S Price: $0.495645 (+1.69%)
    /

    Contract Diff Checker

    Contract Name:
    OptionPricingLinearV2

    Contract Source Code:

    // SPDX-License-Identifier: UNLICENSED
    pragma solidity ^0.8.13;
    
    // Libraries
    import {SafeMath} from "../../../libraries/math/SafeMath.sol";
    import {BlackScholes} from "./external/BlackScholes.sol";
    
    // Contracts
    import {Ownable} from "openzeppelin-contracts/contracts/access/Ownable.sol";
    
    contract OptionPricingLinearV2 is Ownable {
        using SafeMath for uint256;
    
        // The offset for volatility calculation in 1e4 precision
        uint256 public volatilityOffset;
    
        // The multiplier for volatility calculation in 1e4 precision
        uint256 public volatilityMultiplier;
    
        // The % of the price of asset which is the minimum option price possible in 1e8 precision
        uint256 public minOptionPricePercentage;
    
        // The decimal precision for volatility calculation
        uint256 public constant VOLATILITY_PRECISION = 1e4;
    
        // Time to expiry => volatility
        mapping(uint256 => uint256) public ttlToVol;
    
        // IV Setter addresses
        mapping(address => bool) public ivSetter;
    
        error NotIVSetter();
        error Vol_Not_Set();
        error ArrayLengthMismatch();
    
        constructor(uint256 _volatilityOffset, uint256 _volatilityMultiplier, uint256 _minOptionPricePercentage)
            Ownable(msg.sender)
        {
            volatilityOffset = _volatilityOffset;
            volatilityMultiplier = _volatilityMultiplier;
            minOptionPricePercentage = _minOptionPricePercentage;
    
            ivSetter[msg.sender] = true;
        }
    
        /*---- GOVERNANCE FUNCTIONS ----*/
    
        /// @notice Updates the IV setter
        /// @param _setter Address of the setter
        /// @param _status Status  to set
        /// @dev Only the owner of the contract can call this function
        function updateIVSetter(address _setter, bool _status) external onlyOwner {
            ivSetter[_setter] = _status;
        }
    
        /// @notice Updates the implied volatility (IV) for the given time to expirations (TTLs).
        /// @param _ttls The TTLs to update the IV for.
        /// @param _ttlIV The new IVs for the given TTLs.
        /// @dev Only the IV SETTER can call this function.
        function updateIVs(uint256[] calldata _ttls, uint256[] calldata _ttlIV) external {
            if (!ivSetter[msg.sender]) revert NotIVSetter();
            if (_ttls.length != _ttlIV.length) revert ArrayLengthMismatch();
    
            for (uint256 i; i < _ttls.length; i++) {
                ttlToVol[_ttls[i]] = _ttlIV[i];
            }
        }
    
        /// @notice updates the offset for volatility calculation
        /// @param _volatilityOffset the new offset
        /// @return whether offset was updated
        function updateVolatilityOffset(uint256 _volatilityOffset) external onlyOwner returns (bool) {
            volatilityOffset = _volatilityOffset;
    
            return true;
        }
    
        /// @notice updates the multiplier for volatility calculation
        /// @param _volatilityMultiplier the new multiplier
        /// @return whether multiplier was updated
        function updateVolatilityMultiplier(uint256 _volatilityMultiplier) external onlyOwner returns (bool) {
            volatilityMultiplier = _volatilityMultiplier;
    
            return true;
        }
    
        /// @notice updates % of the price of asset which is  the minimum option price possible
        /// @param _minOptionPricePercentage the new %
        /// @return whether % was updated
        function updateMinOptionPricePercentage(uint256 _minOptionPricePercentage) external onlyOwner returns (bool) {
            minOptionPricePercentage = _minOptionPricePercentage;
    
            return true;
        }
    
        /*---- VIEWS ----*/
    
        /// @notice computes the option price (with liquidity multiplier)
        /// @param hook the address of the hook
        /// @param isPut is put option
        /// @param expiry expiry timestamp
        /// @param strike strike price
        /// @param lastPrice current price
        function getOptionPrice(address hook, bool isPut, uint256 expiry, uint256 ttl, uint256 strike, uint256 lastPrice)
            external
            view
            returns (uint256)
        {
            uint256 timeToExpiry = expiry.sub(block.timestamp).div(864);
    
            uint256 volatility = ttlToVol[ttl];
    
            if (volatility == 0) revert Vol_Not_Set();
    
            volatility = getVolatility(strike, lastPrice, volatility);
    
            uint256 optionPrice = BlackScholes.calculate(isPut ? 1 : 0, lastPrice, strike, timeToExpiry, 0, volatility) // 0 - Put, 1 - Call
                    // Number of days to expiry mul by 100
                .div(BlackScholes.DIVISOR);
    
            uint256 minOptionPrice = lastPrice.mul(minOptionPricePercentage).div(1e10);
    
            if (minOptionPrice > optionPrice) {
                return minOptionPrice;
            }
    
            return optionPrice;
        }
    
        /// @notice computes the option price (with liquidity multiplier)
        /// @param hook the address of the hook
        /// @param isPut is put option
        /// @param ttl time to live for the option
        /// @param strike strike price
        /// @param lastPrice current price
        function getOptionPriceViaTTL(address hook, bool isPut, uint256 ttl, uint256 strike, uint256 lastPrice)
            external
            view
            returns (uint256)
        {
            uint256 timeToExpiry = ttl.div(864);
    
            uint256 volatility = ttlToVol[ttl];
    
            if (volatility == 0) revert();
    
            volatility = getVolatility(strike, lastPrice, volatility);
    
            uint256 optionPrice = BlackScholes.calculate(isPut ? 1 : 0, lastPrice, strike, timeToExpiry, 0, volatility) // 0 - Put, 1 - Call
                    // Number of days to expiry mul by 100
                .div(BlackScholes.DIVISOR);
    
            uint256 minOptionPrice = lastPrice.mul(minOptionPricePercentage).div(1e10);
    
            if (minOptionPrice > optionPrice) {
                return minOptionPrice;
            }
    
            return optionPrice;
        }
    
        /// @notice computes the volatility for a strike
        /// @param strike strike price
        /// @param lastPrice current price
        /// @param volatility volatility
        function getVolatility(uint256 strike, uint256 lastPrice, uint256 volatility) public view returns (uint256) {
            uint256 percentageDifference = strike.mul(1e2).mul(VOLATILITY_PRECISION).div(lastPrice); // 1e4 in percentage precision (1e6 is 100%)
    
            if (strike > lastPrice) {
                percentageDifference = percentageDifference.sub(1e6);
            } else {
                percentageDifference = uint256(1e6).sub(percentageDifference);
            }
    
            uint256 scaleFactor =
                volatilityOffset + (percentageDifference.mul(volatilityMultiplier).div(VOLATILITY_PRECISION));
    
            return (volatility.mul(scaleFactor).div(VOLATILITY_PRECISION));
        }
    }

    pragma solidity ^0.8.13;
    
    /**
     * @title SafeMath
     * @dev Math operations with safety checks that throw on error
     */
    library SafeMath {
        /**
         * @dev Multiplies two numbers, throws on overflow.
         */
        function mul(uint256 a, uint256 b) internal pure returns (uint256 c) {
            if (a == 0) {
                return 0;
            }
            c = a * b;
            assert(c / a == b);
            return c;
        }
    
        /**
         * @dev Integer division of two numbers, truncating the quotient.
         */
        function div(uint256 a, uint256 b) internal pure returns (uint256) {
            // assert(b > 0); // Solidity automatically throws when dividing by 0
            // uint256 c = a / b;
            // assert(a == b * c + a % b); // There is no case in which this doesn't hold
            return a / b;
        }
    
        /**
         * @dev Subtracts two numbers, throws on overflow (i.e. if subtrahend is greater than minuend).
         */
        function sub(uint256 a, uint256 b) internal pure returns (uint256) {
            assert(b <= a);
            return a - b;
        }
    
        /**
         * @dev Adds two numbers, throws on overflow.
         */
        function add(uint256 a, uint256 b) internal pure returns (uint256 c) {
            c = a + b;
            assert(c >= a);
            return c;
        }
    }

    // SPDX-License-Identifier: UNLICENSED
    pragma solidity ^0.8.13;
    
    // Libraries
    import {ABDKMathQuad} from "./ABDKMathQuad.sol";
    
    /// @title Black-Scholes option pricing formula and supporting statistical functions
    /// @author Dopex
    /// @notice This library implements the Black-Scholes model to price options.
    /// See - https://en.wikipedia.org/wiki/Black%E2%80%93Scholes_model
    /// @dev Implements the following implementation - https://cseweb.ucsd.edu/~goguen/courses/130/SayBlackScholes.html
    /// Uses the ABDKMathQuad(https://github.com/abdk-consulting/abdk-libraries-solidity/blob/master/ABDKMathQuad.md)
    /// library to make precise calculations. It uses a DIVISOR (1e16) for maintaining precision in constants.
    library BlackScholes {
        uint8 internal constant OPTION_TYPE_CALL = 0;
        uint8 internal constant OPTION_TYPE_PUT = 1;
    
        uint256 internal constant DIVISOR = 10 ** 16;
    
        /**
         * @notice The function that uses the Black-Scholes equation to calculate the option price
         * See http://en.wikipedia.org/wiki/Black%E2%80%93Scholes_model#Black-Scholes_formula
         * NOTE: The different parts of the equation are broken down to separate functions as using
         * ABDKMathQuad makes small equations verbose.
         * @param optionType Type of option - 0 = call, 1 = put
         * @param price Stock price
         * @param strike Strike price
         * @param timeToExpiry Time to expiry in days
         * @param riskFreeRate Risk-free rate
         * @param volatility Volatility on the asset
         * @return Option price based on the Black-Scholes model
         */
        function calculate(
            uint8 optionType,
            uint256 price,
            uint256 strike,
            uint256 timeToExpiry,
            uint256 riskFreeRate,
            uint256 volatility
        ) internal pure returns (uint256) {
            bytes16 S = ABDKMathQuad.fromUInt(price);
            bytes16 X = ABDKMathQuad.fromUInt(strike);
            bytes16 T = ABDKMathQuad.div(
                ABDKMathQuad.fromUInt(timeToExpiry),
                ABDKMathQuad.fromUInt(36500) // 365 * 10 ^ DAYS_PRECISION
            );
            bytes16 r = ABDKMathQuad.div(ABDKMathQuad.fromUInt(riskFreeRate), ABDKMathQuad.fromUInt(10000));
            bytes16 v = ABDKMathQuad.div(ABDKMathQuad.fromUInt(volatility), ABDKMathQuad.fromUInt(100));
            bytes16 d1 = ABDKMathQuad.div(
                ABDKMathQuad.add(
                    ABDKMathQuad.ln(ABDKMathQuad.div(S, X)),
                    ABDKMathQuad.mul(
                        ABDKMathQuad.add(r, ABDKMathQuad.mul(v, ABDKMathQuad.div(v, ABDKMathQuad.fromUInt(2)))), T
                    )
                ),
                ABDKMathQuad.mul(v, ABDKMathQuad.sqrt(T))
            );
            bytes16 d2 = ABDKMathQuad.sub(d1, ABDKMathQuad.mul(v, ABDKMathQuad.sqrt(T)));
            if (optionType == OPTION_TYPE_CALL) {
                return ABDKMathQuad.toUInt(
                    ABDKMathQuad.mul(_calculateCallTimeDecay(S, d1, X, r, T, d2), ABDKMathQuad.fromUInt(DIVISOR))
                );
            } else if (optionType == OPTION_TYPE_PUT) {
                return ABDKMathQuad.toUInt(
                    ABDKMathQuad.mul(_calculatePutTimeDecay(X, r, T, d2, S, d1), ABDKMathQuad.fromUInt(DIVISOR))
                );
            } else {
                return 0;
            }
        }
    
        /// @dev Function to caluclate the call time decay
        /// From the implementation page(https://cseweb.ucsd.edu/~goguen/courses/130/SayBlackScholes.html); part of the equation
        /// ( S * CND(d1)-X * Math.exp(-r * T) * CND(d2) );
        function _calculateCallTimeDecay(bytes16 S, bytes16 d1, bytes16 X, bytes16 r, bytes16 T, bytes16 d2)
            internal
            pure
            returns (bytes16)
        {
            return ABDKMathQuad.sub(
                ABDKMathQuad.mul(S, CND(d1)),
                ABDKMathQuad.mul(ABDKMathQuad.mul(X, ABDKMathQuad.exp(ABDKMathQuad.mul(ABDKMathQuad.neg(r), T))), CND(d2))
            );
        }
    
        /// @dev Function to caluclate the put time decay
        /// From the implementation page(https://cseweb.ucsd.edu/~goguen/courses/130/SayBlackScholes.html); part of the equation -
        /// ( X * Math.exp(-r * T) * CND(-d2) - S * CND(-d1) );
        function _calculatePutTimeDecay(bytes16 X, bytes16 r, bytes16 T, bytes16 d2, bytes16 S, bytes16 d1)
            internal
            pure
            returns (bytes16)
        {
            bytes16 price_part1 = ABDKMathQuad.mul(
                ABDKMathQuad.mul(X, ABDKMathQuad.exp(ABDKMathQuad.mul(ABDKMathQuad.neg(r), T))), CND(ABDKMathQuad.neg(d2))
            );
            bytes16 price_part2 = ABDKMathQuad.mul(S, CND(ABDKMathQuad.neg(d1)));
            bytes16 price = ABDKMathQuad.sub(price_part1, price_part2);
            return price;
        }
    
        /**
         * @notice Normal cumulative distribution function.
         * See http://en.wikipedia.org/wiki/Normal_distribution#Cumulative_distribution_function
         * From the implementation page(https://cseweb.ucsd.edu/~goguen/courses/130/SayBlackScholes.html); part of the equation -
         * "k = 1 / (1 + .2316419 * x); return ( 1 - Math.exp(-x * x / 2)/ Math.sqrt(2*Math.PI) * k * (.31938153 + k * (-.356563782 + k * (1.781477937 + k * (-1.821255978 + k * 1.330274429)))) );"
         * NOTE: The different parts of the equation are broken down to separate functions as using
         * ABDKMathQuad makes small equations verbose.
         */
        function CND(bytes16 x) internal pure returns (bytes16) {
            if (ABDKMathQuad.toInt(x) < 0) {
                return (ABDKMathQuad.sub(ABDKMathQuad.fromUInt(1), CND(ABDKMathQuad.neg(x))));
            } else {
                bytes16 k = ABDKMathQuad.div(
                    ABDKMathQuad.fromUInt(1),
                    ABDKMathQuad.add(
                        ABDKMathQuad.fromUInt(1),
                        ABDKMathQuad.mul(
                            ABDKMathQuad.div(ABDKMathQuad.fromUInt(2316419000000000), ABDKMathQuad.fromUInt(DIVISOR)), x
                        )
                    )
                );
                bytes16 CND_part2 = _getCNDPart2(k, x);
                return ABDKMathQuad.sub(ABDKMathQuad.fromUInt(1), CND_part2);
            }
        }
    
        function _getCNDPart2(bytes16 k, bytes16 x) internal pure returns (bytes16) {
            return ABDKMathQuad.mul(_getCNDPart2_1(x), _getCNDPart2_2(k));
        }
    
        function _getCNDPart2_1(bytes16 x) internal pure returns (bytes16) {
            return ABDKMathQuad.div(
                ABDKMathQuad.exp(ABDKMathQuad.mul(ABDKMathQuad.neg(x), ABDKMathQuad.div(x, ABDKMathQuad.fromUInt(2)))),
                ABDKMathQuad.sqrt(
                    ABDKMathQuad.mul(
                        ABDKMathQuad.fromUInt(2),
                        ABDKMathQuad.div(ABDKMathQuad.fromUInt(31415926530000000), ABDKMathQuad.fromUInt(DIVISOR))
                    )
                )
            );
        }
    
        function _getCNDPart2_2(bytes16 k) internal pure returns (bytes16) {
            return ABDKMathQuad.mul(
                ABDKMathQuad.add(
                    ABDKMathQuad.div(ABDKMathQuad.fromUInt(3193815300000000), ABDKMathQuad.fromUInt(DIVISOR)),
                    ABDKMathQuad.mul(
                        k,
                        ABDKMathQuad.add(
                            ABDKMathQuad.neg(
                                ABDKMathQuad.div(ABDKMathQuad.fromUInt(3565637820000000), ABDKMathQuad.fromUInt(DIVISOR))
                            ),
                            ABDKMathQuad.mul(
                                k,
                                ABDKMathQuad.add(
                                    ABDKMathQuad.div(
                                        ABDKMathQuad.fromUInt(17814779370000000), ABDKMathQuad.fromUInt(DIVISOR)
                                    ),
                                    _getCNDPart2_2_1(k)
                                )
                            )
                        )
                    )
                ),
                k
            );
        }
    
        function _getCNDPart2_2_1(bytes16 k) internal pure returns (bytes16) {
            return ABDKMathQuad.mul(
                k,
                ABDKMathQuad.add(
                    ABDKMathQuad.neg(
                        ABDKMathQuad.div(ABDKMathQuad.fromUInt(18212559780000000), ABDKMathQuad.fromUInt(DIVISOR))
                    ),
                    ABDKMathQuad.mul(
                        k, ABDKMathQuad.div(ABDKMathQuad.fromUInt(13302744290000000), ABDKMathQuad.fromUInt(DIVISOR))
                    )
                )
            );
        }
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
    
    pragma solidity ^0.8.20;
    
    import {Context} from "../utils/Context.sol";
    
    /**
     * @dev Contract module which provides a basic access control mechanism, where
     * there is an account (an owner) that can be granted exclusive access to
     * specific functions.
     *
     * The initial owner is set to the address provided by the deployer. This can
     * later be changed with {transferOwnership}.
     *
     * This module is used through inheritance. It will make available the modifier
     * `onlyOwner`, which can be applied to your functions to restrict their use to
     * the owner.
     */
    abstract contract Ownable is Context {
        address private _owner;
    
        /**
         * @dev The caller account is not authorized to perform an operation.
         */
        error OwnableUnauthorizedAccount(address account);
    
        /**
         * @dev The owner is not a valid owner account. (eg. `address(0)`)
         */
        error OwnableInvalidOwner(address owner);
    
        event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
    
        /**
         * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
         */
        constructor(address initialOwner) {
            if (initialOwner == address(0)) {
                revert OwnableInvalidOwner(address(0));
            }
            _transferOwnership(initialOwner);
        }
    
        /**
         * @dev Throws if called by any account other than the owner.
         */
        modifier onlyOwner() {
            _checkOwner();
            _;
        }
    
        /**
         * @dev Returns the address of the current owner.
         */
        function owner() public view virtual returns (address) {
            return _owner;
        }
    
        /**
         * @dev Throws if the sender is not the owner.
         */
        function _checkOwner() internal view virtual {
            if (owner() != _msgSender()) {
                revert OwnableUnauthorizedAccount(_msgSender());
            }
        }
    
        /**
         * @dev Leaves the contract without owner. It will not be possible to call
         * `onlyOwner` functions. Can only be called by the current owner.
         *
         * NOTE: Renouncing ownership will leave the contract without an owner,
         * thereby disabling any functionality that is only available to the owner.
         */
        function renounceOwnership() public virtual onlyOwner {
            _transferOwnership(address(0));
        }
    
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Can only be called by the current owner.
         */
        function transferOwnership(address newOwner) public virtual onlyOwner {
            if (newOwner == address(0)) {
                revert OwnableInvalidOwner(address(0));
            }
            _transferOwnership(newOwner);
        }
    
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Internal function without access restriction.
         */
        function _transferOwnership(address newOwner) internal virtual {
            address oldOwner = _owner;
            _owner = newOwner;
            emit OwnershipTransferred(oldOwner, newOwner);
        }
    }

    // SPDX-License-Identifier: BSD-4-Clause
    /*
     * ABDK Math Quad Smart Contract Library.  Copyright © 2019 by ABDK Consulting.
     * Author: Mikhail Vladimirov <mikhail.vladimirov@gmail.com>
     */
    pragma solidity ^0.8.13;
    
    /**
     * Smart contract library of mathematical functions operating with IEEE 754
     * quadruple-precision binary floating-point numbers (quadruple precision
     * numbers).  As long as quadruple precision numbers are 16-bytes long, they are
     * represented by bytes16 type.
     */
    library ABDKMathQuad {
        /*
         * 0.
         */
        bytes16 private constant POSITIVE_ZERO = 0x00000000000000000000000000000000;
    
        /*
         * -0.
         */
        bytes16 private constant NEGATIVE_ZERO = 0x80000000000000000000000000000000;
    
        /*
         * +Infinity.
         */
        bytes16 private constant POSITIVE_INFINITY = 0x7FFF0000000000000000000000000000;
    
        /*
         * -Infinity.
         */
        bytes16 private constant NEGATIVE_INFINITY = 0xFFFF0000000000000000000000000000;
    
        /*
         * Canonical NaN value.
         */
        bytes16 private constant NaN = 0x7FFF8000000000000000000000000000;
    
        /**
         * Convert signed 256-bit integer number into quadruple precision number.
         *
         * @param x signed 256-bit integer number
         * @return quadruple precision number
         */
        function fromInt(int256 x) internal pure returns (bytes16) {
            unchecked {
                if (x == 0) {
                    return bytes16(0);
                } else {
                    // We rely on overflow behavior here
                    uint256 result = uint256(x > 0 ? x : -x);
    
                    uint256 msb = mostSignificantBit(result);
                    if (msb < 112) result <<= 112 - msb;
                    else if (msb > 112) result >>= msb - 112;
    
                    result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112);
                    if (x < 0) result |= 0x80000000000000000000000000000000;
    
                    return bytes16(uint128(result));
                }
            }
        }
    
        /**
         * Convert quadruple precision number into signed 256-bit integer number
         * rounding towards zero.  Revert on overflow.
         *
         * @param x quadruple precision number
         * @return signed 256-bit integer number
         */
        function toInt(bytes16 x) internal pure returns (int256) {
            unchecked {
                uint256 exponent = (uint128(x) >> 112) & 0x7FFF;
    
                require(exponent <= 16638); // Overflow
                if (exponent < 16383) return 0; // Underflow
    
                uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000;
    
                if (exponent < 16495) result >>= 16495 - exponent;
                else if (exponent > 16495) result <<= exponent - 16495;
    
                if (uint128(x) >= 0x80000000000000000000000000000000) {
                    // Negative
                    require(result <= 0x8000000000000000000000000000000000000000000000000000000000000000);
                    return -int256(result); // We rely on overflow behavior here
                } else {
                    require(result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
                    return int256(result);
                }
            }
        }
    
        /**
         * Convert unsigned 256-bit integer number into quadruple precision number.
         *
         * @param x unsigned 256-bit integer number
         * @return quadruple precision number
         */
        function fromUInt(uint256 x) internal pure returns (bytes16) {
            unchecked {
                if (x == 0) {
                    return bytes16(0);
                } else {
                    uint256 result = x;
    
                    uint256 msb = mostSignificantBit(result);
                    if (msb < 112) result <<= 112 - msb;
                    else if (msb > 112) result >>= msb - 112;
    
                    result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16383 + msb) << 112);
    
                    return bytes16(uint128(result));
                }
            }
        }
    
        /**
         * Convert quadruple precision number into unsigned 256-bit integer number
         * rounding towards zero.  Revert on underflow.  Note, that negative floating
         * point numbers in range (-1.0 .. 0.0) may be converted to unsigned integer
         * without error, because they are rounded to zero.
         *
         * @param x quadruple precision number
         * @return unsigned 256-bit integer number
         */
        function toUInt(bytes16 x) internal pure returns (uint256) {
            unchecked {
                uint256 exponent = (uint128(x) >> 112) & 0x7FFF;
    
                if (exponent < 16383) return 0; // Underflow
    
                require(uint128(x) < 0x80000000000000000000000000000000); // Negative
    
                require(exponent <= 16638); // Overflow
                uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000;
    
                if (exponent < 16495) result >>= 16495 - exponent;
                else if (exponent > 16495) result <<= exponent - 16495;
    
                return result;
            }
        }
    
        /**
         * Convert signed 128.128 bit fixed point number into quadruple precision
         * number.
         *
         * @param x signed 128.128 bit fixed point number
         * @return quadruple precision number
         */
        function from128x128(int256 x) internal pure returns (bytes16) {
            unchecked {
                if (x == 0) {
                    return bytes16(0);
                } else {
                    // We rely on overflow behavior here
                    uint256 result = uint256(x > 0 ? x : -x);
    
                    uint256 msb = mostSignificantBit(result);
                    if (msb < 112) result <<= 112 - msb;
                    else if (msb > 112) result >>= msb - 112;
    
                    result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16255 + msb) << 112);
                    if (x < 0) result |= 0x80000000000000000000000000000000;
    
                    return bytes16(uint128(result));
                }
            }
        }
    
        /**
         * Convert quadruple precision number into signed 128.128 bit fixed point
         * number.  Revert on overflow.
         *
         * @param x quadruple precision number
         * @return signed 128.128 bit fixed point number
         */
        function to128x128(bytes16 x) internal pure returns (int256) {
            unchecked {
                uint256 exponent = (uint128(x) >> 112) & 0x7FFF;
    
                require(exponent <= 16510); // Overflow
                if (exponent < 16255) return 0; // Underflow
    
                uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000;
    
                if (exponent < 16367) result >>= 16367 - exponent;
                else if (exponent > 16367) result <<= exponent - 16367;
    
                if (uint128(x) >= 0x80000000000000000000000000000000) {
                    // Negative
                    require(result <= 0x8000000000000000000000000000000000000000000000000000000000000000);
                    return -int256(result); // We rely on overflow behavior here
                } else {
                    require(result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
                    return int256(result);
                }
            }
        }
    
        /**
         * Convert signed 64.64 bit fixed point number into quadruple precision
         * number.
         *
         * @param x signed 64.64 bit fixed point number
         * @return quadruple precision number
         */
        function from64x64(int128 x) internal pure returns (bytes16) {
            unchecked {
                if (x == 0) {
                    return bytes16(0);
                } else {
                    // We rely on overflow behavior here
                    uint256 result = uint128(x > 0 ? x : -x);
    
                    uint256 msb = mostSignificantBit(result);
                    if (msb < 112) result <<= 112 - msb;
                    else if (msb > 112) result >>= msb - 112;
    
                    result = (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | ((16319 + msb) << 112);
                    if (x < 0) result |= 0x80000000000000000000000000000000;
    
                    return bytes16(uint128(result));
                }
            }
        }
    
        /**
         * Convert quadruple precision number into signed 64.64 bit fixed point
         * number.  Revert on overflow.
         *
         * @param x quadruple precision number
         * @return signed 64.64 bit fixed point number
         */
        function to64x64(bytes16 x) internal pure returns (int128) {
            unchecked {
                uint256 exponent = (uint128(x) >> 112) & 0x7FFF;
    
                require(exponent <= 16446); // Overflow
                if (exponent < 16319) return 0; // Underflow
    
                uint256 result = (uint256(uint128(x)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) | 0x10000000000000000000000000000;
    
                if (exponent < 16431) result >>= 16431 - exponent;
                else if (exponent > 16431) result <<= exponent - 16431;
    
                if (uint128(x) >= 0x80000000000000000000000000000000) {
                    // Negative
                    require(result <= 0x80000000000000000000000000000000);
                    return -int128(int256(result)); // We rely on overflow behavior here
                } else {
                    require(result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
                    return int128(int256(result));
                }
            }
        }
    
        /**
         * Convert octuple precision number into quadruple precision number.
         *
         * @param x octuple precision number
         * @return quadruple precision number
         */
        function fromOctuple(bytes32 x) internal pure returns (bytes16) {
            unchecked {
                bool negative = x & 0x8000000000000000000000000000000000000000000000000000000000000000 > 0;
    
                uint256 exponent = (uint256(x) >> 236) & 0x7FFFF;
                uint256 significand = uint256(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
    
                if (exponent == 0x7FFFF) {
                    if (significand > 0) return NaN;
                    else return negative ? NEGATIVE_INFINITY : POSITIVE_INFINITY;
                }
    
                if (exponent > 278526) {
                    return negative ? NEGATIVE_INFINITY : POSITIVE_INFINITY;
                } else if (exponent < 245649) {
                    return negative ? NEGATIVE_ZERO : POSITIVE_ZERO;
                } else if (exponent < 245761) {
                    significand = (significand | 0x100000000000000000000000000000000000000000000000000000000000)
                        >> (245885 - exponent);
                    exponent = 0;
                } else {
                    significand >>= 124;
                    exponent -= 245760;
                }
    
                uint128 result = uint128(significand | (exponent << 112));
                if (negative) result |= 0x80000000000000000000000000000000;
    
                return bytes16(result);
            }
        }
    
        /**
         * Convert quadruple precision number into octuple precision number.
         *
         * @param x quadruple precision number
         * @return octuple precision number
         */
        function toOctuple(bytes16 x) internal pure returns (bytes32) {
            unchecked {
                uint256 exponent = (uint128(x) >> 112) & 0x7FFF;
    
                uint256 result = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
    
                if (exponent == 0x7FFF) {
                    exponent = 0x7FFFF;
                } // Infinity or NaN
                else if (exponent == 0) {
                    if (result > 0) {
                        uint256 msb = mostSignificantBit(result);
                        result = (result << (236 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
                        exponent = 245649 + msb;
                    }
                } else {
                    result <<= 124;
                    exponent += 245760;
                }
    
                result |= exponent << 236;
                if (uint128(x) >= 0x80000000000000000000000000000000) {
                    result |= 0x8000000000000000000000000000000000000000000000000000000000000000;
                }
    
                return bytes32(result);
            }
        }
    
        /**
         * Convert double precision number into quadruple precision number.
         *
         * @param x double precision number
         * @return quadruple precision number
         */
        function fromDouble(bytes8 x) internal pure returns (bytes16) {
            unchecked {
                uint256 exponent = (uint64(x) >> 52) & 0x7FF;
    
                uint256 result = uint64(x) & 0xFFFFFFFFFFFFF;
    
                if (exponent == 0x7FF) {
                    exponent = 0x7FFF;
                } // Infinity or NaN
                else if (exponent == 0) {
                    if (result > 0) {
                        uint256 msb = mostSignificantBit(result);
                        result = (result << (112 - msb)) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
                        exponent = 15309 + msb;
                    }
                } else {
                    result <<= 60;
                    exponent += 15360;
                }
    
                result |= exponent << 112;
                if (x & 0x8000000000000000 > 0) {
                    result |= 0x80000000000000000000000000000000;
                }
    
                return bytes16(uint128(result));
            }
        }
    
        /**
         * Convert quadruple precision number into double precision number.
         *
         * @param x quadruple precision number
         * @return double precision number
         */
        function toDouble(bytes16 x) internal pure returns (bytes8) {
            unchecked {
                bool negative = uint128(x) >= 0x80000000000000000000000000000000;
    
                uint256 exponent = (uint128(x) >> 112) & 0x7FFF;
                uint256 significand = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
    
                if (exponent == 0x7FFF) {
                    if (significand > 0) {
                        return 0x7FF8000000000000;
                    }
                    // NaN
                    else {
                        return negative
                            ? bytes8(0xFFF0000000000000) // -Infinity
                            : bytes8(0x7FF0000000000000);
                    } // Infinity
                }
    
                if (exponent > 17406) {
                    return negative
                        ? bytes8(0xFFF0000000000000) // -Infinity
                        : bytes8(0x7FF0000000000000);
                }
                // Infinity
                else if (exponent < 15309) {
                    return negative
                        ? bytes8(0x8000000000000000) // -0
                        : bytes8(0x0000000000000000);
                }
                // 0
                else if (exponent < 15361) {
                    significand = (significand | 0x10000000000000000000000000000) >> (15421 - exponent);
                    exponent = 0;
                } else {
                    significand >>= 60;
                    exponent -= 15360;
                }
    
                uint64 result = uint64(significand | (exponent << 52));
                if (negative) result |= 0x8000000000000000;
    
                return bytes8(result);
            }
        }
    
        /**
         * Test whether given quadruple precision number is NaN.
         *
         * @param x quadruple precision number
         * @return true if x is NaN, false otherwise
         */
        function isNaN(bytes16 x) internal pure returns (bool) {
            unchecked {
                return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF > 0x7FFF0000000000000000000000000000;
            }
        }
    
        /**
         * Test whether given quadruple precision number is positive or negative
         * infinity.
         *
         * @param x quadruple precision number
         * @return true if x is positive or negative infinity, false otherwise
         */
        function isInfinity(bytes16 x) internal pure returns (bool) {
            unchecked {
                return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0x7FFF0000000000000000000000000000;
            }
        }
    
        /**
         * Calculate sign of x, i.e. -1 if x is negative, 0 if x if zero, and 1 if x
         * is positive.  Note that sign (-0) is zero.  Revert if x is NaN.
         *
         * @param x quadruple precision number
         * @return sign of x
         */
        function sign(bytes16 x) internal pure returns (int8) {
            unchecked {
                uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
    
                require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN
    
                if (absoluteX == 0) {
                    return 0;
                } else if (uint128(x) >= 0x80000000000000000000000000000000) {
                    return -1;
                } else {
                    return 1;
                }
            }
        }
    
        /**
         * Calculate sign (x - y).  Revert if either argument is NaN, or both
         * arguments are infinities of the same sign.
         *
         * @param x quadruple precision number
         * @param y quadruple precision number
         * @return sign (x - y)
         */
        function cmp(bytes16 x, bytes16 y) internal pure returns (int8) {
            unchecked {
                uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
    
                require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN
    
                uint128 absoluteY = uint128(y) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
    
                require(absoluteY <= 0x7FFF0000000000000000000000000000); // Not NaN
    
                // Not infinities of the same sign
                require(x != y || absoluteX < 0x7FFF0000000000000000000000000000);
    
                if (x == y) {
                    return 0;
                } else {
                    bool negativeX = uint128(x) >= 0x80000000000000000000000000000000;
                    bool negativeY = uint128(y) >= 0x80000000000000000000000000000000;
    
                    if (negativeX) {
                        if (negativeY) return absoluteX > absoluteY ? -1 : int8(1);
                        else return -1;
                    } else {
                        if (negativeY) return 1;
                        else return absoluteX > absoluteY ? int8(1) : -1;
                    }
                }
            }
        }
    
        /**
         * Test whether x equals y.  NaN, infinity, and -infinity are not equal to
         * anything.
         *
         * @param x quadruple precision number
         * @param y quadruple precision number
         * @return true if x equals to y, false otherwise
         */
        function eq(bytes16 x, bytes16 y) internal pure returns (bool) {
            unchecked {
                if (x == y) {
                    return uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF < 0x7FFF0000000000000000000000000000;
                } else {
                    return false;
                }
            }
        }
    
        /**
         * Calculate x + y.  Special values behave in the following way:
         *
         * NaN + x = NaN for any x.
         * Infinity + x = Infinity for any finite x.
         * -Infinity + x = -Infinity for any finite x.
         * Infinity + Infinity = Infinity.
         * -Infinity + -Infinity = -Infinity.
         * Infinity + -Infinity = -Infinity + Infinity = NaN.
         *
         * @param x quadruple precision number
         * @param y quadruple precision number
         * @return quadruple precision number
         */
        function add(bytes16 x, bytes16 y) internal pure returns (bytes16) {
            unchecked {
                uint256 xExponent = (uint128(x) >> 112) & 0x7FFF;
                uint256 yExponent = (uint128(y) >> 112) & 0x7FFF;
    
                if (xExponent == 0x7FFF) {
                    if (yExponent == 0x7FFF) {
                        if (x == y) return x;
                        else return NaN;
                    } else {
                        return x;
                    }
                } else if (yExponent == 0x7FFF) {
                    return y;
                } else {
                    bool xSign = uint128(x) >= 0x80000000000000000000000000000000;
                    uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
                    if (xExponent == 0) xExponent = 1;
                    else xSignifier |= 0x10000000000000000000000000000;
    
                    bool ySign = uint128(y) >= 0x80000000000000000000000000000000;
                    uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
                    if (yExponent == 0) yExponent = 1;
                    else ySignifier |= 0x10000000000000000000000000000;
    
                    if (xSignifier == 0) {
                        return y == NEGATIVE_ZERO ? POSITIVE_ZERO : y;
                    } else if (ySignifier == 0) {
                        return x == NEGATIVE_ZERO ? POSITIVE_ZERO : x;
                    } else {
                        int256 delta = int256(xExponent) - int256(yExponent);
    
                        if (xSign == ySign) {
                            if (delta > 112) {
                                return x;
                            } else if (delta > 0) {
                                ySignifier >>= uint256(delta);
                            } else if (delta < -112) {
                                return y;
                            } else if (delta < 0) {
                                xSignifier >>= uint256(-delta);
                                xExponent = yExponent;
                            }
    
                            xSignifier += ySignifier;
    
                            if (xSignifier >= 0x20000000000000000000000000000) {
                                xSignifier >>= 1;
                                xExponent += 1;
                            }
    
                            if (xExponent == 0x7FFF) {
                                return xSign ? NEGATIVE_INFINITY : POSITIVE_INFINITY;
                            } else {
                                if (xSignifier < 0x10000000000000000000000000000) {
                                    xExponent = 0;
                                } else {
                                    xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
                                }
    
                                return bytes16(
                                    uint128(
                                        (xSign ? 0x80000000000000000000000000000000 : 0) | (xExponent << 112) | xSignifier
                                    )
                                );
                            }
                        } else {
                            if (delta > 0) {
                                xSignifier <<= 1;
                                xExponent -= 1;
                            } else if (delta < 0) {
                                ySignifier <<= 1;
                                xExponent = yExponent - 1;
                            }
    
                            if (delta > 112) {
                                ySignifier = 1;
                            } else if (delta > 1) {
                                ySignifier = ((ySignifier - 1) >> uint256(delta - 1)) + 1;
                            } else if (delta < -112) {
                                xSignifier = 1;
                            } else if (delta < -1) {
                                xSignifier = ((xSignifier - 1) >> uint256(-delta - 1)) + 1;
                            }
    
                            if (xSignifier >= ySignifier) {
                                xSignifier -= ySignifier;
                            } else {
                                xSignifier = ySignifier - xSignifier;
                                xSign = ySign;
                            }
    
                            if (xSignifier == 0) return POSITIVE_ZERO;
    
                            uint256 msb = mostSignificantBit(xSignifier);
    
                            if (msb == 113) {
                                xSignifier = (xSignifier >> 1) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
                                xExponent += 1;
                            } else if (msb < 112) {
                                uint256 shift = 112 - msb;
                                if (xExponent > shift) {
                                    xSignifier = (xSignifier << shift) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
                                    xExponent -= shift;
                                } else {
                                    xSignifier <<= xExponent - 1;
                                    xExponent = 0;
                                }
                            } else {
                                xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
                            }
    
                            if (xExponent == 0x7FFF) {
                                return xSign ? NEGATIVE_INFINITY : POSITIVE_INFINITY;
                            } else {
                                return bytes16(
                                    uint128(
                                        (xSign ? 0x80000000000000000000000000000000 : 0) | (xExponent << 112) | xSignifier
                                    )
                                );
                            }
                        }
                    }
                }
            }
        }
    
        /**
         * Calculate x - y.  Special values behave in the following way:
         *
         * NaN - x = NaN for any x.
         * Infinity - x = Infinity for any finite x.
         * -Infinity - x = -Infinity for any finite x.
         * Infinity - -Infinity = Infinity.
         * -Infinity - Infinity = -Infinity.
         * Infinity - Infinity = -Infinity - -Infinity = NaN.
         *
         * @param x quadruple precision number
         * @param y quadruple precision number
         * @return quadruple precision number
         */
        function sub(bytes16 x, bytes16 y) internal pure returns (bytes16) {
            unchecked {
                return add(x, y ^ 0x80000000000000000000000000000000);
            }
        }
    
        /**
         * Calculate x * y.  Special values behave in the following way:
         *
         * NaN * x = NaN for any x.
         * Infinity * x = Infinity for any finite positive x.
         * Infinity * x = -Infinity for any finite negative x.
         * -Infinity * x = -Infinity for any finite positive x.
         * -Infinity * x = Infinity for any finite negative x.
         * Infinity * 0 = NaN.
         * -Infinity * 0 = NaN.
         * Infinity * Infinity = Infinity.
         * Infinity * -Infinity = -Infinity.
         * -Infinity * Infinity = -Infinity.
         * -Infinity * -Infinity = Infinity.
         *
         * @param x quadruple precision number
         * @param y quadruple precision number
         * @return quadruple precision number
         */
        function mul(bytes16 x, bytes16 y) internal pure returns (bytes16) {
            unchecked {
                uint256 xExponent = (uint128(x) >> 112) & 0x7FFF;
                uint256 yExponent = (uint128(y) >> 112) & 0x7FFF;
    
                if (xExponent == 0x7FFF) {
                    if (yExponent == 0x7FFF) {
                        if (x == y) {
                            return x ^ (y & 0x80000000000000000000000000000000);
                        } else if (x ^ y == 0x80000000000000000000000000000000) {
                            return x | y;
                        } else {
                            return NaN;
                        }
                    } else {
                        if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN;
                        else return x ^ (y & 0x80000000000000000000000000000000);
                    }
                } else if (yExponent == 0x7FFF) {
                    if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN;
                    else return y ^ (x & 0x80000000000000000000000000000000);
                } else {
                    uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
                    if (xExponent == 0) xExponent = 1;
                    else xSignifier |= 0x10000000000000000000000000000;
    
                    uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
                    if (yExponent == 0) yExponent = 1;
                    else ySignifier |= 0x10000000000000000000000000000;
    
                    xSignifier *= ySignifier;
                    if (xSignifier == 0) {
                        return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? NEGATIVE_ZERO : POSITIVE_ZERO;
                    }
    
                    xExponent += yExponent;
    
                    uint256 msb = xSignifier >= 0x200000000000000000000000000000000000000000000000000000000
                        ? 225
                        : xSignifier >= 0x100000000000000000000000000000000000000000000000000000000
                            ? 224
                            : mostSignificantBit(xSignifier);
    
                    if (xExponent + msb < 16496) {
                        // Underflow
                        xExponent = 0;
                        xSignifier = 0;
                    } else if (xExponent + msb < 16608) {
                        // Subnormal
                        if (xExponent < 16496) {
                            xSignifier >>= 16496 - xExponent;
                        } else if (xExponent > 16496) {
                            xSignifier <<= xExponent - 16496;
                        }
                        xExponent = 0;
                    } else if (xExponent + msb > 49373) {
                        xExponent = 0x7FFF;
                        xSignifier = 0;
                    } else {
                        if (msb > 112) xSignifier >>= msb - 112;
                        else if (msb < 112) xSignifier <<= 112 - msb;
    
                        xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
    
                        xExponent = xExponent + msb - 16607;
                    }
    
                    return bytes16(
                        uint128(uint128((x ^ y) & 0x80000000000000000000000000000000) | (xExponent << 112) | xSignifier)
                    );
                }
            }
        }
    
        /**
         * Calculate x / y.  Special values behave in the following way:
         *
         * NaN / x = NaN for any x.
         * x / NaN = NaN for any x.
         * Infinity / x = Infinity for any finite non-negative x.
         * Infinity / x = -Infinity for any finite negative x including -0.
         * -Infinity / x = -Infinity for any finite non-negative x.
         * -Infinity / x = Infinity for any finite negative x including -0.
         * x / Infinity = 0 for any finite non-negative x.
         * x / -Infinity = -0 for any finite non-negative x.
         * x / Infinity = -0 for any finite non-negative x including -0.
         * x / -Infinity = 0 for any finite non-negative x including -0.
         *
         * Infinity / Infinity = NaN.
         * Infinity / -Infinity = -NaN.
         * -Infinity / Infinity = -NaN.
         * -Infinity / -Infinity = NaN.
         *
         * Division by zero behaves in the following way:
         *
         * x / 0 = Infinity for any finite positive x.
         * x / -0 = -Infinity for any finite positive x.
         * x / 0 = -Infinity for any finite negative x.
         * x / -0 = Infinity for any finite negative x.
         * 0 / 0 = NaN.
         * 0 / -0 = NaN.
         * -0 / 0 = NaN.
         * -0 / -0 = NaN.
         *
         * @param x quadruple precision number
         * @param y quadruple precision number
         * @return quadruple precision number
         */
        function div(bytes16 x, bytes16 y) internal pure returns (bytes16) {
            unchecked {
                uint256 xExponent = (uint128(x) >> 112) & 0x7FFF;
                uint256 yExponent = (uint128(y) >> 112) & 0x7FFF;
    
                if (xExponent == 0x7FFF) {
                    if (yExponent == 0x7FFF) return NaN;
                    else return x ^ (y & 0x80000000000000000000000000000000);
                } else if (yExponent == 0x7FFF) {
                    if (y & 0x0000FFFFFFFFFFFFFFFFFFFFFFFFFFFF != 0) return NaN;
                    else return POSITIVE_ZERO | ((x ^ y) & 0x80000000000000000000000000000000);
                } else if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) {
                    if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN;
                    else return POSITIVE_INFINITY | ((x ^ y) & 0x80000000000000000000000000000000);
                } else {
                    uint256 ySignifier = uint128(y) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
                    if (yExponent == 0) yExponent = 1;
                    else ySignifier |= 0x10000000000000000000000000000;
    
                    uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
                    if (xExponent == 0) {
                        if (xSignifier != 0) {
                            uint256 shift = 226 - mostSignificantBit(xSignifier);
    
                            xSignifier <<= shift;
    
                            xExponent = 1;
                            yExponent += shift - 114;
                        }
                    } else {
                        xSignifier = (xSignifier | 0x10000000000000000000000000000) << 114;
                    }
    
                    xSignifier = xSignifier / ySignifier;
                    if (xSignifier == 0) {
                        return (x ^ y) & 0x80000000000000000000000000000000 > 0 ? NEGATIVE_ZERO : POSITIVE_ZERO;
                    }
    
                    assert(xSignifier >= 0x1000000000000000000000000000);
    
                    uint256 msb = xSignifier >= 0x80000000000000000000000000000
                        ? mostSignificantBit(xSignifier)
                        : xSignifier >= 0x40000000000000000000000000000
                            ? 114
                            : xSignifier >= 0x20000000000000000000000000000 ? 113 : 112;
    
                    if (xExponent + msb > yExponent + 16497) {
                        // Overflow
                        xExponent = 0x7FFF;
                        xSignifier = 0;
                    } else if (xExponent + msb + 16380 < yExponent) {
                        // Underflow
                        xExponent = 0;
                        xSignifier = 0;
                    } else if (xExponent + msb + 16268 < yExponent) {
                        // Subnormal
                        if (xExponent + 16380 > yExponent) {
                            xSignifier <<= xExponent + 16380 - yExponent;
                        } else if (xExponent + 16380 < yExponent) {
                            xSignifier >>= yExponent - xExponent - 16380;
                        }
    
                        xExponent = 0;
                    } else {
                        // Normal
                        if (msb > 112) xSignifier >>= msb - 112;
    
                        xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
    
                        xExponent = xExponent + msb + 16269 - yExponent;
                    }
    
                    return bytes16(
                        uint128(uint128((x ^ y) & 0x80000000000000000000000000000000) | (xExponent << 112) | xSignifier)
                    );
                }
            }
        }
    
        /**
         * Calculate -x.
         *
         * @param x quadruple precision number
         * @return quadruple precision number
         */
        function neg(bytes16 x) internal pure returns (bytes16) {
            unchecked {
                return x ^ 0x80000000000000000000000000000000;
            }
        }
    
        /**
         * Calculate |x|.
         *
         * @param x quadruple precision number
         * @return quadruple precision number
         */
        function abs(bytes16 x) internal pure returns (bytes16) {
            unchecked {
                return x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
            }
        }
    
        /**
         * Calculate square root of x.  Return NaN on negative x excluding -0.
         *
         * @param x quadruple precision number
         * @return quadruple precision number
         */
        function sqrt(bytes16 x) internal pure returns (bytes16) {
            unchecked {
                if (uint128(x) > 0x80000000000000000000000000000000) {
                    return NaN;
                } else {
                    uint256 xExponent = (uint128(x) >> 112) & 0x7FFF;
                    if (xExponent == 0x7FFF) {
                        return x;
                    } else {
                        uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
                        if (xExponent == 0) xExponent = 1;
                        else xSignifier |= 0x10000000000000000000000000000;
    
                        if (xSignifier == 0) return POSITIVE_ZERO;
    
                        bool oddExponent = xExponent & 0x1 == 0;
                        xExponent = (xExponent + 16383) >> 1;
    
                        if (oddExponent) {
                            if (xSignifier >= 0x10000000000000000000000000000) {
                                xSignifier <<= 113;
                            } else {
                                uint256 msb = mostSignificantBit(xSignifier);
                                uint256 shift = (226 - msb) & 0xFE;
                                xSignifier <<= shift;
                                xExponent -= (shift - 112) >> 1;
                            }
                        } else {
                            if (xSignifier >= 0x10000000000000000000000000000) {
                                xSignifier <<= 112;
                            } else {
                                uint256 msb = mostSignificantBit(xSignifier);
                                uint256 shift = (225 - msb) & 0xFE;
                                xSignifier <<= shift;
                                xExponent -= (shift - 112) >> 1;
                            }
                        }
    
                        uint256 r = 0x10000000000000000000000000000;
                        r = (r + xSignifier / r) >> 1;
                        r = (r + xSignifier / r) >> 1;
                        r = (r + xSignifier / r) >> 1;
                        r = (r + xSignifier / r) >> 1;
                        r = (r + xSignifier / r) >> 1;
                        r = (r + xSignifier / r) >> 1;
                        r = (r + xSignifier / r) >> 1; // Seven iterations should be enough
                        uint256 r1 = xSignifier / r;
                        if (r1 < r) r = r1;
    
                        return bytes16(uint128((xExponent << 112) | (r & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF)));
                    }
                }
            }
        }
    
        /**
         * Calculate binary logarithm of x.  Return NaN on negative x excluding -0.
         *
         * @param x quadruple precision number
         * @return quadruple precision number
         */
        function log_2(bytes16 x) internal pure returns (bytes16) {
            unchecked {
                if (uint128(x) > 0x80000000000000000000000000000000) {
                    return NaN;
                } else if (x == 0x3FFF0000000000000000000000000000) {
                    return POSITIVE_ZERO;
                } else {
                    uint256 xExponent = (uint128(x) >> 112) & 0x7FFF;
                    if (xExponent == 0x7FFF) {
                        return x;
                    } else {
                        uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
                        if (xExponent == 0) xExponent = 1;
                        else xSignifier |= 0x10000000000000000000000000000;
    
                        if (xSignifier == 0) return NEGATIVE_INFINITY;
    
                        bool resultNegative;
                        uint256 resultExponent = 16495;
                        uint256 resultSignifier;
    
                        if (xExponent >= 0x3FFF) {
                            resultNegative = false;
                            resultSignifier = xExponent - 0x3FFF;
                            xSignifier <<= 15;
                        } else {
                            resultNegative = true;
                            if (xSignifier >= 0x10000000000000000000000000000) {
                                resultSignifier = 0x3FFE - xExponent;
                                xSignifier <<= 15;
                            } else {
                                uint256 msb = mostSignificantBit(xSignifier);
                                resultSignifier = 16493 - msb;
                                xSignifier <<= 127 - msb;
                            }
                        }
    
                        if (xSignifier == 0x80000000000000000000000000000000) {
                            if (resultNegative) resultSignifier += 1;
                            uint256 shift = 112 - mostSignificantBit(resultSignifier);
                            resultSignifier <<= shift;
                            resultExponent -= shift;
                        } else {
                            uint256 bb = resultNegative ? 1 : 0;
                            while (resultSignifier < 0x10000000000000000000000000000) {
                                resultSignifier <<= 1;
                                resultExponent -= 1;
    
                                xSignifier *= xSignifier;
                                uint256 b = xSignifier >> 255;
                                resultSignifier += b ^ bb;
                                xSignifier >>= 127 + b;
                            }
                        }
    
                        return bytes16(
                            uint128(
                                (resultNegative ? 0x80000000000000000000000000000000 : 0) | (resultExponent << 112)
                                    | (resultSignifier & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
                            )
                        );
                    }
                }
            }
        }
    
        /**
         * Calculate natural logarithm of x.  Return NaN on negative x excluding -0.
         *
         * @param x quadruple precision number
         * @return quadruple precision number
         */
        function ln(bytes16 x) internal pure returns (bytes16) {
            unchecked {
                return mul(log_2(x), 0x3FFE62E42FEFA39EF35793C7673007E5);
            }
        }
    
        /**
         * Calculate 2^x.
         *
         * @param x quadruple precision number
         * @return quadruple precision number
         */
        function pow_2(bytes16 x) internal pure returns (bytes16) {
            unchecked {
                bool xNegative = uint128(x) > 0x80000000000000000000000000000000;
                uint256 xExponent = (uint128(x) >> 112) & 0x7FFF;
                uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
    
                if (xExponent == 0x7FFF && xSignifier != 0) {
                    return NaN;
                } else if (xExponent > 16397) {
                    return xNegative ? POSITIVE_ZERO : POSITIVE_INFINITY;
                } else if (xExponent < 16255) {
                    return 0x3FFF0000000000000000000000000000;
                } else {
                    if (xExponent == 0) xExponent = 1;
                    else xSignifier |= 0x10000000000000000000000000000;
    
                    if (xExponent > 16367) xSignifier <<= xExponent - 16367;
                    else if (xExponent < 16367) xSignifier >>= 16367 - xExponent;
    
                    if (xNegative && xSignifier > 0x406E00000000000000000000000000000000) return POSITIVE_ZERO;
    
                    if (!xNegative && xSignifier > 0x3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF) return POSITIVE_INFINITY;
    
                    uint256 resultExponent = xSignifier >> 128;
                    xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
                    if (xNegative && xSignifier != 0) {
                        xSignifier = ~xSignifier;
                        resultExponent += 1;
                    }
    
                    uint256 resultSignifier = 0x80000000000000000000000000000000;
                    if (xSignifier & 0x80000000000000000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x16A09E667F3BCC908B2FB1366EA957D3E) >> 128;
                    }
                    if (xSignifier & 0x40000000000000000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x1306FE0A31B7152DE8D5A46305C85EDEC) >> 128;
                    }
                    if (xSignifier & 0x20000000000000000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x1172B83C7D517ADCDF7C8C50EB14A791F) >> 128;
                    }
                    if (xSignifier & 0x10000000000000000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x10B5586CF9890F6298B92B71842A98363) >> 128;
                    }
                    if (xSignifier & 0x8000000000000000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x1059B0D31585743AE7C548EB68CA417FD) >> 128;
                    }
                    if (xSignifier & 0x4000000000000000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x102C9A3E778060EE6F7CACA4F7A29BDE8) >> 128;
                    }
                    if (xSignifier & 0x2000000000000000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x10163DA9FB33356D84A66AE336DCDFA3F) >> 128;
                    }
                    if (xSignifier & 0x1000000000000000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x100B1AFA5ABCBED6129AB13EC11DC9543) >> 128;
                    }
                    if (xSignifier & 0x800000000000000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x10058C86DA1C09EA1FF19D294CF2F679B) >> 128;
                    }
                    if (xSignifier & 0x400000000000000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x1002C605E2E8CEC506D21BFC89A23A00F) >> 128;
                    }
                    if (xSignifier & 0x200000000000000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x100162F3904051FA128BCA9C55C31E5DF) >> 128;
                    }
                    if (xSignifier & 0x100000000000000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x1000B175EFFDC76BA38E31671CA939725) >> 128;
                    }
                    if (xSignifier & 0x80000000000000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x100058BA01FB9F96D6CACD4B180917C3D) >> 128;
                    }
                    if (xSignifier & 0x40000000000000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x10002C5CC37DA9491D0985C348C68E7B3) >> 128;
                    }
                    if (xSignifier & 0x20000000000000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x1000162E525EE054754457D5995292026) >> 128;
                    }
                    if (xSignifier & 0x10000000000000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x10000B17255775C040618BF4A4ADE83FC) >> 128;
                    }
                    if (xSignifier & 0x8000000000000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB) >> 128;
                    }
                    if (xSignifier & 0x4000000000000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9) >> 128;
                    }
                    if (xSignifier & 0x2000000000000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x10000162E43F4F831060E02D839A9D16D) >> 128;
                    }
                    if (xSignifier & 0x1000000000000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x100000B1721BCFC99D9F890EA06911763) >> 128;
                    }
                    if (xSignifier & 0x800000000000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x10000058B90CF1E6D97F9CA14DBCC1628) >> 128;
                    }
                    if (xSignifier & 0x400000000000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x1000002C5C863B73F016468F6BAC5CA2B) >> 128;
                    }
                    if (xSignifier & 0x200000000000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x100000162E430E5A18F6119E3C02282A5) >> 128;
                    }
                    if (xSignifier & 0x100000000000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x1000000B1721835514B86E6D96EFD1BFE) >> 128;
                    }
                    if (xSignifier & 0x80000000000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x100000058B90C0B48C6BE5DF846C5B2EF) >> 128;
                    }
                    if (xSignifier & 0x40000000000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x10000002C5C8601CC6B9E94213C72737A) >> 128;
                    }
                    if (xSignifier & 0x20000000000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x1000000162E42FFF037DF38AA2B219F06) >> 128;
                    }
                    if (xSignifier & 0x10000000000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x10000000B17217FBA9C739AA5819F44F9) >> 128;
                    }
                    if (xSignifier & 0x8000000000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x1000000058B90BFCDEE5ACD3C1CEDC823) >> 128;
                    }
                    if (xSignifier & 0x4000000000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x100000002C5C85FE31F35A6A30DA1BE50) >> 128;
                    }
                    if (xSignifier & 0x2000000000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x10000000162E42FF0999CE3541B9FFFCF) >> 128;
                    }
                    if (xSignifier & 0x1000000000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x100000000B17217F80F4EF5AADDA45554) >> 128;
                    }
                    if (xSignifier & 0x800000000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x10000000058B90BFBF8479BD5A81B51AD) >> 128;
                    }
                    if (xSignifier & 0x400000000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x1000000002C5C85FDF84BD62AE30A74CC) >> 128;
                    }
                    if (xSignifier & 0x200000000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x100000000162E42FEFB2FED257559BDAA) >> 128;
                    }
                    if (xSignifier & 0x100000000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x1000000000B17217F7D5A7716BBA4A9AE) >> 128;
                    }
                    if (xSignifier & 0x80000000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x100000000058B90BFBE9DDBAC5E109CCE) >> 128;
                    }
                    if (xSignifier & 0x40000000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x10000000002C5C85FDF4B15DE6F17EB0D) >> 128;
                    }
                    if (xSignifier & 0x20000000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x1000000000162E42FEFA494F1478FDE05) >> 128;
                    }
                    if (xSignifier & 0x10000000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x10000000000B17217F7D20CF927C8E94C) >> 128;
                    }
                    if (xSignifier & 0x8000000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x1000000000058B90BFBE8F71CB4E4B33D) >> 128;
                    }
                    if (xSignifier & 0x4000000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x100000000002C5C85FDF477B662B26945) >> 128;
                    }
                    if (xSignifier & 0x2000000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x10000000000162E42FEFA3AE53369388C) >> 128;
                    }
                    if (xSignifier & 0x1000000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x100000000000B17217F7D1D351A389D40) >> 128;
                    }
                    if (xSignifier & 0x800000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x10000000000058B90BFBE8E8B2D3D4EDE) >> 128;
                    }
                    if (xSignifier & 0x400000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x1000000000002C5C85FDF4741BEA6E77E) >> 128;
                    }
                    if (xSignifier & 0x200000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x100000000000162E42FEFA39FE95583C2) >> 128;
                    }
                    if (xSignifier & 0x100000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x1000000000000B17217F7D1CFB72B45E1) >> 128;
                    }
                    if (xSignifier & 0x80000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x100000000000058B90BFBE8E7CC35C3F0) >> 128;
                    }
                    if (xSignifier & 0x40000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x10000000000002C5C85FDF473E242EA38) >> 128;
                    }
                    if (xSignifier & 0x20000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x1000000000000162E42FEFA39F02B772C) >> 128;
                    }
                    if (xSignifier & 0x10000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x10000000000000B17217F7D1CF7D83C1A) >> 128;
                    }
                    if (xSignifier & 0x8000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x1000000000000058B90BFBE8E7BDCBE2E) >> 128;
                    }
                    if (xSignifier & 0x4000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x100000000000002C5C85FDF473DEA871F) >> 128;
                    }
                    if (xSignifier & 0x2000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x10000000000000162E42FEFA39EF44D91) >> 128;
                    }
                    if (xSignifier & 0x1000000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x100000000000000B17217F7D1CF79E949) >> 128;
                    }
                    if (xSignifier & 0x800000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x10000000000000058B90BFBE8E7BCE544) >> 128;
                    }
                    if (xSignifier & 0x400000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x1000000000000002C5C85FDF473DE6ECA) >> 128;
                    }
                    if (xSignifier & 0x200000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x100000000000000162E42FEFA39EF366F) >> 128;
                    }
                    if (xSignifier & 0x100000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x1000000000000000B17217F7D1CF79AFA) >> 128;
                    }
                    if (xSignifier & 0x80000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x100000000000000058B90BFBE8E7BCD6D) >> 128;
                    }
                    if (xSignifier & 0x40000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x10000000000000002C5C85FDF473DE6B2) >> 128;
                    }
                    if (xSignifier & 0x20000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x1000000000000000162E42FEFA39EF358) >> 128;
                    }
                    if (xSignifier & 0x10000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x10000000000000000B17217F7D1CF79AB) >> 128;
                    }
                    if (xSignifier & 0x8000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x1000000000000000058B90BFBE8E7BCD5) >> 128;
                    }
                    if (xSignifier & 0x4000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x100000000000000002C5C85FDF473DE6A) >> 128;
                    }
                    if (xSignifier & 0x2000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x10000000000000000162E42FEFA39EF34) >> 128;
                    }
                    if (xSignifier & 0x1000000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x100000000000000000B17217F7D1CF799) >> 128;
                    }
                    if (xSignifier & 0x800000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x10000000000000000058B90BFBE8E7BCC) >> 128;
                    }
                    if (xSignifier & 0x400000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x1000000000000000002C5C85FDF473DE5) >> 128;
                    }
                    if (xSignifier & 0x200000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x100000000000000000162E42FEFA39EF2) >> 128;
                    }
                    if (xSignifier & 0x100000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x1000000000000000000B17217F7D1CF78) >> 128;
                    }
                    if (xSignifier & 0x80000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x100000000000000000058B90BFBE8E7BB) >> 128;
                    }
                    if (xSignifier & 0x40000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x10000000000000000002C5C85FDF473DD) >> 128;
                    }
                    if (xSignifier & 0x20000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x1000000000000000000162E42FEFA39EE) >> 128;
                    }
                    if (xSignifier & 0x10000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x10000000000000000000B17217F7D1CF6) >> 128;
                    }
                    if (xSignifier & 0x8000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x1000000000000000000058B90BFBE8E7A) >> 128;
                    }
                    if (xSignifier & 0x4000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x100000000000000000002C5C85FDF473C) >> 128;
                    }
                    if (xSignifier & 0x2000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x10000000000000000000162E42FEFA39D) >> 128;
                    }
                    if (xSignifier & 0x1000000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x100000000000000000000B17217F7D1CE) >> 128;
                    }
                    if (xSignifier & 0x800000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x10000000000000000000058B90BFBE8E6) >> 128;
                    }
                    if (xSignifier & 0x400000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x1000000000000000000002C5C85FDF472) >> 128;
                    }
                    if (xSignifier & 0x200000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x100000000000000000000162E42FEFA38) >> 128;
                    }
                    if (xSignifier & 0x100000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x1000000000000000000000B17217F7D1B) >> 128;
                    }
                    if (xSignifier & 0x80000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x100000000000000000000058B90BFBE8D) >> 128;
                    }
                    if (xSignifier & 0x40000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x10000000000000000000002C5C85FDF46) >> 128;
                    }
                    if (xSignifier & 0x20000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x1000000000000000000000162E42FEFA2) >> 128;
                    }
                    if (xSignifier & 0x10000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x10000000000000000000000B17217F7D0) >> 128;
                    }
                    if (xSignifier & 0x8000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x1000000000000000000000058B90BFBE7) >> 128;
                    }
                    if (xSignifier & 0x4000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x100000000000000000000002C5C85FDF3) >> 128;
                    }
                    if (xSignifier & 0x2000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x10000000000000000000000162E42FEF9) >> 128;
                    }
                    if (xSignifier & 0x1000000000 > 0) {
                        resultSignifier = (resultSignifier * 0x100000000000000000000000B17217F7C) >> 128;
                    }
                    if (xSignifier & 0x800000000 > 0) {
                        resultSignifier = (resultSignifier * 0x10000000000000000000000058B90BFBD) >> 128;
                    }
                    if (xSignifier & 0x400000000 > 0) {
                        resultSignifier = (resultSignifier * 0x1000000000000000000000002C5C85FDE) >> 128;
                    }
                    if (xSignifier & 0x200000000 > 0) {
                        resultSignifier = (resultSignifier * 0x100000000000000000000000162E42FEE) >> 128;
                    }
                    if (xSignifier & 0x100000000 > 0) {
                        resultSignifier = (resultSignifier * 0x1000000000000000000000000B17217F6) >> 128;
                    }
                    if (xSignifier & 0x80000000 > 0) {
                        resultSignifier = (resultSignifier * 0x100000000000000000000000058B90BFA) >> 128;
                    }
                    if (xSignifier & 0x40000000 > 0) {
                        resultSignifier = (resultSignifier * 0x10000000000000000000000002C5C85FC) >> 128;
                    }
                    if (xSignifier & 0x20000000 > 0) {
                        resultSignifier = (resultSignifier * 0x1000000000000000000000000162E42FD) >> 128;
                    }
                    if (xSignifier & 0x10000000 > 0) {
                        resultSignifier = (resultSignifier * 0x10000000000000000000000000B17217E) >> 128;
                    }
                    if (xSignifier & 0x8000000 > 0) {
                        resultSignifier = (resultSignifier * 0x1000000000000000000000000058B90BE) >> 128;
                    }
                    if (xSignifier & 0x4000000 > 0) {
                        resultSignifier = (resultSignifier * 0x100000000000000000000000002C5C85E) >> 128;
                    }
                    if (xSignifier & 0x2000000 > 0) {
                        resultSignifier = (resultSignifier * 0x10000000000000000000000000162E42E) >> 128;
                    }
                    if (xSignifier & 0x1000000 > 0) {
                        resultSignifier = (resultSignifier * 0x100000000000000000000000000B17216) >> 128;
                    }
                    if (xSignifier & 0x800000 > 0) {
                        resultSignifier = (resultSignifier * 0x10000000000000000000000000058B90A) >> 128;
                    }
                    if (xSignifier & 0x400000 > 0) {
                        resultSignifier = (resultSignifier * 0x1000000000000000000000000002C5C84) >> 128;
                    }
                    if (xSignifier & 0x200000 > 0) {
                        resultSignifier = (resultSignifier * 0x100000000000000000000000000162E41) >> 128;
                    }
                    if (xSignifier & 0x100000 > 0) {
                        resultSignifier = (resultSignifier * 0x1000000000000000000000000000B1720) >> 128;
                    }
                    if (xSignifier & 0x80000 > 0) {
                        resultSignifier = (resultSignifier * 0x100000000000000000000000000058B8F) >> 128;
                    }
                    if (xSignifier & 0x40000 > 0) {
                        resultSignifier = (resultSignifier * 0x10000000000000000000000000002C5C7) >> 128;
                    }
                    if (xSignifier & 0x20000 > 0) {
                        resultSignifier = (resultSignifier * 0x1000000000000000000000000000162E3) >> 128;
                    }
                    if (xSignifier & 0x10000 > 0) {
                        resultSignifier = (resultSignifier * 0x10000000000000000000000000000B171) >> 128;
                    }
                    if (xSignifier & 0x8000 > 0) {
                        resultSignifier = (resultSignifier * 0x1000000000000000000000000000058B8) >> 128;
                    }
                    if (xSignifier & 0x4000 > 0) {
                        resultSignifier = (resultSignifier * 0x100000000000000000000000000002C5B) >> 128;
                    }
                    if (xSignifier & 0x2000 > 0) {
                        resultSignifier = (resultSignifier * 0x10000000000000000000000000000162D) >> 128;
                    }
                    if (xSignifier & 0x1000 > 0) {
                        resultSignifier = (resultSignifier * 0x100000000000000000000000000000B16) >> 128;
                    }
                    if (xSignifier & 0x800 > 0) {
                        resultSignifier = (resultSignifier * 0x10000000000000000000000000000058A) >> 128;
                    }
                    if (xSignifier & 0x400 > 0) {
                        resultSignifier = (resultSignifier * 0x1000000000000000000000000000002C4) >> 128;
                    }
                    if (xSignifier & 0x200 > 0) {
                        resultSignifier = (resultSignifier * 0x100000000000000000000000000000161) >> 128;
                    }
                    if (xSignifier & 0x100 > 0) {
                        resultSignifier = (resultSignifier * 0x1000000000000000000000000000000B0) >> 128;
                    }
                    if (xSignifier & 0x80 > 0) {
                        resultSignifier = (resultSignifier * 0x100000000000000000000000000000057) >> 128;
                    }
                    if (xSignifier & 0x40 > 0) {
                        resultSignifier = (resultSignifier * 0x10000000000000000000000000000002B) >> 128;
                    }
                    if (xSignifier & 0x20 > 0) {
                        resultSignifier = (resultSignifier * 0x100000000000000000000000000000015) >> 128;
                    }
                    if (xSignifier & 0x10 > 0) {
                        resultSignifier = (resultSignifier * 0x10000000000000000000000000000000A) >> 128;
                    }
                    if (xSignifier & 0x8 > 0) {
                        resultSignifier = (resultSignifier * 0x100000000000000000000000000000004) >> 128;
                    }
                    if (xSignifier & 0x4 > 0) {
                        resultSignifier = (resultSignifier * 0x100000000000000000000000000000001) >> 128;
                    }
    
                    if (!xNegative) {
                        resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
                        resultExponent += 0x3FFF;
                    } else if (resultExponent <= 0x3FFE) {
                        resultSignifier = (resultSignifier >> 15) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
                        resultExponent = 0x3FFF - resultExponent;
                    } else {
                        resultSignifier = resultSignifier >> (resultExponent - 16367);
                        resultExponent = 0;
                    }
    
                    return bytes16(uint128((resultExponent << 112) | resultSignifier));
                }
            }
        }
    
        /**
         * Calculate e^x.
         *
         * @param x quadruple precision number
         * @return quadruple precision number
         */
        function exp(bytes16 x) internal pure returns (bytes16) {
            unchecked {
                return pow_2(mul(x, 0x3FFF71547652B82FE1777D0FFDA0D23A));
            }
        }
    
        /**
         * Get index of the most significant non-zero bit in binary representation of
         * x.  Reverts if x is zero.
         *
         * @return index of the most significant non-zero bit in binary representation
         *         of x
         */
        function mostSignificantBit(uint256 x) private pure returns (uint256) {
            unchecked {
                require(x > 0);
    
                uint256 result = 0;
    
                if (x >= 0x100000000000000000000000000000000) {
                    x >>= 128;
                    result += 128;
                }
                if (x >= 0x10000000000000000) {
                    x >>= 64;
                    result += 64;
                }
                if (x >= 0x100000000) {
                    x >>= 32;
                    result += 32;
                }
                if (x >= 0x10000) {
                    x >>= 16;
                    result += 16;
                }
                if (x >= 0x100) {
                    x >>= 8;
                    result += 8;
                }
                if (x >= 0x10) {
                    x >>= 4;
                    result += 4;
                }
                if (x >= 0x4) {
                    x >>= 2;
                    result += 2;
                }
                if (x >= 0x2) result += 1; // No need to shift x anymore
    
                return result;
            }
        }
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
    
    pragma solidity ^0.8.20;
    
    /**
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    abstract contract Context {
        function _msgSender() internal view virtual returns (address) {
            return msg.sender;
        }
    
        function _msgData() internal view virtual returns (bytes calldata) {
            return msg.data;
        }
    
        function _contextSuffixLength() internal view virtual returns (uint256) {
            return 0;
        }
    }

    Please enter a contract address above to load the contract details and source code.

    Context size (optional):