S Price: $0.544145 (+1.63%)

Contract Diff Checker

Contract Name:
Pair

Contract Source Code:

// SPDX-License-Identifier: MIT

pragma solidity 0.8.13;


interface IDibs {
    function reward(address user,bytes32 parentCode,
                    uint256 totalFees,uint256 totalVolume,
                    address token) external returns(uint256 referralFee);

    function findTotalRewardFor(address _user, uint _totalFees) external view returns(uint256 _referralFeeAmount);
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.13;

interface IERC20 {
    function totalSupply() external view returns (uint256);
    function transfer(address recipient, uint amount) external returns (bool);
    function decimals() external view returns (uint8);
    function symbol() external view returns (string memory);
    function balanceOf(address) external view returns (uint);
    function transferFrom(address sender, address recipient, uint amount) external returns (bool);
    function allowance(address owner, address spender) external view returns (uint);
    function approve(address spender, uint value) external returns (bool);

    event Transfer(address indexed from, address indexed to, uint value);
    event Approval(address indexed owner, address indexed spender, uint value);
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.13;

interface IPair {
    function metadata() external view returns (uint dec0, uint dec1, uint r0, uint r1, bool st, address t0, address t1);
    function claimFees() external returns (uint, uint);
    function tokens() external view returns (address, address);
    function token0() external view returns (address);
    function token1() external view returns (address);
    function transferFrom(address src, address dst, uint amount) external returns (bool);
    function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;
    function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external;
    function burn(address to) external returns (uint amount0, uint amount1);
    function mint(address to) external returns (uint liquidity);
    function getReserves() external view returns (uint _reserve0, uint _reserve1, uint _blockTimestampLast);
    function getAmountOut(uint, address) external view returns (uint);

    function name() external view returns(string memory);
    function symbol() external view returns(string memory);
    function totalSupply() external view returns (uint);
    function decimals() external view returns (uint8);

    function claimable0(address _user) external view returns (uint);
    function claimable1(address _user) external view returns (uint);

    function isStable() external view returns(bool);


}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.13;

interface IPairCallee {
    function hook(address sender, uint amount0, uint amount1, bytes calldata data) external;
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.13;

interface IPairFactory {
    function allPairsLength() external view returns (uint);
    function isPair(address pair) external view returns (bool);
    function allPairs(uint index) external view returns (address);
    function stakingFeeHandler() external view returns (address);
    function dibs() external view returns (address);
    function MAX_TREASURY_FEE() external view returns (uint256);
    function stakingNFTFee() external view returns (uint256);
    function isPaused() external view returns (bool);
    function pairCodeHash() external pure returns (bytes32);
    function getPair(address tokenA, address token, bool stable) external view returns (address);
    function createPair(address tokenA, address tokenB, bool stable) external returns (address pair);
    function getInitializable() external view returns (address, address, bool);
    function getFee(bool _stable) external view returns(uint256);
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.13;

library Math {
    function max(uint a, uint b) internal pure returns (uint) {
        return a >= b ? a : b;
    }
    function min(uint a, uint b) internal pure returns (uint) {
        return a < b ? a : b;
    }
    function sqrt(uint y) internal pure returns (uint z) {
        if (y > 3) {
            z = y;
            uint x = y / 2 + 1;
            while (x < z) {
                z = x;
                x = (y / x + x) / 2;
            }
        } else if (y != 0) {
            z = 1;
        }
    }
    function cbrt(uint256 n) internal pure returns (uint256) { unchecked {
        uint256 x = 0;
        for (uint256 y = 1 << 255; y > 0; y >>= 3) {
            x <<= 1;
            uint256 z = 3 * x * (x + 1) + 1;
            if (n / y >= z) {
                n -= y * z;
                x += 1;
            }
        }
        return x;
    }}
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.13;

import "./libraries/Math.sol";
import "./interfaces/IERC20.sol";
import "./interfaces/IPair.sol";
import "./interfaces/IDibs.sol";
import "./interfaces/IPairCallee.sol";
import "./interfaces/IPairFactory.sol";
import "./PairFees.sol";

// The base pair of pools, either stable or volatile
contract Pair is IPair {
    string public name;
    string public symbol;
    uint8 public constant decimals = 18;

    // Used to denote stable or volatile pair, not immutable since construction happens in the initialize method for CREATE2 deterministic addresses
    bool public immutable stable;

    uint public totalSupply = 0;

    mapping(address => mapping(address => uint)) public allowance;
    mapping(address => uint) public balanceOf;

    bytes32 internal DOMAIN_SEPARATOR;
    // keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
    bytes32 internal constant PERMIT_TYPEHASH =
        0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9;
    mapping(address => uint) public nonces;

    uint internal constant MINIMUM_LIQUIDITY = 10 ** 3;

    address public immutable token0;
    address public immutable token1;
    address public immutable fees;
    address immutable factory;

    // Structure to capture time period obervations every 30 minutes, used for local oracles
    struct Observation {
        uint timestamp;
        uint reserve0Cumulative;
        uint reserve1Cumulative;
    }

    // Capture oracle reading every 30 minutes
    uint constant periodSize = 1800;

    Observation[] public observations;

    uint internal immutable decimals0;
    uint internal immutable decimals1;

    uint public reserve0;
    uint public reserve1;
    uint public blockTimestampLast;

    uint public reserve0CumulativeLast;
    uint public reserve1CumulativeLast;

    // index0 and index1 are used to accumulate fees, this is split out from normal trades to keep the swap "clean"
    // this further allows LP holders to easily claim fees for tokens they have/staked
    uint public index0 = 0;
    uint public index1 = 0;

    // position assigned to each LP to track their current index0 & index1 vs the global position
    mapping(address => uint) public supplyIndex0;
    mapping(address => uint) public supplyIndex1;

    // tracks the amount of unclaimed, but claimable tokens off of fees for token0 and token1
    mapping(address => uint) public claimable0;
    mapping(address => uint) public claimable1;

    event Fees(address indexed sender, uint amount0, uint amount1);
    event Mint(address indexed sender, uint amount0, uint amount1);
    event Burn(
        address indexed sender,
        uint amount0,
        uint amount1,
        address indexed to
    );
    event Swap(
        address indexed sender,
        uint amount0In,
        uint amount1In,
        uint amount0Out,
        uint amount1Out,
        address indexed to
    );
    event Sync(uint reserve0, uint reserve1);
    event Claim(
        address indexed sender,
        address indexed recipient,
        uint amount0,
        uint amount1
    );

    event Transfer(address indexed from, address indexed to, uint amount);
    event Approval(address indexed owner, address indexed spender, uint amount);

    constructor() {
        factory = msg.sender;
        (address _token0, address _token1, bool _stable) = IPairFactory(
            msg.sender
        ).getInitializable();
        (token0, token1, stable) = (_token0, _token1, _stable);
        fees = address(new PairFees(_token0, _token1));
        if (_stable) {
            name = string(
                abi.encodePacked(
                    "StableV1 AMM - ",
                    IERC20(_token0).symbol(),
                    "/",
                    IERC20(_token1).symbol()
                )
            );
            symbol = string(
                abi.encodePacked(
                    "sAMM-",
                    IERC20(_token0).symbol(),
                    "/",
                    IERC20(_token1).symbol()
                )
            );
        } else {
            name = string(
                abi.encodePacked(
                    "VolatileV1 AMM - ",
                    IERC20(_token0).symbol(),
                    "/",
                    IERC20(_token1).symbol()
                )
            );
            symbol = string(
                abi.encodePacked(
                    "vAMM-",
                    IERC20(_token0).symbol(),
                    "/",
                    IERC20(_token1).symbol()
                )
            );
        }

        decimals0 = 10 ** IERC20(_token0).decimals();
        decimals1 = 10 ** IERC20(_token1).decimals();

        observations.push(Observation(block.timestamp, 0, 0));
    }

    // simple re-entrancy check
    uint internal _unlocked = 1;
    modifier lock() {
        require(_unlocked == 1);
        _unlocked = 2;
        _;
        _unlocked = 1;
    }

    function observationLength() external view returns (uint) {
        return observations.length;
    }

    function lastObservation() public view returns (Observation memory) {
        return observations[observations.length - 1];
    }

    function metadata()
        external
        view
        returns (
            uint dec0,
            uint dec1,
            uint r0,
            uint r1,
            bool st,
            address t0,
            address t1
        )
    {
        return (
            decimals0,
            decimals1,
            reserve0,
            reserve1,
            stable,
            token0,
            token1
        );
    }

    function tokens() external view returns (address, address) {
        return (token0, token1);
    }

    function isStable() external view returns (bool) {
        return stable;
    }

    // claim accumulated but unclaimed fees (viewable via claimable0 and claimable1)
    function claimFees() external returns (uint claimed0, uint claimed1) {
        _updateFor(msg.sender);

        claimed0 = claimable0[msg.sender];
        claimed1 = claimable1[msg.sender];

        if (claimed0 > 0 || claimed1 > 0) {
            claimable0[msg.sender] = 0;
            claimable1[msg.sender] = 0;

            PairFees(fees).claimFeesFor(msg.sender, claimed0, claimed1);

            emit Claim(msg.sender, msg.sender, claimed0, claimed1);
        }
    }

    function claimStakingFees() external {
        address _feehandler = IPairFactory(factory).stakingFeeHandler();
        PairFees(fees).withdrawStakingFees(_feehandler);
    }

    // Accrue fees on token0
    function _update0(uint amount) internal {
        // get referral fee
        address _dibs = IPairFactory(factory).dibs();
        uint256 _maxRef = IPairFactory(factory).MAX_TREASURY_FEE();
        uint256 _referralFee = (amount * _maxRef) / 10000;
        _safeTransfer(token0, _dibs, _referralFee); // transfer the fees out to PairFees
        // amount -= _referralFee;

        // get lp and staking fee
        uint256 _stakingNftFee = (amount *
            IPairFactory(factory).stakingNFTFee()) / 10000;
        PairFees(fees).processStakingFees(_stakingNftFee, true);
        _safeTransfer(token0, fees, amount - _referralFee); // transfer the fees out to PairFees

        // remove staking fees from lpfees
        amount -= (_stakingNftFee + _referralFee);
        uint256 _ratio = (amount * 1e18) / totalSupply; // 1e18 adjustment is removed during claim
        if (_ratio > 0) {
            index0 += _ratio;
        }
        emit Fees(msg.sender, amount + _stakingNftFee + _referralFee, 0);
    }

    // Accrue fees on token1
    function _update1(uint amount) internal {
        // get referral fee
        address _dibs = IPairFactory(factory).dibs();
        uint256 _maxRef = IPairFactory(factory).MAX_TREASURY_FEE();
        uint256 _referralFee = (amount * _maxRef) / 10000;
        _safeTransfer(token1, _dibs, _referralFee); // transfer the fees out to PairFees
        // amount -= _referralFee;

        // get lp and staking fee
        uint256 _stakingNftFee = (amount *
            IPairFactory(factory).stakingNFTFee()) / 10000;
        PairFees(fees).processStakingFees(_stakingNftFee, false);
        _safeTransfer(token1, fees, amount - _referralFee); // transfer the fees out to PairFees

        // remove staking fees from lpfees
        amount -= (_stakingNftFee + _referralFee);

        uint256 _ratio = (amount * 1e18) / totalSupply;

        if (_ratio > 0) {
            index1 += _ratio;
        }

        emit Fees(msg.sender, 0, amount + _stakingNftFee + _referralFee);
    }

    // this function MUST be called on any balance changes, otherwise can be used to infinitely claim fees
    // Fees are segregated from core funds, so fees can never put liquidity at risk
    function _updateFor(address recipient) internal {
        uint _supplied = balanceOf[recipient]; // get LP balance of `recipient`
        if (_supplied > 0) {
            uint _supplyIndex0 = supplyIndex0[recipient]; // get last adjusted index0 for recipient
            uint _supplyIndex1 = supplyIndex1[recipient];
            uint _index0 = index0; // get global index0 for accumulated fees
            uint _index1 = index1;
            supplyIndex0[recipient] = _index0; // update user current position to global position
            supplyIndex1[recipient] = _index1;
            uint _delta0 = _index0 - _supplyIndex0; // see if there is any difference that need to be accrued
            uint _delta1 = _index1 - _supplyIndex1;
            if (_delta0 > 0) {
                uint _share = (_supplied * _delta0) / 1e18; // add accrued difference for each supplied token
                claimable0[recipient] += _share;
            }
            if (_delta1 > 0) {
                uint _share = (_supplied * _delta1) / 1e18;
                claimable1[recipient] += _share;
            }
        } else {
            supplyIndex0[recipient] = index0; // new users are set to the default global state
            supplyIndex1[recipient] = index1;
        }
    }

    function getReserves()
        public
        view
        returns (uint _reserve0, uint _reserve1, uint _blockTimestampLast)
    {
        _reserve0 = reserve0;
        _reserve1 = reserve1;
        _blockTimestampLast = blockTimestampLast;
    }

    // update reserves and, on the first call per block, price accumulators
    function _update(
        uint balance0,
        uint balance1,
        uint _reserve0,
        uint _reserve1
    ) internal {
        uint blockTimestamp = block.timestamp;
        uint timeElapsed = blockTimestamp - blockTimestampLast; // overflow is desired
        if (timeElapsed > 0 && _reserve0 != 0 && _reserve1 != 0) {
            reserve0CumulativeLast += _reserve0 * timeElapsed;
            reserve1CumulativeLast += _reserve1 * timeElapsed;
        }

        Observation memory _point = lastObservation();
        timeElapsed = blockTimestamp - _point.timestamp; // compare the last observation with current timestamp, if greater than 30 minutes, record a new event
        if (timeElapsed > periodSize) {
            observations.push(
                Observation(
                    blockTimestamp,
                    reserve0CumulativeLast,
                    reserve1CumulativeLast
                )
            );
        }
        reserve0 = balance0;
        reserve1 = balance1;
        blockTimestampLast = blockTimestamp;
        emit Sync(reserve0, reserve1);
    }

    // produces the cumulative price using counterfactuals to save gas and avoid a call to sync.
    function currentCumulativePrices()
        public
        view
        returns (
            uint reserve0Cumulative,
            uint reserve1Cumulative,
            uint blockTimestamp
        )
    {
        blockTimestamp = block.timestamp;
        reserve0Cumulative = reserve0CumulativeLast;
        reserve1Cumulative = reserve1CumulativeLast;

        // if time has elapsed since the last update on the pair, mock the accumulated price values
        (
            uint _reserve0,
            uint _reserve1,
            uint _blockTimestampLast
        ) = getReserves();
        if (_blockTimestampLast != blockTimestamp) {
            // subtraction overflow is desired
            uint timeElapsed = blockTimestamp - _blockTimestampLast;
            reserve0Cumulative += _reserve0 * timeElapsed;
            reserve1Cumulative += _reserve1 * timeElapsed;
        }
    }

    // gives the current twap price measured from amountIn * tokenIn gives amountOut
    function current(
        address tokenIn,
        uint amountIn
    ) external view returns (uint amountOut) {
        Observation memory _observation = lastObservation();
        (
            uint reserve0Cumulative,
            uint reserve1Cumulative,

        ) = currentCumulativePrices();
        if (block.timestamp == _observation.timestamp) {
            _observation = observations[observations.length - 2];
        }

        uint timeElapsed = block.timestamp - _observation.timestamp;
        uint _reserve0 = (reserve0Cumulative -
            _observation.reserve0Cumulative) / timeElapsed;
        uint _reserve1 = (reserve1Cumulative -
            _observation.reserve1Cumulative) / timeElapsed;
        amountOut = _getAmountOut(amountIn, tokenIn, _reserve0, _reserve1);
    }

    // as per `current`, however allows user configured granularity, up to the full window size
    function quote(
        address tokenIn,
        uint amountIn,
        uint granularity
    ) external view returns (uint amountOut) {
        uint[] memory _prices = sample(tokenIn, amountIn, granularity, 1);
        uint priceAverageCumulative;
        for (uint i = 0; i < _prices.length; i++) {
            priceAverageCumulative += _prices[i];
        }
        return priceAverageCumulative / granularity;
    }

    // returns a memory set of twap prices
    function prices(
        address tokenIn,
        uint amountIn,
        uint points
    ) external view returns (uint[] memory) {
        return sample(tokenIn, amountIn, points, 1);
    }

    function sample(
        address tokenIn,
        uint amountIn,
        uint points,
        uint window
    ) public view returns (uint[] memory) {
        uint[] memory _prices = new uint[](points);

        uint length = observations.length - 1;
        uint i = length - (points * window);
        uint nextIndex = 0;
        uint index = 0;

        for (; i < length; i += window) {
            nextIndex = i + window;
            uint timeElapsed = observations[nextIndex].timestamp -
                observations[i].timestamp;
            uint _reserve0 = (observations[nextIndex].reserve0Cumulative -
                observations[i].reserve0Cumulative) / timeElapsed;
            uint _reserve1 = (observations[nextIndex].reserve1Cumulative -
                observations[i].reserve1Cumulative) / timeElapsed;
            _prices[index] = _getAmountOut(
                amountIn,
                tokenIn,
                _reserve0,
                _reserve1
            );
            // index < length; length cannot overflow
            unchecked {
                index = index + 1;
            }
        }
        return _prices;
    }

    // this low-level function should be called by addLiquidity functions in Router.sol, which performs important safety checks
    // standard uniswap v2 implementation
    function mint(address to) external lock returns (uint liquidity) {
        (uint _reserve0, uint _reserve1) = (reserve0, reserve1);
        uint _balance0 = IERC20(token0).balanceOf(address(this));
        uint _balance1 = IERC20(token1).balanceOf(address(this));
        uint _amount0 = _balance0 - _reserve0;
        uint _amount1 = _balance1 - _reserve1;

        uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee
        if (_totalSupply == 0) {
            liquidity = Math.sqrt(_amount0 * _amount1) - MINIMUM_LIQUIDITY;
            _mint(address(0), MINIMUM_LIQUIDITY); // permanently lock the first MINIMUM_LIQUIDITY tokens
        } else {
            liquidity = Math.min(
                (_amount0 * _totalSupply) / _reserve0,
                (_amount1 * _totalSupply) / _reserve1
            );
        }
        require(liquidity > 0, "ILM"); // Pair: INSUFFICIENT_LIQUIDITY_MINTED
        _mint(to, liquidity);

        _update(_balance0, _balance1, _reserve0, _reserve1);
        emit Mint(msg.sender, _amount0, _amount1);
    }

    // this low-level function should be called from a contract which performs important safety checks
    // standard uniswap v2 implementation
    function burn(
        address to
    ) external lock returns (uint amount0, uint amount1) {
        (uint _reserve0, uint _reserve1) = (reserve0, reserve1);
        (address _token0, address _token1) = (token0, token1);
        uint _balance0 = IERC20(_token0).balanceOf(address(this));
        uint _balance1 = IERC20(_token1).balanceOf(address(this));
        uint _liquidity = balanceOf[address(this)];

        uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee
        amount0 = (_liquidity * _balance0) / _totalSupply; // using balances ensures pro-rata distribution
        amount1 = (_liquidity * _balance1) / _totalSupply; // using balances ensures pro-rata distribution
        require(amount0 > 0 && amount1 > 0, "ILB"); // Pair: INSUFFICIENT_LIQUIDITY_BURNED
        _burn(address(this), _liquidity);
        _safeTransfer(_token0, to, amount0);
        _safeTransfer(_token1, to, amount1);
        _balance0 = IERC20(_token0).balanceOf(address(this));
        _balance1 = IERC20(_token1).balanceOf(address(this));

        _update(_balance0, _balance1, _reserve0, _reserve1);
        emit Burn(msg.sender, amount0, amount1, to);
    }

    // this low-level function should be called from a contract which performs important safety checks
    function swap(
        uint amount0Out,
        uint amount1Out,
        address to,
        bytes calldata data
    ) external lock {
        require(!IPairFactory(factory).isPaused());
        require(amount0Out > 0 || amount1Out > 0, "IOA"); // Pair: INSUFFICIENT_OUTPUT_AMOUNT
        (uint _reserve0, uint _reserve1) = (reserve0, reserve1);
        require(amount0Out < _reserve0 && amount1Out < _reserve1, "IL"); // Pair: INSUFFICIENT_LIQUIDITY

        uint _balance0;
        uint _balance1;
        {
            // scope for _token{0,1}, avoids stack too deep errors
            (address _token0, address _token1) = (token0, token1);
            require(to != _token0 && to != _token1, "IT"); // Pair: INVALID_TO
            if (amount0Out > 0) _safeTransfer(_token0, to, amount0Out); // optimistically transfer tokens
            if (amount1Out > 0) _safeTransfer(_token1, to, amount1Out); // optimistically transfer tokens
            if (data.length > 0)
                IPairCallee(to).hook(msg.sender, amount0Out, amount1Out, data); // callback, used for flash loans
            _balance0 = IERC20(_token0).balanceOf(address(this));
            _balance1 = IERC20(_token1).balanceOf(address(this));
        }

        uint amount0In = _balance0 > _reserve0 - amount0Out
            ? _balance0 - (_reserve0 - amount0Out)
            : 0;
        uint amount1In = _balance1 > _reserve1 - amount1Out
            ? _balance1 - (_reserve1 - amount1Out)
            : 0;
        require(amount0In > 0 || amount1In > 0, "IIA"); // Pair: INSUFFICIENT_INPUT_AMOUNT

        {
            // scope for reserve{0,1}Adjusted, avoids stack too deep errors
            (address _token0, address _token1) = (token0, token1);
            if (amount0In > 0)
                _update0(
                    (amount0In * IPairFactory(factory).getFee(stable)) / 10000
                ); // accrue fees for token0 and move them out of pool
            if (amount1In > 0)
                _update1(
                    (amount1In * IPairFactory(factory).getFee(stable)) / 10000
                ); // accrue fees for token1 and move them out of pool
            _balance0 = IERC20(_token0).balanceOf(address(this)); // since we removed tokens, we need to reconfirm balances, can also simply use previous balance - amountIn/ 10000, but doing balanceOf again as safety check
            _balance1 = IERC20(_token1).balanceOf(address(this));
            // The curve, either x3y+y3x for stable pools, or x*y for volatile pools
            require(_k(_balance0, _balance1) >= _k(_reserve0, _reserve1), "K"); // Pair: K
        }

        _update(_balance0, _balance1, _reserve0, _reserve1);
        emit Swap(msg.sender, amount0In, amount1In, amount0Out, amount1Out, to);
    }

    // force balances to match reserves
    function skim(address to) external lock {
        (address _token0, address _token1) = (token0, token1);
        _safeTransfer(
            _token0,
            to,
            IERC20(_token0).balanceOf(address(this)) - (reserve0)
        );
        _safeTransfer(
            _token1,
            to,
            IERC20(_token1).balanceOf(address(this)) - (reserve1)
        );
    }

    // force reserves to match balances
    function sync() external lock {
        _update(
            IERC20(token0).balanceOf(address(this)),
            IERC20(token1).balanceOf(address(this)),
            reserve0,
            reserve1
        );
    }

    function _f(uint x0, uint y) internal pure returns (uint) {
        return
            (x0 * ((((y * y) / 1e18) * y) / 1e18)) /
            1e18 +
            (((((x0 * x0) / 1e18) * x0) / 1e18) * y) /
            1e18;
    }

    function _d(uint x0, uint y) internal pure returns (uint) {
        return
            (3 * x0 * ((y * y) / 1e18)) /
            1e18 +
            ((((x0 * x0) / 1e18) * x0) / 1e18);
    }

    function _get_y(uint x0, uint xy, uint y) internal pure returns (uint) {
        for (uint i = 0; i < 255; i++) {
            uint y_prev = y;
            uint k = _f(x0, y);
            if (k < xy) {
                uint dy = ((xy - k) * 1e18) / _d(x0, y);
                y = y + dy;
            } else {
                uint dy = ((k - xy) * 1e18) / _d(x0, y);
                y = y - dy;
            }
            if (y > y_prev) {
                if (y - y_prev <= 1) {
                    return y;
                }
            } else {
                if (y_prev - y <= 1) {
                    return y;
                }
            }
        }
        return y;
    }

    function getAmountOut(
        uint amountIn,
        address tokenIn
    ) external view returns (uint) {
        (uint _reserve0, uint _reserve1) = (reserve0, reserve1);
        amountIn -= (amountIn * IPairFactory(factory).getFee(stable)) / 10000; // remove fee from amount received
        return _getAmountOut(amountIn, tokenIn, _reserve0, _reserve1);
    }

    function _getAmountOut(
        uint amountIn,
        address tokenIn,
        uint _reserve0,
        uint _reserve1
    ) internal view returns (uint) {
        if (stable) {
            uint xy = _k(_reserve0, _reserve1);
            _reserve0 = (_reserve0 * 1e18) / decimals0;
            _reserve1 = (_reserve1 * 1e18) / decimals1;
            (uint reserveA, uint reserveB) = tokenIn == token0
                ? (_reserve0, _reserve1)
                : (_reserve1, _reserve0);
            amountIn = tokenIn == token0
                ? (amountIn * 1e18) / decimals0
                : (amountIn * 1e18) / decimals1;
            uint y = reserveB - _get_y(amountIn + reserveA, xy, reserveB);
            return (y * (tokenIn == token0 ? decimals1 : decimals0)) / 1e18;
        } else {
            (uint reserveA, uint reserveB) = tokenIn == token0
                ? (_reserve0, _reserve1)
                : (_reserve1, _reserve0);
            return (amountIn * reserveB) / (reserveA + amountIn);
        }
    }

    function _k(uint x, uint y) internal view returns (uint) {
        if (stable) {
            uint _x = (x * 1e18) / decimals0;
            uint _y = (y * 1e18) / decimals1;
            uint _a = (_x * _y) / 1e18;
            uint _b = ((_x * _x) / 1e18 + (_y * _y) / 1e18);
            return (_a * _b) / 1e18; // x3y+y3x >= k
        } else {
            return x * y; // xy >= k
        }
    }

    function _mint(address dst, uint amount) internal {
        _updateFor(dst); // balances must be updated on mint/burn/transfer
        totalSupply += amount;
        balanceOf[dst] += amount;
        emit Transfer(address(0), dst, amount);
    }

    function _burn(address dst, uint amount) internal {
        _updateFor(dst);
        totalSupply -= amount;
        balanceOf[dst] -= amount;
        emit Transfer(dst, address(0), amount);
    }

    function approve(address spender, uint amount) external returns (bool) {
        allowance[msg.sender][spender] = amount;

        emit Approval(msg.sender, spender, amount);
        return true;
    }

    function permit(
        address owner,
        address spender,
        uint value,
        uint deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external {
        require(deadline >= block.timestamp, "Pair: EXPIRED");
        DOMAIN_SEPARATOR = keccak256(
            abi.encode(
                keccak256(
                    "EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"
                ),
                keccak256(bytes(name)),
                keccak256(bytes("1")),
                block.chainid,
                address(this)
            )
        );
        bytes32 digest = keccak256(
            abi.encodePacked(
                "\x19\x01",
                DOMAIN_SEPARATOR,
                keccak256(
                    abi.encode(
                        PERMIT_TYPEHASH,
                        owner,
                        spender,
                        value,
                        nonces[owner]++,
                        deadline
                    )
                )
            )
        );
        address recoveredAddress = ecrecover(digest, v, r, s);
        require(
            recoveredAddress != address(0) && recoveredAddress == owner,
            "Pair: INVALID_SIGNATURE"
        );
        allowance[owner][spender] = value;

        emit Approval(owner, spender, value);
    }

    function transfer(address dst, uint amount) external returns (bool) {
        _transferTokens(msg.sender, dst, amount);
        return true;
    }

    function transferFrom(
        address src,
        address dst,
        uint amount
    ) external returns (bool) {
        address spender = msg.sender;
        uint spenderAllowance = allowance[src][spender];

        if (spender != src && spenderAllowance != type(uint).max) {
            uint newAllowance = spenderAllowance - amount;
            allowance[src][spender] = newAllowance;

            emit Approval(src, spender, newAllowance);
        }

        _transferTokens(src, dst, amount);
        return true;
    }

    function _transferTokens(address src, address dst, uint amount) internal {
        _updateFor(src); // update fee position for src
        _updateFor(dst); // update fee position for dst

        balanceOf[src] -= amount;
        balanceOf[dst] += amount;

        emit Transfer(src, dst, amount);
    }

    function _safeTransfer(address token, address to, uint256 value) internal {
        require(token.code.length > 0);
        (bool success, bytes memory data) = token.call(
            abi.encodeWithSelector(IERC20.transfer.selector, to, value)
        );
        require(success && (data.length == 0 || abi.decode(data, (bool))));
    }

    function _safeApprove(
        address token,
        address spender,
        uint256 value
    ) internal {
        require(token.code.length > 0);
        require(
            (value == 0) ||
                (IERC20(token).allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        (bool success, bytes memory data) = token.call(
            abi.encodeWithSelector(IERC20.approve.selector, spender, value)
        );
        require(success && (data.length == 0 || abi.decode(data, (bool))));
    }
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.13;

import './interfaces/IERC20.sol';

// Pair Fees contract is used as a 1:1 pair relationship to split out fees, this ensures that the curve does not need to be modified for LP shares
contract PairFees {

    address internal immutable pair; // The pair it is bonded to
    address internal immutable token0; // token0 of pair, saved localy and statically for gas optimization
    address internal immutable token1; // Token1 of pair, saved localy and statically for gas optimization

    uint256 public toStake0;
    uint256 public toStake1;

    constructor(address _token0, address _token1) {
        pair = msg.sender;
        token0 = _token0;
        token1 = _token1;
    }

    function _safeTransfer(address token,address to,uint256 value) internal {
        require(token.code.length > 0);
        (bool success, bytes memory data) = token.call(abi.encodeWithSelector(IERC20.transfer.selector, to, value));
        require(success && (data.length == 0 || abi.decode(data, (bool))));
    }

    // Allow the pair to transfer fees to users
    function claimFeesFor(address recipient, uint amount0, uint amount1) external {
        require(msg.sender == pair);
        if (amount0 > 0) _safeTransfer(token0, recipient, amount0);
        if (amount1 > 0) _safeTransfer(token1, recipient, amount1);
    }

   

    function processStakingFees(uint amount, bool isTokenZero) external {
        require(msg.sender == pair);
        if(amount > 0 && isTokenZero){
            toStake0 += amount;
        }
    
        if(amount > 0 && !isTokenZero){
            toStake1 += amount;
        }

    }

    function withdrawStakingFees(address recipient) external {
        require(msg.sender == pair);
        if (toStake0 > 0){
            _safeTransfer(token0, recipient, toStake0);
            toStake0 = 0;
        } 
        if (toStake1 > 0){
            _safeTransfer(token1, recipient, toStake1);
            toStake1 = 0;
        }
    }

      

}

Please enter a contract address above to load the contract details and source code.

Context size (optional):