Contract Name:
SilverFeesGiveaway
Contract Source Code:
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {ConfirmedOwnerWithProposal} from "./ConfirmedOwnerWithProposal.sol";
/// @title The ConfirmedOwner contract
/// @notice A contract with helpers for basic contract ownership.
contract ConfirmedOwner is ConfirmedOwnerWithProposal {
constructor(address newOwner) ConfirmedOwnerWithProposal(newOwner, address(0)) {}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {IOwnable} from "../interfaces/IOwnable.sol";
/// @title The ConfirmedOwner contract
/// @notice A contract with helpers for basic contract ownership.
contract ConfirmedOwnerWithProposal is IOwnable {
address private s_owner;
address private s_pendingOwner;
event OwnershipTransferRequested(address indexed from, address indexed to);
event OwnershipTransferred(address indexed from, address indexed to);
constructor(address newOwner, address pendingOwner) {
// solhint-disable-next-line gas-custom-errors
require(newOwner != address(0), "Cannot set owner to zero");
s_owner = newOwner;
if (pendingOwner != address(0)) {
_transferOwnership(pendingOwner);
}
}
/// @notice Allows an owner to begin transferring ownership to a new address.
function transferOwnership(address to) public override onlyOwner {
_transferOwnership(to);
}
/// @notice Allows an ownership transfer to be completed by the recipient.
function acceptOwnership() external override {
// solhint-disable-next-line gas-custom-errors
require(msg.sender == s_pendingOwner, "Must be proposed owner");
address oldOwner = s_owner;
s_owner = msg.sender;
s_pendingOwner = address(0);
emit OwnershipTransferred(oldOwner, msg.sender);
}
/// @notice Get the current owner
function owner() public view override returns (address) {
return s_owner;
}
/// @notice validate, transfer ownership, and emit relevant events
function _transferOwnership(address to) private {
// solhint-disable-next-line gas-custom-errors
require(to != msg.sender, "Cannot transfer to self");
s_pendingOwner = to;
emit OwnershipTransferRequested(s_owner, to);
}
/// @notice validate access
function _validateOwnership() internal view {
// solhint-disable-next-line gas-custom-errors
require(msg.sender == s_owner, "Only callable by owner");
}
/// @notice Reverts if called by anyone other than the contract owner.
modifier onlyOwner() {
_validateOwnership();
_;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
interface IOwnable {
function owner() external returns (address);
function transferOwnership(address recipient) external;
function acceptOwnership() external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
// solhint-disable-next-line interface-starts-with-i
interface LinkTokenInterface {
function allowance(address owner, address spender) external view returns (uint256 remaining);
function approve(address spender, uint256 value) external returns (bool success);
function balanceOf(address owner) external view returns (uint256 balance);
function decimals() external view returns (uint8 decimalPlaces);
function decreaseApproval(address spender, uint256 addedValue) external returns (bool success);
function increaseApproval(address spender, uint256 subtractedValue) external;
function name() external view returns (string memory tokenName);
function symbol() external view returns (string memory tokenSymbol);
function totalSupply() external view returns (uint256 totalTokensIssued);
function transfer(address to, uint256 value) external returns (bool success);
function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool success);
function transferFrom(address from, address to, uint256 value) external returns (bool success);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
// solhint-disable-next-line interface-starts-with-i
interface VRFV2WrapperInterface {
/**
* @return the request ID of the most recent VRF V2 request made by this wrapper. This should only
* be relied option within the same transaction that the request was made.
*/
function lastRequestId() external view returns (uint256);
/**
* @notice Calculates the price of a VRF request with the given callbackGasLimit at the current
* @notice block.
*
* @dev This function relies on the transaction gas price which is not automatically set during
* @dev simulation. To estimate the price at a specific gas price, use the estimatePrice function.
*
* @param _callbackGasLimit is the gas limit used to estimate the price.
*/
function calculateRequestPrice(uint32 _callbackGasLimit) external view returns (uint256);
/**
* @notice Estimates the price of a VRF request with a specific gas limit and gas price.
*
* @dev This is a convenience function that can be called in simulation to better understand
* @dev pricing.
*
* @param _callbackGasLimit is the gas limit used to estimate the price.
* @param _requestGasPriceWei is the gas price in wei used for the estimation.
*/
function estimateRequestPrice(uint32 _callbackGasLimit, uint256 _requestGasPriceWei) external view returns (uint256);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {LinkTokenInterface} from "../shared/interfaces/LinkTokenInterface.sol";
import {VRFV2WrapperInterface} from "./interfaces/VRFV2WrapperInterface.sol";
/** *******************************************************************************
* @notice Interface for contracts using VRF randomness through the VRF V2 wrapper
* ********************************************************************************
* @dev PURPOSE
*
* @dev Create VRF V2 requests without the need for subscription management. Rather than creating
* @dev and funding a VRF V2 subscription, a user can use this wrapper to create one off requests,
* @dev paying up front rather than at fulfillment.
*
* @dev Since the price is determined using the gas price of the request transaction rather than
* @dev the fulfillment transaction, the wrapper charges an additional premium on callback gas
* @dev usage, in addition to some extra overhead costs associated with the VRFV2Wrapper contract.
* *****************************************************************************
* @dev USAGE
*
* @dev Calling contracts must inherit from VRFV2WrapperConsumerBase. The consumer must be funded
* @dev with enough LINK to make the request, otherwise requests will revert. To request randomness,
* @dev call the 'requestRandomness' function with the desired VRF parameters. This function handles
* @dev paying for the request based on the current pricing.
*
* @dev Consumers must implement the fullfillRandomWords function, which will be called during
* @dev fulfillment with the randomness result.
*/
abstract contract VRFV2WrapperConsumerBase {
// solhint-disable-next-line chainlink-solidity/prefix-immutable-variables-with-i
LinkTokenInterface internal immutable LINK;
// solhint-disable-next-line chainlink-solidity/prefix-immutable-variables-with-i
VRFV2WrapperInterface internal immutable VRF_V2_WRAPPER;
/**
* @param _link is the address of LinkToken
* @param _vrfV2Wrapper is the address of the VRFV2Wrapper contract
*/
constructor(address _link, address _vrfV2Wrapper) {
LINK = LinkTokenInterface(_link);
VRF_V2_WRAPPER = VRFV2WrapperInterface(_vrfV2Wrapper);
}
/**
* @dev Requests randomness from the VRF V2 wrapper.
*
* @param _callbackGasLimit is the gas limit that should be used when calling the consumer's
* fulfillRandomWords function.
* @param _requestConfirmations is the number of confirmations to wait before fulfilling the
* request. A higher number of confirmations increases security by reducing the likelihood
* that a chain re-org changes a published randomness outcome.
* @param _numWords is the number of random words to request.
*
* @return requestId is the VRF V2 request ID of the newly created randomness request.
*/
// solhint-disable-next-line chainlink-solidity/prefix-internal-functions-with-underscore
function requestRandomness(
uint32 _callbackGasLimit,
uint16 _requestConfirmations,
uint32 _numWords
) internal returns (uint256 requestId) {
LINK.transferAndCall(
address(VRF_V2_WRAPPER),
VRF_V2_WRAPPER.calculateRequestPrice(_callbackGasLimit),
abi.encode(_callbackGasLimit, _requestConfirmations, _numWords)
);
return VRF_V2_WRAPPER.lastRequestId();
}
/**
* @notice fulfillRandomWords handles the VRF V2 wrapper response. The consuming contract must
* @notice implement it.
*
* @param _requestId is the VRF V2 request ID.
* @param _randomWords is the randomness result.
*/
// solhint-disable-next-line chainlink-solidity/prefix-internal-functions-with-underscore
function fulfillRandomWords(uint256 _requestId, uint256[] memory _randomWords) internal virtual;
function rawFulfillRandomWords(uint256 _requestId, uint256[] memory _randomWords) external {
// solhint-disable-next-line gas-custom-errors
require(msg.sender == address(VRF_V2_WRAPPER), "only VRF V2 wrapper can fulfill");
fulfillRandomWords(_requestId, _randomWords);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable2Step.sol)
pragma solidity ^0.8.20;
import {Ownable} from "./Ownable.sol";
/**
* @dev Contract module which provides access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is specified at deployment time in the constructor for `Ownable`. This
* can later be changed with {transferOwnership} and {acceptOwnership}.
*
* This module is used through inheritance. It will make available all functions
* from parent (Ownable).
*/
abstract contract Ownable2Step is Ownable {
address private _pendingOwner;
event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);
/**
* @dev Returns the address of the pending owner.
*/
function pendingOwner() public view virtual returns (address) {
return _pendingOwner;
}
/**
* @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual override onlyOwner {
_pendingOwner = newOwner;
emit OwnershipTransferStarted(owner(), newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual override {
delete _pendingOwner;
super._transferOwnership(newOwner);
}
/**
* @dev The new owner accepts the ownership transfer.
*/
function acceptOwnership() public virtual {
address sender = _msgSender();
if (pendingOwner() != sender) {
revert OwnableUnauthorizedAccount(sender);
}
_transferOwnership(sender);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard ERC20 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC20 tokens.
*/
interface IERC20Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC20InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC20InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
* @param spender Address that may be allowed to operate on tokens without being their owner.
* @param allowance Amount of tokens a `spender` is allowed to operate with.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC20InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `spender` to be approved. Used in approvals.
* @param spender Address that may be allowed to operate on tokens without being their owner.
*/
error ERC20InvalidSpender(address spender);
}
/**
* @dev Standard ERC721 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC721 tokens.
*/
interface IERC721Errors {
/**
* @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in EIP-20.
* Used in balance queries.
* @param owner Address of the current owner of a token.
*/
error ERC721InvalidOwner(address owner);
/**
* @dev Indicates a `tokenId` whose `owner` is the zero address.
* @param tokenId Identifier number of a token.
*/
error ERC721NonexistentToken(uint256 tokenId);
/**
* @dev Indicates an error related to the ownership over a particular token. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param tokenId Identifier number of a token.
* @param owner Address of the current owner of a token.
*/
error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC721InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC721InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param tokenId Identifier number of a token.
*/
error ERC721InsufficientApproval(address operator, uint256 tokenId);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC721InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC721InvalidOperator(address operator);
}
/**
* @dev Standard ERC1155 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC1155 tokens.
*/
interface IERC1155Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
* @param tokenId Identifier number of a token.
*/
error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC1155InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC1155InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param owner Address of the current owner of a token.
*/
error ERC1155MissingApprovalForAll(address operator, address owner);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC1155InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC1155InvalidOperator(address operator);
/**
* @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
* Used in batch transfers.
* @param idsLength Length of the array of token identifiers
* @param valuesLength Length of the array of token amounts
*/
error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/ERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
*
* TIP: For a detailed writeup see our guide
* https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* The default value of {decimals} is 18. To change this, you should override
* this function so it returns a different value.
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC20
* applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*/
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
mapping(address account => uint256) private _balances;
mapping(address account => mapping(address spender => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* All two of these values are immutable: they can only be set once during
* construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the default value returned by this function, unless
* it's overridden.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual returns (uint8) {
return 18;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `value`.
*/
function transfer(address to, uint256 value) public virtual returns (bool) {
address owner = _msgSender();
_transfer(owner, to, value);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 value) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, value);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `value`.
* - the caller must have allowance for ``from``'s tokens of at least
* `value`.
*/
function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, value);
_transfer(from, to, value);
return true;
}
/**
* @dev Moves a `value` amount of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* NOTE: This function is not virtual, {_update} should be overridden instead.
*/
function _transfer(address from, address to, uint256 value) internal {
if (from == address(0)) {
revert ERC20InvalidSender(address(0));
}
if (to == address(0)) {
revert ERC20InvalidReceiver(address(0));
}
_update(from, to, value);
}
/**
* @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
* (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
* this function.
*
* Emits a {Transfer} event.
*/
function _update(address from, address to, uint256 value) internal virtual {
if (from == address(0)) {
// Overflow check required: The rest of the code assumes that totalSupply never overflows
_totalSupply += value;
} else {
uint256 fromBalance = _balances[from];
if (fromBalance < value) {
revert ERC20InsufficientBalance(from, fromBalance, value);
}
unchecked {
// Overflow not possible: value <= fromBalance <= totalSupply.
_balances[from] = fromBalance - value;
}
}
if (to == address(0)) {
unchecked {
// Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
_totalSupply -= value;
}
} else {
unchecked {
// Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
_balances[to] += value;
}
}
emit Transfer(from, to, value);
}
/**
* @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
* Relies on the `_update` mechanism
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* NOTE: This function is not virtual, {_update} should be overridden instead.
*/
function _mint(address account, uint256 value) internal {
if (account == address(0)) {
revert ERC20InvalidReceiver(address(0));
}
_update(address(0), account, value);
}
/**
* @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
* Relies on the `_update` mechanism.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* NOTE: This function is not virtual, {_update} should be overridden instead
*/
function _burn(address account, uint256 value) internal {
if (account == address(0)) {
revert ERC20InvalidSender(address(0));
}
_update(account, address(0), value);
}
/**
* @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*
* Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
*/
function _approve(address owner, address spender, uint256 value) internal {
_approve(owner, spender, value, true);
}
/**
* @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
*
* By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
* `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
* `Approval` event during `transferFrom` operations.
*
* Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
* true using the following override:
* ```
* function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
* super._approve(owner, spender, value, true);
* }
* ```
*
* Requirements are the same as {_approve}.
*/
function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
if (owner == address(0)) {
revert ERC20InvalidApprover(address(0));
}
if (spender == address(0)) {
revert ERC20InvalidSpender(address(0));
}
_allowances[owner][spender] = value;
if (emitEvent) {
emit Approval(owner, spender, value);
}
}
/**
* @dev Updates `owner` s allowance for `spender` based on spent `value`.
*
* Does not update the allowance value in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Does not emit an {Approval} event.
*/
function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance != type(uint256).max) {
if (currentAllowance < value) {
revert ERC20InsufficientAllowance(spender, currentAllowance, value);
}
unchecked {
_approve(owner, spender, currentAllowance - value, false);
}
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC20Permit} from "../extensions/IERC20Permit.sol";
import {Address} from "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev An operation with an ERC20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data);
if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error AddressInsufficientBalance(address account);
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedInnerCall();
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert AddressInsufficientBalance(address(this));
}
(bool success, ) = recipient.call{value: amount}("");
if (!success) {
revert FailedInnerCall();
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {FailedInnerCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert AddressInsufficientBalance(address(this));
}
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
* unsuccessful call.
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata
) internal view returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
if (returndata.length == 0 && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {FailedInnerCall} error.
*/
function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
*/
function _revert(bytes memory returndata) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert FailedInnerCall();
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
/**
* @dev Muldiv operation overflow.
*/
error MathOverflowedMulDiv();
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an overflow flag.
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
return a / b;
}
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
if (denominator <= prod1) {
revert MathOverflowedMulDiv();
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
}
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.14;
import "./Types.sol";
abstract contract AutomateModuleHelper {
function _resolverModuleArg(
address _resolverAddress,
bytes memory _resolverData
) internal pure returns (bytes memory) {
return abi.encode(_resolverAddress, _resolverData);
}
function _proxyModuleArg() internal pure returns (bytes memory) {
return bytes("");
}
function _singleExecModuleArg() internal pure returns (bytes memory) {
return bytes("");
}
function _web3FunctionModuleArg(
string memory _web3FunctionHash,
bytes memory _web3FunctionArgsHex
) internal pure returns (bytes memory) {
return abi.encode(_web3FunctionHash, _web3FunctionArgsHex);
}
function _timeTriggerModuleArg(uint128 _start, uint128 _interval)
internal
pure
returns (bytes memory)
{
bytes memory triggerConfig = abi.encode(_start, _interval);
return abi.encode(TriggerType.TIME, triggerConfig);
}
function _cronTriggerModuleArg(string memory _expression)
internal
pure
returns (bytes memory)
{
bytes memory triggerConfig = abi.encode(_expression);
return abi.encode(TriggerType.CRON, triggerConfig);
}
function _eventTriggerModuleArg(
address _address,
bytes32[][] memory _topics,
uint256 _blockConfirmations
) internal pure returns (bytes memory) {
bytes memory triggerConfig = abi.encode(
_address,
_topics,
_blockConfirmations
);
return abi.encode(TriggerType.EVENT, triggerConfig);
}
function _blockTriggerModuleArg() internal pure returns (bytes memory) {
bytes memory triggerConfig = abi.encode(bytes(""));
return abi.encode(TriggerType.BLOCK, triggerConfig);
}
}
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.14;
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "./Types.sol";
/**
* @dev Inherit this contract to allow your smart contract to
* - Make synchronous fee payments.
* - Have call restrictions for functions to be automated.
*/
// solhint-disable private-vars-leading-underscore
abstract contract AutomateReady {
IAutomate public immutable automate;
address public immutable dedicatedMsgSender;
address private immutable feeCollector;
address internal constant ETH = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;
/**
* @dev
* Only tasks created by _taskCreator defined in constructor can call
* the functions with this modifier.
*/
modifier onlyDedicatedMsgSender() {
require(msg.sender == dedicatedMsgSender, "Only dedicated msg.sender");
_;
}
/**
* @dev
* _taskCreator is the address which will create tasks for this contract.
*/
constructor(address _automate, address _taskCreator) {
automate = IAutomate(_automate);
IGelato gelato = IGelato(IAutomate(_automate).gelato());
feeCollector = gelato.feeCollector();
address proxyModuleAddress = IAutomate(_automate).taskModuleAddresses(
Module.PROXY
);
address opsProxyFactoryAddress = IProxyModule(proxyModuleAddress)
.opsProxyFactory();
(dedicatedMsgSender, ) = IOpsProxyFactory(opsProxyFactoryAddress)
.getProxyOf(_taskCreator);
}
/**
* @dev
* Transfers fee to gelato for synchronous fee payments.
*
* _fee & _feeToken should be queried from IAutomate.getFeeDetails()
*/
function _transfer(uint256 _fee, address _feeToken) internal {
if (_feeToken == ETH) {
(bool success, ) = feeCollector.call{value: _fee}("");
require(success, "_transfer: ETH transfer failed");
} else {
SafeERC20.safeTransfer(IERC20(_feeToken), feeCollector, _fee);
}
}
function _getFeeDetails()
internal
view
returns (uint256 fee, address feeToken)
{
(fee, feeToken) = automate.getFeeDetails();
}
}
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.14;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "./AutomateReady.sol";
import {AutomateModuleHelper} from "./AutomateModuleHelper.sol";
/**
* @dev Inherit this contract to allow your smart contract
* to be a task creator and create tasks.
*/
//solhint-disable const-name-snakecase
//solhint-disable no-empty-blocks
abstract contract AutomateTaskCreator is AutomateModuleHelper, AutomateReady {
using SafeERC20 for IERC20;
IGelato1Balance public constant gelato1Balance =
IGelato1Balance(0x7506C12a824d73D9b08564d5Afc22c949434755e);
constructor(address _automate) AutomateReady(_automate, address(this)) {}
function _depositFunds1Balance(
uint256 _amount,
address _token,
address _sponsor
) internal {
if (_token == ETH) {
///@dev Only deposit ETH on goerli for now.
require(block.chainid == 5, "Only deposit ETH on goerli");
gelato1Balance.depositNative{value: _amount}(_sponsor);
} else {
///@dev Only deposit USDC on polygon for now.
require(
block.chainid == 137 &&
_token ==
address(0x2791Bca1f2de4661ED88A30C99A7a9449Aa84174),
"Only deposit USDC on polygon"
);
IERC20(_token).approve(address(gelato1Balance), _amount);
gelato1Balance.depositToken(_sponsor, _token, _amount);
}
}
function _createTask(
address _execAddress,
bytes memory _execDataOrSelector,
ModuleData memory _moduleData,
address _feeToken
) internal returns (bytes32) {
return
automate.createTask(
_execAddress,
_execDataOrSelector,
_moduleData,
_feeToken
);
}
function _cancelTask(bytes32 _taskId) internal {
automate.cancelTask(_taskId);
}
}
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.12;
enum Module {
RESOLVER,
DEPRECATED_TIME,
PROXY,
SINGLE_EXEC,
WEB3_FUNCTION,
TRIGGER
}
enum TriggerType {
TIME,
CRON,
EVENT,
BLOCK
}
struct ModuleData {
Module[] modules;
bytes[] args;
}
interface IAutomate {
function createTask(
address execAddress,
bytes calldata execDataOrSelector,
ModuleData calldata moduleData,
address feeToken
) external returns (bytes32 taskId);
function cancelTask(bytes32 taskId) external;
function getFeeDetails() external view returns (uint256, address);
function gelato() external view returns (address payable);
function taskModuleAddresses(Module) external view returns (address);
}
interface IProxyModule {
function opsProxyFactory() external view returns (address);
}
interface IOpsProxyFactory {
function getProxyOf(address account) external view returns (address, bool);
}
interface IGelato1Balance {
function depositNative(address _sponsor) external payable;
function depositToken(
address _sponsor,
address _token,
uint256 _amount
) external;
}
interface IGelato {
function feeCollector() external view returns (address);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.6.0;
import '@openzeppelin/contracts/token/ERC20/IERC20.sol';
/// @dev Credit to Uniswap Labs under GPL-2.0-or-later license:
/// https://github.com/Uniswap/v3-periphery
library TransferHelper {
/// @notice Transfers tokens from the targeted address to the given destination
/// @notice Errors with 'STF' if transfer fails
/// @param token The contract address of the token to be transferred
/// @param from The originating address from which the tokens will be transferred
/// @param to The destination address of the transfer
/// @param value The amount to be transferred
function safeTransferFrom(
address token,
address from,
address to,
uint256 value
) internal {
(bool success, bytes memory data) = token.call(
abi.encodeWithSelector(IERC20.transferFrom.selector, from, to, value)
);
require(success && (data.length == 0 || abi.decode(data, (bool))), 'STF');
}
/// @notice Transfers tokens from msg.sender to a recipient
/// @dev Errors with ST if transfer fails
/// @param token The contract address of the token which will be transferred
/// @param to The recipient of the transfer
/// @param value The value of the transfer
function safeTransfer(
address token,
address to,
uint256 value
) internal {
(bool success, bytes memory data) = token.call(abi.encodeWithSelector(IERC20.transfer.selector, to, value));
require(success && (data.length == 0 || abi.decode(data, (bool))), 'ST');
}
/// @notice Approves the stipulated contract to spend the given allowance in the given token
/// @dev Errors with 'SA' if transfer fails
/// @param token The contract address of the token to be approved
/// @param to The target of the approval
/// @param value The amount of the given token the target will be allowed to spend
function safeApprove(
address token,
address to,
uint256 value
) internal {
(bool success, bytes memory data) = token.call(abi.encodeWithSelector(IERC20.approve.selector, to, value));
require(success && (data.length == 0 || abi.decode(data, (bool))), 'SA');
}
/// @notice Transfers NativeToken to the recipient address
/// @dev Fails with `STE`
/// @param to The destination of the transfer
/// @param value The value to be transferred
function safeTransferNative(address to, uint256 value) internal {
(bool success, ) = to.call{value: value}(new bytes(0));
require(success, 'STE');
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.20;
import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/access/Ownable2Step.sol";
import "@openzeppelin/contracts/utils/Strings.sol";
import "contracts/Libraries/TransferHelper.sol";
import "contracts/Integrations/Gelato/AutomateTaskCreator.sol";
import "contracts/SilverFees/SilverFeesGiveaway.sol";
struct ExactInputParams {
bytes path;
address recipient;
uint256 deadline;
uint256 amountIn;
uint256 amountOutMinimum;
}
interface IAlgebraSwapRouter {
function exactInput(ExactInputParams memory data) external payable returns (uint256);
}
interface IAlgebraCommunityVault {
function withdraw(address token, uint256 amount) external;
function algebraFee() external view returns (uint16);
}
interface IAlgebraPool {
function communityVault() external view returns (address);
}
interface IAlgebraNFTPositionManager {
function balanceOf(address owner) external view returns (uint256);
}
// Fees redistribution data
struct FeesRedistributionData {
uint256 agWeeklyGiveawayAmount;
uint256 wrappedTokenWeeklyGiveawayAmount;
uint256 agFlareAmount;
uint256 wrappedTokenFlareAmount;
uint256 agSnatchAmount;
uint256 wrappedTokenSnatchAmount;
}
// Fees management
struct FeesManagementData {
uint256 teamFees;
uint256 weeklyGiveawayFees;
uint256 buybackFees;
FeesRedistributionData redistributionData;
mapping (address => bool) flareWhitelistedTokens;
address[] flareTokenToUnwhitelist;
uint256 flareProgramPercentage;
address bannedFlareUser;
bool flareEnded;
bool snatchEnded;
string flareCID;
string snatchCID;
bool swapChanged;
bool swapToWrappedToken;
uint256 firstExecution;
uint256 lastExecution;
bytes32 taskId;
}
// Sync fees management
struct SyncFeesManagementData {
uint256 time;
uint256 lastSync;
uint256 nextSync;
bytes32 taskId;
}
// Fees converter
struct FeesTokenData {
mapping(address => bytes32) taskId;
string scriptCID;
}
// Bid data
struct BidData {
uint256 amount;
uint256 timestamp;
}
// Flare datas
struct FlareData {
address user;
uint256 bidAmount;
address buybackToken;
mapping (address=>BidData) lastBid;
bytes32 taskId;
}
// Snatch datas
struct SnatchPerPoolData {
address user;
uint256 bidAmount;
}
struct SnatchData {
SnatchPerPoolData perPoolData;
mapping (address=>BidData) lastBid;
uint256 lastExecution;
address bannedUser;
bytes32 taskId;
}
/// @title SilverFees
/// @author github.com/SifexPro
/// @notice Contract for the fees management of Silver
contract SilverFees is AutomateTaskCreator, Ownable2Step {
SilverFeesGiveaway public silverFeesGiveaway;
// Utils variables
IERC20 public silverToken;
IERC20 public wrappedToken;
address public burnAddress;
address public flareProgramAddress;
address public teamMultisig;
IAlgebraSwapRouter public swapRouter;
IAlgebraCommunityVault public communityVault;
IAlgebraNFTPositionManager public nftPositionManager;
// All datas structures
FeesManagementData public feesManagementData;
SyncFeesManagementData public syncFeesManagementData;
FeesTokenData public feesTokenData;
FlareData public flareData;
mapping (address => SnatchData) public snatchData;
mapping(address => bool) public snatchIsPoolBided;
address[] public snatchPoolsBids;
// Events
event FeesManagementExecuted(uint256 forTeam, uint256 forWeeklyGiveaway, uint256 forBuyback);
event SyncFeesStarted();
event SyncFeesManagement(uint256 indexed timestamp);
event TokensBurned(uint256 amount);
event FeesTokenAdded(address indexed token, bytes32 taskId);
event FeesTokenRemoved(address indexed token);
event FeesTokenSwapped(address indexed token, uint256 amountIn, uint256 amountOut);
event FlareAuction(address indexed user, uint256 auctionAmount);
event FlareExecution(address indexed user, uint256 buybackAmount, uint256 programAmount);
event FlareBuyback(address indexed token, uint256 amount);
event SnatchAuction(address indexed user, address indexed poolToSteal, uint256 auctionAmount);
event SnatchExecution(address indexed user, address indexed poolToSteal);
event SnatchSteal(address indexed user, address indexed rewardsPool, address rewardsToken, uint256 rewardsAmount);
// Events for misc
event SwapToWrappedToken(bool swapToWrappedToken);
event SwapTypeChanged();
event WithdrawnNative(address indexed to, uint256 amount);
event WithdrawnToken(address indexed token, address to, uint256 amount);
event EditedTeamMultisig(address indexed teamMultisig);
event EditedFees(uint256 teamFees, uint256 weeklyGiveawayFees, uint256 buybackFees);
// Gelato events
event GelatoTaskCreated(bytes32 id);
event GelatoTaskCanceled(bytes32 id);
event GelatoTaskCancelFailed(bytes32 id);
event GelatoFeesCheck(uint256 fees, address token);
// Constructor
constructor(address _silver, address _silverFeesGiveaway, address _burnAddress, address _flareProgramAddress, address _swapRouter, address _nftPositionManager, address _communityVault, address _teamMultisig, address _automate, address _wrappedToken, string memory _flareCID, string memory _snatchCID, string memory _feesTokenCID) AutomateTaskCreator(_automate) Ownable(msg.sender) {
silverToken = IERC20(payable(_silver));
wrappedToken = IERC20(payable(_wrappedToken));
burnAddress = _burnAddress;
flareProgramAddress = _flareProgramAddress;
teamMultisig = _teamMultisig;
swapRouter = IAlgebraSwapRouter(payable(_swapRouter));
communityVault = IAlgebraCommunityVault(payable(_communityVault));
nftPositionManager = IAlgebraNFTPositionManager(payable(_nftPositionManager));
silverFeesGiveaway = SilverFeesGiveaway(payable(_silverFeesGiveaway));
feesManagementData.teamFees = 12; // 12% for team
feesManagementData.weeklyGiveawayFees = 3; // 3% for weekly giveaway
feesManagementData.buybackFees = 85; // 85% for buyback
feesManagementData.flareProgramPercentage = 0;
feesManagementData.flareCID = _flareCID;
feesManagementData.snatchCID = _snatchCID;
feesManagementData.swapToWrappedToken = true;
feesTokenData.scriptCID = _feesTokenCID;
}
// Fees management
/**
* @dev Main function (to manage the fees) scheduled with Gelato by the sync system (10 min after the last sync)
*/
function executeFeesManagement() public onlyDedicatedMsgSender {
require(block.timestamp >= feesManagementData.lastExecution + syncFeesManagementData.time - 5 minutes, "Too early");
// Balance
uint256 balance;
if (feesManagementData.swapToWrappedToken)
balance = tokenAmount(address(wrappedToken)) - feesManagementData.redistributionData.wrappedTokenWeeklyGiveawayAmount - feesManagementData.redistributionData.wrappedTokenFlareAmount - feesManagementData.redistributionData.wrappedTokenSnatchAmount;
else
balance = tokenAmount(address(silverToken)) - feesManagementData.redistributionData.agWeeklyGiveawayAmount - feesManagementData.redistributionData.agFlareAmount - feesManagementData.redistributionData.agSnatchAmount;
// Fees
uint256 teamFees = (balance * feesManagementData.teamFees) / 100;
uint256 weeklyGiveawayFees = (balance * feesManagementData.weeklyGiveawayFees) / 100;
uint256 buybackFees = balance - teamFees - weeklyGiveawayFees;
uint256 flareFees = buybackFees / 2;
uint256 snatchFees = buybackFees - flareFees;
// Redistribution
if (feesManagementData.swapToWrappedToken) {
SafeERC20.safeTransfer(wrappedToken, teamMultisig, teamFees);
feesManagementData.redistributionData.wrappedTokenWeeklyGiveawayAmount += weeklyGiveawayFees;
feesManagementData.redistributionData.wrappedTokenFlareAmount += flareFees;
feesManagementData.redistributionData.wrappedTokenSnatchAmount += snatchFees;
} else {
SafeERC20.safeTransfer(silverToken, teamMultisig, teamFees);
feesManagementData.redistributionData.agWeeklyGiveawayAmount += weeklyGiveawayFees;
feesManagementData.redistributionData.agFlareAmount += flareFees;
feesManagementData.redistributionData.agSnatchAmount += snatchFees;
}
// Giveaway
if (silverFeesGiveaway.checkExecuteGiveaway())
drawWinner();
// Flare
if (feesManagementData.flareEnded && flareData.user != address(0))
executeFlare();
feesManagementData.flareEnded = false;
// Snatch
if (feesManagementData.snatchEnded && snatchPoolsBids.length > 0)
{
for (uint256 i = 0; i < snatchPoolsBids.length; i++)
{
executeSnatch(snatchPoolsBids[i]);
snatchIsPoolBided[snatchPoolsBids[i]] = false;
}
delete snatchPoolsBids;
}
feesManagementData.snatchEnded = false;
// Fees management data update
if (feesManagementData.swapChanged) {
feesManagementData.swapChanged = false;
feesManagementData.swapToWrappedToken = !feesManagementData.swapToWrappedToken;
emit SwapToWrappedToken(feesManagementData.swapToWrappedToken);
}
feesManagementData.lastExecution = block.timestamp;
// Gelato fees
(uint256 fee, address feeToken) = _getFeeDetails();
_transfer(fee, feeToken);
emit GelatoFeesCheck(fee, feeToken);
feesManagementData.taskId = bytes32("");
emit FeesManagementExecuted(teamFees, weeklyGiveawayFees, buybackFees);
}
// Sync fees management
/**
* @dev Sync the fees management
*/
function syncFeesManagement() public onlyDedicatedMsgSender {
silverFeesGiveaway.syncGiveaway(); // Sync the giveaway
if (flareData.user != address(0))
feesManagementData.flareEnded = true; // End the flare auction
if (snatchPoolsBids.length > 0)
feesManagementData.snatchEnded = true; // End the snatch auction
syncFeesManagementData.lastSync = block.timestamp;
syncFeesManagementData.nextSync = block.timestamp + syncFeesManagementData.time;
createTaskFeesManagement(); // Create the task for executeFeesManagement() (10 min)
// Gelato fees
(uint256 fee, address feeToken) = _getFeeDetails();
_transfer(fee, feeToken);
emit GelatoFeesCheck(fee, feeToken);
emit SyncFeesManagement(block.timestamp);
}
/**
* @dev Start the sync system
* @param time Time between each sync
* @notice The sync system will execute the syncFeesManagement() function every time seconds (12 hours by default)
*/
function startSyncSystem(uint256 time) public onlyOwner {
require(time == 0 || time >= 1200, "Time too low");
syncFeesManagementData.time = time;
syncFeesManagementData.lastSync = block.timestamp;
syncFeesManagementData.nextSync = block.timestamp + time;
feesManagementData.firstExecution = block.timestamp;
feesManagementData.lastExecution = block.timestamp;
cancelTask(flareData.taskId);
cancelTask(feesManagementData.taskId);
cancelTask(syncFeesManagementData.taskId);
delete flareData;
for (uint256 i = 0; i < snatchPoolsBids.length; i++)
{
cancelTaskSnatch(snatchPoolsBids[i]);
delete snatchData[snatchPoolsBids[i]].perPoolData;
snatchData[snatchPoolsBids[i]].lastExecution = 0;
snatchIsPoolBided[snatchPoolsBids[i]] = false;
}
delete snatchPoolsBids;
feesManagementData.flareEnded = false;
feesManagementData.snatchEnded = false;
if (time != 0) {
silverFeesGiveaway.startSyncGiveaway();
createTaskSyncSystem();
}
emit SyncFeesStarted();
}
function syncFeesTime() public view returns (uint256) {
return syncFeesManagementData.time;
}
function syncFeesLastSync() public view returns (uint256) {
return syncFeesManagementData.lastSync;
}
// Tokens fees converter
/**
* @dev Swap the fees token to WrappedToken or $AG
* @param tokenAddress Token to swap
* @param swapArgs Swap arguments
* @notice Executed by a gelato task when SyncFeesManagement event is emitted
*/
function swapFeesToken(address tokenAddress, ExactInputParams memory swapArgs) public onlyDedicatedMsgSender {
uint256 amountIn;
uint256 amountOut;
uint256 balanceBefore;
uint256 balanceAfter;
if (feesManagementData.swapToWrappedToken)
balanceBefore = tokenAmount(address(wrappedToken));
else
balanceBefore = tokenAmount(address(silverToken));
communityVault.withdraw(tokenAddress, swapArgs.amountIn);
if (!(feesManagementData.swapToWrappedToken && tokenAddress == address(wrappedToken) || !feesManagementData.swapToWrappedToken && tokenAddress == address(silverToken)))
{
swapArgs.recipient = payable(address(this));
swapArgs.amountIn = tokenAmount(tokenAddress);
TransferHelper.safeApprove(address(tokenAddress), address(swapRouter), swapArgs.amountIn);
swapRouter.exactInput(swapArgs);
}
if (feesManagementData.swapToWrappedToken)
balanceAfter = tokenAmount(address(wrappedToken));
else
balanceAfter = tokenAmount(address(silverToken));
amountIn = swapArgs.amountIn;
amountOut = balanceAfter - balanceBefore;
// Gelato fees
(uint256 fee, address feeToken) = _getFeeDetails();
_transfer(fee, feeToken);
emit GelatoFeesCheck(fee, feeToken);
emit FeesTokenSwapped(tokenAddress, amountIn, amountOut);
}
/**
* @dev Add a token to the fees converter system
* @param tokenAddress Token to add
* @notice The token must be in the community vault
*/
function addFeesToken(address tokenAddress) public onlyOwner {
require(feesTokenData.taskId[tokenAddress] == bytes32(""), "Already added");
createTaskFeesToken(tokenAddress);
bytes32 taskId = feesTokenData.taskId[tokenAddress];
emit FeesTokenAdded(tokenAddress, taskId);
}
function removeFeesToken(address tokenAddress) public onlyOwner {
require(feesTokenData.taskId[tokenAddress] != bytes32(""), "Not added");
_cancelTask(feesTokenData.taskId[tokenAddress]);
feesTokenData.taskId[tokenAddress] = bytes32("");
emit FeesTokenRemoved(tokenAddress);
}
function tokenAmountVault(address tokenAddress) public view returns (uint256) {
IERC20 token = IERC20(tokenAddress);
uint256 balance = token.balanceOf(address(communityVault));
return (balance);
}
function tokenAmount(address tokenAddress) public view returns (uint256) {
IERC20 token = IERC20(tokenAddress);
uint256 balance = token.balanceOf(address(this));
return (balance);
}
function isSwapToWrappedToken() public view returns (bool) {
return (feesManagementData.swapToWrappedToken);
}
function feesTokenTaskId(address tokenAddress) public view returns (bytes32) {
return feesTokenData.taskId[tokenAddress];
}
// Weekly giveaway
/**
* @dev Buy tickets for the weekly giveaway
* @param _amount Amount in $AG of tickets to buy, by default 1 ticket = 1 $AG
*/
function buyTickets(uint256 _amount) public onlyLpUser {
silverFeesGiveaway.buyTickets(_amount, msg.sender);
}
/**
* @dev Draw the winner of the weekly giveaway
* @notice The winner will receive the weekly giveaway amount
*/
function drawWinner() public onlyDedicatedMsgSender {
bool _isSwapToWrappedToken = feesManagementData.swapToWrappedToken;
uint256 weeklyGiveawayAmount;
if (_isSwapToWrappedToken) {
weeklyGiveawayAmount = feesManagementData.redistributionData.wrappedTokenWeeklyGiveawayAmount;
feesManagementData.redistributionData.wrappedTokenWeeklyGiveawayAmount = 0;
TransferHelper.safeApprove(address(wrappedToken), address(silverFeesGiveaway), weeklyGiveawayAmount);
}
else {
weeklyGiveawayAmount = feesManagementData.redistributionData.agWeeklyGiveawayAmount;
feesManagementData.redistributionData.agWeeklyGiveawayAmount = 0;
TransferHelper.safeApprove(address(silverToken), address(silverFeesGiveaway), weeklyGiveawayAmount);
}
silverFeesGiveaway.executeGiveaway(_isSwapToWrappedToken, weeklyGiveawayAmount);
}
function buyTicketsBurn(address _user, uint256 _amount) external {
require(msg.sender == address(silverFeesGiveaway), "Only FeesGiveaway");
bool success = silverToken.transferFrom(_user, address(this), _amount);
require(success, "Transfer failed");
burnTokens(_amount);
}
// Flare
/**
* @dev Flare auction
* @param _amountToBurn Amount of $AG to burn
* @param buybackToken Token to buyback
*/
function flare(uint256 _amountToBurn, address buybackToken) public onlyLpUser {
require(!feesManagementData.flareEnded, "Ended");
require(feesManagementData.bannedFlareUser != msg.sender, "Banned");
require(flareIsWhitelistedToken(buybackToken), "Not whitelisted token");
uint256 rounding = 1 ether / 10;
uint256 roundAmount = _amountToBurn / rounding;
uint256 amountToBurn = roundAmount * rounding;
require(amountToBurn > flareData.bidAmount, "Bid too low");
require(amountToBurn >= rounding, "< 0.1 $AG");
uint256 balance = silverToken.balanceOf(msg.sender);
require(balance >= amountToBurn, "Not enough balance");
uint256 allowance = silverToken.allowance(msg.sender, address(this));
require(allowance >= amountToBurn, "Not enough allowance");
flareData.user = msg.sender;
flareData.bidAmount = amountToBurn;
flareData.buybackToken = buybackToken;
flareData.lastBid[msg.sender] = BidData(amountToBurn, block.timestamp);
emit FlareAuction(msg.sender, amountToBurn);
}
/**
* @dev Flare's execute function
*/
function executeFlare() public onlyDedicatedMsgSender {
require(feesManagementData.flareEnded, "Too early");
address user = flareData.user;
uint256 amountToBurn = flareData.bidAmount;
uint256 balance = silverToken.balanceOf(user);
uint256 allowance = silverToken.allowance(user, address(this));
if (balance < amountToBurn || allowance < amountToBurn) {
feesManagementData.bannedFlareUser = user;
delete flareData;
return;
}
bool success = silverToken.transferFrom(user, address(this), amountToBurn);
require(success, "Transfer failed");
burnTokens(amountToBurn);
uint256 flareAmountBuyback;
uint256 flareAmountProgram;
if (feesManagementData.swapToWrappedToken) {
flareAmountProgram = (feesManagementData.redistributionData.wrappedTokenFlareAmount * feesManagementData.flareProgramPercentage) / 100;
flareAmountBuyback = feesManagementData.redistributionData.wrappedTokenFlareAmount - flareAmountProgram;
feesManagementData.redistributionData.wrappedTokenFlareAmount = 0;
if (flareAmountProgram > 0)
SafeERC20.safeTransfer(wrappedToken, flareProgramAddress, flareAmountProgram);
}
else {
flareAmountProgram = (feesManagementData.redistributionData.agFlareAmount * feesManagementData.flareProgramPercentage) / 100;
flareAmountBuyback = feesManagementData.redistributionData.agFlareAmount - flareAmountProgram;
feesManagementData.redistributionData.agFlareAmount = 0;
if (flareAmountProgram > 0)
SafeERC20.safeTransfer(silverToken, flareProgramAddress, flareAmountProgram);
}
feesManagementData.bannedFlareUser = address(0);
address buybackToken = flareData.buybackToken;
delete flareData;
createTaskFlareBuyback(buybackToken, flareAmountBuyback);
emit FlareExecution(user, flareAmountBuyback, flareAmountProgram);
}
/**
* @dev Flare's buyback function (after the auction when executeFeeManagement is called)
* @param tokenToSwap Token to swap
* @param swapArgs Swap arguments
*/
function flareBuyback(address tokenToSwap, address tokenAddress, ExactInputParams memory swapArgs) public onlyDedicatedMsgSender {
if (swapArgs.amountIn != 0 && tokenToSwap != tokenAddress && flareIsWhitelistedToken(tokenAddress)) {
swapArgs.recipient = payable(teamMultisig);
TransferHelper.safeApprove(address(tokenToSwap), address(swapRouter), swapArgs.amountIn);
swapRouter.exactInput(swapArgs);
}
else if (swapArgs.amountIn != 0 && tokenToSwap == tokenAddress && flareIsWhitelistedToken(tokenAddress)) {
bool success = IERC20(tokenToSwap).transfer(teamMultisig, swapArgs.amountIn);
require(success, "Transfer failed");
}
for (uint256 i = 0; i < feesManagementData.flareTokenToUnwhitelist.length && i < 10; i++)
feesManagementData.flareWhitelistedTokens[feesManagementData.flareTokenToUnwhitelist[i]] = false;
delete feesManagementData.flareTokenToUnwhitelist;
// Gelato fees
(uint256 fee, address feeToken) = _getFeeDetails();
_transfer(fee, feeToken);
emit GelatoFeesCheck(fee, feeToken);
flareData.taskId = bytes32("");
emit FlareBuyback(tokenToSwap, swapArgs.amountIn);
}
function flareAddWhitelistedToken(address token) public onlyOwner {
require(!flareIsWhitelistedToken(token), "Already whitelisted");
feesManagementData.flareWhitelistedTokens[token] = true;
}
function flareRemoveWhitelistedToken(address token) public onlyOwner {
require(flareIsWhitelistedToken(token), "Not whitelisted");
if (flareData.buybackToken == token)
feesManagementData.flareTokenToUnwhitelist.push(token);
else
feesManagementData.flareWhitelistedTokens[token] = false;
}
function flareIsWhitelistedToken(address token) public view returns (bool) {
return feesManagementData.flareWhitelistedTokens[token];
}
function flareLastBid(address user) public view returns (uint256) {
if (flareData.lastBid[user].timestamp > feesManagementData.lastExecution)
return flareData.lastBid[user].amount;
return 0;
}
// Snatch
/**
* @dev Snatch auction
* @param _amountToBurn Amount of $AG to burn
* @param poolToSteal Pool to steal 50% of swap fees
*/
function snatch(uint256 _amountToBurn, address poolToSteal) public onlyLpUser {
require(!feesManagementData.snatchEnded, "Ended");
require(snatchData[poolToSteal].bannedUser != msg.sender, "Banned");
require(IAlgebraPool(poolToSteal).communityVault() == address(communityVault), "Invalid pool");
uint256 rounding = 1 ether / 10;
uint256 roundAmount = _amountToBurn / rounding;
uint256 amountToBurn = roundAmount * rounding;
require(amountToBurn > snatchData[poolToSteal].perPoolData.bidAmount, "Bid too low");
require(amountToBurn >= rounding, "< 0.1 $AG");
uint256 balance = silverToken.balanceOf(msg.sender);
require(balance >= amountToBurn, "Not enough balance");
uint256 allowance = silverToken.allowance(msg.sender, address(this));
require(allowance >= amountToBurn, "Not enough allowance");
if (!snatchIsPoolBided[poolToSteal])
{
snatchPoolsBids.push(poolToSteal);
snatchIsPoolBided[poolToSteal] = true;
}
if (snatchData[poolToSteal].lastExecution == 0)
snatchData[poolToSteal].lastExecution = feesManagementData.firstExecution;
snatchData[poolToSteal].perPoolData.user = msg.sender;
snatchData[poolToSteal].perPoolData.bidAmount = amountToBurn;
snatchData[poolToSteal].lastBid[msg.sender] = BidData(amountToBurn, block.timestamp);
emit SnatchAuction(msg.sender, poolToSteal, amountToBurn);
}
/**
* @dev Snatch's execute function
*/
function executeSnatch(address poolToSteal) public onlyDedicatedMsgSender {
require(feesManagementData.snatchEnded, "Too early");
address user = snatchData[poolToSteal].perPoolData.user;
uint256 amountToBurn = snatchData[poolToSteal].perPoolData.bidAmount;
uint256 balance = silverToken.balanceOf(user);
uint256 allowance = silverToken.allowance(user, address(this));
if (balance < amountToBurn || allowance < amountToBurn) {
snatchData[poolToSteal].bannedUser = user;
delete snatchData[poolToSteal].perPoolData;
return;
}
bool success = silverToken.transferFrom(user, address(this), amountToBurn);
require(success, "Transfer failed");
burnTokens(amountToBurn);
snatchData[poolToSteal].bannedUser = address(0);
delete snatchData[poolToSteal].perPoolData;
createTaskSnatchSteal(user, poolToSteal);
emit SnatchExecution(user, poolToSteal);
}
/**
* @dev Snatch's steal function (after the auction when executeFeeManagement is called)
* @param user User to send the rewards
* @param rewardsPool Pool to steal
* @param rewardsToken Token to send
* @param rewardsAmount Amount to send
*/
function snatchSteal(address user, address rewardsPool, address rewardsToken, uint256 rewardsAmount) public onlyDedicatedMsgSender {
if (rewardsToken == address(wrappedToken))
{
require(wrappedToken.transfer(user, rewardsAmount), "Transfer failed");
if (rewardsAmount > feesManagementData.redistributionData.wrappedTokenSnatchAmount)
feesManagementData.redistributionData.wrappedTokenSnatchAmount = 0;
else
feesManagementData.redistributionData.wrappedTokenSnatchAmount -= rewardsAmount;
}
else if (rewardsToken == address(silverToken))
{
require(silverToken.transfer(user, rewardsAmount), "Transfer failed");
if (rewardsAmount > feesManagementData.redistributionData.agSnatchAmount)
feesManagementData.redistributionData.agSnatchAmount = 0;
else
feesManagementData.redistributionData.agSnatchAmount -= rewardsAmount;
}
snatchData[rewardsPool].lastExecution = block.timestamp;
snatchData[rewardsPool].taskId = bytes32("");
// Gelato fees
(uint256 fee, address feeToken) = _getFeeDetails();
_transfer(fee, feeToken);
emit GelatoFeesCheck(fee, feeToken);
emit SnatchSteal(user, rewardsPool, rewardsToken, rewardsAmount);
}
function snatchLastBid(address user, address pool) public view returns (uint256) {
if (snatchData[pool].lastBid[user].timestamp > feesManagementData.lastExecution)
return snatchData[pool].lastBid[user].amount;
return 0;
}
// Get allowance
/**
* @dev Get all bids of a user
* @param user User to check
* @return totalBids Total bids of the user
* @notice Include Flare and Snatch bids
*/
function getAllBids(address user) public view returns (uint256) {
uint256 totalBids;
totalBids += flareLastBid(user);
for (uint256 i = 0; i < snatchPoolsBids.length; i++)
totalBids += snatchLastBid(user, snatchPoolsBids[i]);
return totalBids;
}
// Burn function
/**
* @dev Burn the Silver tokens (send to burn contract)
* @param _amount Amount of $AG to burn
*/
function burnTokens(uint256 _amount) private {
require(silverToken.transfer(burnAddress, _amount), "Burn failed");
emit TokensBurned(_amount);
}
// Gelato functions
/**
* @dev Create a task for the sync system
* @notice The task will be executed every syncFeesManagementData.time seconds
*/
function createTaskSyncSystem() private {
bytes memory execData = abi.encodeCall(this.syncFeesManagement, ());
ModuleData memory moduleData = ModuleData({
modules: new Module[](2),
args: new bytes[](2)
});
moduleData.modules[0] = Module.PROXY;
moduleData.modules[1] = Module.TRIGGER;
moduleData.args[0] = _proxyModuleArg();
moduleData.args[1] = _timeTriggerModuleArg(
uint128(syncFeesManagementData.nextSync) * 1000,
uint128(syncFeesManagementData.time) * 1000
);
bytes32 taskId = _createTask(address(this), execData, moduleData, ETH);
syncFeesManagementData.taskId = taskId;
emit GelatoTaskCreated(taskId);
}
/**
* @dev Create task for executeFeesManagement function (SINGLE_EXEC)
* @notice Created by the sync system
* @notice The task will be executed 10 min after the last sync
*/
function createTaskFeesManagement() private {
uint256 execTime = 10 minutes;
bytes memory execData = abi.encodeCall(this.executeFeesManagement, ());
ModuleData memory moduleData = ModuleData({
modules: new Module[](3),
args: new bytes[](3)
});
moduleData.modules[0] = Module.PROXY;
moduleData.modules[1] = Module.SINGLE_EXEC;
moduleData.modules[2] = Module.TRIGGER;
moduleData.args[0] = _proxyModuleArg();
moduleData.args[1] = _singleExecModuleArg();
moduleData.args[2] = _timeTriggerModuleArg(
uint128(syncFeesManagementData.lastSync + execTime) * 1000,
uint128(execTime) * 1000
);
bytes32 taskId = _createTask(address(this), execData, moduleData, ETH);
feesManagementData.taskId = taskId;
emit GelatoTaskCreated(taskId);
}
/**
* @dev Create task for convert fees token to WrappedToken or $AG
* @param tokenAddress Token to convert
* @notice Executed by a gelato task when SyncFeesManagement event is emitted
*/
function createTaskFeesToken(address tokenAddress) private {
bytes memory execData = abi.encode(
Strings.toHexString(uint256(uint160(address(this))), 20), // contract address
Strings.toHexString(uint256(uint160(tokenAddress)), 20), // tokenAddress
Strings.toString(ERC20(tokenAddress).decimals()), // tokenDecimals
Strings.toHexString(uint256(uint160(address(silverToken))), 20), // agAddress
Strings.toHexString(uint256(uint160(address(wrappedToken))), 20), // wrappedTokenAddress
Strings.toString(block.chainid) // network
);
ModuleData memory moduleData = ModuleData({
modules: new Module[](3),
args: new bytes[](3)
});
moduleData.modules[0] = Module.PROXY;
moduleData.modules[1] = Module.WEB3_FUNCTION;
moduleData.modules[2] = Module.TRIGGER;
moduleData.args[0] = _proxyModuleArg();
moduleData.args[1] = _web3FunctionModuleArg(
feesTokenData.scriptCID,
execData
);
bytes32[][] memory topics = new bytes32[][](1);
topics[0] = new bytes32[](1);
topics[0][0] = keccak256("SyncFeesManagement(uint256)");
moduleData.args[2] = _eventTriggerModuleArg(
address(this),
topics,
7
);
bytes32 taskId = _createTask(address(this), execData, moduleData, ETH);
feesTokenData.taskId[tokenAddress] = taskId;
emit GelatoTaskCreated(taskId);
}
/**
* @dev Create task for buyback function (after the auction)
* @param tokenAddress Token to swap
* @param buybackAmount Amount to buyback
* @notice Task created when executeFlare is called and executed right after
*/
function createTaskFlareBuyback(address tokenAddress, uint256 buybackAmount) private {
address addressToSwap;
if (feesManagementData.swapToWrappedToken)
addressToSwap = address(wrappedToken);
else
addressToSwap = address(silverToken);
bytes memory execData = abi.encode(
Strings.toHexString(uint256(uint160(address(this))), 20), // contract address
Strings.toHexString((uint256(uint160(teamMultisig))), 20), // teamMultisig
Strings.toHexString((uint256(uint160(tokenAddress))), 20), // tokenAddress
Strings.toString(ERC20(tokenAddress).decimals()), // tokenDecimals
Strings.toString(buybackAmount), // buybackAmount
Strings.toHexString(uint256(uint160(address(addressToSwap))), 20), // addressToSwap
Strings.toString(block.chainid) // network
);
ModuleData memory moduleData = ModuleData({
modules: new Module[](3),
args: new bytes[](3)
});
moduleData.modules[0] = Module.PROXY;
moduleData.modules[1] = Module.SINGLE_EXEC;
moduleData.modules[2] = Module.WEB3_FUNCTION;
moduleData.args[0] = _proxyModuleArg();
moduleData.args[1] = _singleExecModuleArg();
moduleData.args[2] = _web3FunctionModuleArg(
feesManagementData.flareCID,
execData
);
bytes32 taskId = _createTask(address(this), execData, moduleData, ETH);
flareData.taskId = taskId;
emit GelatoTaskCreated(taskId);
}
/**
* @dev Create task for snatchSteal function (after the auction)
* @param user User that steal the fees
* @param poolToSteal Pool from which to steal 50% of swap fees
* @notice Task is executed right after creation
*/
function createTaskSnatchSteal(address user, address poolToSteal) private {
address rewardsToken;
uint256 timeToSteal = block.timestamp - snatchData[poolToSteal].lastExecution;
if (feesManagementData.swapToWrappedToken)
rewardsToken = address(wrappedToken);
else
rewardsToken = address(silverToken);
bytes memory execData = abi.encode(
Strings.toHexString(uint256(uint160(address(this))), 20), // contract address
Strings.toHexString((uint256(uint160(user))), 20), // userAddress
Strings.toString(timeToSteal), // timeToSteal
Strings.toHexString((uint256(uint160(poolToSteal))), 20), // poolToSteal
Strings.toHexString(uint256(uint160(address(rewardsToken))), 20), // rewardsToken
Strings.toString(block.chainid) // network
);
ModuleData memory moduleData = ModuleData({
modules: new Module[](3),
args: new bytes[](3)
});
moduleData.modules[0] = Module.PROXY;
moduleData.modules[1] = Module.SINGLE_EXEC;
moduleData.modules[2] = Module.WEB3_FUNCTION;
moduleData.args[0] = _proxyModuleArg();
moduleData.args[1] = _singleExecModuleArg();
moduleData.args[2] = _web3FunctionModuleArg(
feesManagementData.snatchCID,
execData
);
bytes32 taskId = _createTask(address(this), execData, moduleData, ETH);
snatchData[poolToSteal].taskId = taskId;
emit GelatoTaskCreated(taskId);
}
function cancelTaskCall(bytes32 taskId) public {
require(msg.sender == address(this));
_cancelTask(taskId);
}
/**
* @dev Cancel a gelato task
* @param taskId Task id to cancel
*/
function cancelTask(bytes32 taskId) public onlyOwner {
if (taskId == bytes32(""))
return;
(bool success, ) = address(this).call(
abi.encodeWithSignature("cancelTaskCall(bytes32)", taskId)
);
if (success)
emit GelatoTaskCanceled(taskId);
else
emit GelatoTaskCancelFailed(taskId);
if (taskId == syncFeesManagementData.taskId)
syncFeesManagementData.taskId = bytes32("");
else if (taskId == feesManagementData.taskId)
feesManagementData.taskId = bytes32("");
else if (taskId == flareData.taskId)
flareData.taskId = bytes32("");
}
/**
* @dev Cancel a gelato task
* @param pool Pool to cancel
*/
function cancelTaskSnatch(address pool) public onlyOwner {
bytes32 taskId = snatchData[pool].taskId;
if (taskId == bytes32(""))
return;
(bool success, ) = address(this).call(
abi.encodeWithSignature("cancelTaskCall(bytes32)", taskId)
);
if (success)
emit GelatoTaskCanceled(taskId);
else
emit GelatoTaskCancelFailed(taskId);
snatchData[pool].taskId = bytes32("");
}
// Internal functions
/**
* @dev Change the swap fees to WrappedToken or $AG
* @param swapToWrappedToken True if swap to WrappedToken, false if swap to $AG
* @notice The change is not immediate, it will be applied at the next fees management
*/
function setSwapToWrappedToken(bool swapToWrappedToken) public onlyOwner {
if (feesManagementData.swapToWrappedToken == swapToWrappedToken)
feesManagementData.swapChanged = false;
else
feesManagementData.swapChanged = true;
emit SwapTypeChanged();
}
function withdrawNative(address _to) public onlyOwner {
uint256 balance = address(this).balance;
require(balance > 0, "No Native to withdraw");
address payable _tresory = payable(_to);
(bool success, ) = _tresory.call{value:balance}("");
require(success, "Transaction failed");
emit WithdrawnNative(_tresory, balance);
}
function withdrawToken(address _token, address _to) public onlyOwner {
IERC20 token = IERC20(_token);
uint256 balance = token.balanceOf(address(this));
SafeERC20.safeTransfer(token, _to, balance);
emit WithdrawnToken(_token, _to, balance);
}
function editMultisig(address _teamMultisig) public onlyMultisig {
teamMultisig = _teamMultisig;
emit EditedTeamMultisig(_teamMultisig);
}
function editSilver(address _silver) public onlyOwner {
silverToken = IERC20(payable(_silver));
}
function editSilverFeesGiveaway(address _silverFeesGiveaway) public onlyOwner {
silverFeesGiveaway = SilverFeesGiveaway(payable(_silverFeesGiveaway));
}
function editwrappedToken(address _wrappedToken) public onlyOwner {
wrappedToken = IERC20(payable(_wrappedToken));
}
function editFlareProgramAddress(address _flareProgramAddress) public onlyOwner {
flareProgramAddress = _flareProgramAddress;
}
function editAlgebraSwapRouter(address _swapRouter) public onlyOwner {
swapRouter = IAlgebraSwapRouter(payable(_swapRouter));
}
function editCommunityVault(address _communityVault) public onlyOwner {
communityVault = IAlgebraCommunityVault(payable(_communityVault));
}
function editNftPositionManager(address _nftPositionManager) public onlyOwner {
nftPositionManager = IAlgebraNFTPositionManager(payable(_nftPositionManager));
}
function editFees(uint256 teamFees, uint256 weeklyGiveawayFees, uint256 buybackFees) public onlyOwner {
require(teamFees + weeklyGiveawayFees + buybackFees == 100, "Invalid fees");
feesManagementData.teamFees = teamFees;
feesManagementData.weeklyGiveawayFees = weeklyGiveawayFees;
feesManagementData.buybackFees = buybackFees;
emit EditedFees(teamFees, weeklyGiveawayFees, buybackFees);
}
function editFlareProgramPercentage(uint256 flareProgramPercentage) public onlyOwner {
require(flareProgramPercentage <= 100);
feesManagementData.flareProgramPercentage = flareProgramPercentage;
}
function editFlareCID(string memory flareCID) public onlyOwner {
feesManagementData.flareCID = flareCID;
}
function editSnatchCID(string memory snatchCID) public onlyOwner {
feesManagementData.snatchCID = snatchCID;
}
function editFeesTokenCID(string memory scriptCID) public onlyOwner {
feesTokenData.scriptCID = scriptCID;
}
// Modifiers
modifier onlyLpUser() {
require(nftPositionManager.balanceOf(msg.sender) > 0, "Not LP user");
_;
}
modifier onlyMultisig() {
require(msg.sender == teamMultisig, "Not authorized");
_;
}
// Receive function (to receive Native)
receive() external payable {}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.20;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/access/Ownable2Step.sol";
import "@chainlink/contracts/src/v0.8/vrf/VRFV2WrapperConsumerBase.sol";
import "@chainlink/contracts/src/v0.8/shared/access/ConfirmedOwner.sol";
import 'contracts/SilverFees/SilverFees.sol';
// User's tickets
struct UserTickets {
uint256 tickets;
uint256 timestamp;
}
// User's tickets data
struct GiveawayTicketsData {
mapping(address => UserTickets) userTickets;
uint256 lastExecution;
}
// Weekly giveaway
struct GiveawayData {
address[] giveawayParticipants;
uint256 numberOfParticipants;
bool participationEnded;
uint256 giveawayEndTime;
}
// Giveaway settings
struct GiveawaySettings {
bool isGiveawayActive;
uint256 ticketPrice;
uint256 giveawayTime;
bool editedActive;
uint256 editedTicketPrice;
uint256 editedGiveawayTime;
}
// Chainlink VRF datas
struct RequestStatus {
uint256 paid;
bool fulfilled;
uint256[] randomWords;
}
// Chainlink VRF inputs
struct RequestInput {
uint32 callbackGasLimit;
uint16 requestConfirmations;
uint32 numWords;
}
/// @title SilverFeesGiveaway
/// @author github.com/SifexPro
/// @notice This contract take care of the weekly giveaway
contract SilverFeesGiveaway is Ownable2Step, VRFV2WrapperConsumerBase {
SilverFees public silverFees;
GiveawayData public giveawayData;
GiveawayTicketsData public giveawayTicketsData;
GiveawaySettings public giveawaySettings;
RequestStatus public s_request;
RequestInput public s_input;
uint256 private requestId;
event GiveawaySyncStarted(uint256 ticketPrice, uint256 giveawayEndTime);
event GiveawaySynced();
event GiveawayExecuted(bool isGiveawayActive, uint256 weeklyGiveawayAmount);
event BuyTickets(address indexed account, uint256 amount, uint256 tickets);
event DrawWinner(address indexed winner, uint256 amount, uint256 randomIndex);
event RequestSent(uint256 requestId, uint32 numWords);
event RequestFulfilled(uint256 requestId, uint256[] randomWords, uint256 payment);
event EditedSilverFees(address silverFees);
event EditedGiveawayTicketPrice(uint256 ticketPrice);
event EditedGiveawayTime(uint256 giveawayTime);
event EditedGiveawayActive(bool isGiveawayActive);
event StartedGiveaway(uint256 ticketPrice, uint256 giveawayEndTime);
event StoppedGiveaway();
event WithdrawnToken(address indexed token, address to, uint256 amount);
constructor(address _link, address _wrapper) Ownable(msg.sender) VRFV2WrapperConsumerBase(_link, _wrapper) {
s_input.callbackGasLimit = 500000;
s_input.requestConfirmations = 7;
s_input.numWords = 1;
giveawaySettings = GiveawaySettings(true, 1 ether, 1 weeks, false, 0, 0);
}
// Fees management
/**
* @dev Check if the giveaway can be executed
* @notice Will return true : if the giveaway is over and s_request is fulfilled, or if the giveaway is not active
*/
function checkExecuteGiveaway() external onlySilverFees view returns (bool) {
return ((giveawayData.participationEnded && s_request.fulfilled) || !giveawaySettings.isGiveawayActive);
}
/**
* @dev Execute the giveaway
* @param isSwapToWrappedToken If the giveaway is in wrapped native token
* @param weeklyGiveawayAmount Amount to giveaway
* @notice Will draw a winner if the giveaway is active, otherwise will transfer the amount to the contract
*/
function executeGiveaway(bool isSwapToWrappedToken, uint256 weeklyGiveawayAmount) external onlySilverFees {
if (giveawaySettings.isGiveawayActive && s_request.fulfilled)
drawWinner(isSwapToWrappedToken, weeklyGiveawayAmount);
else if (!giveawaySettings.isGiveawayActive) {
bool success;
if (isSwapToWrappedToken)
success = silverFees.wrappedToken().transferFrom(address(silverFees), address(this), weeklyGiveawayAmount);
else
success = silverFees.silverToken().transferFrom(address(silverFees), address(this), weeklyGiveawayAmount);
require(success, "Transfer failed");
}
if (!giveawaySettings.isGiveawayActive || (giveawaySettings.isGiveawayActive && s_request.fulfilled))
applyEditedSettings();
emit GiveawayExecuted(giveawaySettings.isGiveawayActive, weeklyGiveawayAmount);
}
// Sync Fees Management
/**
* @dev Start the giveaway sync
*/
function startSyncGiveaway() public onlySilverFees {
applyEditedSettings();
giveawayData = GiveawayData(new address[](0), 0, false, silverFees.syncFeesLastSync() + giveawaySettings.giveawayTime);
emit GiveawaySyncStarted(giveawaySettings.ticketPrice, giveawayData.giveawayEndTime);
}
/**
* @dev Sync the giveaway
*/
function syncGiveaway() external onlySilverFees {
if (!giveawaySettings.isGiveawayActive) return;
uint256 syncTime = silverFees.syncFeesTime();
uint256 giveawayTime = giveawaySettings.giveawayTime;
bool giveawayTimeCheck = block.timestamp + (syncTime / 2) >= giveawayData.giveawayEndTime;
if (giveawayTimeCheck && giveawayData.numberOfParticipants > 0 && requestId == 0) { // Check if the giveaway is over and no request is sent
requestRandomWords();
giveawayData.participationEnded = true;
} else if (giveawayTimeCheck && giveawayData.numberOfParticipants == 0) { // Check if the giveaway is over and no participants
giveawaySettings.editedGiveawayTime = giveawayTime;
applyEditedSettings();
} else if (giveawayTimeCheck && giveawayData.participationEnded && block.timestamp > giveawayData.giveawayEndTime + (2 * syncTime)) { // Check if the giveaway is over and still not executed after 2 sync
clearRequest();
giveawayData.participationEnded = false;
giveawaySettings.editedGiveawayTime = giveawayTime;
applyEditedSettings();
}
emit GiveawaySynced();
}
// Weekly giveaway
/**
* @dev Buy tickets for the giveaway
* @param _amount Amount of tokens to buy tickets
* @param user Address of the user
* @notice Will buy tickets for the user if the giveaway is active and not ended
*/
function buyTickets(uint256 _amount, address user) external onlySilverFees {
require(giveawaySettings.isGiveawayActive, "Giveaway not active");
require(!giveawayData.participationEnded, "Ended");
require(_amount >= giveawaySettings.ticketPrice, "Price too low");
uint256 amount = _amount;
uint256 tokenAmountIn = _amount / giveawaySettings.ticketPrice;
if (_amount > giveawaySettings.ticketPrice) {
amount = tokenAmountIn * giveawaySettings.ticketPrice;
}
uint256 balance = silverFees.silverToken().balanceOf(user);
require(balance >= amount, "Not enough balance");
uint256 allowance = silverFees.silverToken().allowance(user, address(silverFees));
require(allowance >= amount, 'Not enough allowance');
silverFees.buyTicketsBurn(user, amount);
for (uint256 i = 0; i < tokenAmountIn; i++)
giveawayData.giveawayParticipants.push(user);
giveawayData.numberOfParticipants = giveawayData.giveawayParticipants.length;
giveawayTicketsData.userTickets[user] = UserTickets(userTickets(user) + tokenAmountIn, block.timestamp);
emit BuyTickets(user, amount, tokenAmountIn);
}
/**
* @dev Draw a winner for the giveaway
* @param isSwapToWrappedToken If the giveaway is in wrapped native token
* @param weeklyGiveawayAmount Amount to giveaway
* @notice Will draw a winner if the giveaway is active and ended
*/
function drawWinner(bool isSwapToWrappedToken, uint256 weeklyGiveawayAmount) private {
require(giveawayData.participationEnded, "Too early");
require(giveawayData.numberOfParticipants > 0, "0 participants");
uint256 winnerIndex = getRandomIndex(giveawayData.numberOfParticipants);
address winner = giveawayData.giveawayParticipants[winnerIndex];
uint256 giveawayAmount = weeklyGiveawayAmount;
bool success;
if (isSwapToWrappedToken)
success = silverFees.wrappedToken().transferFrom(address(silverFees), winner, giveawayAmount);
else
success = silverFees.silverToken().transferFrom(address(silverFees), winner, giveawayAmount);
require(success, "Transfer failed");
// Reset giveaway
giveawayData.participationEnded = false;
giveawayData.giveawayEndTime = silverFees.syncFeesLastSync() + giveawaySettings.giveawayTime;
giveawayData.giveawayParticipants = new address[](0);
giveawayData.numberOfParticipants = 0;
clearRequest();
giveawayTicketsData.lastExecution = block.timestamp;
emit DrawWinner(winner, giveawayAmount, winnerIndex);
}
function getRandomIndex(uint256 lenght) private view returns (uint256 _randomWords) {
uint256 randomWords = s_request.randomWords[0] % lenght;
return (randomWords);
}
// User tickets
/**
* @dev Get the user's tickets
* @param user Address of the user
* @return Number of tickets
*/
function userTickets(address user) public view returns (uint256) {
if (giveawayTicketsData.userTickets[user].timestamp > giveawayTicketsData.lastExecution && giveawaySettings.isGiveawayActive)
return giveawayTicketsData.userTickets[user].tickets;
return 0;
}
// Internal functions
function withdrawToken(address _token, address _to) public onlyOwner {
IERC20 token = IERC20(_token);
uint256 balance = token.balanceOf(address(this));
SafeERC20.safeTransfer(token, _to, balance);
emit WithdrawnToken(_token, _to, balance);
}
function applyEditedSettings() private {
if (giveawaySettings.editedTicketPrice != 0)
{
giveawaySettings.ticketPrice = giveawaySettings.editedTicketPrice;
giveawaySettings.editedTicketPrice = 0;
}
if (giveawaySettings.editedGiveawayTime != 0)
{
giveawayData.giveawayEndTime = silverFees.syncFeesLastSync() + giveawaySettings.editedGiveawayTime;
giveawaySettings.giveawayTime = giveawaySettings.editedGiveawayTime;
giveawaySettings.editedGiveawayTime = 0;
}
if (giveawaySettings.editedActive)
{
giveawaySettings.isGiveawayActive = !giveawaySettings.isGiveawayActive;
giveawaySettings.editedActive = false;
if (giveawaySettings.isGiveawayActive)
{
giveawayData.giveawayEndTime = silverFees.syncFeesLastSync() + giveawaySettings.giveawayTime;
emit StartedGiveaway(giveawaySettings.ticketPrice, giveawayData.giveawayEndTime);
}
else
emit StoppedGiveaway();
}
}
function editSilverFees(address _silverFees) public onlyOwner {
silverFees = SilverFees(payable(_silverFees));
emit EditedSilverFees(_silverFees);
}
function editGiveawayTicketPrice(uint256 _ticketPrice) public onlyOwner {
giveawaySettings.editedTicketPrice = _ticketPrice;
emit EditedGiveawayTicketPrice(_ticketPrice);
}
function editGiveawayTime(uint256 _giveawayTime) public onlyOwner {
giveawaySettings.editedGiveawayTime = _giveawayTime;
emit EditedGiveawayTime(_giveawayTime);
}
function setActiveGiveaway(bool _giveawayActive) public onlyOwner {
if (giveawaySettings.isGiveawayActive == _giveawayActive)
giveawaySettings.editedActive = false;
else
giveawaySettings.editedActive = true;
emit EditedGiveawayActive(_giveawayActive);
}
// Chainlink VRF
function requestRandomWords() private returns (uint256 _requestId) {
require(requestId == 0, "already sent");
requestId = requestRandomness(s_input.callbackGasLimit, s_input.requestConfirmations, s_input.numWords);
s_request = RequestStatus({
paid: VRF_V2_WRAPPER.calculateRequestPrice(s_input.callbackGasLimit),
randomWords: new uint256[](0),
fulfilled: false
});
emit RequestSent(requestId, s_input.numWords);
return requestId;
}
function fulfillRandomWords(uint256 _requestId, uint256[] memory _randomWords) internal override {
require(s_request.paid > 0, "request not found");
require(_requestId == requestId, "request id mismatch");
s_request.fulfilled = true;
s_request.randomWords = _randomWords;
emit RequestFulfilled(_requestId, _randomWords, s_request.paid);
}
function clearRequest() private {
requestId = 0;
s_request = RequestStatus({
paid: 0,
randomWords: new uint256[](0),
fulfilled: false
});
}
// Modifiers
modifier onlySilverFees() {
require(msg.sender == address(silverFees), 'Only SilverFees');
_;
}
}