Contract Source Code:
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {ContextUpgradeable} from "../utils/ContextUpgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
/// @custom:storage-location erc7201:openzeppelin.storage.Ownable
struct OwnableStorage {
address _owner;
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Ownable")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant OwnableStorageLocation = 0x9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c199300;
function _getOwnableStorage() private pure returns (OwnableStorage storage $) {
assembly ("memory-safe") {
$.slot := OwnableStorageLocation
}
}
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
function __Ownable_init(address initialOwner) internal onlyInitializing {
__Ownable_init_unchained(initialOwner);
}
function __Ownable_init_unchained(address initialOwner) internal onlyInitializing {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
OwnableStorage storage $ = _getOwnableStorage();
return $._owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
OwnableStorage storage $ = _getOwnableStorage();
address oldOwner = $._owner;
$._owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol)
pragma solidity ^0.8.20;
/**
* @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
* behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
* external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
* function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
*
* The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
* reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
* case an upgrade adds a module that needs to be initialized.
*
* For example:
*
* [.hljs-theme-light.nopadding]
* ```solidity
* contract MyToken is ERC20Upgradeable {
* function initialize() initializer public {
* __ERC20_init("MyToken", "MTK");
* }
* }
*
* contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
* function initializeV2() reinitializer(2) public {
* __ERC20Permit_init("MyToken");
* }
* }
* ```
*
* TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
* possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
*
* CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
* that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
*
* [CAUTION]
* ====
* Avoid leaving a contract uninitialized.
*
* An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
* contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
* the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
*
* [.hljs-theme-light.nopadding]
* ```
* /// @custom:oz-upgrades-unsafe-allow constructor
* constructor() {
* _disableInitializers();
* }
* ```
* ====
*/
abstract contract Initializable {
/**
* @dev Storage of the initializable contract.
*
* It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions
* when using with upgradeable contracts.
*
* @custom:storage-location erc7201:openzeppelin.storage.Initializable
*/
struct InitializableStorage {
/**
* @dev Indicates that the contract has been initialized.
*/
uint64 _initialized;
/**
* @dev Indicates that the contract is in the process of being initialized.
*/
bool _initializing;
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00;
/**
* @dev The contract is already initialized.
*/
error InvalidInitialization();
/**
* @dev The contract is not initializing.
*/
error NotInitializing();
/**
* @dev Triggered when the contract has been initialized or reinitialized.
*/
event Initialized(uint64 version);
/**
* @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
* `onlyInitializing` functions can be used to initialize parent contracts.
*
* Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any
* number of times. This behavior in the constructor can be useful during testing and is not expected to be used in
* production.
*
* Emits an {Initialized} event.
*/
modifier initializer() {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
// Cache values to avoid duplicated sloads
bool isTopLevelCall = !$._initializing;
uint64 initialized = $._initialized;
// Allowed calls:
// - initialSetup: the contract is not in the initializing state and no previous version was
// initialized
// - construction: the contract is initialized at version 1 (no reininitialization) and the
// current contract is just being deployed
bool initialSetup = initialized == 0 && isTopLevelCall;
bool construction = initialized == 1 && address(this).code.length == 0;
if (!initialSetup && !construction) {
revert InvalidInitialization();
}
$._initialized = 1;
if (isTopLevelCall) {
$._initializing = true;
}
_;
if (isTopLevelCall) {
$._initializing = false;
emit Initialized(1);
}
}
/**
* @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
* contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
* used to initialize parent contracts.
*
* A reinitializer may be used after the original initialization step. This is essential to configure modules that
* are added through upgrades and that require initialization.
*
* When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
* cannot be nested. If one is invoked in the context of another, execution will revert.
*
* Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
* a contract, executing them in the right order is up to the developer or operator.
*
* WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization.
*
* Emits an {Initialized} event.
*/
modifier reinitializer(uint64 version) {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
if ($._initializing || $._initialized >= version) {
revert InvalidInitialization();
}
$._initialized = version;
$._initializing = true;
_;
$._initializing = false;
emit Initialized(version);
}
/**
* @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
* {initializer} and {reinitializer} modifiers, directly or indirectly.
*/
modifier onlyInitializing() {
_checkInitializing();
_;
}
/**
* @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}.
*/
function _checkInitializing() internal view virtual {
if (!_isInitializing()) {
revert NotInitializing();
}
}
/**
* @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
* Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
* to any version. It is recommended to use this to lock implementation contracts that are designed to be called
* through proxies.
*
* Emits an {Initialized} event the first time it is successfully executed.
*/
function _disableInitializers() internal virtual {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
if ($._initializing) {
revert InvalidInitialization();
}
if ($._initialized != type(uint64).max) {
$._initialized = type(uint64).max;
emit Initialized(type(uint64).max);
}
}
/**
* @dev Returns the highest version that has been initialized. See {reinitializer}.
*/
function _getInitializedVersion() internal view returns (uint64) {
return _getInitializableStorage()._initialized;
}
/**
* @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
*/
function _isInitializing() internal view returns (bool) {
return _getInitializableStorage()._initializing;
}
/**
* @dev Returns a pointer to the storage namespace.
*/
// solhint-disable-next-line var-name-mixedcase
function _getInitializableStorage() private pure returns (InitializableStorage storage $) {
assembly ("memory-safe") {
$.slot := INITIALIZABLE_STORAGE
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (proxy/utils/UUPSUpgradeable.sol)
pragma solidity ^0.8.20;
import {IERC1822Proxiable} from "@openzeppelin/contracts/interfaces/draft-IERC1822.sol";
import {ERC1967Utils} from "@openzeppelin/contracts/proxy/ERC1967/ERC1967Utils.sol";
import {Initializable} from "./Initializable.sol";
/**
* @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an
* {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy.
*
* A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is
* reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing
* `UUPSUpgradeable` with a custom implementation of upgrades.
*
* The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism.
*/
abstract contract UUPSUpgradeable is Initializable, IERC1822Proxiable {
/// @custom:oz-upgrades-unsafe-allow state-variable-immutable
address private immutable __self = address(this);
/**
* @dev The version of the upgrade interface of the contract. If this getter is missing, both `upgradeTo(address)`
* and `upgradeToAndCall(address,bytes)` are present, and `upgradeTo` must be used if no function should be called,
* while `upgradeToAndCall` will invoke the `receive` function if the second argument is the empty byte string.
* If the getter returns `"5.0.0"`, only `upgradeToAndCall(address,bytes)` is present, and the second argument must
* be the empty byte string if no function should be called, making it impossible to invoke the `receive` function
* during an upgrade.
*/
string public constant UPGRADE_INTERFACE_VERSION = "5.0.0";
/**
* @dev The call is from an unauthorized context.
*/
error UUPSUnauthorizedCallContext();
/**
* @dev The storage `slot` is unsupported as a UUID.
*/
error UUPSUnsupportedProxiableUUID(bytes32 slot);
/**
* @dev Check that the execution is being performed through a delegatecall call and that the execution context is
* a proxy contract with an implementation (as defined in ERC-1967) pointing to self. This should only be the case
* for UUPS and transparent proxies that are using the current contract as their implementation. Execution of a
* function through ERC-1167 minimal proxies (clones) would not normally pass this test, but is not guaranteed to
* fail.
*/
modifier onlyProxy() {
_checkProxy();
_;
}
/**
* @dev Check that the execution is not being performed through a delegate call. This allows a function to be
* callable on the implementing contract but not through proxies.
*/
modifier notDelegated() {
_checkNotDelegated();
_;
}
function __UUPSUpgradeable_init() internal onlyInitializing {
}
function __UUPSUpgradeable_init_unchained() internal onlyInitializing {
}
/**
* @dev Implementation of the ERC-1822 {proxiableUUID} function. This returns the storage slot used by the
* implementation. It is used to validate the implementation's compatibility when performing an upgrade.
*
* IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
* bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
* function revert if invoked through a proxy. This is guaranteed by the `notDelegated` modifier.
*/
function proxiableUUID() external view virtual notDelegated returns (bytes32) {
return ERC1967Utils.IMPLEMENTATION_SLOT;
}
/**
* @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call
* encoded in `data`.
*
* Calls {_authorizeUpgrade}.
*
* Emits an {Upgraded} event.
*
* @custom:oz-upgrades-unsafe-allow-reachable delegatecall
*/
function upgradeToAndCall(address newImplementation, bytes memory data) public payable virtual onlyProxy {
_authorizeUpgrade(newImplementation);
_upgradeToAndCallUUPS(newImplementation, data);
}
/**
* @dev Reverts if the execution is not performed via delegatecall or the execution
* context is not of a proxy with an ERC-1967 compliant implementation pointing to self.
* See {_onlyProxy}.
*/
function _checkProxy() internal view virtual {
if (
address(this) == __self || // Must be called through delegatecall
ERC1967Utils.getImplementation() != __self // Must be called through an active proxy
) {
revert UUPSUnauthorizedCallContext();
}
}
/**
* @dev Reverts if the execution is performed via delegatecall.
* See {notDelegated}.
*/
function _checkNotDelegated() internal view virtual {
if (address(this) != __self) {
// Must not be called through delegatecall
revert UUPSUnauthorizedCallContext();
}
}
/**
* @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by
* {upgradeToAndCall}.
*
* Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}.
*
* ```solidity
* function _authorizeUpgrade(address) internal onlyOwner {}
* ```
*/
function _authorizeUpgrade(address newImplementation) internal virtual;
/**
* @dev Performs an implementation upgrade with a security check for UUPS proxies, and additional setup call.
*
* As a security check, {proxiableUUID} is invoked in the new implementation, and the return value
* is expected to be the implementation slot in ERC-1967.
*
* Emits an {IERC1967-Upgraded} event.
*/
function _upgradeToAndCallUUPS(address newImplementation, bytes memory data) private {
try IERC1822Proxiable(newImplementation).proxiableUUID() returns (bytes32 slot) {
if (slot != ERC1967Utils.IMPLEMENTATION_SLOT) {
revert UUPSUnsupportedProxiableUUID(slot);
}
ERC1967Utils.upgradeToAndCall(newImplementation, data);
} catch {
// The implementation is not UUPS
revert ERC1967Utils.ERC1967InvalidImplementation(newImplementation);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
import {Initializable} from "../proxy/utils/Initializable.sol";
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract ContextUpgradeable is Initializable {
function __Context_init() internal onlyInitializing {
}
function __Context_init_unchained() internal onlyInitializing {
}
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/ERC165.sol)
pragma solidity ^0.8.20;
import {IERC165} from "@openzeppelin/contracts/utils/introspection/IERC165.sol";
import {Initializable} from "../../proxy/utils/Initializable.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*/
abstract contract ERC165Upgradeable is Initializable, IERC165 {
function __ERC165_init() internal onlyInitializing {
}
function __ERC165_init_unchained() internal onlyInitializing {
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC1822.sol)
pragma solidity ^0.8.20;
/**
* @dev ERC-1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified
* proxy whose upgrades are fully controlled by the current implementation.
*/
interface IERC1822Proxiable {
/**
* @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation
* address.
*
* IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
* bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
* function revert if invoked through a proxy.
*/
function proxiableUUID() external view returns (bytes32);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard ERC-20 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
*/
interface IERC20Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC20InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC20InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
* @param spender Address that may be allowed to operate on tokens without being their owner.
* @param allowance Amount of tokens a `spender` is allowed to operate with.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC20InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `spender` to be approved. Used in approvals.
* @param spender Address that may be allowed to operate on tokens without being their owner.
*/
error ERC20InvalidSpender(address spender);
}
/**
* @dev Standard ERC-721 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
*/
interface IERC721Errors {
/**
* @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
* Used in balance queries.
* @param owner Address of the current owner of a token.
*/
error ERC721InvalidOwner(address owner);
/**
* @dev Indicates a `tokenId` whose `owner` is the zero address.
* @param tokenId Identifier number of a token.
*/
error ERC721NonexistentToken(uint256 tokenId);
/**
* @dev Indicates an error related to the ownership over a particular token. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param tokenId Identifier number of a token.
* @param owner Address of the current owner of a token.
*/
error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC721InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC721InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param tokenId Identifier number of a token.
*/
error ERC721InsufficientApproval(address operator, uint256 tokenId);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC721InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC721InvalidOperator(address operator);
}
/**
* @dev Standard ERC-1155 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
*/
interface IERC1155Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
* @param tokenId Identifier number of a token.
*/
error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC1155InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC1155InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param owner Address of the current owner of a token.
*/
error ERC1155MissingApprovalForAll(address operator, address owner);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC1155InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC1155InvalidOperator(address operator);
/**
* @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
* Used in batch transfers.
* @param idsLength Length of the array of token identifiers
* @param valuesLength Length of the array of token amounts
*/
error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC1967.sol)
pragma solidity ^0.8.20;
/**
* @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC.
*/
interface IERC1967 {
/**
* @dev Emitted when the implementation is upgraded.
*/
event Upgraded(address indexed implementation);
/**
* @dev Emitted when the admin account has changed.
*/
event AdminChanged(address previousAdmin, address newAdmin);
/**
* @dev Emitted when the beacon is changed.
*/
event BeaconUpgraded(address indexed beacon);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC2981.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../utils/introspection/IERC165.sol";
/**
* @dev Interface for the NFT Royalty Standard.
*
* A standardized way to retrieve royalty payment information for non-fungible tokens (NFTs) to enable universal
* support for royalty payments across all NFT marketplaces and ecosystem participants.
*/
interface IERC2981 is IERC165 {
/**
* @dev Returns how much royalty is owed and to whom, based on a sale price that may be denominated in any unit of
* exchange. The royalty amount is denominated and should be paid in that same unit of exchange.
*
* NOTE: ERC-2981 allows setting the royalty to 100% of the price. In that case all the price would be sent to the
* royalty receiver and 0 tokens to the seller. Contracts dealing with royalty should consider empty transfers.
*/
function royaltyInfo(
uint256 tokenId,
uint256 salePrice
) external view returns (address receiver, uint256 royaltyAmount);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/beacon/IBeacon.sol)
pragma solidity ^0.8.20;
/**
* @dev This is the interface that {BeaconProxy} expects of its beacon.
*/
interface IBeacon {
/**
* @dev Must return an address that can be used as a delegate call target.
*
* {UpgradeableBeacon} will check that this address is a contract.
*/
function implementation() external view returns (address);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (proxy/ERC1967/ERC1967Utils.sol)
pragma solidity ^0.8.21;
import {IBeacon} from "../beacon/IBeacon.sol";
import {IERC1967} from "../../interfaces/IERC1967.sol";
import {Address} from "../../utils/Address.sol";
import {StorageSlot} from "../../utils/StorageSlot.sol";
/**
* @dev This library provides getters and event emitting update functions for
* https://eips.ethereum.org/EIPS/eip-1967[ERC-1967] slots.
*/
library ERC1967Utils {
/**
* @dev Storage slot with the address of the current implementation.
* This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1.
*/
// solhint-disable-next-line private-vars-leading-underscore
bytes32 internal constant IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
/**
* @dev The `implementation` of the proxy is invalid.
*/
error ERC1967InvalidImplementation(address implementation);
/**
* @dev The `admin` of the proxy is invalid.
*/
error ERC1967InvalidAdmin(address admin);
/**
* @dev The `beacon` of the proxy is invalid.
*/
error ERC1967InvalidBeacon(address beacon);
/**
* @dev An upgrade function sees `msg.value > 0` that may be lost.
*/
error ERC1967NonPayable();
/**
* @dev Returns the current implementation address.
*/
function getImplementation() internal view returns (address) {
return StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value;
}
/**
* @dev Stores a new address in the ERC-1967 implementation slot.
*/
function _setImplementation(address newImplementation) private {
if (newImplementation.code.length == 0) {
revert ERC1967InvalidImplementation(newImplementation);
}
StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value = newImplementation;
}
/**
* @dev Performs implementation upgrade with additional setup call if data is nonempty.
* This function is payable only if the setup call is performed, otherwise `msg.value` is rejected
* to avoid stuck value in the contract.
*
* Emits an {IERC1967-Upgraded} event.
*/
function upgradeToAndCall(address newImplementation, bytes memory data) internal {
_setImplementation(newImplementation);
emit IERC1967.Upgraded(newImplementation);
if (data.length > 0) {
Address.functionDelegateCall(newImplementation, data);
} else {
_checkNonPayable();
}
}
/**
* @dev Storage slot with the admin of the contract.
* This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1.
*/
// solhint-disable-next-line private-vars-leading-underscore
bytes32 internal constant ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
/**
* @dev Returns the current admin.
*
* TIP: To get this value clients can read directly from the storage slot shown below (specified by ERC-1967) using
* the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
* `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
*/
function getAdmin() internal view returns (address) {
return StorageSlot.getAddressSlot(ADMIN_SLOT).value;
}
/**
* @dev Stores a new address in the ERC-1967 admin slot.
*/
function _setAdmin(address newAdmin) private {
if (newAdmin == address(0)) {
revert ERC1967InvalidAdmin(address(0));
}
StorageSlot.getAddressSlot(ADMIN_SLOT).value = newAdmin;
}
/**
* @dev Changes the admin of the proxy.
*
* Emits an {IERC1967-AdminChanged} event.
*/
function changeAdmin(address newAdmin) internal {
emit IERC1967.AdminChanged(getAdmin(), newAdmin);
_setAdmin(newAdmin);
}
/**
* @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
* This is the keccak-256 hash of "eip1967.proxy.beacon" subtracted by 1.
*/
// solhint-disable-next-line private-vars-leading-underscore
bytes32 internal constant BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
/**
* @dev Returns the current beacon.
*/
function getBeacon() internal view returns (address) {
return StorageSlot.getAddressSlot(BEACON_SLOT).value;
}
/**
* @dev Stores a new beacon in the ERC-1967 beacon slot.
*/
function _setBeacon(address newBeacon) private {
if (newBeacon.code.length == 0) {
revert ERC1967InvalidBeacon(newBeacon);
}
StorageSlot.getAddressSlot(BEACON_SLOT).value = newBeacon;
address beaconImplementation = IBeacon(newBeacon).implementation();
if (beaconImplementation.code.length == 0) {
revert ERC1967InvalidImplementation(beaconImplementation);
}
}
/**
* @dev Change the beacon and trigger a setup call if data is nonempty.
* This function is payable only if the setup call is performed, otherwise `msg.value` is rejected
* to avoid stuck value in the contract.
*
* Emits an {IERC1967-BeaconUpgraded} event.
*
* CAUTION: Invoking this function has no effect on an instance of {BeaconProxy} since v5, since
* it uses an immutable beacon without looking at the value of the ERC-1967 beacon slot for
* efficiency.
*/
function upgradeBeaconToAndCall(address newBeacon, bytes memory data) internal {
_setBeacon(newBeacon);
emit IERC1967.BeaconUpgraded(newBeacon);
if (data.length > 0) {
Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
} else {
_checkNonPayable();
}
}
/**
* @dev Reverts if `msg.value` is not zero. It can be used to avoid `msg.value` stuck in the contract
* if an upgrade doesn't perform an initialization call.
*/
function _checkNonPayable() private {
if (msg.value > 0) {
revert ERC1967NonPayable();
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC1155/extensions/IERC1155MetadataURI.sol)
pragma solidity ^0.8.20;
import {IERC1155} from "../IERC1155.sol";
/**
* @dev Interface of the optional ERC1155MetadataExtension interface, as defined
* in the https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[ERC].
*/
interface IERC1155MetadataURI is IERC1155 {
/**
* @dev Returns the URI for token type `id`.
*
* If the `\{id\}` substring is present in the URI, it must be replaced by
* clients with the actual token type ID.
*/
function uri(uint256 id) external view returns (string memory);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC1155/IERC1155.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC-1155 compliant contract, as defined in the
* https://eips.ethereum.org/EIPS/eip-1155[ERC].
*/
interface IERC1155 is IERC165 {
/**
* @dev Emitted when `value` amount of tokens of type `id` are transferred from `from` to `to` by `operator`.
*/
event TransferSingle(address indexed operator, address indexed from, address indexed to, uint256 id, uint256 value);
/**
* @dev Equivalent to multiple {TransferSingle} events, where `operator`, `from` and `to` are the same for all
* transfers.
*/
event TransferBatch(
address indexed operator,
address indexed from,
address indexed to,
uint256[] ids,
uint256[] values
);
/**
* @dev Emitted when `account` grants or revokes permission to `operator` to transfer their tokens, according to
* `approved`.
*/
event ApprovalForAll(address indexed account, address indexed operator, bool approved);
/**
* @dev Emitted when the URI for token type `id` changes to `value`, if it is a non-programmatic URI.
*
* If an {URI} event was emitted for `id`, the standard
* https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[guarantees] that `value` will equal the value
* returned by {IERC1155MetadataURI-uri}.
*/
event URI(string value, uint256 indexed id);
/**
* @dev Returns the value of tokens of token type `id` owned by `account`.
*/
function balanceOf(address account, uint256 id) external view returns (uint256);
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {balanceOf}.
*
* Requirements:
*
* - `accounts` and `ids` must have the same length.
*/
function balanceOfBatch(
address[] calldata accounts,
uint256[] calldata ids
) external view returns (uint256[] memory);
/**
* @dev Grants or revokes permission to `operator` to transfer the caller's tokens, according to `approved`,
*
* Emits an {ApprovalForAll} event.
*
* Requirements:
*
* - `operator` cannot be the zero address.
*/
function setApprovalForAll(address operator, bool approved) external;
/**
* @dev Returns true if `operator` is approved to transfer ``account``'s tokens.
*
* See {setApprovalForAll}.
*/
function isApprovedForAll(address account, address operator) external view returns (bool);
/**
* @dev Transfers a `value` amount of tokens of type `id` from `from` to `to`.
*
* WARNING: This function can potentially allow a reentrancy attack when transferring tokens
* to an untrusted contract, when invoking {onERC1155Received} on the receiver.
* Ensure to follow the checks-effects-interactions pattern and consider employing
* reentrancy guards when interacting with untrusted contracts.
*
* Emits a {TransferSingle} event.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - If the caller is not `from`, it must have been approved to spend ``from``'s tokens via {setApprovalForAll}.
* - `from` must have a balance of tokens of type `id` of at least `value` amount.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
* acceptance magic value.
*/
function safeTransferFrom(address from, address to, uint256 id, uint256 value, bytes calldata data) external;
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {safeTransferFrom}.
*
* WARNING: This function can potentially allow a reentrancy attack when transferring tokens
* to an untrusted contract, when invoking {onERC1155BatchReceived} on the receiver.
* Ensure to follow the checks-effects-interactions pattern and consider employing
* reentrancy guards when interacting with untrusted contracts.
*
* Emits either a {TransferSingle} or a {TransferBatch} event, depending on the length of the array arguments.
*
* Requirements:
*
* - `ids` and `values` must have the same length.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
* acceptance magic value.
*/
function safeBatchTransferFrom(
address from,
address to,
uint256[] calldata ids,
uint256[] calldata values,
bytes calldata data
) external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC1155/IERC1155Receiver.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../../utils/introspection/IERC165.sol";
/**
* @dev Interface that must be implemented by smart contracts in order to receive
* ERC-1155 token transfers.
*/
interface IERC1155Receiver is IERC165 {
/**
* @dev Handles the receipt of a single ERC-1155 token type. This function is
* called at the end of a `safeTransferFrom` after the balance has been updated.
*
* NOTE: To accept the transfer, this must return
* `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))`
* (i.e. 0xf23a6e61, or its own function selector).
*
* @param operator The address which initiated the transfer (i.e. msg.sender)
* @param from The address which previously owned the token
* @param id The ID of the token being transferred
* @param value The amount of tokens being transferred
* @param data Additional data with no specified format
* @return `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` if transfer is allowed
*/
function onERC1155Received(
address operator,
address from,
uint256 id,
uint256 value,
bytes calldata data
) external returns (bytes4);
/**
* @dev Handles the receipt of a multiple ERC-1155 token types. This function
* is called at the end of a `safeBatchTransferFrom` after the balances have
* been updated.
*
* NOTE: To accept the transfer(s), this must return
* `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))`
* (i.e. 0xbc197c81, or its own function selector).
*
* @param operator The address which initiated the batch transfer (i.e. msg.sender)
* @param from The address which previously owned the token
* @param ids An array containing ids of each token being transferred (order and length must match values array)
* @param values An array containing amounts of each token being transferred (order and length must match ids array)
* @param data Additional data with no specified format
* @return `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` if transfer is allowed
*/
function onERC1155BatchReceived(
address operator,
address from,
uint256[] calldata ids,
uint256[] calldata values,
bytes calldata data
) external returns (bytes4);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-20 standard as defined in the ERC.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Address.sol)
pragma solidity ^0.8.20;
import {Errors} from "./Errors.sol";
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert Errors.InsufficientBalance(address(this).balance, amount);
}
(bool success, ) = recipient.call{value: amount}("");
if (!success) {
revert Errors.FailedCall();
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {Errors.FailedCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert Errors.InsufficientBalance(address(this).balance, value);
}
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case
* of an unsuccessful call.
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata
) internal view returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
if (returndata.length == 0 && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {Errors.FailedCall} error.
*/
function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}.
*/
function _revert(bytes memory returndata) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
assembly ("memory-safe") {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert Errors.FailedCall();
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Arrays.sol)
// This file was procedurally generated from scripts/generate/templates/Arrays.js.
pragma solidity ^0.8.20;
import {Comparators} from "./Comparators.sol";
import {SlotDerivation} from "./SlotDerivation.sol";
import {StorageSlot} from "./StorageSlot.sol";
import {Math} from "./math/Math.sol";
/**
* @dev Collection of functions related to array types.
*/
library Arrays {
using SlotDerivation for bytes32;
using StorageSlot for bytes32;
/**
* @dev Sort an array of uint256 (in memory) following the provided comparator function.
*
* This function does the sorting "in place", meaning that it overrides the input. The object is returned for
* convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
*
* NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
* array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
* when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
* consume more gas than is available in a block, leading to potential DoS.
*
* IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
*/
function sort(
uint256[] memory array,
function(uint256, uint256) pure returns (bool) comp
) internal pure returns (uint256[] memory) {
_quickSort(_begin(array), _end(array), comp);
return array;
}
/**
* @dev Variant of {sort} that sorts an array of uint256 in increasing order.
*/
function sort(uint256[] memory array) internal pure returns (uint256[] memory) {
sort(array, Comparators.lt);
return array;
}
/**
* @dev Sort an array of address (in memory) following the provided comparator function.
*
* This function does the sorting "in place", meaning that it overrides the input. The object is returned for
* convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
*
* NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
* array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
* when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
* consume more gas than is available in a block, leading to potential DoS.
*
* IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
*/
function sort(
address[] memory array,
function(address, address) pure returns (bool) comp
) internal pure returns (address[] memory) {
sort(_castToUint256Array(array), _castToUint256Comp(comp));
return array;
}
/**
* @dev Variant of {sort} that sorts an array of address in increasing order.
*/
function sort(address[] memory array) internal pure returns (address[] memory) {
sort(_castToUint256Array(array), Comparators.lt);
return array;
}
/**
* @dev Sort an array of bytes32 (in memory) following the provided comparator function.
*
* This function does the sorting "in place", meaning that it overrides the input. The object is returned for
* convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
*
* NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
* array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
* when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
* consume more gas than is available in a block, leading to potential DoS.
*
* IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
*/
function sort(
bytes32[] memory array,
function(bytes32, bytes32) pure returns (bool) comp
) internal pure returns (bytes32[] memory) {
sort(_castToUint256Array(array), _castToUint256Comp(comp));
return array;
}
/**
* @dev Variant of {sort} that sorts an array of bytes32 in increasing order.
*/
function sort(bytes32[] memory array) internal pure returns (bytes32[] memory) {
sort(_castToUint256Array(array), Comparators.lt);
return array;
}
/**
* @dev Performs a quick sort of a segment of memory. The segment sorted starts at `begin` (inclusive), and stops
* at end (exclusive). Sorting follows the `comp` comparator.
*
* Invariant: `begin <= end`. This is the case when initially called by {sort} and is preserved in subcalls.
*
* IMPORTANT: Memory locations between `begin` and `end` are not validated/zeroed. This function should
* be used only if the limits are within a memory array.
*/
function _quickSort(uint256 begin, uint256 end, function(uint256, uint256) pure returns (bool) comp) private pure {
unchecked {
if (end - begin < 0x40) return;
// Use first element as pivot
uint256 pivot = _mload(begin);
// Position where the pivot should be at the end of the loop
uint256 pos = begin;
for (uint256 it = begin + 0x20; it < end; it += 0x20) {
if (comp(_mload(it), pivot)) {
// If the value stored at the iterator's position comes before the pivot, we increment the
// position of the pivot and move the value there.
pos += 0x20;
_swap(pos, it);
}
}
_swap(begin, pos); // Swap pivot into place
_quickSort(begin, pos, comp); // Sort the left side of the pivot
_quickSort(pos + 0x20, end, comp); // Sort the right side of the pivot
}
}
/**
* @dev Pointer to the memory location of the first element of `array`.
*/
function _begin(uint256[] memory array) private pure returns (uint256 ptr) {
assembly ("memory-safe") {
ptr := add(array, 0x20)
}
}
/**
* @dev Pointer to the memory location of the first memory word (32bytes) after `array`. This is the memory word
* that comes just after the last element of the array.
*/
function _end(uint256[] memory array) private pure returns (uint256 ptr) {
unchecked {
return _begin(array) + array.length * 0x20;
}
}
/**
* @dev Load memory word (as a uint256) at location `ptr`.
*/
function _mload(uint256 ptr) private pure returns (uint256 value) {
assembly ("memory-safe") {
value := mload(ptr)
}
}
/**
* @dev Swaps the elements memory location `ptr1` and `ptr2`.
*/
function _swap(uint256 ptr1, uint256 ptr2) private pure {
assembly ("memory-safe") {
let value1 := mload(ptr1)
let value2 := mload(ptr2)
mstore(ptr1, value2)
mstore(ptr2, value1)
}
}
/// @dev Helper: low level cast address memory array to uint256 memory array
function _castToUint256Array(address[] memory input) private pure returns (uint256[] memory output) {
assembly ("memory-safe") {
output := input
}
}
/// @dev Helper: low level cast bytes32 memory array to uint256 memory array
function _castToUint256Array(bytes32[] memory input) private pure returns (uint256[] memory output) {
assembly ("memory-safe") {
output := input
}
}
/// @dev Helper: low level cast address comp function to uint256 comp function
function _castToUint256Comp(
function(address, address) pure returns (bool) input
) private pure returns (function(uint256, uint256) pure returns (bool) output) {
assembly ("memory-safe") {
output := input
}
}
/// @dev Helper: low level cast bytes32 comp function to uint256 comp function
function _castToUint256Comp(
function(bytes32, bytes32) pure returns (bool) input
) private pure returns (function(uint256, uint256) pure returns (bool) output) {
assembly ("memory-safe") {
output := input
}
}
/**
* @dev Searches a sorted `array` and returns the first index that contains
* a value greater or equal to `element`. If no such index exists (i.e. all
* values in the array are strictly less than `element`), the array length is
* returned. Time complexity O(log n).
*
* NOTE: The `array` is expected to be sorted in ascending order, and to
* contain no repeated elements.
*
* IMPORTANT: Deprecated. This implementation behaves as {lowerBound} but lacks
* support for repeated elements in the array. The {lowerBound} function should
* be used instead.
*/
function findUpperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
uint256 low = 0;
uint256 high = array.length;
if (high == 0) {
return 0;
}
while (low < high) {
uint256 mid = Math.average(low, high);
// Note that mid will always be strictly less than high (i.e. it will be a valid array index)
// because Math.average rounds towards zero (it does integer division with truncation).
if (unsafeAccess(array, mid).value > element) {
high = mid;
} else {
low = mid + 1;
}
}
// At this point `low` is the exclusive upper bound. We will return the inclusive upper bound.
if (low > 0 && unsafeAccess(array, low - 1).value == element) {
return low - 1;
} else {
return low;
}
}
/**
* @dev Searches an `array` sorted in ascending order and returns the first
* index that contains a value greater or equal than `element`. If no such index
* exists (i.e. all values in the array are strictly less than `element`), the array
* length is returned. Time complexity O(log n).
*
* See C++'s https://en.cppreference.com/w/cpp/algorithm/lower_bound[lower_bound].
*/
function lowerBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
uint256 low = 0;
uint256 high = array.length;
if (high == 0) {
return 0;
}
while (low < high) {
uint256 mid = Math.average(low, high);
// Note that mid will always be strictly less than high (i.e. it will be a valid array index)
// because Math.average rounds towards zero (it does integer division with truncation).
if (unsafeAccess(array, mid).value < element) {
// this cannot overflow because mid < high
unchecked {
low = mid + 1;
}
} else {
high = mid;
}
}
return low;
}
/**
* @dev Searches an `array` sorted in ascending order and returns the first
* index that contains a value strictly greater than `element`. If no such index
* exists (i.e. all values in the array are strictly less than `element`), the array
* length is returned. Time complexity O(log n).
*
* See C++'s https://en.cppreference.com/w/cpp/algorithm/upper_bound[upper_bound].
*/
function upperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
uint256 low = 0;
uint256 high = array.length;
if (high == 0) {
return 0;
}
while (low < high) {
uint256 mid = Math.average(low, high);
// Note that mid will always be strictly less than high (i.e. it will be a valid array index)
// because Math.average rounds towards zero (it does integer division with truncation).
if (unsafeAccess(array, mid).value > element) {
high = mid;
} else {
// this cannot overflow because mid < high
unchecked {
low = mid + 1;
}
}
}
return low;
}
/**
* @dev Same as {lowerBound}, but with an array in memory.
*/
function lowerBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) {
uint256 low = 0;
uint256 high = array.length;
if (high == 0) {
return 0;
}
while (low < high) {
uint256 mid = Math.average(low, high);
// Note that mid will always be strictly less than high (i.e. it will be a valid array index)
// because Math.average rounds towards zero (it does integer division with truncation).
if (unsafeMemoryAccess(array, mid) < element) {
// this cannot overflow because mid < high
unchecked {
low = mid + 1;
}
} else {
high = mid;
}
}
return low;
}
/**
* @dev Same as {upperBound}, but with an array in memory.
*/
function upperBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) {
uint256 low = 0;
uint256 high = array.length;
if (high == 0) {
return 0;
}
while (low < high) {
uint256 mid = Math.average(low, high);
// Note that mid will always be strictly less than high (i.e. it will be a valid array index)
// because Math.average rounds towards zero (it does integer division with truncation).
if (unsafeMemoryAccess(array, mid) > element) {
high = mid;
} else {
// this cannot overflow because mid < high
unchecked {
low = mid + 1;
}
}
}
return low;
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeAccess(address[] storage arr, uint256 pos) internal pure returns (StorageSlot.AddressSlot storage) {
bytes32 slot;
assembly ("memory-safe") {
slot := arr.slot
}
return slot.deriveArray().offset(pos).getAddressSlot();
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeAccess(bytes32[] storage arr, uint256 pos) internal pure returns (StorageSlot.Bytes32Slot storage) {
bytes32 slot;
assembly ("memory-safe") {
slot := arr.slot
}
return slot.deriveArray().offset(pos).getBytes32Slot();
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeAccess(uint256[] storage arr, uint256 pos) internal pure returns (StorageSlot.Uint256Slot storage) {
bytes32 slot;
assembly ("memory-safe") {
slot := arr.slot
}
return slot.deriveArray().offset(pos).getUint256Slot();
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeMemoryAccess(address[] memory arr, uint256 pos) internal pure returns (address res) {
assembly ("memory-safe") {
res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
}
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeMemoryAccess(bytes32[] memory arr, uint256 pos) internal pure returns (bytes32 res) {
assembly ("memory-safe") {
res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
}
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeMemoryAccess(uint256[] memory arr, uint256 pos) internal pure returns (uint256 res) {
assembly ("memory-safe") {
res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
}
}
/**
* @dev Helper to set the length of an dynamic array. Directly writing to `.length` is forbidden.
*
* WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
*/
function unsafeSetLength(address[] storage array, uint256 len) internal {
assembly ("memory-safe") {
sstore(array.slot, len)
}
}
/**
* @dev Helper to set the length of an dynamic array. Directly writing to `.length` is forbidden.
*
* WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
*/
function unsafeSetLength(bytes32[] storage array, uint256 len) internal {
assembly ("memory-safe") {
sstore(array.slot, len)
}
}
/**
* @dev Helper to set the length of an dynamic array. Directly writing to `.length` is forbidden.
*
* WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
*/
function unsafeSetLength(uint256[] storage array, uint256 len) internal {
assembly ("memory-safe") {
sstore(array.slot, len)
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Base64.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides a set of functions to operate with Base64 strings.
*/
library Base64 {
/**
* @dev Base64 Encoding/Decoding Table
* See sections 4 and 5 of https://datatracker.ietf.org/doc/html/rfc4648
*/
string internal constant _TABLE = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
string internal constant _TABLE_URL = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_";
/**
* @dev Converts a `bytes` to its Bytes64 `string` representation.
*/
function encode(bytes memory data) internal pure returns (string memory) {
return _encode(data, _TABLE, true);
}
/**
* @dev Converts a `bytes` to its Bytes64Url `string` representation.
* Output is not padded with `=` as specified in https://www.rfc-editor.org/rfc/rfc4648[rfc4648].
*/
function encodeURL(bytes memory data) internal pure returns (string memory) {
return _encode(data, _TABLE_URL, false);
}
/**
* @dev Internal table-agnostic conversion
*/
function _encode(bytes memory data, string memory table, bool withPadding) private pure returns (string memory) {
/**
* Inspired by Brecht Devos (Brechtpd) implementation - MIT licence
* https://github.com/Brechtpd/base64/blob/e78d9fd951e7b0977ddca77d92dc85183770daf4/base64.sol
*/
if (data.length == 0) return "";
// If padding is enabled, the final length should be `bytes` data length divided by 3 rounded up and then
// multiplied by 4 so that it leaves room for padding the last chunk
// - `data.length + 2` -> Prepare for division rounding up
// - `/ 3` -> Number of 3-bytes chunks (rounded up)
// - `4 *` -> 4 characters for each chunk
// This is equivalent to: 4 * Math.ceil(data.length / 3)
//
// If padding is disabled, the final length should be `bytes` data length multiplied by 4/3 rounded up as
// opposed to when padding is required to fill the last chunk.
// - `4 * data.length` -> 4 characters for each chunk
// - ` + 2` -> Prepare for division rounding up
// - `/ 3` -> Number of 3-bytes chunks (rounded up)
// This is equivalent to: Math.ceil((4 * data.length) / 3)
uint256 resultLength = withPadding ? 4 * ((data.length + 2) / 3) : (4 * data.length + 2) / 3;
string memory result = new string(resultLength);
assembly ("memory-safe") {
// Prepare the lookup table (skip the first "length" byte)
let tablePtr := add(table, 1)
// Prepare result pointer, jump over length
let resultPtr := add(result, 0x20)
let dataPtr := data
let endPtr := add(data, mload(data))
// In some cases, the last iteration will read bytes after the end of the data. We cache the value, and
// set it to zero to make sure no dirty bytes are read in that section.
let afterPtr := add(endPtr, 0x20)
let afterCache := mload(afterPtr)
mstore(afterPtr, 0x00)
// Run over the input, 3 bytes at a time
for {
} lt(dataPtr, endPtr) {
} {
// Advance 3 bytes
dataPtr := add(dataPtr, 3)
let input := mload(dataPtr)
// To write each character, shift the 3 byte (24 bits) chunk
// 4 times in blocks of 6 bits for each character (18, 12, 6, 0)
// and apply logical AND with 0x3F to bitmask the least significant 6 bits.
// Use this as an index into the lookup table, mload an entire word
// so the desired character is in the least significant byte, and
// mstore8 this least significant byte into the result and continue.
mstore8(resultPtr, mload(add(tablePtr, and(shr(18, input), 0x3F))))
resultPtr := add(resultPtr, 1) // Advance
mstore8(resultPtr, mload(add(tablePtr, and(shr(12, input), 0x3F))))
resultPtr := add(resultPtr, 1) // Advance
mstore8(resultPtr, mload(add(tablePtr, and(shr(6, input), 0x3F))))
resultPtr := add(resultPtr, 1) // Advance
mstore8(resultPtr, mload(add(tablePtr, and(input, 0x3F))))
resultPtr := add(resultPtr, 1) // Advance
}
// Reset the value that was cached
mstore(afterPtr, afterCache)
if withPadding {
// When data `bytes` is not exactly 3 bytes long
// it is padded with `=` characters at the end
switch mod(mload(data), 3)
case 1 {
mstore8(sub(resultPtr, 1), 0x3d)
mstore8(sub(resultPtr, 2), 0x3d)
}
case 2 {
mstore8(sub(resultPtr, 1), 0x3d)
}
}
}
return result;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Comparators.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides a set of functions to compare values.
*
* _Available since v5.1._
*/
library Comparators {
function lt(uint256 a, uint256 b) internal pure returns (bool) {
return a < b;
}
function gt(uint256 a, uint256 b) internal pure returns (bool) {
return a > b;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of common custom errors used in multiple contracts
*
* IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
* It is recommended to avoid relying on the error API for critical functionality.
*
* _Available since v5.1._
*/
library Errors {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error InsufficientBalance(uint256 balance, uint256 needed);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedCall();
/**
* @dev The deployment failed.
*/
error FailedDeployment();
/**
* @dev A necessary precompile is missing.
*/
error MissingPrecompile(address);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[ERC].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * SafeCast.toUint(condition));
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2²⁵⁶ + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly ("memory-safe") {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= prod1) {
Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly ("memory-safe") {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly ("memory-safe") {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
}
}
/**
* @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
*
* From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
* prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
* `a**(p-2)` is the modular multiplicative inverse of a in Fp.
*
* NOTE: this function does NOT check that `p` is a prime greater than `2`.
*/
function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
unchecked {
return Math.modExp(a, p - 2, p);
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
assembly ("memory-safe") {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
assembly ("memory-safe") {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ≥ 0
// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ≤ 2**(2*e-4) / (3 * 2**(e-1))
// ≤ 2**(e-3) / 3
// ≤ 2**(e-3-log2(3))
// ≤ 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ≤ (2**(e-k))² / (2 * 2**(e-1))
// ≤ 2**(2*e-2*k) / 2**e
// ≤ 2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 exp;
unchecked {
exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
value >>= exp;
result += exp;
exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
value >>= exp;
result += exp;
exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
value >>= exp;
result += exp;
exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
value >>= exp;
result += exp;
exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
value >>= exp;
result += exp;
exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
value >>= exp;
result += exp;
exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
value >>= exp;
result += exp;
result += SafeCast.toUint(value > 1);
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 isGt;
unchecked {
isGt = SafeCast.toUint(value > (1 << 128) - 1);
value >>= isGt * 128;
result += isGt * 16;
isGt = SafeCast.toUint(value > (1 << 64) - 1);
value >>= isGt * 64;
result += isGt * 8;
isGt = SafeCast.toUint(value > (1 << 32) - 1);
value >>= isGt * 32;
result += isGt * 4;
isGt = SafeCast.toUint(value > (1 << 16) - 1);
value >>= isGt * 16;
result += isGt * 2;
result += SafeCast.toUint(value > (1 << 8) - 1);
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
/**
* @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
*/
function toUint(bool b) internal pure returns (uint256 u) {
assembly ("memory-safe") {
u := iszero(iszero(b))
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
}
}
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
// Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
// taking advantage of the most significant (or "sign" bit) in two's complement representation.
// This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
// the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
int256 mask = n >> 255;
// A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
return uint256((n + mask) ^ mask);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)
pragma solidity ^0.8.20;
/**
* @dev Helper library for emitting standardized panic codes.
*
* ```solidity
* contract Example {
* using Panic for uint256;
*
* // Use any of the declared internal constants
* function foo() { Panic.GENERIC.panic(); }
*
* // Alternatively
* function foo() { Panic.panic(Panic.GENERIC); }
* }
* ```
*
* Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
*
* _Available since v5.1._
*/
// slither-disable-next-line unused-state
library Panic {
/// @dev generic / unspecified error
uint256 internal constant GENERIC = 0x00;
/// @dev used by the assert() builtin
uint256 internal constant ASSERT = 0x01;
/// @dev arithmetic underflow or overflow
uint256 internal constant UNDER_OVERFLOW = 0x11;
/// @dev division or modulo by zero
uint256 internal constant DIVISION_BY_ZERO = 0x12;
/// @dev enum conversion error
uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
/// @dev invalid encoding in storage
uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
/// @dev empty array pop
uint256 internal constant EMPTY_ARRAY_POP = 0x31;
/// @dev array out of bounds access
uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
/// @dev resource error (too large allocation or too large array)
uint256 internal constant RESOURCE_ERROR = 0x41;
/// @dev calling invalid internal function
uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
/// @dev Reverts with a panic code. Recommended to use with
/// the internal constants with predefined codes.
function panic(uint256 code) internal pure {
assembly ("memory-safe") {
mstore(0x00, 0x4e487b71)
mstore(0x20, code)
revert(0x1c, 0x24)
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/SlotDerivation.sol)
// This file was procedurally generated from scripts/generate/templates/SlotDerivation.js.
pragma solidity ^0.8.20;
/**
* @dev Library for computing storage (and transient storage) locations from namespaces and deriving slots
* corresponding to standard patterns. The derivation method for array and mapping matches the storage layout used by
* the solidity language / compiler.
*
* See https://docs.soliditylang.org/en/v0.8.20/internals/layout_in_storage.html#mappings-and-dynamic-arrays[Solidity docs for mappings and dynamic arrays.].
*
* Example usage:
* ```solidity
* contract Example {
* // Add the library methods
* using StorageSlot for bytes32;
* using SlotDerivation for bytes32;
*
* // Declare a namespace
* string private constant _NAMESPACE = "<namespace>" // eg. OpenZeppelin.Slot
*
* function setValueInNamespace(uint256 key, address newValue) internal {
* _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value = newValue;
* }
*
* function getValueInNamespace(uint256 key) internal view returns (address) {
* return _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value;
* }
* }
* ```
*
* TIP: Consider using this library along with {StorageSlot}.
*
* NOTE: This library provides a way to manipulate storage locations in a non-standard way. Tooling for checking
* upgrade safety will ignore the slots accessed through this library.
*
* _Available since v5.1._
*/
library SlotDerivation {
/**
* @dev Derive an ERC-7201 slot from a string (namespace).
*/
function erc7201Slot(string memory namespace) internal pure returns (bytes32 slot) {
assembly ("memory-safe") {
mstore(0x00, sub(keccak256(add(namespace, 0x20), mload(namespace)), 1))
slot := and(keccak256(0x00, 0x20), not(0xff))
}
}
/**
* @dev Add an offset to a slot to get the n-th element of a structure or an array.
*/
function offset(bytes32 slot, uint256 pos) internal pure returns (bytes32 result) {
unchecked {
return bytes32(uint256(slot) + pos);
}
}
/**
* @dev Derive the location of the first element in an array from the slot where the length is stored.
*/
function deriveArray(bytes32 slot) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
mstore(0x00, slot)
result := keccak256(0x00, 0x20)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, address key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
mstore(0x00, and(key, shr(96, not(0))))
mstore(0x20, slot)
result := keccak256(0x00, 0x40)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, bool key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
mstore(0x00, iszero(iszero(key)))
mstore(0x20, slot)
result := keccak256(0x00, 0x40)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, bytes32 key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
mstore(0x00, key)
mstore(0x20, slot)
result := keccak256(0x00, 0x40)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, uint256 key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
mstore(0x00, key)
mstore(0x20, slot)
result := keccak256(0x00, 0x40)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, int256 key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
mstore(0x00, key)
mstore(0x20, slot)
result := keccak256(0x00, 0x40)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, string memory key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
let length := mload(key)
let begin := add(key, 0x20)
let end := add(begin, length)
let cache := mload(end)
mstore(end, slot)
result := keccak256(begin, add(length, 0x20))
mstore(end, cache)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, bytes memory key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
let length := mload(key)
let begin := add(key, 0x20)
let end := add(begin, length)
let cache := mload(end)
mstore(end, slot)
result := keccak256(begin, add(length, 0x20))
mstore(end, cache)
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
pragma solidity ^0.8.20;
/**
* @dev Library for reading and writing primitive types to specific storage slots.
*
* Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
* This library helps with reading and writing to such slots without the need for inline assembly.
*
* The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
*
* Example usage to set ERC-1967 implementation slot:
* ```solidity
* contract ERC1967 {
* // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
* bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
*
* function _getImplementation() internal view returns (address) {
* return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
* }
*
* function _setImplementation(address newImplementation) internal {
* require(newImplementation.code.length > 0);
* StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
* }
* }
* ```
*
* TIP: Consider using this library along with {SlotDerivation}.
*/
library StorageSlot {
struct AddressSlot {
address value;
}
struct BooleanSlot {
bool value;
}
struct Bytes32Slot {
bytes32 value;
}
struct Uint256Slot {
uint256 value;
}
struct Int256Slot {
int256 value;
}
struct StringSlot {
string value;
}
struct BytesSlot {
bytes value;
}
/**
* @dev Returns an `AddressSlot` with member `value` located at `slot`.
*/
function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `BooleanSlot` with member `value` located at `slot`.
*/
function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
*/
function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Uint256Slot` with member `value` located at `slot`.
*/
function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Int256Slot` with member `value` located at `slot`.
*/
function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `StringSlot` with member `value` located at `slot`.
*/
function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` representation of the string storage pointer `store`.
*/
function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
assembly ("memory-safe") {
r.slot := store.slot
}
}
/**
* @dev Returns a `BytesSlot` with member `value` located at `slot`.
*/
function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
*/
function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
assembly ("memory-safe") {
r.slot := store.slot
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
assembly ("memory-safe") {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
assembly ("memory-safe") {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
* representation, according to EIP-55.
*/
function toChecksumHexString(address addr) internal pure returns (string memory) {
bytes memory buffer = bytes(toHexString(addr));
// hash the hex part of buffer (skip length + 2 bytes, length 40)
uint256 hashValue;
assembly ("memory-safe") {
hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
}
for (uint256 i = 41; i > 1; --i) {
// possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
// case shift by xoring with 0x20
buffer[i] ^= 0x20;
}
hashValue >>= 4;
}
return string(buffer);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/structs/BitMaps.sol)
pragma solidity ^0.8.20;
/**
* @dev Library for managing uint256 to bool mapping in a compact and efficient way, provided the keys are sequential.
* Largely inspired by Uniswap's https://github.com/Uniswap/merkle-distributor/blob/master/contracts/MerkleDistributor.sol[merkle-distributor].
*
* BitMaps pack 256 booleans across each bit of a single 256-bit slot of `uint256` type.
* Hence booleans corresponding to 256 _sequential_ indices would only consume a single slot,
* unlike the regular `bool` which would consume an entire slot for a single value.
*
* This results in gas savings in two ways:
*
* - Setting a zero value to non-zero only once every 256 times
* - Accessing the same warm slot for every 256 _sequential_ indices
*/
library BitMaps {
struct BitMap {
mapping(uint256 bucket => uint256) _data;
}
/**
* @dev Returns whether the bit at `index` is set.
*/
function get(BitMap storage bitmap, uint256 index) internal view returns (bool) {
uint256 bucket = index >> 8;
uint256 mask = 1 << (index & 0xff);
return bitmap._data[bucket] & mask != 0;
}
/**
* @dev Sets the bit at `index` to the boolean `value`.
*/
function setTo(BitMap storage bitmap, uint256 index, bool value) internal {
if (value) {
set(bitmap, index);
} else {
unset(bitmap, index);
}
}
/**
* @dev Sets the bit at `index`.
*/
function set(BitMap storage bitmap, uint256 index) internal {
uint256 bucket = index >> 8;
uint256 mask = 1 << (index & 0xff);
bitmap._data[bucket] |= mask;
}
/**
* @dev Unsets the bit at `index`.
*/
function unset(BitMap storage bitmap, uint256 index) internal {
uint256 bucket = index >> 8;
uint256 mask = 1 << (index & 0xff);
bitmap._data[bucket] &= ~mask;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
import {UUPSUpgradeable} from "@openzeppelin/contracts-upgradeable/proxy/utils/UUPSUpgradeable.sol";
import {OwnableUpgradeable} from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
contract AdminAccess is UUPSUpgradeable, OwnableUpgradeable {
mapping(address admin => bool isAdmin) private _admins;
mapping(address admin => bool isAdmin) private _promotionalAdmins;
/// @custom:oz-upgrades-unsafe-allow constructor
constructor() {
_disableInitializers();
}
function initialize(address[] calldata admins, address[] calldata promotionalAdmins) public initializer {
__Ownable_init(_msgSender());
__UUPSUpgradeable_init();
_updateAdmins(admins, true);
_updatePromotionalAdmins(promotionalAdmins, true);
}
function _updateAdmins(address[] calldata admins, bool hasAdmin) internal {
uint256 bounds = admins.length;
for (uint256 i; i < bounds; ++i) {
_admins[admins[i]] = hasAdmin;
}
}
function _updatePromotionalAdmins(address[] calldata promotionalAdmins, bool hasAdmin) internal {
uint256 bounds = promotionalAdmins.length;
for (uint256 i; i < bounds; ++i) {
_promotionalAdmins[promotionalAdmins[i]] = hasAdmin;
}
}
function isAdmin(address admin) external view returns (bool) {
return _admins[admin];
}
function addAdmins(address[] calldata admins) external onlyOwner {
_updateAdmins(admins, true);
}
function removeAdmins(address[] calldata admins) external onlyOwner {
_updateAdmins(admins, false);
}
function isPromotionalAdmin(address admin) external view returns (bool) {
return _promotionalAdmins[admin];
}
function addPromotionalAdmins(address[] calldata admins) external onlyOwner {
_updatePromotionalAdmins(admins, true);
}
function removePromotionalAdmins(address[] calldata admins) external onlyOwner {
_updatePromotionalAdmins(admins, false);
}
// solhint-disable-next-line no-empty-blocks
function _authorizeUpgrade(address newImplementation) internal override onlyOwner {}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
import {IPlayers} from "./interfaces/IPlayers.sol";
// solhint-disable-next-line no-global-import
import "./globals/all.sol";
// This file contains methods for interacting with generic functions like trimming strings, lowercase etc.
// Also has some shared functions for rewards
library EstforLibrary {
error RandomRewardsMustBeInOrder(uint16 chance1, uint16 chance2);
error RandomRewardNoDuplicates();
error GuaranteedRewardsNoDuplicates();
error TooManyGuaranteedRewards();
error TooManyRandomRewards();
function isWhitespace(bytes1 _char) internal pure returns (bool) {
return
_char == 0x20 || // Space
_char == 0x09 || // Tab
_char == 0x0a || // Line feed
_char == 0x0D || // Carriage return
_char == 0x0B || // Vertical tab
_char == 0x00; // empty byte
}
function leftTrim(string memory str) internal pure returns (string memory) {
bytes memory b = bytes(str);
uint256 strLen = b.length;
uint256 start = type(uint256).max;
// Find the index of the first non-whitespace character
for (uint256 i = 0; i < strLen; ++i) {
bytes1 char = b[i];
if (!isWhitespace(char)) {
start = i;
break;
}
}
if (start == type(uint256).max) {
return "";
}
// Copy the remainder to a new string
bytes memory trimmedBytes = new bytes(strLen - start);
for (uint256 i = start; i < strLen; ++i) {
trimmedBytes[i - start] = b[i];
}
return string(trimmedBytes);
}
function rightTrim(string calldata str) internal pure returns (string memory) {
bytes memory b = bytes(str);
uint256 strLen = b.length;
if (strLen == 0) {
return "";
}
int end = -1;
// Find the index of the last non-whitespace character
for (int i = int(strLen) - 1; i >= 0; --i) {
bytes1 char = b[uint256(i)];
if (!isWhitespace(char)) {
end = i;
break;
}
}
if (end == -1) {
return "";
}
bytes memory trimmedBytes = new bytes(uint256(end) + 1);
for (uint256 i = 0; i <= uint256(end); ++i) {
trimmedBytes[i] = b[i];
}
return string(trimmedBytes);
}
function trim(string calldata str) external pure returns (string memory) {
return leftTrim(rightTrim(str));
}
// Assumes the string is already trimmed
function containsValidNameCharacters(string calldata name) external pure returns (bool) {
bytes memory b = bytes(name);
bool lastCharIsWhitespace;
for (uint256 i = 0; i < b.length; ++i) {
bytes1 char = b[i];
bool isUpperCaseLetter = (char >= 0x41) && (char <= 0x5A); // A-Z
bool isLowerCaseLetter = (char >= 0x61) && (char <= 0x7A); // a-z
bool isDigit = (char >= 0x30) && (char <= 0x39); // 0-9
bool isSpecialCharacter = (char == 0x2D) || (char == 0x5F) || (char == 0x2E) || (char == 0x20); // "-", "_", ".", and " "
bool _isWhitespace = isWhitespace(char);
bool hasMultipleWhitespaceInRow = lastCharIsWhitespace && _isWhitespace;
lastCharIsWhitespace = _isWhitespace;
if ((!isUpperCaseLetter && !isLowerCaseLetter && !isDigit && !isSpecialCharacter) || hasMultipleWhitespaceInRow) {
return false;
}
}
return true;
}
function containsValidDiscordCharacters(string calldata discord) external pure returns (bool) {
bytes memory discordBytes = bytes(discord);
for (uint256 i = 0; i < discordBytes.length; ++i) {
bytes1 char = discordBytes[i];
bool isUpperCaseLetter = (char >= 0x41) && (char <= 0x5A); // A-Z
bool isLowerCaseLetter = (char >= 0x61) && (char <= 0x7A); // a-z
bool isDigit = (char >= 0x30) && (char <= 0x39); // 0-9
if (!isUpperCaseLetter && !isLowerCaseLetter && !isDigit) {
return false;
}
}
return true;
}
function containsValidTelegramCharacters(string calldata telegram) external pure returns (bool) {
bytes memory telegramBytes = bytes(telegram);
for (uint256 i = 0; i < telegramBytes.length; ++i) {
bytes1 char = telegramBytes[i];
bool isUpperCaseLetter = (char >= 0x41) && (char <= 0x5A); // A-Z
bool isLowerCaseLetter = (char >= 0x61) && (char <= 0x7A); // a-z
bool isDigit = (char >= 0x30) && (char <= 0x39); // 0-9
bool isPlus = char == 0x2B; // "+"
if (!isUpperCaseLetter && !isLowerCaseLetter && !isDigit && !isPlus) {
return false;
}
}
return true;
}
function containsValidTwitterCharacters(string calldata twitter) external pure returns (bool) {
bytes memory twitterBytes = bytes(twitter);
for (uint256 i = 0; i < twitterBytes.length; ++i) {
bytes1 char = twitterBytes[i];
bool isUpperCaseLetter = (char >= 0x41) && (char <= 0x5A); // A-Z
bool isLowerCaseLetter = (char >= 0x61) && (char <= 0x7A); // a-z
bool isDigit = (char >= 0x30) && (char <= 0x39); // 0-9
if (!isUpperCaseLetter && !isLowerCaseLetter && !isDigit) {
return false;
}
}
return true;
}
function containsBaselineSocialNameCharacters(string calldata socialMediaName) external pure returns (bool) {
bytes memory socialMediaNameBytes = bytes(socialMediaName);
for (uint256 i = 0; i < socialMediaNameBytes.length; ++i) {
bytes1 char = socialMediaNameBytes[i];
bool isUpperCaseLetter = (char >= 0x41) && (char <= 0x5A); // A-Z
bool isLowerCaseLetter = (char >= 0x61) && (char <= 0x7A); // a-z
bool isDigit = (char >= 0x30) && (char <= 0x39); // 0-9
bool isUnderscore = char == 0x5F; // "_"
bool isPeriod = char == 0x2E; // "."
bool isPlus = char == 0x2B; // "+"
if (!isUpperCaseLetter && !isLowerCaseLetter && !isDigit && !isUnderscore && !isPeriod && !isPlus) {
return false;
}
}
return true;
}
function toLower(string memory str) internal pure returns (string memory) {
bytes memory lowerStr = abi.encodePacked(str);
for (uint256 i = 0; i < lowerStr.length; ++i) {
bytes1 char = lowerStr[i];
if ((char >= 0x41) && (char <= 0x5A)) {
// So we add 32 to make it lowercase
lowerStr[i] = bytes1(uint8(char) + 32);
}
}
return string(lowerStr);
}
// This should match the one below, useful when a calldata array is needed and for external testing
function _binarySearchMemory(uint64[] calldata array, uint256 target) internal pure returns (uint256) {
uint256 low = 0;
uint256 high = array.length - 1;
while (low <= high) {
uint256 mid = low + (high - low) / 2;
if (array[mid] == target) {
return mid; // Element found
} else if (array[mid] < target) {
low = mid + 1;
} else {
// Check to prevent underflow
if (mid != 0) {
high = mid - 1;
} else {
// If mid is 0 and _arr[mid] is not the target, the element is not in the array
break;
}
}
}
return type(uint256).max; // Element not found
}
function binarySearchMemory(uint64[] calldata array, uint256 target) external pure returns (uint256) {
return _binarySearchMemory(array, target);
}
// This should match the one above
function _binarySearch(uint64[] storage array, uint256 target) internal view returns (uint256) {
uint256 low = 0;
uint256 high = array.length - 1;
while (low <= high) {
uint256 mid = low + (high - low) / 2;
if (array[mid] == target) {
return mid; // Element found
} else if (array[mid] < target) {
low = mid + 1;
} else {
// Check to prevent underflow
if (mid != 0) {
high = mid - 1;
} else {
// If mid is 0 and _arr[mid] is not the target, the element is not in the array
break;
}
}
}
return type(uint256).max; // Element not found
}
function binarySearch(uint64[] storage array, uint256 target) external view returns (uint256) {
return _binarySearch(array, target);
}
function _shuffleArray(uint64[] memory array, uint256 randomNumber) internal pure returns (uint64[] memory output) {
for (uint256 i; i < array.length; ++i) {
uint256 n = i + (randomNumber % (array.length - i));
if (i != n) {
uint64 temp = array[n];
array[n] = array[i];
array[i] = temp;
}
}
return array;
}
function _getRandomInRange16(
uint256 randomWord,
uint256 shift,
int16 minValue,
int16 maxValue
) internal pure returns (int16) {
return int16(minValue + (int16(int256((randomWord >> shift) & 0xFFFF) % (maxValue - minValue + 1))));
}
function _getRandomFromArray16(
uint256 randomWord,
uint256 shift,
uint16[] storage arr,
uint256 arrLength
) internal view returns (uint16) {
return arr[_getRandomIndexFromArray16(randomWord, shift, arrLength)];
}
function _getRandomFrom3ElementArray16(
uint256 randomWord,
uint256 shift,
uint16[3] memory arr
) internal pure returns (uint16) {
return arr[_getRandomIndexFromArray16(randomWord, shift, arr.length)];
}
function _getRandomIndexFromArray16(
uint256 randomWord,
uint256 shift,
uint256 arrLength
) internal pure returns (uint16) {
return uint16(((randomWord >> shift) & 0xFFFF) % arrLength);
}
function setActionGuaranteedRewards(
GuaranteedReward[] calldata guaranteedRewards,
ActionRewards storage actionRewards
) external {
_setActionGuaranteedRewards(guaranteedRewards, actionRewards);
}
function setActionRandomRewards(RandomReward[] calldata randomRewards, ActionRewards storage actionRewards) external {
_setActionRandomRewards(randomRewards, actionRewards);
}
function _setActionGuaranteedRewards(
GuaranteedReward[] calldata guaranteedRewards,
ActionRewards storage actionRewards
) internal {
uint256 guaranteedRewardsLength = guaranteedRewards.length;
if (guaranteedRewardsLength != 0) {
actionRewards.guaranteedRewardTokenId1 = guaranteedRewards[0].itemTokenId;
actionRewards.guaranteedRewardRate1 = guaranteedRewards[0].rate;
}
if (guaranteedRewardsLength > 1) {
actionRewards.guaranteedRewardTokenId2 = guaranteedRewards[1].itemTokenId;
actionRewards.guaranteedRewardRate2 = guaranteedRewards[1].rate;
require(
actionRewards.guaranteedRewardTokenId1 != actionRewards.guaranteedRewardTokenId2,
GuaranteedRewardsNoDuplicates()
);
}
if (guaranteedRewardsLength > 2) {
actionRewards.guaranteedRewardTokenId3 = guaranteedRewards[2].itemTokenId;
actionRewards.guaranteedRewardRate3 = guaranteedRewards[2].rate;
uint256 bounds = guaranteedRewardsLength - 1;
for (uint256 i; i < bounds; ++i) {
require(
guaranteedRewards[i].itemTokenId != guaranteedRewards[guaranteedRewardsLength - 1].itemTokenId,
GuaranteedRewardsNoDuplicates()
);
}
}
require(guaranteedRewardsLength <= 3, TooManyGuaranteedRewards());
}
// Random rewards have most common one first
function _setActionRandomRewards(
RandomReward[] calldata randomRewards,
ActionRewards storage actionRewards
) internal {
uint256 randomRewardsLength = randomRewards.length;
if (randomRewardsLength != 0) {
actionRewards.randomRewardTokenId1 = randomRewards[0].itemTokenId;
actionRewards.randomRewardChance1 = randomRewards[0].chance;
actionRewards.randomRewardAmount1 = randomRewards[0].amount;
}
if (randomRewardsLength > 1) {
actionRewards.randomRewardTokenId2 = randomRewards[1].itemTokenId;
actionRewards.randomRewardChance2 = randomRewards[1].chance;
actionRewards.randomRewardAmount2 = randomRewards[1].amount;
require(
actionRewards.randomRewardChance2 <= actionRewards.randomRewardChance1,
RandomRewardsMustBeInOrder(randomRewards[0].chance, randomRewards[1].chance)
);
require(actionRewards.randomRewardTokenId1 != actionRewards.randomRewardTokenId2, RandomRewardNoDuplicates());
}
if (randomRewardsLength > 2) {
actionRewards.randomRewardTokenId3 = randomRewards[2].itemTokenId;
actionRewards.randomRewardChance3 = randomRewards[2].chance;
actionRewards.randomRewardAmount3 = randomRewards[2].amount;
require(
actionRewards.randomRewardChance3 <= actionRewards.randomRewardChance2,
RandomRewardsMustBeInOrder(randomRewards[1].chance, randomRewards[2].chance)
);
uint256 bounds = randomRewardsLength - 1;
for (uint256 i; i < bounds; ++i) {
require(
randomRewards[i].itemTokenId != randomRewards[randomRewardsLength - 1].itemTokenId,
RandomRewardNoDuplicates()
);
}
}
if (randomRewards.length > 3) {
actionRewards.randomRewardTokenId4 = randomRewards[3].itemTokenId;
actionRewards.randomRewardChance4 = randomRewards[3].chance;
actionRewards.randomRewardAmount4 = randomRewards[3].amount;
require(
actionRewards.randomRewardChance4 <= actionRewards.randomRewardChance3,
RandomRewardsMustBeInOrder(randomRewards[2].chance, randomRewards[3].chance)
);
uint256 bounds = randomRewards.length - 1;
for (uint256 i; i < bounds; ++i) {
require(
randomRewards[i].itemTokenId != randomRewards[randomRewards.length - 1].itemTokenId,
RandomRewardNoDuplicates()
);
}
}
require(randomRewards.length <= 4, TooManyRandomRewards());
}
function _get16bitSlice(bytes memory b, uint256 index) internal pure returns (uint16) {
uint256 key = index * 2;
return uint16(b[key] | (bytes2(b[key + 1]) >> 8));
}
// Helper function to get random value between min and max (inclusive) for uint8
function _getRandomInRange8(uint8 minValue, uint8 maxValue, uint8 randomness) internal pure returns (uint8) {
if (maxValue <= minValue) {
return minValue;
}
uint8 range = maxValue - minValue + 1;
// Use modulo to get value in range and add minValue
return uint8((uint16(randomness) % uint16(range)) + uint16(minValue));
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
import {Skill, Attire, CombatStyle, CombatStats} from "./misc.sol";
import {GuaranteedReward, RandomReward} from "./rewards.sol";
enum ActionQueueStrategy {
OVERWRITE,
APPEND,
KEEP_LAST_IN_PROGRESS
}
struct QueuedActionInput {
Attire attire;
uint16 actionId;
uint16 regenerateId; // Food (combat), maybe something for non-combat later
uint16 choiceId; // Melee/Ranged/Magic (combat), logs, ore (non-combat)
uint16 rightHandEquipmentTokenId; // Axe/Sword/bow, can be empty
uint16 leftHandEquipmentTokenId; // Shield, can be empty
uint24 timespan; // How long to queue the action for
uint8 combatStyle; // CombatStyle specific style of combat
uint40 petId; // id of the pet (can be empty)
}
struct QueuedAction {
uint16 actionId;
uint16 regenerateId; // Food (combat), maybe something for non-combat later
uint16 choiceId; // Melee/Ranged/Magic (combat), logs, ore (non-combat)
uint16 rightHandEquipmentTokenId; // Axe/Sword/bow, can be empty
uint16 leftHandEquipmentTokenId; // Shield, can be empty
uint24 timespan; // How long to queue the action for
uint24 prevProcessedTime; // How long the action has been processed for previously
uint24 prevProcessedXPTime; // How much XP has been gained for this action so far
uint64 queueId; // id of this queued action
bytes1 packed; // 1st bit is isValid (not used yet), 2nd bit is for hasPet (decides if the 2nd storage slot is read)
uint8 combatStyle;
uint24 reserved;
// Next storage slot
uint40 petId; // id of the pet (can be empty)
}
// This is only used as an input arg (and events)
struct ActionInput {
uint16 actionId;
ActionInfo info;
GuaranteedReward[] guaranteedRewards;
RandomReward[] randomRewards;
CombatStats combatStats;
}
struct ActionInfo {
uint8 skill;
bool actionChoiceRequired; // If true, then the user must choose an action choice
uint24 xpPerHour;
uint32 minXP;
uint24 numSpawned; // Mostly for combat, capped respawn rate for xp/drops. Per hour, base 10000
uint16 handItemTokenIdRangeMin; // Inclusive
uint16 handItemTokenIdRangeMax; // Inclusive
uint8 successPercent; // 0-100
uint8 worldLocation; // 0 is the main starting world
bool isFullModeOnly;
bool isAvailable;
uint16 questPrerequisiteId;
}
uint16 constant ACTIONCHOICE_MELEE_BASIC_SWORD = 1500;
uint16 constant ACTIONCHOICE_MAGIC_SHADOW_BLAST = 2000;
uint16 constant ACTIONCHOICE_RANGED_BASIC_BOW = 3000;
// Allows for 2, 4 or 8 hour respawn time
uint256 constant SPAWN_MUL = 1000;
uint256 constant RATE_MUL = 1000;
uint256 constant GUAR_MUL = 10; // Guaranteeded reward multiplier (1 decimal, allows for 2 hour action times)
uint256 constant MAX_QUEUEABLE_ACTIONS = 3; // Available slots to queue actions
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
import "./actions.sol";
import "./items.sol";
import "./misc.sol";
import "./players.sol";
import "./rewards.sol";
import "./quests.sol";
import "./promotions.sol";
import "./clans.sol";
import "./pets.sol";
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
import {IBank} from "../interfaces/IBank.sol";
enum ClanRank {
NONE, // Not in a clan
COMMONER, // Member of the clan
SCOUT, // Invite and kick commoners
COLONEL, // Can launch attacks and assign combatants
TREASURER, // Can withdraw from bank
LEADER, // Can edit clan details
OWNER // Can do everything and transfer ownership
}
enum BattleResultEnum {
DRAW,
WIN,
LOSE
}
struct ClanBattleInfo {
uint40 lastClanIdAttackOtherClanIdCooldownTimestamp;
uint8 numReattacks;
uint40 lastOtherClanIdAttackClanIdCooldownTimestamp;
uint8 numReattacksOtherClan;
}
// Packed for gas efficiency
struct Vault {
bool claimed; // Only applies to the first one, if it's claimed without the second one being claimed
uint40 timestamp;
uint80 amount;
uint40 timestamp1;
uint80 amount1;
}
struct VaultClanInfo {
IBank bank;
uint96 totalBrushLocked;
// New storage slot
uint40 attackingCooldownTimestamp;
uint40 assignCombatantsCooldownTimestamp;
bool currentlyAttacking;
uint24 defendingVaultsOffset;
uint40 blockAttacksTimestamp;
uint8 blockAttacksCooldownHours;
bool isInMMRArray;
uint40 superAttackCooldownTimestamp;
uint64[] playerIds;
Vault[] defendingVaults; // Append only, and use defendingVaultsOffset to decide where the real start is
}
uint256 constant MAX_CLAN_COMBATANTS = 20;
uint256 constant CLAN_WARS_GAS_PRICE_WINDOW_SIZE = 4;
bool constant XP_EMITTED_ELSEWHERE = true;
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
uint16 constant NONE = 0;
uint16 constant COMBAT_BASE = 2048;
// Melee
uint16 constant SWORD_BASE = COMBAT_BASE;
uint16 constant BRONZE_SWORD = SWORD_BASE;
// Woodcutting (2816 - 3071)
uint16 constant WOODCUTTING_BASE = 2816;
uint16 constant BRONZE_AXE = WOODCUTTING_BASE;
// Firemaking (3328 - 3583)
uint16 constant FIRE_BASE = 3328;
uint16 constant MAGIC_FIRE_STARTER = FIRE_BASE;
uint16 constant FIRE_MAX = FIRE_BASE + 255;
// Fishing (3072 - 3327)
uint16 constant FISHING_BASE = 3072;
uint16 constant NET_STICK = FISHING_BASE;
// Mining (2560 - 2815)
uint16 constant MINING_BASE = 2560;
uint16 constant BRONZE_PICKAXE = MINING_BASE;
// Magic
uint16 constant STAFF_BASE = COMBAT_BASE + 50;
uint16 constant TOTEM_STAFF = STAFF_BASE;
// Ranged
uint16 constant BOW_BASE = COMBAT_BASE + 100;
uint16 constant BASIC_BOW = BOW_BASE;
// Cooked fish
uint16 constant COOKED_FISH_BASE = 11008;
uint16 constant COOKED_FEOLA = COOKED_FISH_BASE + 3;
// Scrolls
uint16 constant SCROLL_BASE = 12032;
uint16 constant SHADOW_SCROLL = SCROLL_BASE;
// Boosts
uint16 constant BOOST_BASE = 12800;
uint16 constant COMBAT_BOOST = BOOST_BASE;
uint16 constant XP_BOOST = BOOST_BASE + 1;
uint16 constant GATHERING_BOOST = BOOST_BASE + 2;
uint16 constant SKILL_BOOST = BOOST_BASE + 3;
uint16 constant ABSENCE_BOOST = BOOST_BASE + 4;
uint16 constant LUCKY_POTION = BOOST_BASE + 5;
uint16 constant LUCK_OF_THE_DRAW = BOOST_BASE + 6;
uint16 constant PRAY_TO_THE_BEARDIE = BOOST_BASE + 7;
uint16 constant PRAY_TO_THE_BEARDIE_2 = BOOST_BASE + 8;
uint16 constant PRAY_TO_THE_BEARDIE_3 = BOOST_BASE + 9;
uint16 constant BOOST_RESERVED_1 = BOOST_BASE + 10;
uint16 constant BOOST_RESERVED_2 = BOOST_BASE + 11;
uint16 constant BOOST_RESERVED_3 = BOOST_BASE + 12;
uint16 constant GO_OUTSIDE = BOOST_BASE + 13;
uint16 constant RAINING_RARES = BOOST_BASE + 14;
uint16 constant CLAN_BOOSTER = BOOST_BASE + 15;
uint16 constant CLAN_BOOSTER_2 = BOOST_BASE + 16;
uint16 constant CLAN_BOOSTER_3 = BOOST_BASE + 17;
uint16 constant BOOST_RESERVED_4 = BOOST_BASE + 18;
uint16 constant BOOST_RESERVED_5 = BOOST_BASE + 19;
uint16 constant BOOST_RESERVED_6 = BOOST_BASE + 20;
uint16 constant BOOST_MAX = 13055;
// Eggs
uint16 constant EGG_BASE = 12544;
uint16 constant SECRET_EGG_1_TIER1 = EGG_BASE;
uint16 constant SECRET_EGG_2_TIER1 = EGG_BASE + 1;
uint16 constant EGG_MAX = 12799;
// Miscs
uint16 constant MISC_BASE = 65535;
uint16 constant RAID_PASS = MISC_BASE - 1;
struct BulkTransferInfo {
uint256[] tokenIds;
uint256[] amounts;
address to;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
enum BoostType {
NONE,
ANY_XP,
COMBAT_XP,
NON_COMBAT_XP,
GATHERING,
ABSENCE,
PASSIVE_SKIP_CHANCE,
// Clan wars
PVP_BLOCK,
PVP_REATTACK,
PVP_SUPER_ATTACK,
// Combat stats
COMBAT_FIXED
}
struct Equipment {
uint16 itemTokenId;
uint24 amount;
}
enum Skill {
NONE,
COMBAT, // This is a helper which incorporates all combat skills, attack <-> magic, defence, health etc
MELEE,
RANGED,
MAGIC,
DEFENCE,
HEALTH,
RESERVED_COMBAT,
MINING,
WOODCUTTING,
FISHING,
SMITHING,
THIEVING,
CRAFTING,
COOKING,
FIREMAKING,
FARMING,
ALCHEMY,
FLETCHING,
FORGING,
RESERVED2,
RESERVED3,
RESERVED4,
RESERVED5,
RESERVED6,
RESERVED7,
RESERVED8,
RESERVED9,
RESERVED10,
RESERVED11,
RESERVED12,
RESERVED13,
RESERVED14,
RESERVED15,
RESERVED16,
RESERVED17,
RESERVED18,
RESERVED19,
RESERVED20,
TRAVELING // Helper Skill for travelling
}
struct Attire {
uint16 head;
uint16 neck;
uint16 body;
uint16 arms;
uint16 legs;
uint16 feet;
uint16 ring;
uint16 reserved1;
}
struct CombatStats {
// From skill points
int16 meleeAttack;
int16 magicAttack;
int16 rangedAttack;
int16 health;
// These include equipment
int16 meleeDefence;
int16 magicDefence;
int16 rangedDefence;
}
enum CombatStyle {
NONE,
ATTACK,
DEFENCE
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
import {Skill} from "./misc.sol";
enum PetSkin {
NONE,
DEFAULT,
OG,
ONEKIN,
FROST,
CRYSTAL,
ANNIV1,
KRAGSTYR
}
enum PetEnhancementType {
NONE,
MELEE,
MAGIC,
RANGED,
DEFENCE,
HEALTH,
MELEE_AND_DEFENCE,
MAGIC_AND_DEFENCE,
RANGED_AND_DEFENCE
}
struct Pet {
Skill skillEnhancement1;
uint8 skillFixedEnhancement1;
uint8 skillPercentageEnhancement1;
Skill skillEnhancement2;
uint8 skillFixedEnhancement2;
uint8 skillPercentageEnhancement2;
uint40 lastAssignmentTimestamp;
address owner; // Will be used as an optimization to avoid having to look up the owner of the pet in another storage slot
bool isTransferable;
// New storage slot
uint24 baseId;
// These are used when training a pet
uint40 lastTrainedTimestamp;
uint8 skillFixedEnhancementMax1; // The maximum possible value for skillFixedEnhancement1 when training
uint8 skillFixedEnhancementMax2;
uint8 skillPercentageEnhancementMax1;
uint8 skillPercentageEnhancementMax2;
uint64 xp;
}
struct BasePetMetadata {
string description;
uint8 tier;
PetSkin skin;
PetEnhancementType enhancementType;
Skill skillEnhancement1;
uint8 skillFixedMin1;
uint8 skillFixedMax1;
uint8 skillFixedIncrement1;
uint8 skillPercentageMin1;
uint8 skillPercentageMax1;
uint8 skillPercentageIncrement1;
uint8 skillMinLevel1;
Skill skillEnhancement2;
uint8 skillFixedMin2;
uint8 skillFixedMax2;
uint8 skillFixedIncrement2;
uint8 skillPercentageMin2;
uint8 skillPercentageMax2;
uint8 skillPercentageIncrement2;
uint8 skillMinLevel2;
uint16 fixedStarThreshold;
uint16 percentageStarThreshold;
bool isTransferable;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
import {QueuedAction} from "./actions.sol";
import {Skill, BoostType, CombatStats, Equipment} from "./misc.sol";
import {PlayerQuest} from "./quests.sol";
// 4 bytes for each level. 0x00000000 is the first level, 0x00000054 is the second, etc.
bytes constant XP_BYTES = hex"0000000000000054000000AE0000010E00000176000001E60000025E000002DE00000368000003FD0000049B00000546000005FC000006C000000792000008730000096400000A6600000B7B00000CA400000DE100000F36000010A200001229000013CB0000158B0000176B0000196E00001B9400001DE20000205A000022FF000025D5000028DD00002C1E00002F99000033540000375200003B9A000040300000451900004A5C00004FFF0000560900005C810000637000006ADD000072D100007B570000847900008E42000098BE0000A3F90000B0020000BCE70000CAB80000D9860000E9630000FA6200010C990001201D0001350600014B6F0001637300017D2E000198C10001B64E0001D5F80001F7E600021C430002433B00026CFD000299BE0002C9B30002FD180003342B00036F320003AE730003F23D00043AE3000488BE0004DC2F0005359B000595700005FC2400066A360006E02D00075E990007E6160008774C000912EB0009B9B4000A6C74000B2C06000BF956000CD561000DC134000EBDF3000FCCD40010EF2400122648001373BF0014D9230016582C0017F2B00019AAA9001B8234001D7B95001F99390021DDBC00244BE60026E6B60029B15F002CAF51002FE43A0033540D00370303003AF5A4003F30CC0043B9B0004895E3004DCB600053609100595C53005FC6030066A585006E034D0075E86C007E5E980087703B0091287D009B935300A6BD8F00B2B4EE00BF882800CD470500DC026F00EBCC8500FCB8B7010EDBD5";
uint256 constant MAX_LEVEL = 140; // Original max level
uint256 constant MAX_LEVEL_1 = 160; // TODO: Update later
uint256 constant MAX_LEVEL_2 = 190; // TODO: Update later
enum EquipPosition {
NONE,
HEAD,
NECK,
BODY,
ARMS,
LEGS,
FEET,
RING,
SPARE2,
LEFT_HAND,
RIGHT_HAND,
BOTH_HANDS,
QUIVER,
MAGIC_BAG,
FOOD,
AUX, // wood, seeds etc..
BOOST_VIAL,
EXTRA_BOOST_VIAL,
GLOBAL_BOOST_VIAL,
CLAN_BOOST_VIAL,
PASSIVE_BOOST_VIAL,
LOCKED_VAULT,
TERRITORY
}
struct Player {
uint40 currentActionStartTimestamp; // The in-progress start time of the first queued action
Skill currentActionProcessedSkill1; // The skill that the queued action has already gained XP in
uint24 currentActionProcessedXPGained1; // The amount of XP that the queued action has already gained
Skill currentActionProcessedSkill2;
uint24 currentActionProcessedXPGained2;
Skill currentActionProcessedSkill3;
uint24 currentActionProcessedXPGained3;
uint16 currentActionProcessedFoodConsumed;
uint16 currentActionProcessedBaseInputItemsConsumedNum; // e.g scrolls, crafting materials etc
Skill skillBoosted1; // The first skill that is boosted
Skill skillBoosted2; // The second skill that is boosted (if applicable)
uint48 totalXP;
uint16 totalLevel; // Doesn't not automatically add new skills to it
bytes1 packedData; // Contains worldLocation in first 6 bits (0 is the main starting randomnessBeacon), and full mode unlocked in the upper most bit
// TODO: Can be up to 7
QueuedAction[] actionQueue;
string name; // Raw name
}
struct Item {
EquipPosition equipPosition;
bytes1 packedData; // 0x1 exists, upper most bit is full mode
uint16 questPrerequisiteId;
// Can it be transferred?
bool isTransferable; // TODO: Move into packedData
// Food
uint16 healthRestored;
// Boost vial
BoostType boostType;
uint16 boostValue; // Varies, could be the % increase
uint24 boostDuration; // How long the effect of the boost last
// Combat stats
int16 meleeAttack;
int16 magicAttack;
int16 rangedAttack;
int16 meleeDefence;
int16 magicDefence;
int16 rangedDefence;
int16 health;
// Minimum requirements in this skill to use this item (can be NONE)
Skill skill;
uint32 minXP;
}
// Used for events
struct BoostInfo {
uint40 startTime;
uint24 duration;
uint16 value;
uint16 itemTokenId; // Get the effect of it
BoostType boostType;
}
struct PlayerBoostInfo {
uint40 startTime;
uint24 duration;
uint16 value;
uint16 itemTokenId; // Get the effect of it
BoostType boostType;
// Another boost slot (for global/clan boosts this is the "last", for users it is the "extra")
uint40 extraOrLastStartTime;
uint24 extraOrLastDuration;
uint16 extraOrLastValue;
uint16 extraOrLastItemTokenId;
BoostType extraOrLastBoostType;
uint40 cooldown; // Just put here for packing
}
// This is effectively a ratio to produce 1 of outputTokenId.
// Available choices that can be undertaken for an action
struct ActionChoiceInput {
uint8 skill; // Skill that this action choice is related to
uint24 rate; // Rate of output produced per hour (base 1000) 3 decimals
uint24 xpPerHour;
uint16[] inputTokenIds;
uint24[] inputAmounts;
uint16 outputTokenId;
uint8 outputAmount;
uint8 successPercent; // 0-100
uint16 handItemTokenIdRangeMin; // Inclusive
uint16 handItemTokenIdRangeMax; // Inclusive
bool isFullModeOnly;
bool isAvailable;
uint16 questPrerequisiteId;
uint8[] skills; // Skills required to do this action choice
uint32[] skillMinXPs; // Min XP in the corresponding skills to be able to do this action choice
int16[] skillDiffs; // How much the skill is increased/decreased by this action choice
}
struct ActionChoice {
uint8 skill; // Skill that this action choice is related to
uint24 rate; // Rate of output produced per hour (base 1000) 3 decimals
uint24 xpPerHour;
uint16 inputTokenId1;
uint24 inputAmount1;
uint16 inputTokenId2;
uint24 inputAmount2;
uint16 inputTokenId3;
uint24 inputAmount3;
uint16 outputTokenId;
uint8 outputAmount;
uint8 successPercent; // 0-100
uint8 skill1; // Skills required to do this action choice, commonly the same as skill
uint32 skillMinXP1; // Min XP in the skill to be able to do this action choice
int16 skillDiff1; // How much the skill is increased/decreased by this action choice
uint8 skill2;
uint32 skillMinXP2;
int16 skillDiff2;
uint8 skill3;
uint32 skillMinXP3;
int16 skillDiff3;
uint16 handItemTokenIdRangeMin; // Inclusive
uint16 handItemTokenIdRangeMax; // Inclusive
uint16 questPrerequisiteId;
// FullMode is last bit, first 6 bits is worldLocation,
// 2nd last bit is if there are other skills in next storage slot to check,
// 3rd last bit if the input amounts should be used
bytes1 packedData;
}
// Must be in the same order as Skill enum
struct PackedXP {
uint40 melee;
uint40 ranged;
uint40 magic;
uint40 defence;
uint40 health;
uint40 reservedCombat;
bytes2 packedDataIsMaxed; // 2 bits per skill to indicate whether the maxed skill is reached. I think this was added in case we added a new max level which a user had already passed so old & new levels are the same and it would not trigger a level up event.
// Next slot
uint40 mining;
uint40 woodcutting;
uint40 fishing;
uint40 smithing;
uint40 thieving;
uint40 crafting;
bytes2 packedDataIsMaxed1; // 2 bits per skill to indicate whether the maxed skill is reached
// Next slot
uint40 cooking;
uint40 firemaking;
uint40 farming;
uint40 alchemy;
uint40 fletching;
uint40 forging;
bytes2 packedDataIsMaxed2; // 2 bits per skill to indicate whether the maxed skill is reached
}
struct AvatarInfo {
string name;
string description;
string imageURI;
Skill[2] startSkills; // Can be NONE
}
struct PastRandomRewardInfo {
uint16 itemTokenId;
uint24 amount;
uint64 queueId;
}
struct PendingQueuedActionEquipmentState {
uint256[] consumedItemTokenIds;
uint256[] consumedAmounts;
uint256[] producedItemTokenIds;
uint256[] producedAmounts;
}
struct PendingQueuedActionMetadata {
uint32 xpGained; // total xp gained
uint32 rolls;
bool died;
uint16 actionId;
uint64 queueId;
uint24 elapsedTime;
uint24 xpElapsedTime;
uint8 checkpoint;
}
struct PendingQueuedActionData {
// The amount of XP that the queued action has already gained
Skill skill1;
uint24 xpGained1;
Skill skill2; // Most likely health
uint24 xpGained2;
Skill skill3; // Could come
uint24 xpGained3;
// How much food is consumed in the current action so far
uint16 foodConsumed;
// How many base consumables are consumed in the current action so far
uint16 baseInputItemsConsumedNum;
}
struct PendingQueuedActionProcessed {
// XP gained during this session
Skill[] skills;
uint32[] xpGainedSkills;
// Data for the current action which has been previously processed, this is used to store on the Player
PendingQueuedActionData currentAction;
}
struct QuestState {
uint256[] consumedItemTokenIds;
uint256[] consumedAmounts;
uint256[] rewardItemTokenIds;
uint256[] rewardAmounts;
PlayerQuest[] activeQuestInfo;
uint256[] questsCompleted;
Skill[] skills; // Skills gained XP in
uint32[] xpGainedSkills; // XP gained in these skills
}
struct LotteryWinnerInfo {
uint16 lotteryId;
uint24 raffleId;
uint16 itemTokenId;
uint16 amount;
bool instantConsume;
uint64 playerId;
}
struct PendingQueuedActionState {
// These 2 are in sync. Separated to reduce gas/deployment costs as these are passed down many layers.
PendingQueuedActionEquipmentState[] equipmentStates;
PendingQueuedActionMetadata[] actionMetadatas;
QueuedAction[] remainingQueuedActions;
PastRandomRewardInfo[] producedPastRandomRewards;
uint256[] xpRewardItemTokenIds;
uint256[] xpRewardAmounts;
uint256[] dailyRewardItemTokenIds;
uint256[] dailyRewardAmounts;
PendingQueuedActionProcessed processedData;
bytes32 dailyRewardMask;
QuestState quests;
uint256 numPastRandomRewardInstancesToRemove;
uint8 worldLocation;
LotteryWinnerInfo lotteryWinner;
}
struct FullAttireBonusInput {
Skill skill;
uint8 bonusXPPercent;
uint8 bonusRewardsPercent; // 3 = 3%
uint16[5] itemTokenIds; // 0 = head, 1 = body, 2 arms, 3 body, 4 = feet
}
// Contains everything you need to create an item
struct ItemInput {
CombatStats combatStats;
uint16 tokenId;
EquipPosition equipPosition;
bool isTransferable;
bool isFullModeOnly;
bool isAvailable;
uint16 questPrerequisiteId;
// Minimum requirements in this skill
Skill skill;
uint32 minXP;
// Food
uint16 healthRestored;
// Boost
BoostType boostType;
uint16 boostValue; // Varies, could be the % increase
uint24 boostDuration; // How long the effect of the boost vial last
// uri
string metadataURI;
string name;
}
/* Order head, neck, body, arms, legs, feet, ring, reserved1,
leftHandEquipment, rightHandEquipment,
Not used yet: input1, input2,input3, regenerate, reserved2, reserved3 */
struct CheckpointEquipments {
uint16[16] itemTokenIds;
uint16[16] balances;
}
struct ActivePlayerInfo {
uint64 playerId;
uint40 checkpoint;
uint24 timespan;
uint24 timespan1;
uint24 timespan2;
}
uint8 constant START_LEVEL = 17; // Needs updating when there is a new skill. Only useful for new heroes.
uint256 constant MAX_UNIQUE_TICKETS = 64;
// Used in a bunch of places
uint256 constant IS_FULL_MODE_BIT = 7;
// Passive/Instant/InstantVRF/Actions/ActionChoices/Item action
uint256 constant IS_AVAILABLE_BIT = 6;
// Passive actions
uint256 constant HAS_RANDOM_REWARDS_BIT = 5;
// The rest use world location for first 4 bits
// Queued action
uint256 constant HAS_PET_BIT = 2;
uint256 constant IS_VALID_BIT = 1;
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
enum Promotion {
NONE,
STARTER,
HALLOWEEN_2023,
XMAS_2023,
HALLOWEEN_2024,
HOLIDAY4, // Just have placeholders for now
HOLIDAY5,
HOLIDAY6,
HOLIDAY7,
HOLIDAY8,
HOLIDAY9,
HOLIDAY10
}
enum PromotionMintStatus {
NONE,
SUCCESS,
PROMOTION_ALREADY_CLAIMED,
ORACLE_NOT_CALLED,
MINTING_OUTSIDE_AVAILABLE_DATE,
PLAYER_DOES_NOT_QUALIFY,
PLAYER_NOT_HIT_ENOUGH_CLAIMS_FOR_STREAK_BONUS,
DEPENDENT_QUEST_NOT_COMPLETED
}
struct PromotionInfoInput {
Promotion promotion;
uint40 startTime;
uint40 endTime; // Exclusive
uint8 numDailyRandomItemsToPick; // Number of items to pick
uint40 minTotalXP; // Minimum xp required to claim
uint256 tokenCost; // Cost in brush to start the promotion, max 16mil
// Special promotion specific (like 1kin)
uint8 redeemCodeLength; // Length of the redeem code
bool adminOnly; // Only admins can mint the promotion, like for 1kin (Not used yet)
bool promotionTiedToUser; // If the promotion is tied to a user
bool promotionTiedToPlayer; // If the promotion is tied to the player
bool promotionMustOwnPlayer; // Must own the player to get the promotion
// Evolution specific
bool evolvedHeroOnly; // Only allow evolved heroes to claim
// Multiday specific
bool isMultiday; // The promotion is multi-day
uint256 brushCostMissedDay; // Cost in brush to mint the promotion if they miss a day (in ether), max 25.6 (base 100)
uint8 numDaysHitNeededForStreakBonus; // How many days to hit for the streak bonus
uint8 numDaysClaimablePeriodStreakBonus; // If there is a streak bonus, how many days to claim it after the promotion ends. If no final day bonus, set to 0
uint8 numRandomStreakBonusItemsToPick1; // Number of items to pick for the streak bonus
uint8 numRandomStreakBonusItemsToPick2; // Number of random items to pick for the streak bonus
uint16[] randomStreakBonusItemTokenIds1;
uint32[] randomStreakBonusAmounts1;
uint16[] randomStreakBonusItemTokenIds2;
uint32[] randomStreakBonusAmounts2;
uint16[] guaranteedStreakBonusItemTokenIds;
uint16[] guaranteedStreakBonusAmounts;
// Single and multiday
uint16[] guaranteedItemTokenIds; // Guaranteed items for the promotions each day, if empty then they are handled in a specific way for the promotion like daily rewards
uint32[] guaranteedAmounts; // Corresponding amounts to the itemTokenIds
uint16[] randomItemTokenIds; // Possible items for the promotions each day, if empty then they are handled in a specific way for the promotion like daily rewards
uint32[] randomAmounts; // Corresponding amounts to the randomItemTokenIds
// Quests
uint16 questPrerequisiteId;
}
struct PromotionInfo {
Promotion promotion;
uint40 startTime;
uint8 numDays;
uint8 numDailyRandomItemsToPick; // Number of items to pick
uint40 minTotalXP; // Minimum xp required to claim
uint24 tokenCost; // Cost in brush to mint the promotion (in ether), max 16mil
// Quests
uint16 questPrerequisiteId;
// Special promotion specific (like 1kin), could pack these these later
uint8 redeemCodeLength; // Length of the redeem code
bool adminOnly; // Only admins can mint the promotion, like for 1kin
bool promotionTiedToUser; // If the promotion is tied to a user
bool promotionTiedToPlayer; // If the promotion is tied to the player
bool promotionMustOwnPlayer; // Must own the player to get the promotion
// Evolution specific
bool evolvedHeroOnly; // Only allow evolved heroes to claim
// Multiday specific
bool isMultiday; // The promotion is multi-day
uint8 brushCostMissedDay; // Cost in brush to mint the promotion if they miss a day (in ether), max 25.5, base 100
uint8 numDaysHitNeededForStreakBonus; // How many days to hit for the streak bonus
uint8 numDaysClaimablePeriodStreakBonus; // If there is a streak bonus, how many days to claim it after the promotion ends. If no final day bonus, set to 0
uint8 numRandomStreakBonusItemsToPick1; // Number of items to pick for the streak bonus
uint8 numRandomStreakBonusItemsToPick2; // Number of random items to pick for the streak bonus
// Misc
uint16[] randomStreakBonusItemTokenIds1;
uint32[] randomStreakBonusAmounts1;
uint16[] randomStreakBonusItemTokenIds2; // Not used yet
uint32[] randomStreakBonusAmounts2; // Not used yet
uint16[] guaranteedStreakBonusItemTokenIds; // Not used yet
uint16[] guaranteedStreakBonusAmounts; // Not used yet
// Single and multiday
uint16[] guaranteedItemTokenIds; // Guaranteed items for the promotions each day, if empty then they are handled in a specific way for the promotion like daily rewards
uint32[] guaranteedAmounts; // Corresponding amounts to the itemTokenIds
uint16[] randomItemTokenIds; // Possible items for the promotions each day, if empty then they are handled in a specific way for the promotion like daily rewards
uint32[] randomAmounts; // Corresponding amounts to the randomItemTokenIds
}
uint256 constant BRUSH_COST_MISSED_DAY_MUL = 10;
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
import {Skill} from "./misc.sol";
struct QuestInput {
uint16 dependentQuestId; // The quest that must be completed before this one can be started
uint16 actionId1; // action to do
uint16 actionNum1; // how many (up to 65535)
uint16 actionId2; // another action to do
uint16 actionNum2; // how many (up to 65535)
uint16 actionChoiceId; // actionChoice to perform
uint16 actionChoiceNum; // how many to do (base number), (up to 65535)
Skill skillReward; // The skill to reward XP to
uint24 skillXPGained; // The amount of XP to give (up to 65535)
uint16 rewardItemTokenId1; // Reward an item
uint16 rewardAmount1; // amount of the reward (up to 65535)
uint16 rewardItemTokenId2; // Reward another item
uint16 rewardAmount2; // amount of the reward (up to 65535)
uint16 burnItemTokenId; // Burn an item
uint16 burnAmount; // amount of the burn (up to 65535)
uint16 questId; // Unique id for this quest
bool isFullModeOnly; // If true this quest requires the user be evolved
uint8 worldLocation; // 0 is the main starting world
}
struct Quest {
uint16 dependentQuestId; // The quest that must be completed before this one can be started
uint16 actionId1; // action to do
uint16 actionNum1; // how many (up to 65535)
uint16 actionId2; // another action to do
uint16 actionNum2; // how many (up to 65535)
uint16 actionChoiceId; // actionChoice to perform
uint16 actionChoiceNum; // how many to do (base number), (up to 65535)
Skill skillReward; // The skill to reward XP to
uint24 skillXPGained; // The amount of XP to give (up to 65535)
uint16 rewardItemTokenId1; // Reward an item
uint16 rewardAmount1; // amount of the reward (up to 65535)
uint16 rewardItemTokenId2; // Reward another item
uint16 rewardAmount2; // amount of the reward (up to 65535)
uint16 burnItemTokenId; // Burn an item
uint16 burnAmount; // amount of the burn (up to 65535)
uint16 reserved; // Reserved for future use (previously was questId and cleared)
bytes1 packedData; // FullMode is last bit, first 6 bits is worldLocation
}
struct PlayerQuest {
uint32 questId;
uint16 actionCompletedNum1;
uint16 actionCompletedNum2;
uint16 actionChoiceCompletedNum;
uint16 burnCompletedAmount;
}
uint256 constant QUEST_PURSE_STRINGS = 5; // MAKE SURE THIS MATCHES definitions
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
import {BoostType, Equipment} from "./misc.sol";
struct GuaranteedReward {
uint16 itemTokenId;
uint16 rate; // num per hour (base 10, 1 decimal) for actions and num per duration for passive actions
}
struct RandomReward {
uint16 itemTokenId;
uint16 chance; // out of 65535
uint8 amount; // out of 255
}
struct PendingRandomReward {
uint16 actionId;
uint40 startTime;
uint24 xpElapsedTime;
uint16 boostItemTokenId;
uint24 elapsedTime;
uint40 boostStartTime; // When the boost was started
uint24 sentinelElapsedTime;
// Full equipment at the time this was generated
uint8 fullAttireBonusRewardsPercent;
uint64 queueId; // TODO: Could reduce this if more stuff is needed
}
struct ActionRewards {
uint16 guaranteedRewardTokenId1;
uint16 guaranteedRewardRate1; // Num per hour base 10 (1 decimal) for actions (Max 6553.5 per hour), num per duration for passive actions
uint16 guaranteedRewardTokenId2;
uint16 guaranteedRewardRate2;
uint16 guaranteedRewardTokenId3;
uint16 guaranteedRewardRate3;
// Random chance rewards
uint16 randomRewardTokenId1;
uint16 randomRewardChance1; // out of 65535
uint8 randomRewardAmount1; // out of 255
uint16 randomRewardTokenId2;
uint16 randomRewardChance2;
uint8 randomRewardAmount2;
uint16 randomRewardTokenId3;
uint16 randomRewardChance3;
uint8 randomRewardAmount3;
uint16 randomRewardTokenId4;
uint16 randomRewardChance4;
uint8 randomRewardAmount4;
// No more room in this storage slot!
}
struct XPThresholdReward {
uint32 xpThreshold;
Equipment[] rewards;
}
enum InstantVRFActionType {
NONE,
GENERIC,
FORGING,
EGG
}
struct InstantVRFActionInput {
uint16 actionId;
uint16[] inputTokenIds;
uint24[] inputAmounts;
bytes data;
InstantVRFActionType actionType;
bool isFullModeOnly;
bool isAvailable;
uint16 questPrerequisiteId;
}
struct InstantVRFRandomReward {
uint16 itemTokenId;
uint16 chance; // out of 65535
uint16 amount; // out of 65535
}
uint256 constant MAX_GUARANTEED_REWARDS_PER_ACTION = 3;
uint256 constant MAX_RANDOM_REWARDS_PER_ACTION = 4;
uint256 constant MAX_REWARDS_PER_ACTION = MAX_GUARANTEED_REWARDS_PER_ACTION + MAX_RANDOM_REWARDS_PER_ACTION;
uint256 constant MAX_CONSUMED_PER_ACTION = 3;
uint256 constant MAX_QUEST_REWARDS = 2;
uint256 constant TIER_1_DAILY_REWARD_START_XP = 0;
uint256 constant TIER_2_DAILY_REWARD_START_XP = 7_650;
uint256 constant TIER_3_DAILY_REWARD_START_XP = 33_913;
uint256 constant TIER_4_DAILY_REWARD_START_XP = 195_864;
uint256 constant TIER_5_DAILY_REWARD_START_XP = 784_726;
uint256 constant TIER_6_DAILY_REWARD_START_XP = 2_219_451;
// 4 bytes for each threshold, starts at 500 xp in decimal
bytes constant XP_THRESHOLD_REWARDS = hex"00000000000001F4000003E8000009C40000138800002710000075300000C350000186A00001D4C0000493E0000557300007A120000927C0000B71B0000DBBA0000F424000124F800016E360001B7740001E8480002625A0002932E0002DC6C0003567E0003D0900004C4B40005B8D80006ACFC0007A1200008954400098968000A7D8C000B71B0000C65D4000D59F8000E4E1C0";
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
interface IBrushToken is IERC20 {
function burn(uint256 amount) external;
function burnFrom(address account, uint256 amount) external;
function transferFromBulk(address from, address[] calldata tos, uint256[] calldata amounts) external;
function transferOwnership(address newOwner) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
interface IBank {
function initialize() external;
function initializeAddresses(
uint256 clanId,
address bankRegistry,
address bankRelay,
address playerNFT,
address itemNFT,
address clans,
address players,
address lockedBankVaults,
address raids
) external;
function depositToken(address sender, address from, uint256 playerId, address token, uint256 amount) external;
function setAllowBreachedCapacity(bool allow) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
interface IOracleCB {
function newOracleRandomWords(uint256 randomWord) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
import "../globals/misc.sol";
import "../globals/players.sol";
interface IPlayers {
function clearEverythingBeforeTokenTransfer(address from, uint256 tokenId) external;
function beforeTokenTransferTo(address to, uint256 tokenId) external;
function getURI(
uint256 playerId,
string calldata name,
string calldata avatarName,
string calldata avatarDescription,
string calldata imageURI
) external view returns (string memory);
function mintedPlayer(
address from,
uint256 playerId,
Skill[2] calldata startSkills,
bool makeActive,
uint256[] calldata startingItemTokenIds,
uint256[] calldata startingAmounts
) external;
function upgradePlayer(uint256 playerId) external;
function isPlayerEvolved(uint256 playerId) external view returns (bool);
function isOwnerOfPlayerAndActive(address from, uint256 playerId) external view returns (bool);
function getAlphaCombatParams() external view returns (uint8 alphaCombat, uint8 betaCombat, uint8 alphaCombatHealing);
function getActivePlayer(address owner) external view returns (uint256 playerId);
function getPlayerXP(uint256 playerId, Skill skill) external view returns (uint256 xp);
function getLevel(uint256 playerId, Skill skill) external view returns (uint256 level);
function getTotalXP(uint256 playerId) external view returns (uint256 totalXP);
function getTotalLevel(uint256 playerId) external view returns (uint256 totalLevel);
function getActiveBoost(uint256 playerId) external view returns (PlayerBoostInfo memory);
function modifyXP(address from, uint256 playerId, Skill skill, uint56 xp, bool skipEffects) external;
function beforeItemNFTTransfer(address from, address to, uint256[] calldata ids, uint256[] calldata amounts) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
interface ISamWitchVRF {
function requestRandomWords(uint256 numWords, uint256 callbackGasLimit) external returns (bytes32 requestId);
function fulfillRandomWords(
bytes32 requestId,
address oracle,
address fulfillAddress,
uint256 callbackGasLimit,
uint256 numWords,
uint256[2] calldata publicKey,
uint256[4] calldata proof,
uint256[2] calldata uPoint,
uint256[4] calldata vComponents
) external returns (bool callSuccess);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
import {CombatStats, Skill} from "../globals/misc.sol";
import {ActionChoice} from "../globals/players.sol";
import {ActionRewards} from "../globals/rewards.sol";
import {ActionInfo} from "../globals/actions.sol";
interface IWorldActions {
function getXPPerHour(uint16 actionId, uint16 actionChoiceId) external view returns (uint24 xpPerHour);
function getNumSpawn(uint16 actionId) external view returns (uint256 numSpawned);
function getActionSuccessPercentAndMinXP(uint16 actionId) external view returns (uint8 successPercent, uint32 minXP);
function getCombatStats(uint16 actionId) external view returns (CombatStats memory stats);
function getActionChoice(uint16 actionId, uint16 choiceId) external view returns (ActionChoice memory choice);
function getRewardsHelper(
uint16 actionId
) external view returns (ActionRewards memory, Skill skill, uint256 numSpawned); // , uint8 worldLocation);
function getSkill(uint256 actionId) external view returns (Skill skill);
function getActionRewards(uint256 actionId) external view returns (ActionRewards memory);
function getActionInfo(uint256 actionId) external view returns (ActionInfo memory info);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
import "@openzeppelin/contracts/utils/structs/BitMaps.sol";
library BloomFilter {
using BitMaps for BitMaps.BitMap;
struct Filter {
uint8 hashCount; // Number of hash functions to use
uint64 bitCount; // Number of bits in the bitmap
BitMaps.BitMap bitmap; // Bitmap using OpenZeppelin’s BitMaps library to support up to 65,536 bits
}
error ZeroHashCount();
/**
* @notice Calculates the optimal number of hash functions based on the expected number of items.
* @param expectedItems Expected number of items to be added to the filter.
* @param bitCount Number of bits in the bitmap.
* @return hashCount The number of hash functions to be used.
*/
function _getOptimalHashCount(uint256 expectedItems, uint64 bitCount) internal pure returns (uint8 hashCount) {
uint256 calculatedHashCount = (bitCount * 144) / (expectedItems * 100) + 1;
hashCount = calculatedHashCount < 256 ? uint8(calculatedHashCount) : 255;
}
/**
* @notice Adds a `bytes32` item to the filter by setting bits in the bitmap.
* @param filter The Bloom filter to update.
* @param item Hash value of the item to add.
*/
function _add(Filter storage filter, bytes32 item) internal {
require(filter.hashCount != 0, ZeroHashCount());
uint64 bitCount = filter.bitCount;
for (uint8 i = 0; i < filter.hashCount; ++i) {
uint256 position = uint256(keccak256(abi.encodePacked(item, i))) % bitCount;
filter.bitmap.set(position); // Set the bit in the bitmap at the calculated position
}
}
/**
* @notice Adds a string to the filter by hashing it and setting bits in the bitmap.
* @param filter The Bloom filter to update.
* @param item String to add to the filter.
*/
function _addString(Filter storage filter, string memory item) internal {
bytes32 itemHash = keccak256(abi.encodePacked(item));
_add(filter, itemHash);
}
/**
* @notice Removes a `bytes32` item from the filter by clearing bits in the bitmap.
* @param filter The Bloom filter to update.
* @param item Hash value of the item to remove.
*/
function _remove(Filter storage filter, bytes32 item) internal {
require(filter.hashCount != 0, ZeroHashCount());
uint64 bitCount = filter.bitCount;
for (uint8 i = 0; i < filter.hashCount; ++i) {
uint256 position = uint256(keccak256(abi.encodePacked(item, i))) % bitCount;
filter.bitmap.unset(position); // Clear the bit in the bitmap at the calculated position
}
}
/**
* @notice Removes a string from the filter by hashing it and clearing bits in the bitmap.
* @param filter The Bloom filter to update.
* @param item String to remove from the filter.
*/
function _removeString(Filter storage filter, string memory item) internal {
bytes32 itemHash = keccak256(abi.encodePacked(item));
_remove(filter, itemHash);
}
/**
* @notice Checks if a `bytes32` item is probably present in the filter or definitely not present.
* @param filter The Bloom filter to check.
* @param item Hash value of the item to check.
* @return probablyPresent True if the item may exist, false if it definitely does not exist.
*/
function _probablyContains(Filter storage filter, bytes32 item) internal view returns (bool probablyPresent) {
if (filter.hashCount == 0) revert ZeroHashCount();
uint64 bitCount = filter.bitCount;
for (uint8 i = 0; i < filter.hashCount; ++i) {
uint256 position = uint256(keccak256(abi.encodePacked(item, i))) % bitCount;
if (!filter.bitmap.get(position)) return false; // If any bit is not set, item is not present
}
return true;
}
/**
* @notice Checks if a string is probably present in the filter or definitely not present.
* @param filter The Bloom filter to check.
* @param item String to check in the filter.
* @return probablyPresent True if the item may exist, false if it definitely does not exist.
*/
function _probablyContainsString(
Filter storage filter,
string memory item
) internal view returns (bool probablyPresent) {
bytes32 itemHash = keccak256(abi.encodePacked(item));
return _probablyContains(filter, itemHash);
}
function _defaults(Filter storage filter) internal {
filter.hashCount = 8; // The number of hash functions to use.
filter.bitCount = 1024 * 32; // Default number of bits
delete filter.bitmap; // Clear the bitmap
}
/**
* @notice Initializes a Bloom filter with a specified hash count.
* @param filter The Bloom filter to initialize.
*/
function _initialize(Filter storage filter) internal {
_defaults(filter);
}
/**
* @notice Initializes a Bloom filter with a specified hash count.
* @param filter The Bloom filter to initialize.
* @param hashCount The number of hash functions to use.
*/
function _initialize(Filter storage filter, uint8 hashCount) internal {
_defaults(filter);
filter.hashCount = hashCount;
}
/**
* @notice Initializes a Bloom filter with a specified hash count.
* @param filter The Bloom filter to initialize.
* @param hashCount The number of hash functions to use.
* @param bitCount The number of bits in the bitmap.
*/
function _initialize(Filter storage filter, uint8 hashCount, uint64 bitCount) internal {
_defaults(filter);
filter.bitCount = bitCount;
filter.hashCount = hashCount;
}
/**
* @notice Initializes a Bloom filter with a specified hash count and clears the bitmap.
* @param filter The Bloom filter to initialize.
* @param hashCount The times to hash each item.
* @param positions Array of positions to set in the bitmap.
*/
function _initialize(Filter storage filter, uint8 hashCount, uint256[] calldata positions) internal {
_initialize(filter, hashCount);
_addPositions(filter, positions);
}
/**
* @notice Initializes a Bloom filter with a specified hash count and clears the bitmap.
* @param filter The Bloom filter to initialize.
* @param hashCount The number of hash functions to use.
* @param bitCount The number of bits in the bitmap.
* @param positions Array of positions to set in the bitmap.
*/
function _initialize(Filter storage filter, uint8 hashCount, uint64 bitCount, uint256[] calldata positions) internal {
_initialize(filter, hashCount, bitCount);
_addPositions(filter, positions);
}
/**
* @notice Adds an array of positions to the filter by setting bits in the bitmap.
* @param filter The Bloom filter to update.
* @param positions Array of positions to set in the bitmap.
*/
function _addPositions(Filter storage filter, uint256[] calldata positions) internal {
for (uint256 i = 0; i < positions.length; ++i) {
filter.bitmap.set(positions[i]);
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
import {Skill} from "../globals/misc.sol";
library SkillLibrary {
error InvalidSkillId(uint8 skill);
function _asSkill(uint8 skill) internal pure returns (Skill) {
require(skill >= uint8(type(Skill).min) && skill <= uint8(type(Skill).max), InvalidSkillId(skill));
return Skill(skill);
}
function _isSkill(uint8 skill) internal pure returns (bool) {
return _isSkill(_asSkill(skill));
}
function _isSkill(uint8 skill, Skill check) internal pure returns (bool) {
return _isSkill(_asSkill(skill), check);
}
function _isSkillCombat(uint8 skill) internal pure returns (bool) {
return _isSkillCombat(_asSkill(skill));
}
function _isSkillNone(uint8 skill) internal pure returns (bool) {
return _isSkillNone(_asSkill(skill));
}
function _asUint8(Skill skill) internal pure returns (uint8) {
return uint8(skill);
}
function _isSkill(Skill skill) internal pure returns (bool) {
return !_isSkill(skill, Skill.NONE);
}
function _isSkill(Skill skill, Skill check) internal pure returns (bool) {
return skill == check;
}
function _isSkillCombat(Skill skill) internal pure returns (bool) {
return _isSkill(skill, Skill.COMBAT);
}
function _isSkillNone(Skill skill) internal pure returns (bool) {
return _isSkill(skill, Skill.NONE);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
import {SamWitchERC1155UpgradeableSinglePerToken} from "./SamWitchERC1155UpgradeableSinglePerToken.sol";
import {UUPSUpgradeable} from "@openzeppelin/contracts-upgradeable/proxy/utils/UUPSUpgradeable.sol";
import {OwnableUpgradeable} from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
import {IERC2981, IERC165} from "@openzeppelin/contracts/interfaces/IERC2981.sol";
import {IERC1155} from "@openzeppelin/contracts/token/ERC1155/IERC1155.sol";
import {Strings} from "@openzeppelin/contracts/utils/Strings.sol";
import {AdminAccess} from "./AdminAccess.sol";
import {RandomnessBeacon} from "./RandomnessBeacon.sol";
import {IPlayers} from "./interfaces/IPlayers.sol";
import {IBrushToken} from "./interfaces/external/IBrushToken.sol";
import {SkillLibrary} from "./libraries/SkillLibrary.sol";
import {EstforLibrary} from "./EstforLibrary.sol";
import {PetNFTLibrary} from "./PetNFTLibrary.sol";
import {BloomFilter} from "./libraries/BloomFilter.sol";
// solhint-disable-next-line no-global-import
import {Skill} from "./globals/misc.sol";
import {Pet, PetSkin, PetEnhancementType, BasePetMetadata} from "./globals/pets.sol";
// The NFT contract contains data related to the pets and who owns them.
// It does not use the standard OZ _balances for tracking, instead it packs the owner
// into the pet struct and avoid updating multiple to/from balances using
// SamWitchERC1155UpgradeableSinglePerToken is a custom OZ ERC1155 implementation that optimizes for token ids with singular amounts
contract PetNFT is SamWitchERC1155UpgradeableSinglePerToken, UUPSUpgradeable, OwnableUpgradeable, IERC2981 {
using SkillLibrary for Skill;
using BloomFilter for BloomFilter.Filter;
event NewPets(uint256 startPetId, Pet[] pets, string[] names, address from);
event BridgePets(uint256[] tokenIds, Pet[] pets, string[] names, address from);
event RefreshPets(uint256[] tokenIds, Pet[] pets, string[] names, address[] owners);
event SetBrushDistributionPercentages(
uint256 brushBurntPercentage,
uint256 brushTreasuryPercentage,
uint256 brushDevPercentage
);
event EditPlayerPet(uint256 playerId, uint256 petId, address from, string newName);
event AddBasePets(BasePetInput[] basePetInputs);
event EditBasePets(BasePetInput[] basePetInputs);
event EditNameCost(uint256 newCost);
event Train(uint256 playerId, uint256 petId, uint256 xpGained);
error PetAlreadyExists();
error PetDoesNotExist();
error ERC1155Metadata_URIQueryForNonexistentToken();
error NotAdminAndBeta();
error PlayerDoesNotOwnPet();
error NotOwnerOfPet();
error NotOwnerOfPlayer();
error InvalidTimestamp();
error StorageSlotIncorrect();
error NotMinter();
error NotBridge();
error NotBurner();
error NameAlreadyExists();
error NameTooLong();
error NameTooShort();
error NameInvalidCharacters();
error PercentNotTotal100();
error InvalidAddress();
error SkillEnhancementIncorrectOrder();
error SkillPercentageIncrementCannotBeZero();
error SkillPercentageMustBeAFactorOfIncrement();
error SkillEnhancementMinGreaterThanMax();
error MustHaveOneSkillEnhancement();
error SkillEnhancementIncorrectlyFilled();
error MustHaveAtLeastPercentageOrFixedSet();
error LengthMismatch();
error LevelNotHighEnough(Skill skill, uint256 level);
error SkillFixedIncrementCannotBeZero();
error SkillFixedMustBeAFactorOfIncrement();
error NotPlayers();
error IllegalNameStart();
error SameName();
error CannotTransferThisPet(uint256 petId);
error TrainOnCooldown();
error PetNameIsReserved(string name);
struct BasePetInput {
string description;
uint8 tier;
PetSkin skin;
PetEnhancementType enhancementType;
uint24 baseId;
bool isTransferable;
Skill[2] skillEnhancements;
uint8[2] skillFixedMins;
uint8[2] skillFixedMaxs;
uint8[2] skillFixedIncrements;
uint8[2] skillPercentageMins;
uint8[2] skillPercentageMaxs;
uint8[2] skillPercentageIncrements;
uint8[2] skillMinLevels;
uint16 fixedStarThreshold;
uint16 percentageStarThreshold;
}
// From base class uint40 _totalSupplyAll
uint40 private _nextPetId;
address private _instantVRFActions;
mapping(uint256 basePetId => BasePetMetadata metadata) private _basePetMetadatas;
mapping(uint256 petId => Pet pet) private _pets;
mapping(uint256 petId => string name) private _names;
mapping(string name => bool exists) private _lowercaseNames;
string private _imageBaseUri;
// Royalties
address private _royaltyReceiver;
uint8 private _royaltyFee; // base 1000, highest is 25.5
AdminAccess private _adminAccess;
bool private _isBeta;
address private _dev;
IBrushToken private _brush;
address private _treasury;
uint72 private _editNameCost; // Max is 4700 BRUSH
uint8 private _brushBurntPercentage;
uint8 private _brushTreasuryPercentage;
uint8 private _brushDevPercentage;
address private _territories;
address private _players;
RandomnessBeacon private _randomnessBeacon;
BloomFilter.Filter private __unused; // TODO: old filter
address private _bridge; // TODO: Bridge Can remove later
BloomFilter.Filter private __unused2; // TODO: old filter 2
BloomFilter.Filter private _reservedPetNames; // TODO: remove 90 days after launch
string private constant PET_NAME_LOWERCASE_PREFIX = "pet ";
modifier onlyBridge() {
require(_msgSender() == _bridge, NotBridge());
_;
}
modifier onlyMinters() {
require(_msgSender() == _instantVRFActions || (_adminAccess.isAdmin(_msgSender()) && _isBeta), NotMinter());
_;
}
modifier onlyBurners(address from) {
require(_msgSender() == from || isApprovedForAll(from, _msgSender()), NotBurner());
_;
}
modifier onlyPlayersOrAdminAndBeta() {
require(_msgSender() == _players, NotPlayers());
_;
}
modifier isOwnerOfPet(uint256 petId) {
require(_pets[petId].owner == _msgSender(), NotOwnerOfPet());
_;
}
modifier isOwnerOfPlayer(uint256 playerId) {
require(IPlayers(_players).isOwnerOfPlayerAndActive(_msgSender(), playerId), NotOwnerOfPlayer());
_;
}
/// @custom:oz-upgrades-unsafe-allow constructor
constructor() {
_disableInitializers();
}
function initialize(
IBrushToken brush,
address royaltyReceiver,
string calldata imageBaseUri,
address dev,
uint72 editNameCost,
address treasury,
RandomnessBeacon randomnessBeacon,
uint40 startPetId,
address bridge,
AdminAccess adminAccess,
bool isBeta
) external initializer {
__Ownable_init(_msgSender());
__UUPSUpgradeable_init();
__SamWitchERC1155UpgradeableSinglePerToken_init("");
bool storageSlotCorrect;
assembly ("memory-safe") {
storageSlotCorrect := eq(_nextPetId.slot, _totalSupplyAll.slot)
}
require(storageSlotCorrect, StorageSlotIncorrect());
_brush = brush;
_royaltyFee = 30; // 3%
_royaltyReceiver = royaltyReceiver;
_adminAccess = adminAccess;
_imageBaseUri = imageBaseUri;
_dev = dev;
_isBeta = isBeta;
_nextPetId = startPetId;
_treasury = treasury;
_randomnessBeacon = randomnessBeacon;
// setEditNameCost(editNameCost);
// TODO: Remove after migration is done
_reservedPetNames._initialize(4, 100000);
_bridge = bridge;
}
function editPet(
uint256 playerId,
uint256 petId,
string calldata petName
) external isOwnerOfPlayer(playerId) isOwnerOfPet(petId) {
(string memory trimmedName, string memory trimmedAndLowercaseName, bool nameChanged) = _setName(petId, petName);
require(nameChanged, SameName());
_pay(_editNameCost);
// Check trimmed name does not start with "Pet " as those are reserved
if (bytes(trimmedAndLowercaseName).length > 3) {
require(
!(bytes(trimmedAndLowercaseName)[0] == bytes(PET_NAME_LOWERCASE_PREFIX)[0] &&
bytes(trimmedAndLowercaseName)[1] == bytes(PET_NAME_LOWERCASE_PREFIX)[1] &&
bytes(trimmedAndLowercaseName)[2] == bytes(PET_NAME_LOWERCASE_PREFIX)[2] &&
bytes(trimmedAndLowercaseName)[3] == bytes(PET_NAME_LOWERCASE_PREFIX)[3]),
IllegalNameStart()
);
}
emit EditPlayerPet(playerId, petId, _msgSender(), trimmedName);
}
function assignPet(
address from,
uint256 playerId,
uint256 petId,
uint256 timestamp
) external onlyPlayersOrAdminAndBeta {
// If pet is already assigned then don't change timestamp
Pet storage pet = _pets[petId];
require(ownerOf(petId) == from, PlayerDoesNotOwnPet());
// Check skill minimum levels are met
Skill skillEnhancement1 = _basePetMetadatas[pet.baseId].skillEnhancement1;
uint256 skillMinLevel1 = _basePetMetadatas[pet.baseId].skillMinLevel1;
require(
IPlayers(_players).getLevel(playerId, skillEnhancement1) >= skillMinLevel1,
LevelNotHighEnough(skillEnhancement1, skillMinLevel1)
);
Skill skillEnhancement2 = _basePetMetadatas[pet.baseId].skillEnhancement2;
if (skillEnhancement2 != Skill.NONE) {
uint256 skillMinLevel2 = _basePetMetadatas[pet.baseId].skillMinLevel2;
require(
IPlayers(_players).getLevel(playerId, skillEnhancement2) >= skillMinLevel2,
LevelNotHighEnough(skillEnhancement2, skillMinLevel2)
);
}
if (pet.lastAssignmentTimestamp <= timestamp) {
return;
}
pet.lastAssignmentTimestamp = uint40(timestamp);
}
function mintBatch(
address to,
uint256[] calldata basePetIds,
uint256 randomWord
) external onlyMinters returns (uint256[] memory tokenIds) {
tokenIds = new uint256[](basePetIds.length);
uint256[] memory amounts = new uint256[](basePetIds.length);
string[] memory names = new string[](basePetIds.length);
Pet[] memory pets = new Pet[](basePetIds.length);
uint256 startPetId = _nextPetId;
for (uint256 i = 0; i < pets.length; ++i) {
randomWord = uint256(keccak256(abi.encodePacked(randomWord))); // Get a new random word for each pet
uint256 petId = startPetId + i;
Pet memory pet = _createRandomPet(petId, basePetIds[i], randomWord);
pets[i] = pet;
tokenIds[i] = petId;
amounts[i] = 1;
_names[i] = PetNFTLibrary._defaultPetName(petId);
}
// Mint first
_mintBatch(to, tokenIds, amounts, "");
_nextPetId = uint40(startPetId + pets.length);
emit NewPets(startPetId, pets, names, to);
}
function mintBridge(
address petOwner,
uint256[] calldata petIds,
uint24[] calldata basePetIds,
string[] memory petNames,
Skill[] calldata skillEnhancement1s,
uint8[] calldata skillFixedEnhancement1s,
uint8[] calldata skillPercentageEnhancement1,
Skill[] calldata skillEnhancement2s,
uint8[] calldata skillFixedEnhancement2s,
uint8[] calldata skillPercentageEnhancement2s
) external onlyBridge {
uint256 length = petIds.length;
require(
length == basePetIds.length &&
length == skillEnhancement1s.length &&
length == skillFixedEnhancement1s.length &&
length == skillPercentageEnhancement1.length &&
length == skillEnhancement2s.length &&
length == skillFixedEnhancement2s.length &&
length == skillPercentageEnhancement2s.length,
LengthMismatch()
);
Pet[] memory pets = new Pet[](length);
uint256[] memory amounts = new uint256[](length);
// Use the randomness beacon with the first day to assign some random pet enhancements
uint256 id = 1; // Doesn't really matter
uint256 startTimeWorld = _randomnessBeacon.getStartTime();
bytes memory randomBytes = _randomnessBeacon.getRandomBytes(length, startTimeWorld, startTimeWorld + 1 days, id);
for (uint256 i = 0; i < length; ++i) {
// Take 2 byte portions of all the bytes for each pet
uint16 randomness = EstforLibrary._get16bitSlice(randomBytes, i);
uint24 basePetId = basePetIds[i];
// Calculate maximum enhancements using randomness
// For fixed enhancements: bound between current value and max from metadata
uint8 fixedMax1 = EstforLibrary._getRandomInRange8(
uint8(skillFixedEnhancement1s[i]),
_basePetMetadatas[basePetId].skillFixedMax1,
uint8(randomness) // Use first 8 bits
);
uint8 fixedMax2 = EstforLibrary._getRandomInRange8(
uint8(skillFixedEnhancement2s[i]),
_basePetMetadatas[basePetId].skillFixedMax2,
uint8(randomness >> 8) // Use second 8 bits
);
// For percentage enhancements: bound between current value and max from metadata
uint8 percentageMax1 = EstforLibrary._getRandomInRange8(
uint8(skillPercentageEnhancement1[i]),
_basePetMetadatas[basePetId].skillPercentageMax1,
uint8((uint256(randomness) * 7919) >> 8) // Use scrambled bits for more randomness
);
uint8 percentageMax2 = EstforLibrary._getRandomInRange8(
uint8(skillPercentageEnhancement2s[i]),
_basePetMetadatas[basePetId].skillPercentageMax2,
uint8((uint256(randomness) * 6271) >> 8) // Use different scrambled bits
);
pets[i] = _createPet(
petIds[i],
skillEnhancement1s[i],
skillFixedEnhancement1s[i],
skillPercentageEnhancement1[i],
skillEnhancement2s[i],
skillFixedEnhancement2s[i],
skillPercentageEnhancement2s[i],
basePetIds[i],
fixedMax1,
fixedMax2,
percentageMax1,
percentageMax2
);
amounts[i] = 1;
bool isDefaultPetName = bytes(petNames[i]).length == 0;
if (!isDefaultPetName) {
_names[petIds[i]] = petNames[i];
string memory lowercaseName = EstforLibrary.toLower(petNames[i]);
_lowercaseNames[lowercaseName] = true;
} else {
petNames[i] = PetNFTLibrary._defaultPetName(petIds[i]);
}
}
_mintBatch(petOwner, petIds, amounts, "");
emit BridgePets(petIds, pets, petNames, petOwner);
}
function burnBatch(address from, uint256[] calldata tokenIds) external onlyBurners(from) {
_burnBatch(from, tokenIds);
}
function burn(address from, uint256 tokenId) external onlyBurners(from) {
_burn(from, tokenId, 1);
}
// Not used yet
/* function requestTrain(
uint256 playerId,
uint256 petId,
uint256 timestamp
) external isOwnerOfPlayer(playerId) isOwnerOfPet(petId) {
assert(false);
uint256 lastTrainedDay = _pets[petId].lastTrainedTimestamp / 1 days;
uint256 currentDay = timestamp / 1 days;
require(lastTrainedDay < currentDay, TrainOnCooldown());
// Still possible to train up? Harder to train up higher level pets? Requires multiple days?
uint64 currentXP = _pets[petId].xp;
// TODO: Use randomnessBeacon xpGained
uint64 xpGained = 100;
_pets[petId].xp = currentXP + xpGained;
_pets[petId].lastTrainedTimestamp = uint40(timestamp);
// TODO: Levelled up?
emit Train(playerId, petId, xpGained);
} */
function _createRandomPet(uint256 petId, uint256 _basePetId, uint256 randomWord) private returns (Pet memory pet) {
require(_basePetMetadatas[_basePetId].skillEnhancement1 != Skill.NONE, PetDoesNotExist());
// Fixed enhancement for skill 1
uint256 skillFixedMin1 = _basePetMetadatas[_basePetId].skillFixedMin1;
uint256 skillFixedMax1 = _basePetMetadatas[_basePetId].skillFixedMax1;
uint256 skillFixedEnhancement1 = skillFixedMin1;
uint256 skillFixedEnhancementMax1;
uint256 skillPercentageEnhancementMax1;
if (skillFixedMax1 != skillFixedMin1) {
skillFixedEnhancement1 =
(uint8(randomWord) %
(((skillFixedMax1 - skillFixedMin1 + 1) / _basePetMetadatas[_basePetId].skillFixedIncrement1))) +
skillFixedMin1;
skillFixedEnhancementMax1 =
skillFixedEnhancement1 +
(uint8(randomWord >> 8) % (skillFixedMax1 - skillFixedEnhancement1 + 1));
} else {
skillFixedEnhancementMax1 = skillFixedMin1;
}
// Percentage enhancement for skill 1
uint256 skillPercentageMin1 = _basePetMetadatas[_basePetId].skillPercentageMin1;
uint256 skillPercentageMax1 = _basePetMetadatas[_basePetId].skillPercentageMax1;
uint256 skillPercentageEnhancement1 = skillPercentageMin1;
if (skillPercentageMax1 != skillPercentageMin1) {
skillPercentageEnhancement1 =
(uint8(randomWord >> 16) %
(
((skillPercentageMax1 - skillPercentageMin1 + 1) / _basePetMetadatas[_basePetId].skillPercentageIncrement1)
)) +
skillPercentageMin1;
skillPercentageEnhancementMax1 =
skillPercentageEnhancement1 +
(uint8(randomWord >> 24) % (skillPercentageMax1 - skillPercentageEnhancement1 + 1));
} else {
skillPercentageEnhancementMax1 = skillPercentageMin1;
}
// Skill 2
Skill skillEnhancement2 = _basePetMetadatas[_basePetId].skillEnhancement2;
uint256 skillFixedEnhancement2;
uint256 skillPercentageEnhancement2;
uint256 skillFixedEnhancementMax2;
uint256 skillPercentageEnhancementMax2;
if (skillEnhancement2 != Skill.NONE) {
// Fixed enhancement
uint256 skillFixedMin2 = _basePetMetadatas[_basePetId].skillFixedMin2;
uint256 skillFixedMax2 = _basePetMetadatas[_basePetId].skillFixedMax2;
if (skillFixedMax2 != skillFixedMin2) {
skillFixedEnhancement2 =
(uint8(randomWord >> 32) %
(((skillFixedMax2 - skillFixedMin2 + 1) / _basePetMetadatas[_basePetId].skillFixedIncrement2))) +
skillFixedMin2;
skillFixedEnhancementMax2 =
skillFixedEnhancement2 +
(uint8(randomWord >> 40) % (skillFixedMax2 - skillFixedEnhancement2 + 1));
} else {
skillFixedEnhancement2 = skillFixedMin2;
skillFixedEnhancementMax2 = skillFixedMin2;
}
// Percentage enhancement
uint256 skillPercentageMin2 = _basePetMetadatas[_basePetId].skillPercentageMin2;
uint256 skillPercentageMax2 = _basePetMetadatas[_basePetId].skillPercentageMax2;
if (skillPercentageMax2 != skillPercentageMin2) {
skillPercentageEnhancement2 =
(uint8(randomWord >> 48) %
(
((skillPercentageMax2 - skillPercentageMin2 + 1) /
_basePetMetadatas[_basePetId].skillPercentageIncrement2)
)) +
skillPercentageMin2;
skillPercentageEnhancementMax2 =
skillPercentageEnhancement2 +
(uint8(randomWord >> 56) % (skillPercentageMax2 - skillPercentageEnhancement2 + 1));
} else {
skillPercentageEnhancement2 = skillPercentageMin2;
skillPercentageEnhancementMax2 = skillPercentageMin2;
}
}
return
_createPet(
petId,
_basePetMetadatas[_basePetId].skillEnhancement1,
uint8(skillFixedEnhancement1),
uint8(skillPercentageEnhancement1),
skillEnhancement2,
uint8(skillFixedEnhancement2),
uint8(skillPercentageEnhancement2),
uint24(_basePetId),
uint8(skillFixedEnhancementMax1),
uint8(skillFixedEnhancementMax2),
uint8(skillPercentageEnhancementMax1),
uint8(skillPercentageEnhancementMax2)
);
}
function _createPet(
uint256 petId,
Skill skillEnhancement1,
uint8 skillFixedEnhancement1,
uint8 skillPercentageEnhancement1,
Skill skillEnhancement2,
uint8 skillFixedEnhancement2,
uint8 skillPercentageEnhancement2,
uint24 basePetId,
uint8 skillFixedEnhancementMax1,
uint8 skillFixedEnhancementMax2,
uint8 skillPercentageEnhancementMax1,
uint8 skillPercentageEnhancementMax2
) private returns (Pet memory pet) {
require(skillEnhancement1 != Skill.NONE, PetDoesNotExist());
pet = Pet(
_basePetMetadatas[basePetId].skillEnhancement1,
uint8(skillFixedEnhancement1),
uint8(skillPercentageEnhancement1),
skillEnhancement2,
uint8(skillFixedEnhancement2),
uint8(skillPercentageEnhancement2),
type(uint40).max, // Will be updated in _mintBatch
address(0), // Will be updated in _mintBatch
_basePetMetadatas[basePetId].isTransferable,
uint24(basePetId),
0, // lastTrainedTimestamp
uint8(skillFixedEnhancementMax1),
uint8(skillFixedEnhancementMax2),
uint8(skillPercentageEnhancementMax1),
uint8(skillPercentageEnhancementMax2),
0 // xp
);
// Store the pet by id
_pets[petId] = pet;
return pet;
}
function _setName(
uint256 petId,
string memory petName
) private returns (string memory trimmedName, string memory trimmedAndLowercaseName, bool nameChanged) {
// Trimmed name cannot be empty
trimmedName = EstforLibrary.trim(petName);
require(bytes(trimmedName).length >= 3, NameTooShort());
require(bytes(trimmedName).length <= 15, NameTooLong());
require(EstforLibrary.containsValidNameCharacters(trimmedName), NameInvalidCharacters());
trimmedAndLowercaseName = EstforLibrary.toLower(trimmedName);
string memory oldName = EstforLibrary.toLower(PetNFTLibrary._getPetName(petId, _names[petId]));
nameChanged = keccak256(abi.encodePacked(oldName)) != keccak256(abi.encodePacked(trimmedAndLowercaseName));
if (nameChanged) {
require(
!_reservedPetNames._probablyContainsString(trimmedAndLowercaseName),
PetNameIsReserved(trimmedAndLowercaseName)
);
require(!_lowercaseNames[trimmedAndLowercaseName], NameAlreadyExists());
if (bytes(oldName).length != 0) {
delete _lowercaseNames[oldName];
}
_lowercaseNames[trimmedAndLowercaseName] = true;
_names[petId] = trimmedName;
}
}
function _pay(uint256 tokenCost) private {
if (tokenCost == 0) {
return;
}
address[] memory recipients = new address[](2);
uint256[] memory amounts = new uint256[](2);
recipients[0] = _treasury;
amounts[0] = (tokenCost * _brushTreasuryPercentage) / 100;
recipients[1] = _dev;
amounts[1] = (tokenCost * _brushDevPercentage) / 100;
_brush.transferFromBulk(_msgSender(), recipients, amounts);
if (_brushBurntPercentage != 0) {
_brush.burnFrom(_msgSender(), (tokenCost * _brushBurntPercentage) / 100);
}
}
function _updateOwner(uint256 id, address from, address to) internal override {
if (to == address(0)) {
// Burnt
delete _pets[id];
} else {
// Cannot transfer some pets like anniversary
require(from == address(0) || _pets[id].isTransferable, CannotTransferThisPet(id));
_pets[id].owner = to;
_pets[id].lastAssignmentTimestamp = uint40(block.timestamp);
}
}
function _setBasePet(BasePetInput calldata basePetInput) private {
require(
basePetInput.skillEnhancements[0] != Skill.NONE || basePetInput.skillEnhancements[1] != Skill.NONE,
MustHaveOneSkillEnhancement()
);
require(
basePetInput.skillEnhancements[0] != Skill.NONE || basePetInput.skillEnhancements[1] == Skill.NONE,
SkillEnhancementIncorrectOrder()
);
_checkBasePet(basePetInput, 0);
_checkBasePet(basePetInput, 1);
_basePetMetadatas[basePetInput.baseId] = BasePetMetadata(
basePetInput.description,
basePetInput.tier,
basePetInput.skin,
basePetInput.enhancementType,
basePetInput.skillEnhancements[0],
basePetInput.skillFixedMins[0],
basePetInput.skillFixedMaxs[0],
basePetInput.skillFixedIncrements[0],
basePetInput.skillPercentageMins[0],
basePetInput.skillPercentageMaxs[0],
basePetInput.skillPercentageIncrements[0],
basePetInput.skillMinLevels[0],
basePetInput.skillEnhancements[1],
basePetInput.skillFixedMins[1],
basePetInput.skillFixedMaxs[1],
basePetInput.skillFixedIncrements[1],
basePetInput.skillPercentageMins[1],
basePetInput.skillPercentageMaxs[1],
basePetInput.skillPercentageIncrements[1],
basePetInput.skillMinLevels[1],
basePetInput.fixedStarThreshold,
basePetInput.percentageStarThreshold,
basePetInput.isTransferable
);
}
function _checkBasePet(BasePetInput calldata basePetInput, uint256 index) private pure {
bool isSkillSet = basePetInput.skillEnhancements[index] != Skill.NONE;
if (!isSkillSet) {
return;
}
// Check percentage values are correct
require(
basePetInput.skillPercentageMaxs[index] != 0 || basePetInput.skillFixedMaxs[index] != 0,
MustHaveAtLeastPercentageOrFixedSet()
);
require(
basePetInput.skillPercentageMins[index] <= basePetInput.skillPercentageMaxs[index],
SkillEnhancementMinGreaterThanMax()
);
uint256 percentageIncrement = basePetInput.skillPercentageIncrements[index];
require(
percentageIncrement == 0 ||
((basePetInput.skillPercentageMins[index] % percentageIncrement) == 0 &&
(basePetInput.skillPercentageMaxs[index] % percentageIncrement) == 0),
SkillPercentageMustBeAFactorOfIncrement()
);
require(
basePetInput.skillPercentageMaxs[index] == 0 || basePetInput.skillPercentageIncrements[index] != 0,
SkillPercentageIncrementCannotBeZero()
);
// Check skill fixed values are correct.
require(
basePetInput.skillFixedMins[index] <= basePetInput.skillFixedMaxs[index],
SkillEnhancementMinGreaterThanMax()
);
uint256 fixedIncrement = basePetInput.skillFixedIncrements[index];
require(basePetInput.skillFixedMaxs[index] == 0 || fixedIncrement != 0, SkillFixedIncrementCannotBeZero());
require(
fixedIncrement == 0 ||
((basePetInput.skillFixedMins[index] % fixedIncrement) == 0 &&
(basePetInput.skillFixedMaxs[index] % fixedIncrement) == 0),
SkillFixedMustBeAFactorOfIncrement()
);
}
function _basePetExists(BasePetInput calldata basePetInput) private view returns (bool) {
return _basePetMetadatas[basePetInput.baseId].skillEnhancement1 != Skill.NONE;
}
/**
* @dev Returns whether `_tokenId` exists.
*/
function _exists(uint256 tokenId) internal view override returns (bool) {
return _pets[tokenId].owner != address(0);
}
function getPet(uint256 tokenId) external view returns (Pet memory) {
return _pets[tokenId];
}
function ownerOf(uint256 tokenId) public view override returns (address) {
return _pets[tokenId].owner;
}
function uri(uint256 tokenId) public view virtual override returns (string memory) {
require(_exists(tokenId), ERC1155Metadata_URIQueryForNonexistentToken());
Pet storage pet = _pets[tokenId];
BasePetMetadata storage basePetMetadata = _basePetMetadatas[pet.baseId];
return PetNFTLibrary.uri(basePetMetadata, pet, tokenId, _imageBaseUri, _names[tokenId], _isBeta);
}
function royaltyInfo(
uint256 /*_tokenId*/,
uint256 salePrice
) external view override returns (address receiver, uint256 royaltyAmount) {
uint256 amount = (salePrice * _royaltyFee) / 1000;
return (_royaltyReceiver, amount);
}
function supportsInterface(
bytes4 interfaceId
) public view override(IERC165, SamWitchERC1155UpgradeableSinglePerToken) returns (bool) {
return interfaceId == type(IERC2981).interfaceId || super.supportsInterface(interfaceId);
}
function name() external view returns (string memory) {
return string(abi.encodePacked("Estfor Pets", _isBeta ? " (Beta)" : ""));
}
function symbol() external view returns (string memory) {
return string(abi.encodePacked("EK_PETS", _isBeta ? "_B" : ""));
}
function getNextPetId() external view returns (uint256) {
return _nextPetId;
}
/*
function setImageBaseUri(string calldata imageBaseUri) external onlyOwner {
_imageBaseUri = imageBaseUri;
}
function setEditNameCost(uint72 editNameCost) public onlyOwner {
_editNameCost = editNameCost;
emit EditNameCost(editNameCost);
}
function initializeAddresses(address instantVRFActions, address players, address territories) external onlyOwner {
_instantVRFActions = instantVRFActions;
_players = players;
_territories = territories;
}
function addBasePets(BasePetInput[] calldata basePetInputs) external onlyOwner {
for (uint256 i; i < basePetInputs.length; ++i) {
BasePetInput calldata basePetInput = basePetInputs[i];
require(!_basePetExists(basePetInput), PetAlreadyExists());
_setBasePet(basePetInput);
}
emit AddBasePets(basePetInputs);
}
function editBasePets(BasePetInput[] calldata basePetInputs) external onlyOwner {
for (uint256 i = 0; i < basePetInputs.length; ++i) {
BasePetInput calldata basePetInput = basePetInputs[i];
require(_basePetExists(basePetInput), PetDoesNotExist());
// DO NOT change skills of existing pets
require(
_basePetMetadatas[basePetInput.baseId].skillEnhancement1 == basePetInput.skillEnhancements[0],
SkillEnhancementIncorrectlyFilled()
);
require(
_basePetMetadatas[basePetInput.baseId].skillEnhancement2 == basePetInput.skillEnhancements[1],
SkillEnhancementIncorrectlyFilled()
);
_setBasePet(basePetInput);
}
emit EditBasePets(basePetInputs);
}
function setBrushDistributionPercentages(
uint8 brushBurntPercentage,
uint8 brushTreasuryPercentage,
uint8 brushDevPercentage
) external onlyOwner {
require(brushBurntPercentage + brushTreasuryPercentage + brushDevPercentage == 100, PercentNotTotal100());
_brushBurntPercentage = brushBurntPercentage;
_brushTreasuryPercentage = brushTreasuryPercentage;
_brushDevPercentage = brushDevPercentage;
emit SetBrushDistributionPercentages(brushBurntPercentage, brushTreasuryPercentage, brushDevPercentage);
} */
function setReservedNameBits(uint256[] calldata positions) external onlyOwner {
_reservedPetNames._addPositions(positions);
}
function setBridge(address bridge) external onlyOwner {
_bridge = bridge;
}
function isPetNameReserved(string calldata petName) public view returns (bool) {
return _reservedPetNames._probablyContainsString(EstforLibrary.toLower(petName));
}
function getNames(uint[] calldata petIds) external view returns (string[] memory names) {
names = new string[](petIds.length);
for (uint256 i = 0; i < petIds.length; ++i) {
names[i] = _names[petIds[i]];
}
}
// Inclusive & Exclusive
function refreshPets(uint256 idStart, uint256 idEnd) external onlyOwner {
uint[] memory petIds = new uint[](idEnd - idStart);
string[] memory names = new string[](idEnd - idStart);
Pet[] memory pets = new Pet[](idEnd - idStart);
address[] memory owners = new address[](idEnd - idStart);
uint256 realLength;
for (uint256 i = idStart; i < idEnd; ++i) {
if (_pets[i].baseId == 0) {
continue;
}
petIds[realLength] = i;
pets[realLength] = _pets[i];
string memory petName = _names[i];
bool isDefaultPetName = bytes(petName).length == 0;
if (!isDefaultPetName) {
names[realLength] = petName;
} else {
names[realLength] = PetNFTLibrary._defaultPetName(i);
}
owners[realLength++] = _pets[i].owner;
}
assembly ("memory-safe") {
mstore(petIds, realLength)
mstore(pets, realLength)
mstore(names, realLength)
mstore(owners, realLength)
}
if (names.length == 0) {
return;
}
emit RefreshPets(petIds, pets, names, owners);
}
// solhint-disable-next-line no-empty-blocks
function _authorizeUpgrade(address newImplementation) internal override onlyOwner {}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
import {Base64} from "@openzeppelin/contracts/utils/Base64.sol";
import {Strings} from "@openzeppelin/contracts/utils/Strings.sol";
import {Skill} from "./globals/misc.sol";
import {Pet, PetSkin, PetEnhancementType, BasePetMetadata} from "./globals/pets.sol";
// This file contains methods for interacting with the pet NFT, used to decrease implementation deployment bytecode code.
library PetNFTLibrary {
using Strings for uint256;
error InvalidSkin(PetSkin skin);
error InvalidPetEnhancementType(PetEnhancementType petEnhancementType);
string private constant PET_NAME_PREFIX = "Pet ";
function uri(
BasePetMetadata storage basePetMetadata,
Pet storage pet,
uint256 tokenId,
string storage imageBaseUri,
string memory name,
bool isBeta
) external view returns (string memory) {
string memory skin = _skinToString(basePetMetadata.skin);
uint256 tier = basePetMetadata.tier;
string memory petEnhancementType = _petEnhancementTypeToString(basePetMetadata.enhancementType);
bool hasFixedStar = (pet.skillFixedEnhancement1 + pet.skillFixedEnhancement2) >= basePetMetadata.fixedStarThreshold;
bool hasPercentageStar = (pet.skillPercentageEnhancement1 + pet.skillPercentageEnhancement2) >=
basePetMetadata.percentageStarThreshold;
// Create whole JSON
string memory imageURI = string(
abi.encodePacked(imageBaseUri, skin, "_", tier.toString(), "_", petEnhancementType, ".jpg")
);
string memory bothSkillAttributes = string(
abi.encodePacked(
_getTraitStringJSON("Skill bonus #1", _skillToString(pet.skillEnhancement1)),
",",
_getTraitNumberJSON("Fixed increase #1", pet.skillFixedEnhancement1),
",",
_getTraitNumberJSON("Fixed max #1", pet.skillFixedEnhancementMax1),
",",
_getTraitNumberJSON("Percent increase #1", pet.skillPercentageEnhancement1),
",",
_getTraitNumberJSON("Percent max #1", pet.skillPercentageEnhancementMax1),
",",
_getTraitStringJSON("Skill bonus #2", _skillToString(pet.skillEnhancement2)),
",",
_getTraitNumberJSON("Fixed increase #2", pet.skillFixedEnhancement2),
",",
_getTraitNumberJSON("Fixed max #2", pet.skillFixedEnhancementMax2),
",",
_getTraitNumberJSON("Percent increase #2", pet.skillPercentageEnhancement2),
",",
_getTraitNumberJSON("Percent max #2", pet.skillPercentageEnhancementMax2)
)
);
string memory attributes = string(
abi.encodePacked(
_getTraitStringJSON("Skin", skin),
",",
_getTraitNumberJSON("Tier", tier),
",",
_getTraitStringJSON("Enhancement type", petEnhancementType),
",",
bothSkillAttributes,
",",
_getTraitStringJSON("Fixed Star", hasFixedStar ? "true" : "false"),
",",
_getTraitStringJSON("Percent Star", hasPercentageStar ? "true" : "false")
)
);
name = _getPetName(tokenId, name);
bytes memory fullName = abi.encodePacked(name, " (T", tier.toString(), ")");
bytes memory externalURL = abi.encodePacked("https://", isBeta ? "beta." : "", "estfor.com");
string memory description = basePetMetadata.description;
string memory json = Base64.encode(
abi.encodePacked(
'{"name":"',
fullName,
'","description":"',
description,
'","attributes":[',
attributes,
'],"image":"',
imageURI,
'", "external_url":"',
externalURL,
'"}'
)
);
return string(abi.encodePacked("data:application/json;base64,", json));
}
function _getPetName(uint256 tokenId, string memory petName) internal pure returns (string memory) {
if (bytes(petName).length == 0) {
petName = PetNFTLibrary._defaultPetName(tokenId);
}
return petName;
}
function _defaultPetName(uint256 petId) internal pure returns (string memory) {
return string(abi.encodePacked(PET_NAME_PREFIX, petId.toString()));
}
function _getTraitStringJSON(string memory traitType, string memory value) private pure returns (bytes memory) {
return abi.encodePacked(_getTraitTypeJSON(traitType), '"', value, '"}');
}
function _getTraitNumberJSON(string memory traitType, uint256 value) private pure returns (bytes memory) {
return abi.encodePacked(_getTraitTypeJSON(traitType), value.toString(), "}");
}
function _getTraitTypeJSON(string memory traitType) private pure returns (bytes memory) {
return abi.encodePacked('{"trait_type":"', traitType, '","value":');
}
function _skinToString(PetSkin skin) private pure returns (string memory) {
if (skin == PetSkin.DEFAULT) {
return "Default";
}
if (skin == PetSkin.OG) {
return "OG";
}
if (skin == PetSkin.ONEKIN) {
return "OneKin";
}
if (skin == PetSkin.FROST) {
return "Frost";
}
if (skin == PetSkin.CRYSTAL) {
return "Crystal";
}
if (skin == PetSkin.ANNIV1) {
return "Anniv1";
}
if (skin == PetSkin.KRAGSTYR) {
return "Kragstyr";
}
revert InvalidSkin(skin);
}
function _petEnhancementTypeToString(PetEnhancementType petEnhancementType) private pure returns (string memory) {
if (petEnhancementType == PetEnhancementType.MELEE) {
return "Melee";
}
if (petEnhancementType == PetEnhancementType.MAGIC) {
return "Magic";
}
if (petEnhancementType == PetEnhancementType.RANGED) {
return "Ranged";
}
if (petEnhancementType == PetEnhancementType.HEALTH) {
return "Health";
}
if (petEnhancementType == PetEnhancementType.DEFENCE) {
return "Defence";
}
if (petEnhancementType == PetEnhancementType.MELEE_AND_DEFENCE) {
return "MeleeAndDefence";
}
if (petEnhancementType == PetEnhancementType.MAGIC_AND_DEFENCE) {
return "MagicAndDefence";
}
if (petEnhancementType == PetEnhancementType.RANGED_AND_DEFENCE) {
return "RangedAndDefence";
}
revert InvalidPetEnhancementType(petEnhancementType);
}
function _skillToString(Skill skill) private pure returns (string memory) {
if (skill == Skill.MELEE) {
return "Melee";
} else if (skill == Skill.RANGED) {
return "Ranged";
} else if (skill == Skill.MAGIC) {
return "Magic";
} else if (skill == Skill.DEFENCE) {
return "Defence";
} else if (skill == Skill.HEALTH) {
return "Health";
} else if (skill == Skill.MINING) {
return "Mining";
} else if (skill == Skill.WOODCUTTING) {
return "Woodcutting";
} else if (skill == Skill.FISHING) {
return "Fishing";
} else if (skill == Skill.SMITHING) {
return "Smithing";
} else if (skill == Skill.THIEVING) {
return "Thieving";
} else if (skill == Skill.CRAFTING) {
return "Crafting";
} else if (skill == Skill.COOKING) {
return "Cooking";
} else if (skill == Skill.FIREMAKING) {
return "Firemaking";
} else if (skill == Skill.ALCHEMY) {
return "Alchemy";
} else if (skill == Skill.FLETCHING) {
return "Fletching";
} else if (skill == Skill.FORGING) {
return "Forging";
} else if (skill == Skill.FARMING) {
return "Farming";
} else {
return "None";
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
import {UUPSUpgradeable} from "@openzeppelin/contracts-upgradeable/proxy/utils/UUPSUpgradeable.sol";
import {OwnableUpgradeable} from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
import {SkillLibrary} from "./libraries/SkillLibrary.sol";
import {IOracleCB} from "./interfaces/IOracleCB.sol";
import {ISamWitchVRF} from "./interfaces/ISamWitchVRF.sol";
import {IWorldActions} from "./interfaces/IWorldActions.sol";
// solhint-disable-next-line no-global-import
import "./globals/all.sol";
contract RandomnessBeacon is UUPSUpgradeable, OwnableUpgradeable {
using SkillLibrary for uint8;
using SkillLibrary for Skill;
event RequestSent(uint256 requestId, uint256 numWords, uint256 lastRandomWordsUpdatedTime);
event RequestFulfilled(uint256 requestId, uint256 randomWord);
error RandomWordsCannotBeUpdatedYet();
error CanOnlyRequestAfterTheNextCheckpoint(uint256 currentTime, uint256 checkpoint);
error RequestAlreadyFulfilled();
error NoValidRandomWord();
error LengthMismatch();
error CallbackGasLimitTooHigh();
error CallerNotSamWitchVRF();
error RandomWordsAlreadyInitialized();
uint256 private constant NUM_WORDS = 1;
uint256 public constant MIN_RANDOM_WORDS_UPDATE_TIME = 1 days;
uint256 public constant NUM_DAYS_RANDOM_WORDS_INITIALIZED = 3;
uint40 private _lastRandomWordsUpdatedTime;
uint40 private _startTime;
uint24 private _expectedGasLimitFulfill;
ISamWitchVRF private _samWitchVRF;
IOracleCB private _wishingWell;
IOracleCB private _dailyRewardsScheduler;
uint256 private _isRandomWordsInitialized; // Doesn't need to be packed with anything, only called on initialization
uint256[] private _requestIds; // Each one is a set of random words for 1 day
mapping(uint256 requestId => uint256 randomWord) private _randomWords;
/// @dev Reverts if the caller is not the SamWitchVRF contract.
modifier onlySamWitchVRF() {
require(_msgSender() == address(_samWitchVRF), CallerNotSamWitchVRF());
_;
}
/// @custom:oz-upgrades-unsafe-allow constructor
constructor() {
_disableInitializers();
}
function initialize(address vrf) external initializer {
__Ownable_init(_msgSender());
__UUPSUpgradeable_init();
uint40 startTime = uint40(
(block.timestamp / MIN_RANDOM_WORDS_UPDATE_TIME) *
MIN_RANDOM_WORDS_UPDATE_TIME -
(NUM_DAYS_RANDOM_WORDS_INITIALIZED + 1) *
1 days
);
_startTime = startTime; // Floor to the nearest day 00:00 UTC
_lastRandomWordsUpdatedTime = uint40(startTime + NUM_DAYS_RANDOM_WORDS_INITIALIZED * 1 days);
_expectedGasLimitFulfill = 600_000;
_samWitchVRF = ISamWitchVRF(vrf);
}
function requestIds(uint256 requestId) external view returns (uint256) {
return _requestIds[requestId];
}
function randomWords(uint256 requestId) external view returns (uint256) {
return _randomWords[requestId];
}
function lastRandomWordsUpdatedTime() external view returns (uint256) {
return _lastRandomWordsUpdatedTime;
}
function requestRandomWords() external returns (uint256 requestId) {
// Last one has not been fulfilled yet
require(
_requestIds.length == 0 || _randomWords[_requestIds[_requestIds.length - 1]] != 0,
RandomWordsCannotBeUpdatedYet()
);
uint40 newLastRandomWordsUpdatedTime = uint40(_lastRandomWordsUpdatedTime + MIN_RANDOM_WORDS_UPDATE_TIME);
require(
newLastRandomWordsUpdatedTime <= block.timestamp,
CanOnlyRequestAfterTheNextCheckpoint(block.timestamp, newLastRandomWordsUpdatedTime)
);
requestId = uint256(_samWitchVRF.requestRandomWords(NUM_WORDS, _expectedGasLimitFulfill));
_requestIds.push(requestId);
_lastRandomWordsUpdatedTime = newLastRandomWordsUpdatedTime;
emit RequestSent(requestId, NUM_WORDS, newLastRandomWordsUpdatedTime);
return requestId;
}
function fulfillRandomWords(bytes32 requestId, uint256[] memory words) external onlySamWitchVRF {
_fulfillRandomWords(uint256(requestId), words);
}
function _getRandomWordOffset(uint256 timestamp) private view returns (int) {
if (timestamp < _startTime) {
return -1;
}
return int((timestamp - _startTime) / MIN_RANDOM_WORDS_UPDATE_TIME);
}
function _getRandomWord(uint256 timestamp) private view returns (uint256) {
int _offset = _getRandomWordOffset(timestamp);
if (_offset < 0 || _requestIds.length <= uint256(_offset)) {
return 0;
}
return _randomWords[_requestIds[uint256(_offset)]];
}
function _getRandomComponent(
bytes32 word,
uint256 startTimestamp,
uint256 endTimestamp,
uint256 id
) private pure returns (bytes32) {
return keccak256(abi.encodePacked(word, startTimestamp, endTimestamp, id));
}
function _fulfillRandomWords(uint256 requestId, uint256[] memory fulfilledRandomWords) internal {
require(_randomWords[requestId] == 0, RequestAlreadyFulfilled());
require(fulfilledRandomWords.length == NUM_WORDS, LengthMismatch());
uint256 randomWord = fulfilledRandomWords[0];
_randomWords[requestId] = randomWord;
_wishingWell.newOracleRandomWords(randomWord);
_dailyRewardsScheduler.newOracleRandomWords(randomWord);
emit RequestFulfilled(requestId, randomWord);
}
function initializeAddresses(IOracleCB wishingWell, IOracleCB dailyRewardsScheduler) external onlyOwner {
_wishingWell = IOracleCB(wishingWell);
_dailyRewardsScheduler = IOracleCB(dailyRewardsScheduler);
}
function hasRandomWord(uint256 timestamp) external view returns (bool) {
return _getRandomWord(timestamp) != 0;
}
function getRandomWord(uint256 timestamp) public view returns (uint256 randomWord) {
randomWord = _getRandomWord(timestamp);
require(randomWord != 0, NoValidRandomWord());
}
function getMultipleWords(uint256 timestamp) public view returns (uint256[4] memory words) {
for (uint256 i; i < 4; ++i) {
words[i] = getRandomWord(timestamp - (i * 1 days));
}
}
function getRandomBytes(
uint256 numTickets,
uint256 startTimestamp,
uint256 endTimestamp,
uint256 id // player or pet id for instance
) external view returns (bytes memory randomBytes) {
if (numTickets <= 16) {
// 32 bytes
bytes32 word = bytes32(getRandomWord(endTimestamp));
randomBytes = abi.encodePacked(_getRandomComponent(word, startTimestamp, endTimestamp, id));
} else if (numTickets <= MAX_UNIQUE_TICKETS) {
// 4 * 32 bytes
uint256[4] memory multipleWords = getMultipleWords(endTimestamp);
for (uint256 i; i < 4; ++i) {
multipleWords[i] = uint256(_getRandomComponent(bytes32(multipleWords[i]), startTimestamp, endTimestamp, id));
// XOR all the words with the first fresh random number to give more randomness to the existing random words
if (i != 0) {
multipleWords[i] = uint256(keccak256(abi.encodePacked(multipleWords[i] ^ multipleWords[0])));
}
}
randomBytes = abi.encodePacked(multipleWords);
} else {
assert(false);
}
}
function getStartTime() external view returns (uint256) {
return _startTime;
}
function initializeRandomWords() external onlyOwner {
// Initialize a few days worth of random words so that we have enough data to fetch the first day
require(_isRandomWordsInitialized == 0, RandomWordsAlreadyInitialized());
_isRandomWordsInitialized = 1;
for (uint256 i; i < NUM_DAYS_RANDOM_WORDS_INITIALIZED; ++i) {
uint256 requestId = 200 + i;
_requestIds.push(requestId);
emit RequestSent(requestId, NUM_WORDS, _startTime + (i * 1 days) + 1 days);
uint256[] memory words = new uint256[](1);
words[0] = uint256(keccak256(abi.encodePacked(block.chainid == 31337 ? address(31337) : address(this), i)));
_fulfillRandomWords(requestId, words);
}
}
function setExpectedGasLimitFulfill(uint256 gasLimit) external onlyOwner {
require(gasLimit <= 3_000_000, CallbackGasLimitTooHigh());
_expectedGasLimitFulfill = uint24(gasLimit);
}
// solhint-disable-next-line no-empty-blocks
function _authorizeUpgrade(address newImplementation) internal override onlyOwner {}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.26;
import {IERC1155} from "@openzeppelin/contracts/token/ERC1155/IERC1155.sol";
import {IERC1155Receiver} from "@openzeppelin/contracts/token/ERC1155/IERC1155Receiver.sol";
import {IERC1155MetadataURI} from "@openzeppelin/contracts/token/ERC1155/extensions/IERC1155MetadataURI.sol";
import {ContextUpgradeable} from "@openzeppelin/contracts-upgradeable/utils/ContextUpgradeable.sol";
import {IERC165} from "@openzeppelin/contracts/utils/introspection/IERC165.sol";
import {ERC165Upgradeable} from "@openzeppelin/contracts-upgradeable/utils/introspection/ERC165Upgradeable.sol";
import {Arrays} from "@openzeppelin/contracts/utils/Arrays.sol";
import {IERC1155Errors} from "@openzeppelin/contracts/interfaces/draft-IERC6093.sol";
import {Initializable} from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
/**
* @dev Implementation of the basic standard multi-token.
* See https://eips.ethereum.org/EIPS/eip-1155
* Originally based on code by OpenZeppelin v5.0.0
*/
abstract contract SamWitchERC1155UpgradeableSinglePerToken is
Initializable,
ContextUpgradeable,
ERC165Upgradeable,
IERC1155,
IERC1155MetadataURI,
IERC1155Errors
{
using Arrays for uint256[];
using Arrays for address[];
error ERC1155MintingMoreThanOneSameNFT();
// Mapping from token ID to account balances
mapping(uint256 tokenId => address owner) private _owner; // This is just the default, can be overriden
// Mapping from account to operator approvals
mapping(address => mapping(address => bool)) private _operatorApprovals;
// Used as the URI for all token types by relying on ID substitution, e.g. https://token-cdn-domain/{id}.json
string private _uri;
uint40 internal _totalSupplyAll;
/**
* @dev See {_setURI}.
*/
function __SamWitchERC1155UpgradeableSinglePerToken_init(string memory uri_) internal onlyInitializing {
__SamWitchERC1155UpgradeableSinglePerToken_init_unchained(uri_);
}
function __SamWitchERC1155UpgradeableSinglePerToken_init_unchained(string memory uri_) internal onlyInitializing {
_setURI(uri_);
}
function totalSupply(uint256 tokenId) public view returns (uint256) {
return _exists(tokenId) ? 1 : 0;
}
function totalSupply() external view returns (uint256) {
return _totalSupplyAll;
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(
bytes4 interfaceId
) public view virtual override(ERC165Upgradeable, IERC165) returns (bool) {
return
interfaceId == type(IERC1155).interfaceId ||
interfaceId == type(IERC1155MetadataURI).interfaceId ||
super.supportsInterface(interfaceId);
}
/**
* @dev See {IERC1155MetadataURI-uri}.
*
* This implementation returns the same URI for *all* token types. It relies
* on the token type ID substitution mechanism
* https://eips.ethereum.org/EIPS/eip-1155#metadata[defined in the EIP].
*
* Clients calling this function must replace the `\{id\}` substring with the
* actual token type ID.
*/
function uri(uint256 /* id */) public view virtual returns (string memory) {
return _uri;
}
/**
* Override this function to return the owner of the token if you have a better packed implementation
*/
function ownerOf(uint256 id) public view virtual returns (address) {
return _owner[id];
}
/**
* @dev See {IERC1155-balanceOf}.
*/
function balanceOf(address account, uint256 id) public view virtual returns (uint256) {
return ownerOf(id) == account ? 1 : 0;
}
/**
* @dev See {IERC1155-balanceOfBatch}.
*
* Requirements:
*
* - `accounts` and `ids` must have the same length.
*/
function balanceOfBatch(
address[] memory accounts,
uint256[] memory ids
) public view virtual returns (uint256[] memory) {
if (accounts.length != ids.length) {
revert ERC1155InvalidArrayLength(ids.length, accounts.length);
}
uint256[] memory batchBalances = new uint256[](accounts.length);
for (uint256 i = 0; i < accounts.length; ++i) {
batchBalances[i] = balanceOf(accounts.unsafeMemoryAccess(i), ids.unsafeMemoryAccess(i));
}
return batchBalances;
}
/**
* @dev See {IERC1155-setApprovalForAll}.
*/
function setApprovalForAll(address operator, bool approved) public virtual {
_setApprovalForAll(_msgSender(), operator, approved);
}
/**
* @dev See {IERC1155-isApprovedForAll}.
*/
function isApprovedForAll(address account, address operator) public view virtual returns (bool) {
return _operatorApprovals[account][operator];
}
/**
* @dev See {IERC1155-safeTransferFrom}.
*/
function safeTransferFrom(address from, address to, uint256 id, uint256 value, bytes memory data) public virtual {
address sender = _msgSender();
if (from != sender && !isApprovedForAll(from, sender)) {
revert ERC1155MissingApprovalForAll(sender, from);
}
_safeTransferFrom(from, to, id, value, data);
}
/**
* @dev See {IERC1155-safeBatchTransferFrom}.
*/
function safeBatchTransferFrom(
address from,
address to,
uint256[] memory ids,
uint256[] memory values,
bytes memory data
) public virtual {
address sender = _msgSender();
if (from != sender && !isApprovedForAll(from, sender)) {
revert ERC1155MissingApprovalForAll(sender, from);
}
_safeBatchTransferFrom(from, to, ids, values, data);
}
/**
* @dev Transfers a `value` amount of tokens of type `id` from `from` to `to`. Will mint (or burn) if `from`
* (or `to`) is the zero address.
*
* Emits a {TransferSingle} event if the arrays contain one element, and {TransferBatch} otherwise.
*
* Requirements:
*
* - If `to` refers to a smart contract, it must implement either {IERC1155Receiver-onERC1155Received}
* or {IERC1155Receiver-onERC1155BatchReceived} and return the acceptance magic value.
* - `ids` and `values` must have the same length.
*
* NOTE: The ERC-1155 acceptance check is not performed in this function. See {_updateWithAcceptanceCheck} instead.
*/
function _update(address from, address to, uint256[] memory ids, uint256[] memory values) internal virtual {
if (ids.length != values.length) {
revert ERC1155InvalidArrayLength(ids.length, values.length);
}
address operator = _msgSender();
bool isBurnt = to == address(0);
bool isMinted = from == address(0);
for (uint256 i = 0; i < ids.length; ++i) {
uint256 id = ids.unsafeMemoryAccess(i);
uint256 value = values.unsafeMemoryAccess(i);
if (!isMinted) {
uint256 fromBalance = ownerOf(id) == from ? 1 : 0;
if (fromBalance < value) {
revert ERC1155InsufficientBalance(from, fromBalance, value, id);
}
} else {
if (value > 1 || totalSupply(id) != 0) {
revert ERC1155MintingMoreThanOneSameNFT();
}
}
if (isBurnt) {
_updateOwner(id, from, address(0));
} else if (from != to) {
_updateOwner(id, from, to);
}
}
if (ids.length == 1) {
uint256 id = ids.unsafeMemoryAccess(0);
uint256 value = values.unsafeMemoryAccess(0);
emit TransferSingle(operator, from, to, id, value);
if (isBurnt) {
unchecked {
--_totalSupplyAll;
}
} else if (isMinted) {
unchecked {
++_totalSupplyAll;
}
}
} else {
if (isBurnt) {
unchecked {
_totalSupplyAll = uint40(_totalSupplyAll - ids.length);
}
} else if (isMinted) {
unchecked {
_totalSupplyAll = uint40(_totalSupplyAll + ids.length);
}
}
emit TransferBatch(operator, from, to, ids, values);
}
}
/**
* @dev Version of {_update} that performs the token acceptance check by calling
* {IERC1155Receiver-onERC1155Received} or {IERC1155Receiver-onERC1155BatchReceived} on the receiver address if it
* contains code (eg. is a smart contract at the moment of execution).
*
* IMPORTANT: Overriding this function is discouraged because it poses a reentrancy risk from the receiver. So any
* update to the contract state after this function would break the check-effect-interaction pattern. Consider
* overriding {_update} instead.
*/
function _updateWithAcceptanceCheck(
address from,
address to,
uint256[] memory ids,
uint256[] memory values,
bytes memory data
) internal virtual {
_update(from, to, ids, values);
if (to != address(0)) {
address operator = _msgSender();
if (ids.length == 1) {
uint256 id = ids.unsafeMemoryAccess(0);
uint256 value = values.unsafeMemoryAccess(0);
_doSafeTransferAcceptanceCheck(operator, from, to, id, value, data);
} else {
_doSafeBatchTransferAcceptanceCheck(operator, from, to, ids, values, data);
}
}
}
/**
* @dev Transfers a `value` tokens of token type `id` from `from` to `to`.
*
* Emits a {TransferSingle} event.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - `from` must have a balance of tokens of type `id` of at least `value` amount.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
* acceptance magic value.
*/
function _safeTransferFrom(address from, address to, uint256 id, uint256 value, bytes memory data) internal {
if (to == address(0)) {
revert ERC1155InvalidReceiver(address(0));
}
if (from == address(0)) {
revert ERC1155InvalidSender(address(0));
}
(uint256[] memory ids, uint256[] memory values) = _asSingletonArrays(id, value);
_updateWithAcceptanceCheck(from, to, ids, values, data);
}
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_safeTransferFrom}.
*
* Emits a {TransferBatch} event.
*
* Requirements:
*
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
* acceptance magic value.
* - `ids` and `values` must have the same length.
*/
function _safeBatchTransferFrom(
address from,
address to,
uint256[] memory ids,
uint256[] memory values,
bytes memory data
) internal {
if (to == address(0)) {
revert ERC1155InvalidReceiver(address(0));
}
if (from == address(0)) {
revert ERC1155InvalidSender(address(0));
}
_updateWithAcceptanceCheck(from, to, ids, values, data);
}
/**
* @dev Sets a new URI for all token types, by relying on the token type ID
* substitution mechanism
* https://eips.ethereum.org/EIPS/eip-1155#metadata[defined in the EIP].
*
* By this mechanism, any occurrence of the `\{id\}` substring in either the
* URI or any of the values in the JSON file at said URI will be replaced by
* clients with the token type ID.
*
* For example, the `https://token-cdn-domain/\{id\}.json` URI would be
* interpreted by clients as
* `https://token-cdn-domain/000000000000000000000000000000000000000000000000000000000004cce0.json`
* for token type ID 0x4cce0.
*
* See {uri}.
*
* Because these URIs cannot be meaningfully represented by the {URI} event,
* this function emits no events.
*/
function _setURI(string memory newuri) internal virtual {
_uri = newuri;
}
/**
* @dev Creates a `value` amount of tokens of type `id`, and assigns them to `to`.
*
* Emits a {TransferSingle} event.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
* acceptance magic value.
*/
function _mint(address to, uint256 id, uint256 value, bytes memory data) internal {
if (to == address(0)) {
revert ERC1155InvalidReceiver(address(0));
}
(uint256[] memory ids, uint256[] memory values) = _asSingletonArrays(id, value);
_updateWithAcceptanceCheck(address(0), to, ids, values, data);
}
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_mint}.
*
* Emits a {TransferBatch} event.
*
* Requirements:
*
* - `ids` and `values` must have the same length.
* - `to` cannot be the zero address.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
* acceptance magic value.
*/
function _mintBatch(address to, uint256[] memory ids, uint256[] memory values, bytes memory data) internal {
if (to == address(0)) {
revert ERC1155InvalidReceiver(address(0));
}
_updateWithAcceptanceCheck(address(0), to, ids, values, data);
}
/**
* @dev Destroys a `value` amount of tokens of type `id` from `from`
*
* Emits a {TransferSingle} event.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `from` must have at least `value` amount of tokens of type `id`.
*/
function _burn(address from, uint256 id, uint256 value) internal {
if (from == address(0)) {
revert ERC1155InvalidSender(address(0));
}
(uint256[] memory ids, uint256[] memory values) = _asSingletonArrays(id, value);
_updateWithAcceptanceCheck(from, address(0), ids, values, "");
}
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_burn}.
*
* Emits a {TransferBatch} event.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `from` must have at least `value` amount of tokens of type `id`.
* - `ids` and `values` must have the same length.
*/
function _burnBatch(address from, uint256[] memory ids) internal {
if (from == address(0)) {
revert ERC1155InvalidSender(address(0));
}
uint256[] memory amounts = new uint256[](ids.length);
for (uint256 i = 0; i < ids.length; ++i) {
amounts[i] = 1;
}
_updateWithAcceptanceCheck(from, address(0), ids, amounts, "");
}
/**
* @dev Approve `operator` to operate on all of `owner` tokens
*
* Emits an {ApprovalForAll} event.
*
* Requirements:
*
* - `operator` cannot be the zero address.
*/
function _setApprovalForAll(address owner, address operator, bool approved) internal virtual {
if (operator == address(0)) {
revert ERC1155InvalidOperator(address(0));
}
_operatorApprovals[owner][operator] = approved;
emit ApprovalForAll(owner, operator, approved);
}
/**
* @dev Performs an acceptance check by calling {IERC1155-onERC1155Received} on the `to` address
* if it contains code at the moment of execution.
*/
function _doSafeTransferAcceptanceCheck(
address operator,
address from,
address to,
uint256 id,
uint256 value,
bytes memory data
) private {
if (to.code.length > 0) {
try IERC1155Receiver(to).onERC1155Received(operator, from, id, value, data) returns (bytes4 response) {
if (response != IERC1155Receiver.onERC1155Received.selector) {
// Tokens rejected
revert ERC1155InvalidReceiver(to);
}
} catch (bytes memory reason) {
if (reason.length == 0) {
// non-ERC1155Receiver implementer
revert ERC1155InvalidReceiver(to);
} else {
assembly ("memory-safe") {
revert(add(32, reason), mload(reason))
}
}
}
}
}
/**
* @dev Performs a batch acceptance check by calling {IERC1155-onERC1155BatchReceived} on the `to` address
* if it contains code at the moment of execution.
*/
function _doSafeBatchTransferAcceptanceCheck(
address operator,
address from,
address to,
uint256[] memory ids,
uint256[] memory values,
bytes memory data
) private {
if (to.code.length > 0) {
try IERC1155Receiver(to).onERC1155BatchReceived(operator, from, ids, values, data) returns (bytes4 response) {
if (response != IERC1155Receiver.onERC1155BatchReceived.selector) {
// Tokens rejected
revert ERC1155InvalidReceiver(to);
}
} catch (bytes memory reason) {
if (reason.length == 0) {
// non-ERC1155Receiver implementer
revert ERC1155InvalidReceiver(to);
} else {
assembly ("memory-safe") {
revert(add(32, reason), mload(reason))
}
}
}
}
}
/**
* @dev Creates an array in memory with only one value for each of the elements provided.
*/
function _asSingletonArrays(
uint256 element1,
uint256 element2
) private pure returns (uint256[] memory array1, uint256[] memory array2) {
assembly ("memory-safe") {
// Load the free memory pointer
array1 := mload(0x40)
// Set array length to 1
mstore(array1, 1)
// Store the single element at the next word after the length (where content starts)
mstore(add(array1, 0x20), element1)
// Repeat for next array locating it right after the first array
array2 := add(array1, 0x40)
mstore(array2, 1)
mstore(add(array2, 0x20), element2)
// Update the free memory pointer by pointing after the second array
mstore(0x40, add(array2, 0x40))
}
}
// Override this function if _updateOwner is overriden
function _exists(uint256 tokenId) internal view virtual returns (bool) {
return _owner[tokenId] != address(0);
}
function _updateOwner(uint256 id, address /*from */, address to) internal virtual {
_owner[id] = to;
}
}