, act, task) = checkAuto();

            if (canExec) {
                execPayload = abi.encodeCall(this.performAuto, (act, task));

                return (canExec, execPayload);
            }
        }

        return (false, bytes("not auto"));
    }

    function performAuto(bool keeperExit, uint256 task) external {
        require(msg.sender == dedicatedMsgSender, "not");

        if (keeperExit) {
            if (status != Statuses.UNWIND) {
                status = Statuses.DORMANT;
            }

            if (deposited) {
                //if there is money in the strategy then remove it
                _exitStrategy(0);
            }
        } else {
            _runStrategy();
        }
        if (task == 306) {
            (, , , , , uint256 pid) = getExtraSiloInfo();

            lastPid = pid;
        }

        emit SiloAutoCall(SILO_ID, keeperExit, task);

        (uint256 fee, address feeToken) = _getFeeDetails();

        _transfer(fee, feeToken);
    }

    function showActionStackValidity() public view returns (bool, bool) {
        bool team = true;
        bool logic = true;
        bool tmpTeam;
        bool tmpLogic;
        for (uint256 i; i < strategySize; ) {
            //go through every action, and call actionValid
            tmpTeam = ISiloFactory(factory).actionValid(
                strategy[i].implementation
            );
            tmpLogic = IAction(strategy[i].implementation).actionValid(
                strategy[i].configurationData
            );
            if (!tmpTeam) {
                team = tmpTeam;
            }
            if (!tmpLogic) {
                logic = tmpLogic;
            }
            unchecked {
                i++;
            }
        }
        return (team, logic);
    }

    //Enter the strategy
    function deposit() external onlyFactory {
        uint256 gas = gasleft();
        _runStrategy();
        uint256 gasUsed = gas - gasleft();
        if (gasUsed > ISiloFactory(factory).strategyMaxGas()) {
            string memory errorMessage = string(
                abi.encodePacked(
                    "exceed gas limit: ",
                    Strings.toString(gasUsed)
                )
            );
            revert(errorMessage);
        }
    }

    //Exit the strategy
    function withdraw(uint256 _requestedOut) external onlyFactory {
        _exitStrategy(_requestedOut);
    }

    function exitSilo(address caller) external onlyFactory {
        //Send all tokens to owner

        withdrawTokens(caller);
        uint256 nativeBalance = address(this).balance;
        if (nativeBalance > 0) {
            (bool success, ) = payable(caller).call{value: nativeBalance}("");
            // require(success, "issue in native withdraw");
        }
    }

    function withdrawToken(
        address token,
        address recipient
    ) external onlyFactory {
        IERC20 Token = IERC20(token);
        SafeERC20.safeTransfer(
            Token,
            recipient,
            Token.balanceOf(address(this))
        );
    }

    function withdrawTokens(address recipient) private {
        uint256 balance;
        IERC20 token;
        for (uint256 i; i < tokensInPlay.length; ) {
            if (tokensInPlay[i] != address(0)) {
                token = IERC20(tokensInPlay[i]);
                balance = token.balanceOf(address(this));
                if (balance > 0) {
                    SafeERC20.safeTransfer(token, recipient, balance);
                }
            }
            unchecked {
                i++;
            }
        }
    }

    //used to recover users funds if for some reason the strategy fails
    function adminCall(address target, bytes memory data) external onlyFactory {
        (bool success, ) = target.call(data);
        require(success, "failed");
    }

    function updateStrategy() public onlyOwner {
        uint256 id = ISiloFactory(factory).strategyName(strategyName);
        address[5] memory cuInputs = ISiloFactory(factory).getStrategyInputs(
            id
        );
        address[] memory cuActions = ISiloFactory(factory).getStrategyActions(
            id
        );
        bytes[] memory cuConfigurationData = ISiloFactory(factory)
            .getStrategyConfigurationData(id);

        _setStrategy(cuInputs, cuConfigurationData, cuActions);
    }

    function setStrategy(
        address[5] memory _inputs,
        bytes[] memory _configurationData,
        address[] memory _implementations
    ) external onlyFactory {
        //needs to exit current strategy, if it is in one
        // require(status == Statuses.PAUSED, "remove assets before update");
        require(!deposited, "deposited");
        _setStrategy(_inputs, _configurationData, _implementations);
    }

    function _setStrategy(
        address[5] memory _inputs,
        bytes[] memory _configurationData,
        address[] memory _implementations
    ) internal {
        require(
            _configurationData.length == _implementations.length,
            "inputs  mismatch"
        );
        delete strategy; //deletes the current strategy
        address[5] memory actionInput;
        address[5] memory actionOutput = _inputs;
        address[5] memory tmpOutput;
        bytes memory storedConfig;

        highRiskAction = false; //reset it
        ActionInfo memory action;

        uint256 actionCount = _implementations.length;
        strategySize = actionCount;

        for (uint256 i; i < actionCount; ) {
            //Confirm inputs and outputs match
            storedConfig = IAction(_implementations[i]).getConfig();
            if (storedConfig.length > 0) {
                if (i == actionCount - 1) {
                    (actionInput) = abi.decode(storedConfig, (address[5]));
                    tmpOutput = actionInput;
                } else {
                    (actionInput, tmpOutput) = abi.decode(
                        storedConfig,
                        (address[5], address[5])
                    );
                }

                require(
                    IAction(_implementations[i]).validateConfig(storedConfig),
                    "configuration invalid"
                );
            } else {
                if (i == actionCount - 1) {
                    (actionInput) = abi.decode(
                        _configurationData[i],
                        (address[5])
                    );

                    tmpOutput = actionInput;
                } else {
                    (actionInput, tmpOutput) = abi.decode(
                        _configurationData[i],
                        (address[5], address[5])
                    );
                }

                if (
                    !IAction(_implementations[i]).validateConfig(
                        _configurationData[i]
                    )
                ) {
                    string memory errorMessage = string(
                        abi.encodePacked(
                            "configuration invalid at:",
                            Strings.toString(i)
                        )
                    );
                    revert(errorMessage);
                }
            }
            require(
                actionInput.length == actionOutput.length,
                "different output/input size"
            );
            for (uint256 j; j < actionInput.length; ) {
                require(
                    actionInput[j] == actionOutput[j],
                    "input/output mismatch"
                );
                unchecked {
                    j++;
                }
            }
            actionOutput = tmpOutput;

            action = ActionInfo({
                configurationData: _configurationData[i],
                implementation: _implementations[i]
            });
            // strategy.push(action);
            strategy[i] = action;
            if (
                !highRiskAction &&
                ISiloFactory(factory).highRiskActions(_implementations[i])
            ) {
                highRiskAction = true;
            }
            //if we are on the last action, then set the config data for this silo
            if (i == actionCount - 1) {
                _setConfigData(_inputs, actionOutput);
            }

            if (i == 0) {
                _setTriggerConfigData(_configurationData[i]);
            }

            status = Statuses.MANAGED;

            unchecked {
                i++;
            }
        }
        (uint256 strategyType, , , , , uint256 pid) = getExtraSiloInfo();
        withdrawLimitAction = strategyType == 1;
        lastPid = pid;
    }

    function adjustStrategy(
        uint256 _index,
        bytes memory _configurationData,
        address _implementation
    ) external onlyFactory {
        address[5] memory currentInputs;
        address[5] memory currentOutputs;
        address[5] memory proposedInputs;
        address[5] memory proposedOutputs;

        if (_index == strategySize - 1) {
            (currentInputs) = abi.decode(
                strategy[_index].configurationData,
                (address[5])
            );
            currentOutputs = currentInputs;
            (proposedInputs) = abi.decode(_configurationData, (address[5]));
            proposedOutputs = proposedInputs;
        } else {
            (currentInputs, currentOutputs) = abi.decode(
                strategy[_index].configurationData,
                (address[5], address[5])
            );

            (proposedInputs, proposedOutputs) = abi.decode(
                _configurationData,
                (address[5], address[5])
            );
        }

        //if strategy is not already high risk, then check if the new action is high risk
        if (
            !highRiskAction &&
            ISiloFactory(factory).highRiskActions(_implementation)
        ) {
            highRiskAction = true;
        }

        for (uint256 i; i < 5; ) {
            if (currentInputs[i] != proposedInputs[i]) {
                string memory errorMessage = string(
                    abi.encodePacked(
                        "current input dismatch at: ",
                        Strings.toString(i)
                    )
                );
                revert(errorMessage);
            }
            if (currentOutputs[i] != proposedOutputs[i]) {
                string memory errorMessage = string(
                    abi.encodePacked(
                        "current output dismatch at: ",
                        Strings.toString(i)
                    )
                );
                revert(errorMessage);
            }
            unchecked {
                i++;
            }
        }
        require(
            IAction(_implementation).validateConfig(_configurationData),
            "configuration invalid"
        );

        //If above all checks out, then overwrite the strategy at _index
        strategy[_index] = ActionInfo({
            configurationData: _configurationData,
            implementation: _implementation
        });

        if (_index == 0) {
            _setTriggerConfigData(_configurationData);
        }
    }

    function pause() external onlyFactory {
        require(!highRiskAction, "high risk silo"); //user needs to exit using exitSiloStrategy
        require(status == Statuses.MANAGED, "not managed");
        status = Statuses.PAUSED;
    }

    //user could flip this to managed without setting a strategy, but UI is only set up for new silos to have a strategy
    function unpause() external onlyFactory {
        require(status == Statuses.PAUSED, "not paused");
        status = Statuses.MANAGED;
    }

    function setActive() external onlyFactory {
        require(status == Statuses.UNWIND, "not unwind");
        status = Statuses.MANAGED;
    }

    function viewStrategy()
        external
        view
        returns (address[] memory actions, bytes[] memory configData)
    {
        actions = new address[](strategySize);
        configData = new bytes[](strategySize);
        unchecked {
            for (uint256 i; i < strategySize; i++) {
                actions[i] = strategy[i].implementation;
                configData[i] = strategy[i].configurationData;
            }
        }
    }

    /****************************Public Functions*****************************/
    //Here so that silos match the design pattern of actions
    function getConfig() public view returns (bytes memory) {
        return configurationData;
    }

    function getInputTokens() public view returns (address[5] memory inputs) {
        unchecked {
            for (uint256 i; i < 5; i++) {
                inputs[i] = tokensInPlay[i];
            }
        }
    }

    function getStatus() public view returns (Statuses) {
        return status;
    }

    /****************************Internal Functions*****************************/
    function _investSilo() internal returns (uint256[5] memory amounts) {
        address[5] memory depositTokens = abi.decode(
            configurationData,
            (address[5])
        );
        for (uint256 i; i < 5; ) {
            uint256 tokenAmount;
            if (depositTokens[i] != address(0)) {
                tokenAmount = IERC20(depositTokens[i]).balanceOf(address(this));
                if (
                    tokenAmount > 0 &&
                    tokenAmount >= tokenMinimum[depositTokens[i]]
                ) {
                    amounts[i] = tokenAmount;
                    //if tokenAmount is non zero and greater than the minimum, then set deposited to true
                    if (!deposited) {
                        deposited = true;
                    }
                    if (status == Statuses.DORMANT) {
                        status = Statuses.MANAGED; //change it back to managed
                    }
                    if (isNew) {
                        //track if a silo has ever had anything deposited into it
                        isNew = false;
                    }
                }
            }
            unchecked {
                i++;
            }
        }
    }

    function possibleReinvestSilo() public view returns (bool possible) {
        address[5] memory depositTokens = abi.decode(
            configurationData,
            (address[5])
        );

        // (bool team, bool logic) = showActionStackValidity();

        // if (!team || !logic) {
        //     return false;
        // }

        for (uint256 i; i < 5; ) {
            uint256 tokenAmount;
            if (depositTokens[i] != address(0)) {
                tokenAmount = IERC20(depositTokens[i]).balanceOf(address(this));
                if (
                    tokenAmount > 0 &&
                    tokenAmount >= tokenMinimum[depositTokens[i]]
                ) {
                    return true;
                }
            }
            unchecked {
                i++;
            }
        }
        return false;
    }

    function _runStrategy() internal {
        uint256[5] memory amounts = _investSilo();
        bytes memory inputData = abi.encode(amounts);
        uint256 i = 1;

        if (strategySize < 3) {
            i = 0;
        }

        for (; i < strategySize; ) {
            (bool success, bytes memory result) = strategy[i]
                .implementation
                .delegatecall(
                    abi.encodeWithSignature(
                        "enter(address,bytes,bytes)",
                        strategy[i].implementation,
                        strategy[i].configurationData,
                        inputData
                    )
                );
            if (!success) {
                string memory errorMessage = string(
                    abi.encodePacked(
                        "strategy failed at: ",
                        Strings.toString(i)
                    )
                );
                revert(errorMessage);
            }
            inputData = result;
            unchecked {
                i++;
            }
        }
        lastTimeMaintained = block.timestamp;
    }

    function _exitStrategy(uint256 _requestedOut) internal returns (bool) {
        require(deposited, "no balance");

        uint256[5] memory amounts = [_requestedOut, 0, 0, 0, 0];
        bytes memory exitData = abi.encode(amounts);
        uint256 i = 1;
        uint256 length = strategySize;
        for (; i < length; ) {
            (bool success, bytes memory result) = strategy[i]
                .implementation
                .delegatecall(
                    abi.encodeWithSignature(
                        "exit(address,bytes,bytes)",
                        strategy[i].implementation,
                        strategy[i].configurationData,
                        exitData
                    )
                );
            if (!success) {
                string memory errorMessage = string(
                    abi.encodePacked(
                        "withdraw failed at: ",
                        Strings.toString(i)
                    )
                );

                revert(errorMessage);
            }
            exitData = result;
            unchecked {
                i++;
            }
        }

        if (withdrawLimitAction) {
            (
                ,
                uint256 currentBalance,
                uint256 possibleWithdraw,
                uint256 availableBlock,
                ,

            ) = getExtraSiloInfo();
            withdrawBlock = availableBlock;
            withdrawAmount = possibleWithdraw;

            if (status == Statuses.UNWIND) {
                withdrawTokens(ISiloFactory(factory).ownerOf(SILO_ID));
            }

            if (currentBalance <= ISiloFactory(factory).minBalance()) {
                deposited = false;
                status = Statuses.DORMANT;
            } else {
                if (status != Statuses.UNWIND) {
                    status = Statuses.UNWIND;
                }
            }
        } else {
            deposited = false;
        }
    }

    function getExtraSiloInfo()
        public
        view
        returns (
            uint256 strategyType,
            uint256 currentBalance,
            uint256 possibleWithdraw,
            uint256 availableBlock,
            uint256 pendingReward,
            uint256 pid
        )
    {
        uint256[4] memory info = IAction(strategy[main].implementation)
            .extraInfo(strategy[main].configurationData);

        pendingReward = info[0];
        currentBalance = info[1];
        possibleWithdraw = info[2];
        availableBlock = info[3];

        if (info[3] == MAX_UINT256) {
            return (
                2,
                currentBalance,
                possibleWithdraw,
                availableBlock,
                pendingReward,
                info[1]
            );
        } else {
            return (
                1,
                currentBalance,
                possibleWithdraw,
                availableBlock,
                pendingReward,
                0
            );
        }
    }

    function _setConfigData(
        address[5] memory _input,
        address[5] memory _output
    ) internal {
        configurationData = abi.encode(_input, _output);
        unchecked {
            for (uint256 i; i < 5; i++) {
                tokensInPlay[i] = _input[i];
                tokensInPlay[i + 5] = _output[i];
            }
        }
    }

    function _setTriggerConfigData(bytes memory configData) internal {
        (address[5] memory _inputs, , uint256[5] memory _triggers) = abi.decode(
            configData,
            (address[5], address[5], uint256[5])
        );
        unchecked {
            for (uint256 i; i < 5; i++) {
                tokenMinimum[_inputs[i]] = _triggers[i];
            }
        }
    }

    function onERC721Received(
        address,
        address,
        uint256,
        bytes memory
    ) public virtual override returns (bytes4) {
        return this.onERC721Received.selector;
    }

    receive() external payable {}

    fallback() external payable {}

    function automateWithdraw() external onlyOwner {
        uint256 nativeBalance = address(this).balance;
        if (nativeBalance > 0) {
            (bool success, ) = payable(msg.sender).call{value: nativeBalance}(
                ""
            );
            // require(success, "issue in native withdraw");
        }
    }
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):