Contract Name:
TokenPreSale
Contract Source Code:
File 1 of 1 : TokenPreSale
// File contracts/libs/Context.sol
pragma solidity ^0.8.18;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// File contracts/libs/Ownable.sol
pragma solidity ^0.8.18;
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
mapping(address => bool) private _operators;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
event UpdateOperator(address indexed operator, bool authorized);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor(address initialOwner) {
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
/**
* @dev add / remove operators.
* `operator`: operator address
* `authorized`: authorized or not
*/
function updateOperator(address operator, bool authorized) public onlyOwner {
require(operator != address(0), "Ownable: operator is the zero address");
emit UpdateOperator(operator, authorized);
_operators[operator] = authorized;
}
/**
* @dev Throws if called by any account other than the operators.
*/
modifier onlyOperator() {
require(_operators[_msgSender()], "Ownable: caller is not the operator");
_;
}
}
// File contracts/libs/Pausable.sol
pragma solidity ^0.8.18;
/**
* @dev Contract module which allows children to implement an emergency stop
* mechanism that can be triggered by an authorized account.
*
* This module is used through inheritance. It will make available the
* modifiers `whenNotPaused` and `whenPaused`, which can be applied to
* the functions of your contract. Note that they will not be pausable by
* simply including this module, only once the modifiers are put in place.
*/
abstract contract Pausable is Context {
/**
* @dev Emitted when the pause is triggered by `account`.
*/
event Paused(address account);
/**
* @dev Emitted when the pause is lifted by `account`.
*/
event Unpaused(address account);
bool private _paused;
/**
* @dev Initializes the contract in unpaused state.
*/
constructor() {
_paused = false;
}
/**
* @dev Modifier to make a function callable only when the contract is not paused.
*
* Requirements:
*
* - The contract must not be paused.
*/
modifier whenNotPaused() {
_requireNotPaused();
_;
}
/**
* @dev Modifier to make a function callable only when the contract is paused.
*
* Requirements:
*
* - The contract must be paused.
*/
modifier whenPaused() {
_requirePaused();
_;
}
/**
* @dev Returns true if the contract is paused, and false otherwise.
*/
function paused() public view virtual returns (bool) {
return _paused;
}
/**
* @dev Throws if the contract is paused.
*/
function _requireNotPaused() internal view virtual {
require(!paused(), "Pausable: paused");
}
/**
* @dev Throws if the contract is not paused.
*/
function _requirePaused() internal view virtual {
require(paused(), "Pausable: not paused");
}
/**
* @dev Triggers stopped state.
*
* Requirements:
*
* - The contract must not be paused.
*/
function _pause() internal virtual whenNotPaused {
_paused = true;
emit Paused(_msgSender());
}
/**
* @dev Returns to normal state.
*
* Requirements:
*
* - The contract must be paused.
*/
function _unpause() internal virtual whenPaused {
_paused = false;
emit Unpaused(_msgSender());
}
}
// File contracts/interfaces/IERC20.sol
pragma solidity ^0.8.0;
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the token decimals.
*/
function decimals() external view returns (uint8);
/**
* @dev Returns the token symbol.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the token name.
*/
function name() external view returns (string memory);
/**
* @dev Returns the bep token owner.
*/
function getOwner() external view returns (address);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address _owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
// File contracts/libs/Address.sol
pragma solidity ^0.8.18;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(target.code.length > 0, "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// File contracts/libs/SafeERC20.sol
pragma solidity ^0.8.18;
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev An operation with an ERC20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data);
if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
}
}
// File contracts/libs/ReentrancyGuard.sol
pragma solidity ^0.8.18;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor() {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be _NOT_ENTERED
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == _ENTERED;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.18;
contract TokenPreSale is Pausable, ReentrancyGuard, Ownable {
using SafeERC20 for IERC20;
using Address for address payable;
// uint256 public CLAIM_INTERVAL = 2592000;
uint256 public round;
bool public isOpenPublic; // change from private sale to public pre sale
IERC20 public saleToken;
address public receiverEth;
address[] private idoUsers;
struct Presale {
uint256 presaleStartTime;
uint256 presaleEndTime;
uint256 priceRate;
uint256 maxTokensToSell;
uint256 inSale;
uint256 vestingStartTime;
uint256 totalVestingMonths;
uint256 unlockPercentage;
uint256 remainingPercentage;
}
struct Vesting {
address buyer;
uint256 maxPurchasable;
uint256 totalAmount;
// uint256 claimedAmount;
// uint256 balance;
// uint256 cliffDuration;
}
mapping(uint256 => Presale) public presaleRound;
mapping(address => Vesting) public usersVesting;
event PresaleUpdated(uint256 prevValue, uint256 newValue, uint256 timestamp);
event UnlockPreSale(bool isOpenPresale, uint256 timestamp);
// event TokensClaimed(address indexed account, uint256 indexed id, uint256 amount, uint256 timestamp);
event TokensBought(address indexed account, uint256 tokensBought, uint256 timestamp);
event ReceivedEther(address indexed account, uint256 amount);
// event Claim(address indexed account, uint256 amount);
event WithdrawPool(address indexed recipient, uint256 amount);
event PresalePaused(uint256 timestamp);
event PresaleUnpaused(uint256 timestamp);
error SaleTokenInvalid(address saleToken);
// error LessPayment();
error OverLimited();
error InvalidTimeBuy();
constructor(
address initialOwner,
address _receiverEth,
// uint256 _maxTokensToSell,
// uint256 _totalVestingMonths,
// uint256 _unlockPercentage,
// uint256 _remainingPercentage,
uint256 _priceRate
) Ownable(initialOwner) {
// require(_maxTokensToSell > 0, "amount tokens to sell must be greater than 0");
// Make this contract initialized
receiverEth = _receiverEth;
uint256 PRECISION_FACTOR = uint256(10 ** (uint256(30) - uint256(18)));
// init presale
Presale storage presale = presaleRound[round];
presale.priceRate = _priceRate * PRECISION_FACTOR;
// presale.maxTokensToSell = _maxTokensToSell;
// presale.inSale = _maxTokensToSell;
// presale.totalVestingMonths = _totalVestingMonths;
// presale.unlockPercentage = _unlockPercentage;
// presale.remainingPercentage = _remainingPercentage;
}
function getAllUsersVesting() external view returns (Vesting[] memory) {
Vesting[] memory usersVestingInfo = new Vesting[](idoUsers.length);
for (uint256 i = 0; i < idoUsers.length; i++) {
usersVestingInfo[i] = usersVesting[idoUsers[i]];
}
return usersVestingInfo;
}
/**
* @dev To update the vesting start time
* @param _vestingStartTime New vesting start time
*/
// function changeVestingStartTime(uint256 _vestingStartTime) external onlyOwner {
// Presale storage presale = presaleRound[round];
// require(presale.presaleEndTime > 0, "Presale have not started");
// require(_vestingStartTime >= presale.presaleEndTime, "Vesting starts before Presale ends");
// uint256 prevValue = presale.vestingStartTime;
// presale.vestingStartTime = _vestingStartTime;
// emit PresaleUpdated(prevValue, _vestingStartTime, block.timestamp);
// }
/**
* @dev To update the presale price rate
* @param _priceRate New price rate
*/
function changePriceRate(uint256 _priceRate) external onlyOwner {
Presale storage presale = presaleRound[round];
require(presale.presaleEndTime > 0, "Presale have not started");
require(_priceRate > 0, "IDOPreSale: price rate invalid");
uint256 prevValue = presale.priceRate;
presale.priceRate = _priceRate;
emit PresaleUpdated(prevValue, _priceRate, block.timestamp);
}
/**
* @dev To update the presale start time
* @param _presaleStartTime New presale start time
* @param _presaleEndTime New presale end time
*/
function setPresaleTime(uint256 _presaleStartTime, uint256 _presaleEndTime) external onlyOwner {
require(block.timestamp < _presaleStartTime && _presaleStartTime <= _presaleEndTime, "Invalid timestamp");
Presale storage presale = presaleRound[round];
uint256 prevValue = presale.presaleStartTime;
presale.presaleStartTime = _presaleStartTime;
presale.presaleEndTime = _presaleEndTime;
emit PresaleUpdated(prevValue, _presaleStartTime, _presaleEndTime);
}
function setSaleToken(IERC20 _saleToken) external onlyOwner {
require(address(_saleToken) != address(0), "IDO: sale token is zero address");
saleToken = _saleToken;
}
function setReceiver(address _receiverEth) external onlyOwner {
require(_receiverEth != address(0), "IDO: sale token is zero address");
receiverEth = _receiverEth;
}
/**
* @dev To update the private sale to pre sale
*/
function setUnlockPublicSale() external onlyOwner {
isOpenPublic = !isOpenPublic;
emit UnlockPreSale(isOpenPublic, block.timestamp);
}
/**
* @dev To pause the presale
*/
function pausePresale() external onlyOwner {
super._pause();
emit PresalePaused(block.timestamp);
}
/**
* @dev To unpause the presale
*/
function unPausePresale() external onlyOwner {
super._unpause();
emit PresaleUnpaused(block.timestamp);
}
function purchaseWithEth() external payable nonReentrant whenNotPaused {
Presale storage presale = presaleRound[round];
uint256 maxPurchasable = usersVesting[_msgSender()].maxPurchasable + msg.value;
if (block.timestamp <= presale.presaleStartTime || block.timestamp >= presale.presaleEndTime) {
revert InvalidTimeBuy();
}
// if (maxPurchasable > 50 ether) {
// revert OverLimited();
// }
// uint256 minimumEther = 0.002 * 10 ** 18;
uint256 amount = msg.value * presale.priceRate;
uint256 PRECISION_FACTOR = uint256(10 ** (uint256(30) - uint256(18)));
amount = amount / PRECISION_FACTOR;
presale.inSale += amount;
// if (msg.value < minimumEther) {
// revert LessPayment();
// }
// if(presale.inSale == 0) {
// presale.presaleEndTime = block.timestamp;
// }
if (usersVesting[_msgSender()].totalAmount > 0) {
usersVesting[_msgSender()].totalAmount += amount;
// usersVesting[_msgSender()].balance = usersVesting[_msgSender()].totalAmount;
usersVesting[_msgSender()].maxPurchasable = maxPurchasable;
} else {
usersVesting[_msgSender()] = Vesting({
buyer: _msgSender(),
maxPurchasable: maxPurchasable,
totalAmount: amount
// claimedAmount: 0,
// balance: amount,
// cliffDuration: CLAIM_INTERVAL
});
idoUsers.push(_msgSender());
}
// payable(receiverEth).sendValue(msg.value);
emit TokensBought(_msgSender(), amount, block.timestamp);
}
function emergencyWithdrawETH(address payable recipient, uint256 amount) public onlyOwner {
require(recipient != address(0), "recipient: recipient ether is the zero address");
require(amount > 0, "Ether amount is zero");
require(address(this).balance >= amount, "Not enough funds");
// Effects
uint256 balanceBeforeTransfer = address(this).balance;
// Interactions
(bool success, ) = recipient.call{value: amount}("");
require(success, "ETH Payment failed");
// Verify balance reduced correctly (optional safety check)
assert(address(this).balance == balanceBeforeTransfer - amount);
emit WithdrawPool(recipient, amount);
}
function emergencyWithdraw(address recipient, uint256 _amount) public onlyOwner {
if (address(saleToken) == address(0)) {
revert SaleTokenInvalid(address(0));
}
require(recipient != address(0), "recipient: recipient ether is the zero address");
require(_amount > 0, "ERC20: amount is zero");
require(saleToken.balanceOf(address(this)) >= _amount, "insufficient balance");
saleToken.safeTransfer(recipient, _amount);
emit WithdrawPool(recipient, _amount);
}
// function claimableBalace(address account) public view returns (uint256 claimable) {
// Vesting memory userVesting = usersVesting[account];
// Presale memory presale = presaleRound[round];
// if (
// userVesting.balance == 0 ||
// presale.unlockPercentage == 0 ||
// presale.vestingStartTime > block.timestamp
// ) {
// return 0;
// }
// uint256 elapsedTime = block.timestamp - presale.vestingStartTime;
// if (elapsedTime < userVesting.cliffDuration) {
// claimable = (userVesting.totalAmount * presale.unlockPercentage) / 10000;
// } else {
// uint256 remainingMonths = (CLAIM_INTERVAL + elapsedTime - userVesting.cliffDuration) / CLAIM_INTERVAL;
// uint256 remainingPercentageForMonth = presale.remainingPercentage / presale.totalVestingMonths;
// claimable = (userVesting.totalAmount * remainingMonths * remainingPercentageForMonth) / 10000;
// claimable += (userVesting.totalAmount * presale.unlockPercentage) / 10000; // Add the cliff claimable amount
// }
// claimable -= userVesting.claimedAmount;
// if (claimable > userVesting.balance) {
// claimable = userVesting.balance;
// }
// }
// function nextClaimTime(address account) public view returns (uint256 nextTime, uint256 amount) {
// nextTime = 0;
// amount = 0;
// Vesting memory userVesting = usersVesting[account];
// Presale memory presale = presaleRound[round];
// if (
// userVesting.balance == 0 ||
// presale.unlockPercentage == 0 ||
// presale.remainingPercentage == 0 ||
// CLAIM_INTERVAL == 0
// ) {
// return (nextTime, amount);
// }
// uint256 lockedAmount = userVesting.balance - claimableBalace(account);
// uint256 elapsedTime = block.timestamp < presale.vestingStartTime ? 0 : block.timestamp - presale.vestingStartTime;
// uint256 remainingPercentageForMonth = presale.remainingPercentage / presale.totalVestingMonths;
// if (block.timestamp < presale.vestingStartTime) {
// amount = (userVesting.totalAmount * presale.unlockPercentage) / 10000;
// } else {
// amount = (userVesting.totalAmount * remainingPercentageForMonth) / 10000;
// }
// if (lockedAmount < amount) {
// amount = lockedAmount;
// }
// if (amount > 0) {
// if (block.timestamp < presale.vestingStartTime) {
// nextTime = presale.vestingStartTime;
// } else {
// nextTime = (elapsedTime / CLAIM_INTERVAL) + 1;
// nextTime = (nextTime * CLAIM_INTERVAL) + presale.vestingStartTime;
// }
// }
// }
// function claimAll() external nonReentrant whenNotPaused {
// uint256 claimable = claimableBalace(msg.sender);
// _claim(claimable);
// }
// function claim(uint256 _amount) external nonReentrant whenNotPaused {
// require(claimableBalace(msg.sender) >= _amount, "insufficient balance");
// _claim(_amount);
// }
// function _claim(uint256 _amount) internal {
// if (address(saleToken) == address(0)) {
// revert SaleTokenInvalid(address(0));
// }
// require(_amount > 0, "you don't have enough claimable amount");
// require(saleToken.balanceOf(address(this)) >= _amount, "insufficient balance");
// Vesting storage userVesting = usersVesting[msg.sender];
// unchecked {
// // Overflow not possible: amount < user balance
// userVesting.balance = userVesting.balance - _amount;
// userVesting.claimedAmount = userVesting.claimedAmount + _amount;
// }
// saleToken.safeTransfer(msg.sender, _amount);
// emit Claim(msg.sender, _amount);
// }
function balanceOf(address account) public view returns (uint256) {
Vesting memory userVesting = usersVesting[account];
return userVesting.totalAmount;
}
receive() external payable {
emit ReceivedEther(msg.sender, msg.value);
}
}