S Price: $0.838156 (-1.44%)

Contract Diff Checker

Contract Name:
DXToken

Contract Source Code:

// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

// Import statements
import { ERC20PermitUpgradeable, ERC20Upgradeable } from "@openzeppelin/contracts-upgradeable/token/ERC20/extensions/draft-ERC20PermitUpgradeable.sol";
import { AccessControlUpgradeable } from "@openzeppelin/contracts-upgradeable/access/AccessControlUpgradeable.sol";
import { PausableUpgradeable } from "@openzeppelin/contracts-upgradeable/security/PausableUpgradeable.sol";
import { ReentrancyGuardUpgradeable } from "@openzeppelin/contracts-upgradeable/security/ReentrancyGuardUpgradeable.sol";
import { SafeERC20Upgradeable, IERC20Upgradeable } from "@openzeppelin/contracts-upgradeable/token/ERC20/utils/SafeERC20Upgradeable.sol";
import { CustomRevert } from "./libs/CustomRevert.sol";
import { ABDKMathQuad } from "abdk-libraries-solidity/ABDKMathQuad.sol";

// Interface definitions
import { IDXToken } from "./interfaces/IDXToken.sol";
import { GroupId } from "./types/GroupId.sol";
import { DDXToken } from "./declarations/DDXToken.sol";
import { FeeModel } from "./types/CommonTypes.sol";
import { ITreasury } from "./interfaces/ITreasury.sol";
import { IAToken } from "./interfaces/IAToken.sol";

import {FullMath} from "./libs/math/FullMath.sol";

contract DXToken is ERC20PermitUpgradeable, AccessControlUpgradeable, PausableUpgradeable, ReentrancyGuardUpgradeable, IDXToken {
  using SafeERC20Upgradeable for IERC20Upgradeable;
  using CustomRevert for bytes4;
  using ABDKMathQuad for bytes16;

  // @dev we consider using 18 decimals, otherwise we can update these before deployment
  uint256 private PRECISION;
  uint256 private constant MAX_COOLING_OFF_PERIOD = 1 days;
  uint256 private constant YEAR = 365 days;
  uint256 private constant MIN_MINTING_BURNING_AMOUNT = 1e6; // 0.001 tokens
  uint256 private constant BASIS_POINTS = 10_000;
  uint256 private constant MAX_RATIO = 3_000; // 30%
  uint256 private constant MAX_VARIABLE_FEE = 1e21; // 1000 tokens
  uint256 private constant DUST = 1e2; // Small constant to avoid rounding issues
  uint256 public MAX_SUPPLY;
  uint256 public coolingOffPeriod;

  bytes32 public constant TREASURY_ROLE = keccak256("TREASURY_ROLE");
  bytes32 public constant PAUSER_ROLE = keccak256("PAUSER_ROLE");

  uint8 private _decimals;

  GroupId public associatedGroupId;
  IAToken public aToken;
  ITreasury public treasury;
  FeeModel public feeModel;

  uint256 public lastDecayTimestamp;
  uint256 public managementFeeRate; // in basis points (bps)
  uint256 public fixedYieldAmount; // VARIABLE_FUNDING_FEE model
  uint256 public annualFundingFeeRate; // FIXED_FUNDING_FEE model, in bps
  uint256 private _totalRawSupply;
  uint256 private _totalSupplyForNAV; // used for beta = 0 times
  bytes16 public decayFactor; // Starts at 1e18 in ABDKMathQuad format

  bool public beta;

  mapping(address => uint256) private _rawBalances;
  mapping(address => uint256) public mintAt;

  /// @custom:oz-upgrades-unsafe-allow constructor
  constructor() initializer {}

  /**
   * @dev Fallback function to prevent accidental Ether transfers.
   */
  receive() external payable {
    IDXToken.NotPermitted.selector.revertWith();
  }

  /**
   * @dev Fallback function to prevent accidental Ether transfers.
   */
  fallback() external payable {
    IDXToken.NotPermitted.selector.revertWith();
  }

  /**
   * @notice Initializes the DXToken contract with the given parameters.
   * @param tokenParams The parameters for the token.
   * @param feeParams The parameters for the fee model.
   * @param _admin The address of the admin.
   */
  function initialize(
    DDXToken.TokenParams calldata tokenParams,
    DDXToken.FeeParams calldata feeParams,
    address _admin,
    bool _beta
  ) external initializer {
    // Input validations
    if (tokenParams.aTokenAddress == address(0)) IDXToken.ZeroAddress.selector.revertWith();
    if (tokenParams.treasuryAddress == address(0)) IDXToken.ZeroAddress.selector.revertWith();
    if (_admin == address(0)) IDXToken.ZeroAddress.selector.revertWith();
    if (tokenParams.decimals == 0 || tokenParams.decimals > 18) IDXToken.InvalidDecimals.selector.revertWith();
    if (tokenParams.initialCoolingOffPeriod > MAX_COOLING_OFF_PERIOD) IDXToken.CoolingOffPeriodTooLarge.selector.revertWith();

    // Initialize inherited contracts
    __ERC20_init(tokenParams.name, tokenParams.symbol);
    __ERC20Permit_init(tokenParams.name);
    __AccessControl_init();
    __Pausable_init();
    __ReentrancyGuard_init();

    // Grant roles
    _grantRole(DEFAULT_ADMIN_ROLE, _admin);
    _grantRole(TREASURY_ROLE, tokenParams.treasuryAddress);
    _grantRole(PAUSER_ROLE, _admin);

    // Set initial state variables
    _decimals = tokenParams.decimals;
    MAX_SUPPLY = tokenParams.maxSupply;
    associatedGroupId = tokenParams.groupId;
    aToken = IAToken(tokenParams.aTokenAddress);
    treasury = ITreasury(tokenParams.treasuryAddress);
    coolingOffPeriod = tokenParams.initialCoolingOffPeriod;
    feeModel = feeParams.feeModel;

    _validateAndSetFeeParams(feeParams);

    // Set PRECISION
    PRECISION = 10 ** uint256(_decimals);

    // Initialize decay variables
    decayFactor = ABDKMathQuad.fromUInt(PRECISION); // Starts at 1e18 in bytes16
    lastDecayTimestamp = block.timestamp;
    beta = _beta;
  }

  /**
   * @dev Validates and sets the fee parameters based on the fee model.
   * @param feeParams The fee parameters to validate and set.
   */
  function _validateAndSetFeeParams(DDXToken.FeeParams calldata feeParams) internal {
    if (feeModel == FeeModel.MANAGEMENT_FEE) {
      if (feeParams.managementFeeRate == 0 || feeParams.managementFeeRate > MAX_RATIO) IDXToken.InvalidManagementFee.selector.revertWith();
      managementFeeRate = feeParams.managementFeeRate;
    } else if (feeModel == FeeModel.VARIABLE_FUNDING_FEE) {
      if (feeParams.fixedYieldAmount == 0 || feeParams.fixedYieldAmount > MAX_VARIABLE_FEE)
        IDXToken.InvalidFixedYieldAmount.selector.revertWith();
      fixedYieldAmount = feeParams.fixedYieldAmount;
    } else if (feeModel == FeeModel.FIXED_FUNDING_FEE) {
      if (feeParams.annualFundingFeeRate == 0 || feeParams.annualFundingFeeRate > MAX_RATIO)
        IDXToken.InvalidFundingFeeRate.selector.revertWith();
      annualFundingFeeRate = feeParams.annualFundingFeeRate;
    } else if (feeModel == FeeModel.NONE) {
      // No fee parameters to set
      assert(true);
    } else {
      IDXToken.InvalidFeeModel.selector.revertWith();
    }
  }

  /**
   * @notice Calculates the Net Asset Value (NAV) of the token.
   * @return The NAV of the token in 18 decimal precision.
   */
  function nav() public view override returns (uint256) {
    uint256 _baseSupply = treasury.totalBaseToken(associatedGroupId);
    uint256 _xSupply = _totalSupplyForNAV;

    if (treasury.isUnderCollateral(associatedGroupId)) return 0;
    if (_xSupply < DUST || _baseSupply < DUST) return PRECISION;
    uint256 _baseNav = treasury.currentBaseTokenPrice(associatedGroupId);
    uint256 _aSupply = aToken.totalSupply();
    uint256 _aNav = aToken.nav();

    return ((_baseNav * _baseSupply)  - (_aSupply * _aNav)) / _xSupply;
  }

  /**
   * @notice Converts a given amount of DXToken to the equivalent amount of base token.
   * @param dxTokenAmount The amount of DXToken to convert.
   * @return baseTokenAmount The equivalent amount of base token.
   */
  function dxTokenToBaseToken(uint256 dxTokenAmount) external view override returns (uint256 baseTokenAmount) {
    uint256 navPerToken = nav();
    uint256 baseTokenPrice = treasury.currentBaseTokenPrice(associatedGroupId);

    if (navPerToken == 0 || baseTokenPrice == 0) IDXToken.InvalidBaseTokenPrice.selector.revertWith();

    baseTokenAmount = (dxTokenAmount * navPerToken) / baseTokenPrice;
  }

  /**
   * @dev Calculates the updated decay factor as of the current block timestamp.
   * @return newDecayFactor The updated decay factor.
   */
  function _getUpdatedDecayFactor() internal view returns (bytes16) {
    uint256 timeElapsed = block.timestamp - lastDecayTimestamp;
    if (timeElapsed < DUST) return decayFactor;

    bytes16 newDecayFactor = decayFactor;

    if (feeModel == FeeModel.MANAGEMENT_FEE) {
      // Compute ratePerSecond = managementFeeRate / (BASIS_POINTS * YEAR)
      bytes16 annualRate = ABDKMathQuad.div(ABDKMathQuad.fromUInt(managementFeeRate), ABDKMathQuad.fromUInt(BASIS_POINTS));
      bytes16 ratePerSecond = ABDKMathQuad.div(annualRate, ABDKMathQuad.fromUInt(YEAR));

      // Compute exponent = -ratePerSecond * timeElapsed
      bytes16 exponent = ABDKMathQuad.mul(ABDKMathQuad.neg(ratePerSecond), ABDKMathQuad.fromUInt(timeElapsed));

      // Compute decayMultiplier = exp(exponent)
      bytes16 decayMultiplier = ABDKMathQuad.exp(exponent);

      // Update newDecayFactor
      newDecayFactor = ABDKMathQuad.mul(decayFactor, decayMultiplier);
    } else if (feeModel == FeeModel.FIXED_FUNDING_FEE) {
      // Similar computation for fixed funding fee
      bytes16 annualRate = ABDKMathQuad.div(ABDKMathQuad.fromUInt(annualFundingFeeRate), ABDKMathQuad.fromUInt(BASIS_POINTS));
      bytes16 ratePerSecond = ABDKMathQuad.div(annualRate, ABDKMathQuad.fromUInt(YEAR));
      bytes16 exponent = ABDKMathQuad.mul(ABDKMathQuad.neg(ratePerSecond), ABDKMathQuad.fromUInt(timeElapsed));
      bytes16 decayMultiplier = ABDKMathQuad.exp(exponent);
      newDecayFactor = ABDKMathQuad.mul(decayFactor, decayMultiplier);
    } else if (feeModel == FeeModel.VARIABLE_FUNDING_FEE) {
      // Variable funding fee model
      if (_totalRawSupply < DUST) {
        // No decay if total raw supply is zero
        return decayFactor;
      }

      uint256 aTokenSupply = aToken.totalSupply();
      uint256 aTokenNav = aToken.nav();
      uint256 xTokenNav = nav();

      uint256 aToken_to_mint = aTokenSupply * fixedYieldAmount / BASIS_POINTS; 
      uint256 xToken_to_mint = (aToken_to_mint * aTokenNav / xTokenNav) / 365;

      uint256 feeIncrement = (xToken_to_mint * timeElapsed * PRECISION) / (_totalRawSupply * 1 days);
      bytes16 feeIncrementQuad = ABDKMathQuad.fromUInt(feeIncrement);

      newDecayFactor = ABDKMathQuad.sub(decayFactor, feeIncrementQuad);

      if (ABDKMathQuad.cmp(newDecayFactor, ABDKMathQuad.fromUInt(0)) < 0) {
        newDecayFactor = ABDKMathQuad.fromUInt(0);
      }

    } else if (feeModel == FeeModel.NONE) {
      // No decay
      return decayFactor;
    } else {
      IDXToken.InvalidFeeModel.selector.revertWith();
    }

    return newDecayFactor;
  }

  /**
   * @notice Returns the balance of a specific account, adjusted for decay.
   * @param account The address of the account.
   * @return The adjusted balance of the account.
   */
  function balanceOf(address account) public view override(ERC20Upgradeable, IERC20Upgradeable) returns (uint256) {
    bytes16 updatedDecayFactor = _getUpdatedDecayFactor();
    bytes16 adjustedBalance = ABDKMathQuad.mul(ABDKMathQuad.fromUInt(_rawBalances[account]), updatedDecayFactor);
    return ABDKMathQuad.toUInt(adjustedBalance) / PRECISION;
  }

  /**
   * @notice Returns the total supply of the token, adjusted for decay.
   * @return The adjusted total supply of the token.
   */
  function totalSupply() public view override(ERC20Upgradeable, IERC20Upgradeable) returns (uint256) {
    
    if (aToken.beta() || _msgSender() == address(treasury) || _msgSender() == address(aToken)) return _totalSupplyForNAV;

    bytes16 updatedDecayFactor = _getUpdatedDecayFactor();
    bytes16 adjustedTotalSupply = ABDKMathQuad.mul(ABDKMathQuad.fromUInt(_totalRawSupply), updatedDecayFactor);
    return ABDKMathQuad.toUInt(adjustedTotalSupply) / PRECISION;
  }

  /**
   * @dev Updates the global decay factor based on the elapsed time and fee model.
   */
  function _updateDecayFactor() internal {
    bytes16 newDecayFactor = _getUpdatedDecayFactor();
    decayFactor = newDecayFactor;
    lastDecayTimestamp = block.timestamp;
  }

  /**
   * @notice Mints new tokens to a specified address.
   * @param _to The address to mint tokens to.
   * @param _amount The amount of tokens to mint.
   */
  function mint(address _to, uint256 _amount) external override nonReentrant whenNotPaused onlyRole(TREASURY_ROLE) {
    if (_amount < MIN_MINTING_BURNING_AMOUNT) IDXToken.ErrorMinimumMintingAmount.selector.revertWith();
    if (_to == address(0)) IDXToken.ZeroAddress.selector.revertWith();

    // Check max supply
    if (totalSupply() + _amount > MAX_SUPPLY) IDXToken.ExceedsMaxSupply.selector.revertWith();

    // Update decay factor
    _updateDecayFactor();

    // Compute raw amount
    bytes16 amountInQuad = ABDKMathQuad.div(ABDKMathQuad.fromUInt(_amount * PRECISION), decayFactor);
    uint256 rawAmount = ABDKMathQuad.toUInt(amountInQuad);

    // Update raw balances and total raw supply
    _rawBalances[_to] += rawAmount;
    _totalRawSupply += rawAmount;
    _totalSupplyForNAV += _amount;

    // Record mint timestamp
    mintAt[_to] = block.timestamp;

    emit Transfer(address(0), _to, _amount);
    emit Minted(_to, _amount);
  }

  /**
   * @notice Burns tokens from a specified address.
   * @param _from The address to burn tokens from.
   * @param _amount The amount of tokens to burn.
   */
  function burn(address _from, uint256 _amount) external override nonReentrant whenNotPaused onlyRole(TREASURY_ROLE) {
    if (_amount < MIN_MINTING_BURNING_AMOUNT) IDXToken.ErrorMinimumBurningAmount.selector.revertWith();
    if (_from == address(0)) IDXToken.ZeroAddress.selector.revertWith();

    // Enforce cooling-off period
    if (block.timestamp - mintAt[_from] < coolingOffPeriod) {
      emit CoolingOffPeriodTriggered(_from, block.timestamp);
      IDXToken.CoolingOffPeriodActive.selector.revertWith();
    }

    // Update decay factor
    _updateDecayFactor();

    // Compute raw amount
    bytes16 amountInQuad = ABDKMathQuad.div(ABDKMathQuad.fromUInt(_amount * PRECISION), decayFactor);
    uint256 rawAmount = ABDKMathQuad.toUInt(amountInQuad);

    // Update raw balances and total raw supply
    uint256 rawBalance = _rawBalances[_from];
    if (rawBalance < rawAmount) IDXToken.BurnAmountExceedsBalance.selector.revertWith();

    _rawBalances[_from] = rawBalance - rawAmount;
    _totalRawSupply -= rawAmount;
    _totalSupplyForNAV -= _amount;

    emit Transfer(_from, address(0), _amount);
    emit Burned(_from, _amount);
  }

  /**
   * @notice Collects accumulated fees and transfers them to the treasury.
   */
  function collectFees() external override nonReentrant onlyRole(TREASURY_ROLE) {
    // Capture the decayFactor and lastDecayTimestamp before updating
    bytes16 oldDecayFactor = decayFactor;

    // Compute adjusted total supply before updating decayFactor
    bytes16 adjustedTotalSupplyBeforeQuad = ABDKMathQuad.mul(ABDKMathQuad.fromUInt(_totalRawSupply), oldDecayFactor);

    _updateDecayFactor();

    // Compute adjusted total supply after updating decayFactor
    bytes16 adjustedTotalSupplyAfterQuad = ABDKMathQuad.mul(ABDKMathQuad.fromUInt(_totalRawSupply), decayFactor);

    // Use high-precision comparison
    if (ABDKMathQuad.cmp(adjustedTotalSupplyAfterQuad, adjustedTotalSupplyBeforeQuad) >= 0) {
      // No fees to collect, exit gracefully
      return;
    }

    // Compute fees to collect in high precision
    bytes16 feesQuad = ABDKMathQuad.sub(adjustedTotalSupplyBeforeQuad, adjustedTotalSupplyAfterQuad);

    // Convert fees to raw amount
    bytes16 rawFeesQuad = ABDKMathQuad.div(feesQuad, decayFactor);

    uint256 rawFees = ABDKMathQuad.toUInt(rawFeesQuad);

    // Update balances
    _rawBalances[address(treasury)] += rawFees;
    _totalRawSupply += rawFees;

    uint256 feesToCollect = ABDKMathQuad.toUInt(feesQuad) / PRECISION;

    emit FeesCollected(feesToCollect);
  }

  /**
   * @dev Internal transfer function, adjusted for decay and cooling-off period.
   * @param sender The address sending tokens.
   * @param recipient The address receiving tokens.
   * @param amount The amount of tokens to transfer.
   * @dev mints and burns are outside of this function
   */
  function _transfer(address sender, address recipient, uint256 amount) internal override whenNotPaused {
    if (sender == address(0) || recipient == address(0)) IDXToken.ZeroAddress.selector.revertWith();
    // Update decay factor
    _updateDecayFactor();

    // Compute raw amount based on decay
    bytes16 amountInQuad = ABDKMathQuad.div(ABDKMathQuad.fromUInt(amount * PRECISION), decayFactor);
    uint256 rawAmount = ABDKMathQuad.toUInt(amountInQuad);

    // Enforce cooling-off period
    if (block.timestamp - mintAt[sender] < coolingOffPeriod) {
      emit CoolingOffPeriodTriggered(sender, block.timestamp);
      IDXToken.CoolingOffPeriodActive.selector.revertWith();
    }

    // Check if sender has enough balance
    uint256 senderRawBalance = _rawBalances[sender];
    if (senderRawBalance < rawAmount) IDXToken.TransferAmountExceedsBalance.selector.revertWith();

    // Adjust balances
    _rawBalances[sender] = senderRawBalance - rawAmount;
    _rawBalances[recipient] += rawAmount;

    emit Transfer(sender, recipient, amount);
  }

  /**
   * @notice Updates the associated group ID.
   * @param groupId The new group ID to associate with.
   */
  function setGroup(bytes32 groupId) external onlyRole(DEFAULT_ADMIN_ROLE) {
    if (groupId == bytes32(0)) IDXToken.ZeroAddress.selector.revertWith();
    associatedGroupId = GroupId.wrap(groupId);
    emit UpdateGroup(groupId);
  }

  /**
   * @notice Updates the treasury address.
   * @param _newTreasury The new treasury address.
   */
  function updateTreasury(address _newTreasury) external onlyRole(DEFAULT_ADMIN_ROLE) {
    if (_newTreasury == address(0)) IDXToken.ZeroAddress.selector.revertWith();

    address oldTreasury = address(treasury);

    treasury = ITreasury(_newTreasury);
    grantRole(TREASURY_ROLE, _newTreasury);

    revokeRole(TREASURY_ROLE, oldTreasury);
    emit UpdateTreasuryAddress(oldTreasury, _newTreasury);
  }

  /**
   * @notice Updates the cooling-off period.
   * @param newCoolingOffPeriod The new cooling-off period in seconds.
   */
  function updateCoolingOffPeriod(uint256 newCoolingOffPeriod) external onlyRole(DEFAULT_ADMIN_ROLE) {
    if (newCoolingOffPeriod > MAX_COOLING_OFF_PERIOD) IDXToken.CoolingOffPeriodTooLarge.selector.revertWith();
    if (newCoolingOffPeriod == coolingOffPeriod) IDXToken.ParameterUnchanged.selector.revertWith();

    emit UpdateCoolingOffPeriod(coolingOffPeriod, newCoolingOffPeriod);
    coolingOffPeriod = newCoolingOffPeriod;
  }

  /**
   * @notice Updates the management fee rate.
   * @param newRate The new management fee rate in basis points.
   */
  function updateManagementFeeRate(uint256 newRate) external onlyRole(DEFAULT_ADMIN_ROLE) {
    if (feeModel != FeeModel.MANAGEMENT_FEE) IDXToken.InvalidFeeModel.selector.revertWith();
    if (newRate == 0 || newRate > MAX_RATIO) IDXToken.InvalidManagementFee.selector.revertWith();
    if (newRate == managementFeeRate) IDXToken.ParameterUnchanged.selector.revertWith();

    emit UpdateManagementFeeRate(managementFeeRate, newRate);
    managementFeeRate = newRate;
  }

  /**
   * @notice Updates the funding fee rate.
   * @param newRate The new funding fee rate in basis points.
   */
  function updateFundingFeeRate(uint256 newRate) external onlyRole(DEFAULT_ADMIN_ROLE) {
    if (feeModel != FeeModel.FIXED_FUNDING_FEE) IDXToken.InvalidFeeModel.selector.revertWith();
    if (newRate == 0 || newRate > MAX_RATIO) IDXToken.InvalidFundingFeeRate.selector.revertWith();
    if (newRate == annualFundingFeeRate) IDXToken.ParameterUnchanged.selector.revertWith();

    emit UpdateFundingFeeRate(annualFundingFeeRate, newRate);
    annualFundingFeeRate = newRate;
  }

  /**
   * @notice Update the variable funding fee amount
   * @param newAmount The new variable funding fee amount
   */
  function updateVariableFundingFeeRate(uint256 newAmount) external onlyRole(DEFAULT_ADMIN_ROLE) {
    if (feeModel != FeeModel.VARIABLE_FUNDING_FEE) IDXToken.InvalidFeeModel.selector.revertWith();
    if (newAmount == 0 || newAmount > MAX_VARIABLE_FEE) IDXToken.InvalidFixedYieldAmount.selector.revertWith();
    if (newAmount == fixedYieldAmount) IDXToken.ParameterUnchanged.selector.revertWith();

    emit UpdateVariableFundingFeeRate(fixedYieldAmount, newAmount);
    fixedYieldAmount = newAmount;
  }

  /**
   * @notice Updates the max supply
   * @param newSupply The new max supply
   */
  function updateMaxSupply(uint256 newSupply) external onlyRole(DEFAULT_ADMIN_ROLE) {
    if (newSupply == MAX_SUPPLY) IDXToken.ParameterUnchanged.selector.revertWith();
    if (newSupply < totalSupply()) IDXToken.NotPermitted.selector.revertWith();

    emit UpdateMaxSupply(MAX_SUPPLY, newSupply);
    MAX_SUPPLY = newSupply;
  }

  /**
   * @notice Returns the current fee model.
   * @return The fee model in use.
   */
  function getFeeModel() external view override returns (FeeModel) {
    return feeModel;
  }

  /**
   * @notice Pauses the contract, disabling certain functions.
   */
  function pause() external onlyRole(PAUSER_ROLE) {
    _pause();
  }

  /**
   * @notice Unpauses the contract, enabling certain functions.
   */
  function unpause() external onlyRole(DEFAULT_ADMIN_ROLE) {
    _unpause();
  }

  /**
   * @notice Recovers ERC20 tokens mistakenly sent to this contract.
   * @param tokenAddress The address of the ERC20 token.
   * @param tokenAmount The amount of tokens to recover.
   */
  function recoverERC20(address tokenAddress, uint256 tokenAmount) external nonReentrant onlyRole(DEFAULT_ADMIN_ROLE) {
    if (tokenAddress == address(this)) IDXToken.CannotRecoverToken.selector.revertWith();
    IERC20Upgradeable(tokenAddress).safeTransfer(_msgSender(), tokenAmount);
  }

  /**
   * @notice Overrides the decimals function to return the token's decimals.
   * @return The number of decimals used by the token.
   */
  function decimals() public view override returns (uint8) {
    return _decimals;
  }

  /**
   * @notice Checks if the contract supports a specific interface.
   * @param interfaceId The interface identifier.
   * @return True if the interface is supported, false otherwise.
   */
  function supportsInterface(bytes4 interfaceId) public view override(AccessControlUpgradeable) returns (bool) {
    return interfaceId == type(IDXToken).interfaceId || super.supportsInterface(interfaceId);
  }

  /**
   * @notice Prevents renouncing roles for security
   * @dev Overrides the default renounceRole function to prevent accidental role removal
   */
  function renounceRole(bytes32, address) public virtual override {
    revert("Roles can't be renounced");
  }

  // slither-disable-next-line unused-state
  uint256[50] private __gap; // Storage gap for upgradeability
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/draft-ERC20Permit.sol)

pragma solidity ^0.8.0;

// EIP-2612 is Final as of 2022-11-01. This file is deprecated.

import "./ERC20PermitUpgradeable.sol";

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/AccessControl.sol)

pragma solidity ^0.8.0;

import "./IAccessControlUpgradeable.sol";
import "../utils/ContextUpgradeable.sol";
import "../utils/StringsUpgradeable.sol";
import "../utils/introspection/ERC165Upgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Contract module that allows children to implement role-based access
 * control mechanisms. This is a lightweight version that doesn't allow enumerating role
 * members except through off-chain means by accessing the contract event logs. Some
 * applications may benefit from on-chain enumerability, for those cases see
 * {AccessControlEnumerable}.
 *
 * Roles are referred to by their `bytes32` identifier. These should be exposed
 * in the external API and be unique. The best way to achieve this is by
 * using `public constant` hash digests:
 *
 * ```solidity
 * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
 * ```
 *
 * Roles can be used to represent a set of permissions. To restrict access to a
 * function call, use {hasRole}:
 *
 * ```solidity
 * function foo() public {
 *     require(hasRole(MY_ROLE, msg.sender));
 *     ...
 * }
 * ```
 *
 * Roles can be granted and revoked dynamically via the {grantRole} and
 * {revokeRole} functions. Each role has an associated admin role, and only
 * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
 *
 * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
 * that only accounts with this role will be able to grant or revoke other
 * roles. More complex role relationships can be created by using
 * {_setRoleAdmin}.
 *
 * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
 * grant and revoke this role. Extra precautions should be taken to secure
 * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
 * to enforce additional security measures for this role.
 */
abstract contract AccessControlUpgradeable is Initializable, ContextUpgradeable, IAccessControlUpgradeable, ERC165Upgradeable {
    struct RoleData {
        mapping(address => bool) members;
        bytes32 adminRole;
    }

    mapping(bytes32 => RoleData) private _roles;

    bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;

    /**
     * @dev Modifier that checks that an account has a specific role. Reverts
     * with a standardized message including the required role.
     *
     * The format of the revert reason is given by the following regular expression:
     *
     *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
     *
     * _Available since v4.1._
     */
    modifier onlyRole(bytes32 role) {
        _checkRole(role);
        _;
    }

    function __AccessControl_init() internal onlyInitializing {
    }

    function __AccessControl_init_unchained() internal onlyInitializing {
    }
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IAccessControlUpgradeable).interfaceId || super.supportsInterface(interfaceId);
    }

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) public view virtual override returns (bool) {
        return _roles[role].members[account];
    }

    /**
     * @dev Revert with a standard message if `_msgSender()` is missing `role`.
     * Overriding this function changes the behavior of the {onlyRole} modifier.
     *
     * Format of the revert message is described in {_checkRole}.
     *
     * _Available since v4.6._
     */
    function _checkRole(bytes32 role) internal view virtual {
        _checkRole(role, _msgSender());
    }

    /**
     * @dev Revert with a standard message if `account` is missing `role`.
     *
     * The format of the revert reason is given by the following regular expression:
     *
     *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
     */
    function _checkRole(bytes32 role, address account) internal view virtual {
        if (!hasRole(role, account)) {
            revert(
                string(
                    abi.encodePacked(
                        "AccessControl: account ",
                        StringsUpgradeable.toHexString(account),
                        " is missing role ",
                        StringsUpgradeable.toHexString(uint256(role), 32)
                    )
                )
            );
        }
    }

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {
        return _roles[role].adminRole;
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleGranted} event.
     */
    function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
        _grantRole(role, account);
    }

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleRevoked} event.
     */
    function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
        _revokeRole(role, account);
    }

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been revoked `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `account`.
     *
     * May emit a {RoleRevoked} event.
     */
    function renounceRole(bytes32 role, address account) public virtual override {
        require(account == _msgSender(), "AccessControl: can only renounce roles for self");

        _revokeRole(role, account);
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event. Note that unlike {grantRole}, this function doesn't perform any
     * checks on the calling account.
     *
     * May emit a {RoleGranted} event.
     *
     * [WARNING]
     * ====
     * This function should only be called from the constructor when setting
     * up the initial roles for the system.
     *
     * Using this function in any other way is effectively circumventing the admin
     * system imposed by {AccessControl}.
     * ====
     *
     * NOTE: This function is deprecated in favor of {_grantRole}.
     */
    function _setupRole(bytes32 role, address account) internal virtual {
        _grantRole(role, account);
    }

    /**
     * @dev Sets `adminRole` as ``role``'s admin role.
     *
     * Emits a {RoleAdminChanged} event.
     */
    function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
        bytes32 previousAdminRole = getRoleAdmin(role);
        _roles[role].adminRole = adminRole;
        emit RoleAdminChanged(role, previousAdminRole, adminRole);
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleGranted} event.
     */
    function _grantRole(bytes32 role, address account) internal virtual {
        if (!hasRole(role, account)) {
            _roles[role].members[account] = true;
            emit RoleGranted(role, account, _msgSender());
        }
    }

    /**
     * @dev Revokes `role` from `account`.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleRevoked} event.
     */
    function _revokeRole(bytes32 role, address account) internal virtual {
        if (hasRole(role, account)) {
            _roles[role].members[account] = false;
            emit RoleRevoked(role, account, _msgSender());
        }
    }

    /**
     * @dev This empty reserved space is put in place to allow future versions to add new
     * variables without shifting down storage in the inheritance chain.
     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
     */
    uint256[49] private __gap;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol)

pragma solidity ^0.8.0;

import "../utils/ContextUpgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Contract module which allows children to implement an emergency stop
 * mechanism that can be triggered by an authorized account.
 *
 * This module is used through inheritance. It will make available the
 * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
 * the functions of your contract. Note that they will not be pausable by
 * simply including this module, only once the modifiers are put in place.
 */
abstract contract PausableUpgradeable is Initializable, ContextUpgradeable {
    /**
     * @dev Emitted when the pause is triggered by `account`.
     */
    event Paused(address account);

    /**
     * @dev Emitted when the pause is lifted by `account`.
     */
    event Unpaused(address account);

    bool private _paused;

    /**
     * @dev Initializes the contract in unpaused state.
     */
    function __Pausable_init() internal onlyInitializing {
        __Pausable_init_unchained();
    }

    function __Pausable_init_unchained() internal onlyInitializing {
        _paused = false;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is not paused.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    modifier whenNotPaused() {
        _requireNotPaused();
        _;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is paused.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    modifier whenPaused() {
        _requirePaused();
        _;
    }

    /**
     * @dev Returns true if the contract is paused, and false otherwise.
     */
    function paused() public view virtual returns (bool) {
        return _paused;
    }

    /**
     * @dev Throws if the contract is paused.
     */
    function _requireNotPaused() internal view virtual {
        require(!paused(), "Pausable: paused");
    }

    /**
     * @dev Throws if the contract is not paused.
     */
    function _requirePaused() internal view virtual {
        require(paused(), "Pausable: not paused");
    }

    /**
     * @dev Triggers stopped state.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    function _pause() internal virtual whenNotPaused {
        _paused = true;
        emit Paused(_msgSender());
    }

    /**
     * @dev Returns to normal state.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    function _unpause() internal virtual whenPaused {
        _paused = false;
        emit Unpaused(_msgSender());
    }

    /**
     * @dev This empty reserved space is put in place to allow future versions to add new
     * variables without shifting down storage in the inheritance chain.
     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
     */
    uint256[49] private __gap;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)

pragma solidity ^0.8.0;
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuardUpgradeable is Initializable {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    function __ReentrancyGuard_init() internal onlyInitializing {
        __ReentrancyGuard_init_unchained();
    }

    function __ReentrancyGuard_init_unchained() internal onlyInitializing {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be _NOT_ENTERED
        require(_status != _ENTERED, "ReentrancyGuard: reentrant call");

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == _ENTERED;
    }

    /**
     * @dev This empty reserved space is put in place to allow future versions to add new
     * variables without shifting down storage in the inheritance chain.
     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
     */
    uint256[49] private __gap;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.0;

import "../IERC20Upgradeable.sol";
import "../extensions/IERC20PermitUpgradeable.sol";
import "../../../utils/AddressUpgradeable.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20Upgradeable {
    using AddressUpgradeable for address;

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20Upgradeable token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20Upgradeable token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(IERC20Upgradeable token, address spender, uint256 value) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20Upgradeable token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20Upgradeable token, address spender, uint256 value) internal {
        unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     */
    function forceApprove(IERC20Upgradeable token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
     * Revert on invalid signature.
     */
    function safePermit(
        IERC20PermitUpgradeable token,
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        uint256 nonceBefore = token.nonces(owner);
        token.permit(owner, spender, value, deadline, v, r, s);
        uint256 nonceAfter = token.nonces(owner);
        require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20Upgradeable token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20Upgradeable token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return
            success && (returndata.length == 0 || abi.decode(returndata, (bool))) && AddressUpgradeable.isContract(address(token));
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

import { GroupId } from "../types/GroupId.sol";

// solhint-disable
/// @title Library for reverting with custom errors efficiently
/// @notice Contains functions for reverting with custom errors with different argument types efficiently
/// @dev To use this library, declare `using CustomRevert for bytes4;` and replace `revert CustomError()` with
/// `CustomError.selector.revertWith()`
/// @dev The functions may tamper with the free memory pointer but it is fine since the call context is exited immediately
library CustomRevert {
  /// @dev Reverts with the selector of a custom error in the scratch space
  function revertWith(bytes4 selector) internal pure {
    assembly("memory-safe") {
      mstore(0, selector)
      revert(0, 0x04)
    }
  }

  /// @dev Reverts with a custom error with an address argument in the scratch space
  function revertWith(bytes4 selector, address addr) internal pure {
    assembly("memory-safe") {
      mstore(0, selector)
      mstore(0x04, and(addr, 0xffffffffffffffffffffffffffffffffffffffff))
      revert(0, 0x24)
    }
  }

  /// @dev Reverts with a custom error with an int24 argument in the scratch space
  function revertWith(bytes4 selector, int24 value) internal pure {
    assembly("memory-safe") {
      mstore(0, selector)
      mstore(0x04, signextend(2, value))
      revert(0, 0x24)
    }
  }

  /// @dev Reverts with a custom error with a uint160 argument in the scratch space
  function revertWith(bytes4 selector, uint160 value) internal pure {
    assembly("memory-safe") {
      mstore(0, selector)
      mstore(0x04, and(value, 0xffffffffffffffffffffffffffffffffffffffff))
      revert(0, 0x24)
    }
  }

  /// @dev Reverts with a custom error with two int24 arguments
  function revertWith(bytes4 selector, int24 value1, int24 value2) internal pure {
    assembly("memory-safe") {
      let fmp := mload(0x40)
      mstore(fmp, selector)
      mstore(add(fmp, 0x04), signextend(2, value1))
      mstore(add(fmp, 0x24), signextend(2, value2))
      revert(fmp, 0x44)
    }
  }

  /// @dev Reverts with a custom error with two uint160 arguments
  function revertWith(bytes4 selector, uint160 value1, uint160 value2) internal pure {
    assembly("memory-safe") {
      let fmp := mload(0x40)
      mstore(fmp, selector)
      mstore(add(fmp, 0x04), and(value1, 0xffffffffffffffffffffffffffffffffffffffff))
      mstore(add(fmp, 0x24), and(value2, 0xffffffffffffffffffffffffffffffffffffffff))
      revert(fmp, 0x44)
    }
  }

  /// @dev Reverts with a custom error with two address arguments
  function revertWith(bytes4 selector, address value1, address value2) internal pure {
    assembly("memory-safe") {
      mstore(0, selector)
      mstore(0x04, and(value1, 0xffffffffffffffffffffffffffffffffffffffff))
      mstore(0x24, and(value2, 0xffffffffffffffffffffffffffffffffffffffff))
      revert(0, 0x44)
    }
  }

  /// @dev Reverts with a custom error with a bytes32 argument in the scratch space
  function revertWith(bytes4 selector, bytes32 value) internal pure {
    assembly("memory-safe") {
      mstore(0, selector)
      mstore(0x04, value)
      revert(0, 0x24)
    }
  }

  /// @dev Reverts with a custom error with a bytes32 argument in the scratch space
  function revertWith(bytes4 selector, GroupId value) internal pure {
    bytes32 valueBytes = GroupId.unwrap(value);
    assembly("memory-safe") {
      mstore(0, selector)
      mstore(0x04, valueBytes)
      revert(0, 0x24)
    }
  }

  /// @dev Reverts with a custom error with a bytes32 and an address argument
  function revertWith(bytes4 selector, GroupId value, address addr) internal pure {
    bytes32 valueBytes = GroupId.unwrap(value);
    assembly("memory-safe") {
      mstore(0x00, selector)
      mstore(0x04, valueBytes)
      mstore(0x24, and(addr, 0xffffffffffffffffffffffffffffffffffffffff))
      revert(0x00, 0x44)
    }
  }

  /// @dev Reverts with a custom error with a bytes32, address, and uint256 arguments
  function revertWith(bytes4 selector, GroupId value, address addr, uint256 amount) internal pure {
    bytes32 valueBytes = GroupId.unwrap(value);
    assembly("memory-safe") {
      mstore(0x00, selector)
      mstore(0x04, valueBytes)
      mstore(0x24, and(addr, 0xffffffffffffffffffffffffffffffffffffffff))
      mstore(0x44, amount)
      revert(0x00, 0x64)
    }
  }

  /// @notice bubble up the revert message returned by a call and revert with the selector provided
  /// @dev this function should only be used with custom errors of the type `CustomError(address target, bytes revertReason)`
  function bubbleUpAndRevertWith(bytes4 selector, address addr) internal pure {
    assembly("memory-safe") {
      let size := returndatasize()
      let fmp := mload(0x40)

      // Encode selector, address, offset, size, data
      mstore(fmp, selector)
      mstore(add(fmp, 0x04), addr)
      mstore(add(fmp, 0x24), 0x40)
      mstore(add(fmp, 0x44), size)
      returndatacopy(add(fmp, 0x64), 0, size)

      // Ensure the size is a multiple of 32 bytes
      let encodedSize := add(0x64, mul(div(add(size, 31), 32), 32))
      revert(fmp, encodedSize)
    }
  }
}

// SPDX-License-Identifier: BSD-4-Clause
/*
 * ABDK Math Quad Smart Contract Library.  Copyright © 2019 by ABDK Consulting.
 * Author: Mikhail Vladimirov <[email protected]>
 */
pragma solidity ^0.8.0;

/**
 * Smart contract library of mathematical functions operating with IEEE 754
 * quadruple-precision binary floating-point numbers (quadruple precision
 * numbers).  As long as quadruple precision numbers are 16-bytes long, they are
 * represented by bytes16 type.
 */
library ABDKMathQuad {
  /*
   * 0.
   */
  bytes16 private constant POSITIVE_ZERO = 0x00000000000000000000000000000000;

  /*
   * -0.
   */
  bytes16 private constant NEGATIVE_ZERO = 0x80000000000000000000000000000000;

  /*
   * +Infinity.
   */
  bytes16 private constant POSITIVE_INFINITY = 0x7FFF0000000000000000000000000000;

  /*
   * -Infinity.
   */
  bytes16 private constant NEGATIVE_INFINITY = 0xFFFF0000000000000000000000000000;

  /*
   * Canonical NaN value.
   */
  bytes16 private constant NaN = 0x7FFF8000000000000000000000000000;

  /**
   * Convert signed 256-bit integer number into quadruple precision number.
   *
   * @param x signed 256-bit integer number
   * @return quadruple precision number
   */
  function fromInt (int256 x) internal pure returns (bytes16) {
    unchecked {
      if (x == 0) return bytes16 (0);
      else {
        // We rely on overflow behavior here
        uint256 result = uint256 (x > 0 ? x : -x);

        uint256 msb = mostSignificantBit (result);
        if (msb < 112) result <<= 112 - msb;
        else if (msb > 112) result >>= msb - 112;

        result = result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF | 16383 + msb << 112;
        if (x < 0) result |= 0x80000000000000000000000000000000;

        return bytes16 (uint128 (result));
      }
    }
  }

  /**
   * Convert quadruple precision number into signed 256-bit integer number
   * rounding towards zero.  Revert on overflow.
   *
   * @param x quadruple precision number
   * @return signed 256-bit integer number
   */
  function toInt (bytes16 x) internal pure returns (int256) {
    unchecked {
      uint256 exponent = uint128 (x) >> 112 & 0x7FFF;

      require (exponent <= 16638); // Overflow
      if (exponent < 16383) return 0; // Underflow

      uint256 result = uint256 (uint128 (x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF |
        0x10000000000000000000000000000;

      if (exponent < 16495) result >>= 16495 - exponent;
      else if (exponent > 16495) result <<= exponent - 16495;

      if (uint128 (x) >= 0x80000000000000000000000000000000) { // Negative
        require (result <= 0x8000000000000000000000000000000000000000000000000000000000000000);
        return -int256 (result); // We rely on overflow behavior here
      } else {
        require (result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
        return int256 (result);
      }
    }
  }

  /**
   * Convert unsigned 256-bit integer number into quadruple precision number.
   *
   * @param x unsigned 256-bit integer number
   * @return quadruple precision number
   */
  function fromUInt (uint256 x) internal pure returns (bytes16) {
    unchecked {
      if (x == 0) return bytes16 (0);
      else {
        uint256 result = x;

        uint256 msb = mostSignificantBit (result);
        if (msb < 112) result <<= 112 - msb;
        else if (msb > 112) result >>= msb - 112;

        result = result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF | 16383 + msb << 112;

        return bytes16 (uint128 (result));
      }
    }
  }

  /**
   * Convert quadruple precision number into unsigned 256-bit integer number
   * rounding towards zero.  Revert on underflow.  Note, that negative floating
   * point numbers in range (-1.0 .. 0.0) may be converted to unsigned integer
   * without error, because they are rounded to zero.
   *
   * @param x quadruple precision number
   * @return unsigned 256-bit integer number
   */
  function toUInt (bytes16 x) internal pure returns (uint256) {
    unchecked {
      uint256 exponent = uint128 (x) >> 112 & 0x7FFF;

      if (exponent < 16383) return 0; // Underflow

      require (uint128 (x) < 0x80000000000000000000000000000000); // Negative

      require (exponent <= 16638); // Overflow
      uint256 result = uint256 (uint128 (x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF |
        0x10000000000000000000000000000;

      if (exponent < 16495) result >>= 16495 - exponent;
      else if (exponent > 16495) result <<= exponent - 16495;

      return result;
    }
  }

  /**
   * Convert signed 128.128 bit fixed point number into quadruple precision
   * number.
   *
   * @param x signed 128.128 bit fixed point number
   * @return quadruple precision number
   */
  function from128x128 (int256 x) internal pure returns (bytes16) {
    unchecked {
      if (x == 0) return bytes16 (0);
      else {
        // We rely on overflow behavior here
        uint256 result = uint256 (x > 0 ? x : -x);

        uint256 msb = mostSignificantBit (result);
        if (msb < 112) result <<= 112 - msb;
        else if (msb > 112) result >>= msb - 112;

        result = result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF | 16255 + msb << 112;
        if (x < 0) result |= 0x80000000000000000000000000000000;

        return bytes16 (uint128 (result));
      }
    }
  }

  /**
   * Convert quadruple precision number into signed 128.128 bit fixed point
   * number.  Revert on overflow.
   *
   * @param x quadruple precision number
   * @return signed 128.128 bit fixed point number
   */
  function to128x128 (bytes16 x) internal pure returns (int256) {
    unchecked {
      uint256 exponent = uint128 (x) >> 112 & 0x7FFF;

      require (exponent <= 16510); // Overflow
      if (exponent < 16255) return 0; // Underflow

      uint256 result = uint256 (uint128 (x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF |
        0x10000000000000000000000000000;

      if (exponent < 16367) result >>= 16367 - exponent;
      else if (exponent > 16367) result <<= exponent - 16367;

      if (uint128 (x) >= 0x80000000000000000000000000000000) { // Negative
        require (result <= 0x8000000000000000000000000000000000000000000000000000000000000000);
        return -int256 (result); // We rely on overflow behavior here
      } else {
        require (result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
        return int256 (result);
      }
    }
  }

  /**
   * Convert signed 64.64 bit fixed point number into quadruple precision
   * number.
   *
   * @param x signed 64.64 bit fixed point number
   * @return quadruple precision number
   */
  function from64x64 (int128 x) internal pure returns (bytes16) {
    unchecked {
      if (x == 0) return bytes16 (0);
      else {
        // We rely on overflow behavior here
        uint256 result = uint128 (x > 0 ? x : -x);

        uint256 msb = mostSignificantBit (result);
        if (msb < 112) result <<= 112 - msb;
        else if (msb > 112) result >>= msb - 112;

        result = result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF | 16319 + msb << 112;
        if (x < 0) result |= 0x80000000000000000000000000000000;

        return bytes16 (uint128 (result));
      }
    }
  }

  /**
   * Convert quadruple precision number into signed 64.64 bit fixed point
   * number.  Revert on overflow.
   *
   * @param x quadruple precision number
   * @return signed 64.64 bit fixed point number
   */
  function to64x64 (bytes16 x) internal pure returns (int128) {
    unchecked {
      uint256 exponent = uint128 (x) >> 112 & 0x7FFF;

      require (exponent <= 16446); // Overflow
      if (exponent < 16319) return 0; // Underflow

      uint256 result = uint256 (uint128 (x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF |
        0x10000000000000000000000000000;

      if (exponent < 16431) result >>= 16431 - exponent;
      else if (exponent > 16431) result <<= exponent - 16431;

      if (uint128 (x) >= 0x80000000000000000000000000000000) { // Negative
        require (result <= 0x80000000000000000000000000000000);
        return -int128 (int256 (result)); // We rely on overflow behavior here
      } else {
        require (result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
        return int128 (int256 (result));
      }
    }
  }

  /**
   * Convert octuple precision number into quadruple precision number.
   *
   * @param x octuple precision number
   * @return quadruple precision number
   */
  function fromOctuple (bytes32 x) internal pure returns (bytes16) {
    unchecked {
      bool negative = x & 0x8000000000000000000000000000000000000000000000000000000000000000 > 0;

      uint256 exponent = uint256 (x) >> 236 & 0x7FFFF;
      uint256 significand = uint256 (x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;

      if (exponent == 0x7FFFF) {
        if (significand > 0) return NaN;
        else return negative ? NEGATIVE_INFINITY : POSITIVE_INFINITY;
      }

      if (exponent > 278526)
        return negative ? NEGATIVE_INFINITY : POSITIVE_INFINITY;
      else if (exponent < 245649)
        return negative ? NEGATIVE_ZERO : POSITIVE_ZERO;
      else if (exponent < 245761) {
        significand = (significand | 0x100000000000000000000000000000000000000000000000000000000000) >> 245885 - exponent;
        exponent = 0;
      } else {
        significand >>= 124;
        exponent -= 245760;
      }

      uint128 result = uint128 (significand | exponent << 112);
      if (negative) result |= 0x80000000000000000000000000000000;

      return bytes16 (result);
    }
  }

  /**
   * Convert quadruple precision number into octuple precision number.
   *
   * @param x quadruple precision number
   * @return octuple precision number
   */
  function toOctuple (bytes16 x) internal pure returns (bytes32) {
    unchecked {
      uint256 exponent = uint128 (x) >> 112 & 0x7FFF;

      uint256 result = uint128 (x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;

      if (exponent == 0x7FFF) exponent = 0x7FFFF; // Infinity or NaN
      else if (exponent == 0) {
        if (result > 0) {
          uint256 msb = mostSignificantBit (result);
          result = result << 236 - msb & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
          exponent = 245649 + msb;
        }
      } else {
        result <<= 124;
        exponent += 245760;
      }

      result |= exponent << 236;
      if (uint128 (x) >= 0x80000000000000000000000000000000)
        result |= 0x8000000000000000000000000000000000000000000000000000000000000000;

      return bytes32 (result);
    }
  }

  /**
   * Convert double precision number into quadruple precision number.
   *
   * @param x double precision number
   * @return quadruple precision number
   */
  function fromDouble (bytes8 x) internal pure returns (bytes16) {
    unchecked {
      uint256 exponent = uint64 (x) >> 52 & 0x7FF;

      uint256 result = uint64 (x) & 0xFFFFFFFFFFFFF;

      if (exponent == 0x7FF) exponent = 0x7FFF; // Infinity or NaN
      else if (exponent == 0) {
        if (result > 0) {
          uint256 msb = mostSignificantBit (result);
          result = result << 112 - msb & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
          exponent = 15309 + msb;
        }
      } else {
        result <<= 60;
        exponent += 15360;
      }

      result |= exponent << 112;
      if (x & 0x8000000000000000 > 0)
        result |= 0x80000000000000000000000000000000;

      return bytes16 (uint128 (result));
    }
  }

  /**
   * Convert quadruple precision number into double precision number.
   *
   * @param x quadruple precision number
   * @return double precision number
   */
  function toDouble (bytes16 x) internal pure returns (bytes8) {
    unchecked {
      bool negative = uint128 (x) >= 0x80000000000000000000000000000000;

      uint256 exponent = uint128 (x) >> 112 & 0x7FFF;
      uint256 significand = uint128 (x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;

      if (exponent == 0x7FFF) {
        if (significand > 0) return 0x7FF8000000000000; // NaN
        else return negative ?
            bytes8 (0xFFF0000000000000) : // -Infinity
            bytes8 (0x7FF0000000000000); // Infinity
      }

      if (exponent > 17406)
        return negative ?
            bytes8 (0xFFF0000000000000) : // -Infinity
            bytes8 (0x7FF0000000000000); // Infinity
      else if (exponent < 15309)
        return negative ?
            bytes8 (0x8000000000000000) : // -0
            bytes8 (0x0000000000000000); // 0
      else if (exponent < 15361) {
        significand = (significand | 0x10000000000000000000000000000) >> 15421 - exponent;
        exponent = 0;
      } else {
        significand >>= 60;
        exponent -= 15360;
      }

      uint64 result = uint64 (significand | exponent << 52);
      if (negative) result |= 0x8000000000000000;

      return bytes8 (result);
    }
  }

  /**
   * Test whether given quadruple precision number is NaN.
   *
   * @param x quadruple precision number
   * @return true if x is NaN, false otherwise
   */
  function isNaN (bytes16 x) internal pure returns (bool) {
    unchecked {
      return uint128 (x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF >
        0x7FFF0000000000000000000000000000;
    }
  }

  /**
   * Test whether given quadruple precision number is positive or negative
   * infinity.
   *
   * @param x quadruple precision number
   * @return true if x is positive or negative infinity, false otherwise
   */
  function isInfinity (bytes16 x) internal pure returns (bool) {
    unchecked {
      return uint128 (x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ==
        0x7FFF0000000000000000000000000000;
    }
  }

  /**
   * Calculate sign of x, i.e. -1 if x is negative, 0 if x if zero, and 1 if x
   * is positive.  Note that sign (-0) is zero.  Revert if x is NaN. 
   *
   * @param x quadruple precision number
   * @return sign of x
   */
  function sign (bytes16 x) internal pure returns (int8) {
    unchecked {
      uint128 absoluteX = uint128 (x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;

      require (absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN

      if (absoluteX == 0) return 0;
      else if (uint128 (x) >= 0x80000000000000000000000000000000) return -1;
      else return 1;
    }
  }

  /**
   * Calculate sign (x - y).  Revert if either argument is NaN, or both
   * arguments are infinities of the same sign. 
   *
   * @param x quadruple precision number
   * @param y quadruple precision number
   * @return sign (x - y)
   */
  function cmp (bytes16 x, bytes16 y) internal pure returns (int8) {
    unchecked {
      uint128 absoluteX = uint128 (x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;

      require (absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN

      uint128 absoluteY = uint128 (y) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;

      require (absoluteY <= 0x7FFF0000000000000000000000000000); // Not NaN

      // Not infinities of the same sign
      require (x != y || absoluteX < 0x7FFF0000000000000000000000000000);

      if (x == y) return 0;
      else {
        bool negativeX = uint128 (x) >= 0x80000000000000000000000000000000;
        bool negativeY = uint128 (y) >= 0x80000000000000000000000000000000;

        if (negativeX) {
          if (negativeY) return absoluteX > absoluteY ? -1 : int8 (1);
          else return -1; 
        } else {
          if (negativeY) return 1;
          else return absoluteX > absoluteY ? int8 (1) : -1;
        }
      }
    }
  }

  /**
   * Test whether x equals y.  NaN, infinity, and -infinity are not equal to
   * anything. 
   *
   * @param x quadruple precision number
   * @param y quadruple precision number
   * @return true if x equals to y, false otherwise
   */
  function eq (bytes16 x, bytes16 y) internal pure returns (bool) {
    unchecked {
      if (x == y) {
        return uint128 (x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF <
          0x7FFF0000000000000000000000000000;
      } else return false;
    }
  }

  /**
   * Calculate x + y.  Special values behave in the following way:
   *
   * NaN + x = NaN for any x.
   * Infinity + x = Infinity for any finite x.
   * -Infinity + x = -Infinity for any finite x.
   * Infinity + Infinity = Infinity.
   * -Infinity + -Infinity = -Infinity.
   * Infinity + -Infinity = -Infinity + Infinity = NaN.
   *
   * @param x quadruple precision number
   * @param y quadruple precision number
   * @return quadruple precision number
   */
  function add (bytes16 x, bytes16 y) internal pure returns (bytes16) {
    unchecked {
      uint256 xExponent = uint128 (x) >> 112 & 0x7FFF;
      uint256 yExponent = uint128 (y) >> 112 & 0x7FFF;

      if (xExponent == 0x7FFF) {
        if (yExponent == 0x7FFF) { 
          if (x == y) return x;
          else return NaN;
        } else return x; 
      } else if (yExponent == 0x7FFF) return y;
      else {
        bool xSign = uint128 (x) >= 0x80000000000000000000000000000000;
        uint256 xSignifier = uint128 (x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
        if (xExponent == 0) xExponent = 1;
        else xSignifier |= 0x10000000000000000000000000000;

        bool ySign = uint128 (y) >= 0x80000000000000000000000000000000;
        uint256 ySignifier = uint128 (y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
        if (yExponent == 0) yExponent = 1;
        else ySignifier |= 0x10000000000000000000000000000;

        if (xSignifier == 0) return y == NEGATIVE_ZERO ? POSITIVE_ZERO : y;
        else if (ySignifier == 0) return x == NEGATIVE_ZERO ? POSITIVE_ZERO : x;
        else {
          int256 delta = int256 (xExponent) - int256 (yExponent);
  
          if (xSign == ySign) {
            if (delta > 112) return x;
            else if (delta > 0) ySignifier >>= uint256 (delta);
            else if (delta < -112) return y;
            else if (delta < 0) {
              xSignifier >>= uint256 (-delta);
              xExponent = yExponent;
            }
  
            xSignifier += ySignifier;
  
            if (xSignifier >= 0x20000000000000000000000000000) {
              xSignifier >>= 1;
              xExponent += 1;
            }
  
            if (xExponent == 0x7FFF)
              return xSign ? NEGATIVE_INFINITY : POSITIVE_INFINITY;
            else {
              if (xSignifier < 0x10000000000000000000000000000) xExponent = 0;
              else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
  
              return bytes16 (uint128 (
                  (xSign ? 0x80000000000000000000000000000000 : 0) |
                  (xExponent << 112) |
                  xSignifier)); 
            }
          } else {
            if (delta > 0) {
              xSignifier <<= 1;
              xExponent -= 1;
            } else if (delta < 0) {
              ySignifier <<= 1;
              xExponent = yExponent - 1;
            }

            if (delta > 112) ySignifier = 1;
            else if (delta > 1) ySignifier = (ySignifier - 1 >> uint256 (delta - 1)) + 1;
            else if (delta < -112) xSignifier = 1;
            else if (delta < -1) xSignifier = (xSignifier - 1 >> uint256 (-delta - 1)) + 1;

            if (xSignifier >= ySignifier) xSignifier -= ySignifier;
            else {
              xSignifier = ySignifier - xSignifier;
              xSign = ySign;
            }

            if (xSignifier == 0)
              return POSITIVE_ZERO;

            uint256 msb = mostSignificantBit (xSignifier);

            if (msb == 113) {
              xSignifier = xSignifier >> 1 & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
              xExponent += 1;
            } else if (msb < 112) {
              uint256 shift = 112 - msb;
              if (xExponent > shift) {
                xSignifier = xSignifier << shift & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
                xExponent -= shift;
              } else {
                xSignifier <<= xExponent - 1;
                xExponent = 0;
              }
            } else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;

            if (xExponent == 0x7FFF)
              return xSign ? NEGATIVE_INFINITY : POSITIVE_INFINITY;
            else return bytes16 (uint128 (
                (xSign ? 0x80000000000000000000000000000000 : 0) |
                (xExponent << 112) |
                xSignifier));
          }
        }
      }
    }
  }

  /**
   * Calculate x - y.  Special values behave in the following way:
   *
   * NaN - x = NaN for any x.
   * Infinity - x = Infinity for any finite x.
   * -Infinity - x = -Infinity for any finite x.
   * Infinity - -Infinity = Infinity.
   * -Infinity - Infinity = -Infinity.
   * Infinity - Infinity = -Infinity - -Infinity = NaN.
   *
   * @param x quadruple precision number
   * @param y quadruple precision number
   * @return quadruple precision number
   */
  function sub (bytes16 x, bytes16 y) internal pure returns (bytes16) {
    unchecked {
      return add (x, y ^ 0x80000000000000000000000000000000);
    }
  }

  /**
   * Calculate x * y.  Special values behave in the following way:
   *
   * NaN * x = NaN for any x.
   * Infinity * x = Infinity for any finite positive x.
   * Infinity * x = -Infinity for any finite negative x.
   * -Infinity * x = -Infinity for any finite positive x.
   * -Infinity * x = Infinity for any finite negative x.
   * Infinity * 0 = NaN.
   * -Infinity * 0 = NaN.
   * Infinity * Infinity = Infinity.
   * Infinity * -Infinity = -Infinity.
   * -Infinity * Infinity = -Infinity.
   * -Infinity * -Infinity = Infinity.
   *
   * @param x quadruple precision number
   * @param y quadruple precision number
   * @return quadruple precision number
   */
  function mul (bytes16 x, bytes16 y) internal pure returns (bytes16) {
    unchecked {
      uint256 xExponent = uint128 (x) >> 112 & 0x7FFF;
      uint256 yExponent = uint128 (y) >> 112 & 0x7FFF;

      if (xExponent == 0x7FFF) {
        if (yExponent == 0x7FFF) {
          if (x == y) return x ^ y & 0x80000000000000000000000000000000;
          else if (x ^ y == 0x80000000000000000000000000000000) return x | y;
          else return NaN;
        } else {
          if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN;
          else return x ^ y & 0x80000000000000000000000000000000;
        }
      } else if (yExponent == 0x7FFF) {
          if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN;
          else return y ^ x & 0x80000000000000000000000000000000;
      } else {
        uint256 xSignifier = uint128 (x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
        if (xExponent == 0) xExponent = 1;
        else xSignifier |= 0x10000000000000000000000000000;

        uint256 ySignifier = uint128 (y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
        if (yExponent == 0) yExponent = 1;
        else ySignifier |= 0x10000000000000000000000000000;

        xSignifier *= ySignifier;
        if (xSignifier == 0)
          return (x ^ y) & 0x80000000000000000000000000000000 > 0 ?
              NEGATIVE_ZERO : POSITIVE_ZERO;

        xExponent += yExponent;

        uint256 msb =
          xSignifier >= 0x200000000000000000000000000000000000000000000000000000000 ? 225 :
          xSignifier >= 0x100000000000000000000000000000000000000000000000000000000 ? 224 :
          mostSignificantBit (xSignifier);

        if (xExponent + msb < 16496) { // Underflow
          xExponent = 0;
          xSignifier = 0;
        } else if (xExponent + msb < 16608) { // Subnormal
          if (xExponent < 16496)
            xSignifier >>= 16496 - xExponent;
          else if (xExponent > 16496)
            xSignifier <<= xExponent - 16496;
          xExponent = 0;
        } else if (xExponent + msb > 49373) {
          xExponent = 0x7FFF;
          xSignifier = 0;
        } else {
          if (msb > 112)
            xSignifier >>= msb - 112;
          else if (msb < 112)
            xSignifier <<= 112 - msb;

          xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;

          xExponent = xExponent + msb - 16607;
        }

        return bytes16 (uint128 (uint128 ((x ^ y) & 0x80000000000000000000000000000000) |
            xExponent << 112 | xSignifier));
      }
    }
  }

  /**
   * Calculate x / y.  Special values behave in the following way:
   *
   * NaN / x = NaN for any x.
   * x / NaN = NaN for any x.
   * Infinity / x = Infinity for any finite non-negative x.
   * Infinity / x = -Infinity for any finite negative x including -0.
   * -Infinity / x = -Infinity for any finite non-negative x.
   * -Infinity / x = Infinity for any finite negative x including -0.
   * x / Infinity = 0 for any finite non-negative x.
   * x / -Infinity = -0 for any finite non-negative x.
   * x / Infinity = -0 for any finite non-negative x including -0.
   * x / -Infinity = 0 for any finite non-negative x including -0.
   * 
   * Infinity / Infinity = NaN.
   * Infinity / -Infinity = -NaN.
   * -Infinity / Infinity = -NaN.
   * -Infinity / -Infinity = NaN.
   *
   * Division by zero behaves in the following way:
   *
   * x / 0 = Infinity for any finite positive x.
   * x / -0 = -Infinity for any finite positive x.
   * x / 0 = -Infinity for any finite negative x.
   * x / -0 = Infinity for any finite negative x.
   * 0 / 0 = NaN.
   * 0 / -0 = NaN.
   * -0 / 0 = NaN.
   * -0 / -0 = NaN.
   *
   * @param x quadruple precision number
   * @param y quadruple precision number
   * @return quadruple precision number
   */
  function div (bytes16 x, bytes16 y) internal pure returns (bytes16) {
    unchecked {
      uint256 xExponent = uint128 (x) >> 112 & 0x7FFF;
      uint256 yExponent = uint128 (y) >> 112 & 0x7FFF;

      if (xExponent == 0x7FFF) {
        if (yExponent == 0x7FFF) return NaN;
        else return x ^ y & 0x80000000000000000000000000000000;
      } else if (yExponent == 0x7FFF) {
        if (y & 0x0000FFFFFFFFFFFFFFFFFFFFFFFFFFFF != 0) return NaN;
        else return POSITIVE_ZERO | (x ^ y) & 0x80000000000000000000000000000000;
      } else if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) {
        if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN;
        else return POSITIVE_INFINITY | (x ^ y) & 0x80000000000000000000000000000000;
      } else {
        uint256 ySignifier = uint128 (y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
        if (yExponent == 0) yExponent = 1;
        else ySignifier |= 0x10000000000000000000000000000;

        uint256 xSignifier = uint128 (x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
        if (xExponent == 0) {
          if (xSignifier != 0) {
            uint shift = 226 - mostSignificantBit (xSignifier);

            xSignifier <<= shift;

            xExponent = 1;
            yExponent += shift - 114;
          }
        }
        else {
          xSignifier = (xSignifier | 0x10000000000000000000000000000) << 114;
        }

        xSignifier = xSignifier / ySignifier;
        if (xSignifier == 0)
          return (x ^ y) & 0x80000000000000000000000000000000 > 0 ?
              NEGATIVE_ZERO : POSITIVE_ZERO;

        assert (xSignifier >= 0x1000000000000000000000000000);

        uint256 msb =
          xSignifier >= 0x80000000000000000000000000000 ? mostSignificantBit (xSignifier) :
          xSignifier >= 0x40000000000000000000000000000 ? 114 :
          xSignifier >= 0x20000000000000000000000000000 ? 113 : 112;

        if (xExponent + msb > yExponent + 16497) { // Overflow
          xExponent = 0x7FFF;
          xSignifier = 0;
        } else if (xExponent + msb + 16380  < yExponent) { // Underflow
          xExponent = 0;
          xSignifier = 0;
        } else if (xExponent + msb + 16268  < yExponent) { // Subnormal
          if (xExponent + 16380 > yExponent)
            xSignifier <<= xExponent + 16380 - yExponent;
          else if (xExponent + 16380 < yExponent)
            xSignifier >>= yExponent - xExponent - 16380;

          xExponent = 0;
        } else { // Normal
          if (msb > 112)
            xSignifier >>= msb - 112;

          xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;

          xExponent = xExponent + msb + 16269 - yExponent;
        }

        return bytes16 (uint128 (uint128 ((x ^ y) & 0x80000000000000000000000000000000) |
            xExponent << 112 | xSignifier));
      }
    }
  }

  /**
   * Calculate -x.
   *
   * @param x quadruple precision number
   * @return quadruple precision number
   */
  function neg (bytes16 x) internal pure returns (bytes16) {
    unchecked {
      return x ^ 0x80000000000000000000000000000000;
    }
  }

  /**
   * Calculate |x|.
   *
   * @param x quadruple precision number
   * @return quadruple precision number
   */
  function abs (bytes16 x) internal pure returns (bytes16) {
    unchecked {
      return x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
    }
  }

  /**
   * Calculate square root of x.  Return NaN on negative x excluding -0.
   *
   * @param x quadruple precision number
   * @return quadruple precision number
   */
  function sqrt (bytes16 x) internal pure returns (bytes16) {
    unchecked {
      if (uint128 (x) >  0x80000000000000000000000000000000) return NaN;
      else {
        uint256 xExponent = uint128 (x) >> 112 & 0x7FFF;
        if (xExponent == 0x7FFF) return x;
        else {
          uint256 xSignifier = uint128 (x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
          if (xExponent == 0) xExponent = 1;
          else xSignifier |= 0x10000000000000000000000000000;

          if (xSignifier == 0) return POSITIVE_ZERO;

          bool oddExponent = xExponent & 0x1 == 0;
          xExponent = xExponent + 16383 >> 1;

          if (oddExponent) {
            if (xSignifier >= 0x10000000000000000000000000000)
              xSignifier <<= 113;
            else {
              uint256 msb = mostSignificantBit (xSignifier);
              uint256 shift = (226 - msb) & 0xFE;
              xSignifier <<= shift;
              xExponent -= shift - 112 >> 1;
            }
          } else {
            if (xSignifier >= 0x10000000000000000000000000000)
              xSignifier <<= 112;
            else {
              uint256 msb = mostSignificantBit (xSignifier);
              uint256 shift = (225 - msb) & 0xFE;
              xSignifier <<= shift;
              xExponent -= shift - 112 >> 1;
            }
          }

          uint256 r = 0x10000000000000000000000000000;
          r = (r + xSignifier / r) >> 1;
          r = (r + xSignifier / r) >> 1;
          r = (r + xSignifier / r) >> 1;
          r = (r + xSignifier / r) >> 1;
          r = (r + xSignifier / r) >> 1;
          r = (r + xSignifier / r) >> 1;
          r = (r + xSignifier / r) >> 1; // Seven iterations should be enough
          uint256 r1 = xSignifier / r;
          if (r1 < r) r = r1;

          return bytes16 (uint128 (xExponent << 112 | r & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF));
        }
      }
    }
  }

  /**
   * Calculate binary logarithm of x.  Return NaN on negative x excluding -0.
   *
   * @param x quadruple precision number
   * @return quadruple precision number
   */
  function log_2 (bytes16 x) internal pure returns (bytes16) {
    unchecked {
      if (uint128 (x) > 0x80000000000000000000000000000000) return NaN;
      else if (x == 0x3FFF0000000000000000000000000000) return POSITIVE_ZERO; 
      else {
        uint256 xExponent = uint128 (x) >> 112 & 0x7FFF;
        if (xExponent == 0x7FFF) return x;
        else {
          uint256 xSignifier = uint128 (x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
          if (xExponent == 0) xExponent = 1;
          else xSignifier |= 0x10000000000000000000000000000;

          if (xSignifier == 0) return NEGATIVE_INFINITY;

          bool resultNegative;
          uint256 resultExponent = 16495;
          uint256 resultSignifier;

          if (xExponent >= 0x3FFF) {
            resultNegative = false;
            resultSignifier = xExponent - 0x3FFF;
            xSignifier <<= 15;
          } else {
            resultNegative = true;
            if (xSignifier >= 0x10000000000000000000000000000) {
              resultSignifier = 0x3FFE - xExponent;
              xSignifier <<= 15;
            } else {
              uint256 msb = mostSignificantBit (xSignifier);
              resultSignifier = 16493 - msb;
              xSignifier <<= 127 - msb;
            }
          }

          if (xSignifier == 0x80000000000000000000000000000000) {
            if (resultNegative) resultSignifier += 1;
            uint256 shift = 112 - mostSignificantBit (resultSignifier);
            resultSignifier <<= shift;
            resultExponent -= shift;
          } else {
            uint256 bb = resultNegative ? 1 : 0;
            while (resultSignifier < 0x10000000000000000000000000000) {
              resultSignifier <<= 1;
              resultExponent -= 1;
  
              xSignifier *= xSignifier;
              uint256 b = xSignifier >> 255;
              resultSignifier += b ^ bb;
              xSignifier >>= 127 + b;
            }
          }

          return bytes16 (uint128 ((resultNegative ? 0x80000000000000000000000000000000 : 0) |
              resultExponent << 112 | resultSignifier & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF));
        }
      }
    }
  }

  /**
   * Calculate natural logarithm of x.  Return NaN on negative x excluding -0.
   *
   * @param x quadruple precision number
   * @return quadruple precision number
   */
  function ln (bytes16 x) internal pure returns (bytes16) {
    unchecked {
      return mul (log_2 (x), 0x3FFE62E42FEFA39EF35793C7673007E5);
    }
  }

  /**
   * Calculate 2^x.
   *
   * @param x quadruple precision number
   * @return quadruple precision number
   */
  function pow_2 (bytes16 x) internal pure returns (bytes16) {
    unchecked {
      bool xNegative = uint128 (x) > 0x80000000000000000000000000000000;
      uint256 xExponent = uint128 (x) >> 112 & 0x7FFF;
      uint256 xSignifier = uint128 (x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;

      if (xExponent == 0x7FFF && xSignifier != 0) return NaN;
      else if (xExponent > 16397)
        return xNegative ? POSITIVE_ZERO : POSITIVE_INFINITY;
      else if (xExponent < 16255)
        return 0x3FFF0000000000000000000000000000;
      else {
        if (xExponent == 0) xExponent = 1;
        else xSignifier |= 0x10000000000000000000000000000;

        if (xExponent > 16367)
          xSignifier <<= xExponent - 16367;
        else if (xExponent < 16367)
          xSignifier >>= 16367 - xExponent;

        if (xNegative && xSignifier > 0x406E00000000000000000000000000000000)
          return POSITIVE_ZERO;

        if (!xNegative && xSignifier > 0x3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
          return POSITIVE_INFINITY;

        uint256 resultExponent = xSignifier >> 128;
        xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
        if (xNegative && xSignifier != 0) {
          xSignifier = ~xSignifier;
          resultExponent += 1;
        }

        uint256 resultSignifier = 0x80000000000000000000000000000000;
        if (xSignifier & 0x80000000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x16A09E667F3BCC908B2FB1366EA957D3E >> 128;
        if (xSignifier & 0x40000000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1306FE0A31B7152DE8D5A46305C85EDEC >> 128;
        if (xSignifier & 0x20000000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1172B83C7D517ADCDF7C8C50EB14A791F >> 128;
        if (xSignifier & 0x10000000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10B5586CF9890F6298B92B71842A98363 >> 128;
        if (xSignifier & 0x8000000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1059B0D31585743AE7C548EB68CA417FD >> 128;
        if (xSignifier & 0x4000000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x102C9A3E778060EE6F7CACA4F7A29BDE8 >> 128;
        if (xSignifier & 0x2000000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10163DA9FB33356D84A66AE336DCDFA3F >> 128;
        if (xSignifier & 0x1000000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100B1AFA5ABCBED6129AB13EC11DC9543 >> 128;
        if (xSignifier & 0x800000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10058C86DA1C09EA1FF19D294CF2F679B >> 128;
        if (xSignifier & 0x400000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1002C605E2E8CEC506D21BFC89A23A00F >> 128;
        if (xSignifier & 0x200000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100162F3904051FA128BCA9C55C31E5DF >> 128;
        if (xSignifier & 0x100000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000B175EFFDC76BA38E31671CA939725 >> 128;
        if (xSignifier & 0x80000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100058BA01FB9F96D6CACD4B180917C3D >> 128;
        if (xSignifier & 0x40000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10002C5CC37DA9491D0985C348C68E7B3 >> 128;
        if (xSignifier & 0x20000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000162E525EE054754457D5995292026 >> 128;
        if (xSignifier & 0x10000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000B17255775C040618BF4A4ADE83FC >> 128;
        if (xSignifier & 0x8000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB >> 128;
        if (xSignifier & 0x4000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9 >> 128;
        if (xSignifier & 0x2000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000162E43F4F831060E02D839A9D16D >> 128;
        if (xSignifier & 0x1000000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000B1721BCFC99D9F890EA06911763 >> 128;
        if (xSignifier & 0x800000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000058B90CF1E6D97F9CA14DBCC1628 >> 128;
        if (xSignifier & 0x400000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000002C5C863B73F016468F6BAC5CA2B >> 128;
        if (xSignifier & 0x200000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000162E430E5A18F6119E3C02282A5 >> 128;
        if (xSignifier & 0x100000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000B1721835514B86E6D96EFD1BFE >> 128;
        if (xSignifier & 0x80000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000058B90C0B48C6BE5DF846C5B2EF >> 128;
        if (xSignifier & 0x40000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000002C5C8601CC6B9E94213C72737A >> 128;
        if (xSignifier & 0x20000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000162E42FFF037DF38AA2B219F06 >> 128;
        if (xSignifier & 0x10000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000B17217FBA9C739AA5819F44F9 >> 128;
        if (xSignifier & 0x8000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000058B90BFCDEE5ACD3C1CEDC823 >> 128;
        if (xSignifier & 0x4000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000002C5C85FE31F35A6A30DA1BE50 >> 128;
        if (xSignifier & 0x2000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000162E42FF0999CE3541B9FFFCF >> 128;
        if (xSignifier & 0x1000000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000B17217F80F4EF5AADDA45554 >> 128;
        if (xSignifier & 0x800000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000058B90BFBF8479BD5A81B51AD >> 128;
        if (xSignifier & 0x400000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000002C5C85FDF84BD62AE30A74CC >> 128;
        if (xSignifier & 0x200000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000162E42FEFB2FED257559BDAA >> 128;
        if (xSignifier & 0x100000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000B17217F7D5A7716BBA4A9AE >> 128;
        if (xSignifier & 0x80000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000058B90BFBE9DDBAC5E109CCE >> 128;
        if (xSignifier & 0x40000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000002C5C85FDF4B15DE6F17EB0D >> 128;
        if (xSignifier & 0x20000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000162E42FEFA494F1478FDE05 >> 128;
        if (xSignifier & 0x10000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000B17217F7D20CF927C8E94C >> 128;
        if (xSignifier & 0x8000000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000058B90BFBE8F71CB4E4B33D >> 128;
        if (xSignifier & 0x4000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000002C5C85FDF477B662B26945 >> 128;
        if (xSignifier & 0x2000000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000162E42FEFA3AE53369388C >> 128;
        if (xSignifier & 0x1000000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000B17217F7D1D351A389D40 >> 128;
        if (xSignifier & 0x800000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000058B90BFBE8E8B2D3D4EDE >> 128;
        if (xSignifier & 0x400000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000002C5C85FDF4741BEA6E77E >> 128;
        if (xSignifier & 0x200000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000162E42FEFA39FE95583C2 >> 128;
        if (xSignifier & 0x100000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000B17217F7D1CFB72B45E1 >> 128;
        if (xSignifier & 0x80000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000058B90BFBE8E7CC35C3F0 >> 128;
        if (xSignifier & 0x40000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000002C5C85FDF473E242EA38 >> 128;
        if (xSignifier & 0x20000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000162E42FEFA39F02B772C >> 128;
        if (xSignifier & 0x10000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000B17217F7D1CF7D83C1A >> 128;
        if (xSignifier & 0x8000000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000058B90BFBE8E7BDCBE2E >> 128;
        if (xSignifier & 0x4000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000002C5C85FDF473DEA871F >> 128;
        if (xSignifier & 0x2000000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000162E42FEFA39EF44D91 >> 128;
        if (xSignifier & 0x1000000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000B17217F7D1CF79E949 >> 128;
        if (xSignifier & 0x800000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000058B90BFBE8E7BCE544 >> 128;
        if (xSignifier & 0x400000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000002C5C85FDF473DE6ECA >> 128;
        if (xSignifier & 0x200000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000162E42FEFA39EF366F >> 128;
        if (xSignifier & 0x100000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000B17217F7D1CF79AFA >> 128;
        if (xSignifier & 0x80000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000058B90BFBE8E7BCD6D >> 128;
        if (xSignifier & 0x40000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000002C5C85FDF473DE6B2 >> 128;
        if (xSignifier & 0x20000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000162E42FEFA39EF358 >> 128;
        if (xSignifier & 0x10000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000B17217F7D1CF79AB >> 128;
        if (xSignifier & 0x8000000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000058B90BFBE8E7BCD5 >> 128;
        if (xSignifier & 0x4000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000002C5C85FDF473DE6A >> 128;
        if (xSignifier & 0x2000000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000162E42FEFA39EF34 >> 128;
        if (xSignifier & 0x1000000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000B17217F7D1CF799 >> 128;
        if (xSignifier & 0x800000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000058B90BFBE8E7BCC >> 128;
        if (xSignifier & 0x400000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000002C5C85FDF473DE5 >> 128;
        if (xSignifier & 0x200000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000162E42FEFA39EF2 >> 128;
        if (xSignifier & 0x100000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000B17217F7D1CF78 >> 128;
        if (xSignifier & 0x80000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000058B90BFBE8E7BB >> 128;
        if (xSignifier & 0x40000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000002C5C85FDF473DD >> 128;
        if (xSignifier & 0x20000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000162E42FEFA39EE >> 128;
        if (xSignifier & 0x10000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000B17217F7D1CF6 >> 128;
        if (xSignifier & 0x8000000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000058B90BFBE8E7A >> 128;
        if (xSignifier & 0x4000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000002C5C85FDF473C >> 128;
        if (xSignifier & 0x2000000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000162E42FEFA39D >> 128;
        if (xSignifier & 0x1000000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000B17217F7D1CE >> 128;
        if (xSignifier & 0x800000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000058B90BFBE8E6 >> 128;
        if (xSignifier & 0x400000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000002C5C85FDF472 >> 128;
        if (xSignifier & 0x200000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000162E42FEFA38 >> 128;
        if (xSignifier & 0x100000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000B17217F7D1B >> 128;
        if (xSignifier & 0x80000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000058B90BFBE8D >> 128;
        if (xSignifier & 0x40000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000002C5C85FDF46 >> 128;
        if (xSignifier & 0x20000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000162E42FEFA2 >> 128;
        if (xSignifier & 0x10000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000B17217F7D0 >> 128;
        if (xSignifier & 0x8000000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000058B90BFBE7 >> 128;
        if (xSignifier & 0x4000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000002C5C85FDF3 >> 128;
        if (xSignifier & 0x2000000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000162E42FEF9 >> 128;
        if (xSignifier & 0x1000000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000B17217F7C >> 128;
        if (xSignifier & 0x800000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000058B90BFBD >> 128;
        if (xSignifier & 0x400000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000002C5C85FDE >> 128;
        if (xSignifier & 0x200000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000162E42FEE >> 128;
        if (xSignifier & 0x100000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000000B17217F6 >> 128;
        if (xSignifier & 0x80000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000058B90BFA >> 128;
        if (xSignifier & 0x40000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000002C5C85FC >> 128;
        if (xSignifier & 0x20000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000000162E42FD >> 128;
        if (xSignifier & 0x10000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000000B17217E >> 128;
        if (xSignifier & 0x8000000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000000058B90BE >> 128;
        if (xSignifier & 0x4000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000002C5C85E >> 128;
        if (xSignifier & 0x2000000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000000162E42E >> 128;
        if (xSignifier & 0x1000000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000B17216 >> 128;
        if (xSignifier & 0x800000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000000058B90A >> 128;
        if (xSignifier & 0x400000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000000002C5C84 >> 128;
        if (xSignifier & 0x200000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000162E41 >> 128;
        if (xSignifier & 0x100000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000000000B1720 >> 128;
        if (xSignifier & 0x80000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000058B8F >> 128;
        if (xSignifier & 0x40000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000000002C5C7 >> 128;
        if (xSignifier & 0x20000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000000000162E3 >> 128;
        if (xSignifier & 0x10000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000000000B171 >> 128;
        if (xSignifier & 0x8000 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000000000058B8 >> 128;
        if (xSignifier & 0x4000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000002C5B >> 128;
        if (xSignifier & 0x2000 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000000000162D >> 128;
        if (xSignifier & 0x1000 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000000B16 >> 128;
        if (xSignifier & 0x800 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000000000058A >> 128;
        if (xSignifier & 0x400 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000000000002C4 >> 128;
        if (xSignifier & 0x200 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000000161 >> 128;
        if (xSignifier & 0x100 > 0) resultSignifier = resultSignifier * 0x1000000000000000000000000000000B0 >> 128;
        if (xSignifier & 0x80 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000000057 >> 128;
        if (xSignifier & 0x40 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000000000002B >> 128;
        if (xSignifier & 0x20 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000000015 >> 128;
        if (xSignifier & 0x10 > 0) resultSignifier = resultSignifier * 0x10000000000000000000000000000000A >> 128;
        if (xSignifier & 0x8 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000000004 >> 128;
        if (xSignifier & 0x4 > 0) resultSignifier = resultSignifier * 0x100000000000000000000000000000001 >> 128;

        if (!xNegative) {
          resultSignifier = resultSignifier >> 15 & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
          resultExponent += 0x3FFF;
        } else if (resultExponent <= 0x3FFE) {
          resultSignifier = resultSignifier >> 15 & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
          resultExponent = 0x3FFF - resultExponent;
        } else {
          resultSignifier = resultSignifier >> resultExponent - 16367;
          resultExponent = 0;
        }

        return bytes16 (uint128 (resultExponent << 112 | resultSignifier));
      }
    }
  }

  /**
   * Calculate e^x.
   *
   * @param x quadruple precision number
   * @return quadruple precision number
   */
  function exp (bytes16 x) internal pure returns (bytes16) {
    unchecked {
      return pow_2 (mul (x, 0x3FFF71547652B82FE1777D0FFDA0D23A));
    }
  }

  /**
   * Get index of the most significant non-zero bit in binary representation of
   * x.  Reverts if x is zero.
   *
   * @return index of the most significant non-zero bit in binary representation
   *         of x
   */
  function mostSignificantBit (uint256 x) private pure returns (uint256) {
    unchecked {
      require (x > 0);

      uint256 result = 0;

      if (x >= 0x100000000000000000000000000000000) { x >>= 128; result += 128; }
      if (x >= 0x10000000000000000) { x >>= 64; result += 64; }
      if (x >= 0x100000000) { x >>= 32; result += 32; }
      if (x >= 0x10000) { x >>= 16; result += 16; }
      if (x >= 0x100) { x >>= 8; result += 8; }
      if (x >= 0x10) { x >>= 4; result += 4; }
      if (x >= 0x4) { x >>= 2; result += 2; }
      if (x >= 0x2) result += 1; // No need to shift x anymore

      return result;
    }
  }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

import { IERC20Upgradeable } from "@openzeppelin/contracts-upgradeable/token/ERC20/IERC20Upgradeable.sol";
import { FeeModel } from "../types/CommonTypes.sol";

interface IDXToken is IERC20Upgradeable {
  /**********
   * Events *
   **********/

  /// @notice Emitted when the cooling-off period is updated.
  /// @param oldValue The value of the previous cooling-off period.
  /// @param newValue The value of the current cooling-off period.
  event UpdateCoolingOffPeriod(uint256 indexed oldValue, uint256 indexed newValue);

  /// @notice Emitted when the management fee rate is updated.
  /// @param oldRate The previous management fee rate.
  /// @param newRate The new management fee rate.
  event UpdateManagementFeeRate(uint256 indexed oldRate, uint256 indexed newRate);

  /// @notice Emitted when the funding fee rate is updated.
  /// @param oldRate The previous funding fee rate.
  /// @param newRate The new funding fee rate.
  event UpdateFundingFeeRate(uint256 indexed oldRate, uint256 indexed newRate);

  /// @notice Emitted when the fixed yield amount is updated.
  /// @param oldRate The previous fixed yield amount.
  /// @param newRate The new fixed yield amount.
  event UpdateVariableFundingFeeRate(uint256 indexed oldRate, uint256 indexed newRate);

  /// @notice Emitted when fees are collected.
  /// @param amount The amount of fees collected.
  event FeesCollected(uint256 indexed amount);

  /// @notice Emitted when tokens are minted.
  /// @param to The address receiving the minted tokens.
  /// @param amount The amount of tokens minted.
  event Minted(address indexed to, uint256 indexed amount);

  /// @notice Emitted when tokens are burned.
  /// @param from The address whose tokens are burned.
  /// @param amount The amount of tokens burned.
  event Burned(address indexed from, uint256 indexed amount);

  /// @notice Emitted when the cooling-off period is triggered.
  /// @param account The account triggering the cooling-off period.
  /// @param timestamp The timestamp when triggered.
  event CoolingOffPeriodTriggered(address indexed account, uint256 indexed timestamp);

  /// @notice Emitted when the associated group is updated.
  /// @param groupId The new associated group ID.
  event UpdateGroup(bytes32 indexed groupId);

  /// @notice Emitted when the treasury address is updated.
  /// @param oldTreasury The old treasury address.
  /// @param newTreasury The new treasury address.
  event UpdateTreasuryAddress(address indexed oldTreasury, address indexed newTreasury);

  /// @notice Emitted when the max supply is updated.
  /// @param oldMaxSupply The old max supply.
  /// @param newMaxSupply The new max supply.
  event UpdateMaxSupply(uint256 indexed oldMaxSupply, uint256 indexed newMaxSupply);

  /**********
   * Errors *
   **********/

  /// @dev Thrown when an address is zero.
  error ZeroAddress();

  /// @dev Thrown when decimals are invalid.
  error InvalidDecimals();

  /// @dev Thrown when the cooling-off period is too large.
  error CoolingOffPeriodTooLarge();

  /// @dev Thrown when trying to mint or burn an amount below the minimum.
  error ErrorMinimumMintingAmount();

  /// @dev Thrown when trying to burn an amount below the minimum.
  error ErrorMinimumBurningAmount();

  /// @dev Thrown when minting exceeds the max supply.
  error ExceedsMaxSupply();

  /// @dev Thrown when cooling-off period is active.
  error CoolingOffPeriodActive();

  /// @dev Thrown when parameter is unchanged.
  error ParameterUnchanged();

  /// @dev Thrown when management fee is invalid.
  error InvalidManagementFee();

  /// @dev Thrown when funding fee rate is invalid.
  error InvalidFundingFeeRate();

  /// @dev Thrown when fixed yield amount is invalid.
  error InvalidFixedYieldAmount();

  /// @dev Thrown when fee model is invalid.
  error InvalidFeeModel();

  /// @dev Thrown when base supply is zero.
  error BaseSupplyZero();

  /// @dev Thrown when transfer amount exceeds balance.
  error TransferAmountExceedsBalance();

  /// @dev Thrown when burn amount exceeds balance.
  error BurnAmountExceedsBalance();

  /// @dev Thrown cannot recover token.
  error CannotRecoverToken();

  /// @dev Thrown when invalid base token price.
  error InvalidBaseTokenPrice();

  /// @dev Thrown when an operation is not permitted.
  error NotPermitted();

  /*************************
   * Public View Functions *
   *************************/

  /// @notice Returns the NAV of the token.
  function nav() external view returns (uint256);

  /// @notice Converts DXToken amount to base token amount.
  function dxTokenToBaseToken(uint256 dxTokenAmount) external view returns (uint256 baseTokenAmount);

  /// @notice Returns the fee model.
  function getFeeModel() external view returns (FeeModel);

  /****************************
   * Public Mutated Functions *
   ****************************/

  /// @notice Mints tokens to a specified address.
  function mint(address _to, uint256 _amount) external;

  /// @notice Burns tokens from a specified address.
  function burn(address _from, uint256 _amount) external;

  /// @notice Collects accumulated fees.
  function collectFees() external;
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

import { GroupKey } from "./GroupKey.sol";

type GroupId is bytes32;

// @notice library for computing the ID of a group
library GroupIdLibrary {
  using GroupIdLibrary for GroupId;
  function toId(GroupKey memory groupKey) internal pure returns (GroupId groupId) {
    groupId = GroupId.wrap(keccak256(abi.encode(groupKey)));
  }
  
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

import { GroupId } from "../types/GroupId.sol";
import { FeeModel } from "../types/CommonTypes.sol";

library DDXToken {
  struct TokenParams {
    string name;
    string symbol;
    
    address aTokenAddress;
    address treasuryAddress;

    GroupId groupId;

    uint256 maxSupply;
    uint256 initialCoolingOffPeriod;

    uint8 decimals;
  }

  struct FeeParams {
    FeeModel feeModel; 
    uint256 managementFeeRate;
    uint256 fixedYieldAmount;
    uint256 annualFundingFeeRate;
  }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

import { Currency } from "./Currency.sol";
import { DTokenRegistry } from "../declarations/DTokenRegistry.sol";
import { Address } from "../types/Address.sol";

// Enums representing different fee models that can be applied.
enum OperationTypes {
  OP_TYPE_MINT_VT,
  OP_TYPE_MINT_YT,
  OP_TYPE_REDEEM_VT,
  OP_TYPE_REDEEM_YT
}

enum FeeModel {
  NONE, // No fees.
  MANAGEMENT_FEE, // Management fee model.
  VARIABLE_FUNDING_FEE, // Fee that varies based on funding.
  FIXED_FUNDING_FEE, // Fixed fee for funding.
  CURATED_PAIRS_FEE, // Curated pairs fee model.
  BLANK_FEE // Blank fee model.
}

// Information about acceptable collaterals
struct CollateralInfo {
  Currency token; // Token address for collateral
  uint8 decimals; // Decimals for the collateral token
  uint256 minAmount; // Minimum amount for both usage minting and redeeming (as desired token)
  uint256 maxAmount; // Maximum amount for both usage minting and redeeming (as desired token)
}

// DefaultFeeParams defines the basic fee structure with base, min, and max fees.
struct DefaultFeeParams {
  uint24 baseFee; // The base fee applied when no flags are present.
  uint24 minFee; // The minimum fee allowed for dynamic fee models.
  uint24 maxFee; // The maximum fee allowed.
}

// FeeParams defines specific fees for different token types and operations.
struct FeeParams {
  uint24 mintFeeVT; // Minting fee for volatile tokens (VT).
  uint24 redeemFeeVT; // Redemption fee for volatile tokens (VT).
  uint24 mintFeeYT; // Minting fee for yield tokens (YT).
  uint24 redeemFeeYT; // Redemption fee for yield tokens (YT).
  uint24 stabilityMintFeeVT; // Stability minting fee for volatile tokens (VT).
  uint24 stabilityMintFeeYT; // Stability minting fee for yield tokens (YT).
  uint24 stabilityRedeemFeeVT; // Stability redemption fee for volatile tokens (VT).
  uint24 stabilityRedeemFeeYT; // Stability redemption fee for yield tokens (YT).
  uint24 yieldFeeVT; // Yield fee for volatile tokens (VT).
  uint24 yieldFeeYT; // Yield fee for yield tokens (YT).
  uint24 protocolFee; // Protocol fee.
}

// FeePermissions define the flexibility of the fee model (dynamic fees, delegation).
struct FeePermissions {
  bool isDynamic; // Whether the fee model is dynamic.
  bool allowDelegation; // Whether fee delegation is allowed.
}

struct GroupState {
  DTokenRegistry.GroupCore core;
  DTokenRegistry.GroupExtended extended;
  bytes32 feesPacked;
  CollateralInfo[] acceptableCollaterals;
  Address hookContract;
  bytes32 groupSettings;
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

import { GroupId } from "../types/GroupId.sol";
import { DTokenRegistry } from "../declarations/DTokenRegistry.sol";
import { DTreasury } from "../declarations/DTreasury.sol";
import { TreasuryHarvestLibrary } from "../libs/TreasuryHarvestLibrary.sol";

interface ITreasury {
  // Events
  event HarvestYield(GroupId indexed groupId, uint256 indexed yieldBaseTokens);
  event HarvestFees(GroupId indexed groupId, uint256 indexed xTokenAmount, uint256 indexed aTokenAmount);
  event FeesDistributed(GroupId indexed groupId, uint256 indexed xTokenAmount, uint256 indexed baseTokenAmount);
  event UpdateBaseTokenCap(GroupId indexed groupId, uint256 indexed oldBaseTokenCap, uint256 indexed newBaseTokenCap);
  event Settle(GroupId indexed groupId, uint256 indexed oldPrice, uint256 indexed newPrice);
  event UpdateFeeCollector(address indexed oldFeeCollector, address indexed newFeeCollector);
  event GroupInitialized(GroupId indexed groupId, uint256 indexed baseTokenPrice);

  event RebalanceUpPerformed(GroupId indexed groupId, uint256 indexed newCollateralRatio);
  event RebalanceDownPerformed(GroupId indexed groupId, uint256 indexed newCollateralRatio);
  event TransferToStrategy(GroupId indexed groupId, uint256 indexed amount);

  // Custom Errors
  error ZeroAddress();
  error ZeroAmount();
  error OnlyStrategy();
  error GroupAlreadyInitialized(GroupId groupId);
  error ErrorUnderCollateral(GroupId groupId);
  error ErrorExceedTotalCap(GroupId groupId);
  error ErrorInvalidTwapPrice(GroupId groupId);
  error NotPermitted();
  error InvalidGroupConfiguration(GroupId groupId);
  error InvalidRate(GroupId groupId, address rateProvider);
  error InvalidRatio(GroupId groupId);
  error InvalidPrice(GroupId groupId);
  error InvalidBaseTokenCap(GroupId groupId);
  error ErrorInsufficientBalance(GroupId groupId, address token);
  error ErrorSwapFailed();
  error ErrorDistributingYield(GroupId groupId);
  error ErrorWithdrawFromStrategy();
  error ErrorCollateralRatioTooSmall(GroupId groupId);
  error MaximumAmountExceeded(GroupId groupId, uint256 maxAmount);
  error StrategyUnderflow(GroupId groupId);
  error InvalidTokenType();
  error RenounceRoleProhibited();

  // View Functions
  function collateralRatio(GroupId groupId) external view returns (uint256);

  function isUnderCollateral(GroupId groupId) external view returns (bool);

  function leverageRatio(GroupId groupId) external view returns (uint256);

  function currentBaseTokenPrice(GroupId groupId) external view returns (uint256);

  // function isBaseTokenPriceValid(GroupId groupId) external view returns (bool _isValid);
  function totalBaseToken(GroupId groupId) external view returns (uint256);

  function maxMintableAToken(
    GroupId groupId,
    uint256 _newCollateralRatio
  ) external view returns (uint256 _maxBaseIn, uint256 _maxATokenMintable);

  function maxRedeemableAToken(
    GroupId groupId,
    uint256 _newCollateralRatio
  ) external view returns (uint256 _maxBaseOut, uint256 _maxATokenRedeemable);

  // State-Changing Functions
  function mintAToken(GroupId groupId, uint256 _baseIn, address _recipient) external returns (uint256 _aTokenOut);

  function mintXToken(GroupId groupId, uint256 _baseIn, address _recipient) external returns (uint256 _xTokenOut);

  function redeem(GroupId groupId, uint256 _aTokenIn, uint256 _xTokenIn, address _owner) external returns (uint256 _baseOut);

  function transferToStrategy(GroupId groupId, uint256 _amount) external;

  // Harvest Functions
  function harvestYield(GroupId groupId, TreasuryHarvestLibrary.HarvestParams memory params) external;

  function harvestFees(GroupId groupId, TreasuryHarvestLibrary.HarvestParams memory params) external;

  // Management Functions  
  function updateBaseTokenCap(GroupId groupId, uint256 _baseTokenCap) external;

  function updateFeeCollector(address _newFeeCollector) external;

  function forceUpdateGroupCache(address tokenRegistry, GroupId groupId) external;

  function getTreasuryState(GroupId groupId) external view returns (DTreasury.TreasuryState memory);
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

import { IERC20Upgradeable } from "@openzeppelin/contracts-upgradeable/token/ERC20/utils/SafeERC20Upgradeable.sol";
import { GroupId } from "../types/GroupId.sol";

/**
 * @title IAToken
 * @notice Interface for AToken, an ERC20-compatible token with minting, burning, and
 *         additional functionality for treasury and rebalance management.
 */
interface IAToken is IERC20Upgradeable {
  /**
   * @dev Emitted when the treasury address is updated.
   * @param oldTreasury The previous treasury address.
   * @param newTreasury The new treasury address.
   */
  event UpdateTreasuryAddress(address indexed oldTreasury, address indexed newTreasury);

  /**
   * @dev Emitted when the rebalance pool address is updated.
   * @param oldRebalancePool The previous rebalance pool address.
   * @param newRebalancePool The new rebalance pool address.
   */
  event UpdateRebalancePool(address indexed oldRebalancePool, address indexed newRebalancePool);

  /**
   * @dev Emitted when tokens are minted to an address.
   * @param to The address receiving the minted tokens.
   * @param amount The amount of tokens minted.
   */
  event Minted(address indexed to, uint256 indexed amount);

  /**
   * @dev Emitted when tokens are burned from an address.
   * @param from The address from which tokens are burned.
   * @param amount The amount of tokens burned.
   */
  event Burned(address indexed from, uint256 indexed amount);

  /**
   * @dev Emitted when a group is updated.
   * @param groupId The identifier of the updated group.
   */
  event UpdateGroup(GroupId indexed groupId);

  /**
   * @dev Emitted when the max supply is updated.
   * @param oldMaxSupply The previous max supply.
   * @param newMaxSupply The new max supply.
   */
  event UpdateMaxSupply(uint256 indexed oldMaxSupply, uint256 indexed newMaxSupply);

  // Custom Errors
  error InvalidDecimals();
  error ErrorNotPermitted();
  error ErrorZeroAddress();
  error ErrorZeroAmount();
  error ErrorExceedsMaxSupply();
  error ErrorCannotRecoverToken();
  error ErrorParameterUnchanged();

  /**
   * @notice Returns the beta status of the token.
   */
  function beta() external view returns (bool);
  
  /**
   * @notice Returns the Net Asset Value (NAV) of the token.
   * @return The current NAV as an unsigned integer.
   */
  function nav() external view returns (uint256);

  /**
   * @notice Returns the number of decimals used by the token.
   * @return The number of decimals.
   */
  function decimals() external view returns (uint8);

  /**
   * @notice Mints tokens to a specified address.
   * @dev Emits a {Minted} event.
   * @param _to The address to receive the minted tokens.
   * @param _amount The amount of tokens to mint.
   */
  function mint(address _to, uint256 _amount) external;

  /**
   * @notice Burns tokens from a specified address.
   * @dev Emits a {Burned} event.
   * @param _from The address from which tokens are burned.
   * @param _amount The amount of tokens to burn.
   */
  function burn(address _from, uint256 _amount) external;
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

// solhint-disable
/// @title Contains 512-bit math functions
/// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision
/// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits
library FullMath {
  /// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
  /// @param a The multiplicand
  /// @param b The multiplier
  /// @param denominator The divisor
  /// @return result The 256-bit result
  /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv
  function mulDiv(uint256 a, uint256 b, uint256 denominator) internal pure returns (uint256 result) {
    unchecked {
      // 512-bit multiply [prod1 prod0] = a * b
      // Compute the product mod 2**256 and mod 2**256 - 1
      // then use the Chinese Remainder Theorem to reconstruct
      // the 512 bit result. The result is stored in two 256
      // variables such that product = prod1 * 2**256 + prod0
      uint256 prod0 = a * b; // Least significant 256 bits of the product
      uint256 prod1; // Most significant 256 bits of the product
      assembly ("memory-safe") {
        let mm := mulmod(a, b, not(0))
        prod1 := sub(sub(mm, prod0), lt(mm, prod0))
      }

      // Make sure the result is less than 2**256.
      // Also prevents denominator == 0
      require(denominator > prod1, "FullMath: denominator too small");

      // Handle non-overflow cases, 256 by 256 division
      if (prod1 == 0) {
        assembly ("memory-safe") {
          result := div(prod0, denominator)
        }
        return result;
      }

      ///////////////////////////////////////////////
      // 512 by 256 division.
      ///////////////////////////////////////////////

      // Make division exact by subtracting the remainder from [prod1 prod0]
      // Compute remainder using mulmod
      uint256 remainder;
      assembly ("memory-safe") {
        remainder := mulmod(a, b, denominator)
      }
      // Subtract 256 bit number from 512 bit number
      assembly ("memory-safe") {
        prod1 := sub(prod1, gt(remainder, prod0))
        prod0 := sub(prod0, remainder)
      }

      // Factor powers of two out of denominator
      // Compute largest power of two divisor of denominator.
      // Always >= 1.
      uint256 twos = (0 - denominator) & denominator;
      // Divide denominator by power of two
      assembly ("memory-safe") {
        denominator := div(denominator, twos)
      }

      // Divide [prod1 prod0] by the factors of two
      assembly ("memory-safe") {
        prod0 := div(prod0, twos)
      }
      // Shift in bits from prod1 into prod0. For this we need
      // to flip `twos` such that it is 2**256 / twos.
      // If twos is zero, then it becomes one
      assembly ("memory-safe") {
        twos := add(div(sub(0, twos), twos), 1)
      }
      prod0 |= prod1 * twos;

      // Invert denominator mod 2**256
      // Now that denominator is an odd number, it has an inverse
      // modulo 2**256 such that denominator * inv = 1 mod 2**256.
      // Compute the inverse by starting with a seed that is correct
      // correct for four bits. That is, denominator * inv = 1 mod 2**4
      uint256 inv = (3 * denominator) ^ 2;
      // Now use Newton-Raphson iteration to improve the precision.
      // Thanks to Hensel's lifting lemma, this also works in modular
      // arithmetic, doubling the correct bits in each step.
      inv *= 2 - denominator * inv; // inverse mod 2**8
      inv *= 2 - denominator * inv; // inverse mod 2**16
      inv *= 2 - denominator * inv; // inverse mod 2**32
      inv *= 2 - denominator * inv; // inverse mod 2**64
      inv *= 2 - denominator * inv; // inverse mod 2**128
      inv *= 2 - denominator * inv; // inverse mod 2**256

      // Because the division is now exact we can divide by multiplying
      // with the modular inverse of denominator. This will give us the
      // correct result modulo 2**256. Since the preconditions guarantee
      // that the outcome is less than 2**256, this is the final result.
      // We don't need to compute the high bits of the result and prod1
      // is no longer required.
      result = prod0 * inv;
      return result;
    }
  }

  /// @notice Calculates ceil(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
  /// @param a The multiplicand
  /// @param b The multiplier
  /// @param denominator The divisor
  /// @return result The 256-bit result
  function mulDivRoundingUp(uint256 a, uint256 b, uint256 denominator) internal pure returns (uint256 result) {
    unchecked {
      result = mulDiv(a, b, denominator);
      if (mulmod(a, b, denominator) != 0) {
        require(++result > 0, "FullMath: addition overflow");
      }
    }
  }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/ERC20Permit.sol)

pragma solidity ^0.8.0;

import "./IERC20PermitUpgradeable.sol";
import "../ERC20Upgradeable.sol";
import "../../../utils/cryptography/ECDSAUpgradeable.sol";
import "../../../utils/cryptography/EIP712Upgradeable.sol";
import "../../../utils/CountersUpgradeable.sol";
import {Initializable} from "../../../proxy/utils/Initializable.sol";

/**
 * @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * _Available since v3.4._
 *
 * @custom:storage-size 51
 */
abstract contract ERC20PermitUpgradeable is Initializable, ERC20Upgradeable, IERC20PermitUpgradeable, EIP712Upgradeable {
    using CountersUpgradeable for CountersUpgradeable.Counter;

    mapping(address => CountersUpgradeable.Counter) private _nonces;

    // solhint-disable-next-line var-name-mixedcase
    bytes32 private constant _PERMIT_TYPEHASH =
        keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
    /**
     * @dev In previous versions `_PERMIT_TYPEHASH` was declared as `immutable`.
     * However, to ensure consistency with the upgradeable transpiler, we will continue
     * to reserve a slot.
     * @custom:oz-renamed-from _PERMIT_TYPEHASH
     */
    // solhint-disable-next-line var-name-mixedcase
    bytes32 private _PERMIT_TYPEHASH_DEPRECATED_SLOT;

    /**
     * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
     *
     * It's a good idea to use the same `name` that is defined as the ERC20 token name.
     */
    function __ERC20Permit_init(string memory name) internal onlyInitializing {
        __EIP712_init_unchained(name, "1");
    }

    function __ERC20Permit_init_unchained(string memory) internal onlyInitializing {}

    /**
     * @inheritdoc IERC20PermitUpgradeable
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual override {
        require(block.timestamp <= deadline, "ERC20Permit: expired deadline");

        bytes32 structHash = keccak256(abi.encode(_PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline));

        bytes32 hash = _hashTypedDataV4(structHash);

        address signer = ECDSAUpgradeable.recover(hash, v, r, s);
        require(signer == owner, "ERC20Permit: invalid signature");

        _approve(owner, spender, value);
    }

    /**
     * @inheritdoc IERC20PermitUpgradeable
     */
    function nonces(address owner) public view virtual override returns (uint256) {
        return _nonces[owner].current();
    }

    /**
     * @inheritdoc IERC20PermitUpgradeable
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view override returns (bytes32) {
        return _domainSeparatorV4();
    }

    /**
     * @dev "Consume a nonce": return the current value and increment.
     *
     * _Available since v4.1._
     */
    function _useNonce(address owner) internal virtual returns (uint256 current) {
        CountersUpgradeable.Counter storage nonce = _nonces[owner];
        current = nonce.current();
        nonce.increment();
    }

    /**
     * @dev This empty reserved space is put in place to allow future versions to add new
     * variables without shifting down storage in the inheritance chain.
     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
     */
    uint256[49] private __gap;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)

pragma solidity ^0.8.0;

/**
 * @dev External interface of AccessControl declared to support ERC165 detection.
 */
interface IAccessControlUpgradeable {
    /**
     * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
     *
     * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
     * {RoleAdminChanged} not being emitted signaling this.
     *
     * _Available since v3.1._
     */
    event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);

    /**
     * @dev Emitted when `account` is granted `role`.
     *
     * `sender` is the account that originated the contract call, an admin role
     * bearer except when using {AccessControl-_setupRole}.
     */
    event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Emitted when `account` is revoked `role`.
     *
     * `sender` is the account that originated the contract call:
     *   - if using `revokeRole`, it is the admin role bearer
     *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
     */
    event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) external view returns (bool);

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {AccessControl-_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) external view returns (bytes32);

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function grantRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function revokeRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been granted `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `account`.
     */
    function renounceRole(bytes32 role, address account) external;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol)

pragma solidity ^0.8.0;
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract ContextUpgradeable is Initializable {
    function __Context_init() internal onlyInitializing {
    }

    function __Context_init_unchained() internal onlyInitializing {
    }
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }

    /**
     * @dev This empty reserved space is put in place to allow future versions to add new
     * variables without shifting down storage in the inheritance chain.
     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
     */
    uint256[50] private __gap;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/MathUpgradeable.sol";
import "./math/SignedMathUpgradeable.sol";

/**
 * @dev String operations.
 */
library StringsUpgradeable {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = MathUpgradeable.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toString(int256 value) internal pure returns (string memory) {
        return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMathUpgradeable.abs(value))));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, MathUpgradeable.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)

pragma solidity ^0.8.0;

import "./IERC165Upgradeable.sol";
import {Initializable} from "../../proxy/utils/Initializable.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 *
 * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
 */
abstract contract ERC165Upgradeable is Initializable, IERC165Upgradeable {
    function __ERC165_init() internal onlyInitializing {
    }

    function __ERC165_init_unchained() internal onlyInitializing {
    }
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IERC165Upgradeable).interfaceId;
    }

    /**
     * @dev This empty reserved space is put in place to allow future versions to add new
     * variables without shifting down storage in the inheritance chain.
     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
     */
    uint256[50] private __gap;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol)

pragma solidity ^0.8.2;

import "../../utils/AddressUpgradeable.sol";

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
 * case an upgrade adds a module that needs to be initialized.
 *
 * For example:
 *
 * [.hljs-theme-light.nopadding]
 * ```solidity
 * contract MyToken is ERC20Upgradeable {
 *     function initialize() initializer public {
 *         __ERC20_init("MyToken", "MTK");
 *     }
 * }
 *
 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
 *     function initializeV2() reinitializer(2) public {
 *         __ERC20Permit_init("MyToken");
 *     }
 * }
 * ```
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 *
 * [CAUTION]
 * ====
 * Avoid leaving a contract uninitialized.
 *
 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * /// @custom:oz-upgrades-unsafe-allow constructor
 * constructor() {
 *     _disableInitializers();
 * }
 * ```
 * ====
 */
abstract contract Initializable {
    /**
     * @dev Indicates that the contract has been initialized.
     * @custom:oz-retyped-from bool
     */
    uint8 private _initialized;

    /**
     * @dev Indicates that the contract is in the process of being initialized.
     */
    bool private _initializing;

    /**
     * @dev Triggered when the contract has been initialized or reinitialized.
     */
    event Initialized(uint8 version);

    /**
     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
     * `onlyInitializing` functions can be used to initialize parent contracts.
     *
     * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
     * constructor.
     *
     * Emits an {Initialized} event.
     */
    modifier initializer() {
        bool isTopLevelCall = !_initializing;
        require(
            (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
            "Initializable: contract is already initialized"
        );
        _initialized = 1;
        if (isTopLevelCall) {
            _initializing = true;
        }
        _;
        if (isTopLevelCall) {
            _initializing = false;
            emit Initialized(1);
        }
    }

    /**
     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
     * used to initialize parent contracts.
     *
     * A reinitializer may be used after the original initialization step. This is essential to configure modules that
     * are added through upgrades and that require initialization.
     *
     * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
     * cannot be nested. If one is invoked in the context of another, execution will revert.
     *
     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
     * a contract, executing them in the right order is up to the developer or operator.
     *
     * WARNING: setting the version to 255 will prevent any future reinitialization.
     *
     * Emits an {Initialized} event.
     */
    modifier reinitializer(uint8 version) {
        require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
        _initialized = version;
        _initializing = true;
        _;
        _initializing = false;
        emit Initialized(version);
    }

    /**
     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
     * {initializer} and {reinitializer} modifiers, directly or indirectly.
     */
    modifier onlyInitializing() {
        require(_initializing, "Initializable: contract is not initializing");
        _;
    }

    /**
     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
     * through proxies.
     *
     * Emits an {Initialized} event the first time it is successfully executed.
     */
    function _disableInitializers() internal virtual {
        require(!_initializing, "Initializable: contract is initializing");
        if (_initialized != type(uint8).max) {
            _initialized = type(uint8).max;
            emit Initialized(type(uint8).max);
        }
    }

    /**
     * @dev Returns the highest version that has been initialized. See {reinitializer}.
     */
    function _getInitializedVersion() internal view returns (uint8) {
        return _initialized;
    }

    /**
     * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
     */
    function _isInitializing() internal view returns (bool) {
        return _initializing;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20Upgradeable {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 amount) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20PermitUpgradeable {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library AddressUpgradeable {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     *
     * Furthermore, `isContract` will also return true if the target contract within
     * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
     * which only has an effect at the end of a transaction.
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

import { DTokenRegistry } from "../declarations/DTokenRegistry.sol";

/**
 * @title GroupKey
 * @dev Struct representing the core group key information.
 */
struct GroupKey {
    /**
     * @dev The core group information from the DTokenRegistry.
     */
    DTokenRegistry.GroupCore core;
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

/// @notice https://forum.openzeppelin.com/t/safeerc20-vs-safeerc20upgradeable/17326
import { SafeERC20Upgradeable, IERC20Upgradeable } from "@openzeppelin/contracts-upgradeable/token/ERC20/utils/SafeERC20Upgradeable.sol";
import { CustomRevert } from "../libs/CustomRevert.sol";

// Custom type `Currency` to represent either an ERC20 token or the native currency (e.g., ETH)
type Currency is address;

/**
 * @title CurrencyLibrary
 * @dev A library for handling operations related to currencies, supporting both ERC20 tokens and native currency.
 *      Provides utility functions for balance checks, transfers, approvals, and comparisons.
 */
library CurrencyLibrary {
  // Use SafeERC20Upgradeable for IERC20Upgradeable token operations to ensure safety
  using SafeERC20Upgradeable for IERC20Upgradeable;

  // Use CustomRevert for standardized error handling via selectors
  using CustomRevert for bytes4;

  // Define a constant representing the native currency (address(0))
  Currency public constant NATIVE = Currency.wrap(address(0));

  // Custom error definitions for various invalid operations involving native currency
  error NativeCurrencyTransfersNotAllowed();
  error NativeCurrencyTransferFromNotAllowed();
  error NativeCurrencyApprovalNotAllowed();
  error NativeCurrencyDoesNotHaveTotalSupply();
  error NativeCurrencyIncreaseAllowanceNotAllowed();
  error NativeCurrencyDecreaseAllowanceNotAllowed();
  error ArbitraryTransfersNotAllowed();

  /**
   * @notice Checks if two currencies are equal.
   * @param currency The first currency to compare.
   * @param other The second currency to compare.
   * @return True if both currencies are the same, false otherwise.
   */
  function equals(Currency currency, Currency other) internal pure returns (bool) {
    return Currency.unwrap(currency) == Currency.unwrap(other);
  }

  /**
   * @notice Retrieves the balance of the specified owner for the given currency.
   * @param currency The currency to check (ERC20 token or native).
   * @param owner The address of the owner whose balance is queried.
   * @return The balance of the owner in the specified currency.
   */
  function balanceOf(Currency currency, address owner) internal view returns (uint256) {
    if (isNative(currency)) {
      return owner.balance; // For native currency, return the ETH balance
    } else {
      return IERC20Upgradeable(Currency.unwrap(currency)).balanceOf(owner); // For ERC20 tokens, use balanceOf
    }
  }

  /**
   * @notice Safely transfers a specified amount of the currency to a recipient.
   * @param currency The currency to transfer (must be an ERC20 token).
   * @param to The recipient address.
   * @param amount The amount to transfer.
   * @dev Native currency transfers are not allowed and will revert.
   */
  function safeTransfer(Currency currency, address to, uint256 amount) internal {
    if (isNative(currency)) {
      // Revert if attempting to transfer native currency using ERC20 methods
      NativeCurrencyTransfersNotAllowed.selector.revertWith();
    } else {
      IERC20Upgradeable(Currency.unwrap(currency)).safeTransfer(to, amount);
    }
  }

  /**
   * @notice Safely transfers a specified amount of the currency from one address to another.
   * @param currency The currency to transfer (must be an ERC20 token).
   * @param safeFrom The address to transfer from.
   * @param to The recipient address.
   * @param amount The amount to transfer.
   * @dev Native currency transfers are not allowed and will revert.
   * @dev Arbitrary transfers (i.e., not initiated by the sender) are also not allowed and will revert.
   * @notice Slither false positive. The function is internal and only used within the library
   */
  //slither-disable-next-line arbitrary-send-erc20
  function safeTransferFrom(Currency currency, address safeFrom, address to, uint256 amount) internal {
    if (isNative(currency)) {
      // Revert if attempting to transfer ERC20 tokens from an address other than the sender
      // This is to prevent arbitrary transfers, which are not allowed in the context of this library
      // This logic has the priority, so overrides any other inhereted logic
      NativeCurrencyTransferFromNotAllowed.selector.revertWith();
    } else {
      if (safeFrom != msg.sender) ArbitraryTransfersNotAllowed.selector.revertWith();
      IERC20Upgradeable(Currency.unwrap(currency)).safeTransferFrom(safeFrom, to, amount);
    }
  }

  /**
   * @notice Retrieves the allowance of a spender for the given owner's currency.
   * @param currency The currency to check (must be an ERC20 token).
   * @param owner The address of the owner of the currency.
   * @param spender The address of the spender.
   * @return The allowance of the spender for the owner's currency.
   */
  function allowance(Currency currency, address owner, address spender) internal view returns (uint256) {
    if (isNative(currency)) {
      return 0; // For native currency, return 0 as allowance is not applicable
    } else {
      return IERC20Upgradeable(Currency.unwrap(currency)).allowance(owner, spender); // For ERC20 tokens, use allowance
    }
  }

  /**
   * @notice Safely approves a spender to spend a specified amount of the currency.
   * @param currency The currency to approve (must be an ERC20 token).
   * @param spender The address authorized to spend the tokens.
   * @param amount The amount to approve.
   * @dev Approving native currency is not allowed and will revert.
   */
  function safeApprove(Currency currency, address spender, uint256 amount) internal {
    if (!isNative(currency)) {
      IERC20Upgradeable(Currency.unwrap(currency)).safeApprove(spender, amount);
    } else {
      // Revert if attempting to approve native currency
      NativeCurrencyApprovalNotAllowed.selector.revertWith();
    }
  }

  /**
   * @notice Safely increases the allowance of a spender for the currency.
   * @param currency The currency to modify allowance for (must be an ERC20 token).
   * @param spender The address authorized to spend the tokens.
   * @param addedValue The amount to increase the allowance by.
   * @dev Increasing allowance for native currency is not allowed and will revert.
   */
  function safeIncreaseAllowance(Currency currency, address spender, uint256 addedValue) internal {
    if (!isNative(currency)) {
      IERC20Upgradeable(Currency.unwrap(currency)).safeIncreaseAllowance(spender, addedValue);
    } else {
      // Revert if attempting to increase allowance for native currency
      NativeCurrencyIncreaseAllowanceNotAllowed.selector.revertWith();
    }
  }

  /**
   * @notice Checks if the given currency is the native currency.
   * @param currency The currency to check.
   * @return True if `currency` is the native currency, false otherwise.
   */
  function isNative(Currency currency) internal pure returns (bool) {
    return Currency.unwrap(currency) == Currency.unwrap(NATIVE);
  }

  /**
   * @notice Checks if the given currency is the zero address.
   * @param currency The currency to check.
   * @return True if `currency` is the zero address, false otherwise.
   */
  function isZero(Currency currency) internal pure returns (bool) {
    return Currency.unwrap(currency) == address(0);
  }

  /**
   * @notice Converts the currency address to a unique identifier.
   * @param currency The currency to convert.
   * @return The uint256 representation of the currency's address.
   */
  function toId(Currency currency) internal pure returns (uint256) {
    return uint160(Currency.unwrap(currency));
  }

  /**
   * @notice Unwraps the `Currency` type to retrieve the underlying address.
   * @param currency The currency to unwrap.
   * @return The underlying address of the currency.
   */
  function toAddress(Currency currency) internal pure returns (address) {
    return Currency.unwrap(currency);
  }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

import { Currency } from "../types/Currency.sol";
import { Address } from "../types/Address.sol";
import { DefaultFeeParams, FeeParams, FeePermissions, CollateralInfo } from "../types/CommonTypes.sol";

library DTokenRegistry {
  // Core tokens of the group (immutable)
  struct GroupCore {
    Currency aToken; // Yield-bearing token
    Currency xToken; // Leverage token
    Currency baseToken; // Base token for the group - wrapped Avax
    Currency yieldBearingToken; // Example: staked AVAX (immutable)
    Currency wethToken; // WETH token address for the router
  }

  // Decimals for each core token
  struct GroupDecimals {
    uint8 aTokenDecimals;
    uint8 xTokenDecimals;
    uint8 baseTokenDecimals;
    uint8 yieldBearingTokenDecimals;
  }

  // Extended group settings (mutable)
  struct GroupExtended {
    Address priceOracle; // Price Oracle address
    Address rateProvider; // Rate provider address
    Address swapRouter; // Swap Router
    Address treasury; // Treasury address
    Address feeCollector; // Fee collector address
    Address strategy; // Strategy contract address
    Currency rebalancePool; // Rebalance pool address
  }

  // Metadata for the group (partially mutable)
  struct GroupMeta {
    uint96 stabilityRatio; // Mutable stability ratio (this is 2^96-1 and we have max 5e18)
    uint96 stabilityConditionsTriggeringRate; // Mutable stability fee trigger (this is 2^96-1 and we have max 5e18)
    uint8 feeModel; // Immutable fee model used for this group
    bool isWrappingRequired; // Immutable wrapping requirement flag
  }

  // Struct representing full group setup during creation
  struct GroupSetup {
    GroupCore core;
    GroupDecimals decimals;
    GroupExtended extended;
    GroupMeta meta;
    FeeParams fees;
    DefaultFeeParams defaultFees;
    FeePermissions feePermissions;
    CollateralInfo[] acceptableCollaterals;
  }

  // Data used for updating mutable parts of the group
  struct GroupUpdate {
    GroupExtended extended;
    GroupMeta meta;
    CollateralInfo[] acceptableCollaterals;
    FeeParams feeParams;
    DefaultFeeParams defaultFees;
  }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

// Import the CustomRevert library for standardized error handling
import { CustomRevert } from "../libs/CustomRevert.sol";

/**
 * @title Address
 * @dev Defines a user-defined value type `Address` that wraps the built-in `address` type.
 */
type Address is address;

/**
 * @title AddressLibrary
 * @dev A library for performing various operations on the `Address` type.
 */
library AddressLibrary {
  // Apply the library functions to the `Address` type
  using AddressLibrary for Address;

  // Use the CustomRevert library for standardized error handling via selectors
  using CustomRevert for bytes4;

  // Custom error definitions for more descriptive revert reasons
  error ZeroAddress();
  error FailedCall(string reason);
  error NonContractAddress();
  error UnableToSendValue();

  /**
   * @notice Checks if the given `Address` is the zero address.
   * @param addr The `Address` to check.
   * @return True if `addr` is the zero address, false otherwise.
   */
  function isZero(Address addr) internal pure returns (bool) {
    return Address.unwrap(addr) == address(0);
  }

  /**
   * @notice Determines if the given `Address` is a contract.
   * @param addr The `Address` to check.
   * @return True if `addr` is a contract, false otherwise.
   *
   * @dev This method relies on the fact that contracts have non-zero code size.
   *      It returns false for contracts in construction, since the code is only stored at the end of the constructor execution.
   */
  function isContract(Address addr) internal view returns (bool) {
    return Address.unwrap(addr).code.length > 0;
  }

  /**
   * @notice Compares two `Address` instances for equality.
   * @param a The first `Address`.
   * @param b The second `Address`.
   * @return True if both addresses are equal, false otherwise.
   */
  function equals(Address a, Address b) internal pure returns (bool) {
    address addrA = Address.unwrap(a);
    address addrB = Address.unwrap(b);
    return addrA == addrB;
  }

  /**
   * @notice Converts an `Address` to a `uint160`.
   * @param addr The `Address` to convert.
   * @return The `uint160` representation of the address.
   */
  function toUint160(Address addr) internal pure returns (uint160) {
    return uint160(Address.unwrap(addr));
  }

  /**
   * @notice Creates an `Address` from a `uint160`.
   * @param addr The `uint160` value to convert.
   * @return A new `Address` instance.
   */
  function fromUint160(uint160 addr) internal pure returns (Address) {
    return Address.wrap(address(addr));
  }

  /**
   * @notice Unwraps the `Address` type to retrieve the underlying address.
   * @param addr The `Address` to unwrap.
   * @return The underlying `address`.
   */
  function toAddress(Address addr) internal pure returns (address) {
    return Address.unwrap(addr);
  }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

import { ExponentialMovingAverageV8 } from "../libs/math/ExponentialMovingAverageV8.sol";

library DTreasury {
  using ExponentialMovingAverageV8 for ExponentialMovingAverageV8.EMAStorage;

  struct GroupUpdateParams {
    uint256 baseTokenCaps;
    uint256 baseIn;
    bool beta;
  }

  struct TreasuryState {
    ExponentialMovingAverageV8.EMAStorage emaLeverageRatio;
    uint256 totalBaseTokens;
    uint256 baseTokenCaps;

    uint256 lastSettlementTimestamp;
    uint256 baseTokenPrice;
    bool inited;
    uint256 strategyUnderlying;
  }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

import { Currency, CurrencyLibrary } from "../types/Currency.sol";
import { GroupStateHelper, GroupSettings } from "../types/GroupStateHelper.sol";
import { GroupState, FeeModel } from "../types/CommonTypes.sol";
import { GroupId } from "../types/GroupId.sol";
import { DTreasury } from "../declarations/DTreasury.sol";
import { TreasuryStateLibrary } from "./TreasuryStateLibrary.sol";
import { IDXToken } from "../interfaces/IDXToken.sol";
import { IAToken } from "../interfaces/IAToken.sol";
import { IWToken } from "../interfaces/IWToken.sol";
import { IRebalancePool } from "../interfaces/IRebalancePool.sol";
import { CustomRevert } from "../libs/CustomRevert.sol";
import { FullMath } from "../libs/math/FullMath.sol";
import { IProtocolMinimum as IProtocol } from "../interfaces/IProtocolMinimum.sol";

/**
 * @title TreasuryHarvestLibrary
 * @notice This library orchestrates fee and yield harvesting for a specific group.
 * @dev It handles collecting fees, distributing base tokens, minting aTokens, and managing 
 *      yield fees. The library relies on external calls to tokens and Rebalance Pools, and 
 *      carefully handles potential revert scenarios via `try/catch` and bubble-up reverts.
 */
library TreasuryHarvestLibrary {
    using CurrencyLibrary for Currency;
    using GroupStateHelper for GroupSettings;
    using TreasuryStateLibrary for *;
    using CustomRevert for bytes4;

    // =========================
    // ======== Errors =========
    // =========================
    error ZeroAmount();
    error WrongFeeModel(GroupId groupId);
    error ErrorDistributingYield();
    error ErrorFeeCollectionFailed(GroupId groupId);
    error ErrorDistributingTokens(GroupId groupId);

    // =========================
    // ======== Events =========
    // =========================

    event FeesCollected(GroupId indexed groupId, uint256 amount);
    event FeesHarvested(GroupId indexed groupId, uint256 dxTokenBalance, address feeCollector);
    event YieldHarvested(GroupId indexed groupId, uint256 yieldAmount, address feeCollector);
    event ATokensMintedToPool(GroupId indexed groupId, uint256 aTokenAmount, address recipient);
    event TokensSwappedToPool(GroupId indexed groupId, address fromToken, address toToken, uint256 amountIn, uint256 amountOut);

    // =========================
    // ======== Structs ========
    // =========================

    /**
     * @notice Parameters used to harvest yield or fees.
     * @param sendTokens If true, will swap base tokens into stablecoins 
     *        instead of attempting to mint aTokens (when mint capacity is exceeded).
     * @param swapRouter Address of the DEX/router used to swap base tokens for stablecoins.
     * @param stablecoin The address of the stablecoin into which base tokens may be swapped.
     * @param minAmountOut The minimum amount of stablecoins that must be received from the swap 
     *        for the transaction not to revert.
     */
    struct HarvestParams {
        bool sendTokens;
        address swapRouter;
        address stablecoin;
        uint256 minAmountOut;
    }

    /**
     * @notice Collects any accrued fees from dxToken. 
     * @dev Calls `collectFees` on the dxToken. Reverts if no fees were collected.
     * @param groupState The current group state, which includes the dxToken address.
     * @return The amount of dxToken fees collected.
     */
    function collectFees(GroupState memory groupState, GroupId groupId) internal returns (uint256) {
        IDXToken dxToken = IDXToken(groupState.core.xToken.toAddress());
        uint256 dxTokenBalanceBefore = dxToken.balanceOf(address(this));
        
        // Attempt to collect fees from dxToken
        try dxToken.collectFees() {
            // Get the balance of dxToken after fees have been collected
            uint256 dxTokenBalanceAfter = dxToken.balanceOf(address(this));
            uint256 collectedAmount = dxTokenBalanceAfter - dxTokenBalanceBefore;

            // Revert if no fees were actually collected
            if (collectedAmount == 0) ZeroAmount.selector.revertWith();

            // Emit an event to log the fees collected
            emit FeesCollected(groupId, collectedAmount);

            return collectedAmount;
        } catch {
           CustomRevert.bubbleUpAndRevertWith(dxToken.collectFees.selector, address(dxToken));
        }
    }

    /**
     * @notice Harvests fees (not yield) based on the group's fee model.
     * @dev For management fees, the dxTokens are simply transferred to the feeCollector.
     *      For funding fees, dxTokens are burned and then aTokens are minted (or stablecoins are swapped).
     * @param groupId The ID of the group for which fees are harvested.
     * @param groupState The current group state data.
     * @param treasuryState The TreasuryState storage reference for updating internal state.
     * @param harvestParams Parameters controlling how the harvested tokens might be swapped or minted.
     * @param dxTokenBalance The amount of dxTokens available for fee harvesting.
     * @param feeCollector The address to which management fees should be sent.
     * @param protocol The Protocol contract address (for calculating stability ratio, etc).
    */
    function harvestFees(
        GroupId groupId,
        GroupState memory groupState,
        DTreasury.TreasuryState storage treasuryState,
        HarvestParams memory harvestParams,
        uint256 dxTokenBalance, 
        address feeCollector, 
        address protocol
    ) internal {
        IDXToken dxToken = IDXToken(groupState.core.xToken.toAddress());
        
        // Determine the fee model for this group
        FeeModel feeModel = dxToken.getFeeModel();

        if (feeModel == FeeModel.MANAGEMENT_FEE) {
            // Simply transfer dxTokens to fee collector
            groupState.core.xToken.safeTransfer(feeCollector, dxTokenBalance);
            return;
        }
        
        if (feeModel == FeeModel.VARIABLE_FUNDING_FEE || feeModel == FeeModel.FIXED_FUNDING_FEE) {
            // Calculate baseTokenAmount from dxTokens            
            uint256 baseTokenAmount = dxToken.dxTokenToBaseToken(dxTokenBalance);
            uint256 feeAmount;

            // For funding fees, burn dxTokens
            try dxToken.burn(address(this), dxTokenBalance) {} catch {
                CustomRevert.bubbleUpAndRevertWith(dxToken.burn.selector, address(dxToken));
            }

            if (feeModel == FeeModel.VARIABLE_FUNDING_FEE) {
                // apply yield and get net harvestable amount                
                (baseTokenAmount, feeAmount) = _applyYield(groupState, baseTokenAmount, feeCollector);
            }

            uint256 baseTokenAmountNormalized = TreasuryStateLibrary.normalizeDecimals(
                baseTokenAmount, 
                GroupSettings.wrap(groupState.groupSettings).getBaseTokenDecimals()
            );

            uint256 feeAmountNormalized = TreasuryStateLibrary.normalizeDecimals(
                feeAmount, 
                GroupSettings.wrap(groupState.groupSettings).getBaseTokenDecimals()
            );

            // Distribute base tokens either as aToken or stablecoin, depending on mint capacity
            treasuryState.totalBaseTokens -= baseTokenAmountNormalized + feeAmountNormalized; /// this is added because of size constraints (but we don't need to add basetokens)
            _distributeBaseTokens(
                groupState,
                groupId,
                treasuryState,
                baseTokenAmount,
                harvestParams,
                protocol
            );

            emit FeesHarvested(groupId, dxTokenBalance, feeCollector);
            return;
        }

        // If none of the recognized fee models applies, revert.
        WrongFeeModel.selector.revertWith(groupId);
    }

    /**
     * @notice Harvests yield for a group, applies any yield fees, and distributes the net amount.
     * @dev A portion of the yield is sent to the feeCollector as a yield fee (if applicable).
     * @param groupId The ID of the group for which yield is being harvested.
     * @param groupState The current group state data.
     * @param treasuryState The TreasuryState storage reference for updating internal state.
     * @param harvestParams Parameters controlling how the base tokens might be swapped or minted.
     * @param harvestableAmount The total base token amount of yield harvested.
     * @param feeCollector The address to which the yield fee is sent.
     * @param protocol The Protocol contract address (for calculating stability ratio, etc).
     */
    function harvestYield(
        GroupId groupId,
        GroupState memory groupState,
        DTreasury.TreasuryState storage treasuryState,
        HarvestParams memory harvestParams,
        uint256 harvestableAmount, 
        address feeCollector, 
        address protocol
    ) internal {
        // Apply yield fees and get net harvestable amount
        (harvestableAmount, ) = _applyYield(groupState, harvestableAmount, feeCollector);

        // Distribute the net base tokens (either as stablecoin or aTokens)
        _distributeBaseTokens(
            groupState,
            groupId,
            treasuryState,
            harvestableAmount,
            harvestParams,
            protocol
        );

        emit YieldHarvested(groupId, harvestableAmount, feeCollector);
    }

    /**
     * @notice Calculates how many aTokens should be minted given a certain amount of base tokens,
     *         and also how many aTokens can be minted at maximum without breaching collateral targets.
     * @param groupState The current group state data.
     * @param groupId The ID of the group for which aTokens will be minted.
     * @param baseTokenAmountNormalized The normalized amount of base tokens to convert into aTokens.
     * @param aToken The IAToken contract reference (whose NAV is used to compute minted supply).
     * @param protocol The Protocol contract address (for stability ratio checks).
     * @return aTokenToMint How many aTokens should be minted given the current NAV.
     * @return aTokenMintableMax The maximum number of aTokens that can be minted without breaching collateral.
     */
    function calculateMintingParams(
        DTreasury.TreasuryState storage treasuryState,
        GroupState memory groupState,
        GroupId groupId,
        uint256 baseTokenAmountNormalized,
        IAToken aToken,
        address protocol
    ) internal view returns (uint256 aTokenToMint, uint256 aTokenMintableMax) {
        // Fetch the current base token price from an oracle or similar feed
        (, uint256 newPrice) = TreasuryStateLibrary.fetchBaseTokenPrice(treasuryState, groupState);
        
        // NAV of the aToken is used to determine how many aTokens 1 base token is worth
        uint256 aTokenNav = aToken.nav();
        
        // aTokenToMint = (baseTokenAmountNormalized * newPrice) / aTokenNav
        aTokenToMint = FullMath.mulDiv(baseTokenAmountNormalized, newPrice, aTokenNav);

        // Check how many aTokens we can mint before breaching collateral/stability constraints
        (, aTokenMintableMax) = TreasuryStateLibrary.maxMintableAToken(
            treasuryState,
            groupState, 
            uint256(IProtocol(protocol).stabilityRatio(groupId))
        );
    }

    /**
     * @notice Distributes base tokens to the Rebalance Pool either by minting aTokens or swapping 
     *         them into stablecoins, depending on the mint capacity and user preference.
     * @dev If the aToken mint capacity is insufficient and `sendTokens == true`, base tokens 
     *      are swapped into stablecoins. Otherwise, the function reverts.
     * @param groupState The current group state data.
     * @param groupId The ID of the group for which distribution is happening.
     * @param treasuryState The TreasuryState storage reference for updating internal state.
     * @param baseTokenAmount The actual (denormalized) amount of base tokens.
     * @param harvestParams Struct containing swap and stablecoin parameters.
     * @param protocol The Protocol contract address (for stability ratio checks).
     */
    function _distributeBaseTokens(
        GroupState memory groupState,
        GroupId groupId,
        DTreasury.TreasuryState storage treasuryState,
        uint256 baseTokenAmount,
        HarvestParams memory harvestParams,
        address protocol
    ) private {
        IAToken aToken = IAToken(groupState.core.aToken.toAddress());
        Currency stableCoinCurrency = Currency.wrap(harvestParams.stablecoin);
        address rPool = groupState.extended.rebalancePool.toAddress();

        // Normalize the base token amount for internal accounting
        uint8 baseTokenDecimals = GroupSettings.wrap(groupState.groupSettings).getBaseTokenDecimals();
        uint256 baseTokenAmountNormalized = TreasuryStateLibrary.normalizeDecimals(
            baseTokenAmount, 
            baseTokenDecimals
        );

        // Compute how many aTokens we *need* to mint and how many are *allowed* to mint
        (uint256 aTokenToMint, uint256 aTokenMintableMax) = calculateMintingParams(
            treasuryState,
            groupState, 
            groupId, 
            baseTokenAmountNormalized, 
            aToken, 
            protocol
        );

        // If we cannot mint the entire required amount of aTokens
        if (aTokenMintableMax < aTokenToMint) {
            // If we are NOT allowed to send stablecoins, revert
            if (!harvestParams.sendTokens) ErrorDistributingTokens.selector.revertWith(groupId);

            // Decrease the treasury's totalBaseTokens because we'll unwrap and swap them
            treasuryState.totalBaseTokens -= baseTokenAmountNormalized;

            // 1. Unwrap the wrapped base tokens into their underlying (e.g., WETH -> ETH or WMATIC -> MATIC).
            uint256 unwrappedBaseTokens = IWToken(groupState.core.baseToken.toAddress()).unwrap(baseTokenAmount);

            // 2. Swap from base tokens -> stablecoins
            uint256 stablecoinAmount = TreasuryStateLibrary.swapTokens(
                address(this),
                harvestParams.swapRouter,
                // We should swap from the *yield-bearing token* (not the base token)
                groupState.core.yieldBearingToken.toAddress(),
                stableCoinCurrency.toAddress(),
                unwrappedBaseTokens,
                harvestParams.minAmountOut
            );

            // 3. Transfer the stablecoins to the Rebalance Pool
            stableCoinCurrency.safeTransfer(
                rPool, 
                stablecoinAmount
            );

            emit TokensSwappedToPool(groupId, groupState.core.baseToken.toAddress(), harvestParams.stablecoin, unwrappedBaseTokens, stablecoinAmount);

        } else {
            // We can mint the full aToken amount from the base tokens
            // Increase the treasury's totalBaseTokens accordingly
            treasuryState.totalBaseTokens += baseTokenAmountNormalized;

            // Convert aTokenToMint from normalized (18 decimals) to the actual aToken decimals
            uint8 aTokenDecimals = GroupSettings.wrap(groupState.groupSettings).getATokenDecimals();
            uint256 aTokenToMintDenorm = TreasuryStateLibrary.denormalizeDecimals(aTokenToMint, aTokenDecimals);

            // Mint aTokens directly to the Rebalance Pool
            
            aToken.mint(rPool, aTokenToMintDenorm);

            // Update the Rebalance Pool’s NAV to reflect the newly minted aTokens
            IRebalancePool(rPool).updateNAV();

            emit ATokensMintedToPool(groupId, aTokenToMintDenorm, rPool);
        }
    }

    /**
     * @notice Applies a yield fee to the harvestable amount (if any) and transfers that fee 
     *         portion to the feeCollector. Returns the net amount after fee.
     * @param groupState The current group state data (for accessing baseToken).
     * @param harvestableAmount The total yield (in base tokens) to be distributed.
     * @param feeCollector The address to which yield fees should be sent.
     * @return _harvestableAmount The net (post-fee) amount of base tokens.
     * @return _feeAmount The fee amount that was deducted and sent to the feeCollector.
     */
    function _applyYield(
        GroupState memory groupState, 
        uint256 harvestableAmount, 
        address feeCollector
    ) 
        private 
        returns (uint256 _harvestableAmount, uint256 _feeAmount) 
    {
        IRebalancePool rebalancePool = IRebalancePool(groupState.extended.rebalancePool.toAddress());
        uint256 yieldFeePercentage = rebalancePool.yieldFeePercentage();
        uint256 BASE_POINTS = 10_000;

        // If there's a yield fee, calculate and transfer it
        if (yieldFeePercentage > 0) {
            _feeAmount = (harvestableAmount * yieldFeePercentage) / BASE_POINTS;
            _harvestableAmount = harvestableAmount - _feeAmount;

            if (_feeAmount > 0) {
                groupState.core.baseToken.safeTransfer(feeCollector, _feeAmount);
            }
        } else {
            // If no yield fee, the entire amount is harvestable
            _harvestableAmount = harvestableAmount;
        }

        return (_harvestableAmount, _feeAmount);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.0;

import "./IERC20Upgradeable.sol";
import "./extensions/IERC20MetadataUpgradeable.sol";
import "../../utils/ContextUpgradeable.sol";
import {Initializable} from "../../proxy/utils/Initializable.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 * For a generic mechanism see {ERC20PresetMinterPauser}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC20
 * applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 *
 * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
 * functions have been added to mitigate the well-known issues around setting
 * allowances. See {IERC20-approve}.
 */
contract ERC20Upgradeable is Initializable, ContextUpgradeable, IERC20Upgradeable, IERC20MetadataUpgradeable {
    mapping(address => uint256) private _balances;

    mapping(address => mapping(address => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    function __ERC20_init(string memory name_, string memory symbol_) internal onlyInitializing {
        __ERC20_init_unchained(name_, symbol_);
    }

    function __ERC20_init_unchained(string memory name_, string memory symbol_) internal onlyInitializing {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual override returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual override returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual override returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual override returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual override returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `amount`.
     */
    function transfer(address to, uint256 amount) public virtual override returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, amount);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 amount) public virtual override returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, amount);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `amount`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `amount`.
     */
    function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, amount);
        _transfer(from, to, amount);
        return true;
    }

    /**
     * @dev Atomically increases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, allowance(owner, spender) + addedValue);
        return true;
    }

    /**
     * @dev Atomically decreases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `spender` must have allowance for the caller of at least
     * `subtractedValue`.
     */
    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
        address owner = _msgSender();
        uint256 currentAllowance = allowance(owner, spender);
        require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
        unchecked {
            _approve(owner, spender, currentAllowance - subtractedValue);
        }

        return true;
    }

    /**
     * @dev Moves `amount` of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `from` must have a balance of at least `amount`.
     */
    function _transfer(address from, address to, uint256 amount) internal virtual {
        require(from != address(0), "ERC20: transfer from the zero address");
        require(to != address(0), "ERC20: transfer to the zero address");

        _beforeTokenTransfer(from, to, amount);

        uint256 fromBalance = _balances[from];
        require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
        unchecked {
            _balances[from] = fromBalance - amount;
            // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
            // decrementing then incrementing.
            _balances[to] += amount;
        }

        emit Transfer(from, to, amount);

        _afterTokenTransfer(from, to, amount);
    }

    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
     * the total supply.
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     */
    function _mint(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: mint to the zero address");

        _beforeTokenTransfer(address(0), account, amount);

        _totalSupply += amount;
        unchecked {
            // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
            _balances[account] += amount;
        }
        emit Transfer(address(0), account, amount);

        _afterTokenTransfer(address(0), account, amount);
    }

    /**
     * @dev Destroys `amount` tokens from `account`, reducing the
     * total supply.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     * - `account` must have at least `amount` tokens.
     */
    function _burn(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: burn from the zero address");

        _beforeTokenTransfer(account, address(0), amount);

        uint256 accountBalance = _balances[account];
        require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
        unchecked {
            _balances[account] = accountBalance - amount;
            // Overflow not possible: amount <= accountBalance <= totalSupply.
            _totalSupply -= amount;
        }

        emit Transfer(account, address(0), amount);

        _afterTokenTransfer(account, address(0), amount);
    }

    /**
     * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     */
    function _approve(address owner, address spender, uint256 amount) internal virtual {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");

        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
     *
     * Does not update the allowance amount in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Might emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 amount) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            require(currentAllowance >= amount, "ERC20: insufficient allowance");
            unchecked {
                _approve(owner, spender, currentAllowance - amount);
            }
        }
    }

    /**
     * @dev Hook that is called before any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * will be transferred to `to`.
     * - when `from` is zero, `amount` tokens will be minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {}

    /**
     * @dev Hook that is called after any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * has been transferred to `to`.
     * - when `from` is zero, `amount` tokens have been minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {}

    /**
     * @dev This empty reserved space is put in place to allow future versions to add new
     * variables without shifting down storage in the inheritance chain.
     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
     */
    uint256[45] private __gap;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.0;

import "../StringsUpgradeable.sol";

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSAUpgradeable {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS,
        InvalidSignatureV // Deprecated in v4.8
    }

    function _throwError(RecoverError error) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert("ECDSA: invalid signature");
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert("ECDSA: invalid signature length");
        } else if (error == RecoverError.InvalidSignatureS) {
            revert("ECDSA: invalid signature 's' value");
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature` or error string. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength);
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, signature);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
        bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
        uint8 v = uint8((uint256(vs) >> 255) + 27);
        return tryRecover(hash, v, r, s);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     *
     * _Available since v4.2._
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, r, vs);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature);
        }

        return (signer, RecoverError.NoError);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from a `hash`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
        // 32 is the length in bytes of hash,
        // enforced by the type signature above
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, "\x19Ethereum Signed Message:\n32")
            mstore(0x1c, hash)
            message := keccak256(0x00, 0x3c)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from `s`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", StringsUpgradeable.toString(s.length), s));
    }

    /**
     * @dev Returns an Ethereum Signed Typed Data, created from a
     * `domainSeparator` and a `structHash`. This produces hash corresponding
     * to the one signed with the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
     * JSON-RPC method as part of EIP-712.
     *
     * See {recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, "\x19\x01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            data := keccak256(ptr, 0x42)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Data with intended validator, created from a
     * `validator` and `data` according to the version 0 of EIP-191.
     *
     * See {recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19\x00", validator, data));
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/EIP712.sol)

pragma solidity ^0.8.8;

import "./ECDSAUpgradeable.sol";
import "../../interfaces/IERC5267Upgradeable.sol";
import {Initializable} from "../../proxy/utils/Initializable.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible,
 * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding
 * they need in their contracts using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
 * separator of the implementation contract. This will cause the `_domainSeparatorV4` function to always rebuild the
 * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
 *
 * _Available since v3.4._
 *
 * @custom:storage-size 52
 */
abstract contract EIP712Upgradeable is Initializable, IERC5267Upgradeable {
    bytes32 private constant _TYPE_HASH =
        keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");

    /// @custom:oz-renamed-from _HASHED_NAME
    bytes32 private _hashedName;
    /// @custom:oz-renamed-from _HASHED_VERSION
    bytes32 private _hashedVersion;

    string private _name;
    string private _version;

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    function __EIP712_init(string memory name, string memory version) internal onlyInitializing {
        __EIP712_init_unchained(name, version);
    }

    function __EIP712_init_unchained(string memory name, string memory version) internal onlyInitializing {
        _name = name;
        _version = version;

        // Reset prior values in storage if upgrading
        _hashedName = 0;
        _hashedVersion = 0;
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view returns (bytes32) {
        return _buildDomainSeparator();
    }

    function _buildDomainSeparator() private view returns (bytes32) {
        return keccak256(abi.encode(_TYPE_HASH, _EIP712NameHash(), _EIP712VersionHash(), block.chainid, address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return ECDSAUpgradeable.toTypedDataHash(_domainSeparatorV4(), structHash);
    }

    /**
     * @dev See {EIP-5267}.
     *
     * _Available since v4.9._
     */
    function eip712Domain()
        public
        view
        virtual
        override
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        )
    {
        // If the hashed name and version in storage are non-zero, the contract hasn't been properly initialized
        // and the EIP712 domain is not reliable, as it will be missing name and version.
        require(_hashedName == 0 && _hashedVersion == 0, "EIP712: Uninitialized");

        return (
            hex"0f", // 01111
            _EIP712Name(),
            _EIP712Version(),
            block.chainid,
            address(this),
            bytes32(0),
            new uint256[](0)
        );
    }

    /**
     * @dev The name parameter for the EIP712 domain.
     *
     * NOTE: This function reads from storage by default, but can be redefined to return a constant value if gas costs
     * are a concern.
     */
    function _EIP712Name() internal virtual view returns (string memory) {
        return _name;
    }

    /**
     * @dev The version parameter for the EIP712 domain.
     *
     * NOTE: This function reads from storage by default, but can be redefined to return a constant value if gas costs
     * are a concern.
     */
    function _EIP712Version() internal virtual view returns (string memory) {
        return _version;
    }

    /**
     * @dev The hash of the name parameter for the EIP712 domain.
     *
     * NOTE: In previous versions this function was virtual. In this version you should override `_EIP712Name` instead.
     */
    function _EIP712NameHash() internal view returns (bytes32) {
        string memory name = _EIP712Name();
        if (bytes(name).length > 0) {
            return keccak256(bytes(name));
        } else {
            // If the name is empty, the contract may have been upgraded without initializing the new storage.
            // We return the name hash in storage if non-zero, otherwise we assume the name is empty by design.
            bytes32 hashedName = _hashedName;
            if (hashedName != 0) {
                return hashedName;
            } else {
                return keccak256("");
            }
        }
    }

    /**
     * @dev The hash of the version parameter for the EIP712 domain.
     *
     * NOTE: In previous versions this function was virtual. In this version you should override `_EIP712Version` instead.
     */
    function _EIP712VersionHash() internal view returns (bytes32) {
        string memory version = _EIP712Version();
        if (bytes(version).length > 0) {
            return keccak256(bytes(version));
        } else {
            // If the version is empty, the contract may have been upgraded without initializing the new storage.
            // We return the version hash in storage if non-zero, otherwise we assume the version is empty by design.
            bytes32 hashedVersion = _hashedVersion;
            if (hashedVersion != 0) {
                return hashedVersion;
            } else {
                return keccak256("");
            }
        }
    }

    /**
     * @dev This empty reserved space is put in place to allow future versions to add new
     * variables without shifting down storage in the inheritance chain.
     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
     */
    uint256[48] private __gap;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Counters.sol)

pragma solidity ^0.8.0;

/**
 * @title Counters
 * @author Matt Condon (@shrugs)
 * @dev Provides counters that can only be incremented, decremented or reset. This can be used e.g. to track the number
 * of elements in a mapping, issuing ERC721 ids, or counting request ids.
 *
 * Include with `using Counters for Counters.Counter;`
 */
library CountersUpgradeable {
    struct Counter {
        // This variable should never be directly accessed by users of the library: interactions must be restricted to
        // the library's function. As of Solidity v0.5.2, this cannot be enforced, though there is a proposal to add
        // this feature: see https://github.com/ethereum/solidity/issues/4637
        uint256 _value; // default: 0
    }

    function current(Counter storage counter) internal view returns (uint256) {
        return counter._value;
    }

    function increment(Counter storage counter) internal {
        unchecked {
            counter._value += 1;
        }
    }

    function decrement(Counter storage counter) internal {
        uint256 value = counter._value;
        require(value > 0, "Counter: decrement overflow");
        unchecked {
            counter._value = value - 1;
        }
    }

    function reset(Counter storage counter) internal {
        counter._value = 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library MathUpgradeable {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMathUpgradeable {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165Upgradeable {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

// SPDX-License-Identifier: MIT

pragma solidity 0.8.28;

import { LogExpMathV8 } from "./LogExpMathV8.sol";

// solhint-disable not-rely-on-time

/// @dev See https://en.wikipedia.org/wiki/Exponential_smoothing
/// It is the same as `ExponentialMovingAverageV7` with `unchecked` scope.
library ExponentialMovingAverageV8 {
  /*************
   * Constants *
   *************/

  /// @dev The precision used to compute EMA.
  uint256 private constant PRECISION = 1e18;

  /***********
   * Structs *
   ***********/

  /// @dev Compiler will pack this into single `uint256`.
  /// @param lastTime The last timestamp when the storage is updated.
  /// @param sampleInterval The sampling time interval used in the EMA.
  /// @param lastValue The last value in the data sequence, with precision 1e18.
  /// @param lastEmaValue The last EMA value computed, with precision 1e18.
  struct EMAStorage {
    uint40 lastTime;
    uint24 sampleInterval;
    uint96 lastValue;
    uint96 lastEmaValue;
  }

  /// @dev Save value of EMA storage.
  /// @param s The EMA storage.
  /// @param value The new value, with precision 1e18.
  function saveValue(EMAStorage storage s, uint96 value) internal {
    s.lastEmaValue = uint96(emaValue(s));
    s.lastValue = value;
    s.lastTime = uint40(block.timestamp);
  }

  /// @dev Return the current ema value.
  /// @param s The EMA storage.
  function emaValue(EMAStorage storage s) internal view returns (uint256) {
    unchecked {
      if (uint256(s.lastTime) < block.timestamp) {
        uint256 dt = block.timestamp - uint256(s.lastTime);
        uint256 e = (dt * PRECISION) / s.sampleInterval;
        if (e > 41e18) {
          return s.lastValue;
        } else {
          uint256 alpha = uint256(LogExpMathV8.exp(-int256(e)));
          return (s.lastValue * (PRECISION - alpha) + s.lastEmaValue * alpha) / PRECISION;
        }
      } else {
        return s.lastEmaValue;
      }
    }
  }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

import { DTokenRegistry } from "../declarations/DTokenRegistry.sol";
import { WordCodec } from "../libs/WordCodec.sol";
import { Address, AddressLibrary } from "../types/Address.sol";
import { Currency, CurrencyLibrary } from "../types/Currency.sol";
import { DefaultFeeParams, FeeParams, FeePermissions, CollateralInfo, GroupState } from "../types/CommonTypes.sol";
import { ITokenRegistry } from "../interfaces/ITokenRegistry.sol";

/**
 * @title GroupStateHelper
 * @notice Library for managing group settings and fee parameters in a space-efficient manner using bit packing
 * @dev Uses WordCodec for bit manipulation operations to store and retrieve various parameters
 */
type GroupSettings is bytes32;

library GroupStateHelper {
  using WordCodec for bytes32;
  using CurrencyLibrary for Currency;
  using AddressLibrary for address;

  // Group Settings bit layout (total 256 bits):
  uint256 private constant A_TOKEN_DECIMALS_OFFSET = 0; // [0-7]:    aToken decimals (8 bits)
  uint256 private constant X_TOKEN_DECIMALS_OFFSET = 8; // [8-15]:   xToken decimals (8 bits)
  uint256 private constant BASE_TOKEN_DECIMALS_OFFSET = 16; // [16-23]:  baseToken decimals (8 bits)
  uint256 private constant YIELD_BEARING_TOKEN_DECIMALS_OFFSET = 24; // [24-31]:  yieldBearingToken decimals (8 bits)
  uint256 private constant HOOK_PERMISSIONS_OFFSET = 32; // [32-47]:  hook permissions (16 bits)
  uint256 private constant FEE_PERMISSIONS_OFFSET = 48; // [48-49]:  fee permissions (2 bits)
  uint256 private constant FEE_MODEL_OFFSET = 50; // [50-57]:  fee model (8 bits)
  uint256 private constant WRAPPING_REQUIRED_OFFSET = 58; // [58]:     wrapping required (1 bit)
  uint256 private constant STABILITY_RATIO_OFFSET = 59; // [59-154]: stability ratio (96 bits)
  uint256 private constant STABILITY_TRIGGER_RATIO_OFFSET = 155; // [155-250]: stability triggering ratio (96 bits)

  // Fee Parameters bit layout (total 256 bits):
  uint256 private constant MAX_FEE_OFFSET = 0; // [0-15]:   max fee (16 bits)
  uint256 private constant MIN_FEE_OFFSET = 16; // [16-31]:  min fee (16 bits)
  uint256 private constant BASE_FEE_OFFSET = 32; // [32-47]:  base fee (16 bits)
  uint256 private constant YIELD_FEE_VT_OFFSET = 48; // [48-63]:  yield fee VT (16 bits)
  uint256 private constant YIELD_FEE_YT_OFFSET = 64; // [64-79]:  yield fee YT (16 bits)
  uint256 private constant REDEEM_FEE_YT_OFFSET = 80; // [80-103]: redeem fee YT (24 bits)
  uint256 private constant MINT_FEE_YT_OFFSET = 104; // [104-127]: mint fee YT (24 bits)
  uint256 private constant REDEEM_FEE_VT_OFFSET = 128; // [128-151]: redeem fee VT (24 bits)
  uint256 private constant MINT_FEE_VT_OFFSET = 152; // [152-175]: mint fee VT (24 bits)
  uint256 private constant STABILITY_MINT_FEE_VT_OFFSET = 176; // [176-191]: stability mint fee VT (16 bits)
  uint256 private constant STABILITY_MINT_FEE_YT_OFFSET = 192; // [192-207]: stability mint fee YT (16 bits)
  uint256 private constant STABILITY_REDEEM_FEE_VT_OFFSET = 208; // [208-223]: stability redeem fee VT (16 bits)
  uint256 private constant STABILITY_REDEEM_FEE_YT_OFFSET = 224; // [224-239]: stability redeem fee YT (16 bits)
  uint256 private constant PROTOCOL_FEE_OFFSET = 240; // [240-255]: protocol fee (16 bits)

  // Common bit lengths
  uint256 private constant LENGTH_1BIT = 1;
  uint256 private constant LENGTH_2BITS = 2;
  uint256 private constant LENGTH_8BITS = 8;
  uint256 private constant LENGTH_16BITS = 16;
  uint256 private constant LENGTH_24BITS = 24;
  uint256 private constant LENGTH_96BITS = 96;

  /**
   * @notice Retrieves the aToken decimals from group settings
   * @param groupSettings The packed group settings
   * @return The aToken decimals
   */
  function getATokenDecimals(GroupSettings groupSettings) internal pure returns (uint8) {
    return uint8(GroupSettings.unwrap(groupSettings).decodeUint(A_TOKEN_DECIMALS_OFFSET, LENGTH_8BITS));
  }

  /**
   * @notice Retrieves the xToken decimals from group settings
   * @param groupSettings The packed group settings
   * @return The xToken decimals
   */
  function getXTokenDecimals(GroupSettings groupSettings) internal pure returns (uint8) {
    return uint8(GroupSettings.unwrap(groupSettings).decodeUint(X_TOKEN_DECIMALS_OFFSET, LENGTH_8BITS));
  }

  /**
   * @notice Retrieves the baseToken decimals from group settings
   * @param groupSettings The packed group settings
   * @return The baseToken decimals
   */
  function getBaseTokenDecimals(GroupSettings groupSettings) internal pure returns (uint8) {
    return uint8(GroupSettings.unwrap(groupSettings).decodeUint(BASE_TOKEN_DECIMALS_OFFSET, LENGTH_8BITS));
  }

  /**
   * @notice Retrieves the yieldBearingToken decimals from group settings
   * @param groupSettings The packed group settings
   * @return The yieldBearingToken decimals
   */
  function getYieldBearingTokenDecimals(GroupSettings groupSettings) internal pure returns (uint8) {
    return uint8(GroupSettings.unwrap(groupSettings).decodeUint(YIELD_BEARING_TOKEN_DECIMALS_OFFSET, LENGTH_8BITS));
  }

  /**
   * @notice Retrieves the hook permissions from group settings
   * @param groupSettings The packed group settings
   * @return The hook permissions
   */
  function getHookPermissions(GroupSettings groupSettings) internal pure returns (uint16) {
    return uint16(GroupSettings.unwrap(groupSettings).decodeUint(HOOK_PERMISSIONS_OFFSET, LENGTH_16BITS));
  }

  /**
   * @notice Retrieves the fee permissions from group settings
   * @param groupSettings The packed group settings
   * @return FeePermissions struct containing permission flags
   */
  function getFeePermissions(GroupSettings groupSettings) internal pure returns (FeePermissions memory) {
    bytes32 raw = GroupSettings.unwrap(groupSettings);
    return
      FeePermissions({ isDynamic: raw.decodeBool(FEE_PERMISSIONS_OFFSET + 1), allowDelegation: raw.decodeBool(FEE_PERMISSIONS_OFFSET) });
  }

  /**
   * @notice Retrieves the fee model from group settings
   * @param groupSettings The packed group settings
   * @return The fee model
   */
  function getFeeModel(GroupSettings groupSettings) internal pure returns (uint8) {
    return uint8(GroupSettings.unwrap(groupSettings).decodeUint(FEE_MODEL_OFFSET, LENGTH_8BITS));
  }

  /**
   * @notice Checks if wrapping is required from group settings
   * @param groupSettings The packed group settings
   * @return True if wrapping is required, false otherwise
   */
  function isWrappingRequired(GroupSettings groupSettings) internal pure returns (bool) {
    return GroupSettings.unwrap(groupSettings).decodeBool(WRAPPING_REQUIRED_OFFSET);
  }

  /**
   * @notice Retrieves the stability ratio from group settings
   * @param groupSettings The packed group settings
   * @return The stability ratio (scaled by 1e18)
   */
  function getStabilityRatio(GroupSettings groupSettings) internal pure returns (uint96) {
    return uint96(GroupSettings.unwrap(groupSettings).decodeUint(STABILITY_RATIO_OFFSET, LENGTH_96BITS));
  }

  /**
   * @notice Retrieves the stability triggering ratio from group settings
   * @param groupSettings The packed group settings
   * @return The stability triggering ratio (scaled by 1e18)
   */
  function getStabilityTriggeringRatio(GroupSettings groupSettings) internal pure returns (uint96) {
    return uint96(GroupSettings.unwrap(groupSettings).decodeUint(STABILITY_TRIGGER_RATIO_OFFSET, LENGTH_96BITS));
  }

  /**
   * @notice Sets the aToken decimals in group settings
   * @param groupSettings Current group settings
   * @param decimals The new aToken decimals
   * @return Updated group settings
   */
  function setATokenDecimals(GroupSettings groupSettings, uint8 decimals) internal pure returns (GroupSettings) {
    bytes32 updated = GroupSettings.unwrap(groupSettings).insertUint(uint256(decimals), A_TOKEN_DECIMALS_OFFSET, LENGTH_8BITS);
    return GroupSettings.wrap(updated);
  }

  /**
   * @notice Sets the xToken decimals in group settings
   * @param groupSettings Current group settings
   * @param decimals The new xToken decimals
   * @return Updated group settings
   */
  function setXTokenDecimals(GroupSettings groupSettings, uint8 decimals) internal pure returns (GroupSettings) {
    bytes32 updated = GroupSettings.unwrap(groupSettings).insertUint(uint256(decimals), X_TOKEN_DECIMALS_OFFSET, LENGTH_8BITS);
    return GroupSettings.wrap(updated);
  }

  /**
   * @notice Sets the baseToken decimals in group settings
   * @param groupSettings Current group settings
   * @param decimals The new baseToken decimals
   * @return Updated group settings
   */
  function setBaseTokenDecimals(GroupSettings groupSettings, uint8 decimals) internal pure returns (GroupSettings) {
    bytes32 updated = GroupSettings.unwrap(groupSettings).insertUint(uint256(decimals), BASE_TOKEN_DECIMALS_OFFSET, LENGTH_8BITS);
    return GroupSettings.wrap(updated);
  }

  /**
   * @notice Sets the yieldBearingToken decimals in group settings
   * @param groupSettings Current group settings
   * @param decimals The new yieldBearingToken decimals
   * @return Updated group settings
   */
  function setYieldBearingTokenDecimals(GroupSettings groupSettings, uint8 decimals) internal pure returns (GroupSettings) {
    bytes32 updated = GroupSettings.unwrap(groupSettings).insertUint(uint256(decimals), YIELD_BEARING_TOKEN_DECIMALS_OFFSET, LENGTH_8BITS);
    return GroupSettings.wrap(updated);
  }

  /**
   * @notice Sets the hook permissions in group settings
   * @param groupSettings Current group settings
   * @param hookPermissions The new hook permissions
   * @return Updated group settings
   */
  function setHookPermissions(GroupSettings groupSettings, uint16 hookPermissions) internal pure returns (GroupSettings) {
    bytes32 updated = GroupSettings.unwrap(groupSettings).insertUint(uint256(hookPermissions), HOOK_PERMISSIONS_OFFSET, LENGTH_16BITS);
    return GroupSettings.wrap(updated);
  }

  /**
   * @notice Sets the fee permissions in group settings
   * @param groupSettings Current group settings
   * @param permissions The new fee permissions
   * @return Updated group settings
   */
  function setFeePermissions(GroupSettings groupSettings, FeePermissions memory permissions) internal pure returns (GroupSettings) {
    bytes32 raw = GroupSettings.unwrap(groupSettings);
    raw = raw.insertBool(permissions.allowDelegation, FEE_PERMISSIONS_OFFSET);
    raw = raw.insertBool(permissions.isDynamic, FEE_PERMISSIONS_OFFSET + 1);
    return GroupSettings.wrap(raw);
  }

  /**
   * @notice Sets the fee model in group settings
   * @param groupSettings Current group settings
   * @param feeModel The new fee model
   * @return Updated group settings
   */
  function setFeeModel(GroupSettings groupSettings, uint8 feeModel) internal pure returns (GroupSettings) {
    bytes32 updated = GroupSettings.unwrap(groupSettings).insertUint(uint256(feeModel), FEE_MODEL_OFFSET, LENGTH_8BITS);
    return GroupSettings.wrap(updated);
  }

  /**
   * @notice Sets the wrapping required flag in group settings
   * @param groupSettings Current group settings
   * @param wrappingRequired The new wrapping required flag
   * @return Updated group settings
   */
  function setWrappingRequired(GroupSettings groupSettings, bool wrappingRequired) internal pure returns (GroupSettings) {
    bytes32 updated = GroupSettings.unwrap(groupSettings).insertBool(wrappingRequired, WRAPPING_REQUIRED_OFFSET);
    return GroupSettings.wrap(updated);
  }

  /**
   * @notice Sets the stability ratio in group settings
   * @param groupSettings Current group settings
   * @param stabilityRatio The new stability ratio (scaled by 1e18)
   * @return Updated group settings
   */
  function setStabilityRatio(GroupSettings groupSettings, uint96 stabilityRatio) internal pure returns (GroupSettings) {
    bytes32 updated = GroupSettings.unwrap(groupSettings).insertUint(uint256(stabilityRatio), STABILITY_RATIO_OFFSET, LENGTH_96BITS);
    return GroupSettings.wrap(updated);
  }

  /**
   * @notice Sets the stability triggering ratio in group settings
   * @param groupSettings Current group settings
   * @param stabilityTriggeringRatio The new stability triggering ratio (scaled by 1e18)
   * @return Updated group settings
   */
  function setStabilityTriggeringRatio(GroupSettings groupSettings, uint96 stabilityTriggeringRatio) internal pure returns (GroupSettings) {
    bytes32 updated = GroupSettings.unwrap(groupSettings).insertUint(
      uint256(stabilityTriggeringRatio),
      STABILITY_TRIGGER_RATIO_OFFSET,
      LENGTH_96BITS
    );
    return GroupSettings.wrap(updated);
  }

  /**
   * @notice Retrieves all fee parameters from packed fees
   * @param feesPacked The packed fees
   * @return FeeParams struct containing all fee parameters
   */
  function getFeeParams(bytes32 feesPacked) internal pure returns (FeeParams memory) {
    return
      FeeParams({
        mintFeeVT: uint24(feesPacked.decodeUint(MINT_FEE_VT_OFFSET, LENGTH_24BITS)),
        redeemFeeVT: uint24(feesPacked.decodeUint(REDEEM_FEE_VT_OFFSET, LENGTH_24BITS)),
        mintFeeYT: uint24(feesPacked.decodeUint(MINT_FEE_YT_OFFSET, LENGTH_24BITS)),
        redeemFeeYT: uint24(feesPacked.decodeUint(REDEEM_FEE_YT_OFFSET, LENGTH_24BITS)),
        // Upcast 16-bit stability fees to 24-bit
        stabilityMintFeeVT: uint24(uint16(feesPacked.decodeUint(STABILITY_MINT_FEE_VT_OFFSET, LENGTH_16BITS))),
        stabilityMintFeeYT: uint24(uint16(feesPacked.decodeUint(STABILITY_MINT_FEE_YT_OFFSET, LENGTH_16BITS))),
        stabilityRedeemFeeVT: uint24(uint16(feesPacked.decodeUint(STABILITY_REDEEM_FEE_VT_OFFSET, LENGTH_16BITS))),
        stabilityRedeemFeeYT: uint24(uint16(feesPacked.decodeUint(STABILITY_REDEEM_FEE_YT_OFFSET, LENGTH_16BITS))),
        // Upcast 16-bit yield fees to 24-bit
        yieldFeeVT: uint24(uint16(feesPacked.decodeUint(YIELD_FEE_VT_OFFSET, LENGTH_16BITS))),
        yieldFeeYT: uint24(uint16(feesPacked.decodeUint(YIELD_FEE_YT_OFFSET, LENGTH_16BITS))),
        protocolFee: uint16(feesPacked.decodeUint(PROTOCOL_FEE_OFFSET, LENGTH_16BITS))
      });
  }

  /**
   * @notice Retrieves the default fee parameters from packed fees
   * @param feesPacked The packed fees
   * @return DefaultFeeParams struct containing min, max and base fees
   */
  function getDefaultFeeParams(bytes32 feesPacked) internal pure returns (DefaultFeeParams memory) {
    return
      DefaultFeeParams({
        baseFee: uint24(feesPacked.decodeUint(BASE_FEE_OFFSET, LENGTH_16BITS)),
        maxFee: uint16(feesPacked.decodeUint(MAX_FEE_OFFSET, LENGTH_16BITS)),
        minFee: uint16(feesPacked.decodeUint(MIN_FEE_OFFSET, LENGTH_16BITS))
      });
  }

  /**
   * @notice Retrieves the max fee from packed fees
   * @param feesPacked The packed fees
   * @return The max fee value (24-bit)
   */
  function getMaxFee(bytes32 feesPacked) internal pure returns (uint24) {
    return uint24(uint16(feesPacked.decodeUint(MAX_FEE_OFFSET, LENGTH_16BITS)));
  }

  /**
   * @notice Retrieves the min fee from packed fees
   * @param feesPacked The packed fees
   * @return The min fee value (24-bit)
   */
  function getMinFee(bytes32 feesPacked) internal pure returns (uint24) {
    return uint24(uint16(feesPacked.decodeUint(MIN_FEE_OFFSET, LENGTH_16BITS)));
  }

  /**
   * @notice Retrieves the base fee from packed fees
   * @param feesPacked The packed fees
   * @return The base fee value (24-bit)
   */
  function getBaseFee(bytes32 feesPacked) internal pure returns (uint24) {
    return uint24(uint16(feesPacked.decodeUint(BASE_FEE_OFFSET, LENGTH_16BITS)));
  }

  /**
   * @notice Retrieves the yield fee VT from packed fees
   * @param feesPacked The packed fees
   * @return The yield fee VT value (24-bit)
   */
  function getYieldFeeVT(bytes32 feesPacked) internal pure returns (uint24) {
    return uint24(uint16(feesPacked.decodeUint(YIELD_FEE_VT_OFFSET, LENGTH_16BITS)));
  }

  /**
   * @notice Retrieves the yield fee YT from packed fees
   * @param feesPacked The packed fees
   * @return The yield fee YT value (24-bit)
   */
  function getYieldFeeYT(bytes32 feesPacked) internal pure returns (uint24) {
    return uint24(uint16(feesPacked.decodeUint(YIELD_FEE_YT_OFFSET, LENGTH_16BITS)));
  }

  /**
   * @notice Retrieves the mint fee VT from packed fees
   * @param feesPacked The packed fees
   * @return The mint fee VT value (24-bit)
   */
  function getMintFeeVT(bytes32 feesPacked) internal pure returns (uint24) {
    return uint24(feesPacked.decodeUint(MINT_FEE_VT_OFFSET, LENGTH_24BITS));
  }

  /**
   * @notice Retrieves the redeem fee VT from packed fees
   * @param feesPacked The packed fees
   * @return The redeem fee VT value (24-bit)
   */
  function getRedeemFeeVT(bytes32 feesPacked) internal pure returns (uint24) {
    return uint24(feesPacked.decodeUint(REDEEM_FEE_VT_OFFSET, LENGTH_24BITS));
  }

  /**
   * @notice Retrieves the mint fee YT from packed fees
   * @param feesPacked The packed fees
   * @return The mint fee YT value (24-bit)
   */
  function getMintFeeYT(bytes32 feesPacked) internal pure returns (uint24) {
    return uint24(feesPacked.decodeUint(MINT_FEE_YT_OFFSET, LENGTH_24BITS));
  }

  /**
   * @notice Retrieves the redeem fee YT from packed fees
   * @param feesPacked The packed fees
   * @return The redeem fee YT value (24-bit)
   */
  function getRedeemFeeYT(bytes32 feesPacked) internal pure returns (uint24) {
    return uint24(feesPacked.decodeUint(REDEEM_FEE_YT_OFFSET, LENGTH_24BITS));
  }

  /**
   * @notice Retrieves the stability mint fee VT from packed fees
   * @param feesPacked The packed fees
   * @return The stability mint fee VT value (24-bit)
   */
  function getStabilityMintFeeVT(bytes32 feesPacked) internal pure returns (uint24) {
    return uint24(uint16(feesPacked.decodeUint(STABILITY_MINT_FEE_VT_OFFSET, LENGTH_16BITS)));
  }

  /**
   * @notice Retrieves the stability mint fee YT from packed fees
   * @param feesPacked The packed fees
   * @return The stability mint fee YT value (24-bit)
   */
  function getStabilityMintFeeYT(bytes32 feesPacked) internal pure returns (uint24) {
    return uint24(uint16(feesPacked.decodeUint(STABILITY_MINT_FEE_YT_OFFSET, LENGTH_16BITS)));
  }

  /**
   * @notice Retrieves the stability redeem fee VT from packed fees
   * @param feesPacked The packed fees
   * @return The stability redeem fee VT value (24-bit)
   */
  function getStabilityRedeemFeeVT(bytes32 feesPacked) internal pure returns (uint24) {
    return uint24(uint16(feesPacked.decodeUint(STABILITY_REDEEM_FEE_VT_OFFSET, LENGTH_16BITS)));
  }

  /**
   * @notice Retrieves the stability redeem fee YT from packed fees
   * @param feesPacked The packed fees
   * @return The stability redeem fee YT value (24-bit)
   */
  function getStabilityRedeemFeeYT(bytes32 feesPacked) internal pure returns (uint24) {
    return uint24(uint16(feesPacked.decodeUint(STABILITY_REDEEM_FEE_YT_OFFSET, LENGTH_16BITS)));
  }

  /**
   * @notice Retrieves the protocol fee from packed fees
   * @param feesPacked The packed fees
   * @return The protocol fee value (24-bit)
   */
  function getProtocolFee(bytes32 feesPacked) internal pure returns (uint24) {
    return uint24(uint16(feesPacked.decodeUint(PROTOCOL_FEE_OFFSET, LENGTH_16BITS)));
  }

  /**
   * @notice Sets the max fee in packed fees
   * @param feesPacked Current packed fees
   * @param maxFee The new max fee value (truncated to 16-bit)
   * @return Updated packed fees
   */
  function setMaxFee(bytes32 feesPacked, uint24 maxFee) internal pure returns (bytes32) {
    return feesPacked.insertUint(uint256(uint16(maxFee)), MAX_FEE_OFFSET, LENGTH_16BITS);
  }

  /**
   * @notice Sets the min fee in packed fees
   * @param feesPacked Current packed fees
   * @param minFee The new min fee value (truncated to 16-bit)
   * @return Updated packed fees
   */
  function setMinFee(bytes32 feesPacked, uint24 minFee) internal pure returns (bytes32) {
    return feesPacked.insertUint(uint256(uint16(minFee)), MIN_FEE_OFFSET, LENGTH_16BITS);
  }

  /**
   * @notice Sets the base fee in packed fees
   * @param feesPacked Current packed fees
   * @param baseFee The new base fee value (truncated to 16-bit)
   * @return Updated packed fees
   */
  function setBaseFee(bytes32 feesPacked, uint24 baseFee) internal pure returns (bytes32) {
    return feesPacked.insertUint(uint256(uint16(baseFee)), BASE_FEE_OFFSET, LENGTH_16BITS);
  }

  /**
   * @notice Sets the yield fee VT in packed fees
   * @param feesPacked Current packed fees
   * @param yieldFeeVT The new yield fee VT value (truncated to 16-bit)
   * @return Updated packed fees
   */
  function setYieldFeeVT(bytes32 feesPacked, uint24 yieldFeeVT) internal pure returns (bytes32) {
    return feesPacked.insertUint(uint256(uint16(yieldFeeVT)), YIELD_FEE_VT_OFFSET, LENGTH_16BITS);
  }

  /**
   * @notice Sets the yield fee YT in packed fees
   * @param feesPacked Current packed fees
   * @param yieldFeeYT The new yield fee YT value (truncated to 16-bit)
   * @return Updated packed fees
   */
  function setYieldFeeYT(bytes32 feesPacked, uint24 yieldFeeYT) internal pure returns (bytes32) {
    return feesPacked.insertUint(uint256(uint16(yieldFeeYT)), YIELD_FEE_YT_OFFSET, LENGTH_16BITS);
  }

  /**
   * @notice Sets the mint fee VT in packed fees
   * @param feesPacked Current packed fees
   * @param mintFeeVT The new mint fee VT value
   * @return Updated packed fees
   */
  function setMintFeeVT(bytes32 feesPacked, uint24 mintFeeVT) internal pure returns (bytes32) {
    return feesPacked.insertUint(uint256(mintFeeVT), MINT_FEE_VT_OFFSET, LENGTH_24BITS);
  }

  /**
   * @notice Sets the redeem fee VT in packed fees
   * @param feesPacked Current packed fees
   * @param redeemFeeVT The new redeem fee VT value
   * @return Updated packed fees
   */
  function setRedeemFeeVT(bytes32 feesPacked, uint24 redeemFeeVT) internal pure returns (bytes32) {
    return feesPacked.insertUint(uint256(redeemFeeVT), REDEEM_FEE_VT_OFFSET, LENGTH_24BITS);
  }

  /**
   * @notice Sets the mint fee YT in packed fees
   * @param feesPacked Current packed fees
   * @param mintFeeYT The new mint fee YT value
   * @return Updated packed fees
   */
  function setMintFeeYT(bytes32 feesPacked, uint24 mintFeeYT) internal pure returns (bytes32) {
    return feesPacked.insertUint(uint256(mintFeeYT), MINT_FEE_YT_OFFSET, LENGTH_24BITS);
  }

  /**
   * @notice Sets the redeem fee YT in packed fees
   * @param feesPacked Current packed fees
   * @param redeemFeeYT The new redeem fee YT value
   * @return Updated packed fees
   */
  function setRedeemFeeYT(bytes32 feesPacked, uint24 redeemFeeYT) internal pure returns (bytes32) {
    return feesPacked.insertUint(uint256(redeemFeeYT), REDEEM_FEE_YT_OFFSET, LENGTH_24BITS);
  }

  /**
   * @notice Sets the stability mint fee VT in packed fees
   * @param feesPacked Current packed fees
   * @param stabilityMintFeeVT The new stability mint fee VT value (truncated to 16-bit)
   * @return Updated packed fees
   */
  function setStabilityMintFeeVT(bytes32 feesPacked, uint24 stabilityMintFeeVT) internal pure returns (bytes32) {
    return feesPacked.insertUint(uint256(uint16(stabilityMintFeeVT)), STABILITY_MINT_FEE_VT_OFFSET, LENGTH_16BITS);
  }

  /**
   * @notice Sets the stability mint fee YT in packed fees
   * @param feesPacked Current packed fees
   * @param stabilityMintFeeYT The new stability mint fee YT value (truncated to 16-bit)
   * @return Updated packed fees
   */
  function setStabilityMintFeeYT(bytes32 feesPacked, uint24 stabilityMintFeeYT) internal pure returns (bytes32) {
    return feesPacked.insertUint(uint256(uint16(stabilityMintFeeYT)), STABILITY_MINT_FEE_YT_OFFSET, LENGTH_16BITS);
  }

  /**
   * @notice Sets the stability redeem fee VT in packed fees
   * @param feesPacked Current packed fees
   * @param stabilityRedeemFeeVT The new stability redeem fee VT value (truncated to 16-bit)
   * @return Updated packed fees
   */
  function setStabilityRedeemFeeVT(bytes32 feesPacked, uint24 stabilityRedeemFeeVT) internal pure returns (bytes32) {
    return feesPacked.insertUint(uint256(uint16(stabilityRedeemFeeVT)), STABILITY_REDEEM_FEE_VT_OFFSET, LENGTH_16BITS);
  }

  /**
   * @notice Sets the stability redeem fee YT in packed fees
   * @param feesPacked Current packed fees
   * @param stabilityRedeemFeeYT The new stability redeem fee YT value (truncated to 16-bit)
   * @return Updated packed fees
   */
  function setStabilityRedeemFeeYT(bytes32 feesPacked, uint24 stabilityRedeemFeeYT) internal pure returns (bytes32) {
    return feesPacked.insertUint(uint256(uint16(stabilityRedeemFeeYT)), STABILITY_REDEEM_FEE_YT_OFFSET, LENGTH_16BITS);
  }

  /**
   * @notice Sets the protocol fee in packed fees
   * @param feesPacked Current packed fees
   * @param protocolFee The new protocol fee value (truncated to 16-bit)
   * @return Updated packed fees
   */
  function setProtocolFee(bytes32 feesPacked, uint24 protocolFee) internal pure returns (bytes32) {
    return feesPacked.insertUint(uint256(uint16(protocolFee)), PROTOCOL_FEE_OFFSET, LENGTH_16BITS);
  }

  // Group Core Components Getters

  /**
   * @notice Retrieves the hook contract from group state
   * @param groupState The group state
   * @return The hook contract address wrapper
   */
  function getHookContract(GroupState memory groupState) internal pure returns (Address) {
    return groupState.hookContract;
  }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

import { Currency, CurrencyLibrary } from "../types/Currency.sol";
import { Address, AddressLibrary } from "../types/Address.sol";
import { FxStableMath } from "../libs/math/FxStableMath.sol";
import { ExponentialMovingAverageV8 } from "../libs/math/ExponentialMovingAverageV8.sol";
import { IERC20Upgradeable } from "@openzeppelin/contracts-upgradeable/token/ERC20/IERC20Upgradeable.sol";
import { IPriceOracle } from "../interfaces/IPriceOracle.sol";
import { DTreasury } from "../declarations/DTreasury.sol";
import { GroupStateHelper, GroupSettings } from "../types/GroupStateHelper.sol";
import { IAToken } from "../interfaces/IAToken.sol";
import { CustomRevert } from "../libs/CustomRevert.sol";
import { IDEXRouter } from "../interfaces/IDEXRouter.sol";
import { IStrategy } from "../interfaces/IStrategy.sol";
import { GroupState } from "../types/CommonTypes.sol";
import { FullMath } from "../libs/math/FullMath.sol";

/**
 * @title TreasuryStateLibrary
 * @notice Library for managing treasury state and calculations.
 */
library TreasuryStateLibrary {
  using CurrencyLibrary for Currency;
  using AddressLibrary for Address;
  using FxStableMath for FxStableMath.SwapState;
  using ExponentialMovingAverageV8 for ExponentialMovingAverageV8.EMAStorage;
  using GroupStateHelper for GroupSettings;
  using CustomRevert for bytes4;

  error ErrorInvalidTwapPrice();
  error ErrorSwapFailed();
  error ErrorWithdrawFromStrategy();
  error StrategyUnderflow();

  event BaseTokenCapsUpdated(uint256 newCaps);
  event BaseTokenPriceUpdated(uint256 newPrice);
  event SwapExecuted(address indexed fromToken, address indexed toToken, uint256 amountIn, uint256 amountOut);
  event BaseTokenTransferred(address indexed recipient, uint256 amount);
  event StrategyWithdrawal(address indexed strategy, uint256 amount);
  event EMALeverageRatioUpdated(uint256 newEMAValue);
  event GroupEMALeverageRatioInitialized(uint256 initialValue);

  uint256 private constant PRECISION = 1e18;

  /**
   * @notice Updates the base token caps in the treasury state.
   * @param self The treasury state storage.
   * @param newCaps The new base token caps.
   */
  function updateBaseTokenCaps(DTreasury.TreasuryState storage self, uint256 newCaps) internal {
    self.baseTokenCaps = newCaps;
    emit BaseTokenCapsUpdated(newCaps);
  }

  /**
   * @notice Updates the base token price in the treasury state.
   * @param self The treasury state storage.
   * @param newPrice The new base token price.
   */
  function updateBaseTokenPrice(DTreasury.TreasuryState storage self, uint256 newPrice) internal {
    self.baseTokenPrice = newPrice;
    emit BaseTokenPriceUpdated(newPrice);
  }

  /**
   * @notice Loads the swap state with proper precision handling.
   * @param self The treasury state storage.
   * @param group The group state.
   * @return _state The loaded swap state.
   */
  function loadSwapState(
    DTreasury.TreasuryState storage self,
    GroupState memory group
  ) internal view returns (FxStableMath.SwapState memory _state) {
    // Fetch decimals
    uint8 baseTokenDecimals = GroupSettings.wrap(group.groupSettings).getBaseTokenDecimals();
    uint8 aTokenDecimals = GroupSettings.wrap(group.groupSettings).getATokenDecimals();
    uint8 xTokenDecimals = GroupSettings.wrap(group.groupSettings).getXTokenDecimals();

    // Normalize baseSupply to 18 decimals
    _state.baseSupply = normalizeDecimals(self.totalBaseTokens, baseTokenDecimals);

    // Fetch base token price (already in 18 decimals)
    (_state.baseTwapNav, _state.baseNav) = fetchBaseTokenPrice(self, group);

    if (_state.baseSupply == 0) {
      _state.aNav = PRECISION;
      _state.xNav = PRECISION;
    } else {
      // Fetch token supplies and normalize to 18 decimals
      uint256 aSupplyRaw = IERC20Upgradeable(group.core.aToken.toAddress()).totalSupply();
      uint256 xSupplyRaw = IERC20Upgradeable(group.core.xToken.toAddress()).totalSupply();

      _state.aSupply = normalizeDecimals(aSupplyRaw, aTokenDecimals);
      _state.xSupply = normalizeDecimals(xSupplyRaw, xTokenDecimals);

      // Fetch aNav (assuming it's already in 18 decimals)
      _state.beta = IAToken(group.core.aToken.toAddress()).beta();

      if (_state.beta) {
        _state.aNav = IAToken(group.core.aToken.toAddress()).nav();
      } else {
        _state.aNav = PRECISION;
      }
          
      if (_state.xSupply == 0) {
        // No xToken, treat the nav of xToken as 1.0
        _state.xNav = PRECISION;
      } else {
        uint256 _baseVal = _state.baseSupply * _state.baseNav;
        uint256 _aVal = _state.aSupply * _state.aNav;
        if (_baseVal >= _aVal) {
          _state.xNav = (_baseVal - _aVal) / _state.xSupply;

        } else {
          // Under-collateralized
          _state.xNav = 0;
        }
      }
    }
  }

  /**
   * @notice Fetches the base token price from the price oracle.
   * @param group The group state.
   * @return _twap The time-weighted average price.
   * @return _price The selected price
   */
  function fetchBaseTokenPrice(
    DTreasury.TreasuryState storage /*self*/,
    GroupState memory group
  ) internal view returns (uint256 _twap, uint256 _price) {
    bool isValid;
    address priceOracle = group.extended.priceOracle.toAddress();
    (isValid, _price) = IPriceOracle(priceOracle).getPrice(group.core.baseToken.toAddress());

    if (!isValid || _price == 0) ErrorInvalidTwapPrice.selector.revertWith();

    // Prices are already in 18 decimals
    return (_price, _price);
  }

  /**
   * @notice Checks if the treasury is under-collateralized.
   * @param self The treasury state storage.
   * @param group The group state.
   * @return True if under-collateralized, false otherwise.
   */
  function isUnderCollateral(DTreasury.TreasuryState storage self, GroupState memory group) internal view returns (bool) {
    FxStableMath.SwapState memory _state = loadSwapState(self, group);
    return _state.xNav == 0;
  }

  /**
   * @notice Gets the collateral ratio of the treasury.
   * @param self The treasury state storage.
   * @param group The group state.
   * @return The collateral ratio.
   */
  function getCollateralRatio(DTreasury.TreasuryState storage self, GroupState memory group) internal view returns (uint256) {
    FxStableMath.SwapState memory _state = loadSwapState(self, group);

    if (_state.baseSupply == 0) return PRECISION;
    if (_state.aSupply == 0 || _state.aNav == 0) return PRECISION * PRECISION;

    return FullMath.mulDiv(_state.baseSupply * _state.baseNav, PRECISION, _state.aSupply * _state.aNav);
  }

  /**
   * @notice Calculates the maximum mintable AToken based on the new collateral ratio.
   * @param self The treasury state storage.
   * @param group The group state.
   * @param _newCollateralRatio The new desired collateral ratio.
   * @return _maxBaseIn The maximum base tokens that can be input.
   * @return _maxATokenMintable The maximum AToken that can be minted.
   */
  function maxMintableAToken(
    DTreasury.TreasuryState storage self,
    GroupState memory group,
    uint256 _newCollateralRatio
  ) internal view returns (uint256 _maxBaseIn, uint256 _maxATokenMintable) {
    FxStableMath.SwapState memory _state = loadSwapState(self, group);
    (_maxBaseIn, _maxATokenMintable) = _state.maxMintableAToken(_newCollateralRatio);
  }

  /**
   * @notice Calculates the maximum redeemable AToken based on the new collateral ratio.
   * @param self The treasury state storage.
   * @param group The group state.
   * @param _newCollateralRatio The new desired collateral ratio.
   * @return _maxBaseOut The maximum base tokens that can be output.
   * @return _maxATokenRedeemable The maximum AToken that can be redeemed.
   */
  function maxRedeemableAToken(
    DTreasury.TreasuryState storage self,
    GroupState memory group,
    uint256 _newCollateralRatio
  ) internal view returns (uint256 _maxBaseOut, uint256 _maxATokenRedeemable) {
    FxStableMath.SwapState memory _state = loadSwapState(self, group);
    (_maxBaseOut, _maxATokenRedeemable) = _state.maxRedeemableAToken(_newCollateralRatio);
  }
  /**
   * @notice Updates the Exponential Moving Average (EMA) of the leverage ratio.
   * @param self The treasury state storage.
   * @param _state The current swap state.
   */
  function updateEMALeverageRatio(DTreasury.TreasuryState storage self, FxStableMath.SwapState memory _state) internal {
    uint256 _ratio = _state.leverageRatio();
    self.emaLeverageRatio.saveValue(uint96(_ratio));
    emit EMALeverageRatioUpdated(_ratio);
  }

  function getEMAValue(DTreasury.TreasuryState storage self) internal view returns (uint256) {
    return self.emaLeverageRatio.emaValue();
  }

  function initializeGroupEMALeverageRatio(DTreasury.TreasuryState storage self) internal {
    self.emaLeverageRatio.lastTime = uint40(block.timestamp);
    self.emaLeverageRatio.lastValue = uint96(PRECISION * 2);
    self.emaLeverageRatio.lastEmaValue = uint96(PRECISION * 2);
    self.emaLeverageRatio.sampleInterval = 1 days;

    emit GroupEMALeverageRatioInitialized(PRECISION * 2);
  }

  /**
   * @dev Normalizes a token amount to 18 decimals.
   * @param amount The amount to normalize.
   * @param tokenDecimals The decimals of the token.
   * @return The normalized amount.
   */
  function normalizeDecimals(uint256 amount, uint8 tokenDecimals) internal pure returns (uint256) {
    if (tokenDecimals == 18) {
      return amount;
    }

    uint256 factor;
    if (tokenDecimals < 18) {
      factor = 10 ** (18 - tokenDecimals);
      return amount * factor;
    } else {
      factor = 10 ** (tokenDecimals - 18);
      return amount / factor;
    }
  }

  /**
   * @dev Denormalizes a token amount from 18 decimals to the token's decimals.
   * @param amount The amount to denormalize.
   * @param tokenDecimals The decimals of the token.
   * @return The denormalized amount.
   */
  function denormalizeDecimals(uint256 amount, uint8 tokenDecimals) internal pure returns (uint256) {
    if (tokenDecimals == 18) {
      return amount;
    }

    uint256 factor;
    if (tokenDecimals < 18) {
      factor = 10 ** (18 - tokenDecimals);
      return amount / factor;
    } else {
      factor = 10 ** (tokenDecimals - 18);
      return amount * factor;
    }
  }

  /**
   * @notice Transfers base tokens to the recipient, withdrawing from strategy if necessary.
   * @param baseToken The base token.
   * @param strategyAddress The strategy address.
   * @param treasuryState The treasury state.
   * @param amount The amount of base tokens to transfer.
   * @param recipient The recipient address.
   */
  function transferBaseToken(
    address self,
    uint8 baseTokenDecimals,
    Currency baseToken,
    address strategyAddress,
    DTreasury.TreasuryState storage treasuryState,
    uint256 amount,
    address recipient
  ) internal {
    uint256 amountNormalized = normalizeDecimals(amount, baseTokenDecimals);

    uint256 balance = baseToken.balanceOf(self);
    uint256 balanceNormalized = normalizeDecimals(balance, baseTokenDecimals);

    if (balanceNormalized < amountNormalized) {
      uint256 diff = amountNormalized - balanceNormalized;

      if (diff == 0) return;

      IStrategy strategy = IStrategy(strategyAddress);

      bool success = strategy.withdrawToTreasury(diff);

      if (!success) ErrorWithdrawFromStrategy.selector.revertWith();

      if (treasuryState.strategyUnderlying < diff) StrategyUnderflow.selector.revertWith();
      treasuryState.strategyUnderlying -= diff;

      balance = baseToken.balanceOf(self);
      balanceNormalized = normalizeDecimals(balance, baseTokenDecimals);

      if (amountNormalized > balanceNormalized) {
        amountNormalized = balanceNormalized;
        amount = denormalizeDecimals(amountNormalized, baseTokenDecimals);
      }
    }

    treasuryState.totalBaseTokens -= amountNormalized;
    baseToken.safeTransfer(recipient, amount);
    emit BaseTokenTransferred(recipient, amount);
  }

  /**
   * @notice Swaps tokens using the specified router.
   * @param self The address of the contract using this library
   * @param swapRouter The address of the swap router.
   * @param from The address of the token to swap from.
   * @param to The address of the token to swap to.
   * @param amount The amount of tokens to swap.
   * @param minOutAmount The minimum acceptable amount of tokens to receive.
   * @return swappedAmount The amount of tokens received after the swap.
   */
  function swapTokens(
    address self,
    address swapRouter,
    address from,
    address to,
    uint256 amount,
    uint256 minOutAmount
  ) internal returns (uint256 swappedAmount) {
    IDEXRouter router = IDEXRouter(swapRouter);

    uint256 deadline = block.timestamp + 30;

    address[] memory path = new address[](2);
    path[0] = from;
    path[1] = to;

    Currency fromToken = Currency.wrap(from);

    uint256 currentAllowance = fromToken.allowance(self, swapRouter);
    if (currentAllowance < amount) {
      fromToken.safeIncreaseAllowance(swapRouter, amount - currentAllowance);
    }

    swappedAmount = _executeSwap(router, amount, minOutAmount, path, self, deadline);

    if (swappedAmount < minOutAmount) {
      ErrorSwapFailed.selector.revertWith();
    }

    emit SwapExecuted(from, to, amount, swappedAmount);

    return swappedAmount;
  }

  function _executeSwap(
    IDEXRouter router,
    uint256 amount,
    uint256 minOutAmount,
    address[] memory path,
    address to,
    uint256 deadline
  ) private returns (uint256) {
    try router.swapExactTokensForTokens(amount, minOutAmount, path, to, deadline) returns (uint256[] memory amounts) {
      return amounts[amounts.length - 1];
    } catch {
      ErrorSwapFailed.selector.revertWith();
    }
  }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

import { IERC20Upgradeable } from "@openzeppelin/contracts-upgradeable/token/ERC20/utils/SafeERC20Upgradeable.sol";
import { GroupId } from "../types/GroupId.sol";

/**
 * @title IWToken
 * @notice Interface for the WToken contract, enabling wrapping and unwrapping of an underlying token.
 */
interface IWToken is IERC20Upgradeable {
  /**
   * @dev Emitted when tokens are wrapped into WTokens.
   * @param user The address of the user wrapping tokens.
   * @param underlyingAmount The amount of underlying tokens wrapped.
   * @param amount The amount of tokens wrapped.
   */
  event TokenWrapped(address indexed user, uint256 indexed underlyingAmount, uint256 indexed amount);

  /**
   * @dev Emitted when WTokens are unwrapped into underlying tokens.
   * @param user The address of the user unwrapping tokens.
   * @param underlyingAmount The amount of underlying tokens unwrapped.
   * @param amount The amount of WTokens unwrapped.
   */
  event TokenUnwrapped(address indexed user, uint256 indexed underlyingAmount, uint256 indexed amount);

  /**
   * @dev Emitted when the treasury address is updated.
   * @param oldTreasury The address of the previous treasury contract.
   * @param newTreasury The address of the new treasury contract.
   */
  event UpdateTreasuryAddress(address indexed oldTreasury, address indexed newTreasury);

  /**
   * @dev Emitted when the associated group ID is updated.
   * @param groupId New group identifier.
   */
  event UpdateGroup(GroupId indexed groupId);

  event Rebase(uint256 indexed epoch, uint256 indexed newScalar);
  event RateProviderUpdated(address indexed rateProvider);

  // Custom Errors
  error ErrorZeroAddress();
  error InvalidDecimals();
  error ErrorZeroAmount();
  error ErrorNotPermitted();
  error ErrorCannotRecoverToken();
  error ErrorMaxUnderlyingExceeded();

  /**
   * @notice Wraps underlying tokens into WTokens.
   * @param underlyingAmount The amount of underlying tokens to wrap.
   * @return wrappedAmount amount of WTokens minted.
   */
  function wrap(uint256 underlyingAmount) external returns (uint256 wrappedAmount);

  /**
   * @notice Unwraps WTokens back into underlying tokens.
   * @param burnAmount The amount of WTokens to burn.
   * @return amount of underlying tokens returned.
   */
  function unwrap(uint256 burnAmount) external returns (uint256 amount);

  /**
   * @notice rebase the WToken
   */
  function rebase() external;

  function updateRateProvider(address _rateProvider) external;
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

import { IERC4626Upgradeable } from "@openzeppelin/contracts-upgradeable/token/ERC20/extensions/ERC4626Upgradeable.sol";

/**
 * @title IRebalancePool
 * @notice Interface for the RebalancePool contract implementing ERC4626
 */
interface IRebalancePool is IERC4626Upgradeable {
  /// @notice Errors
  error ZeroAddress();
  error ZeroDeposit();
  error InvalidDepositAmount();
  error ZeroRedeem();
  error TokenAlreadyAdded(address token);
  error ZeroShares();
  error InvalidPriceFromOracle();
  error NotPermitted();
  error InvalidYieldFee();
  error RedeemingNotAvailableYet();
  error CannotRecoverToken();
  error UpdatingNotAvailableYet();
  error InvalidCoolingPeriod();
  error CoolingPeriodTriggered();

  /// @notice Events
  event YieldDistributed(uint256 indexed assets, uint256 indexed shares);
  event NAVUpdated(address indexed caller, uint256 indexed totalAssets, uint256 indexed totalSupply);
  event CoolingOffPeriodUpdated(uint256 indexed oldPeriod, uint256 indexed newPeriod);
  event FeeCollectorUpdated(address indexed oldCollector, address indexed newCollector);
  event PriceOracleUpdated(address indexed oldOracle, address indexed newOracle);
  event OtherERC20Withdrawn(address indexed receiver, address indexed token, uint256 indexed amount);
  event DepositMade(address indexed depositor, address indexed receiver, uint256 indexed amount);
  event YieldFeeUpdated(uint256 indexed newFee);

  /// @notice Function to update NAV externally
  function updateNAV() external;

  /// @notice Get NAV per share
  function getNavPerShare() external view returns (uint256);

  /// @notice Override decimals
  function decimals() external view override returns (uint8);

  /// @notice Get cooling off period
  function coolingOffPeriod() external view returns (uint256);

  /// @notice Transfer tokens to treasury
  function transferTokenToTreasury(address token, uint256 amount) external;

  /// @notice Get yieldFeePercentage
  function yieldFeePercentage() external view returns (uint256);

  /// @notice Get base points
  function BASE_POINTS() external view returns (uint256);
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

import { GroupId } from "../types/GroupId.sol";

interface IProtocolMinimum {
    function stabilityRatio(GroupId groupId) external view returns (uint96);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.0;

import "../IERC20Upgradeable.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 *
 * _Available since v4.1._
 */
interface IERC20MetadataUpgradeable is IERC20Upgradeable {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC5267.sol)

pragma solidity ^0.8.0;

interface IERC5267Upgradeable {
    /**
     * @dev MAY be emitted to signal that the domain could have changed.
     */
    event EIP712DomainChanged();

    /**
     * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
     * signature.
     */
    function eip712Domain()
        external
        view
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        );
}

// SPDX-License-Identifier: MIT

// THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

pragma solidity 0.8.28;

/* solhint-disable */

/**
 * @dev Copied from https://github.com/balancer/balancer-v2-monorepo/blob/master/pkg/solidity-utils/contracts/math/LogExpMath.sol
 *
 * Some modifications are made due to compile error.
 *
 * It is the same as `LogExpMathV8` with `unchecked` scope.
 *
 * @dev Exponentiation and logarithm functions for 18 decimal fixed point numbers (both base and exponent/argument).
 *
 * Exponentiation and logarithm with arbitrary bases (x^y and log_x(y)) are implemented by conversion to natural
 * exponentiation and logarithm (where the base is Euler's number).
 *
 * @author Fernando Martinelli - @fernandomartinelli
 * @author Sergio Yuhjtman - @sergioyuhjtman
 * @author Daniel Fernandez - @dmf7z
 */
library LogExpMathV8 {
  // All fixed point multiplications and divisions are inlined. This means we need to divide by ONE when multiplying
  // two numbers, and multiply by ONE when dividing them.

  // All arguments and return values are 18 decimal fixed point numbers.
  int256 constant ONE_18 = 1e18;

  // Internally, intermediate values are computed with higher precision as 20 decimal fixed point numbers, and in the
  // case of ln36, 36 decimals.
  int256 constant ONE_20 = 1e20;
  int256 constant ONE_36 = 1e36;

  // The domain of natural exponentiation is bound by the word size and number of decimals used.
  //
  // Because internally the result will be stored using 20 decimals, the largest possible result is
  // (2^255 - 1) / 10^20, which makes the largest exponent ln((2^255 - 1) / 10^20) = 130.700829182905140221.
  // The smallest possible result is 10^(-18), which makes largest negative argument
  // ln(10^(-18)) = -41.446531673892822312.
  // We use 130.0 and -41.0 to have some safety margin.
  int256 constant MAX_NATURAL_EXPONENT = 130e18;
  int256 constant MIN_NATURAL_EXPONENT = -41e18;

  // Bounds for ln_36's argument. Both ln(0.9) and ln(1.1) can be represented with 36 decimal places in a fixed point
  // 256 bit integer.
  int256 constant LN_36_LOWER_BOUND = ONE_18 - 1e17;
  int256 constant LN_36_UPPER_BOUND = ONE_18 + 1e17;

  uint256 constant MILD_EXPONENT_BOUND = 2 ** 254 / uint256(ONE_20);

  // 18 decimal constants
  int256 constant x0 = 128000000000000000000; // 2ˆ7
  int256 constant a0 = 38877084059945950922200000000000000000000000000000000000; // eˆ(x0) (no decimals)
  int256 constant x1 = 64000000000000000000; // 2ˆ6
  int256 constant a1 = 6235149080811616882910000000; // eˆ(x1) (no decimals)

  // 20 decimal constants
  int256 constant x2 = 3200000000000000000000; // 2ˆ5
  int256 constant a2 = 7896296018268069516100000000000000; // eˆ(x2)
  int256 constant x3 = 1600000000000000000000; // 2ˆ4
  int256 constant a3 = 888611052050787263676000000; // eˆ(x3)
  int256 constant x4 = 800000000000000000000; // 2ˆ3
  int256 constant a4 = 298095798704172827474000; // eˆ(x4)
  int256 constant x5 = 400000000000000000000; // 2ˆ2
  int256 constant a5 = 5459815003314423907810; // eˆ(x5)
  int256 constant x6 = 200000000000000000000; // 2ˆ1
  int256 constant a6 = 738905609893065022723; // eˆ(x6)
  int256 constant x7 = 100000000000000000000; // 2ˆ0
  int256 constant a7 = 271828182845904523536; // eˆ(x7)
  int256 constant x8 = 50000000000000000000; // 2ˆ-1
  int256 constant a8 = 164872127070012814685; // eˆ(x8)
  int256 constant x9 = 25000000000000000000; // 2ˆ-2
  int256 constant a9 = 128402541668774148407; // eˆ(x9)
  int256 constant x10 = 12500000000000000000; // 2ˆ-3
  int256 constant a10 = 113314845306682631683; // eˆ(x10)
  int256 constant x11 = 6250000000000000000; // 2ˆ-4
  int256 constant a11 = 106449445891785942956; // eˆ(x11)

  /**
   * @dev Exponentiation (x^y) with unsigned 18 decimal fixed point base and exponent.
   *
   * Reverts if ln(x) * y is smaller than `MIN_NATURAL_EXPONENT`, or larger than `MAX_NATURAL_EXPONENT`.
   */
  function pow(uint256 x, uint256 y) internal pure returns (uint256) {
    unchecked {
      if (y == 0) {
        // We solve the 0^0 indetermination by making it equal one.
        return uint256(ONE_18);
      }

      if (x == 0) {
        return 0;
      }

      // Instead of computing x^y directly, we instead rely on the properties of logarithms and exponentiation to
      // arrive at that result. In particular, exp(ln(x)) = x, and ln(x^y) = y * ln(x). This means
      // x^y = exp(y * ln(x)).

      // The ln function takes a signed value, so we need to make sure x fits in the signed 256 bit range.
      require(x >> 255 == 0, "X_OUT_OF_BOUNDS");
      int256 x_int256 = int256(x);

      // We will compute y * ln(x) in a single step. Depending on the value of x, we can either use ln or ln_36. In
      // both cases, we leave the division by ONE_18 (due to fixed point multiplication) to the end.

      // This prevents y * ln(x) from overflowing, and at the same time guarantees y fits in the signed 256 bit range.
      require(y < MILD_EXPONENT_BOUND, "Y_OUT_OF_BOUNDS");
      int256 y_int256 = int256(y);

      int256 logx_times_y;
      if (LN_36_LOWER_BOUND < x_int256 && x_int256 < LN_36_UPPER_BOUND) {
        int256 ln_36_x = _ln_36(x_int256);

        // ln_36_x has 36 decimal places, so multiplying by y_int256 isn't as straightforward, since we can't just
        // bring y_int256 to 36 decimal places, as it might overflow. Instead, we perform two 18 decimal
        // multiplications and add the results: one with the first 18 decimals of ln_36_x, and one with the
        // (downscaled) last 18 decimals.
        logx_times_y = ((ln_36_x / ONE_18) * y_int256 + ((ln_36_x % ONE_18) * y_int256) / ONE_18);
      } else {
        logx_times_y = _ln(x_int256) * y_int256;
      }
      logx_times_y /= ONE_18;

      // Finally, we compute exp(y * ln(x)) to arrive at x^y
      require(MIN_NATURAL_EXPONENT <= logx_times_y && logx_times_y <= MAX_NATURAL_EXPONENT, "PRODUCT_OUT_OF_BOUNDS");

      return uint256(exp(logx_times_y));
    }
  }

  /**
   * @dev Natural exponentiation (e^x) with signed 18 decimal fixed point exponent.
   *
   * Reverts if `x` is smaller than MIN_NATURAL_EXPONENT, or larger than `MAX_NATURAL_EXPONENT`.
   */
  function exp(int256 x) internal pure returns (int256) {
    unchecked {
      require(x >= MIN_NATURAL_EXPONENT && x <= MAX_NATURAL_EXPONENT, "INVALID_EXPONENT");

      if (x < 0) {
        // We only handle positive exponents: e^(-x) is computed as 1 / e^x. We can safely make x positive since it
        // fits in the signed 256 bit range (as it is larger than MIN_NATURAL_EXPONENT).
        // Fixed point division requires multiplying by ONE_18.
        return ((ONE_18 * ONE_18) / exp(-x));
      }

      // First, we use the fact that e^(x+y) = e^x * e^y to decompose x into a sum of powers of two, which we call x_n,
      // where x_n == 2^(7 - n), and e^x_n = a_n has been precomputed. We choose the first x_n, x0, to equal 2^7
      // because all larger powers are larger than MAX_NATURAL_EXPONENT, and therefore not present in the
      // decomposition.
      // At the end of this process we will have the product of all e^x_n = a_n that apply, and the remainder of this
      // decomposition, which will be lower than the smallest x_n.
      // exp(x) = k_0 * a_0 * k_1 * a_1 * ... + k_n * a_n * exp(remainder), where each k_n equals either 0 or 1.
      // We mutate x by subtracting x_n, making it the remainder of the decomposition.

      // The first two a_n (e^(2^7) and e^(2^6)) are too large if stored as 18 decimal numbers, and could cause
      // intermediate overflows. Instead we store them as plain integers, with 0 decimals.
      // Additionally, x0 + x1 is larger than MAX_NATURAL_EXPONENT, which means they will not both be present in the
      // decomposition.

      // For each x_n, we test if that term is present in the decomposition (if x is larger than it), and if so deduct
      // it and compute the accumulated product.

      int256 firstAN;
      if (x >= x0) {
        x -= x0;
        firstAN = a0;
      } else if (x >= x1) {
        x -= x1;
        firstAN = a1;
      } else {
        firstAN = 1; // One with no decimal places
      }

      // We now transform x into a 20 decimal fixed point number, to have enhanced precision when computing the
      // smaller terms.
      x *= 100;

      // `product` is the accumulated product of all a_n (except a0 and a1), which starts at 20 decimal fixed point
      // one. Recall that fixed point multiplication requires dividing by ONE_20.
      int256 product = ONE_20;

      if (x >= x2) {
        x -= x2;
        product = (product * a2) / ONE_20;
      }
      if (x >= x3) {
        x -= x3;
        product = (product * a3) / ONE_20;
      }
      if (x >= x4) {
        x -= x4;
        product = (product * a4) / ONE_20;
      }
      if (x >= x5) {
        x -= x5;
        product = (product * a5) / ONE_20;
      }
      if (x >= x6) {
        x -= x6;
        product = (product * a6) / ONE_20;
      }
      if (x >= x7) {
        x -= x7;
        product = (product * a7) / ONE_20;
      }
      if (x >= x8) {
        x -= x8;
        product = (product * a8) / ONE_20;
      }
      if (x >= x9) {
        x -= x9;
        product = (product * a9) / ONE_20;
      }

      // x10 and x11 are unnecessary here since we have high enough precision already.

      // Now we need to compute e^x, where x is small (in particular, it is smaller than x9). We use the Taylor series
      // expansion for e^x: 1 + x + (x^2 / 2!) + (x^3 / 3!) + ... + (x^n / n!).

      int256 seriesSum = ONE_20; // The initial one in the sum, with 20 decimal places.
      int256 term; // Each term in the sum, where the nth term is (x^n / n!).

      // The first term is simply x.
      term = x;
      seriesSum += term;

      // Each term (x^n / n!) equals the previous one times x, divided by n. Since x is a fixed point number,
      // multiplying by it requires dividing by ONE_20, but dividing by the non-fixed point n values does not.

      term = ((term * x) / ONE_20) / 2;
      seriesSum += term;

      term = ((term * x) / ONE_20) / 3;
      seriesSum += term;

      term = ((term * x) / ONE_20) / 4;
      seriesSum += term;

      term = ((term * x) / ONE_20) / 5;
      seriesSum += term;

      term = ((term * x) / ONE_20) / 6;
      seriesSum += term;

      term = ((term * x) / ONE_20) / 7;
      seriesSum += term;

      term = ((term * x) / ONE_20) / 8;
      seriesSum += term;

      term = ((term * x) / ONE_20) / 9;
      seriesSum += term;

      term = ((term * x) / ONE_20) / 10;
      seriesSum += term;

      term = ((term * x) / ONE_20) / 11;
      seriesSum += term;

      term = ((term * x) / ONE_20) / 12;
      seriesSum += term;

      // 12 Taylor terms are sufficient for 18 decimal precision.

      // We now have the first a_n (with no decimals), and the product of all other a_n present, and the Taylor
      // approximation of the exponentiation of the remainder (both with 20 decimals). All that remains is to multiply
      // all three (one 20 decimal fixed point multiplication, dividing by ONE_20, and one integer multiplication),
      // and then drop two digits to return an 18 decimal value.

      return (((product * seriesSum) / ONE_20) * firstAN) / 100;
    }
  }

  /**
   * @dev Logarithm (log(arg, base), with signed 18 decimal fixed point base and argument.
   */
  function log(int256 arg, int256 base) internal pure returns (int256) {
    unchecked {
      // This performs a simple base change: log(arg, base) = ln(arg) / ln(base).

      // Both logBase and logArg are computed as 36 decimal fixed point numbers, either by using ln_36, or by
      // upscaling.

      int256 logBase;
      if (LN_36_LOWER_BOUND < base && base < LN_36_UPPER_BOUND) {
        logBase = _ln_36(base);
      } else {
        logBase = _ln(base) * ONE_18;
      }

      int256 logArg;
      if (LN_36_LOWER_BOUND < arg && arg < LN_36_UPPER_BOUND) {
        logArg = _ln_36(arg);
      } else {
        logArg = _ln(arg) * ONE_18;
      }

      // When dividing, we multiply by ONE_18 to arrive at a result with 18 decimal places
      return (logArg * ONE_18) / logBase;
    }
  }

  /**
   * @dev Natural logarithm (ln(a)) with signed 18 decimal fixed point argument.
   */
  function ln(int256 a) internal pure returns (int256) {
    unchecked {
      // The real natural logarithm is not defined for negative numbers or zero.
      require(a > 0, "OUT_OF_BOUNDS");
      if (LN_36_LOWER_BOUND < a && a < LN_36_UPPER_BOUND) {
        return _ln_36(a) / ONE_18;
      } else {
        return _ln(a);
      }
    }
  }

  /**
   * @dev Internal natural logarithm (ln(a)) with signed 18 decimal fixed point argument.
   */
  function _ln(int256 a) private pure returns (int256) {
    unchecked {
      if (a < ONE_18) {
        // Since ln(a^k) = k * ln(a), we can compute ln(a) as ln(a) = ln((1/a)^(-1)) = - ln((1/a)). If a is less
        // than one, 1/a will be greater than one, and this if statement will not be entered in the recursive call.
        // Fixed point division requires multiplying by ONE_18.
        return (-_ln((ONE_18 * ONE_18) / a));
      }

      // First, we use the fact that ln^(a * b) = ln(a) + ln(b) to decompose ln(a) into a sum of powers of two, which
      // we call x_n, where x_n == 2^(7 - n), which are the natural logarithm of precomputed quantities a_n (that is,
      // ln(a_n) = x_n). We choose the first x_n, x0, to equal 2^7 because the exponential of all larger powers cannot
      // be represented as 18 fixed point decimal numbers in 256 bits, and are therefore larger than a.
      // At the end of this process we will have the sum of all x_n = ln(a_n) that apply, and the remainder of this
      // decomposition, which will be lower than the smallest a_n.
      // ln(a) = k_0 * x_0 + k_1 * x_1 + ... + k_n * x_n + ln(remainder), where each k_n equals either 0 or 1.
      // We mutate a by subtracting a_n, making it the remainder of the decomposition.

      // For reasons related to how `exp` works, the first two a_n (e^(2^7) and e^(2^6)) are not stored as fixed point
      // numbers with 18 decimals, but instead as plain integers with 0 decimals, so we need to multiply them by
      // ONE_18 to convert them to fixed point.
      // For each a_n, we test if that term is present in the decomposition (if a is larger than it), and if so divide
      // by it and compute the accumulated sum.

      int256 sum = 0;
      if (a >= a0 * ONE_18) {
        a /= a0; // Integer, not fixed point division
        sum += x0;
      }

      if (a >= a1 * ONE_18) {
        a /= a1; // Integer, not fixed point division
        sum += x1;
      }

      // All other a_n and x_n are stored as 20 digit fixed point numbers, so we convert the sum and a to this format.
      sum *= 100;
      a *= 100;

      // Because further a_n are  20 digit fixed point numbers, we multiply by ONE_20 when dividing by them.

      if (a >= a2) {
        a = (a * ONE_20) / a2;
        sum += x2;
      }

      if (a >= a3) {
        a = (a * ONE_20) / a3;
        sum += x3;
      }

      if (a >= a4) {
        a = (a * ONE_20) / a4;
        sum += x4;
      }

      if (a >= a5) {
        a = (a * ONE_20) / a5;
        sum += x5;
      }

      if (a >= a6) {
        a = (a * ONE_20) / a6;
        sum += x6;
      }

      if (a >= a7) {
        a = (a * ONE_20) / a7;
        sum += x7;
      }

      if (a >= a8) {
        a = (a * ONE_20) / a8;
        sum += x8;
      }

      if (a >= a9) {
        a = (a * ONE_20) / a9;
        sum += x9;
      }

      if (a >= a10) {
        a = (a * ONE_20) / a10;
        sum += x10;
      }

      if (a >= a11) {
        a = (a * ONE_20) / a11;
        sum += x11;
      }

      // a is now a small number (smaller than a_11, which roughly equals 1.06). This means we can use a Taylor series
      // that converges rapidly for values of `a` close to one - the same one used in ln_36.
      // Let z = (a - 1) / (a + 1).
      // ln(a) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1))

      // Recall that 20 digit fixed point division requires multiplying by ONE_20, and multiplication requires
      // division by ONE_20.
      int256 z = ((a - ONE_20) * ONE_20) / (a + ONE_20);
      int256 z_squared = (z * z) / ONE_20;

      // num is the numerator of the series: the z^(2 * n + 1) term
      int256 num = z;

      // seriesSum holds the accumulated sum of each term in the series, starting with the initial z
      int256 seriesSum = num;

      // In each step, the numerator is multiplied by z^2
      num = (num * z_squared) / ONE_20;
      seriesSum += num / 3;

      num = (num * z_squared) / ONE_20;
      seriesSum += num / 5;

      num = (num * z_squared) / ONE_20;
      seriesSum += num / 7;

      num = (num * z_squared) / ONE_20;
      seriesSum += num / 9;

      num = (num * z_squared) / ONE_20;
      seriesSum += num / 11;

      // 6 Taylor terms are sufficient for 36 decimal precision.

      // Finally, we multiply by 2 (non fixed point) to compute ln(remainder)
      seriesSum *= 2;

      // We now have the sum of all x_n present, and the Taylor approximation of the logarithm of the remainder (both
      // with 20 decimals). All that remains is to sum these two, and then drop two digits to return a 18 decimal
      // value.

      return (sum + seriesSum) / 100;
    }
  }

  /**
   * @dev Intrnal high precision (36 decimal places) natural logarithm (ln(x)) with signed 18 decimal fixed point argument,
   * for x close to one.
   *
   * Should only be used if x is between LN_36_LOWER_BOUND and LN_36_UPPER_BOUND.
   */
  function _ln_36(int256 x) private pure returns (int256) {
    unchecked {
      // Since ln(1) = 0, a value of x close to one will yield a very small result, which makes using 36 digits
      // worthwhile.

      // First, we transform x to a 36 digit fixed point value.
      x *= ONE_18;

      // We will use the following Taylor expansion, which converges very rapidly. Let z = (x - 1) / (x + 1).
      // ln(x) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1))

      // Recall that 36 digit fixed point division requires multiplying by ONE_36, and multiplication requires
      // division by ONE_36.
      int256 z = ((x - ONE_36) * ONE_36) / (x + ONE_36);
      int256 z_squared = (z * z) / ONE_36;

      // num is the numerator of the series: the z^(2 * n + 1) term
      int256 num = z;

      // seriesSum holds the accumulated sum of each term in the series, starting with the initial z
      int256 seriesSum = num;

      // In each step, the numerator is multiplied by z^2
      num = (num * z_squared) / ONE_36;
      seriesSum += num / 3;

      num = (num * z_squared) / ONE_36;
      seriesSum += num / 5;

      num = (num * z_squared) / ONE_36;
      seriesSum += num / 7;

      num = (num * z_squared) / ONE_36;
      seriesSum += num / 9;

      num = (num * z_squared) / ONE_36;
      seriesSum += num / 11;

      num = (num * z_squared) / ONE_36;
      seriesSum += num / 13;

      num = (num * z_squared) / ONE_36;
      seriesSum += num / 15;

      // 8 Taylor terms are sufficient for 36 decimal precision.

      // All that remains is multiplying by 2 (non fixed point).
      return seriesSum * 2;
    }
  }
}

// SPDX-License-Identifier: MIT

pragma solidity 0.8.28;

// solhint-disable no-inline-assembly

/// @dev A subset copied from the following contracts:
///
/// + `balancer-labs/v2-solidity-utils/contracts/helpers/WordCodec.sol`
/// + `balancer-labs/v2-solidity-utils/contracts/helpers/WordCodecHelpers.sol`
library WordCodec {
  /// @dev Inserts an unsigned integer of bitLength, shifted by an offset, into a 256 bit word,
  /// replacing the old value. Returns the new word.
  function insertUint(bytes32 word, uint256 value, uint256 offset, uint256 bitLength) internal pure returns (bytes32 result) {
    // Equivalent to:
    // uint256 mask = (1 << bitLength) - 1;
    // bytes32 clearedWord = bytes32(uint256(word) & ~(mask << offset));
    // result = clearedWord | bytes32(value << offset);
    assembly("memory-safe") {
      let mask := sub(shl(bitLength, 1), 1)
      let clearedWord := and(word, not(shl(offset, mask)))
      result := or(clearedWord, shl(offset, value))
    }
  }

  /// @dev Decodes and returns an unsigned integer with `bitLength` bits, shifted by an offset, from a 256 bit word.
  function decodeUint(bytes32 word, uint256 offset, uint256 bitLength) internal pure returns (uint256 result) {
    // Equivalent to:
    // result = uint256(word >> offset) & ((1 << bitLength) - 1);
    assembly("memory-safe") {
      result := and(shr(offset, word), sub(shl(bitLength, 1), 1))
    }
  }

  /// @dev Inserts a signed integer shifted by an offset into a 256 bit word, replacing the old value. Returns
  /// the new word.
  ///
  function insertInt(bytes32 word, int256 value, uint256 offset, uint256 bitLength) internal pure returns (bytes32) {
    unchecked {
      uint256 mask = (1 << bitLength) - 1;
      bytes32 clearedWord = bytes32(uint256(word) & ~(mask << offset));
      // Integer values need masking to remove the upper bits of negative values.
      return clearedWord | bytes32((uint256(value) & mask) << offset);
    }
  }

  /// @dev Decodes and returns a signed integer with `bitLength` bits, shifted by an offset, from a 256 bit word.
  function decodeInt(bytes32 word, uint256 offset, uint256 bitLength) internal pure returns (int256 result) {
    unchecked {
      int256 maxInt = int256((1 << (bitLength - 1)) - 1);
      uint256 mask = (1 << bitLength) - 1;

      int256 value = int256(uint256(word >> offset) & mask);
      // In case the decoded value is greater than the max positive integer that can be represented with bitLength
      // bits, we know it was originally a negative integer. Therefore, we mask it to restore the sign in the 256 bit
      // representation.
      //
      // Equivalent to:
      // result = value > maxInt ? (value | int256(~mask)) : value;
      assembly {
        result := or(mul(gt(value, maxInt), not(mask)), value)
      }
    }
  }

  /// @dev Decodes and returns a boolean shifted by an offset from a 256 bit word.
  function decodeBool(bytes32 word, uint256 offset) internal pure returns (bool result) {
    // Equivalent to:
    // result = (uint256(word >> offset) & 1) == 1;
    assembly {
      result := and(shr(offset, word), 1)
    }
  }

  /// @dev Inserts a boolean value shifted by an offset into a 256 bit word, replacing the old value. Returns the new
  /// word.
  function insertBool(bytes32 word, bool value, uint256 offset) internal pure returns (bytes32 result) {
    // Equivalent to:
    // bytes32 clearedWord = bytes32(uint256(word) & ~(1 << offset));
    // bytes32 referenceInsertBool = clearedWord | bytes32(uint256(value ? 1 : 0) << offset);
    assembly("memory-safe") {
      let clearedWord := and(word, not(shl(offset, 1)))
      result := or(clearedWord, shl(offset, value))
    }
  }

  function clearWordAtPosition(bytes32 word, uint256 offset, uint256 bitLength) internal pure returns (bytes32 clearedWord) {
    unchecked {
      uint256 mask = (1 << bitLength) - 1;
      clearedWord = bytes32(uint256(word) & ~(mask << offset));
    }
  }

  /// @dev Encodes an address into a 256 bit word at a given offset.
  function insertAddress(bytes32 word, address value, uint256 offset) internal pure returns (bytes32 result) {
    assembly("memory-safe") {
      let clearedWord := and(word, not(shl(offset, 0xffffffffffffffffffffffffffffffffffffffff)))
      result := or(clearedWord, shl(offset, value))
    }
  }

  /// @dev Decodes an address from a 256 bit word at a given offset.
  function decodeAddress(bytes32 word, uint256 offset) internal pure returns (address result) {
    assembly("memory-safe") {
      result := and(shr(offset, word), 0xffffffffffffffffffffffffffffffffffffffff)
    }
  }

  /// @dev Encodes an enum value into a 256 bit word at a given offset.
  function insertEnum(bytes32 word, uint8 value, uint256 offset) internal pure returns (bytes32 result) {
    assembly("memory-safe") {
      let clearedWord := and(word, not(shl(offset, 0xff)))
      result := or(clearedWord, shl(offset, value))
    }
  }

  /// @dev Decodes an enum value from a 256 bit word at a given offset.
  function decodeEnum(bytes32 word, uint256 offset) internal pure returns (uint8 result) {
    assembly("memory-safe") {
      result := and(shr(offset, word), 0xff)
    }
  }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

import { Currency } from "../types/Currency.sol";
import { GroupId } from "../types/GroupId.sol";
import { GroupKey } from "../types/GroupKey.sol";
import { DTokenRegistry } from "../declarations/DTokenRegistry.sol";
import { GroupState, FeePermissions, FeeParams, DefaultFeeParams, CollateralInfo } from "../types/CommonTypes.sol";

interface ITokenRegistry {
  // Events
  event GroupAdded(GroupId indexed groupId);
  event GroupUpdated(GroupId indexed groupId);
  event CollateralAdded(GroupId indexed groupId, Currency indexed token, uint8 indexed decimals);
  event CollateralRemoved(GroupId indexed groupId, Currency indexed token);
  event HookContractSet(GroupId indexed groupId, address indexed newHookContract, bool indexed isDynamic, bool isDelegated);
  event HookPermissionsSet(GroupId indexed groupId, uint256 indexed newPermissions);

  event UpdateFeePermissions(GroupId indexed groupId, bool indexed isDynamic, bool indexed allowDelegation);

  // Custom Errors
  error AddressNotContract(address addr);
  error NotPermitted();
  error GroupNotFound(GroupId groupId);
  error GroupAlreadyExists(GroupId groupId);
  error InvalidDecimals();
  error InvalidMinMaxCollateralAmount();
  error CollateralAlreadyExists();
  error MultipleNativeTokensNotAllowed();
  error CollateralNotFound();
  error InvalidGroupSetup();
  error ZeroAddress();
  error EmptyCollateralList();
  error MaxCollateralsLimitReached();
  error StabilityRatioTooLarge();
  error stabilityConditionsTriggeringRateTooLarge();

  error InvalidStabilityTriggeringRatio(GroupId groupId);

  error FeesTooHigh();
  error InvalidMaxFee();
  error InvalidMinFee();
  error InvalidBaseFee();
  error InvalidYieldFee();
  error InvalidStabilityFee();
  error InvalidProtocolFee();
  error InvalidFeeFlags();
  error FeesAreNotCompatibleWithDefaultFees();
  error CannotRecoverToken();

  // Group management functions (Manager Role)
  function addGroup(
    DTokenRegistry.GroupSetup calldata setup, // Full group setup
    address hookContract, // Hook contract for the group
    uint256 hookPermissions // Hook permissions
  ) external;

  // Collateral management functions (Manager Role)
  function addCollateral(GroupKey calldata key, CollateralInfo calldata collateral) external;

  function removeCollateral(GroupKey calldata key, Currency token) external;

  // Getter functions for group state
  function getGroup(GroupId groupId) external view returns (GroupState memory);

  function getStabilityRatio(GroupId groupId) external view returns (uint96);

  function getStabilityTriggeringRatio(GroupId groupId) external view returns (uint96);

  function getProtocolFee(GroupId groupId) external view returns (uint24);

  function getFeePermissions(GroupId groupId) external view returns (FeePermissions memory);

  function getFeeParams(GroupId groupId) external view returns (FeeParams memory);

  function getMintFeeVT(GroupId groupId) external view returns (uint24);

  function getRedeemFeeVT(GroupId groupId) external view returns (uint24);

  function getMintFeeYT(GroupId groupId) external view returns (uint24);

  function getRedeemFeeYT(GroupId groupId) external view returns (uint24);

  function getYieldFeeYT(GroupId groupId) external view returns (uint24);

  function getStabilityMintFeeVT(GroupId groupId) external view returns (uint24);

  function getStabilityMintFeeYT(GroupId groupId) external view returns (uint24);

  function getStabilityRedeemFeeVT(GroupId groupId) external view returns (uint24);

  function getStabilityRedeemFeeYT(GroupId groupId) external view returns (uint24);

  function getHookContract(GroupId groupId) external view returns (address);

  function getHookPermissions(GroupId groupId) external view returns (uint256);

  function validateCollateral(GroupId groupId, Currency currency) external view returns (bool);

  function isWrappingRequired(GroupId groupId) external view returns (bool);

  function getFeeModel(GroupId groupId) external view returns (uint8);
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;


/// @dev This library implements formulas for minting and redeeming stable coin token (aToken) and leveraged (xToken)
///      tokens in a system where:
///        - There is a base token with a certain Net Asset Value (NAV).
///        - A stable coin token (aToken) with its own NAV.
///        - A leveraged token (xToken) with its own NAV.
///      All values are scaled by 1e18 before being passed to these functions.
///
/// The core equation governing the system is:
///     n * v = nf * vf + nx * vx
///
/// Where:
///   n   = current total base supply
///   v   = baseNav (NAV of base token)
///   nf  = aSupply (supply of stable coin token)
///   vf  = aNav (NAV of stable coin token)
///   nx  = xSupply (supply of leveraged token)
///   vx  = xNav (NAV of leveraged token)
///
/// The "collateral ratio" (cr) or "target collateral ratio" (ncr) is defined as:
///   cr = (total base value) / (stable coin token value) = (n * v) / (nf * vf)
///
/// Operations involve adjusting supplies (minting or redeeming tokens) to reach a new collateral ratio (ncr).
/// We define:
///   dn = change in base supply (how many base tokens are added or removed)
///   df = change in stable coin token supply (how many stable coin tokens are added or removed)
///
/// By setting:
///   ((n + dn) * v) / ((nf + df)*vf) = ncr
///
/// and using the base equation n * v = nf * vf + nx * vx, we can derive formulas for dn and df
/// depending on whether we are minting or redeeming under a desired collateral ratio.

library FxStableMath {
  /*************
   * Constants *
   *************/

  /// @dev The precision (scaling factor) used for calculations.
  uint256 internal constant PRECISION = 1e18;

  /// @dev The maximum leverage ratio allowed.
  uint256 internal constant MAX_LEVERAGE_RATIO = 100e18;

  /***********
   * Structs *
   ***********/

  struct SwapState {
    // Current supply of the base token
    uint256 baseSupply;
    // Current NAV of the base token (scaled by 1e18)
    uint256 baseNav;
    // Current TWAP NAV of the base token (scaled by 1e18), used for stable calculations
    uint256 baseTwapNav;
    // Current supply of the stable coin token
    uint256 aSupply;
    // Current NAV of the stable coin token (scaled by 1e18)
    uint256 aNav;
    // Current supply of the leveraged token
    uint256 xSupply;
    // Current NAV of the leveraged token (scaled by 1e18)
    uint256 xNav;
    // A boolean parameter `beta` that may adjust behavior in some calculations
    bool beta;
  }

  /**
   * @notice Compute how much base token (dn) and stable coin tokens (df) can be minted to achieve a new collateral ratio,
   *         if the current collateral ratio is less than the new target.
   *
   * Variables (for reference):
   *   n: current total base supply
   *   v: baseNav
   *   nf: aSupply
   *   vf: aNav
   *   nx: xSupply
   *   vx: xNav
   *   ncr: newCollateralRatio
   *
   * Core equations:
   *   Initially:
   *       n * v = nf * vf + nx * vx
   *
   *   After adding some amount of base tokens (dn) and stable coin tokens (df):
   *       (n + dn) * v = (nf + df) * vf + nx * vx
   *
   *   Define collateral ratio as:
   *       ((n + dn) * v) / ((nf + df) * vf) = ncr
   *
   *   From the above, solving for df and dn:
   *       df = ((n * v) - (ncr * nf * vf)) / ((ncr - 1) * vf)
   *       dn = ((n * v) - (ncr * nf * vf)) / ((ncr - 1) * v)
   *
   * Here, df and dn tell us how much stable coin token and base token must be added to achieve ncr.
   * If dn > 0, we need to add that many base tokens; if df > 0, we can mint that many stable coin tokens.
   *
   * @dev If the current collateral ratio is already >= ncr, then we return 0 because no minting is needed.
   *
   * @param state Current state of the system.
   * @param _newCollateralRatio The desired new collateral ratio (scaled by 1e18).
   * @return _maxBaseIn The amount of base token required (corresponds to dn).
   * @return _maxATokenMintable The amount of stable coin token (aToken) that can be minted (corresponds to df).
   */
  function maxMintableAToken(
    SwapState memory state,
    uint256 _newCollateralRatio
  ) internal pure returns (uint256 _maxBaseIn, uint256 _maxATokenMintable) {
    // Calculate scaled values
    uint256 _baseVal = state.baseSupply * (state.baseNav) * (PRECISION);
    uint256 _aVal = _newCollateralRatio * (state.aSupply) * state.aNav;

    // If baseVal > aVal, we can mint
    if (_baseVal > _aVal) {
      // Adjust ncr to (ncr - 1)*PRECISION
      _newCollateralRatio = _newCollateralRatio - (PRECISION);
      uint256 _delta = _baseVal - _aVal;

      // dn = delta / ((ncr - 1)*v)
      _maxBaseIn = _delta / (state.baseNav * (_newCollateralRatio));

      // df = delta / ((ncr - 1)*vf)
      _maxATokenMintable = _delta / (state.aNav * (_newCollateralRatio));
    }
  }

  /**
   * @notice Compute how much base token (dn) and leveraged tokens (xToken) can be minted to achieve a new collateral ratio,
   *         if the current collateral ratio is less than the new target.
   *
   * Equations:
   *   n * v = nf * vf + nx * vx
   *
   * After adding dn base tokens and dx leveraged tokens:
   *   (n + dn)*v = nf*vf + (nx + dx)*vx
   *
   * The new collateral ratio condition:
   *   ((n + dn)*v) / (nf*vf) = ncr
   *
   * From this, solving for dn and dx:
   *   dn = (ncr * nf * vf - n * v) / v
   *   dx = (ncr * nf * vf - n * v) / vx
   *
   * @dev If the current collateral ratio >= ncr, we return 0 because no minting is needed.
   *
   * @param state The current state.
   * @param _newCollateralRatio The desired new collateral ratio (scaled by 1e18).
   * @return _maxBaseIn The amount of base token needed (dn).
   * @return _maxXTokenMintable The amount of leveraged token (xToken) that can be minted (dx).
   */
  function maxMintableXToken(
    SwapState memory state,
    uint256 _newCollateralRatio
  ) internal pure returns (uint256 _maxBaseIn, uint256 _maxXTokenMintable) {
    uint256 _baseVal = state.baseSupply * state.baseNav * PRECISION;
    uint256 _aVal = _newCollateralRatio * state.aSupply * state.aNav;

    if (_aVal > _baseVal) {
      uint256 _delta = _aVal - _baseVal;

      // dn = delta / (v * PRECISION)
      _maxBaseIn = _delta / (state.baseNav * (PRECISION));
      // dx = delta / (vx * PRECISION)
      _maxXTokenMintable = _delta / (state.xNav * (PRECISION));
    }
  }

  /**
   * @notice Compute how many stable coin tokens (aToken) can be redeemed and how much base token (dn) is released
   *         to reach the new collateral ratio if the current ratio is greater than the target.
   *
   * Equations:
   *   Initially:
   *       n * v = nf * vf + nx * vx
   *
   * After removing dn base tokens and df stable coin tokens:
   *       (n - dn)*v = (nf - df)*vf + nx*vx
   *
   * The new collateral ratio:
   *       ((n - dn)*v) / ((nf - df)*vf) = ncr
   *
   * Solve these for df and dn:
   *   df = (ncr * nf * vf - n * v) / ((ncr - 1)*vf)
   *   dn = (ncr * nf * vf - n * v) / ((ncr - 1)*v)
   *
   * Here, df and dn now represent how many stable coin tokens and base tokens must be removed (redeemed)
   * to achieve ncr. If df > 0, it means we should redeem that many aTokens; if dn > 0, that many base tokens
   * can be released.
   *
   * @dev If the current collateral ratio <= ncr, no redemption is needed, so return 0.
   *
   * @param state Current state.
   * @param _newCollateralRatio Desired collateral ratio (scaled by 1e18).
   * @return _maxBaseOut The amount of base token released (dn).
   * @return _maxATokenRedeemable The amount of stable coin token that can be redeemed (df).
   */
  function maxRedeemableAToken(
    SwapState memory state,
    uint256 _newCollateralRatio
  ) internal pure returns (uint256 _maxBaseOut, uint256 _maxATokenRedeemable) {
    uint256 _baseVal = state.baseSupply * (state.baseNav) * (PRECISION);
    uint256 _aVal = _newCollateralRatio * (state.aSupply) * (PRECISION);

    if (_aVal > _baseVal) {
      uint256 _delta = _aVal - _baseVal;
      // Adjust ncr to (ncr - 1)*PRECISION
      _newCollateralRatio = _newCollateralRatio - (PRECISION);

      // df = delta / ((ncr - 1)*vf)
      _maxATokenRedeemable = _delta / (_newCollateralRatio * (state.aNav));

      // dn = delta / ((ncr - 1)*v)
      _maxBaseOut = _delta / (_newCollateralRatio * (state.baseNav));
    } else {
      _maxBaseOut = 0;
      _maxATokenRedeemable = 0;
    }
  }

  /**
   * @notice Compute how many leveraged tokens (xToken) can be redeemed and how much base token is released
   *         if the current collateral ratio is greater than the target.
   *
   * Equations:
   *   n * v = nf * vf + nx * vx
   *
   * After removing dn base tokens and dx leveraged tokens:
   *   (n - dn)*v = nf*vf + (nx - dx)*vx
   *
   * The new collateral ratio:
   *   ((n - dn)*v) / (nf*vf) = ncr
   *
   * Solve for dn and dx:
   *   dn = (n * v - ncr * nf * vf) / v
   *   dx = (n * v - ncr * nf * vf) / vx
   *
   * If dn > 0, that means base tokens can be redeemed; if dx > 0, that many xTokens can be redeemed.
   *
   * @dev If current collateral ratio <= ncr, return 0.
   *
   * @param state Current state.
   * @param _newCollateralRatio Desired collateral ratio (scaled by 1e18).
   * @return _maxBaseOut The base token released (dn).
   * @return _maxXTokenRedeemable The leveraged tokens (xToken) redeemable (dx).
   */
  function maxRedeemableXToken(
    SwapState memory state,
    uint256 _newCollateralRatio
  ) internal pure returns (uint256 _maxBaseOut, uint256 _maxXTokenRedeemable) {
    uint256 _baseVal = state.baseSupply * (state.baseNav) * (PRECISION);
    uint256 _aVal = _newCollateralRatio * (state.aSupply) * (state.aNav);

    if (_baseVal > _aVal) {
      uint256 _delta = _baseVal - _aVal;

      // dx = delta / (vx * PRECISION)
      _maxXTokenRedeemable = _delta / (state.xNav * (PRECISION));
      // dn = delta / (v * PRECISION)
      _maxBaseOut = _delta / (state.baseNav * (PRECISION));
    } else {
      _maxBaseOut = 0;
      _maxXTokenRedeemable = 0;
    }
  }

  /**
   * @notice Mint stable coin tokens (aToken) given a certain amount of base tokens (dn).
   *
   * Equations:
   *   n * v = nf * vf + nx * vx
   * After adding dn base and df fraction tokens:
   *   (n + dn)*v = (nf + df)*vf + nx*vx
   *
   * Solve for df given dn:
   *   df = (dn * v) / vf
   *
   * @param state Current state.
   * @param _baseIn Amount of base token supplied.
   * @return _aTokenOut Amount of stable coin token minted (df).
   */
  function mintAToken(SwapState memory state, uint256 _baseIn) internal pure returns (uint256 _aTokenOut) {
    // df = (dn * v) / vf
    _aTokenOut = (_baseIn * state.baseNav) / state.aNav;
  }

  /**
   * @notice Mint leveraged tokens (xToken) given a certain amount of base tokens (dn).
   *
   * Equations:
   *   n * v = nf * vf + nx * vx
   * After adding dn base tokens and dx leveraged tokens:
   *   (n + dn)*v = nf*vf + (nx + dx)*vx
   *
   * Solve for dx:
   *   dx = (dn * v * nx) / (n * v - nf * vf)
   *
   * @param state Current state.
   * @param _baseIn Amount of base token supplied.
   * @return _xTokenOut Amount of leveraged token minted (dx).
   */
  function mintXToken(SwapState memory state, uint256 _baseIn) internal pure returns (uint256 _xTokenOut) {
    // dx = (dn * v * nx) / (n * v - nf * vf)
    _xTokenOut = _baseIn * state.baseNav * state.xSupply;
    _xTokenOut = _xTokenOut / (state.baseSupply * state.baseNav - state.aSupply * state.aNav);
  }

  /**
   * @notice Redeem base tokens by supplying stable coin tokens (aToken) and/or leveraged tokens (xToken).
   *
   * Equations:
   *   n * v = nf * vf + nx * vx
   * After removing df fraction tokens and dx leveraged tokens:
   *   (n - dn)*v = (nf - df)*vf + (nx - dx)*vx
   *
   * The amount of baseOut (dn*v) depends on how many fraction and leveraged tokens are provided.
   *
   * If xSupply = 0 (no leveraged tokens):
   *   baseOut = (aTokenIn * vf) / v
   *
   * If xSupply > 0:
   *   baseOut = [ (aTokenIn * vf) + (xTokenIn * (n*v - nf*vf) / nx ) ] / v
   *
   * @param state Current state.
   * @param _aTokenIn stable coin tokens supplied.
   * @param _xTokenIn Leveraged tokens supplied.
   * @return _baseOut Amount of base token redeemed.
   */
  function redeem(SwapState memory state, uint256 _aTokenIn, uint256 _xTokenIn) internal pure returns (uint256 _baseOut) {
    uint256 _xVal = state.baseSupply * state.baseNav - state.aSupply * state.aNav;

    if (state.xSupply == 0) {
      _baseOut = (_aTokenIn * state.aNav) / state.baseNav;
    } else {
      _baseOut = _aTokenIn * state.aNav;
      _baseOut += (_xTokenIn * _xVal) / state.xSupply;
      _baseOut /= state.baseNav;
    }
  }

  /**
   * @notice Compute the current leverage ratio for the xToken.
   *
   * Define:
   *   rho = (aSupply * aNav) / (baseSupply * baseTwapNav)
   *
   * When beta = false, leverage ratio = 1 / (1 - rho)
   * If under-collateralized (rho >= 1), leverage ratio = MAX_LEVERAGE_RATIO
   *
   * @param state Current state.
   * @return ratio Current leverage ratio.
   */
  function leverageRatio(SwapState memory state) internal pure returns (uint256 ratio) {
    if (state.beta) return PRECISION;

    if(state.baseSupply == 0 || state.baseNav == 0 || state.baseTwapNav == 0) return 0;

    // rho = (aSupply * aNav * PRECISION) / (baseSupply * baseTwapNav)
    uint256 rho = (state.aSupply * state.aNav * PRECISION) / (state.baseSupply * state.baseTwapNav);

    if (rho >= PRECISION) {
      // Under-collateralized
      ratio = MAX_LEVERAGE_RATIO;
    } else {
      // ratio = 1 / (1 - rho)
      ratio = (PRECISION * PRECISION) / (PRECISION - rho);
      if (ratio > MAX_LEVERAGE_RATIO) ratio = MAX_LEVERAGE_RATIO;
    }
  }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

/**
 * @title IPriceOracle
 * @notice Interface for the PriceOracle contract, managing and updating token price feeds.
 */
interface IPriceOracle {
  /**
   * @dev Emitted when a price feed is added for a token.
   * @param token The address of the token.
   * @param feed The address of the Chainlink price feed.
   */
  event FeedAdded(address indexed token, address indexed feed);

  /**
   * @dev Emitted when a price feed is removed for a token.
   * @param token The address of the token.
   */
  event FeedRemoved(address indexed token);

  /**
   * @dev Emitted when a price feed is updated for a token.
   * @param token The address of the token.
   * @param oldFeed The address of the old price feed.
   * @param newFeed The address of the new price feed.
   */
  event FeedUpdated(address indexed token, address indexed oldFeed, address indexed newFeed);

  // Custom Errors
  error ZeroAddress();
  error InvalidAddress();
  error InvalidOperation();
  error InvalidAmount();
  error StalePrice();
  error InvalidInput();
  error DuplicateEntry();

  /**
   * @notice Gets the latest price data for a specified token.
   * @param token The address of the token.
   * @return isValid Whether the price is valid.
   * @return price The last updated price (18 decimals).
   */
  function getPrice(address token) external view returns (bool isValid, uint256 price);

  /**
   *  @notice gets the token decimals from the feed
   */
  function getFeedDecimals(address token) external view returns (uint8 decimals);
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

interface IDEXRouter {
    function swapExactTokensForTokens(
        uint256 amountIn,
        uint256 amountOutMin,
        address[] calldata path,
        address to,
        uint256 deadline
    ) external returns (uint256[] memory amounts);

    function swapExactETHForTokens(
        uint256 amountOutMin,
        address[] calldata path,
        address to,
        uint256 deadline
    ) external payable returns (uint256[] memory amounts);

    function swapExactTokensForETH(
        uint256 amountIn,
        uint256 amountOutMin,
        address[] calldata path,
        address to,
        uint256 deadline
    ) external returns (uint256[] memory amounts);

    // function getAmountsOut(
    //     uint256 amountIn,
    //     address[] calldata path
    // ) external view returns (uint256[] memory amounts);
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;

interface IStrategy {
    
    error ErrorNotPermitted();
    error ErrorZeroAmount();
    error ErrorZeroAddress();
    error ErrorCannotRecoverToken();
    error ZeroGroupId();

    function withdrawToTreasury(uint256 _diff) external returns (bool);
    function emergencyWithdraw() external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/ERC4626.sol)

pragma solidity ^0.8.0;

import "../ERC20Upgradeable.sol";
import "../utils/SafeERC20Upgradeable.sol";
import "../../../interfaces/IERC4626Upgradeable.sol";
import "../../../utils/math/MathUpgradeable.sol";
import {Initializable} from "../../../proxy/utils/Initializable.sol";

/**
 * @dev Implementation of the ERC4626 "Tokenized Vault Standard" as defined in
 * https://eips.ethereum.org/EIPS/eip-4626[EIP-4626].
 *
 * This extension allows the minting and burning of "shares" (represented using the ERC20 inheritance) in exchange for
 * underlying "assets" through standardized {deposit}, {mint}, {redeem} and {burn} workflows. This contract extends
 * the ERC20 standard. Any additional extensions included along it would affect the "shares" token represented by this
 * contract and not the "assets" token which is an independent contract.
 *
 * [CAUTION]
 * ====
 * In empty (or nearly empty) ERC-4626 vaults, deposits are at high risk of being stolen through frontrunning
 * with a "donation" to the vault that inflates the price of a share. This is variously known as a donation or inflation
 * attack and is essentially a problem of slippage. Vault deployers can protect against this attack by making an initial
 * deposit of a non-trivial amount of the asset, such that price manipulation becomes infeasible. Withdrawals may
 * similarly be affected by slippage. Users can protect against this attack as well as unexpected slippage in general by
 * verifying the amount received is as expected, using a wrapper that performs these checks such as
 * https://github.com/fei-protocol/ERC4626#erc4626router-and-base[ERC4626Router].
 *
 * Since v4.9, this implementation uses virtual assets and shares to mitigate that risk. The `_decimalsOffset()`
 * corresponds to an offset in the decimal representation between the underlying asset's decimals and the vault
 * decimals. This offset also determines the rate of virtual shares to virtual assets in the vault, which itself
 * determines the initial exchange rate. While not fully preventing the attack, analysis shows that the default offset
 * (0) makes it non-profitable, as a result of the value being captured by the virtual shares (out of the attacker's
 * donation) matching the attacker's expected gains. With a larger offset, the attack becomes orders of magnitude more
 * expensive than it is profitable. More details about the underlying math can be found
 * xref:erc4626.adoc#inflation-attack[here].
 *
 * The drawback of this approach is that the virtual shares do capture (a very small) part of the value being accrued
 * to the vault. Also, if the vault experiences losses, the users try to exit the vault, the virtual shares and assets
 * will cause the first user to exit to experience reduced losses in detriment to the last users that will experience
 * bigger losses. Developers willing to revert back to the pre-v4.9 behavior just need to override the
 * `_convertToShares` and `_convertToAssets` functions.
 *
 * To learn more, check out our xref:ROOT:erc4626.adoc[ERC-4626 guide].
 * ====
 *
 * _Available since v4.7._
 */
abstract contract ERC4626Upgradeable is Initializable, ERC20Upgradeable, IERC4626Upgradeable {
    using MathUpgradeable for uint256;

    IERC20Upgradeable private _asset;
    uint8 private _underlyingDecimals;

    /**
     * @dev Set the underlying asset contract. This must be an ERC20-compatible contract (ERC20 or ERC777).
     */
    function __ERC4626_init(IERC20Upgradeable asset_) internal onlyInitializing {
        __ERC4626_init_unchained(asset_);
    }

    function __ERC4626_init_unchained(IERC20Upgradeable asset_) internal onlyInitializing {
        (bool success, uint8 assetDecimals) = _tryGetAssetDecimals(asset_);
        _underlyingDecimals = success ? assetDecimals : 18;
        _asset = asset_;
    }

    /**
     * @dev Attempts to fetch the asset decimals. A return value of false indicates that the attempt failed in some way.
     */
    function _tryGetAssetDecimals(IERC20Upgradeable asset_) private view returns (bool, uint8) {
        (bool success, bytes memory encodedDecimals) = address(asset_).staticcall(
            abi.encodeWithSelector(IERC20MetadataUpgradeable.decimals.selector)
        );
        if (success && encodedDecimals.length >= 32) {
            uint256 returnedDecimals = abi.decode(encodedDecimals, (uint256));
            if (returnedDecimals <= type(uint8).max) {
                return (true, uint8(returnedDecimals));
            }
        }
        return (false, 0);
    }

    /**
     * @dev Decimals are computed by adding the decimal offset on top of the underlying asset's decimals. This
     * "original" value is cached during construction of the vault contract. If this read operation fails (e.g., the
     * asset has not been created yet), a default of 18 is used to represent the underlying asset's decimals.
     *
     * See {IERC20Metadata-decimals}.
     */
    function decimals() public view virtual override(IERC20MetadataUpgradeable, ERC20Upgradeable) returns (uint8) {
        return _underlyingDecimals + _decimalsOffset();
    }

    /** @dev See {IERC4626-asset}. */
    function asset() public view virtual override returns (address) {
        return address(_asset);
    }

    /** @dev See {IERC4626-totalAssets}. */
    function totalAssets() public view virtual override returns (uint256) {
        return _asset.balanceOf(address(this));
    }

    /** @dev See {IERC4626-convertToShares}. */
    function convertToShares(uint256 assets) public view virtual override returns (uint256) {
        return _convertToShares(assets, MathUpgradeable.Rounding.Down);
    }

    /** @dev See {IERC4626-convertToAssets}. */
    function convertToAssets(uint256 shares) public view virtual override returns (uint256) {
        return _convertToAssets(shares, MathUpgradeable.Rounding.Down);
    }

    /** @dev See {IERC4626-maxDeposit}. */
    function maxDeposit(address) public view virtual override returns (uint256) {
        return type(uint256).max;
    }

    /** @dev See {IERC4626-maxMint}. */
    function maxMint(address) public view virtual override returns (uint256) {
        return type(uint256).max;
    }

    /** @dev See {IERC4626-maxWithdraw}. */
    function maxWithdraw(address owner) public view virtual override returns (uint256) {
        return _convertToAssets(balanceOf(owner), MathUpgradeable.Rounding.Down);
    }

    /** @dev See {IERC4626-maxRedeem}. */
    function maxRedeem(address owner) public view virtual override returns (uint256) {
        return balanceOf(owner);
    }

    /** @dev See {IERC4626-previewDeposit}. */
    function previewDeposit(uint256 assets) public view virtual override returns (uint256) {
        return _convertToShares(assets, MathUpgradeable.Rounding.Down);
    }

    /** @dev See {IERC4626-previewMint}. */
    function previewMint(uint256 shares) public view virtual override returns (uint256) {
        return _convertToAssets(shares, MathUpgradeable.Rounding.Up);
    }

    /** @dev See {IERC4626-previewWithdraw}. */
    function previewWithdraw(uint256 assets) public view virtual override returns (uint256) {
        return _convertToShares(assets, MathUpgradeable.Rounding.Up);
    }

    /** @dev See {IERC4626-previewRedeem}. */
    function previewRedeem(uint256 shares) public view virtual override returns (uint256) {
        return _convertToAssets(shares, MathUpgradeable.Rounding.Down);
    }

    /** @dev See {IERC4626-deposit}. */
    function deposit(uint256 assets, address receiver) public virtual override returns (uint256) {
        require(assets <= maxDeposit(receiver), "ERC4626: deposit more than max");

        uint256 shares = previewDeposit(assets);
        _deposit(_msgSender(), receiver, assets, shares);

        return shares;
    }

    /** @dev See {IERC4626-mint}.
     *
     * As opposed to {deposit}, minting is allowed even if the vault is in a state where the price of a share is zero.
     * In this case, the shares will be minted without requiring any assets to be deposited.
     */
    function mint(uint256 shares, address receiver) public virtual override returns (uint256) {
        require(shares <= maxMint(receiver), "ERC4626: mint more than max");

        uint256 assets = previewMint(shares);
        _deposit(_msgSender(), receiver, assets, shares);

        return assets;
    }

    /** @dev See {IERC4626-withdraw}. */
    function withdraw(uint256 assets, address receiver, address owner) public virtual override returns (uint256) {
        require(assets <= maxWithdraw(owner), "ERC4626: withdraw more than max");

        uint256 shares = previewWithdraw(assets);
        _withdraw(_msgSender(), receiver, owner, assets, shares);

        return shares;
    }

    /** @dev See {IERC4626-redeem}. */
    function redeem(uint256 shares, address receiver, address owner) public virtual override returns (uint256) {
        require(shares <= maxRedeem(owner), "ERC4626: redeem more than max");

        uint256 assets = previewRedeem(shares);
        _withdraw(_msgSender(), receiver, owner, assets, shares);

        return assets;
    }

    /**
     * @dev Internal conversion function (from assets to shares) with support for rounding direction.
     */
    function _convertToShares(uint256 assets, MathUpgradeable.Rounding rounding) internal view virtual returns (uint256) {
        return assets.mulDiv(totalSupply() + 10 ** _decimalsOffset(), totalAssets() + 1, rounding);
    }

    /**
     * @dev Internal conversion function (from shares to assets) with support for rounding direction.
     */
    function _convertToAssets(uint256 shares, MathUpgradeable.Rounding rounding) internal view virtual returns (uint256) {
        return shares.mulDiv(totalAssets() + 1, totalSupply() + 10 ** _decimalsOffset(), rounding);
    }

    /**
     * @dev Deposit/mint common workflow.
     */
    function _deposit(address caller, address receiver, uint256 assets, uint256 shares) internal virtual {
        // If _asset is ERC777, `transferFrom` can trigger a reentrancy BEFORE the transfer happens through the
        // `tokensToSend` hook. On the other hand, the `tokenReceived` hook, that is triggered after the transfer,
        // calls the vault, which is assumed not malicious.
        //
        // Conclusion: we need to do the transfer before we mint so that any reentrancy would happen before the
        // assets are transferred and before the shares are minted, which is a valid state.
        // slither-disable-next-line reentrancy-no-eth
        SafeERC20Upgradeable.safeTransferFrom(_asset, caller, address(this), assets);
        _mint(receiver, shares);

        emit Deposit(caller, receiver, assets, shares);
    }

    /**
     * @dev Withdraw/redeem common workflow.
     */
    function _withdraw(
        address caller,
        address receiver,
        address owner,
        uint256 assets,
        uint256 shares
    ) internal virtual {
        if (caller != owner) {
            _spendAllowance(owner, caller, shares);
        }

        // If _asset is ERC777, `transfer` can trigger a reentrancy AFTER the transfer happens through the
        // `tokensReceived` hook. On the other hand, the `tokensToSend` hook, that is triggered before the transfer,
        // calls the vault, which is assumed not malicious.
        //
        // Conclusion: we need to do the transfer after the burn so that any reentrancy would happen after the
        // shares are burned and after the assets are transferred, which is a valid state.
        _burn(owner, shares);
        SafeERC20Upgradeable.safeTransfer(_asset, receiver, assets);

        emit Withdraw(caller, receiver, owner, assets, shares);
    }

    function _decimalsOffset() internal view virtual returns (uint8) {
        return 0;
    }

    /**
     * @dev This empty reserved space is put in place to allow future versions to add new
     * variables without shifting down storage in the inheritance chain.
     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
     */
    uint256[49] private __gap;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC4626.sol)

pragma solidity ^0.8.0;

import "../token/ERC20/IERC20Upgradeable.sol";
import "../token/ERC20/extensions/IERC20MetadataUpgradeable.sol";

/**
 * @dev Interface of the ERC4626 "Tokenized Vault Standard", as defined in
 * https://eips.ethereum.org/EIPS/eip-4626[ERC-4626].
 *
 * _Available since v4.7._
 */
interface IERC4626Upgradeable is IERC20Upgradeable, IERC20MetadataUpgradeable {
    event Deposit(address indexed sender, address indexed owner, uint256 assets, uint256 shares);

    event Withdraw(
        address indexed sender,
        address indexed receiver,
        address indexed owner,
        uint256 assets,
        uint256 shares
    );

    /**
     * @dev Returns the address of the underlying token used for the Vault for accounting, depositing, and withdrawing.
     *
     * - MUST be an ERC-20 token contract.
     * - MUST NOT revert.
     */
    function asset() external view returns (address assetTokenAddress);

    /**
     * @dev Returns the total amount of the underlying asset that is “managed” by Vault.
     *
     * - SHOULD include any compounding that occurs from yield.
     * - MUST be inclusive of any fees that are charged against assets in the Vault.
     * - MUST NOT revert.
     */
    function totalAssets() external view returns (uint256 totalManagedAssets);

    /**
     * @dev Returns the amount of shares that the Vault would exchange for the amount of assets provided, in an ideal
     * scenario where all the conditions are met.
     *
     * - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
     * - MUST NOT show any variations depending on the caller.
     * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
     * - MUST NOT revert.
     *
     * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
     * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
     * from.
     */
    function convertToShares(uint256 assets) external view returns (uint256 shares);

    /**
     * @dev Returns the amount of assets that the Vault would exchange for the amount of shares provided, in an ideal
     * scenario where all the conditions are met.
     *
     * - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
     * - MUST NOT show any variations depending on the caller.
     * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
     * - MUST NOT revert.
     *
     * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
     * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
     * from.
     */
    function convertToAssets(uint256 shares) external view returns (uint256 assets);

    /**
     * @dev Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver,
     * through a deposit call.
     *
     * - MUST return a limited value if receiver is subject to some deposit limit.
     * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of assets that may be deposited.
     * - MUST NOT revert.
     */
    function maxDeposit(address receiver) external view returns (uint256 maxAssets);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their deposit at the current block, given
     * current on-chain conditions.
     *
     * - MUST return as close to and no more than the exact amount of Vault shares that would be minted in a deposit
     *   call in the same transaction. I.e. deposit should return the same or more shares as previewDeposit if called
     *   in the same transaction.
     * - MUST NOT account for deposit limits like those returned from maxDeposit and should always act as though the
     *   deposit would be accepted, regardless if the user has enough tokens approved, etc.
     * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToShares and previewDeposit SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by depositing.
     */
    function previewDeposit(uint256 assets) external view returns (uint256 shares);

    /**
     * @dev Mints shares Vault shares to receiver by depositing exactly amount of underlying tokens.
     *
     * - MUST emit the Deposit event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
     *   deposit execution, and are accounted for during deposit.
     * - MUST revert if all of assets cannot be deposited (due to deposit limit being reached, slippage, the user not
     *   approving enough underlying tokens to the Vault contract, etc).
     *
     * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
     */
    function deposit(uint256 assets, address receiver) external returns (uint256 shares);

    /**
     * @dev Returns the maximum amount of the Vault shares that can be minted for the receiver, through a mint call.
     * - MUST return a limited value if receiver is subject to some mint limit.
     * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of shares that may be minted.
     * - MUST NOT revert.
     */
    function maxMint(address receiver) external view returns (uint256 maxShares);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their mint at the current block, given
     * current on-chain conditions.
     *
     * - MUST return as close to and no fewer than the exact amount of assets that would be deposited in a mint call
     *   in the same transaction. I.e. mint should return the same or fewer assets as previewMint if called in the
     *   same transaction.
     * - MUST NOT account for mint limits like those returned from maxMint and should always act as though the mint
     *   would be accepted, regardless if the user has enough tokens approved, etc.
     * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToAssets and previewMint SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by minting.
     */
    function previewMint(uint256 shares) external view returns (uint256 assets);

    /**
     * @dev Mints exactly shares Vault shares to receiver by depositing amount of underlying tokens.
     *
     * - MUST emit the Deposit event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the mint
     *   execution, and are accounted for during mint.
     * - MUST revert if all of shares cannot be minted (due to deposit limit being reached, slippage, the user not
     *   approving enough underlying tokens to the Vault contract, etc).
     *
     * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
     */
    function mint(uint256 shares, address receiver) external returns (uint256 assets);

    /**
     * @dev Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the
     * Vault, through a withdraw call.
     *
     * - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
     * - MUST NOT revert.
     */
    function maxWithdraw(address owner) external view returns (uint256 maxAssets);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their withdrawal at the current block,
     * given current on-chain conditions.
     *
     * - MUST return as close to and no fewer than the exact amount of Vault shares that would be burned in a withdraw
     *   call in the same transaction. I.e. withdraw should return the same or fewer shares as previewWithdraw if
     *   called
     *   in the same transaction.
     * - MUST NOT account for withdrawal limits like those returned from maxWithdraw and should always act as though
     *   the withdrawal would be accepted, regardless if the user has enough shares, etc.
     * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToShares and previewWithdraw SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by depositing.
     */
    function previewWithdraw(uint256 assets) external view returns (uint256 shares);

    /**
     * @dev Burns shares from owner and sends exactly assets of underlying tokens to receiver.
     *
     * - MUST emit the Withdraw event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
     *   withdraw execution, and are accounted for during withdraw.
     * - MUST revert if all of assets cannot be withdrawn (due to withdrawal limit being reached, slippage, the owner
     *   not having enough shares, etc).
     *
     * Note that some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
     * Those methods should be performed separately.
     */
    function withdraw(uint256 assets, address receiver, address owner) external returns (uint256 shares);

    /**
     * @dev Returns the maximum amount of Vault shares that can be redeemed from the owner balance in the Vault,
     * through a redeem call.
     *
     * - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
     * - MUST return balanceOf(owner) if owner is not subject to any withdrawal limit or timelock.
     * - MUST NOT revert.
     */
    function maxRedeem(address owner) external view returns (uint256 maxShares);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their redeemption at the current block,
     * given current on-chain conditions.
     *
     * - MUST return as close to and no more than the exact amount of assets that would be withdrawn in a redeem call
     *   in the same transaction. I.e. redeem should return the same or more assets as previewRedeem if called in the
     *   same transaction.
     * - MUST NOT account for redemption limits like those returned from maxRedeem and should always act as though the
     *   redemption would be accepted, regardless if the user has enough shares, etc.
     * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToAssets and previewRedeem SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by redeeming.
     */
    function previewRedeem(uint256 shares) external view returns (uint256 assets);

    /**
     * @dev Burns exactly shares from owner and sends assets of underlying tokens to receiver.
     *
     * - MUST emit the Withdraw event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
     *   redeem execution, and are accounted for during redeem.
     * - MUST revert if all of shares cannot be redeemed (due to withdrawal limit being reached, slippage, the owner
     *   not having enough shares, etc).
     *
     * NOTE: some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
     * Those methods should be performed separately.
     */
    function redeem(uint256 shares, address receiver, address owner) external returns (uint256 assets);
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):