Contract Source Code:
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC20Permit} from "../extensions/IERC20Permit.sol";
import {Address} from "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev An operation with an ERC20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data);
if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/extensions/IERC721Enumerable.sol)
pragma solidity ^0.8.20;
import {IERC721} from "../IERC721.sol";
/**
* @title ERC-721 Non-Fungible Token Standard, optional enumeration extension
* @dev See https://eips.ethereum.org/EIPS/eip-721
*/
interface IERC721Enumerable is IERC721 {
/**
* @dev Returns the total amount of tokens stored by the contract.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns a token ID owned by `owner` at a given `index` of its token list.
* Use along with {balanceOf} to enumerate all of ``owner``'s tokens.
*/
function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256);
/**
* @dev Returns a token ID at a given `index` of all the tokens stored by the contract.
* Use along with {totalSupply} to enumerate all tokens.
*/
function tokenByIndex(uint256 index) external view returns (uint256);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/IERC721.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC721 compliant contract.
*/
interface IERC721 is IERC165 {
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
* a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must have been allowed to move this token by either {approve} or
* {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
* a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
* or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
* understand this adds an external call which potentially creates a reentrancy vulnerability.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the address zero.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/IERC721Receiver.sol)
pragma solidity ^0.8.20;
/**
* @title ERC721 token receiver interface
* @dev Interface for any contract that wants to support safeTransfers
* from ERC721 asset contracts.
*/
interface IERC721Receiver {
/**
* @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
* by `operator` from `from`, this function is called.
*
* It must return its Solidity selector to confirm the token transfer.
* If any other value is returned or the interface is not implemented by the recipient, the transfer will be
* reverted.
*
* The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
*/
function onERC721Received(
address operator,
address from,
uint256 tokenId,
bytes calldata data
) external returns (bytes4);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error AddressInsufficientBalance(address account);
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedInnerCall();
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert AddressInsufficientBalance(address(this));
}
(bool success, ) = recipient.call{value: amount}("");
if (!success) {
revert FailedInnerCall();
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {FailedInnerCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert AddressInsufficientBalance(address(this));
}
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
* unsuccessful call.
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata
) internal view returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
if (returndata.length == 0 && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {FailedInnerCall} error.
*/
function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
*/
function _revert(bytes memory returndata) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert FailedInnerCall();
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
/**
* @dev Muldiv operation overflow.
*/
error MathOverflowedMulDiv();
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an overflow flag.
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
return a / b;
}
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
if (denominator <= prod1) {
revert MathOverflowedMulDiv();
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
}
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.14;
import "./Types.sol";
abstract contract AutomateModuleHelper {
function _resolverModuleArg(
address _resolverAddress,
bytes memory _resolverData
) internal pure returns (bytes memory) {
return abi.encode(_resolverAddress, _resolverData);
}
function _proxyModuleArg() internal pure returns (bytes memory) {
return bytes("");
}
function _singleExecModuleArg() internal pure returns (bytes memory) {
return bytes("");
}
function _web3FunctionModuleArg(
string memory _web3FunctionHash,
bytes memory _web3FunctionArgsHex
) internal pure returns (bytes memory) {
return abi.encode(_web3FunctionHash, _web3FunctionArgsHex);
}
function _timeTriggerModuleArg(uint128 _start, uint128 _interval)
internal
pure
returns (bytes memory)
{
bytes memory triggerConfig = abi.encode(_start, _interval);
return abi.encode(TriggerType.TIME, triggerConfig);
}
function _cronTriggerModuleArg(string memory _expression)
internal
pure
returns (bytes memory)
{
bytes memory triggerConfig = abi.encode(_expression);
return abi.encode(TriggerType.CRON, triggerConfig);
}
function _eventTriggerModuleArg(
address _address,
bytes32[][] memory _topics,
uint256 _blockConfirmations
) internal pure returns (bytes memory) {
bytes memory triggerConfig = abi.encode(
_address,
_topics,
_blockConfirmations
);
return abi.encode(TriggerType.EVENT, triggerConfig);
}
function _blockTriggerModuleArg() internal pure returns (bytes memory) {
bytes memory triggerConfig = abi.encode(bytes(""));
return abi.encode(TriggerType.BLOCK, triggerConfig);
}
}
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.14;
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "./Types.sol";
/**
* @dev Inherit this contract to allow your smart contract to
* - Make synchronous fee payments.
* - Have call restrictions for functions to be automated.
*/
// solhint-disable private-vars-leading-underscore
abstract contract AutomateReady {
IAutomate public immutable automate;
address public immutable dedicatedMsgSender;
address private immutable feeCollector;
address internal constant ETH = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;
/**
* @dev
* Only tasks created by _taskCreator defined in constructor can call
* the functions with this modifier.
*/
modifier onlyDedicatedMsgSender() {
require(msg.sender == dedicatedMsgSender, "Only dedicated msg.sender");
_;
}
/**
* @dev
* _taskCreator is the address which will create tasks for this contract.
*/
constructor(address _automate, address _taskCreator) {
automate = IAutomate(_automate);
IGelato gelato = IGelato(IAutomate(_automate).gelato());
feeCollector = gelato.feeCollector();
address proxyModuleAddress = IAutomate(_automate).taskModuleAddresses(
Module.PROXY
);
address opsProxyFactoryAddress = IProxyModule(proxyModuleAddress)
.opsProxyFactory();
(dedicatedMsgSender, ) = IOpsProxyFactory(opsProxyFactoryAddress)
.getProxyOf(_taskCreator);
}
/**
* @dev
* Transfers fee to gelato for synchronous fee payments.
*
* _fee & _feeToken should be queried from IAutomate.getFeeDetails()
*/
function _transfer(uint256 _fee, address _feeToken) internal {
if (_feeToken == ETH) {
(bool success, ) = feeCollector.call{value: _fee}("");
require(success, "_transfer: ETH transfer failed");
} else {
SafeERC20.safeTransfer(IERC20(_feeToken), feeCollector, _fee);
}
}
function _getFeeDetails()
internal
view
returns (uint256 fee, address feeToken)
{
(fee, feeToken) = automate.getFeeDetails();
}
}
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.14;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "./AutomateReady.sol";
import {AutomateModuleHelper} from "./AutomateModuleHelper.sol";
/**
* @dev Inherit this contract to allow your smart contract
* to be a task creator and create tasks.
*/
//solhint-disable const-name-snakecase
//solhint-disable no-empty-blocks
abstract contract AutomateTaskCreator is AutomateModuleHelper, AutomateReady {
using SafeERC20 for IERC20;
IGelato1Balance public constant gelato1Balance =
IGelato1Balance(0x7506C12a824d73D9b08564d5Afc22c949434755e);
constructor(address _automate) AutomateReady(_automate, address(this)) {}
function _depositFunds1Balance(
uint256 _amount,
address _token,
address _sponsor
) internal {
if (_token == ETH) {
///@dev Only deposit ETH on goerli for now.
require(block.chainid == 5, "Only deposit ETH on goerli");
gelato1Balance.depositNative{value: _amount}(_sponsor);
} else {
///@dev Only deposit USDC on polygon for now.
require(
block.chainid == 137 &&
_token ==
address(0x2791Bca1f2de4661ED88A30C99A7a9449Aa84174),
"Only deposit USDC on polygon"
);
IERC20(_token).approve(address(gelato1Balance), _amount);
gelato1Balance.depositToken(_sponsor, _token, _amount);
}
}
function _createTask(
address _execAddress,
bytes memory _execDataOrSelector,
ModuleData memory _moduleData,
address _feeToken
) internal returns (bytes32) {
return
automate.createTask(
_execAddress,
_execDataOrSelector,
_moduleData,
_feeToken
);
}
function _cancelTask(bytes32 _taskId) internal {
automate.cancelTask(_taskId);
}
}
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.12;
enum Module {
RESOLVER,
DEPRECATED_TIME,
PROXY,
SINGLE_EXEC,
WEB3_FUNCTION,
TRIGGER
}
enum TriggerType {
TIME,
CRON,
EVENT,
BLOCK
}
struct ModuleData {
Module[] modules;
bytes[] args;
}
interface IAutomate {
function createTask(
address execAddress,
bytes calldata execDataOrSelector,
ModuleData calldata moduleData,
address feeToken
) external returns (bytes32 taskId);
function cancelTask(bytes32 taskId) external;
function getFeeDetails() external view returns (uint256, address);
function gelato() external view returns (address payable);
function taskModuleAddresses(Module) external view returns (address);
}
interface IProxyModule {
function opsProxyFactory() external view returns (address);
}
interface IOpsProxyFactory {
function getProxyOf(address account) external view returns (address, bool);
}
interface IGelato1Balance {
function depositNative(address _sponsor) external payable;
function depositToken(
address _sponsor,
address _token,
uint256 _amount
) external;
}
interface IGelato {
function feeCollector() external view returns (address);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
struct ActionBalance {
uint256 collateral;
uint256 debt;
address collateralToken;
address debtToken;
uint256 collateralConverted;
address collateralConvertedToken;
string lpUnderlyingBalances;
string lpUnderlyingTokens;
}
interface IAction {
function getConfig() external view returns (bytes memory config);
function checkMaintain(
bytes memory configuration
) external view returns (bool, uint256);
function checkUpkeep(
bytes memory configuration
) external view returns (bool);
function extraInfo(
bytes memory configuration
) external view returns (uint256[4] memory info);
function validateConfig(
bytes memory configData
) external view returns (bool);
function getMetaData() external view returns (string memory);
function feeName() external view returns (string memory);
function name() external view returns (string memory);
function usesTakeFee() external view returns (bool);
function showBalances(
address _silo,
bytes memory _configurationData
) external view returns (ActionBalance memory);
function showDust(
address _silo,
bytes memory _configurationData
) external view returns (address[] memory, uint256[] memory);
function vaultInfo(
address _silo,
bytes memory configuration
) external view returns (uint256, uint256, uint256, uint256, uint256);
function actionValid(
bytes memory _configurationData
) external view returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
struct PriceOracle {
address oracle;
uint256 actionPrice;
}
enum Statuses {
PAUSED,
DORMANT,
MANAGED,
UNWIND
}
interface ISilo {
function deposit() external;
function withdraw(uint256 _requestedOut) external;
function maintain() external;
function exitSilo(address caller) external;
function adminCall(address target, bytes memory data) external;
function setStrategy(
address[5] memory input,
bytes[] memory _configurationData,
address[] memory _implementations
) external;
function getConfig() external view returns (bytes memory config);
function withdrawToken(address token, address recipient) external;
function adjustSiloDelay(uint256 _newDelay) external;
function SILO_ID() external view returns (uint256);
function siloDelay() external view returns (uint256);
function name() external view returns (string memory);
function lastTimeMaintained() external view returns (uint256);
function factory() external view returns (address);
function setName(string memory name) external;
function deposited() external view returns (bool);
function isNew() external view returns (bool);
function status() external view returns (Statuses);
function setStrategyName(string memory _strategyName) external;
function setStrategyCategory(uint256 _strategyCategory) external;
function strategyName() external view returns (string memory);
function tokenMinimum(address token) external view returns (uint256);
function strategyCategory() external view returns (uint256);
// function main() external view returns (uint256);
// function lastPid() external view returns (uint256);
function adjustStrategy(
uint256 _index,
bytes memory _configurationData,
address _implementation
) external;
function viewStrategy()
external
view
returns (address[] memory actions, bytes[] memory configData);
function highRiskAction() external view returns (bool);
function showActionStackValidity() external view returns (bool, bool);
function getInputTokens() external view returns (address[5] memory);
function getStatus() external view returns (Statuses);
function pause() external;
function unpause() external;
function setActive() external;
function possibleReinvestSilo() external view returns (bool possible);
function getExtraSiloInfo()
external
view
returns (
uint256 strategyType,
uint256 currentBalance,
uint256 possibleWithdraw,
uint256 availableBlock,
uint256 pendingReward,
uint256 lastPid
);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/token/ERC721/extensions/IERC721Enumerable.sol";
interface ISiloFactory is IERC721Enumerable{
function tokenMinimum(address _token) external view returns(uint _minimum);
function balanceOf(address _owner) external view returns(uint);
function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256);
function managerFactory() external view returns(address);
function siloMap(uint _id) external view returns(address);
function tierManager() external view returns(address);
function ownerOf(uint _id) external view returns(address);
function siloToId(address silo) external view returns(uint);
// function createSilo(address recipient) external returns(uint);
function setActionStack(uint siloID, address[5] memory input, address[] memory _implementations, bytes[] memory _configurationData) external;
// function withdraw(uint siloID) external;
function getFeeInfo(address _action) external view returns(uint fee, address recipient);
function strategyMaxGas() external view returns(uint);
function strategyName(string memory _name) external view returns(uint);
function getCatalogue(uint _type) external view returns(string[] memory);
function getStrategyInputs(uint _id) external view returns(address[5] memory inputs);
function getStrategyActions(uint _id) external view returns(address[] memory actions);
function getStrategyConfigurationData(uint _id) external view returns(bytes[] memory configurationData);
function useCustom(address _action) external view returns(bool);
// function getFeeList(address _action) external view returns(uint[4] memory);
function feeRecipient(address _action) external view returns(address);
function defaultFeeList() external view returns(uint[4] memory);
function defaultRecipient() external view returns(address);
// function getTier(address _silo) external view returns(uint);
function getFeeInfoNoTier(address _action) external view returns(uint[4] memory);
function highRiskActions(address _action) external view returns(bool);
function actionValid(address _action) external view returns(bool);
function strategyValid(uint256 _strategyId) external view returns(bool);
function skipActionValidTeamCheck(address _user) external view returns(bool);
function skipActionValidLogicCheck(address _user) external view returns(bool);
function isSilo(address _silo) external view returns(bool);
function isSiloManager(address _silo,address _manager) external view returns(bool);
function currentStrategyId() external view returns(uint);
function minBalance() external view returns(uint);
function mainActions(string memory strategyName) external view returns(uint);
function subFactory() external view returns(address);
function referral() external view returns(address);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
enum AutoStatus {
NOT,
PENDING,
APPROVED,
MANUAL,
LOW,
NORMAL,
HIGH
}
interface ISiloManager {
function owner() external view returns (address);
function taskId() external view returns (bytes32);
function getBalance() external view returns (uint96);
function depositFunds() external payable;
function cancelAutomate() external;
function withdrawFunds() external;
function topupThreshold() external view returns (uint256);
function topupAmount() external view returns (uint256);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {AutoStatus} from "./ISiloManager.sol";
struct ManagerInfo {
address manager;
bytes32 taskId;
uint256 currentBalance;
uint256 topupThreshold;
uint256 minFunds;
}
interface ISiloManagerFactory {
function checkManager(
address _owner,
address _manager
) external view returns (bool);
function userToManager(address _user) external view returns (address);
function isManager(address) external view returns (bool);
function managerCount() external view returns (uint256);
function siloFactory() external view returns (address);
function getAutoStatus(address _user) external view returns (AutoStatus);
function topupThreshold() external view returns (uint256);
function minFunds() external view returns (uint256);
function topupAmount() external view returns (uint256);
function getAutomatorInfo(
address _manager
) external view returns (ManagerInfo memory info);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface ISiloSubFactory {
function acceptTransfersFrom(address to, address from)
external
view
returns (bool);
function skipActionValidTeamCheck(address user)
external
view
returns (bool);
function skipActionValidLogicCheck(address user)
external
view
returns (bool);
function checkActionsLogicValid(
address user,
address[] memory _actions,
bytes[] memory _configurationData
) external view returns (bool);
function checkActionLogicValid(
address user,
address _implementation,
bytes memory _configurationData
) external view returns(bool);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "./interfaces/IAction.sol";
import "./interfaces/ISiloFactory.sol";
import "./interfaces/ISiloSubFactory.sol";
import {Statuses} from "./interfaces/ISilo.sol";
import "./interfaces/ISiloManagerFactory.sol";
import {Strings} from "@openzeppelin/contracts/utils/Strings.sol";
import "@openzeppelin/contracts/token/ERC721/IERC721Receiver.sol";
import "./gelato/AutomateTaskCreator.sol";
struct ActionInfo {
bytes configurationData; //things like what token addresses are involved
address implementation;
}
contract SiloV2 is IERC721Receiver, AutomateTaskCreator {
bytes32 internal taskId;
Statuses internal status;
address public factory;
ActionInfo[10] internal strategy;
uint256 internal strategySize;
bytes internal configurationData; //For silos this will only ever be the input and output token
address[10] internal tokensInPlay;
string public name;
string public strategyName;
uint256 public strategyCategory;
uint256 public SILO_ID;
uint256 public siloDelay; //used to determine how often it is maintained
uint256 public lastTimeMaintained;
bool public highRiskAction;
bool public deposited;
bool public isNew;
bool private withdrawLimitAction;
uint256 internal lastPid;
uint256 internal main;
uint256 private withdrawBlock;
uint256 private withdrawAmount;
uint256 private constant MAX_UINT256 = 2 ** 256 - 1;
mapping(address => uint256) public tokenMinimum;
event StrategyFailed(uint256 siloID, uint256 i);
event SiloAutoCall(uint256 siloID, bool mode, uint256 task);
modifier onlyFactory() {
require(
msg.sender == factory ||
msg.sender == ISiloFactory(factory).subFactory(),
"not factory"
);
_;
}
modifier onlyOwner() {
require(
msg.sender == ISiloFactory(factory).ownerOf(SILO_ID),
"not owner"
);
_;
}
constructor(
uint256 siloID,
uint256 _main,
address _factory,
address gelatoAutomate
) AutomateTaskCreator(gelatoAutomate) {
factory = _factory;
SILO_ID = siloID;
isNew = true;
main = _main;
}
function setName(string memory _name) external onlyFactory {
name = _name;
}
function adjustSiloDelay(uint256 _newDelay) external onlyFactory {
//make sure delay isn't too long or too
siloDelay = _newDelay;
}
function setStrategyName(string memory _strategyName) external onlyFactory {
strategyName = _strategyName;
}
function setStrategyCategory(
uint256 _strategyCategory
) external onlyFactory {
strategyCategory = _strategyCategory;
}
function checkAuto()
public
view
returns (bool autoNeeded, bool act, uint256 task)
{
if (status == Statuses.UNWIND) {
// performData = abi.encode(true, 1);
act = true;
task = 1;
if (
withdrawAmount > 0 &&
block.number >= withdrawBlock &&
withdrawBlock != 0
) {
autoNeeded = true;
}
} else {
act = false;
task = 0;
// performData = abi.encode(false, 0);
if (
siloDelay != 0 &&
(deposited || possibleReinvestSilo()) &&
status == Statuses.MANAGED
) {
//If delay is zero, maintenance is only conditional based
autoNeeded = (block.timestamp >=
(lastTimeMaintained + siloDelay));
if (autoNeeded) {
for (uint256 i; i < strategySize; ) {
autoNeeded = IAction(strategy[i].implementation)
.checkUpkeep(strategy[i].configurationData);
if (!autoNeeded) {
return (false, act, task);
}
unchecked {
i++;
}
}
}
}
if (!autoNeeded) {
uint256 autoTask;
//if time up keep is not needed check strategy
for (uint256 i; i < strategySize; ) {
if (i == 0 || (i != 0 && deposited)) {
(autoNeeded, autoTask) = IAction(
strategy[i].implementation
).checkMaintain(strategy[i].configurationData);
if (i == 0 && autoNeeded) {
(bool team, bool logic) = showActionStackValidity();
if (!logic || !team) {
autoNeeded = false;
}
}
}
if (autoNeeded) {
// performData = abi.encode(
// false,
// (i + 1) * 100 + autoTask
// );
act = false;
task = (i + 1) * 100 + autoTask;
break;
}
unchecked {
i++;
}
}
}
}
}
function createTask() external payable {
require(taskId == bytes32(""), "already");
ModuleData memory moduleData = ModuleData({
modules: new Module[](2),
args: new bytes[](2)
});
moduleData.modules[0] = Module.RESOLVER;
moduleData.modules[1] = Module.PROXY;
moduleData.args[0] = _resolverModuleArg(
address(this),
abi.encodeCall(this.checker, ())
);
moduleData.args[1] = _proxyModuleArg();
bytes32 id = _createTask(
address(this),
abi.encode(this.performAuto.selector),
moduleData,
ETH
);
taskId = id;
}
function checker()
external
view
returns (bool canExec, bytes memory execPayload)
{
ISiloFactory SiloFactory = ISiloFactory(factory);
ISiloSubFactory subFactory = ISiloSubFactory(SiloFactory.subFactory());
if (status == Statuses.PAUSED) {
return (false, bytes("no call"));
}
if (highRiskAction) {
//need to check if balance is above the min required by some percent
// uint256 balance = taskTreasury.userTokenBalance(address(this), ETH);
uint256 nativeBalance = address(this).balance;
uint256 minBalance = ISiloManagerFactory(
SiloFactory.managerFactory()
).minFunds();
if (nativeBalance < minBalance) {
if (status == Statuses.MANAGED && deposited) {
//high risk silo is currently managed, and manager is underfunded
canExec = true;
execPayload = abi.encodeCall(this.performAuto, (true, 3));
return (canExec, execPayload); //this will change the status of the silo to dormant
}
} else if (status == Statuses.DORMANT) {
//check if balance has returned to a healthy level
if (nativeBalance > minBalance && possibleReinvestSilo()) {
//silo balance has returned to a healthy level and silo is dormant so re enter the strategy
(bool team, bool logic) = showActionStackValidity();
if (team && logic) {
canExec = true;
execPayload = abi.encodeCall(
this.performAuto,
(false, 4)
);
return (canExec, execPayload);
}
}
}
}
address owner = ISiloFactory(factory).ownerOf(SILO_ID);
//check to see if any actions in the strategy have been deprecated logically or by the team, and if so have manager make silo exit strategy
if (
!canExec &&
(!subFactory.skipActionValidTeamCheck(owner) ||
!subFactory.skipActionValidLogicCheck(owner))
) {
(bool team, bool logic) = showActionStackValidity();
if (
(!subFactory.skipActionValidTeamCheck(owner) && !team) ||
(!subFactory.skipActionValidLogicCheck(owner) && !logic)
) {
if (status == Statuses.MANAGED) {
canExec = true;
execPayload = abi.encodeCall(this.performAuto, (true, 5));
return (canExec, execPayload);
}
}
}
if (!canExec) {
bool act;
uint256 task;
(canExec, act, task) = checkAuto();
if (canExec) {
execPayload = abi.encodeCall(this.performAuto, (act, task));
return (canExec, execPayload);
}
}
return (false, bytes("not auto"));
}
function performAuto(bool keeperExit, uint256 task) external {
require(msg.sender == dedicatedMsgSender, "not");
if (keeperExit) {
if (status != Statuses.UNWIND) {
status = Statuses.DORMANT;
}
if (deposited) {
//if there is money in the strategy then remove it
_exitStrategy(0);
}
} else {
_runStrategy();
}
if (task == 306) {
(, , , , , uint256 pid) = getExtraSiloInfo();
lastPid = pid;
}
emit SiloAutoCall(SILO_ID, keeperExit, task);
(uint256 fee, address feeToken) = _getFeeDetails();
_transfer(fee, feeToken);
}
function showActionStackValidity() public view returns (bool, bool) {
bool team = true;
bool logic = true;
bool tmpTeam;
bool tmpLogic;
for (uint256 i; i < strategySize; ) {
//go through every action, and call actionValid
tmpTeam = ISiloFactory(factory).actionValid(
strategy[i].implementation
);
tmpLogic = IAction(strategy[i].implementation).actionValid(
strategy[i].configurationData
);
if (!tmpTeam) {
team = tmpTeam;
}
if (!tmpLogic) {
logic = tmpLogic;
}
unchecked {
i++;
}
}
return (team, logic);
}
//Enter the strategy
function deposit() external onlyFactory {
uint256 gas = gasleft();
_runStrategy();
uint256 gasUsed = gas - gasleft();
if (gasUsed > ISiloFactory(factory).strategyMaxGas()) {
string memory errorMessage = string(
abi.encodePacked(
"exceed gas limit: ",
Strings.toString(gasUsed)
)
);
revert(errorMessage);
}
}
//Exit the strategy
function withdraw(uint256 _requestedOut) external onlyFactory {
_exitStrategy(_requestedOut);
}
function exitSilo(address caller) external onlyFactory {
//Send all tokens to owner
withdrawTokens(caller);
uint256 nativeBalance = address(this).balance;
if (nativeBalance > 0) {
(bool success, ) = payable(caller).call{value: nativeBalance}("");
// require(success, "issue in native withdraw");
}
}
function withdrawToken(
address token,
address recipient
) external onlyFactory {
IERC20 Token = IERC20(token);
SafeERC20.safeTransfer(
Token,
recipient,
Token.balanceOf(address(this))
);
}
function withdrawTokens(address recipient) private {
uint256 balance;
IERC20 token;
for (uint256 i; i < tokensInPlay.length; ) {
if (tokensInPlay[i] != address(0)) {
token = IERC20(tokensInPlay[i]);
balance = token.balanceOf(address(this));
if (balance > 0) {
SafeERC20.safeTransfer(token, recipient, balance);
}
}
unchecked {
i++;
}
}
}
//used to recover users funds if for some reason the strategy fails
function adminCall(address target, bytes memory data) external onlyFactory {
(bool success, ) = target.call(data);
require(success, "failed");
}
function updateStrategy() public onlyOwner {
uint256 id = ISiloFactory(factory).strategyName(strategyName);
address[5] memory cuInputs = ISiloFactory(factory).getStrategyInputs(
id
);
address[] memory cuActions = ISiloFactory(factory).getStrategyActions(
id
);
bytes[] memory cuConfigurationData = ISiloFactory(factory)
.getStrategyConfigurationData(id);
_setStrategy(cuInputs, cuConfigurationData, cuActions);
}
function setStrategy(
address[5] memory _inputs,
bytes[] memory _configurationData,
address[] memory _implementations
) external onlyFactory {
//needs to exit current strategy, if it is in one
// require(status == Statuses.PAUSED, "remove assets before update");
require(!deposited, "deposited");
_setStrategy(_inputs, _configurationData, _implementations);
}
function _setStrategy(
address[5] memory _inputs,
bytes[] memory _configurationData,
address[] memory _implementations
) internal {
require(
_configurationData.length == _implementations.length,
"inputs mismatch"
);
delete strategy; //deletes the current strategy
address[5] memory actionInput;
address[5] memory actionOutput = _inputs;
address[5] memory tmpOutput;
bytes memory storedConfig;
highRiskAction = false; //reset it
ActionInfo memory action;
uint256 actionCount = _implementations.length;
strategySize = actionCount;
for (uint256 i; i < actionCount; ) {
//Confirm inputs and outputs match
storedConfig = IAction(_implementations[i]).getConfig();
if (storedConfig.length > 0) {
if (i == actionCount - 1) {
(actionInput) = abi.decode(storedConfig, (address[5]));
tmpOutput = actionInput;
} else {
(actionInput, tmpOutput) = abi.decode(
storedConfig,
(address[5], address[5])
);
}
require(
IAction(_implementations[i]).validateConfig(storedConfig),
"configuration invalid"
);
} else {
if (i == actionCount - 1) {
(actionInput) = abi.decode(
_configurationData[i],
(address[5])
);
tmpOutput = actionInput;
} else {
(actionInput, tmpOutput) = abi.decode(
_configurationData[i],
(address[5], address[5])
);
}
if (
!IAction(_implementations[i]).validateConfig(
_configurationData[i]
)
) {
string memory errorMessage = string(
abi.encodePacked(
"configuration invalid at:",
Strings.toString(i)
)
);
revert(errorMessage);
}
}
require(
actionInput.length == actionOutput.length,
"different output/input size"
);
for (uint256 j; j < actionInput.length; ) {
require(
actionInput[j] == actionOutput[j],
"input/output mismatch"
);
unchecked {
j++;
}
}
actionOutput = tmpOutput;
action = ActionInfo({
configurationData: _configurationData[i],
implementation: _implementations[i]
});
// strategy.push(action);
strategy[i] = action;
if (
!highRiskAction &&
ISiloFactory(factory).highRiskActions(_implementations[i])
) {
highRiskAction = true;
}
//if we are on the last action, then set the config data for this silo
if (i == actionCount - 1) {
_setConfigData(_inputs, actionOutput);
}
if (i == 0) {
_setTriggerConfigData(_configurationData[i]);
}
status = Statuses.MANAGED;
unchecked {
i++;
}
}
(uint256 strategyType, , , , , uint256 pid) = getExtraSiloInfo();
withdrawLimitAction = strategyType == 1;
lastPid = pid;
}
function adjustStrategy(
uint256 _index,
bytes memory _configurationData,
address _implementation
) external onlyFactory {
address[5] memory currentInputs;
address[5] memory currentOutputs;
address[5] memory proposedInputs;
address[5] memory proposedOutputs;
if (_index == strategySize - 1) {
(currentInputs) = abi.decode(
strategy[_index].configurationData,
(address[5])
);
currentOutputs = currentInputs;
(proposedInputs) = abi.decode(_configurationData, (address[5]));
proposedOutputs = proposedInputs;
} else {
(currentInputs, currentOutputs) = abi.decode(
strategy[_index].configurationData,
(address[5], address[5])
);
(proposedInputs, proposedOutputs) = abi.decode(
_configurationData,
(address[5], address[5])
);
}
//if strategy is not already high risk, then check if the new action is high risk
if (
!highRiskAction &&
ISiloFactory(factory).highRiskActions(_implementation)
) {
highRiskAction = true;
}
for (uint256 i; i < 5; ) {
if (currentInputs[i] != proposedInputs[i]) {
string memory errorMessage = string(
abi.encodePacked(
"current input dismatch at: ",
Strings.toString(i)
)
);
revert(errorMessage);
}
if (currentOutputs[i] != proposedOutputs[i]) {
string memory errorMessage = string(
abi.encodePacked(
"current output dismatch at: ",
Strings.toString(i)
)
);
revert(errorMessage);
}
unchecked {
i++;
}
}
require(
IAction(_implementation).validateConfig(_configurationData),
"configuration invalid"
);
//If above all checks out, then overwrite the strategy at _index
strategy[_index] = ActionInfo({
configurationData: _configurationData,
implementation: _implementation
});
if (_index == 0) {
_setTriggerConfigData(_configurationData);
}
}
function pause() external onlyFactory {
require(!highRiskAction, "high risk silo"); //user needs to exit using exitSiloStrategy
require(status == Statuses.MANAGED, "not managed");
status = Statuses.PAUSED;
}
//user could flip this to managed without setting a strategy, but UI is only set up for new silos to have a strategy
function unpause() external onlyFactory {
require(status == Statuses.PAUSED, "not paused");
status = Statuses.MANAGED;
}
function setActive() external onlyFactory {
require(status == Statuses.UNWIND, "not unwind");
status = Statuses.MANAGED;
}
function viewStrategy()
external
view
returns (address[] memory actions, bytes[] memory configData)
{
actions = new address[](strategySize);
configData = new bytes[](strategySize);
unchecked {
for (uint256 i; i < strategySize; i++) {
actions[i] = strategy[i].implementation;
configData[i] = strategy[i].configurationData;
}
}
}
/****************************Public Functions*****************************/
//Here so that silos match the design pattern of actions
function getConfig() public view returns (bytes memory) {
return configurationData;
}
function getInputTokens() public view returns (address[5] memory inputs) {
unchecked {
for (uint256 i; i < 5; i++) {
inputs[i] = tokensInPlay[i];
}
}
}
function getStatus() public view returns (Statuses) {
return status;
}
/****************************Internal Functions*****************************/
function _investSilo() internal returns (uint256[5] memory amounts) {
address[5] memory depositTokens = abi.decode(
configurationData,
(address[5])
);
for (uint256 i; i < 5; ) {
uint256 tokenAmount;
if (depositTokens[i] != address(0)) {
tokenAmount = IERC20(depositTokens[i]).balanceOf(address(this));
if (
tokenAmount > 0 &&
tokenAmount >= tokenMinimum[depositTokens[i]]
) {
amounts[i] = tokenAmount;
//if tokenAmount is non zero and greater than the minimum, then set deposited to true
if (!deposited) {
deposited = true;
}
if (status == Statuses.DORMANT) {
status = Statuses.MANAGED; //change it back to managed
}
if (isNew) {
//track if a silo has ever had anything deposited into it
isNew = false;
}
}
}
unchecked {
i++;
}
}
}
function possibleReinvestSilo() public view returns (bool possible) {
address[5] memory depositTokens = abi.decode(
configurationData,
(address[5])
);
// (bool team, bool logic) = showActionStackValidity();
// if (!team || !logic) {
// return false;
// }
for (uint256 i; i < 5; ) {
uint256 tokenAmount;
if (depositTokens[i] != address(0)) {
tokenAmount = IERC20(depositTokens[i]).balanceOf(address(this));
if (
tokenAmount > 0 &&
tokenAmount >= tokenMinimum[depositTokens[i]]
) {
return true;
}
}
unchecked {
i++;
}
}
return false;
}
function _runStrategy() internal {
uint256[5] memory amounts = _investSilo();
bytes memory inputData = abi.encode(amounts);
uint256 i = 1;
if (strategySize < 3) {
i = 0;
}
for (; i < strategySize; ) {
(bool success, bytes memory result) = strategy[i]
.implementation
.delegatecall(
abi.encodeWithSignature(
"enter(address,bytes,bytes)",
strategy[i].implementation,
strategy[i].configurationData,
inputData
)
);
if (!success) {
string memory errorMessage = string(
abi.encodePacked(
"strategy failed at: ",
Strings.toString(i)
)
);
revert(errorMessage);
}
inputData = result;
unchecked {
i++;
}
}
lastTimeMaintained = block.timestamp;
}
function _exitStrategy(uint256 _requestedOut) internal returns (bool) {
require(deposited, "no balance");
uint256[5] memory amounts = [_requestedOut, 0, 0, 0, 0];
bytes memory exitData = abi.encode(amounts);
uint256 i = 1;
uint256 length = strategySize;
for (; i < length; ) {
(bool success, bytes memory result) = strategy[i]
.implementation
.delegatecall(
abi.encodeWithSignature(
"exit(address,bytes,bytes)",
strategy[i].implementation,
strategy[i].configurationData,
exitData
)
);
if (!success) {
string memory errorMessage = string(
abi.encodePacked(
"withdraw failed at: ",
Strings.toString(i)
)
);
revert(errorMessage);
}
exitData = result;
unchecked {
i++;
}
}
if (withdrawLimitAction) {
(
,
uint256 currentBalance,
uint256 possibleWithdraw,
uint256 availableBlock,
,
) = getExtraSiloInfo();
withdrawBlock = availableBlock;
withdrawAmount = possibleWithdraw;
if (status == Statuses.UNWIND) {
withdrawTokens(ISiloFactory(factory).ownerOf(SILO_ID));
}
if (currentBalance <= ISiloFactory(factory).minBalance()) {
deposited = false;
status = Statuses.DORMANT;
} else {
if (status != Statuses.UNWIND) {
status = Statuses.UNWIND;
}
}
} else {
deposited = false;
}
}
function getExtraSiloInfo()
public
view
returns (
uint256 strategyType,
uint256 currentBalance,
uint256 possibleWithdraw,
uint256 availableBlock,
uint256 pendingReward,
uint256 pid
)
{
uint256[4] memory info = IAction(strategy[main].implementation)
.extraInfo(strategy[main].configurationData);
pendingReward = info[0];
currentBalance = info[1];
possibleWithdraw = info[2];
availableBlock = info[3];
if (info[3] == MAX_UINT256) {
return (
2,
currentBalance,
possibleWithdraw,
availableBlock,
pendingReward,
info[1]
);
} else {
return (
1,
currentBalance,
possibleWithdraw,
availableBlock,
pendingReward,
0
);
}
}
function _setConfigData(
address[5] memory _input,
address[5] memory _output
) internal {
configurationData = abi.encode(_input, _output);
unchecked {
for (uint256 i; i < 5; i++) {
tokensInPlay[i] = _input[i];
tokensInPlay[i + 5] = _output[i];
}
}
}
function _setTriggerConfigData(bytes memory configData) internal {
(address[5] memory _inputs, , uint256[5] memory _triggers) = abi.decode(
configData,
(address[5], address[5], uint256[5])
);
unchecked {
for (uint256 i; i < 5; i++) {
tokenMinimum[_inputs[i]] = _triggers[i];
}
}
}
function onERC721Received(
address,
address,
uint256,
bytes memory
) public virtual override returns (bytes4) {
return this.onERC721Received.selector;
}
receive() external payable {}
fallback() external payable {}
function automateWithdraw() external onlyOwner {
uint256 nativeBalance = address(this).balance;
if (nativeBalance > 0) {
(bool success, ) = payable(msg.sender).call{value: nativeBalance}(
""
);
// require(success, "issue in native withdraw");
}
}
}