S Price: $0.539804 (+0.82%)

Contract Diff Checker

Contract Name:
LockboxSonic

Contract Source Code:

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/AccessControl.sol)

pragma solidity ^0.8.20;

import {IAccessControl} from "./IAccessControl.sol";
import {Context} from "../utils/Context.sol";
import {ERC165} from "../utils/introspection/ERC165.sol";

/**
 * @dev Contract module that allows children to implement role-based access
 * control mechanisms. This is a lightweight version that doesn't allow enumerating role
 * members except through off-chain means by accessing the contract event logs. Some
 * applications may benefit from on-chain enumerability, for those cases see
 * {AccessControlEnumerable}.
 *
 * Roles are referred to by their `bytes32` identifier. These should be exposed
 * in the external API and be unique. The best way to achieve this is by
 * using `public constant` hash digests:
 *
 * ```solidity
 * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
 * ```
 *
 * Roles can be used to represent a set of permissions. To restrict access to a
 * function call, use {hasRole}:
 *
 * ```solidity
 * function foo() public {
 *     require(hasRole(MY_ROLE, msg.sender));
 *     ...
 * }
 * ```
 *
 * Roles can be granted and revoked dynamically via the {grantRole} and
 * {revokeRole} functions. Each role has an associated admin role, and only
 * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
 *
 * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
 * that only accounts with this role will be able to grant or revoke other
 * roles. More complex role relationships can be created by using
 * {_setRoleAdmin}.
 *
 * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
 * grant and revoke this role. Extra precautions should be taken to secure
 * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
 * to enforce additional security measures for this role.
 */
abstract contract AccessControl is Context, IAccessControl, ERC165 {
    struct RoleData {
        mapping(address account => bool) hasRole;
        bytes32 adminRole;
    }

    mapping(bytes32 role => RoleData) private _roles;

    bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;

    /**
     * @dev Modifier that checks that an account has a specific role. Reverts
     * with an {AccessControlUnauthorizedAccount} error including the required role.
     */
    modifier onlyRole(bytes32 role) {
        _checkRole(role);
        _;
    }

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
    }

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) public view virtual returns (bool) {
        return _roles[role].hasRole[account];
    }

    /**
     * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `_msgSender()`
     * is missing `role`. Overriding this function changes the behavior of the {onlyRole} modifier.
     */
    function _checkRole(bytes32 role) internal view virtual {
        _checkRole(role, _msgSender());
    }

    /**
     * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `account`
     * is missing `role`.
     */
    function _checkRole(bytes32 role, address account) internal view virtual {
        if (!hasRole(role, account)) {
            revert AccessControlUnauthorizedAccount(account, role);
        }
    }

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) public view virtual returns (bytes32) {
        return _roles[role].adminRole;
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleGranted} event.
     */
    function grantRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
        _grantRole(role, account);
    }

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleRevoked} event.
     */
    function revokeRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
        _revokeRole(role, account);
    }

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been revoked `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `callerConfirmation`.
     *
     * May emit a {RoleRevoked} event.
     */
    function renounceRole(bytes32 role, address callerConfirmation) public virtual {
        if (callerConfirmation != _msgSender()) {
            revert AccessControlBadConfirmation();
        }

        _revokeRole(role, callerConfirmation);
    }

    /**
     * @dev Sets `adminRole` as ``role``'s admin role.
     *
     * Emits a {RoleAdminChanged} event.
     */
    function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
        bytes32 previousAdminRole = getRoleAdmin(role);
        _roles[role].adminRole = adminRole;
        emit RoleAdminChanged(role, previousAdminRole, adminRole);
    }

    /**
     * @dev Attempts to grant `role` to `account` and returns a boolean indicating if `role` was granted.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleGranted} event.
     */
    function _grantRole(bytes32 role, address account) internal virtual returns (bool) {
        if (!hasRole(role, account)) {
            _roles[role].hasRole[account] = true;
            emit RoleGranted(role, account, _msgSender());
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Attempts to revoke `role` to `account` and returns a boolean indicating if `role` was revoked.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleRevoked} event.
     */
    function _revokeRole(bytes32 role, address account) internal virtual returns (bool) {
        if (hasRole(role, account)) {
            _roles[role].hasRole[account] = false;
            emit RoleRevoked(role, account, _msgSender());
            return true;
        } else {
            return false;
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/extensions/AccessControlEnumerable.sol)

pragma solidity ^0.8.20;

import {IAccessControlEnumerable} from "./IAccessControlEnumerable.sol";
import {AccessControl} from "../AccessControl.sol";
import {EnumerableSet} from "../../utils/structs/EnumerableSet.sol";

/**
 * @dev Extension of {AccessControl} that allows enumerating the members of each role.
 */
abstract contract AccessControlEnumerable is IAccessControlEnumerable, AccessControl {
    using EnumerableSet for EnumerableSet.AddressSet;

    mapping(bytes32 role => EnumerableSet.AddressSet) private _roleMembers;

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IAccessControlEnumerable).interfaceId || super.supportsInterface(interfaceId);
    }

    /**
     * @dev Returns one of the accounts that have `role`. `index` must be a
     * value between 0 and {getRoleMemberCount}, non-inclusive.
     *
     * Role bearers are not sorted in any particular way, and their ordering may
     * change at any point.
     *
     * WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure
     * you perform all queries on the same block. See the following
     * https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post]
     * for more information.
     */
    function getRoleMember(bytes32 role, uint256 index) public view virtual returns (address) {
        return _roleMembers[role].at(index);
    }

    /**
     * @dev Returns the number of accounts that have `role`. Can be used
     * together with {getRoleMember} to enumerate all bearers of a role.
     */
    function getRoleMemberCount(bytes32 role) public view virtual returns (uint256) {
        return _roleMembers[role].length();
    }

    /**
     * @dev Overload {AccessControl-_grantRole} to track enumerable memberships
     */
    function _grantRole(bytes32 role, address account) internal virtual override returns (bool) {
        bool granted = super._grantRole(role, account);
        if (granted) {
            _roleMembers[role].add(account);
        }
        return granted;
    }

    /**
     * @dev Overload {AccessControl-_revokeRole} to track enumerable memberships
     */
    function _revokeRole(bytes32 role, address account) internal virtual override returns (bool) {
        bool revoked = super._revokeRole(role, account);
        if (revoked) {
            _roleMembers[role].remove(account);
        }
        return revoked;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/extensions/IAccessControlEnumerable.sol)

pragma solidity ^0.8.20;

import {IAccessControl} from "../IAccessControl.sol";

/**
 * @dev External interface of AccessControlEnumerable declared to support ERC165 detection.
 */
interface IAccessControlEnumerable is IAccessControl {
    /**
     * @dev Returns one of the accounts that have `role`. `index` must be a
     * value between 0 and {getRoleMemberCount}, non-inclusive.
     *
     * Role bearers are not sorted in any particular way, and their ordering may
     * change at any point.
     *
     * WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure
     * you perform all queries on the same block. See the following
     * https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post]
     * for more information.
     */
    function getRoleMember(bytes32 role, uint256 index) external view returns (address);

    /**
     * @dev Returns the number of accounts that have `role`. Can be used
     * together with {getRoleMember} to enumerate all bearers of a role.
     */
    function getRoleMemberCount(bytes32 role) external view returns (uint256);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/IAccessControl.sol)

pragma solidity ^0.8.20;

/**
 * @dev External interface of AccessControl declared to support ERC165 detection.
 */
interface IAccessControl {
    /**
     * @dev The `account` is missing a role.
     */
    error AccessControlUnauthorizedAccount(address account, bytes32 neededRole);

    /**
     * @dev The caller of a function is not the expected one.
     *
     * NOTE: Don't confuse with {AccessControlUnauthorizedAccount}.
     */
    error AccessControlBadConfirmation();

    /**
     * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
     *
     * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
     * {RoleAdminChanged} not being emitted signaling this.
     */
    event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);

    /**
     * @dev Emitted when `account` is granted `role`.
     *
     * `sender` is the account that originated the contract call, an admin role
     * bearer except when using {AccessControl-_setupRole}.
     */
    event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Emitted when `account` is revoked `role`.
     *
     * `sender` is the account that originated the contract call:
     *   - if using `revokeRole`, it is the admin role bearer
     *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
     */
    event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) external view returns (bool);

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {AccessControl-_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) external view returns (bytes32);

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function grantRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function revokeRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been granted `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `callerConfirmation`.
     */
    function renounceRole(bytes32 role, address callerConfirmation) external;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/ERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 */
abstract contract ERC165 is IERC165 {
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/ReentrancyGuard.sol)

pragma solidity ^0.8.20;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant NOT_ENTERED = 1;
    uint256 private constant ENTERED = 2;

    uint256 private _status;

    /**
     * @dev Unauthorized reentrant call.
     */
    error ReentrancyGuardReentrantCall();

    constructor() {
        _status = NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be NOT_ENTERED
        if (_status == ENTERED) {
            revert ReentrancyGuardReentrantCall();
        }

        // Any calls to nonReentrant after this point will fail
        _status = ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == ENTERED;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/structs/EnumerableSet.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for managing
 * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
 * types.
 *
 * Sets have the following properties:
 *
 * - Elements are added, removed, and checked for existence in constant time
 * (O(1)).
 * - Elements are enumerated in O(n). No guarantees are made on the ordering.
 *
 * ```solidity
 * contract Example {
 *     // Add the library methods
 *     using EnumerableSet for EnumerableSet.AddressSet;
 *
 *     // Declare a set state variable
 *     EnumerableSet.AddressSet private mySet;
 * }
 * ```
 *
 * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
 * and `uint256` (`UintSet`) are supported.
 *
 * [WARNING]
 * ====
 * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
 * unusable.
 * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
 *
 * In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
 * array of EnumerableSet.
 * ====
 */
library EnumerableSet {
    // To implement this library for multiple types with as little code
    // repetition as possible, we write it in terms of a generic Set type with
    // bytes32 values.
    // The Set implementation uses private functions, and user-facing
    // implementations (such as AddressSet) are just wrappers around the
    // underlying Set.
    // This means that we can only create new EnumerableSets for types that fit
    // in bytes32.

    struct Set {
        // Storage of set values
        bytes32[] _values;
        // Position is the index of the value in the `values` array plus 1.
        // Position 0 is used to mean a value is not in the set.
        mapping(bytes32 value => uint256) _positions;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function _add(Set storage set, bytes32 value) private returns (bool) {
        if (!_contains(set, value)) {
            set._values.push(value);
            // The value is stored at length-1, but we add 1 to all indexes
            // and use 0 as a sentinel value
            set._positions[value] = set._values.length;
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function _remove(Set storage set, bytes32 value) private returns (bool) {
        // We cache the value's position to prevent multiple reads from the same storage slot
        uint256 position = set._positions[value];

        if (position != 0) {
            // Equivalent to contains(set, value)
            // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
            // the array, and then remove the last element (sometimes called as 'swap and pop').
            // This modifies the order of the array, as noted in {at}.

            uint256 valueIndex = position - 1;
            uint256 lastIndex = set._values.length - 1;

            if (valueIndex != lastIndex) {
                bytes32 lastValue = set._values[lastIndex];

                // Move the lastValue to the index where the value to delete is
                set._values[valueIndex] = lastValue;
                // Update the tracked position of the lastValue (that was just moved)
                set._positions[lastValue] = position;
            }

            // Delete the slot where the moved value was stored
            set._values.pop();

            // Delete the tracked position for the deleted slot
            delete set._positions[value];

            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function _contains(Set storage set, bytes32 value) private view returns (bool) {
        return set._positions[value] != 0;
    }

    /**
     * @dev Returns the number of values on the set. O(1).
     */
    function _length(Set storage set) private view returns (uint256) {
        return set._values.length;
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function _at(Set storage set, uint256 index) private view returns (bytes32) {
        return set._values[index];
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function _values(Set storage set) private view returns (bytes32[] memory) {
        return set._values;
    }

    // Bytes32Set

    struct Bytes32Set {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _add(set._inner, value);
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _remove(set._inner, value);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
        return _contains(set._inner, value);
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(Bytes32Set storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
        return _at(set._inner, index);
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
        bytes32[] memory store = _values(set._inner);
        bytes32[] memory result;

        /// @solidity memory-safe-assembly
        assembly {
            result := store
        }

        return result;
    }

    // AddressSet

    struct AddressSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(AddressSet storage set, address value) internal returns (bool) {
        return _add(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(AddressSet storage set, address value) internal returns (bool) {
        return _remove(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(AddressSet storage set, address value) internal view returns (bool) {
        return _contains(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(AddressSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(AddressSet storage set, uint256 index) internal view returns (address) {
        return address(uint160(uint256(_at(set._inner, index))));
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(AddressSet storage set) internal view returns (address[] memory) {
        bytes32[] memory store = _values(set._inner);
        address[] memory result;

        /// @solidity memory-safe-assembly
        assembly {
            result := store
        }

        return result;
    }

    // UintSet

    struct UintSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(UintSet storage set, uint256 value) internal returns (bool) {
        return _add(set._inner, bytes32(value));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(UintSet storage set, uint256 value) internal returns (bool) {
        return _remove(set._inner, bytes32(value));
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(UintSet storage set, uint256 value) internal view returns (bool) {
        return _contains(set._inner, bytes32(value));
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(UintSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(UintSet storage set, uint256 index) internal view returns (uint256) {
        return uint256(_at(set._inner, index));
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(UintSet storage set) internal view returns (uint256[] memory) {
        bytes32[] memory store = _values(set._inner);
        uint256[] memory result;

        /// @solidity memory-safe-assembly
        assembly {
            result := store
        }

        return result;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity 0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol)
pragma solidity 0.8.20;

/**
 * @dev Standard ERC20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in EIP-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/ERC20.sol)

pragma solidity 0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./IERC20Metadata.sol";
import {Context} from "./Context.sol";
import {IERC20Errors} from "./draft-IERC6093.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC20
 * applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 */
abstract contract ERC20 is IERC20, IERC20Metadata, IERC20Errors {

    error TransferDenied();

    mapping(address account => uint256) private _balances;

    mapping(address account => mapping(address spender => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `value`.
     */
    function transfer(address to, uint256 value) public virtual returns (bool) {
        revert TransferDenied();
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 value) public virtual returns (bool) {
        address owner = msg.sender;
        _approve(owner, spender, value);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `value`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `value`.
     */
    function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
        revert TransferDenied();
    }

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _transfer(address from, address to, uint256 value) internal {
        if (from == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        if (to == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(from, to, value);
    }

    /**
     * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
     * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
     * this function.
     *
     * Emits a {Transfer} event.
     */
    function _update(address from, address to, uint256 value) internal virtual {
        if (from == address(0)) {
            // Overflow check required: The rest of the code assumes that totalSupply never overflows
            _totalSupply += value;
        } else {
            uint256 fromBalance = _balances[from];
            if (fromBalance < value) {
                revert ERC20InsufficientBalance(from, fromBalance, value);
            }
            unchecked {
                // Overflow not possible: value <= fromBalance <= totalSupply.
                _balances[from] = fromBalance - value;
            }
        }

        if (to == address(0)) {
            unchecked {
                // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                _totalSupply -= value;
            }
        } else {
            unchecked {
                // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                _balances[to] += value;
            }
        }

        emit Transfer(from, to, value);
    }

    /**
     * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
     * Relies on the `_update` mechanism
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _mint(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(address(0), account, value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
     * Relies on the `_update` mechanism.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead
     */
    function _burn(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        _update(account, address(0), value);
    }

    /**
     * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address owner, address spender, uint256 value) internal {
        _approve(owner, spender, value, true);
    }

    /**
     * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
     *
     * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
     * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
     * `Approval` event during `transferFrom` operations.
     *
     * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
     * true using the following override:
     * ```
     * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
     *     super._approve(owner, spender, value, true);
     * }
     * ```
     *
     * Requirements are the same as {_approve}.
     */
    function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
        if (owner == address(0)) {
            revert ERC20InvalidApprover(address(0));
        }
        if (spender == address(0)) {
            revert ERC20InvalidSpender(address(0));
        }
        _allowances[owner][spender] = value;
        if (emitEvent) {
            emit Approval(owner, spender, value);
        }
    }

    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `value`.
     *
     * Does not update the allowance value in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Does not emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            if (currentAllowance < value) {
                revert ERC20InsufficientAllowance(spender, currentAllowance, value);
            }
            unchecked {
                _approve(owner, spender, currentAllowance - value, false);
            }
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)

pragma solidity 0.8.20;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity 0.8.20;

import {IERC20} from "./IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.20;

interface IGauge {

    function deposit(uint amount) external;

    function withdraw(uint amount) external;

    function claim_rewards() external;

    function balanceOf(address user) external view returns (uint);

}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.20;

import {IGauge} from "./interfaces/IGauge.sol";
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import {IERC20} from "./ERC20/IERC20.sol";
import {ERC20} from "./ERC20/ERC20NonTransferable.sol";
import {ReentrancyGuard} from "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import {AccessControlEnumerable} from "@openzeppelin/contracts/access/extensions/AccessControlEnumerable.sol";

contract LockboxSonic is ERC20, ReentrancyGuard, AccessControlEnumerable {

    error ZeroAmount();
    error InvalidTokenOrAddress();
    error Paused();
    error NotPaused();
    error UnderTimeLock();
    error InvalidLockDuration();
    error NoLock();
    error NoVest();
    error NotAllowed();
    error Expired();

    struct Reward {
        uint rewardRate;
        uint periodFinish;
        uint lastUpdateTime;
        uint rewardPerTokenStored;
    }

    struct UserInfo {
        bool isLocked;
        bool isVested;
        uint lockedFor;
        uint vestedFor;
        uint lockedAmount;
        uint vestedAmount;
    }

    bytes32 internal constant OPERATOR_ROLE = keccak256("OPERATOR_ROLE");

    address public immutable stakingToken;
    address public immutable gauge;
    address public immutable beets;
    address public immutable multisig;
    address public immutable treasury;
    address public rewardVester;

    uint internal constant MINLOCK = 4 * 7 * 86400;
    uint internal constant MAXLOCK = 26 * 7 * 86400;
    uint internal constant MAXVEST = 6 * 7 * 86400;

    uint internal constant DURATION = 7 days;
    uint internal constant PRECISION = 10 ** 18;
    uint internal constant PENALTYDIV = 1000;

    // 60% penalty, 40% to lockers, 10% to treasury
    uint internal constant EARLYPENALTY = 600; 
    // Used to calculate lockerRetained based on pre-calculated penalty amount. 40% of Total amount = 83.33% of the 60% penalty amount
    // As it does not return a whole number, we have allowed it to be marginally over the 40% by rounding up to 83.4%
    uint internal constant LOCKRETAINED = 834;

    uint internal unsyncedBeets;
    uint public lastBeetsHarvest;

    bool public paused;
    bool public sonicMigration;

    address[] internal rewards;

    mapping(address token => Reward) internal _rewardData;
    mapping(address token => bool) public isReward;
    mapping(address user => mapping(address token => uint rewardPerToken)) public userRewardPerTokenStored;
    mapping(address user => mapping(address token => uint reward)) public storedRewardsPerUser;
    mapping(address user => UserInfo) public userInfo;

    event LockCreated(address indexed from, uint amount, uint lockEnd);

    event LockAmountIncreased(address indexed from, uint amount);

    event LockExtended(address indexed user, uint amount);

    event LockTransfered(address indexed from, address indexed to, uint amount);

    event UnlockedEarly(address indexed user, uint received, uint retained);

    event LockWithdrawn(address indexed user, uint amount);

    event LockBroken(address indexed user, uint lockAmount);

    event VestCreated(address indexed user, uint amount, uint vestEnd);

    event AddedToVest(address indexed user, uint amount);
    
    event EarlyUnvest(address indexed user, uint amountReceived, uint amountRetained);

    event VestWithdrawn(address indexed user, uint amount);

    event VestBroken(address indexed user, uint vestAmount);

    event NotifyReward(address indexed from, address indexed reward, uint amount);

    event ClaimRewards(address indexed from, address indexed reward, uint amount);

    event EmergencyWithdraw(uint amount);

    event RewardVesterSet(address indexed newVester);

    event WasPaused(uint amount);

    event UnPaused(uint amount);

    event ShutDown(bool state);

    constructor(
        address[3] memory _operators,
        address _admin,
        address _treasury,
        address _stakingtoken,
        address _gauge,
        address _rewardVester,
        address _beets,
        string memory _name,
        string memory _symbol
    ) ERC20(_name, _symbol) ReentrancyGuard() {
        _grantRole(DEFAULT_ADMIN_ROLE, _admin);
        _grantRole(OPERATOR_ROLE, _admin);
        _grantRole(OPERATOR_ROLE, _operators[0]);
        _grantRole(OPERATOR_ROLE, _operators[1]);
        _grantRole(OPERATOR_ROLE, _operators[2]);

        multisig = _admin;
        treasury = _treasury;
        stakingToken = _stakingtoken;  
        gauge = _gauge;
        rewardVester = _rewardVester;
        beets = _beets;

        rewards.push(_beets);
        isReward[_beets] = true;
      
        IERC20(stakingToken).approve(_gauge, type(uint).max);
    }

    modifier updateReward(address account) {
        _updateReward(account);
        _;
    }

    /// @dev compiled with via-ir, caching is less efficient
    function _updateReward(address account) internal {
        for (uint i; i < rewards.length; i++) {
            _rewardData[rewards[i]].rewardPerTokenStored = rewardPerToken(
                rewards[i]
            );
            _rewardData[rewards[i]].lastUpdateTime = lastTimeRewardApplicable(
                rewards[i]
            );
            if (account != address(0)) {
                storedRewardsPerUser[account][rewards[i]] = earned(
                    rewards[i],
                    account
                );
                userRewardPerTokenStored[account][rewards[i]] = _rewardData[
                    rewards[i]
                ].rewardPerTokenStored;
            }
        }
    }

    // Returns current reward list
    function rewardsList() external view returns (address[] memory _rewards) {
        _rewards = rewards;
    }

    function rewardsListLength() external view returns (uint _length) {
        _length = rewards.length;
    }

    /// @notice returns the last time the reward was modified or periodFinish if the reward has ended
    function lastTimeRewardApplicable(address token) public view returns (uint) {
        return Math.min(_getTimestamp(), _rewardData[token].periodFinish);
    }

    // Returns struct with all stored info regarding a reward token. 
    function rewardData(address token) external view returns (Reward memory data) {
        data = _rewardData[token];
    }

    // Returns depositor's accrued rewards
    function earned(address token,address account) public view returns (uint _reward) {
        uint userRewardRate = _getUserRewardRate();
        _reward =
        (((balanceOf(account) *
            (rewardPerToken(token) -
                userRewardPerTokenStored[account][token])) / PRECISION) * 
                userRewardRate) / 100 +
                storedRewardsPerUser[account][token];
    }

    /// @notice claims all pending locked and non locked rewards for depositor
    function getReward() public nonReentrant updateReward(msg.sender) {
        address user = msg.sender;
        UserInfo storage account = userInfo[user];

        for (uint i; i < rewards.length; i++) {
            uint reward = storedRewardsPerUser[user][rewards[i]];
            if (reward > 0) {
                storedRewardsPerUser[user][rewards[i]] = 0;
                if(rewards[i] == address(this)){
                    if(!account.isLocked && !account.isVested){_unlockReward(reward);
                    } else {
                        
                        // If reward is locked LP receipt, sort if amt is assinged to vest or lock.
                        if (!account.isLocked && account.isVested) {  // Only Vested
                            account.vestedAmount += reward;
                            } else if (account.isLocked && !account.isVested) { // Only locked
                                account.lockedAmount += reward;
                                } else if (account.isLocked && account.isVested) {
                                    if (account.lockedFor >= account.vestedFor) {
                                        account.lockedAmount += reward;
                                        } else {
                                            account.vestedAmount += reward;
                                        }
                                }
                                _mint(user, reward);
                    }
                } else {
                _safeTransfer(rewards[i], user, reward);
                }
                emit ClaimRewards(user, rewards[i], reward);
            } 
        }
    }

    // Returns rewardToken amount 
    function rewardPerToken(address token) public view returns (uint) {
        if (totalSupply() == 0) {
            return _rewardData[token].rewardPerTokenStored;
        }
        return
            _rewardData[token].rewardPerTokenStored +
            ((lastTimeRewardApplicable(token) -
                _rewardData[token].lastUpdateTime) *
                _rewardData[token].rewardRate *
                PRECISION) /
            totalSupply();
    }

    function _getUserRewardRate() internal view returns (uint) {
        address user = msg.sender;
        UserInfo memory account = userInfo[user];

        uint baseRate = 70;
        uint additionalRate;
        uint timeLeft;

        if(account.vestedAmount < account.lockedAmount){
            timeLeft = lockLeft(user);
        } else {timeLeft = vestLeft(user);}
        
        if (timeLeft > 5 * MINLOCK) {
            additionalRate = 30; // 5 to 6 months: 100%
            } else if (timeLeft > 4 * MINLOCK) {
                additionalRate = 24; // 4 to 5 months: 94%
                } else if (timeLeft > 3 * MINLOCK) {
                    additionalRate = 18; // 3 to 4 months: 88%
                    } else if (timeLeft > 2 * MINLOCK) {
                        additionalRate = 12; // 2 to 3 months: 82%
                        } else if (timeLeft > MINLOCK) {
                            additionalRate = 6; // 1 to 2 months: 76%
                        }        
        return baseRate + additionalRate;
    }

    /// @notice User created Lock. 1-6M duration range.
    function createLock(uint amount, uint duration) external nonReentrant updateReward(msg.sender){
        if(paused){revert Paused();}
        if(amount == 0) {revert ZeroAmount();}

        address user = msg.sender;
        UserInfo storage account = userInfo[user];

        if(account.isLocked){revert UnderTimeLock();} // Check if already locked.

        uint timestamp = _getTimestamp();
        uint unlockTime = timestamp + duration;

        if(unlockTime <= timestamp + MINLOCK){unlockTime = timestamp + MINLOCK;}
        if(unlockTime >= timestamp + MAXLOCK){unlockTime = timestamp + MAXLOCK;}

        account.isLocked = true;
        account.lockedFor = unlockTime;

        _safeTransferFrom(stakingToken, user, address(this), amount);
        IGauge(gauge).deposit(amount);
        _mint(user, amount);

        account.lockedAmount += amount;

        emit LockCreated(user, amount, unlockTime);
    }

    // Adds an amount to an active lock.
    function increaseLockAmount(uint amount) external nonReentrant updateReward(msg.sender) {
        if(paused){revert Paused();}
        if(amount == 0) {revert ZeroAmount();}

        address user = msg.sender;
        UserInfo storage account = userInfo[user];

        if(!account.isLocked){revert NoLock();}
        if(_getTimestamp() >= account.lockedFor){revert Expired();}

        _safeTransferFrom(stakingToken, user, address(this), amount);
        IGauge(gauge).deposit(amount);
        _mint(user, amount);

        account.lockedAmount += amount;

        emit LockAmountIncreased(user, amount);
    }

    // Extends duration of an ongoing lock
    function extendLock(uint duration) external nonReentrant {
        if(paused){revert Paused();}
        address user = msg.sender;
        UserInfo storage account = userInfo[user];
        if(!account.isLocked){revert NoLock();}

        uint timestamp = _getTimestamp();
        uint unlockTime = timestamp + duration;

        if(unlockTime <= account.lockedFor){revert InvalidLockDuration();} // Can only increase lock duration
        if(unlockTime < timestamp + MINLOCK){revert InvalidLockDuration();} // Below 1M min
        if(unlockTime >= timestamp + MAXLOCK){unlockTime = timestamp + MAXLOCK;} // 26 weeks max lock

        account.lockedFor = unlockTime;

        emit LockExtended(user, unlockTime);
    }

    function withdrawLock() public nonReentrant updateReward(msg.sender){
        address user = msg.sender;
        UserInfo storage account = userInfo[user];

        if(!account.isLocked){revert NoLock();}
        if(_getTimestamp() < account.lockedFor){revert UnderTimeLock();}

        account.isLocked = false;
        uint userLockBal = account.lockedAmount;
        account.lockedFor = 0;
        account.lockedAmount = 0;

        _burn(user, userLockBal);

        uint gaugeBal = _gaugeBalance();

        if(gaugeBal >= userLockBal){
            IGauge(gauge).withdraw(userLockBal);
        }

        _safeTransfer(stakingToken, user, userLockBal);   

        emit LockWithdrawn(user, userLockBal);
    }

    // Allows locker to exit full or partial position with a 40% penalty.
    function earlyUnlock(uint amount) external nonReentrant updateReward(msg.sender) updateReward(treasury){
        address user = msg.sender;
        UserInfo storage account = userInfo[user];

        if(!account.isLocked){revert NoLock();}
        if(_getTimestamp() >= account.lockedFor){revert Expired();}
        if(amount == 0) {revert ZeroAmount();}
        if(amount > account.lockedAmount){amount = account.lockedAmount;}

        account.lockedAmount -= amount;

        if(account.lockedAmount == 0){account.isLocked = false; account.lockedFor = 0;}

        UserInfo storage protocol = userInfo[treasury];

        uint earlyPenalty = amount * EARLYPENALTY / PENALTYDIV;
        uint userReceived = amount - earlyPenalty;
        uint lockerRetained = earlyPenalty * LOCKRETAINED / PENALTYDIV;
        uint treasuryRetained = earlyPenalty - lockerRetained;

        _burn(user, amount);
        _mint(treasury, treasuryRetained);

        if(!protocol.isLocked){
            protocol.isLocked = true;
            protocol.lockedFor = block.timestamp + MAXLOCK;
            protocol.lockedAmount += treasuryRetained;

        } else {
            protocol.lockedAmount += treasuryRetained;
        }

        _distroEarlyPenalty(lockerRetained);

        uint gaugeBal = _gaugeBalance();

        if(gaugeBal >= userReceived){
            IGauge(gauge).withdraw(userReceived);
        }

        _safeTransfer(stakingToken, user, userReceived);

        emit UnlockedEarly(user, userReceived, lockerRetained + treasuryRetained);
    }

    // Partial or complete transfer of a lock to new or existing lock. If receiver is locked, lockedFor must >= msg.sender's
    // If receiver isn't locked, creates one with the same lockedFor as msg.sender
    function transferLock(address receiver, uint amount) external nonReentrant updateReward(msg.sender) updateReward(receiver){
        address user = msg.sender;
        if(receiver == user){revert InvalidTokenOrAddress();}
        UserInfo storage senderAccount = userInfo[user];

        if(!senderAccount.isLocked){revert NoLock();}
        if(_getTimestamp() >= senderAccount.lockedFor){revert Expired();}
        if(amount == 0){revert NotAllowed();}
        if(amount > senderAccount.lockedAmount){amount = senderAccount.lockedAmount;}

        UserInfo storage receiverAccount = userInfo[receiver];
        if(receiverAccount.isLocked){
            if(receiverAccount.lockedFor < senderAccount.lockedFor){revert NotAllowed();} // Can't transfer to shorter lock.
        } 

        if(!receiverAccount.isLocked){
            receiverAccount.isLocked = true;
            receiverAccount.lockedFor = senderAccount.lockedFor;
            emit LockCreated(receiver, amount, receiverAccount.lockedFor);
        }

        senderAccount.lockedAmount -= amount;

        if(senderAccount.lockedAmount == 0){
            senderAccount.isLocked = false;
            senderAccount.lockedFor = 0;
        }

        _burn(user, amount);
        _mint(receiver, amount);
        receiverAccount.lockedAmount += amount;

        emit LockTransfered(user, receiver, amount);
    }

    // Creates vestLock when calling earlyClaim in RewardVester contract.
    function createVest(address user, uint amount) external nonReentrant updateReward(user){
        if(msg.sender != rewardVester){revert NotAllowed();}
        uint timestamp = _getTimestamp();
        UserInfo storage account = userInfo[user];

        if(account.isVested){
            if(timestamp >= account.vestedFor){revert Expired();}
        }

        if(!account.isVested){
            uint unlockTime = timestamp + MAXVEST;
            account.isVested = true;
            account.vestedFor = unlockTime;
            emit VestCreated(user, amount, unlockTime);
        } else {
            emit AddedToVest(user, amount);
        }

        _safeTransferFrom(stakingToken, rewardVester, address(this), amount);
        account.vestedAmount += amount;

        IGauge(gauge).deposit(amount);
        _mint(user, amount);

    }

    function withdrawVest() public nonReentrant updateReward(msg.sender) {
        address user = msg.sender;
        UserInfo storage account = userInfo[user];

        if(!account.isVested){revert NoVest();}
        if(_getTimestamp() < account.vestedFor){revert UnderTimeLock();}

        uint amount = account.vestedAmount;

        account.vestedAmount = 0;
        account.vestedFor = 0;
        account.isVested = false;
        _burn(user, amount);

        uint gaugeBal = _gaugeBalance();

        if(gaugeBal >= amount){
            IGauge(gauge).withdraw(amount);
        }

        _safeTransfer(stakingToken, user, amount);   

        emit VestWithdrawn(user, amount);
    }

    function earlyUnvest(uint amount) external nonReentrant updateReward(msg.sender) updateReward(treasury){
        address user = msg.sender;
        UserInfo storage account = userInfo[user];

        if(!account.isVested){revert NoVest();}
        if(_getTimestamp() >= account.vestedFor){revert Expired();}
        if(amount == 0) {revert ZeroAmount();}
        if(amount > account.vestedAmount){amount = account.vestedAmount;}

        account.vestedAmount -= amount;
        if(account.vestedAmount == 0){account.isVested = false;}

        uint earlyPenalty = amount * EARLYPENALTY / PENALTYDIV;
        uint userReceived = amount - earlyPenalty;
        uint lockerRetained = earlyPenalty * LOCKRETAINED / PENALTYDIV;
        uint treasuryRetained = earlyPenalty - lockerRetained;

        UserInfo storage protocol = userInfo[treasury];
        _burn(user, amount);
        _mint(treasury, treasuryRetained);

        if(!protocol.isLocked){
            protocol.isLocked = true;
            protocol.lockedFor = block.timestamp + MAXLOCK;
            protocol.lockedAmount += treasuryRetained;

        } else {
            protocol.lockedAmount += treasuryRetained;
        }

        _distroEarlyPenalty(lockerRetained);

        uint gaugeBal = _gaugeBalance();

        if(gaugeBal >= userReceived){
            IGauge(gauge).withdraw(userReceived);
        }

        _safeTransfer(stakingToken, user, userReceived);

        emit UnlockedEarly(user, userReceived, lockerRetained + treasuryRetained);
    }

    /// @notice Transfers vested amount into a new or existing non expired but longer lock
    function vestToLock(uint amount, uint duration) external nonReentrant{
        address user = msg.sender;
        UserInfo storage account = userInfo[user];

        if(!account.isVested){revert NoVest();}
        if(amount == 0) {revert ZeroAmount();}
        if(amount > account.vestedAmount){amount = account.vestedAmount;}

        uint timestamp = _getTimestamp();
        if(timestamp >= account.vestedFor){revert Expired();}

        account.vestedAmount -= amount;

        if(!account.isLocked){
            uint unlockTime = timestamp + duration;
            if(unlockTime <= account.vestedFor){revert InvalidLockDuration();} // Lock shorter than vest
            if(unlockTime <= timestamp + MINLOCK){unlockTime = timestamp + MINLOCK;}
            if(unlockTime >= timestamp + MAXLOCK){unlockTime = timestamp + MAXLOCK;}
            
            account.isLocked = true;
            account.lockedFor = unlockTime;
            account.lockedAmount += amount;
            emit LockCreated(user, amount, unlockTime);
        } else {
            if(account.vestedFor >= account.lockedFor){revert InvalidLockDuration();} // Lock shorter than vest
            if(timestamp >= account.lockedFor){revert Expired();}
            account.lockedAmount += amount;
            emit LockAmountIncreased(user, amount);
        }

        if(account.vestedAmount == 0){account.isVested = false; account.vestedFor = 0;}
    }

    // Our protocol is slated to migrate from Fantom Opera to sonic. This function enables lockers to jailBreak if 
    // fMoney Staker is paused in order to bridge their fBUX and lock on Sonic.
    function breakerOfLocks() external {
        address user = msg.sender;
        UserInfo storage account = userInfo[user];

        if(!paused){revert NotPaused();}
        if(!sonicMigration){revert NotAllowed();}
        
        if(account.isLocked){
            account.lockedFor = 0;
            emit LockBroken(user, account.lockedAmount);
            withdrawLock();
        }

        if(account.isVested){
            account.vestedFor = 0; 
            emit VestBroken(user, account.vestedAmount);
            withdrawVest();
        }
    }

    // Returns, in seconds, how much time is left on a lock.
    function lockLeft(address user) public view returns(uint){
        UserInfo memory account = userInfo[user];
        uint timestamp = _getTimestamp();
        uint lockEnd = account.lockedFor;

        if(lockEnd == 0){return 0;}
        if(timestamp >= lockEnd){return 0;}

        return lockEnd - timestamp;
    }

    // Returns, in seconds, how much time is left on a vest.
    function vestLeft(address user) public view returns(uint){
        UserInfo memory account = userInfo[user];
        uint timestamp = _getTimestamp();
        uint vestEnd = account.vestedFor;

        if(vestEnd == 0){return 0;}
        if(timestamp >= vestEnd){return 0;}

        return vestEnd - timestamp;
    }

    // Returns reward duration
    function left(address token) public view returns (uint) {
        uint timestamp = _getTimestamp();
        if (timestamp >= _rewardData[token].periodFinish) return 0;
        uint _remaining = _rewardData[token].periodFinish - timestamp;
        return _remaining * _rewardData[token].rewardRate;
    }

    /// @notice Tops up reward pool for a token
    function notifyRewardAmount(address token, uint amount) external updateReward(address(0)) onlyRole(DEFAULT_ADMIN_ROLE) {
        if (amount == 0) {revert ZeroAmount();}

        if (!isReward[token]) {
            rewards.push(token);
            isReward[token] = true;
        }

        uint timestamp = _getTimestamp();
        address thisContract = address(this);
        uint periodFinish = _rewardData[token].periodFinish;
        _rewardData[token].rewardPerTokenStored = rewardPerToken(token);

        // Check actual amount transferred for compatibility with fee on transfer tokens.
        uint balanceBefore = _balanceOf(token, thisContract);
        _safeTransferFrom(token, msg.sender, thisContract, amount);
        uint balanceAfter = _balanceOf(token, thisContract);
        amount = balanceAfter - balanceBefore;

        if (timestamp >= periodFinish) {
            _rewardData[token].rewardRate = amount / DURATION;
        } else {
            uint remaining = periodFinish - timestamp;
            uint _left = remaining * _rewardData[token].rewardRate;
            _rewardData[token].rewardRate = (amount + _left) / DURATION;
        }

        _rewardData[token].lastUpdateTime = timestamp;
        _rewardData[token].periodFinish = timestamp + DURATION;

        emit NotifyReward(msg.sender, token, amount);
    }

    // Harvests beets rewards & adds amount to reward pool
    function harvestBeets() external nonReentrant updateReward(address(0)) {
        uint timestamp = _getTimestamp();
        address thisContract = address(this);
        if(timestamp < lastBeetsHarvest + 5 days){revert UnderTimeLock();}
        lastBeetsHarvest = timestamp;

        uint beetsBalance = _balanceOf(beets, thisContract);
        IGauge(gauge).claim_rewards();
        uint beetsBalanceAfter = _balanceOf(beets, thisContract);

        uint _unsyncedBeets = beetsBalanceAfter - beetsBalance;
        _unsyncedBeets += unsyncedBeets;
        if(_unsyncedBeets == 0){revert ZeroAmount();}
        unsyncedBeets = 0;
        
        _rewardData[beets].rewardPerTokenStored = rewardPerToken(beets);

        if (timestamp >= _rewardData[beets].periodFinish) {
            _rewardData[beets].rewardRate = _unsyncedBeets / DURATION;
        } else {
            uint remaining = _rewardData[beets].periodFinish - timestamp;
            uint _left = remaining * _rewardData[beets].rewardRate;
            _rewardData[beets].rewardRate = (_unsyncedBeets + _left) / DURATION;
        }

        _rewardData[beets].lastUpdateTime = timestamp;
        _rewardData[beets].periodFinish = timestamp + DURATION;
                
        emit NotifyReward(msg.sender, beets, _unsyncedBeets);
    }

    /// @notice Distributes penalty from early unlocks as locked rewards to Lockers.
    function _distroEarlyPenalty(uint amount) internal updateReward(address(0)) {
        address lockReceipt = address(this);

        if (!isReward[lockReceipt]) {
            rewards.push(lockReceipt);
            isReward[lockReceipt] = true;
        }

        uint timestamp = _getTimestamp();
        _rewardData[lockReceipt].rewardPerTokenStored = rewardPerToken(lockReceipt);

        if (timestamp >= _rewardData[lockReceipt].periodFinish) {
            _rewardData[lockReceipt].rewardRate = amount / DURATION;
        } else {
            uint remaining = _rewardData[lockReceipt].periodFinish - timestamp;
            uint _left = remaining * _rewardData[lockReceipt].rewardRate;
            _rewardData[lockReceipt].rewardRate = (amount + _left) / DURATION;
        }

        _rewardData[lockReceipt].lastUpdateTime = timestamp;
        _rewardData[lockReceipt].periodFinish = timestamp + DURATION;

        emit NotifyReward(msg.sender, lockReceipt, amount);
    }

    //If user has exited lock or vest, getReward calls this func to unlock pending locked Reward and send to user.
    function _unlockReward(uint amount) internal{
        uint gaugeBal = _gaugeBalance();
        
        if(gaugeBal >= amount){
            IGauge(gauge).withdraw(amount);
        }
        _safeTransfer(stakingToken, msg.sender, amount);
    }

    /// @notice Emergency withdraw from chef to staking contract & pause deposits.
    function emergencyWithdrawFromGauge() external onlyRole(OPERATOR_ROLE){
        if(paused){revert Paused();}

        uint gaugeBal = IGauge(gauge).balanceOf(address(this));
        IGauge(gauge).withdraw(gaugeBal);

        paused = true;
        uint stakingBal = _balanceOf(stakingToken, address(this));
        
        emit EmergencyWithdraw(stakingBal);
    }

    // Unpauses deposits and stakes LP in chef if there's balance in the contract
    function unpause() external onlyRole(OPERATOR_ROLE){
        if(!paused){revert NotPaused();}
        paused = false;

        uint stakingBal = _balanceOf(stakingToken, address(this));
        if(stakingBal != 0){IGauge(gauge).deposit(stakingBal);}
        emit UnPaused(stakingBal);
    }

    // Recovers token mistakenly sent to the contract if not a protected token.
    function recoverTokens(address token, address to, uint amount) external onlyRole(DEFAULT_ADMIN_ROLE) {
        if(token == stakingToken || isReward[token] || token == gauge){revert InvalidTokenOrAddress();}
        _safeTransfer(token, to, amount);
    }

    //To cover a migration/shutdown, rewards can be sent to multisig.
    function recoverRewards(address token, uint amount) external onlyRole(OPERATOR_ROLE){
        if(!paused){revert NotPaused();}
        if(token == stakingToken){revert InvalidTokenOrAddress();}
        _safeTransfer(token, multisig, amount);
    }

    // To cover a pool migration/contract shutdown, this 
    // admin gated function enables users to dissolve locks if the staker has been emergency withdrawn and is paused.
    function setShutdown(bool state) external onlyRole(DEFAULT_ADMIN_ROLE){
        if(!paused){revert NotPaused();}
        sonicMigration = state;
        emit ShutDown(state);
    }

    // In the event of a rewardVester change.
    function setRewardVester(address vester) external onlyRole(DEFAULT_ADMIN_ROLE){
        if(vester == address(0)){revert InvalidTokenOrAddress();}
        rewardVester = vester;
        emit RewardVesterSet(vester);
    }

    // Approval refresh for contract longevity
    function renewApprovals() external onlyRole(OPERATOR_ROLE){
        IERC20(stakingToken).approve(gauge, 0);
        IERC20(stakingToken).approve(gauge, type(uint).max);
    }

    // Returns contract's stakingToken amount deposited in chef & rewardDebt
    function _gaugeBalance() internal view returns(uint lpAmount){
        return IGauge(gauge).balanceOf(address(this));
    }

    function _getTimestamp() internal view returns (uint){
        return block.timestamp;
    }

    // Internal update function, adds or removes reward shares for a depositor.
    function _update(address from, address to, uint value) internal override {
        // if burn or mint
        if (from == address(0) || to == address(0)) {
            super._update(from, to, value);
        } else {
            _updateReward(from);
            _updateReward(to);
            super._update(from, to, value);
        }
    }

    // ERC20 handling
    function _safeTransfer(address token, address to, uint value) internal {
        (bool success, bytes memory data) = token.call(
            abi.encodeCall(IERC20.transfer, (to, value))
        );
        require(success && (data.length == 0 || abi.decode(data, (bool))));
    }

    function _safeTransferFrom(address token, address from, address to, uint value) internal {
        (bool success, bytes memory data) = token.call(
            abi.encodeCall(IERC20.transferFrom, (from, to, value))
        );
        require(success && (data.length == 0 || abi.decode(data, (bool))));
    }

    function _balanceOf(address token, address account) internal view returns (uint) {
        (bool success, bytes memory data) = token.staticcall(
            abi.encodeCall(IERC20.balanceOf, (account))
        );
        require(success && data.length >= 32);
        return abi.decode(data, (uint));
    }
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):