Contract Source Code:
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.20;
import "openzeppelin-math/Math.sol";
import "openzeppelin-contracts/access/manager/IAccessManager.sol";
import "openzeppelin-contracts-upgradeable/access/manager/AccessManagedUpgradeable.sol";
import "openzeppelin-contracts/proxy/beacon/BeaconProxy.sol";
import "openzeppelin-contracts/token/ERC20/utils/SafeERC20.sol";
import "../interfaces/IFactory.sol";
import "../interfaces/ICurvePool.sol";
import "../interfaces/ICurveFactory.sol";
import "../interfaces/IPrincipalToken.sol";
import "../interfaces/IRegistry.sol";
import "../libraries/CurvePoolUtil.sol";
import "../libraries/Roles.sol";
/**
* @title PrincipalTokenUtil library
* @author Spectra Finance
* @notice Factory used to deploy PTs and pools.
*/
contract Factory is IFactory, AccessManagedUpgradeable {
using SafeERC20 for IERC20;
using Math for uint256;
bytes4 constant PAUSE_SELECTOR = IPrincipalToken(address(0)).pause.selector;
bytes4 constant UNPAUSE_SELECTOR = IPrincipalToken(address(0)).unPause.selector;
bytes4 constant SET_REWARDS_PROXY_SELECTOR =
IPrincipalToken(address(0)).setRewardsProxy.selector;
bytes4 constant CLAIM_REWARDS_SELECTOR = IPrincipalToken(address(0)).claimRewards.selector;
/** @notice registry of the protocol */
address private immutable registry;
/* State
*****************************************************************************************************************/
/** @notice Factory of Curve protocol, used to deploy pools */
address private curveFactory;
/* Events
*****************************************************************************************************************/
event PTDeployed(address indexed pt, address indexed poolCreator);
event CurvePoolDeployed(address indexed poolAddress, address indexed ibt, address indexed pt);
event RegistryChange(address indexed previousRegistry, address indexed newRegistry);
event CurveFactoryChange(address indexed previousFactory, address indexed newFactory);
/**
* @notice Constructor of the contract
* @param _registry The address of the registry.
*/
constructor(address _registry) {
if (_registry == address(0)) {
revert AddressError();
}
registry = _registry;
_disableInitializers(); // using this so that the deployed logic contract later cannot be initialized.
}
/**
* @notice Initializer of the contract
* @param _initialAuthority The address of the access manager.
*/
function initialize(address _initialAuthority, address _curveFactory) external initializer {
__AccessManaged_init(_initialAuthority);
_setCurveFactory(_curveFactory);
}
/** @dev See {IFactory-deployPT}. */
function deployPT(address _ibt, uint256 _duration) public override returns (address pt) {
address ptBeacon = IRegistry(registry).getPTBeacon();
if (ptBeacon == address(0)) {
revert BeaconNotSet();
}
address accessManager = authority();
bytes memory _data = abi.encodeWithSelector(
IPrincipalToken(address(0)).initialize.selector,
_ibt,
_duration,
accessManager
);
pt = address(new BeaconProxy(ptBeacon, _data));
emit PTDeployed(pt, msg.sender);
IRegistry(registry).addPT(pt);
IAccessManager(accessManager).setTargetFunctionRole(pt, getPauserSigs(), Roles.PAUSER_ROLE);
IAccessManager(accessManager).setTargetFunctionRole(
pt,
getClaimRewardsProxySelectors(),
Roles.REWARDS_HARVESTER_ROLE
);
IAccessManager(accessManager).setTargetFunctionRole(
pt,
getSetRewardsProxySelectors(),
Roles.REWARDS_PROXY_SETTER_ROLE
);
}
/** @dev See {IFactory-deployCurvePool}. */
function deployCurvePool(
address _pt,
CurvePoolParams calldata _curvePoolParams,
uint256 _initialLiquidityInIBT,
uint256 _minPTShares
) public returns (address curvePool) {
if (!IRegistry(registry).isRegisteredPT(_pt)) {
revert UnregisteredPT();
}
if (IPrincipalToken(_pt).maturity() < block.timestamp) {
revert ExpiredPT();
}
address ibt = IPrincipalToken(_pt).getIBT();
address[2] memory coins;
{
coins[0] = ibt;
coins[1] = _pt;
}
curvePool = _deployCurvePool(coins, _curvePoolParams);
emit CurvePoolDeployed(curvePool, ibt, _pt);
if (_initialLiquidityInIBT != 0) {
_addInitialLiquidity(
curvePool,
_initialLiquidityInIBT,
_minPTShares,
_curvePoolParams.initial_price
);
}
}
/** @dev See {IFactory-deployAll}. */
function deployAll(
address _ibt,
uint256 _duration,
CurvePoolParams calldata _curvePoolParams,
uint256 _initialLiquidityInIBT,
uint256 _minPTShares
) public returns (address pt, address curvePool) {
// deploy PT
address ptBeacon = IRegistry(registry).getPTBeacon();
if (ptBeacon == address(0)) {
revert BeaconNotSet();
}
address accessManager = authority();
bytes memory _encodedData = abi.encodeWithSelector(
IPrincipalToken(address(0)).initialize.selector,
_ibt,
_duration,
accessManager
);
pt = address(new BeaconProxy(ptBeacon, _encodedData));
emit PTDeployed(pt, msg.sender);
IRegistry(registry).addPT(pt);
IAccessManager(accessManager).setTargetFunctionRole(pt, getPauserSigs(), Roles.PAUSER_ROLE);
IAccessManager(accessManager).setTargetFunctionRole(
pt,
getClaimRewardsProxySelectors(),
Roles.REWARDS_HARVESTER_ROLE
);
IAccessManager(accessManager).setTargetFunctionRole(
pt,
getSetRewardsProxySelectors(),
Roles.REWARDS_PROXY_SETTER_ROLE
);
// deploy Curve Pool
address[2] memory coins;
{
coins[0] = _ibt;
coins[1] = pt;
}
curvePool = _deployCurvePool(coins, _curvePoolParams);
emit CurvePoolDeployed(curvePool, _ibt, pt);
if (_initialLiquidityInIBT != 0) {
_addInitialLiquidity(
curvePool,
_initialLiquidityInIBT,
_minPTShares,
_curvePoolParams.initial_price
);
}
}
/* GETTERS
*****************************************************************************************************************/
/** @dev See {IFactory-getRegistry}. */
function getRegistry() external view override returns (address) {
return registry;
}
/** @dev See {IFactory-getCurveFactory}. */
function getCurveFactory() external view override returns (address) {
return curveFactory;
}
/**
* @notice Getter for pause and unpause selectors, used for access management
*/
function getPauserSigs() internal pure returns (bytes4[] memory) {
bytes4[] memory selectors = new bytes4[](2);
selectors[0] = PAUSE_SELECTOR;
selectors[1] = UNPAUSE_SELECTOR;
return selectors;
}
/**
* @notice Getter for the reward proxy setter selector, used for access management
*/
function getSetRewardsProxySelectors() internal pure returns (bytes4[] memory) {
bytes4[] memory selectors = new bytes4[](1);
selectors[0] = SET_REWARDS_PROXY_SELECTOR;
return selectors;
}
/**
* @notice Getter for the claim rewards selector, used for access management
*/
function getClaimRewardsProxySelectors() internal pure returns (bytes4[] memory) {
bytes4[] memory selectors = new bytes4[](1);
selectors[0] = CLAIM_REWARDS_SELECTOR;
return selectors;
}
/* SETTERS
*****************************************************************************************************************/
/** @dev See {IFactory-setCurveFactory}. */
function setCurveFactory(address _curveFactory) public override restricted {
_setCurveFactory(_curveFactory);
}
/**
* @dev Splits the given IBT amount into IBT and PT based on pool initial price, and adds liquidity to the pool.
* @param _curvePool The address of the Curve Pool in which the user adds initial liquidity to
* @param _initialLiquidityInIBT The initial liquidity to seed the Curve Pool with (in IBT)
* @param _minPTShares The minimum allowed shares from deposit in PT
* @param _initialPrice The initial price of the Curve Pool
*/
function _addInitialLiquidity(
address _curvePool,
uint256 _initialLiquidityInIBT,
uint256 _minPTShares,
uint256 _initialPrice
) internal {
address ibt = ICurvePool(_curvePool).coins(0);
address pt = ICurvePool(_curvePool).coins(1);
{
// support for fee-on-transfer tokens
uint256 balBefore = IERC20(ibt).balanceOf(address(this));
IERC20(ibt).safeTransferFrom(msg.sender, address(this), _initialLiquidityInIBT);
_initialLiquidityInIBT = IERC20(ibt).balanceOf(address(this)) - balBefore;
}
// using fictive pool balances, the user is adding liquidity in a ratio that (closely) matches the empty pool's initial price
// with ptBalance = IBT_UNIT for having a fictive PT balance reference, ibtBalance = IBT_UNIT x initialPrice
uint256 ptBalance = 10 ** IERC20Metadata(ibt).decimals();
uint256 ibtBalance = ptBalance.mulDiv(_initialPrice, CurvePoolUtil.CURVE_UNIT);
// compute the worth of the fictive IBT balance in the pool in PT
uint256 ibtBalanceInPT = IPrincipalToken(pt).previewDepositIBT(ibtBalance);
// compute the portion of IBT to deposit in PT
uint256 ibtsToTokenize = _initialLiquidityInIBT.mulDiv(
ptBalance,
ibtBalanceInPT + ptBalance
);
// IBT amount to deposit in the Curve Pool
uint256 amount0 = _initialLiquidityInIBT - ibtsToTokenize;
uint256 allowancePT = IERC20(ibt).allowance(address(this), pt);
if (allowancePT < ibtsToTokenize) {
IERC20(ibt).forceApprove(pt, type(uint256).max);
}
// PT amount to deposit in Curve Pool
uint256 amount1 = IPrincipalToken(pt).depositIBT(
ibtsToTokenize,
address(this),
msg.sender,
_minPTShares
);
IERC20(ibt).safeIncreaseAllowance(_curvePool, amount0);
IERC20(pt).safeIncreaseAllowance(_curvePool, amount1);
ICurvePool(_curvePool).add_liquidity([amount0, amount1], 0, false, msg.sender);
}
/**
* @dev Calls the Curve factory and deploys a new Curve v2 crypto pool
*/
function _deployCurvePool(
address[2] memory _coins,
CurvePoolParams calldata _p
) internal returns (address curvePoolAddr) {
if (curveFactory == address(0)) {
revert CurveFactoryNotSet();
}
bytes memory name = bytes("Spectra-PT/IBT");
bytes memory symbol = bytes("SPT-PT/IBT");
bytes memory cd = new bytes(576); // calldata to the curve factory
address coin0 = _coins[0];
address coin1 = _coins[1];
uint256 num; // temporary variable for passing contents of _p to Yul
// append the coins array
assembly {
mstore(
add(cd, 0x20),
0x00000000000000000000000000000000000000000000000000000000000001c0
)
mstore(
add(cd, 0x40),
0x0000000000000000000000000000000000000000000000000000000000000200
)
mstore(add(cd, 0x60), coin0)
mstore(add(cd, 0x80), coin1)
}
// append the numerical parameters
num = _p.A;
assembly {
mstore(add(cd, 0xa0), num)
}
num = _p.gamma;
assembly {
mstore(add(cd, 0xc0), num)
}
num = _p.mid_fee;
assembly {
mstore(add(cd, 0xe0), num)
}
num = _p.out_fee;
assembly {
mstore(add(cd, 0x100), num)
}
num = _p.allowed_extra_profit;
assembly {
mstore(add(cd, 0x120), num)
}
num = _p.fee_gamma;
assembly {
mstore(add(cd, 0x140), num)
}
num = _p.adjustment_step;
assembly {
mstore(add(cd, 0x160), num)
}
num = _p.admin_fee;
assembly {
mstore(add(cd, 0x180), num)
}
num = _p.ma_half_time;
assembly {
mstore(add(cd, 0x1a0), num)
}
num = _p.initial_price;
assembly {
mstore(add(cd, 0x1c0), num)
mstore(add(cd, 0x1e0), mload(name))
mstore(add(cd, 0x200), mload(add(name, 0x20)))
mstore(add(cd, 0x220), mload(symbol))
mstore(add(cd, 0x240), mload(add(symbol, 0x20)))
}
// prepend the function selector
cd = bytes.concat(ICurveFactory(address(0)).deploy_pool.selector, cd);
// make the call to the curve factory
(bool success, bytes memory result) = address(curveFactory).call(cd);
if (!success) {
revert DeploymentFailed();
}
assembly {
curvePoolAddr := mload(add(add(result, 12), 20))
}
}
function _setCurveFactory(address _curveFactory) internal {
if (_curveFactory == address(0)) {
revert AddressError();
}
emit CurveFactoryChange(curveFactory, _curveFactory);
curveFactory = _curveFactory;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
/**
* @dev Muldiv operation overflow.
*/
error MathOverflowedMulDiv();
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an overflow flag.
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
return a / b;
}
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
if (denominator <= prod1) {
revert MathOverflowedMulDiv();
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/manager/IAccessManager.sol)
pragma solidity ^0.8.20;
import {IAccessManaged} from "./IAccessManaged.sol";
import {Time} from "../../utils/types/Time.sol";
interface IAccessManager {
/**
* @dev A delayed operation was scheduled.
*/
event OperationScheduled(
bytes32 indexed operationId,
uint32 indexed nonce,
uint48 schedule,
address caller,
address target,
bytes data
);
/**
* @dev A scheduled operation was executed.
*/
event OperationExecuted(bytes32 indexed operationId, uint32 indexed nonce);
/**
* @dev A scheduled operation was canceled.
*/
event OperationCanceled(bytes32 indexed operationId, uint32 indexed nonce);
/**
* @dev Informational labelling for a roleId.
*/
event RoleLabel(uint64 indexed roleId, string label);
/**
* @dev Emitted when `account` is granted `roleId`.
*
* NOTE: The meaning of the `since` argument depends on the `newMember` argument.
* If the role is granted to a new member, the `since` argument indicates when the account becomes a member of the role,
* otherwise it indicates the execution delay for this account and roleId is updated.
*/
event RoleGranted(uint64 indexed roleId, address indexed account, uint32 delay, uint48 since, bool newMember);
/**
* @dev Emitted when `account` membership or `roleId` is revoked. Unlike granting, revoking is instantaneous.
*/
event RoleRevoked(uint64 indexed roleId, address indexed account);
/**
* @dev Role acting as admin over a given `roleId` is updated.
*/
event RoleAdminChanged(uint64 indexed roleId, uint64 indexed admin);
/**
* @dev Role acting as guardian over a given `roleId` is updated.
*/
event RoleGuardianChanged(uint64 indexed roleId, uint64 indexed guardian);
/**
* @dev Grant delay for a given `roleId` will be updated to `delay` when `since` is reached.
*/
event RoleGrantDelayChanged(uint64 indexed roleId, uint32 delay, uint48 since);
/**
* @dev Target mode is updated (true = closed, false = open).
*/
event TargetClosed(address indexed target, bool closed);
/**
* @dev Role required to invoke `selector` on `target` is updated to `roleId`.
*/
event TargetFunctionRoleUpdated(address indexed target, bytes4 selector, uint64 indexed roleId);
/**
* @dev Admin delay for a given `target` will be updated to `delay` when `since` is reached.
*/
event TargetAdminDelayUpdated(address indexed target, uint32 delay, uint48 since);
error AccessManagerAlreadyScheduled(bytes32 operationId);
error AccessManagerNotScheduled(bytes32 operationId);
error AccessManagerNotReady(bytes32 operationId);
error AccessManagerExpired(bytes32 operationId);
error AccessManagerLockedAccount(address account);
error AccessManagerLockedRole(uint64 roleId);
error AccessManagerBadConfirmation();
error AccessManagerUnauthorizedAccount(address msgsender, uint64 roleId);
error AccessManagerUnauthorizedCall(address caller, address target, bytes4 selector);
error AccessManagerUnauthorizedConsume(address target);
error AccessManagerUnauthorizedCancel(address msgsender, address caller, address target, bytes4 selector);
error AccessManagerInvalidInitialAdmin(address initialAdmin);
/**
* @dev Check if an address (`caller`) is authorised to call a given function on a given contract directly (with
* no restriction). Additionally, it returns the delay needed to perform the call indirectly through the {schedule}
* & {execute} workflow.
*
* This function is usually called by the targeted contract to control immediate execution of restricted functions.
* Therefore we only return true if the call can be performed without any delay. If the call is subject to a
* previously set delay (not zero), then the function should return false and the caller should schedule the operation
* for future execution.
*
* If `immediate` is true, the delay can be disregarded and the operation can be immediately executed, otherwise
* the operation can be executed if and only if delay is greater than 0.
*
* NOTE: The IAuthority interface does not include the `uint32` delay. This is an extension of that interface that
* is backward compatible. Some contracts may thus ignore the second return argument. In that case they will fail
* to identify the indirect workflow, and will consider calls that require a delay to be forbidden.
*
* NOTE: This function does not report the permissions of this manager itself. These are defined by the
* {_canCallSelf} function instead.
*/
function canCall(
address caller,
address target,
bytes4 selector
) external view returns (bool allowed, uint32 delay);
/**
* @dev Expiration delay for scheduled proposals. Defaults to 1 week.
*
* IMPORTANT: Avoid overriding the expiration with 0. Otherwise every contract proposal will be expired immediately,
* disabling any scheduling usage.
*/
function expiration() external view returns (uint32);
/**
* @dev Minimum setback for all delay updates, with the exception of execution delays. It
* can be increased without setback (and reset via {revokeRole} in the case event of an
* accidental increase). Defaults to 5 days.
*/
function minSetback() external view returns (uint32);
/**
* @dev Get whether the contract is closed disabling any access. Otherwise role permissions are applied.
*/
function isTargetClosed(address target) external view returns (bool);
/**
* @dev Get the role required to call a function.
*/
function getTargetFunctionRole(address target, bytes4 selector) external view returns (uint64);
/**
* @dev Get the admin delay for a target contract. Changes to contract configuration are subject to this delay.
*/
function getTargetAdminDelay(address target) external view returns (uint32);
/**
* @dev Get the id of the role that acts as an admin for the given role.
*
* The admin permission is required to grant the role, revoke the role and update the execution delay to execute
* an operation that is restricted to this role.
*/
function getRoleAdmin(uint64 roleId) external view returns (uint64);
/**
* @dev Get the role that acts as a guardian for a given role.
*
* The guardian permission allows canceling operations that have been scheduled under the role.
*/
function getRoleGuardian(uint64 roleId) external view returns (uint64);
/**
* @dev Get the role current grant delay.
*
* Its value may change at any point without an event emitted following a call to {setGrantDelay}.
* Changes to this value, including effect timepoint are notified in advance by the {RoleGrantDelayChanged} event.
*/
function getRoleGrantDelay(uint64 roleId) external view returns (uint32);
/**
* @dev Get the access details for a given account for a given role. These details include the timepoint at which
* membership becomes active, and the delay applied to all operation by this user that requires this permission
* level.
*
* Returns:
* [0] Timestamp at which the account membership becomes valid. 0 means role is not granted.
* [1] Current execution delay for the account.
* [2] Pending execution delay for the account.
* [3] Timestamp at which the pending execution delay will become active. 0 means no delay update is scheduled.
*/
function getAccess(uint64 roleId, address account) external view returns (uint48, uint32, uint32, uint48);
/**
* @dev Check if a given account currently has the permission level corresponding to a given role. Note that this
* permission might be associated with an execution delay. {getAccess} can provide more details.
*/
function hasRole(uint64 roleId, address account) external view returns (bool, uint32);
/**
* @dev Give a label to a role, for improved role discoverability by UIs.
*
* Requirements:
*
* - the caller must be a global admin
*
* Emits a {RoleLabel} event.
*/
function labelRole(uint64 roleId, string calldata label) external;
/**
* @dev Add `account` to `roleId`, or change its execution delay.
*
* This gives the account the authorization to call any function that is restricted to this role. An optional
* execution delay (in seconds) can be set. If that delay is non 0, the user is required to schedule any operation
* that is restricted to members of this role. The user will only be able to execute the operation after the delay has
* passed, before it has expired. During this period, admin and guardians can cancel the operation (see {cancel}).
*
* If the account has already been granted this role, the execution delay will be updated. This update is not
* immediate and follows the delay rules. For example, if a user currently has a delay of 3 hours, and this is
* called to reduce that delay to 1 hour, the new delay will take some time to take effect, enforcing that any
* operation executed in the 3 hours that follows this update was indeed scheduled before this update.
*
* Requirements:
*
* - the caller must be an admin for the role (see {getRoleAdmin})
* - granted role must not be the `PUBLIC_ROLE`
*
* Emits a {RoleGranted} event.
*/
function grantRole(uint64 roleId, address account, uint32 executionDelay) external;
/**
* @dev Remove an account from a role, with immediate effect. If the account does not have the role, this call has
* no effect.
*
* Requirements:
*
* - the caller must be an admin for the role (see {getRoleAdmin})
* - revoked role must not be the `PUBLIC_ROLE`
*
* Emits a {RoleRevoked} event if the account had the role.
*/
function revokeRole(uint64 roleId, address account) external;
/**
* @dev Renounce role permissions for the calling account with immediate effect. If the sender is not in
* the role this call has no effect.
*
* Requirements:
*
* - the caller must be `callerConfirmation`.
*
* Emits a {RoleRevoked} event if the account had the role.
*/
function renounceRole(uint64 roleId, address callerConfirmation) external;
/**
* @dev Change admin role for a given role.
*
* Requirements:
*
* - the caller must be a global admin
*
* Emits a {RoleAdminChanged} event
*/
function setRoleAdmin(uint64 roleId, uint64 admin) external;
/**
* @dev Change guardian role for a given role.
*
* Requirements:
*
* - the caller must be a global admin
*
* Emits a {RoleGuardianChanged} event
*/
function setRoleGuardian(uint64 roleId, uint64 guardian) external;
/**
* @dev Update the delay for granting a `roleId`.
*
* Requirements:
*
* - the caller must be a global admin
*
* Emits a {RoleGrantDelayChanged} event.
*/
function setGrantDelay(uint64 roleId, uint32 newDelay) external;
/**
* @dev Set the role required to call functions identified by the `selectors` in the `target` contract.
*
* Requirements:
*
* - the caller must be a global admin
*
* Emits a {TargetFunctionRoleUpdated} event per selector.
*/
function setTargetFunctionRole(address target, bytes4[] calldata selectors, uint64 roleId) external;
/**
* @dev Set the delay for changing the configuration of a given target contract.
*
* Requirements:
*
* - the caller must be a global admin
*
* Emits a {TargetAdminDelayUpdated} event.
*/
function setTargetAdminDelay(address target, uint32 newDelay) external;
/**
* @dev Set the closed flag for a contract.
*
* Requirements:
*
* - the caller must be a global admin
*
* Emits a {TargetClosed} event.
*/
function setTargetClosed(address target, bool closed) external;
/**
* @dev Return the timepoint at which a scheduled operation will be ready for execution. This returns 0 if the
* operation is not yet scheduled, has expired, was executed, or was canceled.
*/
function getSchedule(bytes32 id) external view returns (uint48);
/**
* @dev Return the nonce for the latest scheduled operation with a given id. Returns 0 if the operation has never
* been scheduled.
*/
function getNonce(bytes32 id) external view returns (uint32);
/**
* @dev Schedule a delayed operation for future execution, and return the operation identifier. It is possible to
* choose the timestamp at which the operation becomes executable as long as it satisfies the execution delays
* required for the caller. The special value zero will automatically set the earliest possible time.
*
* Returns the `operationId` that was scheduled. Since this value is a hash of the parameters, it can reoccur when
* the same parameters are used; if this is relevant, the returned `nonce` can be used to uniquely identify this
* scheduled operation from other occurrences of the same `operationId` in invocations of {execute} and {cancel}.
*
* Emits a {OperationScheduled} event.
*
* NOTE: It is not possible to concurrently schedule more than one operation with the same `target` and `data`. If
* this is necessary, a random byte can be appended to `data` to act as a salt that will be ignored by the target
* contract if it is using standard Solidity ABI encoding.
*/
function schedule(address target, bytes calldata data, uint48 when) external returns (bytes32, uint32);
/**
* @dev Execute a function that is delay restricted, provided it was properly scheduled beforehand, or the
* execution delay is 0.
*
* Returns the nonce that identifies the previously scheduled operation that is executed, or 0 if the
* operation wasn't previously scheduled (if the caller doesn't have an execution delay).
*
* Emits an {OperationExecuted} event only if the call was scheduled and delayed.
*/
function execute(address target, bytes calldata data) external payable returns (uint32);
/**
* @dev Cancel a scheduled (delayed) operation. Returns the nonce that identifies the previously scheduled
* operation that is cancelled.
*
* Requirements:
*
* - the caller must be the proposer, a guardian of the targeted function, or a global admin
*
* Emits a {OperationCanceled} event.
*/
function cancel(address caller, address target, bytes calldata data) external returns (uint32);
/**
* @dev Consume a scheduled operation targeting the caller. If such an operation exists, mark it as consumed
* (emit an {OperationExecuted} event and clean the state). Otherwise, throw an error.
*
* This is useful for contract that want to enforce that calls targeting them were scheduled on the manager,
* with all the verifications that it implies.
*
* Emit a {OperationExecuted} event.
*/
function consumeScheduledOp(address caller, bytes calldata data) external;
/**
* @dev Hashing function for delayed operations.
*/
function hashOperation(address caller, address target, bytes calldata data) external view returns (bytes32);
/**
* @dev Changes the authority of a target managed by this manager instance.
*
* Requirements:
*
* - the caller must be a global admin
*/
function updateAuthority(address target, address newAuthority) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/manager/AccessManaged.sol)
pragma solidity ^0.8.20;
import {IAuthority} from "@openzeppelin/contracts/access/manager/IAuthority.sol";
import {AuthorityUtils} from "@openzeppelin/contracts/access/manager/AuthorityUtils.sol";
import {IAccessManager} from "@openzeppelin/contracts/access/manager/IAccessManager.sol";
import {IAccessManaged} from "@openzeppelin/contracts/access/manager/IAccessManaged.sol";
import {ContextUpgradeable} from "../../utils/ContextUpgradeable.sol";
import {Initializable} from "../../proxy/utils/Initializable.sol";
/**
* @dev This contract module makes available a {restricted} modifier. Functions decorated with this modifier will be
* permissioned according to an "authority": a contract like {AccessManager} that follows the {IAuthority} interface,
* implementing a policy that allows certain callers to access certain functions.
*
* IMPORTANT: The `restricted` modifier should never be used on `internal` functions, judiciously used in `public`
* functions, and ideally only used in `external` functions. See {restricted}.
*/
abstract contract AccessManagedUpgradeable is Initializable, ContextUpgradeable, IAccessManaged {
/// @custom:storage-location erc7201:openzeppelin.storage.AccessManaged
struct AccessManagedStorage {
address _authority;
bool _consumingSchedule;
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.AccessManaged")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant AccessManagedStorageLocation = 0xf3177357ab46d8af007ab3fdb9af81da189e1068fefdc0073dca88a2cab40a00;
function _getAccessManagedStorage() private pure returns (AccessManagedStorage storage $) {
assembly {
$.slot := AccessManagedStorageLocation
}
}
/**
* @dev Initializes the contract connected to an initial authority.
*/
function __AccessManaged_init(address initialAuthority) internal onlyInitializing {
__AccessManaged_init_unchained(initialAuthority);
}
function __AccessManaged_init_unchained(address initialAuthority) internal onlyInitializing {
_setAuthority(initialAuthority);
}
/**
* @dev Restricts access to a function as defined by the connected Authority for this contract and the
* caller and selector of the function that entered the contract.
*
* [IMPORTANT]
* ====
* In general, this modifier should only be used on `external` functions. It is okay to use it on `public`
* functions that are used as external entry points and are not called internally. Unless you know what you're
* doing, it should never be used on `internal` functions. Failure to follow these rules can have critical security
* implications! This is because the permissions are determined by the function that entered the contract, i.e. the
* function at the bottom of the call stack, and not the function where the modifier is visible in the source code.
* ====
*
* [WARNING]
* ====
* Avoid adding this modifier to the https://docs.soliditylang.org/en/v0.8.20/contracts.html#receive-ether-function[`receive()`]
* function or the https://docs.soliditylang.org/en/v0.8.20/contracts.html#fallback-function[`fallback()`]. These
* functions are the only execution paths where a function selector cannot be unambiguosly determined from the calldata
* since the selector defaults to `0x00000000` in the `receive()` function and similarly in the `fallback()` function
* if no calldata is provided. (See {_checkCanCall}).
*
* The `receive()` function will always panic whereas the `fallback()` may panic depending on the calldata length.
* ====
*/
modifier restricted() {
_checkCanCall(_msgSender(), _msgData());
_;
}
/// @inheritdoc IAccessManaged
function authority() public view virtual returns (address) {
AccessManagedStorage storage $ = _getAccessManagedStorage();
return $._authority;
}
/// @inheritdoc IAccessManaged
function setAuthority(address newAuthority) public virtual {
address caller = _msgSender();
if (caller != authority()) {
revert AccessManagedUnauthorized(caller);
}
if (newAuthority.code.length == 0) {
revert AccessManagedInvalidAuthority(newAuthority);
}
_setAuthority(newAuthority);
}
/// @inheritdoc IAccessManaged
function isConsumingScheduledOp() public view returns (bytes4) {
AccessManagedStorage storage $ = _getAccessManagedStorage();
return $._consumingSchedule ? this.isConsumingScheduledOp.selector : bytes4(0);
}
/**
* @dev Transfers control to a new authority. Internal function with no access restriction. Allows bypassing the
* permissions set by the current authority.
*/
function _setAuthority(address newAuthority) internal virtual {
AccessManagedStorage storage $ = _getAccessManagedStorage();
$._authority = newAuthority;
emit AuthorityUpdated(newAuthority);
}
/**
* @dev Reverts if the caller is not allowed to call the function identified by a selector. Panics if the calldata
* is less than 4 bytes long.
*/
function _checkCanCall(address caller, bytes calldata data) internal virtual {
AccessManagedStorage storage $ = _getAccessManagedStorage();
(bool immediate, uint32 delay) = AuthorityUtils.canCallWithDelay(
authority(),
caller,
address(this),
bytes4(data[0:4])
);
if (!immediate) {
if (delay > 0) {
$._consumingSchedule = true;
IAccessManager(authority()).consumeScheduledOp(caller, data);
$._consumingSchedule = false;
} else {
revert AccessManagedUnauthorized(caller);
}
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/beacon/BeaconProxy.sol)
pragma solidity ^0.8.20;
import {IBeacon} from "./IBeacon.sol";
import {Proxy} from "../Proxy.sol";
import {ERC1967Utils} from "../ERC1967/ERC1967Utils.sol";
/**
* @dev This contract implements a proxy that gets the implementation address for each call from an {UpgradeableBeacon}.
*
* The beacon address can only be set once during construction, and cannot be changed afterwards. It is stored in an
* immutable variable to avoid unnecessary storage reads, and also in the beacon storage slot specified by
* https://eips.ethereum.org/EIPS/eip-1967[EIP1967] so that it can be accessed externally.
*
* CAUTION: Since the beacon address can never be changed, you must ensure that you either control the beacon, or trust
* the beacon to not upgrade the implementation maliciously.
*
* IMPORTANT: Do not use the implementation logic to modify the beacon storage slot. Doing so would leave the proxy in
* an inconsistent state where the beacon storage slot does not match the beacon address.
*/
contract BeaconProxy is Proxy {
// An immutable address for the beacon to avoid unnecessary SLOADs before each delegate call.
address private immutable _beacon;
/**
* @dev Initializes the proxy with `beacon`.
*
* If `data` is nonempty, it's used as data in a delegate call to the implementation returned by the beacon. This
* will typically be an encoded function call, and allows initializing the storage of the proxy like a Solidity
* constructor.
*
* Requirements:
*
* - `beacon` must be a contract with the interface {IBeacon}.
* - If `data` is empty, `msg.value` must be zero.
*/
constructor(address beacon, bytes memory data) payable {
ERC1967Utils.upgradeBeaconToAndCall(beacon, data);
_beacon = beacon;
}
/**
* @dev Returns the current implementation address of the associated beacon.
*/
function _implementation() internal view virtual override returns (address) {
return IBeacon(_getBeacon()).implementation();
}
/**
* @dev Returns the beacon.
*/
function _getBeacon() internal view virtual returns (address) {
return _beacon;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC20Permit} from "../extensions/IERC20Permit.sol";
import {Address} from "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev An operation with an ERC20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data);
if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
}
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.20;
interface IFactory {
/* Errors
*****************************************************************************************************************/
error BeaconNotSet();
error CurveFactoryNotSet();
error DeploymentFailed();
error AddressError();
error FailedToFetchCurveFactoryAddress();
error UnregisteredPT();
error CurvePoolCoinError();
error ExpiredPT();
struct CurvePoolParams {
uint256 A;
uint256 gamma;
uint256 mid_fee;
uint256 out_fee;
uint256 allowed_extra_profit;
uint256 fee_gamma;
uint256 adjustment_step;
uint256 admin_fee;
uint256 ma_half_time;
uint256 initial_price;
}
/**
* @notice Deploys a PT.
* @param _ibt The address of the ibt that will be associated with the PT.
* @param _duration The duration of the PT.
* @return pt The address of the deployed PT.
*/
function deployPT(address _ibt, uint256 _duration) external returns (address pt);
/**
* @notice Deploys a Curve Pool for a PT and its associated IBT.
* @param _pt The address of the PT.
* @param curvePoolParams The curve pool parameters to be used in the deployment.
* For example, the Curve Factory will deploy a pool like so:
* abi.encodeWithSelector(initialize.selector, params)
* List of parameters: name, symbol, coins [ibt,pt], A, gamma, mid_fee, out_fee,
* allowed_extra_profit, fee_gamma, adjustment_step, admin_fee, ma_half_time, initial_price
* @param _initialLiquidityInIBT The initial IBT liquidity (to be split between IBT/PT) to be added to pool after deployment.
* @param _minPTShares The minimum allowed shares from deposit in PT. Ignored if _initialLiquidityInIBT is 0.
* @return curvePoolAddr The address of the deployed curve pool.
*/
function deployCurvePool(
address _pt,
CurvePoolParams calldata curvePoolParams,
uint256 _initialLiquidityInIBT,
uint256 _minPTShares
) external returns (address curvePoolAddr);
/**
* @notice Deploys associated PT and Curve Pool.
* @param _ibt The address of the ibt that will be associated with the pool.
* @param curvePoolParams The curve pool parameters to be used in the deployment.
* For example, the Curve Factory will deploy a pool like so:
* abi.encodeWithSelector(initialize.selector, params)
* List of parameters: name, symbol, coins [ibt,pt], A, gamma, mid_fee, out_fee,
* allowed_extra_profit, fee_gamma, adjustment_step, admin_fee, ma_half_time, initial_price
* @param _initialLiquidityInIBT The initial IBT liquidity (to be split between IBT/PT) to be added to pool after deployment.
* @param _minPTShares The minimum allowed shares from deposit in PT. Ignored if _initialLiquidityInIBT is 0.
* @return pt The address of the deployed PT.
* @return curvePoolAddr The address of the deployed curve pool.
*/
function deployAll(
address _ibt,
uint256 _duration,
CurvePoolParams calldata curvePoolParams,
uint256 _initialLiquidityInIBT,
uint256 _minPTShares
) external returns (address pt, address curvePoolAddr);
/* GETTERS
*****************************************************************************************************************/
/**
* @notice Getter for the registry address.
* @return The address of the registry
*/
function getRegistry() external view returns (address);
/**
* @notice Getter for the Curve Factory address
* @return The address of the Curve Factory
*/
function getCurveFactory() external view returns (address);
/* SETTERS
*****************************************************************************************************************/
/**
* @notice Setter for the Curve factory address used for deploying curve pools.
* Can only be called by admin.
* @param _curveFactory The address of the Curve Factory.
*/
function setCurveFactory(address _curveFactory) external;
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.20;
interface ICurvePool {
function coins(uint256 index) external view returns (address);
function balances(uint256 index) external view returns (uint256);
function A() external view returns (uint256);
function gamma() external view returns (uint256);
function D() external view returns (uint256);
function token() external view returns (address);
function price_scale() external view returns (uint256);
function future_A_gamma_time() external view returns (uint256);
function future_A_gamma() external view returns (uint256);
function initial_A_gamma_time() external view returns (uint256);
function initial_A_gamma() external view returns (uint256);
function fee_gamma() external view returns (uint256);
function mid_fee() external view returns (uint256);
function out_fee() external view returns (uint256);
function allowed_extra_profit() external view returns (uint256);
function adjustment_step() external view returns (uint256);
function admin_fee() external view returns (uint256);
function ma_half_time() external view returns (uint256);
function get_virtual_price() external view returns (uint256);
function fee() external view returns (uint256);
function get_dy(uint256 i, uint256 j, uint256 dx) external view returns (uint256);
function last_prices() external view returns (uint256);
function calc_token_amount(uint256[2] calldata amounts) external view returns (uint256);
function calc_withdraw_one_coin(
uint256 _token_amount,
uint256 i
) external view returns (uint256);
function exchange(
uint256 i,
uint256 j,
uint256 dx,
uint256 min_dy,
bool use_eth,
address receiver
) external returns (uint256);
function add_liquidity(
uint256[2] calldata amounts,
uint256 min_mint_amount
) external returns (uint256);
function add_liquidity(
uint256[2] calldata amounts,
uint256 min_mint_amount,
bool use_eth,
address receiver
) external returns (uint256);
function remove_liquidity(uint256 amount, uint256[2] calldata min_amounts) external;
function remove_liquidity(
uint256 amount,
uint256[2] calldata min_amounts,
bool use_eth,
address receiver
) external;
function remove_liquidity_one_coin(
uint256 token_amount,
uint256 i,
uint256 min_amount
) external;
function remove_liquidity_one_coin(
uint256 token_amount,
uint256 i,
uint256 min_amount,
bool use_eth,
address receiver
) external;
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.20;
interface ICurveFactory {
function deploy_pool(
string calldata _name,
string calldata _symbol,
address[2] calldata _coins,
uint256 A,
uint256 gamma,
uint256 mid_fee,
uint256 out_fee,
uint256 allowed_extra_profit,
uint256 fee_gamma,
uint256 adjustment_step,
uint256 admin_fee,
uint256 ma_half_time,
uint256 initial_price
) external returns (address);
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.20;
import "openzeppelin-contracts/interfaces/IERC20.sol";
import "openzeppelin-contracts/interfaces/IERC20Metadata.sol";
import "openzeppelin-contracts/interfaces/IERC3156FlashLender.sol";
interface IPrincipalToken is IERC20, IERC20Metadata, IERC3156FlashLender {
/* ERRORS
*****************************************************************************************************************/
error InvalidDecimals();
error BeaconNotSet();
error PTExpired();
error PTNotExpired();
error RateError();
error AddressError();
error UnauthorizedCaller();
error RatesAtExpiryAlreadyStored();
error ERC5143SlippageProtectionFailed();
error InsufficientBalance();
error FlashLoanExceedsMaxAmount();
error FlashLoanCallbackFailed();
error NoRewardsProxy();
error ClaimRewardsFailed();
/* Functions
*****************************************************************************************************************/
function initialize(address _ibt, uint256 _duration, address initialAuthority) external;
/**
* @notice Toggle Pause
* @dev Should only be called in extraordinary situations by the admin of the contract
*/
function pause() external;
/**
* @notice Toggle UnPause
* @dev Should only be called in extraordinary situations by the admin of the contract
*/
function unPause() external;
/**
* @notice Deposits amount of assets in the PT vault
* @param assets The amount of assets being deposited
* @param receiver The receiver address of the shares
* @return shares The amount of shares minted (same amount for PT & yt)
*/
function deposit(uint256 assets, address receiver) external returns (uint256 shares);
/**
* @notice Deposits amount of assets in the PT vault
* @param assets The amount of assets being deposited
* @param ptReceiver The receiver address of the PTs
* @param ytReceiver the receiver address of the YTs
* @return shares The amount of shares minted (same amount for PT & yt)
*/
function deposit(
uint256 assets,
address ptReceiver,
address ytReceiver
) external returns (uint256 shares);
/**
* @notice Deposits amount of assets with a lower bound on shares received
* @param assets The amount of assets being deposited
* @param ptReceiver The receiver address of the PTs
* @param ytReceiver The receiver address of the YTs
* @param minShares The minimum allowed shares from this deposit
* @return shares The amount of shares actually minted to the receiver
*/
function deposit(
uint256 assets,
address ptReceiver,
address ytReceiver,
uint256 minShares
) external returns (uint256 shares);
/**
* @notice Same as normal deposit but with IBTs
* @param ibts The amount of IBT being deposited
* @param receiver The receiver address of the shares
* @return shares The amount of shares minted to the receiver
*/
function depositIBT(uint256 ibts, address receiver) external returns (uint256 shares);
/**
* @notice Same as normal deposit but with IBTs
* @param ibts The amount of IBT being deposited
* @param ptReceiver The receiver address of the PTs
* @param ytReceiver the receiver address of the YTs
* @return shares The amount of shares minted to the receiver
*/
function depositIBT(
uint256 ibts,
address ptReceiver,
address ytReceiver
) external returns (uint256 shares);
/**
* @notice Same as normal deposit but with IBTs
* @param ibts The amount of IBT being deposited
* @param ptReceiver The receiver address of the PTs
* @param ytReceiver The receiver address of the YTs
* @param minShares The minimum allowed shares from this deposit
* @return shares The amount of shares minted to the receiver
*/
function depositIBT(
uint256 ibts,
address ptReceiver,
address ytReceiver,
uint256 minShares
) external returns (uint256 shares);
/**
* @notice Burns owner's shares (PTs and YTs before expiry, PTs after expiry)
* and sends assets to receiver
* @param shares The amount of shares to burn
* @param receiver The address that will receive the assets
* @param owner The owner of the shares
* @return assets The actual amount of assets received for burning the shares
*/
function redeem(
uint256 shares,
address receiver,
address owner
) external returns (uint256 assets);
/**
* @notice Burns owner's shares (PTs and YTs before expiry, PTs after expiry)
* and sends assets to receiver
* @param shares The amount of shares to burn
* @param receiver The address that will receive the assets
* @param owner The owner of the shares
* @param minAssets The minimum assets that should be returned to user
* @return assets The actual amount of assets received for burning the shares
*/
function redeem(
uint256 shares,
address receiver,
address owner,
uint256 minAssets
) external returns (uint256 assets);
/**
* @notice Burns owner's shares (PTs and YTs before expiry, PTs after expiry)
* and sends IBTs to receiver
* @param shares The amount of shares to burn
* @param receiver The address that will receive the IBTs
* @param owner The owner of the shares
* @return ibts The actual amount of IBT received for burning the shares
*/
function redeemForIBT(
uint256 shares,
address receiver,
address owner
) external returns (uint256 ibts);
/**
* @notice Burns owner's shares (PTs and YTs before expiry, PTs after expiry)
* and sends IBTs to receiver
* @param shares The amount of shares to burn
* @param receiver The address that will receive the IBTs
* @param owner The owner of the shares
* @param minIbts The minimum IBTs that should be returned to user
* @return ibts The actual amount of IBT received for burning the shares
*/
function redeemForIBT(
uint256 shares,
address receiver,
address owner,
uint256 minIbts
) external returns (uint256 ibts);
/**
* @notice Burns owner's shares (before expiry : PTs and YTs) and sends assets to receiver
* @param assets The amount of assets to be received
* @param receiver The address that will receive the assets
* @param owner The owner of the shares (PTs and YTs)
* @return shares The actual amount of shares burnt for receiving the assets
*/
function withdraw(
uint256 assets,
address receiver,
address owner
) external returns (uint256 shares);
/**
* @notice Burns owner's shares (before expiry : PTs and YTs) and sends assets to receiver
* @param assets The amount of assets to be received
* @param receiver The address that will receive the assets
* @param owner The owner of the shares (PTs and YTs)
* @param maxShares The maximum shares allowed to be burnt
* @return shares The actual amount of shares burnt for receiving the assets
*/
function withdraw(
uint256 assets,
address receiver,
address owner,
uint256 maxShares
) external returns (uint256 shares);
/**
* @notice Burns owner's shares (before expiry : PTs and YTs) and sends IBTs to receiver
* @param ibts The amount of IBT to be received
* @param receiver The address that will receive the IBTs
* @param owner The owner of the shares (PTs and YTs)
* @return shares The actual amount of shares burnt for receiving the IBTs
*/
function withdrawIBT(
uint256 ibts,
address receiver,
address owner
) external returns (uint256 shares);
/**
* @notice Burns owner's shares (before expiry : PTs and YTs) and sends IBTs to receiver
* @param ibts The amount of IBT to be received
* @param receiver The address that will receive the IBTs
* @param owner The owner of the shares (PTs and YTs)
* @param maxShares The maximum shares allowed to be burnt
* @return shares The actual amount of shares burnt for receiving the IBTs
*/
function withdrawIBT(
uint256 ibts,
address receiver,
address owner,
uint256 maxShares
) external returns (uint256 shares);
/**
* @notice Updates _user's yield since last update
* @param _user The user whose yield will be updated
* @return updatedUserYieldInIBT The unclaimed yield of the user in IBT (not just the updated yield)
*/
function updateYield(address _user) external returns (uint256 updatedUserYieldInIBT);
/**
* @notice Claims caller's unclaimed yield in asset
* @param _receiver The receiver of yield
* @param _minAssets The minimum amount of assets that should be received
* @return yieldInAsset The amount of yield claimed in asset
*/
function claimYield(
address _receiver,
uint256 _minAssets
) external returns (uint256 yieldInAsset);
/**
* @notice Claims caller's unclaimed yield in IBT
* @param _receiver The receiver of yield
* @param _minIBT The minimum amount of IBT that should be received
* @return yieldInIBT The amount of yield claimed in IBT
*/
function claimYieldInIBT(
address _receiver,
uint256 _minIBT
) external returns (uint256 yieldInIBT);
/**
* @notice Claims the collected ibt fees and redeems them to the fee collector
* @param _minAssets The minimum amount of assets that should be received
* @return assets The amount of assets sent to the fee collector
*/
function claimFees(uint256 _minAssets) external returns (uint256 assets);
/**
* @notice Updates yield of both sender and receiver of YTs
* @param _from the sender of YTs
* @param _to the receiver of YTs
*/
function beforeYtTransfer(address _from, address _to) external;
/**
* Call the claimRewards function of the rewards contract
* @param data The optional data to be passed to the rewards contract
*/
function claimRewards(bytes memory data) external;
/* SETTERS
*****************************************************************************************************************/
/**
* @notice Stores PT and IBT rates at expiry. Ideally, it should be called the day of expiry
*/
function storeRatesAtExpiry() external;
/** Set a new Rewards Proxy
* @param _rewardsProxy The address of the new reward proxy
*/
function setRewardsProxy(address _rewardsProxy) external;
/* GETTERS
*****************************************************************************************************************/
/**
* @notice Returns the amount of shares minted for the theorical deposited amount of assets
* @param assets The amount of assets deposited
* @return The amount of shares minted
*/
function previewDeposit(uint256 assets) external view returns (uint256);
/**
* @notice Returns the amount of shares minted for the theorical deposited amount of IBT
* @param ibts The amount of IBT deposited
* @return The amount of shares minted
*/
function previewDepositIBT(uint256 ibts) external view returns (uint256);
/**
* @notice Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver,
* through a deposit call.
* @param receiver The receiver of the shares
* @return The maximum amount of assets that can be deposited
*/
function maxDeposit(address receiver) external view returns (uint256);
/**
* @notice Returns the theorical amount of shares that need to be burnt to receive assets of underlying
* @param assets The amount of assets to receive
* @return The amount of shares burnt
*/
function previewWithdraw(uint256 assets) external view returns (uint256);
/**
* @notice Returns the theorical amount of shares that need to be burnt to receive amount of IBT
* @param ibts The amount of IBT to receive
* @return The amount of shares burnt
*/
function previewWithdrawIBT(uint256 ibts) external view returns (uint256);
/**
* @notice Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the
* Vault, through a withdraw call.
* @param owner The owner of the Vault shares
* @return The maximum amount of assets that can be withdrawn
*/
function maxWithdraw(address owner) external view returns (uint256);
/**
* @notice Returns the maximum amount of the IBT that can be withdrawn from the owner balance in the
* Vault, through a withdraw call.
* @param owner The owner of the Vault shares
* @return The maximum amount of IBT that can be withdrawn
*/
function maxWithdrawIBT(address owner) external view returns (uint256);
/**
* @notice Returns the amount of assets received for the theorical amount of burnt shares
* @param shares The amount of shares to burn
* @return The amount of assets received
*/
function previewRedeem(uint256 shares) external view returns (uint256);
/**
* @notice Returns the amount of IBT received for the theorical amount of burnt shares
* @param shares The amount of shares to burn
* @return The amount of IBT received
*/
function previewRedeemForIBT(uint256 shares) external view returns (uint256);
/**
* @notice Returns the maximum amount of Vault shares that can be redeemed by the owner
* @notice This function behaves differently before and after expiry. Before expiry an equal amount of PT and YT
* needs to be burnt, while after expiry only PTs are burnt.
* @param owner The owner of the shares
* @return The maximum amount of shares that can be redeemed
*/
function maxRedeem(address owner) external view returns (uint256);
/**
* Returns the total amount of the underlying asset that is owned by the Vault in the form of IBT.
*/
function totalAssets() external view returns (uint256);
/**
* @notice Converts an underlying amount in principal. Equivalent to ERC-4626's convertToShares method.
* @param underlyingAmount The amount of underlying (or assets) to convert
* @return The resulting amount of principal (or shares)
*/
function convertToPrincipal(uint256 underlyingAmount) external view returns (uint256);
/**
* @notice Converts a principal amount in underlying. Equivalent to ERC-4626's convertToAssets method.
* @param principalAmount The amount of principal (or shares) to convert
* @return The resulting amount of underlying (or assets)
*/
function convertToUnderlying(uint256 principalAmount) external view returns (uint256);
/**
* @notice Returns whether or not the contract is paused.
* @return true if the contract is paused, and false otherwise
*/
function paused() external view returns (bool);
/**
* @notice Returns the unix timestamp (uint256) at which the PT contract expires
* @return The unix timestamp (uint256) when PTs become redeemable
*/
function maturity() external view returns (uint256);
/**
* @notice Returns the duration of the PT contract
* @return The duration (in s) to expiry/maturity of the PT contract
*/
function getDuration() external view returns (uint256);
/**
* @notice Returns the address of the underlying token (or asset). Equivalent to ERC-4626's asset method.
* @return The address of the underlying token (or asset)
*/
function underlying() external view returns (address);
/**
* @notice Returns the IBT address of the PT contract
* @return ibt The address of the IBT
*/
function getIBT() external view returns (address ibt);
/**
* @notice Returns the yt address of the PT contract
* @return yt The address of the yt
*/
function getYT() external view returns (address yt);
/**
* @notice Returns the current ibtRate
* @return The current ibtRate
*/
function getIBTRate() external view returns (uint256);
/**
* @notice Returns the current ptRate
* @return The current ptRate
*/
function getPTRate() external view returns (uint256);
/**
* @notice Returns 1 unit of IBT
* @return The IBT unit
*/
function getIBTUnit() external view returns (uint256);
/**
* @notice Get the unclaimed fees in IBT
* @return The unclaimed fees in IBT
*/
function getUnclaimedFeesInIBT() external view returns (uint256);
/**
* @notice Get the total collected fees in IBT (claimed and unclaimed)
* @return The total fees in IBT
*/
function getTotalFeesInIBT() external view returns (uint256);
/**
* @notice Get the tokenization fee of the PT
* @return The tokenization fee
*/
function getTokenizationFee() external view returns (uint256);
/**
* @notice Get the current IBT yield of the user
* @param _user The address of the user to get the current yield from
* @return The yield of the user in IBT
*/
function getCurrentYieldOfUserInIBT(address _user) external view returns (uint256);
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.20;
interface IRegistry {
/* Errors
*****************************************************************************************************************/
error FeeGreaterThanMaxValue();
error PTListUpdateFailed();
error ReductionTooBig();
error AddressError();
/* GETTERS
*****************************************************************************************************************/
/**
* @notice Getter for the factory address
* @return The address of token factory
*/
function getFactory() external view returns (address);
/**
* @notice Get the address of the router
* @return The address of the router
*/
function getRouter() external view returns (address);
/**
* @notice Get the address of the routerUtil
* @return The address of the routerUtil
*/
function getRouterUtil() external view returns (address);
/**
* @notice Get the address of the pt beacon
* @return The address of PT beacon
*/
function getPTBeacon() external view returns (address);
/**
* @notice Get the address of the yt beacon
* @return The address of yt beacon
*/
function getYTBeacon() external view returns (address);
/**
* @notice Get the value of tokenization fee
* @return The value of tokenization fee
*/
function getTokenizationFee() external view returns (uint256);
/**
* @notice Get the value of yield fee
* @return The value of yield fee
*/
function getYieldFee() external view returns (uint256);
/**
* @notice Get the value of PT flash loan fee
* @return The value of PT flash loan fee
*/
function getPTFlashLoanFee() external view returns (uint256);
/**
* @notice Get the address of the fee collector
* @return The address of fee collector
*/
function getFeeCollector() external view returns (address);
/**
* @notice Get the fee reduction of the given user for the given pt
* @param _pt The address of the pt
* @param _user The address of the user
* @return The fee reduction of the given user for the given pt
*/
function getFeeReduction(address _pt, address _user) external view returns (uint256);
/**
* @notice Getter to check if a pt is registered
* @param _pt the address of the pt to check the registration of
* @return true if it is, false otherwise
*/
function isRegisteredPT(address _pt) external view returns (bool);
/**
* @notice Getter for the pt registered at an index
* @param _index the index of the pt to return
* @return The address of the corresponding pt
*/
function getPTAt(uint256 _index) external view returns (address);
/**
* @notice Getter for number of PT registered
* @return The number of PT registered
*/
function pTCount() external view returns (uint256);
/* SETTERS
*****************************************************************************************************************/
/**
* @notice Setter for the tokens factory address
* @param _newFactory The address of the new factory
*/
function setFactory(address _newFactory) external;
/**
* @notice set the router
* @param _router The address of the router
*/
function setRouter(address _router) external;
/**
* @notice set the routerUtil
* @param _routerUtil The address of the routerUtil
*/
function setRouterUtil(address _routerUtil) external;
/**
* @notice set the tokenization fee
* @param _tokenizationFee The value of tokenization fee
*/
function setTokenizationFee(uint256 _tokenizationFee) external;
/**
* @notice set the yield fee
* @param _yieldFee The value of yield fee
*/
function setYieldFee(uint256 _yieldFee) external;
/**
* @notice set the PT flash loan fee
* @param _ptFlashLoanFee The value of PT flash loan fee
*/
function setPTFlashLoanFee(uint256 _ptFlashLoanFee) external;
/**
* @notice set the fee collector
* @param _feeCollector The address of fee collector
*/
function setFeeCollector(address _feeCollector) external;
/**
* @notice Set the fee reduction of the given pt for the given user
* @param _pt The address of the pt
* @param _user The address of the user
* @param _reduction The fee reduction
*/
function reduceFee(address _pt, address _user, uint256 _reduction) external;
/**
* @notice set the pt beacon
* @param _ptBeacon The address of PT beacon
*/
function setPTBeacon(address _ptBeacon) external;
/**
* @notice set the yt beacon
* @param _ytBeacon The address of yt beacon
*/
function setYTBeacon(address _ytBeacon) external;
/**
* @notice Add a pt to the registry
* @param _pt The address of the pt to add to the registry
*/
function addPT(address _pt) external;
/**
* @notice Remove a pt from the registry
* @param _pt The address of the pt to remove from the registry
*/
function removePT(address _pt) external;
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.20;
import "../interfaces/ICurvePool.sol";
import "../interfaces/IPrincipalToken.sol";
import "openzeppelin-math/Math.sol";
/**
* @title CurvePoolUtil library
* @author Spectra Finance
* @notice Provides miscellaneous utils for computations related to Curve protocol.
*/
library CurvePoolUtil {
using Math for uint256;
error SolutionNotFound();
error FailedToFetchExpectedLPTokenAmount();
error FailedToFetchExpectedCoinAmount();
/// @notice Decimal precision used internally in the Curve AMM
uint256 public constant CURVE_DECIMALS = 18;
/// @notice Base unit for Curve AMM calculations
uint256 public constant CURVE_UNIT = 1e18;
/// @notice Make rounding errors favoring other LPs a tiny bit
uint256 private constant APPROXIMATION_DECREMENT = 1;
/// @notice Maximal number of iterations in the binary search algorithm
uint256 private constant MAX_ITERATIONS_BINSEARCH = 255;
/**
* @notice Returns the expected LP token amount received for depositing given amounts of IBT and PT
* @param _curvePool The address of the Curve Pool in which liquidity will be deposited
* @param _amounts Array containing the amounts of IBT and PT to deposit in the Curve Pool
* @return minMintAmount The amount of expected LP tokens received for depositing the liquidity in the pool
*/
function previewAddLiquidity(
address _curvePool,
uint256[2] memory _amounts
) external view returns (uint256 minMintAmount) {
(bool success, bytes memory responseData) = _curvePool.staticcall(
abi.encodeCall(ICurvePool(address(0)).calc_token_amount, (_amounts))
);
if (!success) {
revert FailedToFetchExpectedLPTokenAmount();
}
minMintAmount = abi.decode(responseData, (uint256));
}
/**
* @notice Returns the IBT and PT amounts received for burning a given amount of LP tokens
* @param _curvePool The address of the curve pool
* @param _lpTokenAmount The amount of the lp token to burn
* @return minAmounts The expected respective amounts of IBT and PT withdrawn from the curve pool
*/
function previewRemoveLiquidity(
address _curvePool,
uint256 _lpTokenAmount
) external view returns (uint256[2] memory minAmounts) {
address lpToken = ICurvePool(_curvePool).token();
uint256 totalSupply = IERC20(lpToken).totalSupply();
(uint256 ibtBalance, uint256 ptBalance) = _getCurvePoolBalances(_curvePool);
// decrement following what Curve is doing
if (_lpTokenAmount > APPROXIMATION_DECREMENT && totalSupply != 0) {
_lpTokenAmount -= APPROXIMATION_DECREMENT;
minAmounts = [
(ibtBalance * _lpTokenAmount) / totalSupply,
(ptBalance * _lpTokenAmount) / totalSupply
];
} else {
minAmounts = [uint256(0), uint256(0)];
}
}
/**
* @notice Returns the amount of coin i received for burning a given amount of LP tokens
* @param _curvePool The address of the curve pool
* @param _lpTokenAmount The amount of the LP tokens to burn
* @param _i The index of the unique coin to withdraw
* @return minAmount The expected amount of coin i withdrawn from the curve pool
*/
function previewRemoveLiquidityOneCoin(
address _curvePool,
uint256 _lpTokenAmount,
uint256 _i
) external view returns (uint256 minAmount) {
(bool success, bytes memory responseData) = _curvePool.staticcall(
abi.encodeCall(ICurvePool(address(0)).calc_withdraw_one_coin, (_lpTokenAmount, _i))
);
if (!success) {
revert FailedToFetchExpectedCoinAmount();
}
minAmount = abi.decode(responseData, (uint256));
}
/**
* @notice Return the amount of IBT to deposit in the curve pool, given the total amount of IBT available for deposit
* @param _amount The total amount of IBT available for deposit
* @param _curvePool The address of the pool to deposit the amounts
* @param _pt The address of the PT
* @return ibts The amount of IBT which will be deposited in the curve pool
*/
function calcIBTsToTokenizeForCurvePool(
uint256 _amount,
address _curvePool,
address _pt
) external view returns (uint256 ibts) {
(uint256 ibtBalance, uint256 ptBalance) = _getCurvePoolBalances(_curvePool);
uint256 ibtBalanceInPT = IPrincipalToken(_pt).previewDepositIBT(ibtBalance);
// Liquidity added in a ratio that (closely) matches the existing pool's ratio
ibts = _amount.mulDiv(ptBalance, ibtBalanceInPT + ptBalance);
}
/**
* @param _curvePool : PT/IBT curve pool
* @param _i token index
* @param _j token index
* @param _targetDy amount out desired
* @return dx The amount of token to provide in order to obtain _targetDy after swap
*/
function getDx(
address _curvePool,
uint256 _i,
uint256 _j,
uint256 _targetDy
) external view returns (uint256 dx) {
// Initial guesses
uint256 _minGuess = type(uint256).max;
uint256 _maxGuess = type(uint256).max;
uint256 _factor100;
uint256 _guess = ICurvePool(_curvePool).get_dy(_i, _j, _targetDy);
if (_guess > _targetDy) {
_maxGuess = _targetDy;
_factor100 = 10;
} else {
_minGuess = _targetDy;
_factor100 = 1000;
}
uint256 loops;
_guess = _targetDy;
while (!_dxSolved(_curvePool, _i, _j, _guess, _targetDy, _minGuess, _maxGuess)) {
loops++;
(_minGuess, _maxGuess, _guess) = _runLoop(
_minGuess,
_maxGuess,
_factor100,
_guess,
_targetDy,
_curvePool,
_i,
_j
);
if (loops >= MAX_ITERATIONS_BINSEARCH) {
revert SolutionNotFound();
}
}
dx = _guess;
}
/**
* @dev Runs bisection search
* @param _minGuess lower bound on searched value
* @param _maxGuess upper bound on searched value
* @param _factor100 search interval scaling factor
* @param _guess The previous guess for the `dx` value that is being refined through the search process
* @param _targetDy The target output of the `get_dy` function, which the search aims to achieve by adjusting `dx`.
* @param _curvePool PT/IBT curve pool
* @param _i token index, either 0 or 1
* @param _j token index, either 0 or 1, must be different than _i
* @return The lower bound on _guess, upper bound on _guess and next _guess
*/
function _runLoop(
uint256 _minGuess,
uint256 _maxGuess,
uint256 _factor100,
uint256 _guess,
uint256 _targetDy,
address _curvePool,
uint256 _i,
uint256 _j
) internal view returns (uint256, uint256, uint256) {
if (_minGuess == type(uint256).max || _maxGuess == type(uint256).max) {
_guess = (_guess * _factor100) / 100;
} else {
_guess = (_maxGuess + _minGuess) >> 1;
}
uint256 dy = ICurvePool(_curvePool).get_dy(_i, _j, _guess);
if (dy < _targetDy) {
_minGuess = _guess;
} else if (dy > _targetDy) {
_maxGuess = _guess;
}
return (_minGuess, _maxGuess, _guess);
}
/**
* @dev Returns true if algorithm converged
* @param _curvePool PT/IBT curve pool
* @param _i token index, either 0 or 1
* @param _j token index, either 0 or 1, must be different than _i
* @param _dx The current guess for the `dx` value that is being refined through the search process.
* @param _targetDy The target output of the `get_dy` function, which the search aims to achieve by adjusting `dx`.
* @param _minGuess lower bound on searched value
* @param _maxGuess upper bound on searched value
* @return true if the solution to the search problem was found, false otherwise
*/
function _dxSolved(
address _curvePool,
uint256 _i,
uint256 _j,
uint256 _dx,
uint256 _targetDy,
uint256 _minGuess,
uint256 _maxGuess
) internal view returns (bool) {
if (_minGuess == type(uint256).max || _maxGuess == type(uint256).max) {
return false;
}
uint256 dy = ICurvePool(_curvePool).get_dy(_i, _j, _dx);
if (dy == _targetDy) {
return true;
}
uint256 dy1 = ICurvePool(_curvePool).get_dy(_i, _j, _dx + 1);
if (dy < _targetDy && _targetDy < dy1) {
return true;
}
return false;
}
/**
* @notice Returns the balances of the two tokens in provided curve pool
* @param _curvePool address of the curve pool
* @return The IBT and PT balances of the curve pool
*/
function _getCurvePoolBalances(address _curvePool) internal view returns (uint256, uint256) {
return (ICurvePool(_curvePool).balances(0), ICurvePool(_curvePool).balances(1));
}
}
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.20;
/**
* @title Roles library
* @author Spectra Finance
* @notice Provides identifiers for roles used in Spectra protocol.
*/
library Roles {
uint64 internal constant ADMIN_ROLE = 0;
uint64 internal constant UPGRADE_ROLE = 1;
uint64 internal constant PAUSER_ROLE = 2;
uint64 internal constant FEE_SETTER_ROLE = 3;
uint64 internal constant REGISTRY_ROLE = 4;
uint64 internal constant REWARDS_HARVESTER_ROLE = 5;
uint64 internal constant REWARDS_PROXY_SETTER_ROLE = 6;
uint64 internal constant VOTER_GOVERNOR_ROLE = 7;
uint64 internal constant VOTER_EMERGENCY_COUNCIL_ROLE = 8;
uint64 internal constant VOTER_ROLE = 9;
uint64 internal constant FEES_VOTING_REWARDS_DISTRIBUTOR_ROLE = 10;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/manager/IAccessManaged.sol)
pragma solidity ^0.8.20;
interface IAccessManaged {
/**
* @dev Authority that manages this contract was updated.
*/
event AuthorityUpdated(address authority);
error AccessManagedUnauthorized(address caller);
error AccessManagedRequiredDelay(address caller, uint32 delay);
error AccessManagedInvalidAuthority(address authority);
/**
* @dev Returns the current authority.
*/
function authority() external view returns (address);
/**
* @dev Transfers control to a new authority. The caller must be the current authority.
*/
function setAuthority(address) external;
/**
* @dev Returns true only in the context of a delayed restricted call, at the moment that the scheduled operation is
* being consumed. Prevents denial of service for delayed restricted calls in the case that the contract performs
* attacker controlled calls.
*/
function isConsumingScheduledOp() external view returns (bytes4);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/types/Time.sol)
pragma solidity ^0.8.20;
import {Math} from "../math/Math.sol";
import {SafeCast} from "../math/SafeCast.sol";
/**
* @dev This library provides helpers for manipulating time-related objects.
*
* It uses the following types:
* - `uint48` for timepoints
* - `uint32` for durations
*
* While the library doesn't provide specific types for timepoints and duration, it does provide:
* - a `Delay` type to represent duration that can be programmed to change value automatically at a given point
* - additional helper functions
*/
library Time {
using Time for *;
/**
* @dev Get the block timestamp as a Timepoint.
*/
function timestamp() internal view returns (uint48) {
return SafeCast.toUint48(block.timestamp);
}
/**
* @dev Get the block number as a Timepoint.
*/
function blockNumber() internal view returns (uint48) {
return SafeCast.toUint48(block.number);
}
// ==================================================== Delay =====================================================
/**
* @dev A `Delay` is a uint32 duration that can be programmed to change value automatically at a given point in the
* future. The "effect" timepoint describes when the transitions happens from the "old" value to the "new" value.
* This allows updating the delay applied to some operation while keeping some guarantees.
*
* In particular, the {update} function guarantees that if the delay is reduced, the old delay still applies for
* some time. For example if the delay is currently 7 days to do an upgrade, the admin should not be able to set
* the delay to 0 and upgrade immediately. If the admin wants to reduce the delay, the old delay (7 days) should
* still apply for some time.
*
*
* The `Delay` type is 112 bits long, and packs the following:
*
* ```
* | [uint48]: effect date (timepoint)
* | | [uint32]: value before (duration)
* ↓ ↓ ↓ [uint32]: value after (duration)
* 0xAAAAAAAAAAAABBBBBBBBCCCCCCCC
* ```
*
* NOTE: The {get} and {withUpdate} functions operate using timestamps. Block number based delays are not currently
* supported.
*/
type Delay is uint112;
/**
* @dev Wrap a duration into a Delay to add the one-step "update in the future" feature
*/
function toDelay(uint32 duration) internal pure returns (Delay) {
return Delay.wrap(duration);
}
/**
* @dev Get the value at a given timepoint plus the pending value and effect timepoint if there is a scheduled
* change after this timepoint. If the effect timepoint is 0, then the pending value should not be considered.
*/
function _getFullAt(Delay self, uint48 timepoint) private pure returns (uint32, uint32, uint48) {
(uint32 valueBefore, uint32 valueAfter, uint48 effect) = self.unpack();
return effect <= timepoint ? (valueAfter, 0, 0) : (valueBefore, valueAfter, effect);
}
/**
* @dev Get the current value plus the pending value and effect timepoint if there is a scheduled change. If the
* effect timepoint is 0, then the pending value should not be considered.
*/
function getFull(Delay self) internal view returns (uint32, uint32, uint48) {
return _getFullAt(self, timestamp());
}
/**
* @dev Get the current value.
*/
function get(Delay self) internal view returns (uint32) {
(uint32 delay, , ) = self.getFull();
return delay;
}
/**
* @dev Update a Delay object so that it takes a new duration after a timepoint that is automatically computed to
* enforce the old delay at the moment of the update. Returns the updated Delay object and the timestamp when the
* new delay becomes effective.
*/
function withUpdate(
Delay self,
uint32 newValue,
uint32 minSetback
) internal view returns (Delay updatedDelay, uint48 effect) {
uint32 value = self.get();
uint32 setback = uint32(Math.max(minSetback, value > newValue ? value - newValue : 0));
effect = timestamp() + setback;
return (pack(value, newValue, effect), effect);
}
/**
* @dev Split a delay into its components: valueBefore, valueAfter and effect (transition timepoint).
*/
function unpack(Delay self) internal pure returns (uint32 valueBefore, uint32 valueAfter, uint48 effect) {
uint112 raw = Delay.unwrap(self);
valueAfter = uint32(raw);
valueBefore = uint32(raw >> 32);
effect = uint48(raw >> 64);
return (valueBefore, valueAfter, effect);
}
/**
* @dev pack the components into a Delay object.
*/
function pack(uint32 valueBefore, uint32 valueAfter, uint48 effect) internal pure returns (Delay) {
return Delay.wrap((uint112(effect) << 64) | (uint112(valueBefore) << 32) | uint112(valueAfter));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/manager/IAuthority.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard interface for permissioning originally defined in Dappsys.
*/
interface IAuthority {
/**
* @dev Returns true if the caller can invoke on a target the function identified by a function selector.
*/
function canCall(address caller, address target, bytes4 selector) external view returns (bool allowed);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/manager/AuthorityUtils.sol)
pragma solidity ^0.8.20;
import {IAuthority} from "./IAuthority.sol";
library AuthorityUtils {
/**
* @dev Since `AccessManager` implements an extended IAuthority interface, invoking `canCall` with backwards compatibility
* for the preexisting `IAuthority` interface requires special care to avoid reverting on insufficient return data.
* This helper function takes care of invoking `canCall` in a backwards compatible way without reverting.
*/
function canCallWithDelay(
address authority,
address caller,
address target,
bytes4 selector
) internal view returns (bool immediate, uint32 delay) {
(bool success, bytes memory data) = authority.staticcall(
abi.encodeCall(IAuthority.canCall, (caller, target, selector))
);
if (success) {
if (data.length >= 0x40) {
(immediate, delay) = abi.decode(data, (bool, uint32));
} else if (data.length >= 0x20) {
immediate = abi.decode(data, (bool));
}
}
return (immediate, delay);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Context.sol)
pragma solidity ^0.8.20;
import {Initializable} from "../proxy/utils/Initializable.sol";
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract ContextUpgradeable is Initializable {
function __Context_init() internal onlyInitializing {
}
function __Context_init_unchained() internal onlyInitializing {
}
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol)
pragma solidity ^0.8.20;
/**
* @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
* behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
* external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
* function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
*
* The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
* reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
* case an upgrade adds a module that needs to be initialized.
*
* For example:
*
* [.hljs-theme-light.nopadding]
* ```solidity
* contract MyToken is ERC20Upgradeable {
* function initialize() initializer public {
* __ERC20_init("MyToken", "MTK");
* }
* }
*
* contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
* function initializeV2() reinitializer(2) public {
* __ERC20Permit_init("MyToken");
* }
* }
* ```
*
* TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
* possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
*
* CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
* that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
*
* [CAUTION]
* ====
* Avoid leaving a contract uninitialized.
*
* An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
* contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
* the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
*
* [.hljs-theme-light.nopadding]
* ```
* /// @custom:oz-upgrades-unsafe-allow constructor
* constructor() {
* _disableInitializers();
* }
* ```
* ====
*/
abstract contract Initializable {
/**
* @dev Storage of the initializable contract.
*
* It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions
* when using with upgradeable contracts.
*
* @custom:storage-location erc7201:openzeppelin.storage.Initializable
*/
struct InitializableStorage {
/**
* @dev Indicates that the contract has been initialized.
*/
uint64 _initialized;
/**
* @dev Indicates that the contract is in the process of being initialized.
*/
bool _initializing;
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00;
/**
* @dev The contract is already initialized.
*/
error InvalidInitialization();
/**
* @dev The contract is not initializing.
*/
error NotInitializing();
/**
* @dev Triggered when the contract has been initialized or reinitialized.
*/
event Initialized(uint64 version);
/**
* @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
* `onlyInitializing` functions can be used to initialize parent contracts.
*
* Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any
* number of times. This behavior in the constructor can be useful during testing and is not expected to be used in
* production.
*
* Emits an {Initialized} event.
*/
modifier initializer() {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
// Cache values to avoid duplicated sloads
bool isTopLevelCall = !$._initializing;
uint64 initialized = $._initialized;
// Allowed calls:
// - initialSetup: the contract is not in the initializing state and no previous version was
// initialized
// - construction: the contract is initialized at version 1 (no reininitialization) and the
// current contract is just being deployed
bool initialSetup = initialized == 0 && isTopLevelCall;
bool construction = initialized == 1 && address(this).code.length == 0;
if (!initialSetup && !construction) {
revert InvalidInitialization();
}
$._initialized = 1;
if (isTopLevelCall) {
$._initializing = true;
}
_;
if (isTopLevelCall) {
$._initializing = false;
emit Initialized(1);
}
}
/**
* @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
* contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
* used to initialize parent contracts.
*
* A reinitializer may be used after the original initialization step. This is essential to configure modules that
* are added through upgrades and that require initialization.
*
* When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
* cannot be nested. If one is invoked in the context of another, execution will revert.
*
* Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
* a contract, executing them in the right order is up to the developer or operator.
*
* WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization.
*
* Emits an {Initialized} event.
*/
modifier reinitializer(uint64 version) {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
if ($._initializing || $._initialized >= version) {
revert InvalidInitialization();
}
$._initialized = version;
$._initializing = true;
_;
$._initializing = false;
emit Initialized(version);
}
/**
* @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
* {initializer} and {reinitializer} modifiers, directly or indirectly.
*/
modifier onlyInitializing() {
_checkInitializing();
_;
}
/**
* @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}.
*/
function _checkInitializing() internal view virtual {
if (!_isInitializing()) {
revert NotInitializing();
}
}
/**
* @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
* Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
* to any version. It is recommended to use this to lock implementation contracts that are designed to be called
* through proxies.
*
* Emits an {Initialized} event the first time it is successfully executed.
*/
function _disableInitializers() internal virtual {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
if ($._initializing) {
revert InvalidInitialization();
}
if ($._initialized != type(uint64).max) {
$._initialized = type(uint64).max;
emit Initialized(type(uint64).max);
}
}
/**
* @dev Returns the highest version that has been initialized. See {reinitializer}.
*/
function _getInitializedVersion() internal view returns (uint64) {
return _getInitializableStorage()._initialized;
}
/**
* @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
*/
function _isInitializing() internal view returns (bool) {
return _getInitializableStorage()._initializing;
}
/**
* @dev Returns a pointer to the storage namespace.
*/
// solhint-disable-next-line var-name-mixedcase
function _getInitializableStorage() private pure returns (InitializableStorage storage $) {
assembly {
$.slot := INITIALIZABLE_STORAGE
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/beacon/IBeacon.sol)
pragma solidity ^0.8.20;
/**
* @dev This is the interface that {BeaconProxy} expects of its beacon.
*/
interface IBeacon {
/**
* @dev Must return an address that can be used as a delegate call target.
*
* {UpgradeableBeacon} will check that this address is a contract.
*/
function implementation() external view returns (address);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/Proxy.sol)
pragma solidity ^0.8.20;
/**
* @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
* instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
* be specified by overriding the virtual {_implementation} function.
*
* Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
* different contract through the {_delegate} function.
*
* The success and return data of the delegated call will be returned back to the caller of the proxy.
*/
abstract contract Proxy {
/**
* @dev Delegates the current call to `implementation`.
*
* This function does not return to its internal call site, it will return directly to the external caller.
*/
function _delegate(address implementation) internal virtual {
assembly {
// Copy msg.data. We take full control of memory in this inline assembly
// block because it will not return to Solidity code. We overwrite the
// Solidity scratch pad at memory position 0.
calldatacopy(0, 0, calldatasize())
// Call the implementation.
// out and outsize are 0 because we don't know the size yet.
let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)
// Copy the returned data.
returndatacopy(0, 0, returndatasize())
switch result
// delegatecall returns 0 on error.
case 0 {
revert(0, returndatasize())
}
default {
return(0, returndatasize())
}
}
}
/**
* @dev This is a virtual function that should be overridden so it returns the address to which the fallback
* function and {_fallback} should delegate.
*/
function _implementation() internal view virtual returns (address);
/**
* @dev Delegates the current call to the address returned by `_implementation()`.
*
* This function does not return to its internal call site, it will return directly to the external caller.
*/
function _fallback() internal virtual {
_delegate(_implementation());
}
/**
* @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
* function in the contract matches the call data.
*/
fallback() external payable virtual {
_fallback();
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/ERC1967/ERC1967Utils.sol)
pragma solidity ^0.8.20;
import {IBeacon} from "../beacon/IBeacon.sol";
import {Address} from "../../utils/Address.sol";
import {StorageSlot} from "../../utils/StorageSlot.sol";
/**
* @dev This abstract contract provides getters and event emitting update functions for
* https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
*/
library ERC1967Utils {
// We re-declare ERC-1967 events here because they can't be used directly from IERC1967.
// This will be fixed in Solidity 0.8.21. At that point we should remove these events.
/**
* @dev Emitted when the implementation is upgraded.
*/
event Upgraded(address indexed implementation);
/**
* @dev Emitted when the admin account has changed.
*/
event AdminChanged(address previousAdmin, address newAdmin);
/**
* @dev Emitted when the beacon is changed.
*/
event BeaconUpgraded(address indexed beacon);
/**
* @dev Storage slot with the address of the current implementation.
* This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1.
*/
// solhint-disable-next-line private-vars-leading-underscore
bytes32 internal constant IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
/**
* @dev The `implementation` of the proxy is invalid.
*/
error ERC1967InvalidImplementation(address implementation);
/**
* @dev The `admin` of the proxy is invalid.
*/
error ERC1967InvalidAdmin(address admin);
/**
* @dev The `beacon` of the proxy is invalid.
*/
error ERC1967InvalidBeacon(address beacon);
/**
* @dev An upgrade function sees `msg.value > 0` that may be lost.
*/
error ERC1967NonPayable();
/**
* @dev Returns the current implementation address.
*/
function getImplementation() internal view returns (address) {
return StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value;
}
/**
* @dev Stores a new address in the EIP1967 implementation slot.
*/
function _setImplementation(address newImplementation) private {
if (newImplementation.code.length == 0) {
revert ERC1967InvalidImplementation(newImplementation);
}
StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value = newImplementation;
}
/**
* @dev Performs implementation upgrade with additional setup call if data is nonempty.
* This function is payable only if the setup call is performed, otherwise `msg.value` is rejected
* to avoid stuck value in the contract.
*
* Emits an {IERC1967-Upgraded} event.
*/
function upgradeToAndCall(address newImplementation, bytes memory data) internal {
_setImplementation(newImplementation);
emit Upgraded(newImplementation);
if (data.length > 0) {
Address.functionDelegateCall(newImplementation, data);
} else {
_checkNonPayable();
}
}
/**
* @dev Storage slot with the admin of the contract.
* This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1.
*/
// solhint-disable-next-line private-vars-leading-underscore
bytes32 internal constant ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
/**
* @dev Returns the current admin.
*
* TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using
* the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
* `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
*/
function getAdmin() internal view returns (address) {
return StorageSlot.getAddressSlot(ADMIN_SLOT).value;
}
/**
* @dev Stores a new address in the EIP1967 admin slot.
*/
function _setAdmin(address newAdmin) private {
if (newAdmin == address(0)) {
revert ERC1967InvalidAdmin(address(0));
}
StorageSlot.getAddressSlot(ADMIN_SLOT).value = newAdmin;
}
/**
* @dev Changes the admin of the proxy.
*
* Emits an {IERC1967-AdminChanged} event.
*/
function changeAdmin(address newAdmin) internal {
emit AdminChanged(getAdmin(), newAdmin);
_setAdmin(newAdmin);
}
/**
* @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
* This is the keccak-256 hash of "eip1967.proxy.beacon" subtracted by 1.
*/
// solhint-disable-next-line private-vars-leading-underscore
bytes32 internal constant BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
/**
* @dev Returns the current beacon.
*/
function getBeacon() internal view returns (address) {
return StorageSlot.getAddressSlot(BEACON_SLOT).value;
}
/**
* @dev Stores a new beacon in the EIP1967 beacon slot.
*/
function _setBeacon(address newBeacon) private {
if (newBeacon.code.length == 0) {
revert ERC1967InvalidBeacon(newBeacon);
}
StorageSlot.getAddressSlot(BEACON_SLOT).value = newBeacon;
address beaconImplementation = IBeacon(newBeacon).implementation();
if (beaconImplementation.code.length == 0) {
revert ERC1967InvalidImplementation(beaconImplementation);
}
}
/**
* @dev Change the beacon and trigger a setup call if data is nonempty.
* This function is payable only if the setup call is performed, otherwise `msg.value` is rejected
* to avoid stuck value in the contract.
*
* Emits an {IERC1967-BeaconUpgraded} event.
*
* CAUTION: Invoking this function has no effect on an instance of {BeaconProxy} since v5, since
* it uses an immutable beacon without looking at the value of the ERC-1967 beacon slot for
* efficiency.
*/
function upgradeBeaconToAndCall(address newBeacon, bytes memory data) internal {
_setBeacon(newBeacon);
emit BeaconUpgraded(newBeacon);
if (data.length > 0) {
Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
} else {
_checkNonPayable();
}
}
/**
* @dev Reverts if `msg.value` is not zero. It can be used to avoid `msg.value` stuck in the contract
* if an upgrade doesn't perform an initialization call.
*/
function _checkNonPayable() private {
if (msg.value > 0) {
revert ERC1967NonPayable();
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error AddressInsufficientBalance(address account);
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedInnerCall();
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert AddressInsufficientBalance(address(this));
}
(bool success, ) = recipient.call{value: amount}("");
if (!success) {
revert FailedInnerCall();
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {FailedInnerCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert AddressInsufficientBalance(address(this));
}
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
* unsuccessful call.
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata
) internal view returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
if (returndata.length == 0 && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {FailedInnerCall} error.
*/
function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
*/
function _revert(bytes memory returndata) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert FailedInnerCall();
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../token/ERC20/IERC20.sol";
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20Metadata.sol)
pragma solidity ^0.8.20;
import {IERC20Metadata} from "../token/ERC20/extensions/IERC20Metadata.sol";
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC3156FlashLender.sol)
pragma solidity ^0.8.20;
import {IERC3156FlashBorrower} from "./IERC3156FlashBorrower.sol";
/**
* @dev Interface of the ERC3156 FlashLender, as defined in
* https://eips.ethereum.org/EIPS/eip-3156[ERC-3156].
*/
interface IERC3156FlashLender {
/**
* @dev The amount of currency available to be lended.
* @param token The loan currency.
* @return The amount of `token` that can be borrowed.
*/
function maxFlashLoan(address token) external view returns (uint256);
/**
* @dev The fee to be charged for a given loan.
* @param token The loan currency.
* @param amount The amount of tokens lent.
* @return The amount of `token` to be charged for the loan, on top of the returned principal.
*/
function flashFee(address token, uint256 amount) external view returns (uint256);
/**
* @dev Initiate a flash loan.
* @param receiver The receiver of the tokens in the loan, and the receiver of the callback.
* @param token The loan currency.
* @param amount The amount of tokens lent.
* @param data Arbitrary data structure, intended to contain user-defined parameters.
*/
function flashLoan(
IERC3156FlashBorrower receiver,
address token,
uint256 amount,
bytes calldata data
) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
pragma solidity ^0.8.20;
/**
* @dev Library for reading and writing primitive types to specific storage slots.
*
* Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
* This library helps with reading and writing to such slots without the need for inline assembly.
*
* The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
*
* Example usage to set ERC1967 implementation slot:
* ```solidity
* contract ERC1967 {
* bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
*
* function _getImplementation() internal view returns (address) {
* return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
* }
*
* function _setImplementation(address newImplementation) internal {
* require(newImplementation.code.length > 0);
* StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
* }
* }
* ```
*/
library StorageSlot {
struct AddressSlot {
address value;
}
struct BooleanSlot {
bool value;
}
struct Bytes32Slot {
bytes32 value;
}
struct Uint256Slot {
uint256 value;
}
struct StringSlot {
string value;
}
struct BytesSlot {
bytes value;
}
/**
* @dev Returns an `AddressSlot` with member `value` located at `slot`.
*/
function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `BooleanSlot` with member `value` located at `slot`.
*/
function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
*/
function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `Uint256Slot` with member `value` located at `slot`.
*/
function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` with member `value` located at `slot`.
*/
function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` representation of the string storage pointer `store`.
*/
function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := store.slot
}
}
/**
* @dev Returns an `BytesSlot` with member `value` located at `slot`.
*/
function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := slot
}
}
/**
* @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
*/
function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
/// @solidity memory-safe-assembly
assembly {
r.slot := store.slot
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC3156FlashBorrower.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC3156 FlashBorrower, as defined in
* https://eips.ethereum.org/EIPS/eip-3156[ERC-3156].
*/
interface IERC3156FlashBorrower {
/**
* @dev Receive a flash loan.
* @param initiator The initiator of the loan.
* @param token The loan currency.
* @param amount The amount of tokens lent.
* @param fee The additional amount of tokens to repay.
* @param data Arbitrary data structure, intended to contain user-defined parameters.
* @return The keccak256 hash of "ERC3156FlashBorrower.onFlashLoan"
*/
function onFlashLoan(
address initiator,
address token,
uint256 amount,
uint256 fee,
bytes calldata data
) external returns (bytes32);
}