Contract Source Code:
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {Constants} from "./libraries/Constants.sol";
import {JoeLibrary} from "./libraries/JoeLibrary.sol";
import {PriceHelper} from "./libraries/PriceHelper.sol";
import {Uint256x256Math} from "./libraries/math/Uint256x256Math.sol";
import {SafeCast} from "./libraries/math/SafeCast.sol";
import {IJoeFactory} from "./interfaces/IJoeFactory.sol";
import {ILBFactory} from "./interfaces/ILBFactory.sol";
import {ILBLegacyFactory} from "./interfaces/ILBLegacyFactory.sol";
import {ILBLegacyRouter} from "./interfaces/ILBLegacyRouter.sol";
import {IJoePair} from "./interfaces/IJoePair.sol";
import {ILBLegacyPair} from "./interfaces/ILBLegacyPair.sol";
import {ILBPair} from "./interfaces/ILBPair.sol";
import {ILBRouter} from "./interfaces/ILBRouter.sol";
/**
* @title Liquidity Book Quoter
* @author Trader Joe
* @notice Helper contract to determine best path through multiple markets
*/
contract LBQuoter {
using Uint256x256Math for uint256;
using SafeCast for uint256;
error LBQuoter_InvalidLength();
address private immutable _factoryV1;
address private immutable _legacyFactoryV2;
address private immutable _factoryV2;
address private immutable _legacyRouterV2;
address private immutable _routerV2;
/**
* @dev The quote struct returned by the quoter
* - route: address array of the token to go through
* - pairs: address array of the pairs to go through
* - binSteps: The bin step to use for each pair
* - versions: The version to use for each pair
* - amounts: The amounts of every step of the swap
* - virtualAmountsWithoutSlippage: The virtual amounts of every step of the swap without slippage
* - fees: The fees to pay for every step of the swap
*/
struct Quote {
address[] route;
address[] pairs;
uint256[] binSteps;
ILBRouter.Version[] versions;
uint128[] amounts;
uint128[] virtualAmountsWithoutSlippage;
uint128[] fees;
}
/**
* @notice Constructor
* @param factoryV1 Dex V1 factory address
* @param legacyFactoryV2 Dex V2 factory address
* @param factoryV2 Dex V2.1 factory address
* @param legacyRouterV2 Dex V2 router address
* @param routerV2 Dex V2 router address
*/
constructor(
address factoryV1,
address legacyFactoryV2,
address factoryV2,
address legacyRouterV2,
address routerV2
) {
_factoryV1 = factoryV1;
_legacyFactoryV2 = legacyFactoryV2;
_factoryV2 = factoryV2;
_routerV2 = routerV2;
_legacyRouterV2 = legacyRouterV2;
}
/**
* @notice Returns the Dex V1 factory address
* @return factoryV1 Dex V1 factory address
*/
function getFactoryV1() public view returns (address factoryV1) {
factoryV1 = _factoryV1;
}
/**
* @notice Returns the Dex V2 factory address
* @return legacyFactoryV2 Dex V2 factory address
*/
function getLegacyFactoryV2() public view returns (address legacyFactoryV2) {
legacyFactoryV2 = _legacyFactoryV2;
}
/**
* @notice Returns the Dex V2.1 factory address
* @return factoryV2 Dex V2.1 factory address
*/
function getFactoryV2() public view returns (address factoryV2) {
factoryV2 = _factoryV2;
}
/**
* @notice Returns the Dex V2 router address
* @return legacyRouterV2 Dex V2 router address
*/
function getLegacyRouterV2() public view returns (address legacyRouterV2) {
legacyRouterV2 = _legacyRouterV2;
}
/**
* @notice Returns the Dex V2 router address
* @return routerV2 Dex V2 router address
*/
function getRouterV2() public view returns (address routerV2) {
routerV2 = _routerV2;
}
/**
* @notice Finds the best path given a list of tokens and the input amount wanted from the swap
* @param route List of the tokens to go through
* @param amountIn Swap amount in
* @return quote The Quote structure containing the necessary element to perform the swap
*/
function findBestPathFromAmountIn(address[] calldata route, uint128 amountIn)
public
view
returns (Quote memory quote)
{
if (route.length < 2) {
revert LBQuoter_InvalidLength();
}
quote.route = route;
uint256 swapLength = route.length - 1;
quote.pairs = new address[](swapLength);
quote.binSteps = new uint256[](swapLength);
quote.versions = new ILBRouter.Version[](swapLength);
quote.fees = new uint128[](swapLength);
quote.amounts = new uint128[](route.length);
quote.virtualAmountsWithoutSlippage = new uint128[](route.length);
quote.amounts[0] = amountIn;
quote.virtualAmountsWithoutSlippage[0] = amountIn;
for (uint256 i; i < swapLength; i++) {
if (_factoryV2 != address(0)) {
// Fetch swaps for V2.1
ILBFactory.LBPairInformation[] memory LBPairsAvailable =
ILBFactory(_factoryV2).getAllLBPairs(IERC20(route[i]), IERC20(route[i + 1]));
if (LBPairsAvailable.length > 0 && quote.amounts[i] > 0) {
for (uint256 j; j < LBPairsAvailable.length; j++) {
if (!LBPairsAvailable[j].ignoredForRouting) {
bool swapForY = address(LBPairsAvailable[j].LBPair.getTokenY()) == route[i + 1];
try ILBRouter(_routerV2).getSwapOut(LBPairsAvailable[j].LBPair, quote.amounts[i], swapForY)
returns (uint128 amountInLeft, uint128 swapAmountOut, uint128 fees) {
if (amountInLeft == 0 && swapAmountOut > quote.amounts[i + 1]) {
quote.amounts[i + 1] = swapAmountOut;
quote.pairs[i] = address(LBPairsAvailable[j].LBPair);
quote.binSteps[i] = uint16(LBPairsAvailable[j].binStep);
quote.versions[i] = ILBRouter.Version.V2_1;
// Getting current price
uint24 activeId = LBPairsAvailable[j].LBPair.getActiveId();
quote.virtualAmountsWithoutSlippage[i + 1] = _getV2Quote(
quote.virtualAmountsWithoutSlippage[i] - fees,
activeId,
quote.binSteps[i],
swapForY
);
quote.fees[i] = ((uint256(fees) * 1e18) / quote.amounts[i]).safe128(); // fee percentage in amountIn
}
} catch {}
}
}
}
}
if (_legacyFactoryV2 != address(0)) {
// Fetch swap for V2
ILBLegacyFactory.LBPairInformation[] memory legacyLBPairsAvailable =
ILBLegacyFactory(_legacyFactoryV2).getAllLBPairs(IERC20(route[i]), IERC20(route[i + 1]));
if (legacyLBPairsAvailable.length > 0 && quote.amounts[i] > 0) {
for (uint256 j; j < legacyLBPairsAvailable.length; j++) {
if (!legacyLBPairsAvailable[j].ignoredForRouting) {
bool swapForY = address(legacyLBPairsAvailable[j].LBPair.tokenY()) == route[i + 1];
try ILBLegacyRouter(_legacyRouterV2).getSwapOut(
legacyLBPairsAvailable[j].LBPair, quote.amounts[i], swapForY
) returns (uint256 swapAmountOut, uint256 fees) {
if (swapAmountOut > quote.amounts[i + 1]) {
quote.amounts[i + 1] = swapAmountOut.safe128();
quote.pairs[i] = address(legacyLBPairsAvailable[j].LBPair);
quote.binSteps[i] = legacyLBPairsAvailable[j].binStep;
quote.versions[i] = ILBRouter.Version.V2;
// Getting current price
(,, uint256 activeId) = legacyLBPairsAvailable[j].LBPair.getReservesAndId();
quote.virtualAmountsWithoutSlippage[i + 1] = _getV2Quote(
quote.virtualAmountsWithoutSlippage[i] - fees,
(activeId).safe24(),
quote.binSteps[i],
swapForY
);
quote.fees[i] = ((fees * 1e18) / quote.amounts[i]).safe128(); // fee percentage in amountIn
}
} catch {}
}
}
}
}
// Fetch swap for V1
if (_factoryV1 != address(0)) {
address pair = IJoeFactory(_factoryV1).getPair(route[i], route[i + 1]);
if (pair != address(0) && quote.amounts[i] > 0) {
(uint256 reserveIn, uint256 reserveOut) = _getReserves(pair, route[i], route[i + 1]);
if (reserveIn > 0 && reserveOut > 0) {
uint256 swapAmountOut = JoeLibrary.getAmountOut(quote.amounts[i], reserveIn, reserveOut);
if (swapAmountOut > quote.amounts[i + 1]) {
quote.amounts[i + 1] = swapAmountOut.safe128();
quote.pairs[i] = pair;
quote.virtualAmountsWithoutSlippage[i + 1] = JoeLibrary.quote(
quote.virtualAmountsWithoutSlippage[i] * 997, reserveIn * 1000, reserveOut
).safe128();
quote.fees[i] = 0.003e18; // 0.3%
quote.versions[i] = ILBRouter.Version.V1;
quote.binSteps[i] = 0;
}
}
}
}
}
}
/**
* @notice Finds the best path given a list of tokens and the output amount wanted from the swap
* @param route List of the tokens to go through
* @param amountOut Swap amount out
* @return quote The Quote structure containing the necessary element to perform the swap
*/
function findBestPathFromAmountOut(address[] calldata route, uint128 amountOut)
public
view
returns (Quote memory quote)
{
if (route.length < 2) {
revert LBQuoter_InvalidLength();
}
quote.route = route;
uint256 swapLength = route.length - 1;
quote.pairs = new address[](swapLength);
quote.binSteps = new uint256[](swapLength);
quote.versions = new ILBRouter.Version[](swapLength);
quote.amounts = new uint128[](route.length);
quote.virtualAmountsWithoutSlippage = new uint128[](route.length);
quote.fees = new uint128[](swapLength);
quote.amounts[swapLength] = amountOut;
quote.virtualAmountsWithoutSlippage[swapLength] = amountOut;
for (uint256 i = swapLength; i > 0; i--) {
if (_factoryV2 != address(0)) {
// Fetch swaps for V2.1
ILBFactory.LBPairInformation[] memory LBPairsAvailable =
ILBFactory(_factoryV2).getAllLBPairs(IERC20(route[i - 1]), IERC20(route[i]));
if (LBPairsAvailable.length > 0 && quote.amounts[i] > 0) {
for (uint256 j; j < LBPairsAvailable.length; j++) {
if (!LBPairsAvailable[j].ignoredForRouting) {
bool swapForY = address(LBPairsAvailable[j].LBPair.getTokenY()) == route[i];
try ILBRouter(_routerV2).getSwapIn(LBPairsAvailable[j].LBPair, quote.amounts[i], swapForY)
returns (uint128 swapAmountIn, uint128 amountOutLeft, uint128 fees) {
if (
amountOutLeft == 0 && swapAmountIn != 0
&& (swapAmountIn < quote.amounts[i - 1] || quote.amounts[i - 1] == 0)
) {
quote.amounts[i - 1] = swapAmountIn;
quote.pairs[i - 1] = address(LBPairsAvailable[j].LBPair);
quote.binSteps[i - 1] = uint16(LBPairsAvailable[j].binStep);
quote.versions[i - 1] = ILBRouter.Version.V2_1;
// Getting current price
uint24 activeId = LBPairsAvailable[j].LBPair.getActiveId();
quote.virtualAmountsWithoutSlippage[i - 1] = _getV2Quote(
quote.virtualAmountsWithoutSlippage[i],
activeId,
quote.binSteps[i - 1],
!swapForY
) + fees;
quote.fees[i - 1] = ((uint256(fees) * 1e18) / quote.amounts[i - 1]).safe128(); // fee percentage in amountIn
}
} catch {}
}
}
}
}
if (_legacyFactoryV2 != address(0)) {
// Fetch swaps for V2
ILBLegacyFactory.LBPairInformation[] memory legacyLBPairsAvailable =
ILBLegacyFactory(_legacyFactoryV2).getAllLBPairs(IERC20(route[i - 1]), IERC20(route[i]));
if (legacyLBPairsAvailable.length > 0 && quote.amounts[i] > 0) {
for (uint256 j; j < legacyLBPairsAvailable.length; j++) {
if (!legacyLBPairsAvailable[j].ignoredForRouting) {
bool swapForY = address(legacyLBPairsAvailable[j].LBPair.tokenY()) == route[i];
try ILBLegacyRouter(_legacyRouterV2).getSwapIn(
legacyLBPairsAvailable[j].LBPair, quote.amounts[i], swapForY
) returns (uint256 swapAmountIn, uint256 fees) {
if (
swapAmountIn != 0
&& (swapAmountIn < quote.amounts[i - 1] || quote.amounts[i - 1] == 0)
) {
quote.amounts[i - 1] = (swapAmountIn).safe128();
quote.pairs[i - 1] = address(legacyLBPairsAvailable[j].LBPair);
quote.binSteps[i - 1] = legacyLBPairsAvailable[j].binStep;
quote.versions[i - 1] = ILBRouter.Version.V2;
// Getting current price
(,, uint256 activeId) = legacyLBPairsAvailable[j].LBPair.getReservesAndId();
quote.virtualAmountsWithoutSlippage[i - 1] = _getV2Quote(
quote.virtualAmountsWithoutSlippage[i],
uint24(activeId),
quote.binSteps[i - 1],
!swapForY
) + fees.safe128();
quote.fees[i - 1] = ((fees * 1e18) / quote.amounts[i - 1]).safe128(); // fee percentage in amountIn
}
} catch {}
}
}
}
}
if (_factoryV1 != address(0)) {
// Fetch swap for V1
address pair = IJoeFactory(_factoryV1).getPair(route[i - 1], route[i]);
if (pair != address(0) && quote.amounts[i] > 0) {
(uint256 reserveIn, uint256 reserveOut) = _getReserves(pair, route[i - 1], route[i]);
if (reserveIn > 0 && reserveOut > quote.amounts[i]) {
uint256 swapAmountIn = JoeLibrary.getAmountIn(quote.amounts[i], reserveIn, reserveOut);
if (swapAmountIn < quote.amounts[i - 1] || quote.amounts[i - 1] == 0) {
quote.amounts[i - 1] = swapAmountIn.safe128();
quote.pairs[i - 1] = pair;
quote.virtualAmountsWithoutSlippage[i - 1] = (
JoeLibrary.quote(
quote.virtualAmountsWithoutSlippage[i] * 1000, reserveOut * 997, reserveIn
) + 1
).safe128();
quote.fees[i - 1] = 0.003e18; // 0.3%
quote.versions[i - 1] = ILBRouter.Version.V1;
quote.binSteps[i - 1] = 0;
}
}
}
}
}
}
/**
* @dev Forked from JoeLibrary
* @dev Doesn't rely on the init code hash of the factory
* @param pair Address of the pair
* @param tokenA Address of token A
* @param tokenB Address of token B
* @return reserveA Reserve of token A in the pair
* @return reserveB Reserve of token B in the pair
*/
function _getReserves(address pair, address tokenA, address tokenB)
internal
view
returns (uint256 reserveA, uint256 reserveB)
{
(address token0,) = JoeLibrary.sortTokens(tokenA, tokenB);
(uint256 reserve0, uint256 reserve1,) = IJoePair(pair).getReserves();
(reserveA, reserveB) = tokenA == token0 ? (reserve0, reserve1) : (reserve1, reserve0);
}
/**
* @dev Calculates a quote for a V2 pair
* @param amount Amount in to consider
* @param activeId Current active Id of the considred pair
* @param binStep Bin step of the considered pair
* @param swapForY Boolean describing if we are swapping from X to Y or the opposite
* @return quote Amount Out if _amount was swapped with no slippage and no fees
*/
function _getV2Quote(uint256 amount, uint24 activeId, uint256 binStep, bool swapForY)
internal
pure
returns (uint128 quote)
{
if (swapForY) {
quote = PriceHelper.getPriceFromId(activeId, uint16(binStep)).mulShiftRoundDown(
amount, Constants.SCALE_OFFSET
).safe128();
} else {
quote = amount.shiftDivRoundDown(
Constants.SCALE_OFFSET, PriceHelper.getPriceFromId(activeId, uint16(binStep))
).safe128();
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-20 standard as defined in the ERC.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.10;
/**
* @title Liquidity Book Constants Library
* @author Trader Joe
* @notice Set of constants for Liquidity Book contracts
*/
library Constants {
uint8 internal constant SCALE_OFFSET = 128;
uint256 internal constant SCALE = 1 << SCALE_OFFSET;
uint256 internal constant PRECISION = 1e18;
uint256 internal constant SQUARED_PRECISION = PRECISION * PRECISION;
uint256 internal constant MAX_FEE = 0.1e18; // 10%
uint256 internal constant MAX_PROTOCOL_SHARE = 2_500; // 25% of the fee
uint256 internal constant BASIS_POINT_MAX = 10_000;
// (2^256 - 1) / (2 * log(2**128) / log(1.0001))
uint256 internal constant MAX_LIQUIDITY_PER_BIN =
65251743116719673010965625540244653191619923014385985379600384103134737;
/// @dev The expected return after a successful flash loan
bytes32 internal constant CALLBACK_SUCCESS = keccak256("LBPair.onFlashLoan");
}
// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.10;
/**
* @title Liquidity Book Joe Library Helper Library
* @author Trader Joe
* @notice Helper contract used for Joe V1 related calculations
*/
library JoeLibrary {
error JoeLibrary__AddressZero();
error JoeLibrary__IdenticalAddresses();
error JoeLibrary__InsufficientAmount();
error JoeLibrary__InsufficientLiquidity();
// returns sorted token addresses, used to handle return values from pairs sorted in this order
function sortTokens(address tokenA, address tokenB) internal pure returns (address token0, address token1) {
if (tokenA == tokenB) revert JoeLibrary__IdenticalAddresses();
(token0, token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA);
if (token0 == address(0)) revert JoeLibrary__AddressZero();
}
// given some amount of an asset and pair reserves, returns an equivalent amount of the other asset
function quote(uint256 amountA, uint256 reserveA, uint256 reserveB) internal pure returns (uint256 amountB) {
if (amountA == 0) revert JoeLibrary__InsufficientAmount();
if (reserveA == 0 || reserveB == 0) revert JoeLibrary__InsufficientLiquidity();
amountB = (amountA * reserveB) / reserveA;
}
// given an input amount of an asset and pair reserves, returns the maximum output amount of the other asset
function getAmountOut(uint256 amountIn, uint256 reserveIn, uint256 reserveOut)
internal
pure
returns (uint256 amountOut)
{
if (amountIn == 0) revert JoeLibrary__InsufficientAmount();
if (reserveIn == 0 || reserveOut == 0) revert JoeLibrary__InsufficientLiquidity();
uint256 amountInWithFee = amountIn * 997;
uint256 numerator = amountInWithFee * reserveOut;
uint256 denominator = reserveIn * 1000 + amountInWithFee;
amountOut = numerator / denominator;
}
// given an output amount of an asset and pair reserves, returns a required input amount of the other asset
function getAmountIn(uint256 amountOut, uint256 reserveIn, uint256 reserveOut)
internal
pure
returns (uint256 amountIn)
{
if (amountOut == 0) revert JoeLibrary__InsufficientAmount();
if (reserveIn == 0 || reserveOut == 0) revert JoeLibrary__InsufficientLiquidity();
uint256 numerator = reserveIn * amountOut * 1000;
uint256 denominator = (reserveOut - amountOut) * 997;
amountIn = numerator / denominator + 1;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.10;
import {Uint128x128Math} from "./math/Uint128x128Math.sol";
import {Uint256x256Math} from "./math/Uint256x256Math.sol";
import {SafeCast} from "./math/SafeCast.sol";
import {Constants} from "./Constants.sol";
/**
* @title Liquidity Book Price Helper Library
* @author Trader Joe
* @notice This library contains functions to calculate prices
*/
library PriceHelper {
using Uint128x128Math for uint256;
using Uint256x256Math for uint256;
using SafeCast for uint256;
int256 private constant REAL_ID_SHIFT = 1 << 23;
/**
* @dev Calculates the price from the id and the bin step
* @param id The id
* @param binStep The bin step
* @return price The price as a 128.128-binary fixed-point number
*/
function getPriceFromId(uint24 id, uint16 binStep) internal pure returns (uint256 price) {
uint256 base = getBase(binStep);
int256 exponent = getExponent(id);
price = base.pow(exponent);
}
/**
* @dev Calculates the id from the price and the bin step
* @param price The price as a 128.128-binary fixed-point number
* @param binStep The bin step
* @return id The id
*/
function getIdFromPrice(uint256 price, uint16 binStep) internal pure returns (uint24 id) {
uint256 base = getBase(binStep);
int256 realId = price.log2() / base.log2();
unchecked {
id = uint256(REAL_ID_SHIFT + realId).safe24();
}
}
/**
* @dev Calculates the base from the bin step, which is `1 + binStep / BASIS_POINT_MAX`
* @param binStep The bin step
* @return base The base
*/
function getBase(uint16 binStep) internal pure returns (uint256) {
unchecked {
return Constants.SCALE + (uint256(binStep) << Constants.SCALE_OFFSET) / Constants.BASIS_POINT_MAX;
}
}
/**
* @dev Calculates the exponent from the id, which is `id - REAL_ID_SHIFT`
* @param id The id
* @return exponent The exponent
*/
function getExponent(uint24 id) internal pure returns (int256) {
unchecked {
return int256(uint256(id)) - REAL_ID_SHIFT;
}
}
/**
* @dev Converts a price with 18 decimals to a 128.128-binary fixed-point number
* @param price The price with 18 decimals
* @return price128x128 The 128.128-binary fixed-point number
*/
function convertDecimalPriceTo128x128(uint256 price) internal pure returns (uint256) {
return price.shiftDivRoundDown(Constants.SCALE_OFFSET, Constants.PRECISION);
}
/**
* @dev Converts a 128.128-binary fixed-point number to a price with 18 decimals
* @param price128x128 The 128.128-binary fixed-point number
* @return price The price with 18 decimals
*/
function convert128x128PriceToDecimal(uint256 price128x128) internal pure returns (uint256) {
return price128x128.mulShiftRoundDown(Constants.PRECISION, Constants.SCALE_OFFSET);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.10;
import {BitMath} from "./BitMath.sol";
/**
* @title Liquidity Book Uint256x256 Math Library
* @author Trader Joe
* @notice Helper contract used for full precision calculations
*/
library Uint256x256Math {
error Uint256x256Math__MulShiftOverflow();
error Uint256x256Math__MulDivOverflow();
/**
* @notice Calculates floor(x*y/denominator) with full precision
* The result will be rounded down
* @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv
* Requirements:
* - The denominator cannot be zero
* - The result must fit within uint256
* Caveats:
* - This function does not work with fixed-point numbers
* @param x The multiplicand as an uint256
* @param y The multiplier as an uint256
* @param denominator The divisor as an uint256
* @return result The result as an uint256
*/
function mulDivRoundDown(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
(uint256 prod0, uint256 prod1) = _getMulProds(x, y);
return _getEndOfDivRoundDown(x, y, denominator, prod0, prod1);
}
/**
* @notice Calculates ceil(x*y/denominator) with full precision
* The result will be rounded up
* @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv
* Requirements:
* - The denominator cannot be zero
* - The result must fit within uint256
* Caveats:
* - This function does not work with fixed-point numbers
* @param x The multiplicand as an uint256
* @param y The multiplier as an uint256
* @param denominator The divisor as an uint256
* @return result The result as an uint256
*/
function mulDivRoundUp(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
result = mulDivRoundDown(x, y, denominator);
if (mulmod(x, y, denominator) != 0) result += 1;
}
/**
* @notice Calculates floor(x * y / 2**offset) with full precision
* The result will be rounded down
* @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv
* Requirements:
* - The offset needs to be strictly lower than 256
* - The result must fit within uint256
* Caveats:
* - This function does not work with fixed-point numbers
* @param x The multiplicand as an uint256
* @param y The multiplier as an uint256
* @param offset The offset as an uint256, can't be greater than 256
* @return result The result as an uint256
*/
function mulShiftRoundDown(uint256 x, uint256 y, uint8 offset) internal pure returns (uint256 result) {
(uint256 prod0, uint256 prod1) = _getMulProds(x, y);
if (prod0 != 0) result = prod0 >> offset;
if (prod1 != 0) {
// Make sure the result is less than 2^256.
if (prod1 >= 1 << offset) revert Uint256x256Math__MulShiftOverflow();
unchecked {
result += prod1 << (256 - offset);
}
}
}
/**
* @notice Calculates floor(x * y / 2**offset) with full precision
* The result will be rounded down
* @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv
* Requirements:
* - The offset needs to be strictly lower than 256
* - The result must fit within uint256
* Caveats:
* - This function does not work with fixed-point numbers
* @param x The multiplicand as an uint256
* @param y The multiplier as an uint256
* @param offset The offset as an uint256, can't be greater than 256
* @return result The result as an uint256
*/
function mulShiftRoundUp(uint256 x, uint256 y, uint8 offset) internal pure returns (uint256 result) {
result = mulShiftRoundDown(x, y, offset);
if (mulmod(x, y, 1 << offset) != 0) result += 1;
}
/**
* @notice Calculates floor(x << offset / y) with full precision
* The result will be rounded down
* @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv
* Requirements:
* - The offset needs to be strictly lower than 256
* - The result must fit within uint256
* Caveats:
* - This function does not work with fixed-point numbers
* @param x The multiplicand as an uint256
* @param offset The number of bit to shift x as an uint256
* @param denominator The divisor as an uint256
* @return result The result as an uint256
*/
function shiftDivRoundDown(uint256 x, uint8 offset, uint256 denominator) internal pure returns (uint256 result) {
uint256 prod0;
uint256 prod1;
prod0 = x << offset; // Least significant 256 bits of the product
unchecked {
prod1 = x >> (256 - offset); // Most significant 256 bits of the product
}
return _getEndOfDivRoundDown(x, 1 << offset, denominator, prod0, prod1);
}
/**
* @notice Calculates ceil(x << offset / y) with full precision
* The result will be rounded up
* @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv
* Requirements:
* - The offset needs to be strictly lower than 256
* - The result must fit within uint256
* Caveats:
* - This function does not work with fixed-point numbers
* @param x The multiplicand as an uint256
* @param offset The number of bit to shift x as an uint256
* @param denominator The divisor as an uint256
* @return result The result as an uint256
*/
function shiftDivRoundUp(uint256 x, uint8 offset, uint256 denominator) internal pure returns (uint256 result) {
result = shiftDivRoundDown(x, offset, denominator);
if (mulmod(x, 1 << offset, denominator) != 0) result += 1;
}
/**
* @notice Helper function to return the result of `x * y` as 2 uint256
* @param x The multiplicand as an uint256
* @param y The multiplier as an uint256
* @return prod0 The least significant 256 bits of the product
* @return prod1 The most significant 256 bits of the product
*/
function _getMulProds(uint256 x, uint256 y) private pure returns (uint256 prod0, uint256 prod1) {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
}
/**
* @notice Helper function to return the result of `x * y / denominator` with full precision
* @param x The multiplicand as an uint256
* @param y The multiplier as an uint256
* @param denominator The divisor as an uint256
* @param prod0 The least significant 256 bits of the product
* @param prod1 The most significant 256 bits of the product
* @return result The result as an uint256
*/
function _getEndOfDivRoundDown(uint256 x, uint256 y, uint256 denominator, uint256 prod0, uint256 prod1)
private
pure
returns (uint256 result)
{
// Handle non-overflow cases, 256 by 256 division
if (prod1 == 0) {
unchecked {
result = prod0 / denominator;
}
} else {
// Make sure the result is less than 2^256. Also prevents denominator == 0
if (prod1 >= denominator) revert Uint256x256Math__MulDivOverflow();
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1
// See https://cs.stackexchange.com/q/138556/92363
unchecked {
// Does not overflow because the denominator cannot be zero at this stage in the function
uint256 lpotdod = denominator & (~denominator + 1);
assembly {
// Divide denominator by lpotdod.
denominator := div(denominator, lpotdod)
// Divide [prod1 prod0] by lpotdod.
prod0 := div(prod0, lpotdod)
// Flip lpotdod such that it is 2^256 / lpotdod. If lpotdod is zero, then it becomes one
lpotdod := add(div(sub(0, lpotdod), lpotdod), 1)
}
// Shift in bits from prod1 into prod0
prod0 |= prod1 * lpotdod;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
}
}
}
/**
* @notice Calculates the square root of x
* @dev Credit to OpenZeppelin's Math library under MIT license
*/
function sqrt(uint256 x) internal pure returns (uint256 sqrtX) {
if (x == 0) return 0;
uint256 msb = BitMath.mostSignificantBit(x);
assembly {
sqrtX := shl(shr(1, msb), 1)
sqrtX := shr(1, add(sqrtX, div(x, sqrtX)))
sqrtX := shr(1, add(sqrtX, div(x, sqrtX)))
sqrtX := shr(1, add(sqrtX, div(x, sqrtX)))
sqrtX := shr(1, add(sqrtX, div(x, sqrtX)))
sqrtX := shr(1, add(sqrtX, div(x, sqrtX)))
sqrtX := shr(1, add(sqrtX, div(x, sqrtX)))
sqrtX := shr(1, add(sqrtX, div(x, sqrtX)))
x := div(x, sqrtX)
}
return sqrtX < x ? sqrtX : x;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.10;
/**
* @title Liquidity Book Safe Cast Library
* @author Trader Joe
* @notice This library contains functions to safely cast uint256 to different uint types.
*/
library SafeCast {
error SafeCast__Exceeds248Bits();
error SafeCast__Exceeds240Bits();
error SafeCast__Exceeds232Bits();
error SafeCast__Exceeds224Bits();
error SafeCast__Exceeds216Bits();
error SafeCast__Exceeds208Bits();
error SafeCast__Exceeds200Bits();
error SafeCast__Exceeds192Bits();
error SafeCast__Exceeds184Bits();
error SafeCast__Exceeds176Bits();
error SafeCast__Exceeds168Bits();
error SafeCast__Exceeds160Bits();
error SafeCast__Exceeds152Bits();
error SafeCast__Exceeds144Bits();
error SafeCast__Exceeds136Bits();
error SafeCast__Exceeds128Bits();
error SafeCast__Exceeds120Bits();
error SafeCast__Exceeds112Bits();
error SafeCast__Exceeds104Bits();
error SafeCast__Exceeds96Bits();
error SafeCast__Exceeds88Bits();
error SafeCast__Exceeds80Bits();
error SafeCast__Exceeds72Bits();
error SafeCast__Exceeds64Bits();
error SafeCast__Exceeds56Bits();
error SafeCast__Exceeds48Bits();
error SafeCast__Exceeds40Bits();
error SafeCast__Exceeds32Bits();
error SafeCast__Exceeds24Bits();
error SafeCast__Exceeds16Bits();
error SafeCast__Exceeds8Bits();
/**
* @dev Returns x on uint248 and check that it does not overflow
* @param x The value as an uint256
* @return y The value as an uint248
*/
function safe248(uint256 x) internal pure returns (uint248 y) {
if ((y = uint248(x)) != x) revert SafeCast__Exceeds248Bits();
}
/**
* @dev Returns x on uint240 and check that it does not overflow
* @param x The value as an uint256
* @return y The value as an uint240
*/
function safe240(uint256 x) internal pure returns (uint240 y) {
if ((y = uint240(x)) != x) revert SafeCast__Exceeds240Bits();
}
/**
* @dev Returns x on uint232 and check that it does not overflow
* @param x The value as an uint256
* @return y The value as an uint232
*/
function safe232(uint256 x) internal pure returns (uint232 y) {
if ((y = uint232(x)) != x) revert SafeCast__Exceeds232Bits();
}
/**
* @dev Returns x on uint224 and check that it does not overflow
* @param x The value as an uint256
* @return y The value as an uint224
*/
function safe224(uint256 x) internal pure returns (uint224 y) {
if ((y = uint224(x)) != x) revert SafeCast__Exceeds224Bits();
}
/**
* @dev Returns x on uint216 and check that it does not overflow
* @param x The value as an uint256
* @return y The value as an uint216
*/
function safe216(uint256 x) internal pure returns (uint216 y) {
if ((y = uint216(x)) != x) revert SafeCast__Exceeds216Bits();
}
/**
* @dev Returns x on uint208 and check that it does not overflow
* @param x The value as an uint256
* @return y The value as an uint208
*/
function safe208(uint256 x) internal pure returns (uint208 y) {
if ((y = uint208(x)) != x) revert SafeCast__Exceeds208Bits();
}
/**
* @dev Returns x on uint200 and check that it does not overflow
* @param x The value as an uint256
* @return y The value as an uint200
*/
function safe200(uint256 x) internal pure returns (uint200 y) {
if ((y = uint200(x)) != x) revert SafeCast__Exceeds200Bits();
}
/**
* @dev Returns x on uint192 and check that it does not overflow
* @param x The value as an uint256
* @return y The value as an uint192
*/
function safe192(uint256 x) internal pure returns (uint192 y) {
if ((y = uint192(x)) != x) revert SafeCast__Exceeds192Bits();
}
/**
* @dev Returns x on uint184 and check that it does not overflow
* @param x The value as an uint256
* @return y The value as an uint184
*/
function safe184(uint256 x) internal pure returns (uint184 y) {
if ((y = uint184(x)) != x) revert SafeCast__Exceeds184Bits();
}
/**
* @dev Returns x on uint176 and check that it does not overflow
* @param x The value as an uint256
* @return y The value as an uint176
*/
function safe176(uint256 x) internal pure returns (uint176 y) {
if ((y = uint176(x)) != x) revert SafeCast__Exceeds176Bits();
}
/**
* @dev Returns x on uint168 and check that it does not overflow
* @param x The value as an uint256
* @return y The value as an uint168
*/
function safe168(uint256 x) internal pure returns (uint168 y) {
if ((y = uint168(x)) != x) revert SafeCast__Exceeds168Bits();
}
/**
* @dev Returns x on uint160 and check that it does not overflow
* @param x The value as an uint256
* @return y The value as an uint160
*/
function safe160(uint256 x) internal pure returns (uint160 y) {
if ((y = uint160(x)) != x) revert SafeCast__Exceeds160Bits();
}
/**
* @dev Returns x on uint152 and check that it does not overflow
* @param x The value as an uint256
* @return y The value as an uint152
*/
function safe152(uint256 x) internal pure returns (uint152 y) {
if ((y = uint152(x)) != x) revert SafeCast__Exceeds152Bits();
}
/**
* @dev Returns x on uint144 and check that it does not overflow
* @param x The value as an uint256
* @return y The value as an uint144
*/
function safe144(uint256 x) internal pure returns (uint144 y) {
if ((y = uint144(x)) != x) revert SafeCast__Exceeds144Bits();
}
/**
* @dev Returns x on uint136 and check that it does not overflow
* @param x The value as an uint256
* @return y The value as an uint136
*/
function safe136(uint256 x) internal pure returns (uint136 y) {
if ((y = uint136(x)) != x) revert SafeCast__Exceeds136Bits();
}
/**
* @dev Returns x on uint128 and check that it does not overflow
* @param x The value as an uint256
* @return y The value as an uint128
*/
function safe128(uint256 x) internal pure returns (uint128 y) {
if ((y = uint128(x)) != x) revert SafeCast__Exceeds128Bits();
}
/**
* @dev Returns x on uint120 and check that it does not overflow
* @param x The value as an uint256
* @return y The value as an uint120
*/
function safe120(uint256 x) internal pure returns (uint120 y) {
if ((y = uint120(x)) != x) revert SafeCast__Exceeds120Bits();
}
/**
* @dev Returns x on uint112 and check that it does not overflow
* @param x The value as an uint256
* @return y The value as an uint112
*/
function safe112(uint256 x) internal pure returns (uint112 y) {
if ((y = uint112(x)) != x) revert SafeCast__Exceeds112Bits();
}
/**
* @dev Returns x on uint104 and check that it does not overflow
* @param x The value as an uint256
* @return y The value as an uint104
*/
function safe104(uint256 x) internal pure returns (uint104 y) {
if ((y = uint104(x)) != x) revert SafeCast__Exceeds104Bits();
}
/**
* @dev Returns x on uint96 and check that it does not overflow
* @param x The value as an uint256
* @return y The value as an uint96
*/
function safe96(uint256 x) internal pure returns (uint96 y) {
if ((y = uint96(x)) != x) revert SafeCast__Exceeds96Bits();
}
/**
* @dev Returns x on uint88 and check that it does not overflow
* @param x The value as an uint256
* @return y The value as an uint88
*/
function safe88(uint256 x) internal pure returns (uint88 y) {
if ((y = uint88(x)) != x) revert SafeCast__Exceeds88Bits();
}
/**
* @dev Returns x on uint80 and check that it does not overflow
* @param x The value as an uint256
* @return y The value as an uint80
*/
function safe80(uint256 x) internal pure returns (uint80 y) {
if ((y = uint80(x)) != x) revert SafeCast__Exceeds80Bits();
}
/**
* @dev Returns x on uint72 and check that it does not overflow
* @param x The value as an uint256
* @return y The value as an uint72
*/
function safe72(uint256 x) internal pure returns (uint72 y) {
if ((y = uint72(x)) != x) revert SafeCast__Exceeds72Bits();
}
/**
* @dev Returns x on uint64 and check that it does not overflow
* @param x The value as an uint256
* @return y The value as an uint64
*/
function safe64(uint256 x) internal pure returns (uint64 y) {
if ((y = uint64(x)) != x) revert SafeCast__Exceeds64Bits();
}
/**
* @dev Returns x on uint56 and check that it does not overflow
* @param x The value as an uint256
* @return y The value as an uint56
*/
function safe56(uint256 x) internal pure returns (uint56 y) {
if ((y = uint56(x)) != x) revert SafeCast__Exceeds56Bits();
}
/**
* @dev Returns x on uint48 and check that it does not overflow
* @param x The value as an uint256
* @return y The value as an uint48
*/
function safe48(uint256 x) internal pure returns (uint48 y) {
if ((y = uint48(x)) != x) revert SafeCast__Exceeds48Bits();
}
/**
* @dev Returns x on uint40 and check that it does not overflow
* @param x The value as an uint256
* @return y The value as an uint40
*/
function safe40(uint256 x) internal pure returns (uint40 y) {
if ((y = uint40(x)) != x) revert SafeCast__Exceeds40Bits();
}
/**
* @dev Returns x on uint32 and check that it does not overflow
* @param x The value as an uint256
* @return y The value as an uint32
*/
function safe32(uint256 x) internal pure returns (uint32 y) {
if ((y = uint32(x)) != x) revert SafeCast__Exceeds32Bits();
}
/**
* @dev Returns x on uint24 and check that it does not overflow
* @param x The value as an uint256
* @return y The value as an uint24
*/
function safe24(uint256 x) internal pure returns (uint24 y) {
if ((y = uint24(x)) != x) revert SafeCast__Exceeds24Bits();
}
/**
* @dev Returns x on uint16 and check that it does not overflow
* @param x The value as an uint256
* @return y The value as an uint16
*/
function safe16(uint256 x) internal pure returns (uint16 y) {
if ((y = uint16(x)) != x) revert SafeCast__Exceeds16Bits();
}
/**
* @dev Returns x on uint8 and check that it does not overflow
* @param x The value as an uint256
* @return y The value as an uint8
*/
function safe8(uint256 x) internal pure returns (uint8 y) {
if ((y = uint8(x)) != x) revert SafeCast__Exceeds8Bits();
}
}
// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.10;
/// @title Joe V1 Factory Interface
/// @notice Interface to interact with Joe V1 Factory
interface IJoeFactory {
event PairCreated(address indexed token0, address indexed token1, address pair, uint256);
function feeTo() external view returns (address);
function feeToSetter() external view returns (address);
function migrator() external view returns (address);
function getPair(address tokenA, address tokenB) external view returns (address pair);
function allPairs(uint256) external view returns (address pair);
function allPairsLength() external view returns (uint256);
function createPair(address tokenA, address tokenB) external returns (address pair);
function setFeeTo(address) external;
function setFeeToSetter(address) external;
function setMigrator(address) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.10;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {ILBHooks} from "./ILBHooks.sol";
import {ILBPair} from "./ILBPair.sol";
/**
* @title Liquidity Book Factory Interface
* @author Trader Joe
* @notice Required interface of LBFactory contract
*/
interface ILBFactory {
error LBFactory__IdenticalAddresses(IERC20 token);
error LBFactory__QuoteAssetNotWhitelisted(IERC20 quoteAsset);
error LBFactory__QuoteAssetAlreadyWhitelisted(IERC20 quoteAsset);
error LBFactory__AddressZero();
error LBFactory__LBPairAlreadyExists(IERC20 tokenX, IERC20 tokenY, uint256 _binStep);
error LBFactory__LBPairDoesNotExist(IERC20 tokenX, IERC20 tokenY, uint256 binStep);
error LBFactory__LBPairNotCreated(IERC20 tokenX, IERC20 tokenY, uint256 binStep);
error LBFactory__FlashLoanFeeAboveMax(uint256 fees, uint256 maxFees);
error LBFactory__BinStepTooLow(uint256 binStep);
error LBFactory__PresetIsLockedForUsers(address user, uint256 binStep);
error LBFactory__LBPairIgnoredIsAlreadyInTheSameState();
error LBFactory__BinStepHasNoPreset(uint256 binStep);
error LBFactory__PresetOpenStateIsAlreadyInTheSameState();
error LBFactory__SameFeeRecipient(address feeRecipient);
error LBFactory__SameFlashLoanFee(uint256 flashLoanFee);
error LBFactory__LBPairSafetyCheckFailed(address LBPairImplementation);
error LBFactory__SameImplementation(address LBPairImplementation);
error LBFactory__ImplementationNotSet();
error LBFactory__SameHooksImplementation(address hooksImplementation);
error LBFactory__SameHooksParameters(bytes32 hooksParameters);
error LBFactory__InvalidHooksParameters();
error LBFactory__CannotGrantDefaultAdminRole();
/**
* @dev Structure to store the LBPair information, such as:
* binStep: The bin step of the LBPair
* LBPair: The address of the LBPair
* createdByOwner: Whether the pair was created by the owner of the factory
* ignoredForRouting: Whether the pair is ignored for routing or not. An ignored pair will not be explored during routes finding
*/
struct LBPairInformation {
uint16 binStep;
ILBPair LBPair;
bool createdByOwner;
bool ignoredForRouting;
}
event LBPairCreated(
IERC20 indexed tokenX, IERC20 indexed tokenY, uint256 indexed binStep, ILBPair LBPair, uint256 pid
);
event FeeRecipientSet(address oldRecipient, address newRecipient);
event FlashLoanFeeSet(uint256 oldFlashLoanFee, uint256 newFlashLoanFee);
event LBPairImplementationSet(address oldLBPairImplementation, address LBPairImplementation);
event LBPairIgnoredStateChanged(ILBPair indexed LBPair, bool ignored);
event PresetSet(
uint256 indexed binStep,
uint256 baseFactor,
uint256 filterPeriod,
uint256 decayPeriod,
uint256 reductionFactor,
uint256 variableFeeControl,
uint256 protocolShare,
uint256 maxVolatilityAccumulator
);
event PresetOpenStateChanged(uint256 indexed binStep, bool indexed isOpen);
event PresetRemoved(uint256 indexed binStep);
event QuoteAssetAdded(IERC20 indexed quoteAsset);
event QuoteAssetRemoved(IERC20 indexed quoteAsset);
function getMinBinStep() external pure returns (uint256);
function getFeeRecipient() external view returns (address);
function getMaxFlashLoanFee() external pure returns (uint256);
function getFlashLoanFee() external view returns (uint256);
function getLBPairImplementation() external view returns (address);
function getNumberOfLBPairs() external view returns (uint256);
function getLBPairAtIndex(uint256 id) external returns (ILBPair);
function getNumberOfQuoteAssets() external view returns (uint256);
function getQuoteAssetAtIndex(uint256 index) external view returns (IERC20);
function isQuoteAsset(IERC20 token) external view returns (bool);
function getLBPairInformation(IERC20 tokenX, IERC20 tokenY, uint256 binStep)
external
view
returns (LBPairInformation memory);
function getPreset(uint256 binStep)
external
view
returns (
uint256 baseFactor,
uint256 filterPeriod,
uint256 decayPeriod,
uint256 reductionFactor,
uint256 variableFeeControl,
uint256 protocolShare,
uint256 maxAccumulator,
bool isOpen
);
function getAllBinSteps() external view returns (uint256[] memory presetsBinStep);
function getOpenBinSteps() external view returns (uint256[] memory openBinStep);
function getAllLBPairs(IERC20 tokenX, IERC20 tokenY)
external
view
returns (LBPairInformation[] memory LBPairsBinStep);
function setLBPairImplementation(address lbPairImplementation) external;
function createLBPair(IERC20 tokenX, IERC20 tokenY, uint24 activeId, uint16 binStep)
external
returns (ILBPair pair);
function setLBPairIgnored(IERC20 tokenX, IERC20 tokenY, uint16 binStep, bool ignored) external;
function setPreset(
uint16 binStep,
uint16 baseFactor,
uint16 filterPeriod,
uint16 decayPeriod,
uint16 reductionFactor,
uint24 variableFeeControl,
uint16 protocolShare,
uint24 maxVolatilityAccumulator,
bool isOpen
) external;
function setPresetOpenState(uint16 binStep, bool isOpen) external;
function removePreset(uint16 binStep) external;
function setFeesParametersOnPair(
IERC20 tokenX,
IERC20 tokenY,
uint16 binStep,
uint16 baseFactor,
uint16 filterPeriod,
uint16 decayPeriod,
uint16 reductionFactor,
uint24 variableFeeControl,
uint16 protocolShare,
uint24 maxVolatilityAccumulator
) external;
function setLBHooksParametersOnPair(
IERC20 tokenX,
IERC20 tokenY,
uint16 binStep,
bytes32 hooksParameters,
bytes memory onHooksSetData
) external;
function removeLBHooksOnPair(IERC20 tokenX, IERC20 tokenY, uint16 binStep) external;
function setFeeRecipient(address feeRecipient) external;
function setFlashLoanFee(uint256 flashLoanFee) external;
function addQuoteAsset(IERC20 quoteAsset) external;
function removeQuoteAsset(IERC20 quoteAsset) external;
function forceDecay(ILBPair lbPair) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.10;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {ILBLegacyPair} from "./ILBLegacyPair.sol";
/// @title Liquidity Book Factory Interface
/// @author Trader Joe
/// @notice Required interface of LBFactory contract
interface ILBLegacyFactory {
/// @dev Structure to store the LBPair information, such as:
/// - binStep: The bin step of the LBPair
/// - LBPair: The address of the LBPair
/// - createdByOwner: Whether the pair was created by the owner of the factory
/// - ignoredForRouting: Whether the pair is ignored for routing or not. An ignored pair will not be explored during routes finding
struct LBPairInformation {
uint16 binStep;
ILBLegacyPair LBPair;
bool createdByOwner;
bool ignoredForRouting;
}
event LBPairCreated(
IERC20 indexed tokenX, IERC20 indexed tokenY, uint256 indexed binStep, ILBLegacyPair LBPair, uint256 pid
);
event FeeRecipientSet(address oldRecipient, address newRecipient);
event FlashLoanFeeSet(uint256 oldFlashLoanFee, uint256 newFlashLoanFee);
event FeeParametersSet(
address indexed sender,
ILBLegacyPair indexed LBPair,
uint256 binStep,
uint256 baseFactor,
uint256 filterPeriod,
uint256 decayPeriod,
uint256 reductionFactor,
uint256 variableFeeControl,
uint256 protocolShare,
uint256 maxVolatilityAccumulator
);
event FactoryLockedStatusUpdated(bool unlocked);
event LBPairImplementationSet(address oldLBPairImplementation, address LBPairImplementation);
event LBPairIgnoredStateChanged(ILBLegacyPair indexed LBPair, bool ignored);
event PresetSet(
uint256 indexed binStep,
uint256 baseFactor,
uint256 filterPeriod,
uint256 decayPeriod,
uint256 reductionFactor,
uint256 variableFeeControl,
uint256 protocolShare,
uint256 maxVolatilityAccumulator,
uint256 sampleLifetime
);
event PresetRemoved(uint256 indexed binStep);
event QuoteAssetAdded(IERC20 indexed quoteAsset);
event QuoteAssetRemoved(IERC20 indexed quoteAsset);
function MAX_FEE() external pure returns (uint256);
function MIN_BIN_STEP() external pure returns (uint256);
function MAX_BIN_STEP() external pure returns (uint256);
function MAX_PROTOCOL_SHARE() external pure returns (uint256);
function LBPairImplementation() external view returns (address);
function getNumberOfQuoteAssets() external view returns (uint256);
function getQuoteAsset(uint256 index) external view returns (IERC20);
function isQuoteAsset(IERC20 token) external view returns (bool);
function feeRecipient() external view returns (address);
function flashLoanFee() external view returns (uint256);
function creationUnlocked() external view returns (bool);
function allLBPairs(uint256 id) external returns (ILBLegacyPair);
function getNumberOfLBPairs() external view returns (uint256);
function getLBPairInformation(IERC20 tokenX, IERC20 tokenY, uint256 binStep)
external
view
returns (LBPairInformation memory);
function getPreset(uint16 binStep)
external
view
returns (
uint256 baseFactor,
uint256 filterPeriod,
uint256 decayPeriod,
uint256 reductionFactor,
uint256 variableFeeControl,
uint256 protocolShare,
uint256 maxAccumulator,
uint256 sampleLifetime
);
function getAllBinSteps() external view returns (uint256[] memory presetsBinStep);
function getAllLBPairs(IERC20 tokenX, IERC20 tokenY)
external
view
returns (LBPairInformation[] memory LBPairsBinStep);
function setLBPairImplementation(address LBPairImplementation) external;
function createLBPair(IERC20 tokenX, IERC20 tokenY, uint24 activeId, uint16 binStep)
external
returns (ILBLegacyPair pair);
function setLBPairIgnored(IERC20 tokenX, IERC20 tokenY, uint256 binStep, bool ignored) external;
function setPreset(
uint16 binStep,
uint16 baseFactor,
uint16 filterPeriod,
uint16 decayPeriod,
uint16 reductionFactor,
uint24 variableFeeControl,
uint16 protocolShare,
uint24 maxVolatilityAccumulator,
uint16 sampleLifetime
) external;
function removePreset(uint16 binStep) external;
function setFeesParametersOnPair(
IERC20 tokenX,
IERC20 tokenY,
uint16 binStep,
uint16 baseFactor,
uint16 filterPeriod,
uint16 decayPeriod,
uint16 reductionFactor,
uint24 variableFeeControl,
uint16 protocolShare,
uint24 maxVolatilityAccumulator
) external;
function setFeeRecipient(address feeRecipient) external;
function setFlashLoanFee(uint256 flashLoanFee) external;
function setFactoryLockedState(bool locked) external;
function addQuoteAsset(IERC20 quoteAsset) external;
function removeQuoteAsset(IERC20 quoteAsset) external;
function forceDecay(ILBLegacyPair LBPair) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.10;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {ILBFactory} from "./ILBFactory.sol";
import {IJoeFactory} from "./IJoeFactory.sol";
import {ILBLegacyPair} from "./ILBLegacyPair.sol";
import {ILBToken} from "./ILBToken.sol";
import {IWNATIVE} from "./IWNATIVE.sol";
/// @title Liquidity Book Router Interface
/// @author Trader Joe
/// @notice Required interface of LBRouter contract
interface ILBLegacyRouter {
struct LiquidityParameters {
IERC20 tokenX;
IERC20 tokenY;
uint256 binStep;
uint256 amountX;
uint256 amountY;
uint256 amountXMin;
uint256 amountYMin;
uint256 activeIdDesired;
uint256 idSlippage;
int256[] deltaIds;
uint256[] distributionX;
uint256[] distributionY;
address to;
uint256 deadline;
}
function factory() external view returns (address);
function wavax() external view returns (address);
function oldFactory() external view returns (address);
function getIdFromPrice(ILBLegacyPair LBPair, uint256 price) external view returns (uint24);
function getPriceFromId(ILBLegacyPair LBPair, uint24 id) external view returns (uint256);
function getSwapIn(ILBLegacyPair lbPair, uint256 amountOut, bool swapForY)
external
view
returns (uint256 amountIn, uint256 feesIn);
function getSwapOut(ILBLegacyPair lbPair, uint256 amountIn, bool swapForY)
external
view
returns (uint256 amountOut, uint256 feesIn);
function createLBPair(IERC20 tokenX, IERC20 tokenY, uint24 activeId, uint16 binStep)
external
returns (ILBLegacyPair pair);
function addLiquidity(LiquidityParameters calldata liquidityParameters)
external
returns (uint256[] memory depositIds, uint256[] memory liquidityMinted);
function addLiquidityAVAX(LiquidityParameters calldata liquidityParameters)
external
payable
returns (uint256[] memory depositIds, uint256[] memory liquidityMinted);
function removeLiquidity(
IERC20 tokenX,
IERC20 tokenY,
uint16 binStep,
uint256 amountXMin,
uint256 amountYMin,
uint256[] memory ids,
uint256[] memory amounts,
address to,
uint256 deadline
) external returns (uint256 amountX, uint256 amountY);
function removeLiquidityAVAX(
IERC20 token,
uint16 binStep,
uint256 amountTokenMin,
uint256 amountAVAXMin,
uint256[] memory ids,
uint256[] memory amounts,
address payable to,
uint256 deadline
) external returns (uint256 amountToken, uint256 amountAVAX);
function swapExactTokensForTokens(
uint256 amountIn,
uint256 amountOutMin,
uint256[] memory pairBinSteps,
IERC20[] memory tokenPath,
address to,
uint256 deadline
) external returns (uint256 amountOut);
function swapExactTokensForAVAX(
uint256 amountIn,
uint256 amountOutMinAVAX,
uint256[] memory pairBinSteps,
IERC20[] memory tokenPath,
address payable to,
uint256 deadline
) external returns (uint256 amountOut);
function swapExactAVAXForTokens(
uint256 amountOutMin,
uint256[] memory pairBinSteps,
IERC20[] memory tokenPath,
address to,
uint256 deadline
) external payable returns (uint256 amountOut);
function swapTokensForExactTokens(
uint256 amountOut,
uint256 amountInMax,
uint256[] memory pairBinSteps,
IERC20[] memory tokenPath,
address to,
uint256 deadline
) external returns (uint256[] memory amountsIn);
function swapTokensForExactAVAX(
uint256 amountOut,
uint256 amountInMax,
uint256[] memory pairBinSteps,
IERC20[] memory tokenPath,
address payable to,
uint256 deadline
) external returns (uint256[] memory amountsIn);
function swapAVAXForExactTokens(
uint256 amountOut,
uint256[] memory pairBinSteps,
IERC20[] memory tokenPath,
address to,
uint256 deadline
) external payable returns (uint256[] memory amountsIn);
function swapExactTokensForTokensSupportingFeeOnTransferTokens(
uint256 amountIn,
uint256 amountOutMin,
uint256[] memory pairBinSteps,
IERC20[] memory tokenPath,
address to,
uint256 deadline
) external returns (uint256 amountOut);
function swapExactTokensForAVAXSupportingFeeOnTransferTokens(
uint256 amountIn,
uint256 amountOutMinAVAX,
uint256[] memory pairBinSteps,
IERC20[] memory tokenPath,
address payable to,
uint256 deadline
) external returns (uint256 amountOut);
function swapExactAVAXForTokensSupportingFeeOnTransferTokens(
uint256 amountOutMin,
uint256[] memory pairBinSteps,
IERC20[] memory tokenPath,
address to,
uint256 deadline
) external payable returns (uint256 amountOut);
function sweep(IERC20 token, address to, uint256 amount) external;
function sweepLBToken(ILBToken _lbToken, address _to, uint256[] calldata _ids, uint256[] calldata _amounts)
external;
}
// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.10;
/// @title Joe V1 Pair Interface
/// @notice Interface to interact with Joe V1 Pairs
interface IJoePair {
event Approval(address indexed owner, address indexed spender, uint256 value);
event Transfer(address indexed from, address indexed to, uint256 value);
function name() external pure returns (string memory);
function symbol() external pure returns (string memory);
function decimals() external pure returns (uint8);
function totalSupply() external view returns (uint256);
function balanceOf(address owner) external view returns (uint256);
function allowance(address owner, address spender) external view returns (uint256);
function approve(address spender, uint256 value) external returns (bool);
function transfer(address to, uint256 value) external returns (bool);
function transferFrom(address from, address to, uint256 value) external returns (bool);
function DOMAIN_SEPARATOR() external view returns (bytes32);
function PERMIT_TYPEHASH() external pure returns (bytes32);
function nonces(address owner) external view returns (uint256);
function permit(address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s)
external;
event Mint(address indexed sender, uint256 amount0, uint256 amount1);
event Burn(address indexed sender, uint256 amount0, uint256 amount1, address indexed to);
event Swap(
address indexed sender,
uint256 amount0In,
uint256 amount1In,
uint256 amount0Out,
uint256 amount1Out,
address indexed to
);
event Sync(uint112 reserve0, uint112 reserve1);
function MINIMUM_LIQUIDITY() external pure returns (uint256);
function factory() external view returns (address);
function token0() external view returns (address);
function token1() external view returns (address);
function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);
function price0CumulativeLast() external view returns (uint256);
function price1CumulativeLast() external view returns (uint256);
function kLast() external view returns (uint256);
function mint(address to) external returns (uint256 liquidity);
function burn(address to) external returns (uint256 amount0, uint256 amount1);
function swap(uint256 amount0Out, uint256 amount1Out, address to, bytes calldata data) external;
function skim(address to) external;
function sync() external;
function initialize(address, address) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.10;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {ILBLegacyToken} from "./ILBLegacyToken.sol";
/// @title Liquidity Book Pair V2 Interface
/// @author Trader Joe
/// @notice Required interface of LBPair contract
interface ILBLegacyPair is ILBLegacyToken {
/// @dev Structure to store the protocol fees:
/// - binStep: The bin step
/// - baseFactor: The base factor
/// - filterPeriod: The filter period, where the fees stays constant
/// - decayPeriod: The decay period, where the fees are halved
/// - reductionFactor: The reduction factor, used to calculate the reduction of the accumulator
/// - variableFeeControl: The variable fee control, used to control the variable fee, can be 0 to disable them
/// - protocolShare: The share of fees sent to protocol
/// - maxVolatilityAccumulated: The max value of volatility accumulated
/// - volatilityAccumulated: The value of volatility accumulated
/// - volatilityReference: The value of volatility reference
/// - indexRef: The index reference
/// - time: The last time the accumulator was called
struct FeeParameters {
// 144 lowest bits in slot
uint16 binStep;
uint16 baseFactor;
uint16 filterPeriod;
uint16 decayPeriod;
uint16 reductionFactor;
uint24 variableFeeControl;
uint16 protocolShare;
uint24 maxVolatilityAccumulated;
// 112 highest bits in slot
uint24 volatilityAccumulated;
uint24 volatilityReference;
uint24 indexRef;
uint40 time;
}
/// @dev Structure used during swaps to distributes the fees:
/// - total: The total amount of fees
/// - protocol: The amount of fees reserved for protocol
struct FeesDistribution {
uint128 total;
uint128 protocol;
}
/// @dev Structure to store the reserves of bins:
/// - reserveX: The current reserve of tokenX of the bin
/// - reserveY: The current reserve of tokenY of the bin
struct Bin {
uint112 reserveX;
uint112 reserveY;
uint256 accTokenXPerShare;
uint256 accTokenYPerShare;
}
/// @dev Structure to store the information of the pair such as:
/// slot0:
/// - activeId: The current id used for swaps, this is also linked with the price
/// - reserveX: The sum of amounts of tokenX across all bins
/// slot1:
/// - reserveY: The sum of amounts of tokenY across all bins
/// - oracleSampleLifetime: The lifetime of an oracle sample
/// - oracleSize: The current size of the oracle, can be increase by users
/// - oracleActiveSize: The current active size of the oracle, composed only from non empty data sample
/// - oracleLastTimestamp: The current last timestamp at which a sample was added to the circular buffer
/// - oracleId: The current id of the oracle
/// slot2:
/// - feesX: The current amount of fees to distribute in tokenX (total, protocol)
/// slot3:
/// - feesY: The current amount of fees to distribute in tokenY (total, protocol)
struct PairInformation {
uint24 activeId;
uint136 reserveX;
uint136 reserveY;
uint16 oracleSampleLifetime;
uint16 oracleSize;
uint16 oracleActiveSize;
uint40 oracleLastTimestamp;
uint16 oracleId;
FeesDistribution feesX;
FeesDistribution feesY;
}
/// @dev Structure to store the debts of users
/// - debtX: The tokenX's debt
/// - debtY: The tokenY's debt
struct Debts {
uint256 debtX;
uint256 debtY;
}
/// @dev Structure to store fees:
/// - tokenX: The amount of fees of token X
/// - tokenY: The amount of fees of token Y
struct Fees {
uint128 tokenX;
uint128 tokenY;
}
/// @dev Structure to minting informations:
/// - amountXIn: The amount of token X sent
/// - amountYIn: The amount of token Y sent
/// - amountXAddedToPair: The amount of token X that have been actually added to the pair
/// - amountYAddedToPair: The amount of token Y that have been actually added to the pair
/// - activeFeeX: Fees X currently generated
/// - activeFeeY: Fees Y currently generated
/// - totalDistributionX: Total distribution of token X. Should be 1e18 (100%) or 0 (0%)
/// - totalDistributionY: Total distribution of token Y. Should be 1e18 (100%) or 0 (0%)
/// - id: Id of the current working bin when looping on the distribution array
/// - amountX: The amount of token X deposited in the current bin
/// - amountY: The amount of token Y deposited in the current bin
/// - distributionX: Distribution of token X for the current working bin
/// - distributionY: Distribution of token Y for the current working bin
struct MintInfo {
uint256 amountXIn;
uint256 amountYIn;
uint256 amountXAddedToPair;
uint256 amountYAddedToPair;
uint256 activeFeeX;
uint256 activeFeeY;
uint256 totalDistributionX;
uint256 totalDistributionY;
uint256 id;
uint256 amountX;
uint256 amountY;
uint256 distributionX;
uint256 distributionY;
}
event Swap(
address indexed sender,
address indexed recipient,
uint256 indexed id,
bool swapForY,
uint256 amountIn,
uint256 amountOut,
uint256 volatilityAccumulated,
uint256 fees
);
event FlashLoan(address indexed sender, address indexed receiver, IERC20 token, uint256 amount, uint256 fee);
event CompositionFee(
address indexed sender, address indexed recipient, uint256 indexed id, uint256 feesX, uint256 feesY
);
event DepositedToBin(
address indexed sender, address indexed recipient, uint256 indexed id, uint256 amountX, uint256 amountY
);
event WithdrawnFromBin(
address indexed sender, address indexed recipient, uint256 indexed id, uint256 amountX, uint256 amountY
);
event FeesCollected(address indexed sender, address indexed recipient, uint256 amountX, uint256 amountY);
event ProtocolFeesCollected(address indexed sender, address indexed recipient, uint256 amountX, uint256 amountY);
event OracleSizeIncreased(uint256 previousSize, uint256 newSize);
function tokenX() external view returns (IERC20);
function tokenY() external view returns (IERC20);
function factory() external view returns (address);
function getReservesAndId() external view returns (uint256 reserveX, uint256 reserveY, uint256 activeId);
function getGlobalFees()
external
view
returns (uint128 feesXTotal, uint128 feesYTotal, uint128 feesXProtocol, uint128 feesYProtocol);
function getOracleParameters()
external
view
returns (
uint256 oracleSampleLifetime,
uint256 oracleSize,
uint256 oracleActiveSize,
uint256 oracleLastTimestamp,
uint256 oracleId,
uint256 min,
uint256 max
);
function getOracleSampleFrom(uint256 timeDelta)
external
view
returns (uint256 cumulativeId, uint256 cumulativeAccumulator, uint256 cumulativeBinCrossed);
function feeParameters() external view returns (FeeParameters memory);
function findFirstNonEmptyBinId(uint24 id_, bool sentTokenY) external view returns (uint24 id);
function getBin(uint24 id) external view returns (uint256 reserveX, uint256 reserveY);
function pendingFees(address account, uint256[] memory ids)
external
view
returns (uint256 amountX, uint256 amountY);
function swap(bool sentTokenY, address to) external returns (uint256 amountXOut, uint256 amountYOut);
function flashLoan(address receiver, IERC20 token, uint256 amount, bytes calldata data) external;
function mint(
uint256[] calldata ids,
uint256[] calldata distributionX,
uint256[] calldata distributionY,
address to
) external returns (uint256 amountXAddedToPair, uint256 amountYAddedToPair, uint256[] memory liquidityMinted);
function burn(uint256[] calldata ids, uint256[] calldata amounts, address to)
external
returns (uint256 amountX, uint256 amountY);
function increaseOracleLength(uint16 newSize) external;
function collectFees(address account, uint256[] calldata ids) external returns (uint256 amountX, uint256 amountY);
function collectProtocolFees() external returns (uint128 amountX, uint128 amountY);
function setFeesParameters(bytes32 packedFeeParameters) external;
function forceDecay() external;
function initialize(
IERC20 tokenX,
IERC20 tokenY,
uint24 activeId,
uint16 sampleLifetime,
bytes32 packedFeeParameters
) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.10;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {Hooks} from "../libraries/Hooks.sol";
import {ILBFactory} from "./ILBFactory.sol";
import {ILBFlashLoanCallback} from "./ILBFlashLoanCallback.sol";
import {ILBToken} from "./ILBToken.sol";
interface ILBPair is ILBToken {
error LBPair__ZeroBorrowAmount();
error LBPair__AddressZero();
error LBPair__EmptyMarketConfigs();
error LBPair__FlashLoanCallbackFailed();
error LBPair__FlashLoanInsufficientAmount();
error LBPair__InsufficientAmountIn();
error LBPair__InsufficientAmountOut();
error LBPair__InvalidInput();
error LBPair__InvalidStaticFeeParameters();
error LBPair__OnlyFactory();
error LBPair__OnlyProtocolFeeRecipient();
error LBPair__OutOfLiquidity();
error LBPair__TokenNotSupported();
error LBPair__ZeroAmount(uint24 id);
error LBPair__ZeroAmountsOut(uint24 id);
error LBPair__ZeroShares(uint24 id);
error LBPair__MaxTotalFeeExceeded();
error LBPair__InvalidHooks();
struct MintArrays {
uint256[] ids;
bytes32[] amounts;
uint256[] liquidityMinted;
}
event DepositedToBins(address indexed sender, address indexed to, uint256[] ids, bytes32[] amounts);
event WithdrawnFromBins(address indexed sender, address indexed to, uint256[] ids, bytes32[] amounts);
event CompositionFees(address indexed sender, uint24 id, bytes32 totalFees, bytes32 protocolFees);
event CollectedProtocolFees(address indexed feeRecipient, bytes32 protocolFees);
event Swap(
address indexed sender,
address indexed to,
uint24 id,
bytes32 amountsIn,
bytes32 amountsOut,
uint24 volatilityAccumulator,
bytes32 totalFees,
bytes32 protocolFees
);
event StaticFeeParametersSet(
address indexed sender,
uint16 baseFactor,
uint16 filterPeriod,
uint16 decayPeriod,
uint16 reductionFactor,
uint24 variableFeeControl,
uint16 protocolShare,
uint24 maxVolatilityAccumulator
);
event HooksParametersSet(address indexed sender, bytes32 hooksParameters);
event FlashLoan(
address indexed sender,
ILBFlashLoanCallback indexed receiver,
uint24 activeId,
bytes32 amounts,
bytes32 totalFees,
bytes32 protocolFees
);
event OracleLengthIncreased(address indexed sender, uint16 oracleLength);
event ForcedDecay(address indexed sender, uint24 idReference, uint24 volatilityReference);
function initialize(
uint16 baseFactor,
uint16 filterPeriod,
uint16 decayPeriod,
uint16 reductionFactor,
uint24 variableFeeControl,
uint16 protocolShare,
uint24 maxVolatilityAccumulator,
uint24 activeId
) external;
function implementation() external view returns (address);
function getFactory() external view returns (ILBFactory factory);
function getTokenX() external view returns (IERC20 tokenX);
function getTokenY() external view returns (IERC20 tokenY);
function getBinStep() external view returns (uint16 binStep);
function getReserves() external view returns (uint128 reserveX, uint128 reserveY);
function getActiveId() external view returns (uint24 activeId);
function getBin(uint24 id) external view returns (uint128 binReserveX, uint128 binReserveY);
function getNextNonEmptyBin(bool swapForY, uint24 id) external view returns (uint24 nextId);
function getProtocolFees() external view returns (uint128 protocolFeeX, uint128 protocolFeeY);
function getStaticFeeParameters()
external
view
returns (
uint16 baseFactor,
uint16 filterPeriod,
uint16 decayPeriod,
uint16 reductionFactor,
uint24 variableFeeControl,
uint16 protocolShare,
uint24 maxVolatilityAccumulator
);
function getLBHooksParameters() external view returns (bytes32 hooksParameters);
function getVariableFeeParameters()
external
view
returns (uint24 volatilityAccumulator, uint24 volatilityReference, uint24 idReference, uint40 timeOfLastUpdate);
function getOracleParameters()
external
view
returns (uint8 sampleLifetime, uint16 size, uint16 activeSize, uint40 lastUpdated, uint40 firstTimestamp);
function getOracleSampleAt(uint40 lookupTimestamp)
external
view
returns (uint64 cumulativeId, uint64 cumulativeVolatility, uint64 cumulativeBinCrossed);
function getPriceFromId(uint24 id) external view returns (uint256 price);
function getIdFromPrice(uint256 price) external view returns (uint24 id);
function getSwapIn(uint128 amountOut, bool swapForY)
external
view
returns (uint128 amountIn, uint128 amountOutLeft, uint128 fee);
function getSwapOut(uint128 amountIn, bool swapForY)
external
view
returns (uint128 amountInLeft, uint128 amountOut, uint128 fee);
function swap(bool swapForY, address to) external returns (bytes32 amountsOut);
function flashLoan(ILBFlashLoanCallback receiver, bytes32 amounts, bytes calldata data) external;
function mint(address to, bytes32[] calldata liquidityConfigs, address refundTo)
external
returns (bytes32 amountsReceived, bytes32 amountsLeft, uint256[] memory liquidityMinted);
function burn(address from, address to, uint256[] calldata ids, uint256[] calldata amountsToBurn)
external
returns (bytes32[] memory amounts);
function collectProtocolFees() external returns (bytes32 collectedProtocolFees);
function increaseOracleLength(uint16 newLength) external;
function setStaticFeeParameters(
uint16 baseFactor,
uint16 filterPeriod,
uint16 decayPeriod,
uint16 reductionFactor,
uint24 variableFeeControl,
uint16 protocolShare,
uint24 maxVolatilityAccumulator
) external;
function setHooksParameters(bytes32 hooksParameters, bytes calldata onHooksSetData) external;
function forceDecay() external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.10;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {IJoeFactory} from "./IJoeFactory.sol";
import {ILBFactory} from "./ILBFactory.sol";
import {ILBLegacyFactory} from "./ILBLegacyFactory.sol";
import {ILBLegacyRouter} from "./ILBLegacyRouter.sol";
import {ILBPair} from "./ILBPair.sol";
import {ILBToken} from "./ILBToken.sol";
import {IWNATIVE} from "./IWNATIVE.sol";
/**
* @title Liquidity Book Router Interface
* @author Trader Joe
* @notice Required interface of LBRouter contract
*/
interface ILBRouter {
error LBRouter__SenderIsNotWNATIVE();
error LBRouter__PairNotCreated(address tokenX, address tokenY, uint256 binStep);
error LBRouter__WrongAmounts(uint256 amount, uint256 reserve);
error LBRouter__SwapOverflows(uint256 id);
error LBRouter__BrokenSwapSafetyCheck();
error LBRouter__NotFactoryOwner();
error LBRouter__TooMuchTokensIn(uint256 excess);
error LBRouter__BinReserveOverflows(uint256 id);
error LBRouter__IdOverflows(int256 id);
error LBRouter__LengthsMismatch();
error LBRouter__WrongTokenOrder();
error LBRouter__IdSlippageCaught(uint256 activeIdDesired, uint256 idSlippage, uint256 activeId);
error LBRouter__AmountSlippageCaught(uint256 amountXMin, uint256 amountX, uint256 amountYMin, uint256 amountY);
error LBRouter__IdDesiredOverflows(uint256 idDesired, uint256 idSlippage);
error LBRouter__FailedToSendNATIVE(address recipient, uint256 amount);
error LBRouter__DeadlineExceeded(uint256 deadline, uint256 currentTimestamp);
error LBRouter__AmountSlippageBPTooBig(uint256 amountSlippage);
error LBRouter__InsufficientAmountOut(uint256 amountOutMin, uint256 amountOut);
error LBRouter__MaxAmountInExceeded(uint256 amountInMax, uint256 amountIn);
error LBRouter__InvalidTokenPath(address wrongToken);
error LBRouter__InvalidVersion(uint256 version);
error LBRouter__WrongNativeLiquidityParameters(
address tokenX, address tokenY, uint256 amountX, uint256 amountY, uint256 msgValue
);
/**
* @dev This enum represents the version of the pair requested
* - V1: Joe V1 pair
* - V2: LB pair V2. Also called legacyPair
* - V2_1: LB pair V2.1 (current version)
*/
enum Version {
V1,
V2,
V2_1
}
/**
* @dev The liquidity parameters, such as:
* - tokenX: The address of token X
* - tokenY: The address of token Y
* - binStep: The bin step of the pair
* - amountX: The amount to send of token X
* - amountY: The amount to send of token Y
* - amountXMin: The min amount of token X added to liquidity
* - amountYMin: The min amount of token Y added to liquidity
* - activeIdDesired: The active id that user wants to add liquidity from
* - idSlippage: The number of id that are allowed to slip
* - deltaIds: The list of delta ids to add liquidity (`deltaId = activeId - desiredId`)
* - distributionX: The distribution of tokenX with sum(distributionX) = 1e18 (100%) or 0 (0%)
* - distributionY: The distribution of tokenY with sum(distributionY) = 1e18 (100%) or 0 (0%)
* - to: The address of the recipient
* - refundTo: The address of the recipient of the refunded tokens if too much tokens are sent
* - deadline: The deadline of the transaction
*/
struct LiquidityParameters {
IERC20 tokenX;
IERC20 tokenY;
uint256 binStep;
uint256 amountX;
uint256 amountY;
uint256 amountXMin;
uint256 amountYMin;
uint256 activeIdDesired;
uint256 idSlippage;
int256[] deltaIds;
uint256[] distributionX;
uint256[] distributionY;
address to;
address refundTo;
uint256 deadline;
}
/**
* @dev The path parameters, such as:
* - pairBinSteps: The list of bin steps of the pairs to go through
* - versions: The list of versions of the pairs to go through
* - tokenPath: The list of tokens in the path to go through
*/
struct Path {
uint256[] pairBinSteps;
Version[] versions;
IERC20[] tokenPath;
}
function getFactory() external view returns (ILBFactory);
function getLegacyFactory() external view returns (ILBLegacyFactory);
function getV1Factory() external view returns (IJoeFactory);
function getLegacyRouter() external view returns (ILBLegacyRouter);
function getWNATIVE() external view returns (IWNATIVE);
function getIdFromPrice(ILBPair LBPair, uint256 price) external view returns (uint24);
function getPriceFromId(ILBPair LBPair, uint24 id) external view returns (uint256);
function getSwapIn(ILBPair LBPair, uint128 amountOut, bool swapForY)
external
view
returns (uint128 amountIn, uint128 amountOutLeft, uint128 fee);
function getSwapOut(ILBPair LBPair, uint128 amountIn, bool swapForY)
external
view
returns (uint128 amountInLeft, uint128 amountOut, uint128 fee);
function createLBPair(IERC20 tokenX, IERC20 tokenY, uint24 activeId, uint16 binStep)
external
returns (ILBPair pair);
function addLiquidity(LiquidityParameters calldata liquidityParameters)
external
returns (
uint256 amountXAdded,
uint256 amountYAdded,
uint256 amountXLeft,
uint256 amountYLeft,
uint256[] memory depositIds,
uint256[] memory liquidityMinted
);
function addLiquidityNATIVE(LiquidityParameters calldata liquidityParameters)
external
payable
returns (
uint256 amountXAdded,
uint256 amountYAdded,
uint256 amountXLeft,
uint256 amountYLeft,
uint256[] memory depositIds,
uint256[] memory liquidityMinted
);
function removeLiquidity(
IERC20 tokenX,
IERC20 tokenY,
uint16 binStep,
uint256 amountXMin,
uint256 amountYMin,
uint256[] memory ids,
uint256[] memory amounts,
address to,
uint256 deadline
) external returns (uint256 amountX, uint256 amountY);
function removeLiquidityNATIVE(
IERC20 token,
uint16 binStep,
uint256 amountTokenMin,
uint256 amountNATIVEMin,
uint256[] memory ids,
uint256[] memory amounts,
address payable to,
uint256 deadline
) external returns (uint256 amountToken, uint256 amountNATIVE);
function swapExactTokensForTokens(
uint256 amountIn,
uint256 amountOutMin,
Path memory path,
address to,
uint256 deadline
) external returns (uint256 amountOut);
function swapExactTokensForNATIVE(
uint256 amountIn,
uint256 amountOutMinNATIVE,
Path memory path,
address payable to,
uint256 deadline
) external returns (uint256 amountOut);
function swapExactNATIVEForTokens(uint256 amountOutMin, Path memory path, address to, uint256 deadline)
external
payable
returns (uint256 amountOut);
function swapTokensForExactTokens(
uint256 amountOut,
uint256 amountInMax,
Path memory path,
address to,
uint256 deadline
) external returns (uint256[] memory amountsIn);
function swapTokensForExactNATIVE(
uint256 amountOut,
uint256 amountInMax,
Path memory path,
address payable to,
uint256 deadline
) external returns (uint256[] memory amountsIn);
function swapNATIVEForExactTokens(uint256 amountOut, Path memory path, address to, uint256 deadline)
external
payable
returns (uint256[] memory amountsIn);
function swapExactTokensForTokensSupportingFeeOnTransferTokens(
uint256 amountIn,
uint256 amountOutMin,
Path memory path,
address to,
uint256 deadline
) external returns (uint256 amountOut);
function swapExactTokensForNATIVESupportingFeeOnTransferTokens(
uint256 amountIn,
uint256 amountOutMinNATIVE,
Path memory path,
address payable to,
uint256 deadline
) external returns (uint256 amountOut);
function swapExactNATIVEForTokensSupportingFeeOnTransferTokens(
uint256 amountOutMin,
Path memory path,
address to,
uint256 deadline
) external payable returns (uint256 amountOut);
function sweep(IERC20 token, address to, uint256 amount) external;
function sweepLBToken(ILBToken _lbToken, address _to, uint256[] calldata _ids, uint256[] calldata _amounts)
external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.10;
import {Constants} from "../Constants.sol";
import {BitMath} from "./BitMath.sol";
/**
* @title Liquidity Book Uint128x128 Math Library
* @author Trader Joe
* @notice Helper contract used for power and log calculations
*/
library Uint128x128Math {
using BitMath for uint256;
error Uint128x128Math__LogUnderflow();
error Uint128x128Math__PowUnderflow(uint256 x, int256 y);
uint256 constant LOG_SCALE_OFFSET = 127;
uint256 constant LOG_SCALE = 1 << LOG_SCALE_OFFSET;
uint256 constant LOG_SCALE_SQUARED = LOG_SCALE * LOG_SCALE;
/**
* @notice Calculates the binary logarithm of x.
* @dev Based on the iterative approximation algorithm.
* https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation
* Requirements:
* - x must be greater than zero.
* Caveats:
* - The results are not perfectly accurate to the last decimal, due to the lossy precision of the iterative approximation
* Also because x is converted to an unsigned 129.127-binary fixed-point number during the operation to optimize the multiplication
* @param x The unsigned 128.128-binary fixed-point number for which to calculate the binary logarithm.
* @return result The binary logarithm as a signed 128.128-binary fixed-point number.
*/
function log2(uint256 x) internal pure returns (int256 result) {
// Convert x to a unsigned 129.127-binary fixed-point number to optimize the multiplication.
// If we use an offset of 128 bits, y would need 129 bits and y**2 would would overflow and we would have to
// use mulDiv, by reducing x to 129.127-binary fixed-point number we assert that y will use 128 bits, and we
// can use the regular multiplication
if (x == 1) return -128;
if (x == 0) revert Uint128x128Math__LogUnderflow();
x >>= 1;
unchecked {
// This works because log2(x) = -log2(1/x).
int256 sign;
if (x >= LOG_SCALE) {
sign = 1;
} else {
sign = -1;
// Do the fixed-point inversion inline to save gas
x = LOG_SCALE_SQUARED / x;
}
// Calculate the integer part of the logarithm and add it to the result and finally calculate y = x * 2^(-n).
uint256 n = (x >> LOG_SCALE_OFFSET).mostSignificantBit();
// The integer part of the logarithm as a signed 129.127-binary fixed-point number. The operation can't overflow
// because n is maximum 255, LOG_SCALE_OFFSET is 127 bits and sign is either 1 or -1.
result = int256(n) << LOG_SCALE_OFFSET;
// This is y = x * 2^(-n).
uint256 y = x >> n;
// If y = 1, the fractional part is zero.
if (y != LOG_SCALE) {
// Calculate the fractional part via the iterative approximation.
// The "delta >>= 1" part is equivalent to "delta /= 2", but shifting bits is faster.
for (int256 delta = int256(1 << (LOG_SCALE_OFFSET - 1)); delta > 0; delta >>= 1) {
y = (y * y) >> LOG_SCALE_OFFSET;
// Is y^2 > 2 and so in the range [2,4)?
if (y >= 1 << (LOG_SCALE_OFFSET + 1)) {
// Add the 2^(-m) factor to the logarithm.
result += delta;
// Corresponds to z/2 on Wikipedia.
y >>= 1;
}
}
}
// Convert x back to unsigned 128.128-binary fixed-point number
result = (result * sign) << 1;
}
}
/**
* @notice Returns the value of x^y. It calculates `1 / x^abs(y)` if x is bigger than 2^128.
* At the end of the operations, we invert the result if needed.
* @param x The unsigned 128.128-binary fixed-point number for which to calculate the power
* @param y A relative number without any decimals, needs to be between ]-2^21; 2^21[
*/
function pow(uint256 x, int256 y) internal pure returns (uint256 result) {
bool invert;
uint256 absY;
if (y == 0) return Constants.SCALE;
assembly {
absY := y
if slt(absY, 0) {
absY := sub(0, absY)
invert := iszero(invert)
}
}
if (absY < 0x100000) {
result = Constants.SCALE;
assembly {
let squared := x
if gt(x, 0xffffffffffffffffffffffffffffffff) {
squared := div(not(0), squared)
invert := iszero(invert)
}
if and(absY, 0x1) { result := shr(128, mul(result, squared)) }
squared := shr(128, mul(squared, squared))
if and(absY, 0x2) { result := shr(128, mul(result, squared)) }
squared := shr(128, mul(squared, squared))
if and(absY, 0x4) { result := shr(128, mul(result, squared)) }
squared := shr(128, mul(squared, squared))
if and(absY, 0x8) { result := shr(128, mul(result, squared)) }
squared := shr(128, mul(squared, squared))
if and(absY, 0x10) { result := shr(128, mul(result, squared)) }
squared := shr(128, mul(squared, squared))
if and(absY, 0x20) { result := shr(128, mul(result, squared)) }
squared := shr(128, mul(squared, squared))
if and(absY, 0x40) { result := shr(128, mul(result, squared)) }
squared := shr(128, mul(squared, squared))
if and(absY, 0x80) { result := shr(128, mul(result, squared)) }
squared := shr(128, mul(squared, squared))
if and(absY, 0x100) { result := shr(128, mul(result, squared)) }
squared := shr(128, mul(squared, squared))
if and(absY, 0x200) { result := shr(128, mul(result, squared)) }
squared := shr(128, mul(squared, squared))
if and(absY, 0x400) { result := shr(128, mul(result, squared)) }
squared := shr(128, mul(squared, squared))
if and(absY, 0x800) { result := shr(128, mul(result, squared)) }
squared := shr(128, mul(squared, squared))
if and(absY, 0x1000) { result := shr(128, mul(result, squared)) }
squared := shr(128, mul(squared, squared))
if and(absY, 0x2000) { result := shr(128, mul(result, squared)) }
squared := shr(128, mul(squared, squared))
if and(absY, 0x4000) { result := shr(128, mul(result, squared)) }
squared := shr(128, mul(squared, squared))
if and(absY, 0x8000) { result := shr(128, mul(result, squared)) }
squared := shr(128, mul(squared, squared))
if and(absY, 0x10000) { result := shr(128, mul(result, squared)) }
squared := shr(128, mul(squared, squared))
if and(absY, 0x20000) { result := shr(128, mul(result, squared)) }
squared := shr(128, mul(squared, squared))
if and(absY, 0x40000) { result := shr(128, mul(result, squared)) }
squared := shr(128, mul(squared, squared))
if and(absY, 0x80000) { result := shr(128, mul(result, squared)) }
}
}
// revert if y is too big or if x^y underflowed
if (result == 0) revert Uint128x128Math__PowUnderflow(x, y);
return invert ? type(uint256).max / result : result;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.10;
/**
* @title Liquidity Book Bit Math Library
* @author Trader Joe
* @notice Helper contract used for bit calculations
*/
library BitMath {
/**
* @dev Returns the index of the closest bit on the right of x that is non null
* @param x The value as a uint256
* @param bit The index of the bit to start searching at
* @return id The index of the closest non null bit on the right of x.
* If there is no closest bit, it returns max(uint256)
*/
function closestBitRight(uint256 x, uint8 bit) internal pure returns (uint256 id) {
unchecked {
uint256 shift = 255 - bit;
x <<= shift;
// can't overflow as it's non-zero and we shifted it by `_shift`
return (x == 0) ? type(uint256).max : mostSignificantBit(x) - shift;
}
}
/**
* @dev Returns the index of the closest bit on the left of x that is non null
* @param x The value as a uint256
* @param bit The index of the bit to start searching at
* @return id The index of the closest non null bit on the left of x.
* If there is no closest bit, it returns max(uint256)
*/
function closestBitLeft(uint256 x, uint8 bit) internal pure returns (uint256 id) {
unchecked {
x >>= bit;
return (x == 0) ? type(uint256).max : leastSignificantBit(x) + bit;
}
}
/**
* @dev Returns the index of the most significant bit of x
* This function returns 0 if x is 0
* @param x The value as a uint256
* @return msb The index of the most significant bit of x
*/
function mostSignificantBit(uint256 x) internal pure returns (uint8 msb) {
assembly {
if gt(x, 0xffffffffffffffffffffffffffffffff) {
x := shr(128, x)
msb := 128
}
if gt(x, 0xffffffffffffffff) {
x := shr(64, x)
msb := add(msb, 64)
}
if gt(x, 0xffffffff) {
x := shr(32, x)
msb := add(msb, 32)
}
if gt(x, 0xffff) {
x := shr(16, x)
msb := add(msb, 16)
}
if gt(x, 0xff) {
x := shr(8, x)
msb := add(msb, 8)
}
if gt(x, 0xf) {
x := shr(4, x)
msb := add(msb, 4)
}
if gt(x, 0x3) {
x := shr(2, x)
msb := add(msb, 2)
}
if gt(x, 0x1) { msb := add(msb, 1) }
}
}
/**
* @dev Returns the index of the least significant bit of x
* This function returns 255 if x is 0
* @param x The value as a uint256
* @return lsb The index of the least significant bit of x
*/
function leastSignificantBit(uint256 x) internal pure returns (uint8 lsb) {
assembly {
let sx := shl(128, x)
if iszero(iszero(sx)) {
lsb := 128
x := sx
}
sx := shl(64, x)
if iszero(iszero(sx)) {
x := sx
lsb := add(lsb, 64)
}
sx := shl(32, x)
if iszero(iszero(sx)) {
x := sx
lsb := add(lsb, 32)
}
sx := shl(16, x)
if iszero(iszero(sx)) {
x := sx
lsb := add(lsb, 16)
}
sx := shl(8, x)
if iszero(iszero(sx)) {
x := sx
lsb := add(lsb, 8)
}
sx := shl(4, x)
if iszero(iszero(sx)) {
x := sx
lsb := add(lsb, 4)
}
sx := shl(2, x)
if iszero(iszero(sx)) {
x := sx
lsb := add(lsb, 2)
}
if iszero(iszero(shl(1, x))) { lsb := add(lsb, 1) }
lsb := sub(255, lsb)
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.10;
import {ILBPair} from "./ILBPair.sol";
import {Hooks} from "../libraries/Hooks.sol";
interface ILBHooks {
function getLBPair() external view returns (ILBPair);
function isLinked() external view returns (bool);
function onHooksSet(bytes32 hooksParameters, bytes calldata onHooksSetData) external returns (bytes4);
function beforeSwap(address sender, address to, bool swapForY, bytes32 amountsIn) external returns (bytes4);
function afterSwap(address sender, address to, bool swapForY, bytes32 amountsOut) external returns (bytes4);
function beforeFlashLoan(address sender, address to, bytes32 amounts) external returns (bytes4);
function afterFlashLoan(address sender, address to, bytes32 fees, bytes32 feesReceived) external returns (bytes4);
function beforeMint(address sender, address to, bytes32[] calldata liquidityConfigs, bytes32 amountsReceived)
external
returns (bytes4);
function afterMint(address sender, address to, bytes32[] calldata liquidityConfigs, bytes32 amountsIn)
external
returns (bytes4);
function beforeBurn(
address sender,
address from,
address to,
uint256[] calldata ids,
uint256[] calldata amountsToBurn
) external returns (bytes4);
function afterBurn(
address sender,
address from,
address to,
uint256[] calldata ids,
uint256[] calldata amountsToBurn
) external returns (bytes4);
function beforeBatchTransferFrom(
address sender,
address from,
address to,
uint256[] calldata ids,
uint256[] calldata amounts
) external returns (bytes4);
function afterBatchTransferFrom(
address sender,
address from,
address to,
uint256[] calldata ids,
uint256[] calldata amounts
) external returns (bytes4);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.10;
/**
* @title Liquidity Book Token Interface
* @author Trader Joe
* @notice Interface to interact with the LBToken.
*/
interface ILBToken {
error LBToken__AddressThisOrZero();
error LBToken__InvalidLength();
error LBToken__SelfApproval(address owner);
error LBToken__SpenderNotApproved(address from, address spender);
error LBToken__TransferExceedsBalance(address from, uint256 id, uint256 amount);
error LBToken__BurnExceedsBalance(address from, uint256 id, uint256 amount);
event TransferBatch(
address indexed sender, address indexed from, address indexed to, uint256[] ids, uint256[] amounts
);
event ApprovalForAll(address indexed account, address indexed sender, bool approved);
function name() external view returns (string memory);
function symbol() external view returns (string memory);
function totalSupply(uint256 id) external view returns (uint256);
function balanceOf(address account, uint256 id) external view returns (uint256);
function balanceOfBatch(address[] calldata accounts, uint256[] calldata ids)
external
view
returns (uint256[] memory);
function isApprovedForAll(address owner, address spender) external view returns (bool);
function approveForAll(address spender, bool approved) external;
function batchTransferFrom(address from, address to, uint256[] calldata ids, uint256[] calldata amounts) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.10;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
/**
* @title WNATIVE Interface
* @notice Required interface of Wrapped NATIVE contract
*/
interface IWNATIVE is IERC20 {
function deposit() external payable;
function withdraw(uint256) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.10;
import "@openzeppelin/contracts/utils/introspection/IERC165.sol";
/// @title Liquidity Book V2 Token Interface
/// @author Trader Joe
/// @notice Required interface of LBToken contract
interface ILBLegacyToken is IERC165 {
event TransferSingle(address indexed sender, address indexed from, address indexed to, uint256 id, uint256 amount);
event TransferBatch(
address indexed sender, address indexed from, address indexed to, uint256[] ids, uint256[] amounts
);
event ApprovalForAll(address indexed account, address indexed sender, bool approved);
function name() external view returns (string memory);
function symbol() external view returns (string memory);
function balanceOf(address account, uint256 id) external view returns (uint256);
function balanceOfBatch(address[] calldata accounts, uint256[] calldata ids)
external
view
returns (uint256[] memory batchBalances);
function totalSupply(uint256 id) external view returns (uint256);
function isApprovedForAll(address owner, address spender) external view returns (bool);
function setApprovalForAll(address sender, bool approved) external;
function safeTransferFrom(address from, address to, uint256 id, uint256 amount) external;
function safeBatchTransferFrom(address from, address to, uint256[] calldata id, uint256[] calldata amount)
external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.10;
import {ILBHooks} from "../interfaces/ILBHooks.sol";
/**
* @title Hooks library
* @notice This library contains functions that should be used to interact with hooks
*/
library Hooks {
error Hooks__CallFailed();
bytes32 internal constant BEFORE_SWAP_FLAG = bytes32(uint256(1 << 160));
bytes32 internal constant AFTER_SWAP_FLAG = bytes32(uint256(1 << 161));
bytes32 internal constant BEFORE_FLASH_LOAN_FLAG = bytes32(uint256(1 << 162));
bytes32 internal constant AFTER_FLASH_LOAN_FLAG = bytes32(uint256(1 << 163));
bytes32 internal constant BEFORE_MINT_FLAG = bytes32(uint256(1 << 164));
bytes32 internal constant AFTER_MINT_FLAG = bytes32(uint256(1 << 165));
bytes32 internal constant BEFORE_BURN_FLAG = bytes32(uint256(1 << 166));
bytes32 internal constant AFTER_BURN_FLAG = bytes32(uint256(1 << 167));
bytes32 internal constant BEFORE_TRANSFER_FLAG = bytes32(uint256(1 << 168));
bytes32 internal constant AFTER_TRANSFER_FLAG = bytes32(uint256(1 << 169));
struct Parameters {
address hooks;
bool beforeSwap;
bool afterSwap;
bool beforeFlashLoan;
bool afterFlashLoan;
bool beforeMint;
bool afterMint;
bool beforeBurn;
bool afterBurn;
bool beforeBatchTransferFrom;
bool afterBatchTransferFrom;
}
/**
* @dev Helper function to encode the hooks parameters to a single bytes32 value
* @param parameters The hooks parameters
* @return hooksParameters The encoded hooks parameters
*/
function encode(Parameters memory parameters) internal pure returns (bytes32 hooksParameters) {
hooksParameters = bytes32(uint256(uint160(address(parameters.hooks))));
if (parameters.beforeSwap) hooksParameters |= BEFORE_SWAP_FLAG;
if (parameters.afterSwap) hooksParameters |= AFTER_SWAP_FLAG;
if (parameters.beforeFlashLoan) hooksParameters |= BEFORE_FLASH_LOAN_FLAG;
if (parameters.afterFlashLoan) hooksParameters |= AFTER_FLASH_LOAN_FLAG;
if (parameters.beforeMint) hooksParameters |= BEFORE_MINT_FLAG;
if (parameters.afterMint) hooksParameters |= AFTER_MINT_FLAG;
if (parameters.beforeBurn) hooksParameters |= BEFORE_BURN_FLAG;
if (parameters.afterBurn) hooksParameters |= AFTER_BURN_FLAG;
if (parameters.beforeBatchTransferFrom) hooksParameters |= BEFORE_TRANSFER_FLAG;
if (parameters.afterBatchTransferFrom) hooksParameters |= AFTER_TRANSFER_FLAG;
}
/**
* @dev Helper function to decode the hooks parameters from a single bytes32 value
* @param hooksParameters The encoded hooks parameters
* @return parameters The hooks parameters
*/
function decode(bytes32 hooksParameters) internal pure returns (Parameters memory parameters) {
parameters.hooks = getHooks(hooksParameters);
parameters.beforeSwap = (hooksParameters & BEFORE_SWAP_FLAG) != 0;
parameters.afterSwap = (hooksParameters & AFTER_SWAP_FLAG) != 0;
parameters.beforeFlashLoan = (hooksParameters & BEFORE_FLASH_LOAN_FLAG) != 0;
parameters.afterFlashLoan = (hooksParameters & AFTER_FLASH_LOAN_FLAG) != 0;
parameters.beforeMint = (hooksParameters & BEFORE_MINT_FLAG) != 0;
parameters.afterMint = (hooksParameters & AFTER_MINT_FLAG) != 0;
parameters.beforeBurn = (hooksParameters & BEFORE_BURN_FLAG) != 0;
parameters.afterBurn = (hooksParameters & AFTER_BURN_FLAG) != 0;
parameters.beforeBatchTransferFrom = (hooksParameters & BEFORE_TRANSFER_FLAG) != 0;
parameters.afterBatchTransferFrom = (hooksParameters & AFTER_TRANSFER_FLAG) != 0;
}
/**
* @dev Helper function to get the hooks address from the encoded hooks parameters
* @param hooksParameters The encoded hooks parameters
* @return hooks The hooks address
*/
function getHooks(bytes32 hooksParameters) internal pure returns (address hooks) {
hooks = address(uint160(uint256(hooksParameters)));
}
/**
* @dev Helper function to set the hooks address in the encoded hooks parameters
* @param hooksParameters The encoded hooks parameters
* @param newHooks The new hooks address
* @return hooksParameters The updated hooks parameters
*/
function setHooks(bytes32 hooksParameters, address newHooks) internal pure returns (bytes32) {
return bytes32(bytes12(hooksParameters)) | bytes32(uint256(uint160(newHooks)));
}
/**
* @dev Helper function to get the flags from the encoded hooks parameters
* @param hooksParameters The encoded hooks parameters
* @return flags The flags
*/
function getFlags(bytes32 hooksParameters) internal pure returns (bytes12 flags) {
flags = bytes12(hooksParameters);
}
/**
* @dev Helper function call the onHooksSet function on the hooks contract, only if the
* hooksParameters is not 0
* @param hooksParameters The encoded hooks parameters
* @param onHooksSetData The data to pass to the onHooksSet function
*/
function onHooksSet(bytes32 hooksParameters, bytes calldata onHooksSetData) internal {
if (hooksParameters != 0) {
_safeCall(
hooksParameters, abi.encodeWithSelector(ILBHooks.onHooksSet.selector, hooksParameters, onHooksSetData)
);
}
}
/**
* @dev Helper function to call the beforeSwap function on the hooks contract, only if the
* BEFORE_SWAP_FLAG is set in the hooksParameters
* @param hooksParameters The encoded hooks parameters
* @param sender The sender
* @param to The recipient
* @param swapForY Whether the swap is for Y
* @param amountsIn The amounts in
*/
function beforeSwap(bytes32 hooksParameters, address sender, address to, bool swapForY, bytes32 amountsIn)
internal
{
if ((hooksParameters & BEFORE_SWAP_FLAG) != 0) {
_safeCall(
hooksParameters, abi.encodeWithSelector(ILBHooks.beforeSwap.selector, sender, to, swapForY, amountsIn)
);
}
}
/**
* @dev Helper function to call the afterSwap function on the hooks contract, only if the
* AFTER_SWAP_FLAG is set in the hooksParameters
* @param hooksParameters The encoded hooks parameters
* @param sender The sender
* @param to The recipient
* @param swapForY Whether the swap is for Y
* @param amountsOut The amounts out
*/
function afterSwap(bytes32 hooksParameters, address sender, address to, bool swapForY, bytes32 amountsOut)
internal
{
if ((hooksParameters & AFTER_SWAP_FLAG) != 0) {
_safeCall(
hooksParameters, abi.encodeWithSelector(ILBHooks.afterSwap.selector, sender, to, swapForY, amountsOut)
);
}
}
/**
* @dev Helper function to call the beforeFlashLoan function on the hooks contract, only if the
* BEFORE_FLASH_LOAN_FLAG is set in the hooksParameters
* @param hooksParameters The encoded hooks parameters
* @param sender The sender
* @param to The recipient
* @param amounts The amounts
*/
function beforeFlashLoan(bytes32 hooksParameters, address sender, address to, bytes32 amounts) internal {
if ((hooksParameters & BEFORE_FLASH_LOAN_FLAG) != 0) {
_safeCall(hooksParameters, abi.encodeWithSelector(ILBHooks.beforeFlashLoan.selector, sender, to, amounts));
}
}
/**
* @dev Helper function to call the afterFlashLoan function on the hooks contract, only if the
* AFTER_FLASH_LOAN_FLAG is set in the hooksParameters
* @param hooksParameters The encoded hooks parameters
* @param sender The sender
* @param to The recipient
* @param fees The fees
* @param feesReceived The fees received
*/
function afterFlashLoan(bytes32 hooksParameters, address sender, address to, bytes32 fees, bytes32 feesReceived)
internal
{
if ((hooksParameters & AFTER_FLASH_LOAN_FLAG) != 0) {
_safeCall(
hooksParameters,
abi.encodeWithSelector(ILBHooks.afterFlashLoan.selector, sender, to, fees, feesReceived)
);
}
}
/**
* @dev Helper function to call the beforeMint function on the hooks contract, only if the
* BEFORE_MINT_FLAG is set in the hooksParameters
* @param hooksParameters The encoded hooks parameters
* @param sender The sender
* @param to The recipient
* @param liquidityConfigs The liquidity configs
* @param amountsReceived The amounts received
*/
function beforeMint(
bytes32 hooksParameters,
address sender,
address to,
bytes32[] calldata liquidityConfigs,
bytes32 amountsReceived
) internal {
if ((hooksParameters & BEFORE_MINT_FLAG) != 0) {
_safeCall(
hooksParameters,
abi.encodeWithSelector(ILBHooks.beforeMint.selector, sender, to, liquidityConfigs, amountsReceived)
);
}
}
/**
* @dev Helper function to call the afterMint function on the hooks contract, only if the
* AFTER_MINT_FLAG is set in the hooksParameters
* @param hooksParameters The encoded hooks parameters
* @param sender The sender
* @param to The recipient
* @param liquidityConfigs The liquidity configs
* @param amountsIn The amounts in
*/
function afterMint(
bytes32 hooksParameters,
address sender,
address to,
bytes32[] calldata liquidityConfigs,
bytes32 amountsIn
) internal {
if ((hooksParameters & AFTER_MINT_FLAG) != 0) {
_safeCall(
hooksParameters,
abi.encodeWithSelector(ILBHooks.afterMint.selector, sender, to, liquidityConfigs, amountsIn)
);
}
}
/**
* @dev Helper function to call the beforeBurn function on the hooks contract, only if the
* BEFORE_BURN_FLAG is set in the hooksParameters
* @param hooksParameters The encoded hooks parameters
* @param sender The sender
* @param from The sender
* @param to The recipient
* @param ids The ids
* @param amountsToBurn The amounts to burn
*/
function beforeBurn(
bytes32 hooksParameters,
address sender,
address from,
address to,
uint256[] calldata ids,
uint256[] calldata amountsToBurn
) internal {
if ((hooksParameters & BEFORE_BURN_FLAG) != 0) {
_safeCall(
hooksParameters,
abi.encodeWithSelector(ILBHooks.beforeBurn.selector, sender, from, to, ids, amountsToBurn)
);
}
}
/**
* @dev Helper function to call the afterBurn function on the hooks contract, only if the
* AFTER_BURN_FLAG is set in the hooksParameters
* @param hooksParameters The encoded hooks parameters
* @param sender The sender
* @param from The sender
* @param to The recipient
* @param ids The ids
* @param amountsToBurn The amounts to burn
*/
function afterBurn(
bytes32 hooksParameters,
address sender,
address from,
address to,
uint256[] calldata ids,
uint256[] calldata amountsToBurn
) internal {
if ((hooksParameters & AFTER_BURN_FLAG) != 0) {
_safeCall(
hooksParameters,
abi.encodeWithSelector(ILBHooks.afterBurn.selector, sender, from, to, ids, amountsToBurn)
);
}
}
/**
* @dev Helper function to call the beforeTransferFrom function on the hooks contract, only if the
* BEFORE_TRANSFER_FLAG is set in the hooksParameters
* @param hooksParameters The encoded hooks parameters
* @param sender The sender
* @param from The sender
* @param to The recipient
* @param ids The list of ids
* @param amounts The list of amounts
*/
function beforeBatchTransferFrom(
bytes32 hooksParameters,
address sender,
address from,
address to,
uint256[] calldata ids,
uint256[] calldata amounts
) internal {
if ((hooksParameters & BEFORE_TRANSFER_FLAG) != 0) {
_safeCall(
hooksParameters,
abi.encodeWithSelector(ILBHooks.beforeBatchTransferFrom.selector, sender, from, to, ids, amounts)
);
}
}
/**
* @dev Helper function to call the afterTransferFrom function on the hooks contract, only if the
* AFTER_TRANSFER_FLAG is set in the hooksParameters
* @param hooksParameters The encoded hooks parameters
* @param sender The sender
* @param from The sender
* @param to The recipient
* @param ids The list of ids
* @param amounts The list of amounts
*/
function afterBatchTransferFrom(
bytes32 hooksParameters,
address sender,
address from,
address to,
uint256[] calldata ids,
uint256[] calldata amounts
) internal {
if ((hooksParameters & AFTER_TRANSFER_FLAG) != 0) {
_safeCall(
hooksParameters,
abi.encodeWithSelector(ILBHooks.afterBatchTransferFrom.selector, sender, from, to, ids, amounts)
);
}
}
/**
* @dev Helper function to call the hooks contract and verify the call was successful
* by matching the expected selector with the returned data
* @param hooksParameters The encoded hooks parameters
* @param data The data to pass to the hooks contract
*/
function _safeCall(bytes32 hooksParameters, bytes memory data) private {
bool success;
address hooks = getHooks(hooksParameters);
assembly {
let expectedSelector := shr(224, mload(add(data, 0x20)))
success := call(gas(), hooks, 0, add(data, 0x20), mload(data), 0, 0x20)
if and(iszero(success), iszero(iszero(returndatasize()))) {
returndatacopy(0, 0, returndatasize())
revert(0, returndatasize())
}
success := and(success, and(gt(returndatasize(), 0x1f), eq(shr(224, mload(0)), expectedSelector)))
}
if (!success) revert Hooks__CallFailed();
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.10;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
/// @title Liquidity Book Flashloan Callback Interface
/// @author Trader Joe
/// @notice Required interface to interact with LB flash loans
interface ILBFlashLoanCallback {
function LBFlashLoanCallback(
address sender,
IERC20 tokenX,
IERC20 tokenY,
bytes32 amounts,
bytes32 totalFees,
bytes calldata data
) external returns (bytes32);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[ERC].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}