S Price: $0.502568 (-2.52%)

Contract Diff Checker

Contract Name:
Potion

Contract Source Code:

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)

pragma solidity ^0.8.0;

import "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor() {
        _transferOwnership(_msgSender());
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC5267.sol)

pragma solidity ^0.8.0;

interface IERC5267 {
    /**
     * @dev MAY be emitted to signal that the domain could have changed.
     */
    event EIP712DomainChanged();

    /**
     * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
     * signature.
     */
    function eip712Domain()
        external
        view
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        );
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol)

pragma solidity ^0.8.0;

import "../utils/Context.sol";

/**
 * @dev Contract module which allows children to implement an emergency stop
 * mechanism that can be triggered by an authorized account.
 *
 * This module is used through inheritance. It will make available the
 * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
 * the functions of your contract. Note that they will not be pausable by
 * simply including this module, only once the modifiers are put in place.
 */
abstract contract Pausable is Context {
    /**
     * @dev Emitted when the pause is triggered by `account`.
     */
    event Paused(address account);

    /**
     * @dev Emitted when the pause is lifted by `account`.
     */
    event Unpaused(address account);

    bool private _paused;

    /**
     * @dev Initializes the contract in unpaused state.
     */
    constructor() {
        _paused = false;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is not paused.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    modifier whenNotPaused() {
        _requireNotPaused();
        _;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is paused.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    modifier whenPaused() {
        _requirePaused();
        _;
    }

    /**
     * @dev Returns true if the contract is paused, and false otherwise.
     */
    function paused() public view virtual returns (bool) {
        return _paused;
    }

    /**
     * @dev Throws if the contract is paused.
     */
    function _requireNotPaused() internal view virtual {
        require(!paused(), "Pausable: paused");
    }

    /**
     * @dev Throws if the contract is not paused.
     */
    function _requirePaused() internal view virtual {
        require(paused(), "Pausable: not paused");
    }

    /**
     * @dev Triggers stopped state.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    function _pause() internal virtual whenNotPaused {
        _paused = true;
        emit Paused(_msgSender());
    }

    /**
     * @dev Returns to normal state.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    function _unpause() internal virtual whenPaused {
        _paused = false;
        emit Unpaused(_msgSender());
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.0;

import "./IERC20.sol";
import "./extensions/IERC20Metadata.sol";
import "../../utils/Context.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 * For a generic mechanism see {ERC20PresetMinterPauser}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC20
 * applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 *
 * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
 * functions have been added to mitigate the well-known issues around setting
 * allowances. See {IERC20-approve}.
 */
contract ERC20 is Context, IERC20, IERC20Metadata {
    mapping(address => uint256) private _balances;

    mapping(address => mapping(address => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual override returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual override returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual override returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual override returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual override returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `amount`.
     */
    function transfer(address to, uint256 amount) public virtual override returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, amount);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 amount) public virtual override returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, amount);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `amount`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `amount`.
     */
    function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, amount);
        _transfer(from, to, amount);
        return true;
    }

    /**
     * @dev Atomically increases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, allowance(owner, spender) + addedValue);
        return true;
    }

    /**
     * @dev Atomically decreases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `spender` must have allowance for the caller of at least
     * `subtractedValue`.
     */
    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
        address owner = _msgSender();
        uint256 currentAllowance = allowance(owner, spender);
        require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
        unchecked {
            _approve(owner, spender, currentAllowance - subtractedValue);
        }

        return true;
    }

    /**
     * @dev Moves `amount` of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `from` must have a balance of at least `amount`.
     */
    function _transfer(address from, address to, uint256 amount) internal virtual {
        require(from != address(0), "ERC20: transfer from the zero address");
        require(to != address(0), "ERC20: transfer to the zero address");

        _beforeTokenTransfer(from, to, amount);

        uint256 fromBalance = _balances[from];
        require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
        unchecked {
            _balances[from] = fromBalance - amount;
            // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
            // decrementing then incrementing.
            _balances[to] += amount;
        }

        emit Transfer(from, to, amount);

        _afterTokenTransfer(from, to, amount);
    }

    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
     * the total supply.
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     */
    function _mint(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: mint to the zero address");

        _beforeTokenTransfer(address(0), account, amount);

        _totalSupply += amount;
        unchecked {
            // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
            _balances[account] += amount;
        }
        emit Transfer(address(0), account, amount);

        _afterTokenTransfer(address(0), account, amount);
    }

    /**
     * @dev Destroys `amount` tokens from `account`, reducing the
     * total supply.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     * - `account` must have at least `amount` tokens.
     */
    function _burn(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: burn from the zero address");

        _beforeTokenTransfer(account, address(0), amount);

        uint256 accountBalance = _balances[account];
        require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
        unchecked {
            _balances[account] = accountBalance - amount;
            // Overflow not possible: amount <= accountBalance <= totalSupply.
            _totalSupply -= amount;
        }

        emit Transfer(account, address(0), amount);

        _afterTokenTransfer(account, address(0), amount);
    }

    /**
     * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     */
    function _approve(address owner, address spender, uint256 amount) internal virtual {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");

        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
     *
     * Does not update the allowance amount in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Might emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 amount) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            require(currentAllowance >= amount, "ERC20: insufficient allowance");
            unchecked {
                _approve(owner, spender, currentAllowance - amount);
            }
        }
    }

    /**
     * @dev Hook that is called before any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * will be transferred to `to`.
     * - when `from` is zero, `amount` tokens will be minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {}

    /**
     * @dev Hook that is called after any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * has been transferred to `to`.
     * - when `from` is zero, `amount` tokens have been minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {}
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/ERC20Permit.sol)

pragma solidity ^0.8.0;

import "./IERC20Permit.sol";
import "../ERC20.sol";
import "../../../utils/cryptography/ECDSA.sol";
import "../../../utils/cryptography/EIP712.sol";
import "../../../utils/Counters.sol";

/**
 * @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * _Available since v3.4._
 */
abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712 {
    using Counters for Counters.Counter;

    mapping(address => Counters.Counter) private _nonces;

    // solhint-disable-next-line var-name-mixedcase
    bytes32 private constant _PERMIT_TYPEHASH =
        keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
    /**
     * @dev In previous versions `_PERMIT_TYPEHASH` was declared as `immutable`.
     * However, to ensure consistency with the upgradeable transpiler, we will continue
     * to reserve a slot.
     * @custom:oz-renamed-from _PERMIT_TYPEHASH
     */
    // solhint-disable-next-line var-name-mixedcase
    bytes32 private _PERMIT_TYPEHASH_DEPRECATED_SLOT;

    /**
     * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
     *
     * It's a good idea to use the same `name` that is defined as the ERC20 token name.
     */
    constructor(string memory name) EIP712(name, "1") {}

    /**
     * @inheritdoc IERC20Permit
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual override {
        require(block.timestamp <= deadline, "ERC20Permit: expired deadline");

        bytes32 structHash = keccak256(abi.encode(_PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline));

        bytes32 hash = _hashTypedDataV4(structHash);

        address signer = ECDSA.recover(hash, v, r, s);
        require(signer == owner, "ERC20Permit: invalid signature");

        _approve(owner, spender, value);
    }

    /**
     * @inheritdoc IERC20Permit
     */
    function nonces(address owner) public view virtual override returns (uint256) {
        return _nonces[owner].current();
    }

    /**
     * @inheritdoc IERC20Permit
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view override returns (bytes32) {
        return _domainSeparatorV4();
    }

    /**
     * @dev "Consume a nonce": return the current value and increment.
     *
     * _Available since v4.1._
     */
    function _useNonce(address owner) internal virtual returns (uint256 current) {
        Counters.Counter storage nonce = _nonces[owner];
        current = nonce.current();
        nonce.increment();
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 *
 * _Available since v4.1._
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 amount) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(IERC20 token, address spender, uint256 value) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
     * Revert on invalid signature.
     */
    function safePermit(
        IERC20Permit token,
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        uint256 nonceBefore = token.nonces(owner);
        token.permit(owner, spender, value, deadline, v, r, s);
        uint256 nonceAfter = token.nonces(owner);
        require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return
            success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     *
     * Furthermore, `isContract` will also return true if the target contract within
     * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
     * which only has an effect at the end of a transaction.
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Counters.sol)

pragma solidity ^0.8.0;

/**
 * @title Counters
 * @author Matt Condon (@shrugs)
 * @dev Provides counters that can only be incremented, decremented or reset. This can be used e.g. to track the number
 * of elements in a mapping, issuing ERC721 ids, or counting request ids.
 *
 * Include with `using Counters for Counters.Counter;`
 */
library Counters {
    struct Counter {
        // This variable should never be directly accessed by users of the library: interactions must be restricted to
        // the library's function. As of Solidity v0.5.2, this cannot be enforced, though there is a proposal to add
        // this feature: see https://github.com/ethereum/solidity/issues/4637
        uint256 _value; // default: 0
    }

    function current(Counter storage counter) internal view returns (uint256) {
        return counter._value;
    }

    function increment(Counter storage counter) internal {
        unchecked {
            counter._value += 1;
        }
    }

    function decrement(Counter storage counter) internal {
        uint256 value = counter._value;
        require(value > 0, "Counter: decrement overflow");
        unchecked {
            counter._value = value - 1;
        }
    }

    function reset(Counter storage counter) internal {
        counter._value = 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.0;

import "../Strings.sol";

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS,
        InvalidSignatureV // Deprecated in v4.8
    }

    function _throwError(RecoverError error) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert("ECDSA: invalid signature");
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert("ECDSA: invalid signature length");
        } else if (error == RecoverError.InvalidSignatureS) {
            revert("ECDSA: invalid signature 's' value");
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature` or error string. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength);
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, signature);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
        bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
        uint8 v = uint8((uint256(vs) >> 255) + 27);
        return tryRecover(hash, v, r, s);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     *
     * _Available since v4.2._
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, r, vs);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature);
        }

        return (signer, RecoverError.NoError);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from a `hash`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
        // 32 is the length in bytes of hash,
        // enforced by the type signature above
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, "\x19Ethereum Signed Message:\n32")
            mstore(0x1c, hash)
            message := keccak256(0x00, 0x3c)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from `s`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
    }

    /**
     * @dev Returns an Ethereum Signed Typed Data, created from a
     * `domainSeparator` and a `structHash`. This produces hash corresponding
     * to the one signed with the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
     * JSON-RPC method as part of EIP-712.
     *
     * See {recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, "\x19\x01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            data := keccak256(ptr, 0x42)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Data with intended validator, created from a
     * `validator` and `data` according to the version 0 of EIP-191.
     *
     * See {recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19\x00", validator, data));
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/EIP712.sol)

pragma solidity ^0.8.8;

import "./ECDSA.sol";
import "../ShortStrings.sol";
import "../../interfaces/IERC5267.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible,
 * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding
 * they need in their contracts using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
 * separator of the implementation contract. This will cause the `_domainSeparatorV4` function to always rebuild the
 * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
 *
 * _Available since v3.4._
 *
 * @custom:oz-upgrades-unsafe-allow state-variable-immutable state-variable-assignment
 */
abstract contract EIP712 is IERC5267 {
    using ShortStrings for *;

    bytes32 private constant _TYPE_HASH =
        keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");

    // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
    // invalidate the cached domain separator if the chain id changes.
    bytes32 private immutable _cachedDomainSeparator;
    uint256 private immutable _cachedChainId;
    address private immutable _cachedThis;

    bytes32 private immutable _hashedName;
    bytes32 private immutable _hashedVersion;

    ShortString private immutable _name;
    ShortString private immutable _version;
    string private _nameFallback;
    string private _versionFallback;

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    constructor(string memory name, string memory version) {
        _name = name.toShortStringWithFallback(_nameFallback);
        _version = version.toShortStringWithFallback(_versionFallback);
        _hashedName = keccak256(bytes(name));
        _hashedVersion = keccak256(bytes(version));

        _cachedChainId = block.chainid;
        _cachedDomainSeparator = _buildDomainSeparator();
        _cachedThis = address(this);
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view returns (bytes32) {
        if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
            return _cachedDomainSeparator;
        } else {
            return _buildDomainSeparator();
        }
    }

    function _buildDomainSeparator() private view returns (bytes32) {
        return keccak256(abi.encode(_TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return ECDSA.toTypedDataHash(_domainSeparatorV4(), structHash);
    }

    /**
     * @dev See {EIP-5267}.
     *
     * _Available since v4.9._
     */
    function eip712Domain()
        public
        view
        virtual
        override
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        )
    {
        return (
            hex"0f", // 01111
            _name.toStringWithFallback(_nameFallback),
            _version.toStringWithFallback(_versionFallback),
            block.chainid,
            address(this),
            bytes32(0),
            new uint256[](0)
        );
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/ShortStrings.sol)

pragma solidity ^0.8.8;

import "./StorageSlot.sol";

// | string  | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA   |
// | length  | 0x                                                              BB |
type ShortString is bytes32;

/**
 * @dev This library provides functions to convert short memory strings
 * into a `ShortString` type that can be used as an immutable variable.
 *
 * Strings of arbitrary length can be optimized using this library if
 * they are short enough (up to 31 bytes) by packing them with their
 * length (1 byte) in a single EVM word (32 bytes). Additionally, a
 * fallback mechanism can be used for every other case.
 *
 * Usage example:
 *
 * ```solidity
 * contract Named {
 *     using ShortStrings for *;
 *
 *     ShortString private immutable _name;
 *     string private _nameFallback;
 *
 *     constructor(string memory contractName) {
 *         _name = contractName.toShortStringWithFallback(_nameFallback);
 *     }
 *
 *     function name() external view returns (string memory) {
 *         return _name.toStringWithFallback(_nameFallback);
 *     }
 * }
 * ```
 */
library ShortStrings {
    // Used as an identifier for strings longer than 31 bytes.
    bytes32 private constant _FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;

    error StringTooLong(string str);
    error InvalidShortString();

    /**
     * @dev Encode a string of at most 31 chars into a `ShortString`.
     *
     * This will trigger a `StringTooLong` error is the input string is too long.
     */
    function toShortString(string memory str) internal pure returns (ShortString) {
        bytes memory bstr = bytes(str);
        if (bstr.length > 31) {
            revert StringTooLong(str);
        }
        return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
    }

    /**
     * @dev Decode a `ShortString` back to a "normal" string.
     */
    function toString(ShortString sstr) internal pure returns (string memory) {
        uint256 len = byteLength(sstr);
        // using `new string(len)` would work locally but is not memory safe.
        string memory str = new string(32);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(str, len)
            mstore(add(str, 0x20), sstr)
        }
        return str;
    }

    /**
     * @dev Return the length of a `ShortString`.
     */
    function byteLength(ShortString sstr) internal pure returns (uint256) {
        uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
        if (result > 31) {
            revert InvalidShortString();
        }
        return result;
    }

    /**
     * @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
     */
    function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
        if (bytes(value).length < 32) {
            return toShortString(value);
        } else {
            StorageSlot.getStringSlot(store).value = value;
            return ShortString.wrap(_FALLBACK_SENTINEL);
        }
    }

    /**
     * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
     */
    function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
        if (ShortString.unwrap(value) != _FALLBACK_SENTINEL) {
            return toString(value);
        } else {
            return store;
        }
    }

    /**
     * @dev Return the length of a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
     *
     * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
     * actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
     */
    function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
        if (ShortString.unwrap(value) != _FALLBACK_SENTINEL) {
            return byteLength(value);
        } else {
            return bytes(store).length;
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.0;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 *
 * _Available since v4.1 for `address`, `bool`, `bytes32`, `uint256`._
 * _Available since v4.9 for `string`, `bytes`._
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := store.slot
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";
import "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toString(int256 value) internal pure returns (string memory) {
        return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Callback for IUniswapV3PoolActions#swap
/// @notice Any contract that calls IUniswapV3PoolActions#swap must implement this interface
interface IUniswapV3SwapCallback {
    /// @notice Called to `msg.sender` after executing a swap via IUniswapV3Pool#swap.
    /// @dev In the implementation you must pay the pool tokens owed for the swap.
    /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory.
    /// amount0Delta and amount1Delta can both be 0 if no tokens were swapped.
    /// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by
    /// the end of the swap. If positive, the callback must send that amount of token0 to the pool.
    /// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by
    /// the end of the swap. If positive, the callback must send that amount of token1 to the pool.
    /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#swap call
    function uniswapV3SwapCallback(
        int256 amount0Delta,
        int256 amount1Delta,
        bytes calldata data
    ) external;
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.4.0;

/// @title FixedPoint96
/// @notice A library for handling binary fixed point numbers, see https://en.wikipedia.org/wiki/Q_(number_format)
/// @dev Used in SqrtPriceMath.sol
library FixedPoint96 {
    uint8 internal constant RESOLUTION = 96;
    uint256 internal constant Q96 = 0x1000000000000000000000000;
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Immutable state
/// @notice Functions that return immutable state of the router
interface IPeripheryImmutableState {
    /// @return Returns the address of the Uniswap V3 factory
    function factory() external view returns (address);

    /// @return Returns the address of WETH9
    function WETH9() external view returns (address);
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.5;
pragma abicoder v2;

import '@uniswap/v3-core/contracts/interfaces/callback/IUniswapV3SwapCallback.sol';

/// @title Router token swapping functionality
/// @notice Functions for swapping tokens via Uniswap V3
interface ISwapRouter is IUniswapV3SwapCallback {
    struct ExactInputSingleParams {
        address tokenIn;
        address tokenOut;
        uint24 fee;
        address recipient;
        uint256 deadline;
        uint256 amountIn;
        uint256 amountOutMinimum;
        uint160 sqrtPriceLimitX96;
    }

    /// @notice Swaps `amountIn` of one token for as much as possible of another token
    /// @param params The parameters necessary for the swap, encoded as `ExactInputSingleParams` in calldata
    /// @return amountOut The amount of the received token
    function exactInputSingle(ExactInputSingleParams calldata params) external payable returns (uint256 amountOut);

    struct ExactInputParams {
        bytes path;
        address recipient;
        uint256 deadline;
        uint256 amountIn;
        uint256 amountOutMinimum;
    }

    /// @notice Swaps `amountIn` of one token for as much as possible of another along the specified path
    /// @param params The parameters necessary for the multi-hop swap, encoded as `ExactInputParams` in calldata
    /// @return amountOut The amount of the received token
    function exactInput(ExactInputParams calldata params) external payable returns (uint256 amountOut);

    struct ExactOutputSingleParams {
        address tokenIn;
        address tokenOut;
        uint24 fee;
        address recipient;
        uint256 deadline;
        uint256 amountOut;
        uint256 amountInMaximum;
        uint160 sqrtPriceLimitX96;
    }

    /// @notice Swaps as little as possible of one token for `amountOut` of another token
    /// @param params The parameters necessary for the swap, encoded as `ExactOutputSingleParams` in calldata
    /// @return amountIn The amount of the input token
    function exactOutputSingle(ExactOutputSingleParams calldata params) external payable returns (uint256 amountIn);

    struct ExactOutputParams {
        bytes path;
        address recipient;
        uint256 deadline;
        uint256 amountOut;
        uint256 amountInMaximum;
    }

    /// @notice Swaps as little as possible of one token for `amountOut` of another along the specified path (reversed)
    /// @param params The parameters necessary for the multi-hop swap, encoded as `ExactOutputParams` in calldata
    /// @return amountIn The amount of the input token
    function exactOutput(ExactOutputParams calldata params) external payable returns (uint256 amountIn);
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;

import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "@openzeppelin/contracts/token/ERC20/extensions/ERC20Permit.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/security/Pausable.sol";
import "./interfaces/IDecentralizedIndex.sol";
import "./interfaces/IFlashLoanRecipient.sol";
import "./interfaces/IProtocolFeeRouter.sol";
import "./interfaces/ITokenRewards.sol";
import "./interfaces/IUniswapV2Factory.sol";
import "./interfaces/IUniswapV2Router02.sol";
import "./StakingPoolToken.sol";

abstract contract DecentralizedIndex is
    IDecentralizedIndex,
    ERC20,
    ERC20Permit,
    Pausable
{
    using SafeERC20 for IERC20;

    uint256 constant DEN = 10000;
    uint256 constant SWAP_DELAY = 20; // seconds
    address public STABLECOIN;
    IProtocolFeeRouter PROTOCOL_FEE_ROUTER;

    uint256 public constant override FLASH_FEE = 10; // 10 STABLECOIN
    address public immutable override PAIRED_LP_TOKEN;
    address immutable V2_ROUTER;
    address V2_POOL;
    address immutable WETH;

    IndexType public immutable override indexType;
    uint256 public immutable override created;
    address public immutable override lpStakingPool;
    address public immutable override lpRewardsToken;
    address public override partner;

    Fees public fees;
    IndexAssetInfo[] public indexTokens;
    mapping(address => bool) _isTokenInIndex;
    mapping(address => uint256) _fundTokenIdx;
    mapping(address => bool) public whiteListArb;

    uint256 _partnerFirstWrapped;

    uint256 _lastSwap;
    bool _swapping;
    bool _swapAndFeeOn = true;
    bool _unlocked = true;
    bool _initialized;

    event FlashLoan(
        address indexed executor,
        address indexed recipient,
        address token,
        uint256 amount
    );

    event Buy(
        address indexed user,
        uint indexed buyFee,
        address token,
        uint256 amount
    );

    event Sell(
        address indexed user,
        uint indexed sellFee,
        address token,
        uint256 amount
    );

    modifier lock() {
        require(_unlocked, "LOCKED");
        _unlocked = false;
        _;
        _unlocked = true;
    }

    modifier onlyPartner() {
        require(_msgSender() == partner, "PARTNER");
        _;
    }

    modifier onlyRewards() {
        require(
            _msgSender() == StakingPoolToken(lpStakingPool).poolRewards(),
            "REWARDS"
        );
        _;
    }

    modifier noSwapOrFee() {
        _swapAndFeeOn = false;
        _;
        _swapAndFeeOn = true;
    }

    constructor(
        IndexType _idxType,
        IDeploy.Deploy memory _deploy
    ) ERC20(_deploy._name, _deploy._symbol) ERC20Permit(_deploy._name) {
        require(_deploy._fees.buy <= (DEN * 20) / 100, "lte20%");
        require(_deploy._fees.sell <= (DEN * 20) / 100, "lte20%");
        require(_deploy._fees.burn <= (DEN * 70) / 100, "lte70%");
        require(_deploy._fees.bond <= (DEN * 99) / 100, "lt99%");
        require(_deploy._fees.debond <= (DEN * 99) / 100, "lt99%");
        require(_deploy._fees.partner <= (DEN * 5) / 100, "lte5%");
        STABLECOIN = _deploy._stableCoin;
        PROTOCOL_FEE_ROUTER = IProtocolFeeRouter(_deploy._feeRouter);
        WETH = IUniswapV2Router02(_deploy._v2Router).WETH();

        indexType = _idxType;
        created = block.timestamp;
        fees = _deploy._fees;
        partner = _deploy._partner;
        lpRewardsToken = _deploy._lpRewardsToken;
        V2_ROUTER = _deploy._v2Router;
        address _finalPairedLpToken = _deploy._pairedLpToken == address(0)
            ? STABLECOIN
            : _deploy._pairedLpToken;
        PAIRED_LP_TOKEN = _finalPairedLpToken;

        lpStakingPool = address(
            new StakingPoolToken(
                IDeploy.DeployStakinPool({
                    _name: string(abi.encodePacked("Staked ", _deploy._name)),
                    _symbol: string(abi.encodePacked("s", _deploy._symbol)),
                    _pairedLpToken: _finalPairedLpToken,
                    _stakingToken: address(0),
                    _rewardsToken: _deploy._lpRewardsToken,
                    _stakeUserRestriction: _deploy._stakeRestriction
                        ? _msgSender()
                        : address(0),
                    _feeRouter: address(PROTOCOL_FEE_ROUTER),
                    _WETH: WETH,
                    _stableCoin: STABLECOIN,
                    _v2Router: _deploy._v2Router,
                    _quoter: _deploy._quoter,
                    _routerv3: _deploy._routerv3
                })
            )
        );

        emit Create(address(this), _msgSender());

        // IBlast(0x4300000000000000000000000000000000000002)
        //     .configureClaimableGas();
        // IBlast(0x2536FE9ab3F511540F2f9e2eC2A805005C3Dd800)
        //     .configurePointsOperator(_msgSender());
        // IBlast(0x4300000000000000000000000000000000000002).configureGovernor(
        //     _msgSender()
        // );
    }

    function initialize() external {
        require(!_initialized, "INITED");
        address _v2Pool = IUniswapV2Factory(
            IUniswapV2Router02(V2_ROUTER).factory()
        ).createPair(address(this), PAIRED_LP_TOKEN);

        V2_POOL = _v2Pool;
        StakingPoolToken(lpStakingPool).init(V2_POOL);
        _initialized = true;
    }

    function _transfer(
        address _from,
        address _to,
        uint256 _amount
    ) internal virtual override {
        bool isArbBot = whiteListArb[msg.sender];
        bool _buy = _from == V2_POOL && _to != address(V2_ROUTER);
        bool _sell = _to == V2_POOL;
        uint256 _fee;
        if (!_swapping && _swapAndFeeOn) {
            if (_from != V2_POOL) {
                _processPreSwapFeesAndSwap();
            }
            if (_buy && fees.buy > 0) {
                if (isArbBot) {
                    _fee = (_amount * (fees.buy / 2)) / DEN;
                } else {
                    _fee = (_amount * fees.buy) / DEN;
                }
                super._transfer(_from, address(this), _fee);
                emit Buy(msg.sender, _fee, address(this), _amount);
            }
            if (_sell && fees.sell > 0) {
                if (isArbBot) {
                    _fee = (_amount * (fees.sell / 2)) / DEN;
                } else {
                    _fee = (_amount * fees.sell) / DEN;
                }
                super._transfer(_from, address(this), _fee);
                emit Sell(msg.sender, _fee, address(this), _amount);
            }
        }
        _processBurnFee(_fee);
        super._transfer(_from, _to, _amount - _fee);
    }

    function _processPreSwapFeesAndSwap() internal {
        bool _passesSwapDelay = block.timestamp > _lastSwap + SWAP_DELAY;
        uint256 _bal = balanceOf(address(this));
        uint256 _lpBal = balanceOf(V2_POOL);
        uint256 _min = (_lpBal * 1) / 100; // 1% LP bal
        if (_passesSwapDelay && _bal >= _min && _lpBal > 0) {
            _swapping = true;
            _lastSwap = block.timestamp;
            uint256 _totalAmt = _bal >= _min * 25
                ? _min * 25
                : _bal >= _min * 10
                ? _min * 10
                : _min;
            uint256 _partnerAmt;
            if (fees.partner > 0 && partner != address(0)) {
                _partnerAmt = (_totalAmt * fees.partner) / DEN;
                super._transfer(address(this), partner, _partnerAmt);
            }
            _feeSwap(_totalAmt - _partnerAmt);
            _swapping = false;
        }
    }

    function _processBurnFee(uint256 _amtToProcess) internal {
        if (_amtToProcess == 0 || fees.burn == 0) {
            return;
        }
        _burn(address(this), (_amtToProcess * fees.burn) / DEN);
    }

    function _feeSwap(uint256 _amount) internal {
        address[] memory path = new address[](2);
        path[0] = address(this);
        path[1] = PAIRED_LP_TOKEN;
        _approve(address(this), V2_ROUTER, _amount);
        address _rewards = StakingPoolToken(lpStakingPool).poolRewards();
        uint256 _pairedLpBalBefore = IERC20(PAIRED_LP_TOKEN).balanceOf(
            address(this)
        );
        address _recipient = PAIRED_LP_TOKEN == lpRewardsToken
            ? address(this)
            : _rewards;
        IUniswapV2Router02(V2_ROUTER)
            .swapExactTokensForTokensSupportingFeeOnTransferTokens(
                _amount,
                0,
                path,
                _recipient,
                block.timestamp
            );
        if (PAIRED_LP_TOKEN == lpRewardsToken) {
            uint256 _newPairedLpTkns = IERC20(PAIRED_LP_TOKEN).balanceOf(
                address(this)
            ) - _pairedLpBalBefore;
            if (_newPairedLpTkns > 0) {
                IERC20(PAIRED_LP_TOKEN).safeIncreaseAllowance(
                    _rewards,
                    _newPairedLpTkns
                );
                ITokenRewards(_rewards).depositRewards(_newPairedLpTkns);
            }
        } else if (IERC20(PAIRED_LP_TOKEN).balanceOf(_rewards) > 0) {
            ITokenRewards(_rewards).depositFromPairedLpToken(0, 0);
        }
    }

    function _transferFromAndValidate(
        IERC20 _token,
        address _sender,
        uint256 _amount
    ) internal {
        uint256 _balanceBefore = _token.balanceOf(address(this));
        _token.transferFrom(_sender, address(this), _amount);
        require(
            _token.balanceOf(address(this)) >= _balanceBefore + _amount,
            "TFRVAL"
        );
    }

    function _bond() internal {
        if (_partnerFirstWrapped == 0 && _msgSender() == partner) {
            _partnerFirstWrapped = block.timestamp;
        }
    }

    function _canWrapFeeFree(address _wrapper) internal view returns (bool) {
        return
            _isFirstIn() ||
            (_wrapper == partner &&
                _partnerFirstWrapped == 0 &&
                block.timestamp <= created + 7 days);
    }

    function _isFirstIn() internal view returns (bool) {
        return totalSupply() == 0;
    }

    function _isLastOut(uint256 _debondAmount) internal view returns (bool) {
        return _debondAmount >= (totalSupply() * 98) / 100;
    }

    function processPreSwapFeesAndSwap() external override onlyRewards {
        _processPreSwapFeesAndSwap();
    }

    function BOND_FEE() external view override returns (uint256) {
        return fees.bond;
    }

    function DEBOND_FEE() external view override returns (uint256) {
        return fees.debond;
    }

    function isAsset(address _token) public view override returns (bool) {
        return _isTokenInIndex[_token];
    }

    function getAllAssets()
        external
        view
        override
        returns (IndexAssetInfo[] memory)
    {
        return indexTokens;
    }

    function burn(uint256 _amount) external lock {
        _burn(_msgSender(), _amount);
    }

    function addLiquidityV2(
        uint256 _idxLPTokens,
        uint256 _pairedLPTokens,
        uint256 _slippage, // 100 == 10%, 1000 == 100%
        uint256 _deadline
    ) external override lock noSwapOrFee whenNotPaused {
        uint256 _idxTokensBefore = balanceOf(address(this));
        uint256 _pairedBefore = IERC20(PAIRED_LP_TOKEN).balanceOf(
            address(this)
        );

        super._transfer(_msgSender(), address(this), _idxLPTokens);
        _approve(address(this), V2_ROUTER, _idxLPTokens);

        IERC20(PAIRED_LP_TOKEN).transferFrom(
            _msgSender(),
            address(this),
            _pairedLPTokens
        );
        IERC20(PAIRED_LP_TOKEN).safeIncreaseAllowance(
            V2_ROUTER,
            _pairedLPTokens
        );

        IUniswapV2Router02(V2_ROUTER).addLiquidity(
            address(this),
            PAIRED_LP_TOKEN,
            _idxLPTokens,
            _pairedLPTokens,
            (_idxLPTokens * (1000 - _slippage)) / 1000,
            (_pairedLPTokens * (1000 - _slippage)) / 1000,
            _msgSender(),
            _deadline
        );
        uint256 _remainingAllowance = IERC20(PAIRED_LP_TOKEN).allowance(
            address(this),
            V2_ROUTER
        );
        if (_remainingAllowance > 0) {
            IERC20(PAIRED_LP_TOKEN).safeDecreaseAllowance(
                V2_ROUTER,
                _remainingAllowance
            );
        }

        // check & refund excess tokens from LPing
        if (balanceOf(address(this)) > _idxTokensBefore) {
            super._transfer(
                address(this),
                _msgSender(),
                balanceOf(address(this)) - _idxTokensBefore
            );
        }
        if (IERC20(PAIRED_LP_TOKEN).balanceOf(address(this)) > _pairedBefore) {
            IERC20(PAIRED_LP_TOKEN).transfer(
                _msgSender(),
                IERC20(PAIRED_LP_TOKEN).balanceOf(address(this)) - _pairedBefore
            );
        }
        emit AddLiquidity(_msgSender(), _idxLPTokens, _pairedLPTokens);
    }

    function removeLiquidityV2(
        uint256 _lpTokens,
        uint256 _minIdxTokens, // 0 == 100% slippage
        uint256 _minPairedLpToken, // 0 == 100% slippage
        uint256 _deadline
    ) external override lock noSwapOrFee whenNotPaused {
        _lpTokens = _lpTokens == 0
            ? IERC20(V2_POOL).balanceOf(_msgSender())
            : _lpTokens;
        require(_lpTokens > 0, "LPREM");

        IERC20(V2_POOL).transferFrom(_msgSender(), address(this), _lpTokens);
        IERC20(V2_POOL).safeIncreaseAllowance(V2_ROUTER, _lpTokens);
        IUniswapV2Router02(V2_ROUTER).removeLiquidity(
            address(this),
            PAIRED_LP_TOKEN,
            _lpTokens,
            _minIdxTokens,
            _minPairedLpToken,
            _msgSender(),
            _deadline
        );
        emit RemoveLiquidity(_msgSender(), _lpTokens);
    }

    function flash(
        address _recipient,
        address _token,
        uint256 _amount,
        bytes calldata _data
    ) external override lock whenNotPaused {
        require(_isTokenInIndex[_token], "ONLYPODTKN");
        bool isArbBot = whiteListArb[msg.sender];

        if (isArbBot) {
            uint256 _balance = IERC20(_token).balanceOf(address(this));
            IERC20(_token).transfer(_recipient, _amount);
            IFlashLoanRecipient(_recipient).callback(_data);
            require(
                IERC20(_token).balanceOf(address(this)) >= _balance,
                "FLASHAFTER"
            );
            emit FlashLoan(_msgSender(), _recipient, _token, _amount);
        } else {
            uint256 _amountSTABLECOIN = FLASH_FEE *
                10 ** IERC20Metadata(STABLECOIN).decimals();
            address _rewards = StakingPoolToken(lpStakingPool).poolRewards();
            address _feeRecipient = lpRewardsToken == STABLECOIN
                ? address(this)
                : PAIRED_LP_TOKEN == STABLECOIN
                ? _rewards
                : partner;
            IERC20(STABLECOIN).transferFrom(
                _msgSender(),
                _feeRecipient,
                _amountSTABLECOIN
            );
            if (lpRewardsToken == STABLECOIN) {
                IERC20(STABLECOIN).safeIncreaseAllowance(
                    _rewards,
                    _amountSTABLECOIN
                );
                ITokenRewards(_rewards).depositRewards(_amountSTABLECOIN);
            }
            uint256 _balance = IERC20(_token).balanceOf(address(this));
            IERC20(_token).transfer(_recipient, _amount);
            IFlashLoanRecipient(_recipient).callback(_data);
            require(
                IERC20(_token).balanceOf(address(this)) >= _balance,
                "FLASHAFTER"
            );
            emit FlashLoan(_msgSender(), _recipient, _token, _amount);
        }
    }

    function setPartner(address _partner) external onlyPartner {
        partner = _partner;
    }

    function setPartnerFee(uint256 _fee) external onlyPartner {
        require(_fee < fees.partner, "LTCUR");
        fees.partner = _fee;
    }

    function setBurnFee(uint256 _fee) external onlyPartner {
        require(_fee <= (DEN * 70) / 100, "lte70%");
        fees.burn = _fee;
    }

    function setBuyFee(uint256 _fee) external onlyPartner {
        require(_fee <= (DEN * 20) / 100, "lte20%");
        fees.buy = _fee;
    }

    function setSellFee(uint256 _fee) external onlyPartner {
        require(_fee <= (DEN * 20) / 100, "lte20%");
        fees.sell = _fee;
    }

    function setBondFee(uint256 _fee) external onlyPartner {
        require(_fee <= (DEN * 99) / 100, "lt99%");
        fees.bond = _fee;
    }

    function setDebondFee(uint256 _fee) external onlyPartner {
        require(_fee <= (DEN * 99) / 100, "lt99%");
        fees.debond = _fee;
    }

    function rescueERC20(address _token) external lock onlyPartner {
        IERC20(_token).transfer(
            partner,
            IERC20(_token).balanceOf(address(this))
        );
    }

    function rescueETH() external lock onlyPartner {
        require(address(this).balance > 0, "NOETH");
        (bool _sent, ) = partner.call{value: address(this).balance}("");
        require(_sent, "SENT");
    }

    function setWhitelistArb(address arb, bool isAllow) external onlyPartner {
        whiteListArb[arb] = isAllow;
    }
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.5;

/// @title Callback for IPoolActions#swap
/// @notice Any contract that calls IPoolActions#swap must implement this interface
interface ISwapCallback {
    /// @notice Called to `msg.sender` after executing a swap via IPool#swap.
    /// @dev In the implementation you must pay the pool tokens owed for the swap.
    /// The caller of this method must be checked to be a Pool deployed by the canonical PoolFactory.
    /// amount0Delta and amount1Delta can both be 0 if no tokens were swapped.
    /// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by
    /// the end of the swap. If positive, the callback must send that amount of token0 to the pool.
    /// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by
    /// the end of the swap. If positive, the callback must send that amount of token1 to the pool.
    /// @param data Any data passed through by the caller via the IPoolActions#swap call
    function uniswapV3SwapCallback(int256 amount0Delta, int256 amount1Delta, bytes calldata data) external;
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";

interface IDecentralizedIndex is IERC20 {
    enum IndexType {
        WEIGHTED,
        UNWEIGHTED
    }

    // all fees: 1 == 0.01%, 10 == 0.1%, 100 == 1%
    struct Fees {
        uint256 burn;
        uint256 bond;
        uint256 debond;
        uint256 buy;
        uint256 sell;
        uint256 partner;
    }

    struct IndexAssetInfo {
        address token;
        uint256 weighting;
        uint256 basePriceUSDX96;
        address c1; // arbitrary contract/address field we can use for an index
        uint256 q1; // arbitrary quantity/number field we can use for an index
    }

    event Create(address indexed newIdx, address indexed wallet);
    event Bond(
        address indexed wallet,
        address indexed token,
        uint256 amountTokensBonded,
        uint256 amountTokensMinted,
        uint256 indexed feesBond
    );
    event Debond(
        address indexed wallet,
        uint256 amountDebonded,
        uint256 indexed feesDebond
    );
    event AddLiquidity(
        address indexed wallet,
        uint256 amountTokens,
        uint256 amountDAI
    );
    event RemoveLiquidity(address indexed wallet, uint256 amountLiquidity);

    function BOND_FEE() external view returns (uint256);

    function DEBOND_FEE() external view returns (uint256);

    function STABLECOIN() external view returns (address);

    function FLASH_FEE() external view returns (uint256);

    function PAIRED_LP_TOKEN() external view returns (address);

    function indexType() external view returns (IndexType);

    function created() external view returns (uint256);

    function lpStakingPool() external view returns (address);

    function lpRewardsToken() external view returns (address);

    function partner() external view returns (address);

    function isAsset(address token) external view returns (bool);

    function getAllAssets() external view returns (IndexAssetInfo[] memory);

    function getInitialAmount(
        address sToken,
        uint256 sAmount,
        address tToken
    ) external view returns (uint256);

    function processPreSwapFeesAndSwap() external;

    function bond(
        address token,
        uint256 amount,
        uint256 amountMintMin
    ) external;

    function debond(
        uint256 amount,
        address[] memory token,
        uint8[] memory percentage
    ) external;

    function addLiquidityV2(
        uint256 idxTokens,
        uint256 daiTokens,
        uint256 slippage,
        uint256 deadline
    ) external;

    function removeLiquidityV2(
        uint256 lpTokens,
        uint256 minTokens,
        uint256 minDAI,
        uint256 deadline
    ) external;

    function flash(
        address recipient,
        address token,
        uint256 amount,
        bytes calldata data
    ) external;
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import "./IDecentralizedIndex.sol";

interface IDeploy {
    struct DeployStakinPool {
        string _name;
        string _symbol;
        address _pairedLpToken;
        address _stakingToken;
        address _rewardsToken;
        address _stakeUserRestriction;
        address _feeRouter;
        address _WETH;
        address _stableCoin;
        address _v2Router;
        address _quoter;
        address _routerv3;
    }

    struct Deploy {
        string _name;
        string _symbol;
        IDecentralizedIndex.Fees _fees;
        address[] _tokens;
        uint256[] _weights;
        address _partner;
        address _pairedLpToken;
        address _lpRewardsToken;
        address _v2Router;
        bool _stakeRestriction;
        address _stableCoin;
        address _feeRouter;
        address _quoter;
        address _routerv3;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;

interface IFlashLoanRecipient {
  function callback(bytes calldata data) external;
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;

import './IProtocolFees.sol';

interface IProtocolFeeRouter {
  function protocolFees() external view returns (IProtocolFees);
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;

interface IProtocolFees {
  event SetYieldAdmin(uint256 newFee);
  event SetYieldBurn(uint256 newFee);

  function DEN() external view returns (uint256);

  function yieldAdmin() external view returns (uint256);

  function yieldBurn() external view returns (uint256);
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.5;
pragma abicoder v2;

/// @title QuoterV2 Interface
/// @notice Supports quoting the calculated amounts from exact input or exact output swaps.
/// @notice For each pool also tells you the number of initialized ticks crossed and the sqrt price of the pool after the swap.
/// @dev These functions are not marked view because they rely on calling non-view functions and reverting
/// to compute the result. They are also not gas efficient and should not be called on-chain.
interface IQuoterV2 {
    /// @notice Returns the amount out received for a given exact input swap without executing the swap
    /// @param path The path of the swap, i.e. each token pair and the pool fee
    /// @param amountIn The amount of the first token to swap
    /// @return amountOut The amount of the last token that would be received
    /// @return sqrtPriceX96AfterList List of the sqrt price after the swap for each pool in the path
    /// @return initializedTicksCrossedList List of the initialized ticks that the swap crossed for each pool in the path
    /// @return gasEstimate The estimate of the gas that the swap consumes
    function quoteExactInput(bytes memory path, uint256 amountIn)
        external
        returns (
            uint256 amountOut,
            uint160[] memory sqrtPriceX96AfterList,
            uint32[] memory initializedTicksCrossedList,
            uint256 gasEstimate
        );

    struct QuoteExactInputSingleParams {
        address tokenIn;
        address tokenOut;
        uint256 amountIn;
        uint24 fee;
        uint160 sqrtPriceLimitX96;
    }

    /// @notice Returns the amount out received for a given exact input but for a swap of a single pool
    /// @param params The params for the quote, encoded as `QuoteExactInputSingleParams`
    /// tokenIn The token being swapped in
    /// tokenOut The token being swapped out
    /// fee The fee of the token pool to consider for the pair
    /// amountIn The desired input amount
    /// sqrtPriceLimitX96 The price limit of the pool that cannot be exceeded by the swap
    /// @return amountOut The amount of `tokenOut` that would be received
    /// @return sqrtPriceX96After The sqrt price of the pool after the swap
    /// @return initializedTicksCrossed The number of initialized ticks that the swap crossed
    /// @return gasEstimate The estimate of the gas that the swap consumes
    function quoteExactInputSingle(QuoteExactInputSingleParams memory params)
        external
        returns (
            uint256 amountOut,
            uint160 sqrtPriceX96After,
            uint32 initializedTicksCrossed,
            uint256 gasEstimate
        );

    /// @notice Returns the amount in required for a given exact output swap without executing the swap
    /// @param path The path of the swap, i.e. each token pair and the pool fee. Path must be provided in reverse order
    /// @param amountOut The amount of the last token to receive
    /// @return amountIn The amount of first token required to be paid
    /// @return sqrtPriceX96AfterList List of the sqrt price after the swap for each pool in the path
    /// @return initializedTicksCrossedList List of the initialized ticks that the swap crossed for each pool in the path
    /// @return gasEstimate The estimate of the gas that the swap consumes
    function quoteExactOutput(bytes memory path, uint256 amountOut)
        external
        returns (
            uint256 amountIn,
            uint160[] memory sqrtPriceX96AfterList,
            uint32[] memory initializedTicksCrossedList,
            uint256 gasEstimate
        );

    struct QuoteExactOutputSingleParams {
        address tokenIn;
        address tokenOut;
        uint256 amount;
        uint24 fee;
        uint160 sqrtPriceLimitX96;
    }

    /// @notice Returns the amount in required to receive the given exact output amount but for a swap of a single pool
    /// @param params The params for the quote, encoded as `QuoteExactOutputSingleParams`
    /// tokenIn The token being swapped in
    /// tokenOut The token being swapped out
    /// fee The fee of the token pool to consider for the pair
    /// amountOut The desired output amount
    /// sqrtPriceLimitX96 The price limit of the pool that cannot be exceeded by the swap
    /// @return amountIn The amount required as the input for the swap in order to receive `amountOut`
    /// @return sqrtPriceX96After The sqrt price of the pool after the swap
    /// @return initializedTicksCrossed The number of initialized ticks that the swap crossed
    /// @return gasEstimate The estimate of the gas that the swap consumes
    function quoteExactOutputSingle(QuoteExactOutputSingleParams memory params)
        external
        returns (
            uint256 amountIn,
            uint160 sqrtPriceX96After,
            uint32 initializedTicksCrossed,
            uint256 gasEstimate
        );


    function factory() external returns(address);
    
    function WETH9() external returns(address);
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;

interface IStakingPoolToken {
  event Stake(address indexed executor, address indexed user, uint256 amount);

  event Unstake(address indexed user, uint256 amount);

  function indexFund() external view returns (address);

  function stakingToken() external view returns (address);

  function poolRewards() external view returns (address);

  function stakeUserRestriction() external view returns (address);

  function stake(address user, uint256 amount) external;

  function unstake(uint256 amount) external;
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;

import '@openzeppelin/contracts/token/ERC20/IERC20.sol';

interface ITOKEN is IERC20 {
  event Burn(address indexed user, uint256 amount);

  function burn(uint256 amount) external;
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;

interface ITokenRewards {
  event AddShares(address indexed wallet, uint256 amount);

  event RemoveShares(address indexed wallet, uint256 amount);

  event ClaimReward(address indexed wallet);

  event DistributeReward(address indexed wallet, uint256 amount);

  event DepositRewards(address indexed wallet, uint256 amount);

  function totalShares() external view returns (uint256);

  function totalStakers() external view returns (uint256);

  function rewardsToken() external view returns (address);

  function trackingToken() external view returns (address);

  function depositFromPairedLpToken(
    uint256 amount,
    uint256 slippageOverride
  ) external;

  function depositRewards(uint256 amount) external;

  function claimReward(address wallet) external;

  function setShares(
    address wallet,
    uint256 amount,
    bool sharesRemoving
  ) external;
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;

interface IUniswapV2Factory {
    function feeTo() external view returns (address owner);

    function yieldTo() external view returns (address owner);

    function yieldCut() external view returns (uint);

    function WETH() external view returns (address);

    function ws() external view returns (address);

    function createPair(
        address tokenA,
        address tokenB
    ) external returns (address pair);

    function getPair(
        address tokenA,
        address tokenB
    ) external view returns (address pair);
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;

interface IUniswapV2Pair {
    function token0() external view returns (address);

    function token1() external view returns (address);

    function balanceOf(address user) external view returns (uint);

    function totalSupply() external view returns (uint);

    function kLast() external view returns (uint);

    function getReserves()
        external
        view
        returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;

interface IUniswapV2Router02 {
  function factory() external view returns (address);

  function WETH() external view returns (address);

  function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) external pure returns (uint amountOut);

  function getAmountsOut(uint amountIn, address[] calldata path) external view returns (uint[] memory amounts);

  function getAmountsIn(uint amountOut, address[] calldata path) external view returns (uint[] memory amounts);

  function addLiquidity(
    address tokenA,
    address tokenB,
    uint amountADesired,
    uint amountBDesired,
    uint amountAMin,
    uint amountBMin,
    address to,
    uint deadline
  ) external returns (uint amountA, uint amountB, uint liquidity);

  function removeLiquidity(
    address tokenA,
    address tokenB,
    uint liquidity,
    uint amountAMin,
    uint amountBMin,
    address to,
    uint deadline
  ) external returns (uint amountA, uint amountB);

  function swapETHForExactTokens(
    uint256 amountOut,
    address[] calldata path,
    address to,
    uint256 deadline
  ) external payable returns (uint256[] memory amounts);

  function swapExactTokensForTokens(
        uint amountIn,
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external returns (uint[] memory amounts);

    function swapExactETHForTokens(uint256 amountOutMin, address[] calldata path, address to, uint256 deadline)
        external
        payable
        returns (uint256[] memory amounts);

    function swapExactTokensForTokensSupportingFeeOnTransferTokens(
      uint amountIn,
      uint amountOutMin,
      address[] calldata path,
      address to,
      uint deadline
    ) external;

    function removeLiquidityETH(
        address token,
        uint liquidity,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline
    ) external returns (uint amountToken, uint amountETH);

    function quote(uint256 amountA, uint256 reserveA, uint256 reserveB) external view returns (uint256 amountB);
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.5;
pragma abicoder v2;

import "./callback/ISwapCallback.sol";

/// @title Router token swapping functionality
/// @notice Functions for swapping tokens via Thruster CLMM
interface IUniswapV3Router is ISwapCallback {
    struct ExactInputSingleParams {
        address tokenIn;
        address tokenOut;
        uint24 fee;
        address recipient;
        // uint256 deadline;
        uint256 amountIn;
        uint256 amountOutMinimum;
        uint160 sqrtPriceLimitX96;
    }

    /// @notice Swaps `amountIn` of one token for as much as possible of another token
    /// @param params The parameters necessary for the swap, encoded as `ExactInputSingleParams` in calldata
    /// @return amountOut The amount of the received token
    function exactInputSingle(
        ExactInputSingleParams calldata params
    ) external payable returns (uint256 amountOut);

    struct ExactInputParams {
        bytes path;
        address recipient;
        uint256 deadline;
        uint256 amountIn;
        uint256 amountOutMinimum;
    }

    /// @notice Swaps `amountIn` of one token for as much as possible of another along the specified path
    /// @param params The parameters necessary for the multi-hop swap, encoded as `ExactInputParams` in calldata
    /// @return amountOut The amount of the received token
    function exactInput(
        ExactInputParams calldata params
    ) external payable returns (uint256 amountOut);

    struct ExactOutputSingleParams {
        address tokenIn;
        address tokenOut;
        uint24 fee;
        address recipient;
        uint256 deadline;
        uint256 amountOut;
        uint256 amountInMaximum;
        uint160 sqrtPriceLimitX96;
    }

    /// @notice Swaps as little as possible of one token for `amountOut` of another token
    /// @param params The parameters necessary for the swap, encoded as `ExactOutputSingleParams` in calldata
    /// @return amountIn The amount of the input token
    function exactOutputSingle(
        ExactOutputSingleParams calldata params
    ) external payable returns (uint256 amountIn);

    struct ExactOutputParams {
        bytes path;
        address recipient;
        uint256 deadline;
        uint256 amountOut;
        uint256 amountInMaximum;
    }

    /// @notice Swaps as little as possible of one token for `amountOut` of another along the specified path (reversed)
    /// @param params The parameters necessary for the multi-hop swap, encoded as `ExactOutputParams` in calldata
    /// @return amountIn The amount of the input token
    function exactOutput(
        ExactOutputParams calldata params
    ) external payable returns (uint256 amountIn);
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.5;
pragma abicoder v2;

import "./callback/ISwapCallback.sol";

interface IUniswapV3RouterALT is ISwapCallback {
    struct ExactInputSingleParams {
        address tokenIn;
        address tokenOut;
        uint24 fee;
        address recipient;
        uint256 deadline;
        uint256 amountIn;
        uint256 amountOutMinimum;
        uint160 sqrtPriceLimitX96;
    }

    function exactInputSingle(
        ExactInputSingleParams calldata params
    ) external payable returns (uint256 amountOut);
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;

interface IV3TwapUtilities {
  function getV3Pool(
    address v3Factory,
    address token0,
    address token1,
    uint24 poolFee
  ) external view returns (address);

  function getPoolPriceUSDX96(
    address pricePool,
    address nativeStablePool,
    address WETH9
  ) external view returns (uint256);

  function sqrtPriceX96FromPoolAndInterval(
    address pool
  ) external view returns (uint160);

  function priceX96FromSqrtPriceX96(
    uint160 sqrtPriceX96
  ) external pure returns (uint256);
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;

// ----------------------------------------------------------------------------
// BokkyPooBah's DateTime Library v1.00
//
// A gas-efficient Solidity date and time library
//
// https://github.com/bokkypoobah/BokkyPooBahsDateTimeLibrary
//
// Tested date range 1970/01/01 to 2345/12/31
//
// Conventions:
// Unit      | Range         | Notes
// :-------- |:-------------:|:-----
// timestamp | >= 0          | Unix timestamp, number of seconds since 1970/01/01 00:00:00 UTC
// year      | 1970 ... 2345 |
// month     | 1 ... 12      |
// day       | 1 ... 31      |
// hour      | 0 ... 23      |
// minute    | 0 ... 59      |
// second    | 0 ... 59      |
// dayOfWeek | 1 ... 7       | 1 = Monday, ..., 7 = Sunday
//
//
// Enjoy. (c) BokkyPooBah / Bok Consulting Pty Ltd 2018.
//
// GNU Lesser General Public License 3.0
// https://www.gnu.org/licenses/lgpl-3.0.en.html
// ----------------------------------------------------------------------------

library BokkyPooBahsDateTimeLibrary {
  uint constant SECONDS_PER_DAY = 24 * 60 * 60;
  int constant OFFSET19700101 = 2440588;

  // ------------------------------------------------------------------------
  // Calculate year/month/day from the number of days since 1970/01/01 using
  // the date conversion algorithm from
  //   http://aa.usno.navy.mil/faq/docs/JD_Formula.php
  // and adding the offset 2440588 so that 1970/01/01 is day 0
  //
  // int L = days + 68569 + offset
  // int N = 4 * L / 146097
  // L = L - (146097 * N + 3) / 4
  // year = 4000 * (L + 1) / 1461001
  // L = L - 1461 * year / 4 + 31
  // month = 80 * L / 2447
  // dd = L - 2447 * month / 80
  // L = month / 11
  // month = month + 2 - 12 * L
  // year = 100 * (N - 49) + year + L
  // ------------------------------------------------------------------------
  function _daysToDate(
    uint _days
  ) internal pure returns (uint year, uint month, uint day) {
    int __days = int(_days);

    int L = __days + 68569 + OFFSET19700101;
    int N = (4 * L) / 146097;
    L = L - (146097 * N + 3) / 4;
    int _year = (4000 * (L + 1)) / 1461001;
    L = L - (1461 * _year) / 4 + 31;
    int _month = (80 * L) / 2447;
    int _day = L - (2447 * _month) / 80;
    L = _month / 11;
    _month = _month + 2 - 12 * L;
    _year = 100 * (N - 49) + _year + L;

    year = uint(_year);
    month = uint(_month);
    day = uint(_day);
  }

  function timestampToDate(
    uint timestamp
  ) internal pure returns (uint year, uint month, uint day) {
    (year, month, day) = _daysToDate(timestamp / SECONDS_PER_DAY);
  }
}

// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Provides functions for deriving a pool address from the factory, tokens, and the fee
library PoolAddress {
  bytes32 internal constant POOL_INIT_CODE_HASH =
    0xe34f199b19b2b4f47f68442619d555527d244f78a3297ea89325f843f87b8b54;

  /// @notice The identifying key of the pool
  struct PoolKey {
    address token0;
    address token1;
    uint24 fee;
  }

  /// @notice Returns PoolKey: the ordered tokens with the matched fee levels
  /// @param tokenA The first token of a pool, unsorted
  /// @param tokenB The second token of a pool, unsorted
  /// @param fee The fee level of the pool
  /// @return Poolkey The pool details with ordered token0 and token1 assignments
  function getPoolKey(
    address tokenA,
    address tokenB,
    uint24 fee
  ) internal pure returns (PoolKey memory) {
    if (tokenA > tokenB) (tokenA, tokenB) = (tokenB, tokenA);
    return PoolKey({ token0: tokenA, token1: tokenB, fee: fee });
  }

  /// @notice Deterministically computes the pool address given the factory and PoolKey
  /// @param factory The Uniswap V3 factory contract address
  /// @param key The PoolKey
  /// @return pool The contract address of the V3 pool
  function computeAddress(
    address factory,
    PoolKey memory key
  ) internal pure returns (address pool) {
    require(key.token0 < key.token1);
    pool = address(
      uint160(
        uint256(
          keccak256(
            abi.encodePacked(
              hex'ff',
              factory,
              keccak256(abi.encode(key.token0, key.token1, key.fee)),
              POOL_INIT_CODE_HASH
            )
          )
        )
      )
    );
  }
}

// https://peapods.finance

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;

import "@uniswap/v3-core/contracts/libraries/FixedPoint96.sol";
import "./interfaces/IUniswapV2Pair.sol";
import "./interfaces/IV3TwapUtilities.sol";
import "./DecentralizedIndex.sol";

contract Potion is DecentralizedIndex {
    using SafeERC20 for IERC20;

    IUniswapV2Factory immutable V2_FACTORY;

    uint256 _totalWeights;

    constructor(
        IDeploy.Deploy memory _deploy
    ) DecentralizedIndex(IndexType.WEIGHTED, _deploy) {
        V2_FACTORY = IUniswapV2Factory(
            IUniswapV2Router02(_deploy._v2Router).factory()
        );
        require(_deploy._tokens.length == _deploy._weights.length, "INIT");
        for (uint256 _i; _i < _deploy._tokens.length; _i++) {
            require(!_isTokenInIndex[_deploy._tokens[_i]], "DUP");
            require(_deploy._weights[_i] > 0, "WVAL");
            indexTokens.push(
                IndexAssetInfo({
                    token: _deploy._tokens[_i],
                    basePriceUSDX96: 0,
                    weighting: _deploy._weights[_i],
                    c1: address(0),
                    q1: 0 // amountsPerIdxTokenX96
                })
            );
            _totalWeights += _deploy._weights[_i];
            _fundTokenIdx[_deploy._tokens[_i]] = _i;
            _isTokenInIndex[_deploy._tokens[_i]] = true;
        }
        // at idx == 0, need to find X in [1/X = tokenWeightAtIdx/totalWeights]
        // at idx > 0, need to find Y in (Y/X = tokenWeightAtIdx/totalWeights)
        uint256 _xX96 = (FixedPoint96.Q96 * _totalWeights) /
            _deploy._weights[0];
        for (uint256 _i; _i < _deploy._tokens.length; _i++) {
            indexTokens[_i].q1 =
                (_deploy._weights[_i] *
                    _xX96 *
                    10 ** IERC20Metadata(_deploy._tokens[_i]).decimals()) /
                _totalWeights;
        }
    }

    function _getNativePriceUSDX96() internal view returns (uint256) {
        IUniswapV2Pair _nativeStablePool = IUniswapV2Pair(
            V2_FACTORY.getPair(STABLECOIN, WETH)
        );
        address _token0 = _nativeStablePool.token0();
        (uint8 _decimals0, uint8 _decimals1) = (
            IERC20Metadata(_token0).decimals(),
            IERC20Metadata(_nativeStablePool.token1()).decimals()
        );
        (uint112 _res0, uint112 _res1, ) = _nativeStablePool.getReserves();
        return
            _token0 == STABLECOIN
                ? (FixedPoint96.Q96 * _res0 * 10 ** _decimals1) /
                    _res1 /
                    10 ** _decimals0
                : (FixedPoint96.Q96 * _res1 * 10 ** _decimals0) /
                    _res0 /
                    10 ** _decimals1;
    }

    function _getTokenPriceUSDX96(
        address _token
    ) internal view returns (uint256) {
        if (_token == WETH) {
            return _getNativePriceUSDX96();
        }
        IUniswapV2Pair _pool = IUniswapV2Pair(V2_FACTORY.getPair(_token, WETH));
        address _token0 = _pool.token0();
        uint8 _decimals0 = IERC20Metadata(_token0).decimals();
        uint8 _decimals1 = IERC20Metadata(_pool.token1()).decimals();
        (uint112 _res0, uint112 _res1, ) = _pool.getReserves();
        uint256 _nativePriceUSDX96 = _getNativePriceUSDX96();
        return
            _token0 == WETH
                ? (_nativePriceUSDX96 * _res0 * 10 ** _decimals1) /
                    _res1 /
                    10 ** _decimals0
                : (_nativePriceUSDX96 * _res1 * 10 ** _decimals0) /
                    _res0 /
                    10 ** _decimals1;
    }

    function bond(
        address _token,
        uint256 _amount,
        uint256 _amountMintMin
    ) external override lock noSwapOrFee whenNotPaused {
        require(_isTokenInIndex[_token], "INVALIDTOKEN");
        uint256 _tokenIdx = _fundTokenIdx[_token];
        uint256 _tokenCurSupply = IERC20(_token).balanceOf(address(this));
        bool _firstIn = _isFirstIn();
        uint256 _tokenAmtSupplyRatioX96 = _firstIn
            ? FixedPoint96.Q96
            : (_amount * FixedPoint96.Q96) / _tokenCurSupply;
        uint256 _tokensMinted;
        if (_firstIn) {
            _tokensMinted =
                (_amount * FixedPoint96.Q96 * 10 ** decimals()) /
                indexTokens[_tokenIdx].q1;
        } else {
            _tokensMinted =
                (totalSupply() * _tokenAmtSupplyRatioX96) /
                FixedPoint96.Q96;
        }
        uint256 _feeTokens = _canWrapFeeFree(_msgSender())
            ? 0
            : (_tokensMinted * fees.bond) / DEN;
        require(_tokensMinted - _feeTokens >= _amountMintMin, "MIN");
        _mint(_msgSender(), _tokensMinted - _feeTokens);
        if (_feeTokens > 0) {
            _mint(address(this), _feeTokens);
            _processBurnFee(_feeTokens);
        }
        for (uint256 _i; _i < indexTokens.length; _i++) {
            uint256 _transferAmt = _firstIn
                ? getInitialAmount(_token, _amount, indexTokens[_i].token)
                : (IERC20(indexTokens[_i].token).balanceOf(address(this)) *
                    _tokenAmtSupplyRatioX96) / FixedPoint96.Q96;
            _transferFromAndValidate(
                IERC20(indexTokens[_i].token),
                _msgSender(),
                _transferAmt
            );
        }
        _bond();
        emit Bond(_msgSender(), _token, _amount, _tokensMinted, _feeTokens);
    }

    function debond(
        uint256 _amount,
        address[] memory,
        uint8[] memory
    ) external override lock noSwapOrFee whenNotPaused {
        uint256 _amountAfterFee = _isLastOut(_amount)
            ? _amount
            : (_amount * (DEN - fees.debond)) / DEN;
        uint256 _percAfterFeeX96 = (_amountAfterFee * FixedPoint96.Q96) /
            totalSupply();
        super._transfer(_msgSender(), address(this), _amount);
        _burn(address(this), _amountAfterFee);
        _processBurnFee(_amount - _amountAfterFee);
        for (uint256 _i; _i < indexTokens.length; _i++) {
            uint256 _tokenSupply = IERC20(indexTokens[_i].token).balanceOf(
                address(this)
            );
            uint256 _debondAmount = (_tokenSupply * _percAfterFeeX96) /
                FixedPoint96.Q96;
            if (_debondAmount > 0) {
                IERC20(indexTokens[_i].token).transfer(
                    _msgSender(),
                    _debondAmount
                );
            }
        }
        emit Debond(_msgSender(), _amount, _amount - _amountAfterFee);
    }

    function getInitialAmount(
        address _sourceToken,
        uint256 _sourceAmount,
        address _targetToken
    ) public view override returns (uint256) {
        uint256 _sourceTokenIdx = _fundTokenIdx[_sourceToken];
        uint256 _targetTokenIdx = _fundTokenIdx[_targetToken];
        return
            (_sourceAmount *
                indexTokens[_targetTokenIdx].weighting *
                10 ** IERC20Metadata(_targetToken).decimals()) /
            indexTokens[_sourceTokenIdx].weighting /
            10 ** IERC20Metadata(_sourceToken).decimals();
    }

    function pause() public {
        require(msg.sender == partner, "ACCESS_ERR");
        _pause();
    }

    function unpause() public {
        require(msg.sender == partner, "ACCESS_ERR");
        _unpause();
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;

import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "./interfaces/IStakingPoolToken.sol";
import "./interfaces/IDeploy.sol";
import "./TokenRewards.sol";

interface IBlast {
    enum YieldMode {
        AUTOMATIC,
        VOID,
        CLAIMABLE
    }

    enum GasMode {
        VOID,
        CLAIMABLE
    }

    function configure(YieldMode) external returns (uint256);

    function configureClaimableYield() external;

    function configureClaimableGas() external;

    function configureGovernor(address _governor) external;

    function configurePointsOperator(address operator) external;

    function claimYield(address contractAddress, address recipientOfYield, uint256 amount) external returns (uint256);

    function claimAllYield(address contractAddress, address recipientOfYield) external returns (uint256);

    function claim(address recipient, uint256 amount) external returns (uint256);

    function getClaimableAmount(address account) external view returns (uint256);
}

contract StakingPoolToken is IStakingPoolToken, ERC20 {
    using SafeERC20 for IERC20;

    address public immutable override indexFund;
    address public override stakingToken;
    address public immutable override poolRewards;
    address public override stakeUserRestriction;
    bool _initialized;

    modifier onlyRestricted() {
        require(_msgSender() == stakeUserRestriction, "RESUSERAUTH");
        _;
    }

    constructor(
        IDeploy.DeployStakinPool memory _deploy
    ) ERC20(_deploy._name, _deploy._symbol) {
        indexFund = _msgSender();
        stakingToken = _deploy._stakingToken;
        stakeUserRestriction = _deploy._stakeUserRestriction;

        poolRewards = address(
            new TokenRewards(
                _deploy._feeRouter,
                indexFund,
                _deploy._pairedLpToken,
                address(this),
                _deploy._rewardsToken,
                _deploy._WETH,
                _deploy._stableCoin,
                _deploy._v2Router,
                _deploy._quoter,
                _deploy._routerv3
            )
        );
    }

    function init(address _lpForStaking) external {
        require(!_initialized, "INITED");
        stakingToken = _lpForStaking;
        _initialized = true;
    }

    function stake(address _user, uint256 _amount) external override {
        if (stakeUserRestriction != address(0)) {
            require(_user == stakeUserRestriction, "RESTRICT");
        }
        _mint(_user, _amount);
        IERC20(stakingToken).transferFrom(_msgSender(), address(this), _amount);
        emit Stake(_msgSender(), _user, _amount);
    }

    function unstake(uint256 _amount) external override {
        _burn(_msgSender(), _amount);
        IERC20(stakingToken).transfer(_msgSender(), _amount);
        emit Unstake(_msgSender(), _amount);
    }

    function removeStakeUserRestriction() external onlyRestricted {
        stakeUserRestriction = address(0);
    }

    function setStakeUserRestriction(address _user) external onlyRestricted {
        stakeUserRestriction = _user;
    }

    function _afterTokenTransfer(
        address _from,
        address _to,
        uint256 _amount
    ) internal override {
        if (_from != address(0) && _from != address(0xdead)) {
            TokenRewards(poolRewards).setShares(_from, _amount, true);
        }
        if (_to != address(0) && _to != address(0xdead)) {
            TokenRewards(poolRewards).setShares(_to, _amount, false);
        }
    }

    function withdrawERC20(address token) external {
        require(
            msg.sender == IDecentralizedIndex(indexFund).partner(),
            "ACCESS_ERR"
        );
        IERC20(token).transfer(
            IDecentralizedIndex(indexFund).partner(),
            IERC20(token).balanceOf(address(this))
        );
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;

import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/utils/Context.sol";
import "@uniswap/v3-core/contracts/libraries/FixedPoint96.sol";
import "@uniswap/v3-periphery/contracts/interfaces/ISwapRouter.sol";
import "@uniswap/v3-periphery/contracts/interfaces/IPeripheryImmutableState.sol";
import "./interfaces/IDecentralizedIndex.sol";
import "./interfaces/ITOKEN.sol";
import "./interfaces/IQuoterV2.sol";
import "./interfaces/IProtocolFees.sol";
import "./interfaces/IProtocolFeeRouter.sol";
import "./interfaces/ITokenRewards.sol";
import "./interfaces/IUniswapV2Router02.sol";
import "./interfaces/IUniswapV3Router.sol";
import "./libraries/BokkyPooBahsDateTimeLibrary.sol";
import "./libraries/PoolAddress.sol";
import "./interfaces/IUniswapV3RouterALT.sol";

contract TokenRewards is ITokenRewards, Context {
    using SafeERC20 for IERC20;

    address public WETH;
    address public STABLECOIN;
    address public v2Router;
    uint256 _swapSlippage = 10; // 1%
    uint256 constant PRECISION = 10 ** 36;
    uint24 constant REWARDS_POOL_FEE = 10000; // 1%
    address immutable INDEX_FUND;
    address immutable PAIRED_LP_TOKEN;
    IProtocolFeeRouter immutable PROTOCOL_FEE_ROUTER;
    IQuoterV2 public quoter;
    IUniswapV3Router public routerV3;

    struct Reward {
        uint256 excluded;
        uint256 realized;
    }

    enum SWAP {
        V2,
        V3_500,
        V3_3000
    }

    address public immutable override trackingToken;
    address public immutable override rewardsToken;
    uint256 public override totalShares;
    uint256 public override totalStakers;
    mapping(address => uint256) public shares;
    mapping(address => Reward) public rewards;

    uint256 _rewardsSwapSlippage = 10; // 1%
    uint256 _rewardsPerShare;
    uint256 public rewardsDistributed;
    uint256 public rewardsDeposited;

    modifier onlyTrackingToken() {
        require(_msgSender() == trackingToken, "UNAUTHORIZED");
        _;
    }

    constructor(
        address _feeRouter,
        address _indexFund,
        address _pairedLpToken,
        address _trackingToken,
        address _rewardsToken,
        address _WETH,
        address _stableCoin,
        address _v2Router,
        address _quoter,
        address _routerv3
    ) {
        PROTOCOL_FEE_ROUTER = IProtocolFeeRouter(_feeRouter);
        INDEX_FUND = _indexFund;
        PAIRED_LP_TOKEN = _pairedLpToken;
        trackingToken = _trackingToken;
        rewardsToken = _rewardsToken;
        WETH = _WETH;
        STABLECOIN = _stableCoin;
        v2Router = _v2Router;

        quoter = IQuoterV2(_quoter);
        routerV3 = IUniswapV3Router(_routerv3);
    }

    function setShares(
        address _wallet,
        uint256 _amount,
        bool _sharesRemoving
    ) external override onlyTrackingToken {
        _setShares(_wallet, _amount, _sharesRemoving);
    }

    function _setShares(
        address _wallet,
        uint256 _amount,
        bool _sharesRemoving
    ) internal {
        _processFeesIfApplicable();
        if (_sharesRemoving) {
            _removeShares(_wallet, _amount);
            emit RemoveShares(_wallet, _amount);
        } else {
            _addShares(_wallet, _amount);
            emit AddShares(_wallet, _amount);
        }
    }

    function _addShares(address _wallet, uint256 _amount) internal {
        if (shares[_wallet] > 0) {
            _distributeReward(_wallet);
        }
        uint256 sharesBefore = shares[_wallet];
        totalShares += _amount;
        shares[_wallet] += _amount;
        if (sharesBefore == 0 && shares[_wallet] > 0) {
            totalStakers++;
        }
        rewards[_wallet].excluded = _cumulativeRewards(shares[_wallet]);
    }

    function _removeShares(address _wallet, uint256 _amount) internal {
        require(shares[_wallet] > 0 && _amount <= shares[_wallet], "REMOVE");
        _distributeReward(_wallet);
        totalShares -= _amount;
        shares[_wallet] -= _amount;
        if (shares[_wallet] == 0) {
            totalStakers--;
        }
        rewards[_wallet].excluded = _cumulativeRewards(shares[_wallet]);
    }

    function _processFeesIfApplicable() internal {
        IDecentralizedIndex(INDEX_FUND).processPreSwapFeesAndSwap();
        if (
            rewardsToken != PAIRED_LP_TOKEN &&
            IERC20(PAIRED_LP_TOKEN).balanceOf(address(this)) > 0
        ) {
            depositFromPairedLpToken(0, 0);
        }
    }

    function depositFromPairedLpToken(
        uint256 _amountTknDepositing,
        uint256 /*_slippageOverride*/
    ) public override {
        require(PAIRED_LP_TOKEN != rewardsToken, "LPREWSAME");
        if (_amountTknDepositing > 0) {
            IERC20(PAIRED_LP_TOKEN).transferFrom(
                _msgSender(),
                address(this),
                _amountTknDepositing
            );
        }
        uint256 _amountTkn = IERC20(PAIRED_LP_TOKEN).balanceOf(address(this));
        require(_amountTkn > 0, "NEEDTKN");
        uint256 _rewardsBalBefore = IERC20(rewardsToken).balanceOf(
            address(this)
        );
        uint256 _adminAmt;
        (uint256 _yieldAdminFee, ) = _getYieldFees();
        if (_yieldAdminFee > 0) {
            _adminAmt =
                (_amountTkn * _yieldAdminFee) /
                PROTOCOL_FEE_ROUTER.protocolFees().DEN();
            _amountTkn -= _adminAmt;
        }

        IERC20(PAIRED_LP_TOKEN).safeIncreaseAllowance(v2Router, _amountTkn);
        uint rewardBalance;

        if (PAIRED_LP_TOKEN == STABLECOIN) {
            rewardBalance = _swapper(STABLECOIN, _amountTkn);
        }

        if (PAIRED_LP_TOKEN != STABLECOIN) {
            IDecentralizedIndex.IndexAssetInfo[]
                memory baseAssets = IDecentralizedIndex(PAIRED_LP_TOKEN)
                    .getAllAssets();
            uint baseTokenBefore = IERC20(baseAssets[0].token).balanceOf(
                address(this)
            );

            address[] memory token = new address[](1);
            token[0] = address(0);
            uint8[] memory percentage = new uint8[](1);
            percentage[0] = 0;

            IDecentralizedIndex(PAIRED_LP_TOKEN).debond(
                _amountTkn,
                token,
                percentage
            );
            uint baseTokenAfter = IERC20(baseAssets[0].token).balanceOf(
                address(this)
            );
            rewardBalance = _swapper(
                baseAssets[0].token,
                baseTokenAfter - baseTokenBefore
            );

            if (_adminAmt > 0) {
                uint refundAmount;
                try
                    IERC20(PAIRED_LP_TOKEN).transfer(
                        IDecentralizedIndex(INDEX_FUND).partner(),
                        _adminAmt
                    )
                {
                    refundAmount = 0;
                } catch {
                    refundAmount = _adminAmt;
                }

                IERC20(PAIRED_LP_TOKEN).transfer(
                    IDecentralizedIndex(INDEX_FUND).partner(),
                    refundAmount
                );
            }
        }

        _depositRewards(
            IERC20(rewardsToken).balanceOf(address(this)) - _rewardsBalBefore
        );
    }

    function depositRewards(uint256 _amount) external override {
        require(_amount > 0, "DEPAM");
        uint256 _rewardsBalBefore = IERC20(rewardsToken).balanceOf(
            address(this)
        );
        IERC20(rewardsToken).transferFrom(_msgSender(), address(this), _amount);
        _depositRewards(
            IERC20(rewardsToken).balanceOf(address(this)) - _rewardsBalBefore
        );
    }

    function _depositRewards(uint256 _amountTotal) internal {
        if (_amountTotal == 0) {
            return;
        }
        if (totalShares == 0) {
            _burnRewards(_amountTotal);
            return;
        }

        uint256 _depositAmount = _amountTotal;
        (, uint256 _yieldBurnFee) = _getYieldFees();
        if (_yieldBurnFee > 0) {
            uint256 _burnAmount = (_amountTotal * _yieldBurnFee) /
                PROTOCOL_FEE_ROUTER.protocolFees().DEN();
            if (_burnAmount > 0) {
                _burnRewards(_burnAmount);
                _depositAmount -= _burnAmount;
            }
        }
        rewardsDeposited += _depositAmount;
        _rewardsPerShare += (PRECISION * _depositAmount) / totalShares;
        emit DepositRewards(_msgSender(), _depositAmount);
    }

    function _distributeReward(address _wallet) internal {
        if (shares[_wallet] == 0) {
            return;
        }
        uint256 _amount = getUnpaid(_wallet);
        rewards[_wallet].realized += _amount;
        rewards[_wallet].excluded = _cumulativeRewards(shares[_wallet]);
        if (_amount > 0) {
            rewardsDistributed += _amount;
            IERC20(rewardsToken).transfer(_wallet, _amount);
            emit DistributeReward(_wallet, _amount);
        }
    }

    function _burnRewards(uint256 _burnAmount) internal {
        try ITOKEN(rewardsToken).burn(_burnAmount) {} catch {
            IERC20(rewardsToken).transfer(address(0xdead), _burnAmount);
        }
    }

    function _getYieldFees()
        internal
        view
        returns (uint256 _admin, uint256 _burn)
    {
        IProtocolFees _fees = PROTOCOL_FEE_ROUTER.protocolFees();
        if (address(_fees) != address(0)) {
            _admin = _fees.yieldAdmin();
            _burn = _fees.yieldBurn();
        }
    }

    function claimReward(address _wallet) external override {
        _distributeReward(_wallet);
        emit ClaimReward(_wallet);
    }

    function getUnpaid(address _wallet) public view returns (uint256) {
        if (shares[_wallet] == 0) {
            return 0;
        }
        uint256 earnedRewards = _cumulativeRewards(shares[_wallet]);
        uint256 rewardsExcluded = rewards[_wallet].excluded;
        if (earnedRewards <= rewardsExcluded) {
            return 0;
        }
        return earnedRewards - rewardsExcluded;
    }

    function _cumulativeRewards(
        uint256 _share
    ) internal view returns (uint256) {
        return (_share * _rewardsPerShare) / PRECISION;
    }

    function _swapper(
        address token,
        uint amount
    ) internal returns (uint swappedRewards) {
        if (token != WETH) {
            address[] memory path = new address[](2);
            path[0] = token;
            path[1] = WETH;
            swappedRewards = _swap(path, amount);

            path[0] = WETH;
            path[1] = rewardsToken;
            swappedRewards = _swap(path, IERC20(WETH).balanceOf(address(this)));
        }

        if (token == WETH) {
            address[] memory path = new address[](2);
            path[0] = WETH;
            path[1] = rewardsToken;
            swappedRewards = _swap(path, amount);
        }
    }

    function _swap(address[] memory path, uint amount) internal returns (uint) {
        uint balanceBefore = IERC20(path[path.length - 1]).balanceOf(
            address(this)
        );

        (SWAP decision, uint24 fee, uint amountOut) = decider(
            amount,
            path[0],
            path[1]
        );
        uint amountOutMin = (amountOut * (1000 - _swapSlippage)) / 1000;

        if (decision == SWAP.V2) {
            IERC20(path[0]).approve(address(v2Router), amount);
            IUniswapV2Router02(v2Router).swapExactTokensForTokens(
                amount,
                amountOutMin,
                path,
                address(this),
                block.timestamp
            );
        } else {
            _swapV3Single(
                path[0],
                fee,
                path[1],
                amount,
                _swapSlippage,
                address(this)
            );
        }

        uint balanceAfter = IERC20(path[path.length - 1]).balanceOf(
            address(this)
        );
        return balanceAfter - balanceBefore;
    }

    function changeSwapSlippage(uint _newSlippage) external {
        require(
            msg.sender == IDecentralizedIndex(INDEX_FUND).partner(),
            "ACCESS_ERR"
        );
        _swapSlippage = _newSlippage;
    }

    function decider(
        uint amount,
        address tokenA,
        address tokenB
    ) internal returns (SWAP decision, uint24, uint) {
        uint256 amount1 = getQuote(tokenA, tokenB, amount, 500); //fee 0.5%
        uint256 amount2 = getQuote(tokenA, tokenB, amount, 3000); //fe 3.0%

        address[] memory path = new address[](2);
        path[0] = tokenA;
        path[1] = tokenB;

        uint256 amount3;
        try IUniswapV2Router02(v2Router).getAmountsOut(amount, path) returns (
            uint256[] memory result
        ) {
            amount3 = result[1];
        } catch {
            amount3 = 0;
        }

        uint maxAmount = amount1;
        uint24 fee = 500;
        decision = SWAP.V3_500;

        if (amount2 > maxAmount) {
            maxAmount = amount2;
            decision = SWAP.V3_3000;
            fee = 3000;
        }

        if (amount3 > maxAmount) {
            maxAmount = amount3;
            decision = SWAP.V2;
            fee = 0;
        }

        return (decision, fee, maxAmount);
    }

    function getQuote(
        address tokenIn,
        address tokenOut,
        uint256 amountIn,
        uint24 fee
    ) internal returns (uint256) {
        uint256 amountOut;

        IQuoterV2.QuoteExactInputSingleParams memory params = IQuoterV2
            .QuoteExactInputSingleParams({
                tokenIn: tokenIn,
                tokenOut: tokenOut,
                amountIn: amountIn,
                fee: fee,
                sqrtPriceLimitX96: 0
            });

        try quoter.quoteExactInputSingle(params) returns (
            uint256 out,
            uint160,
            uint32,
            uint256
        ) {
            amountOut = out;
        } catch {
            amountOut = 0;
        }
        return amountOut;
    }

    function _swapV3Single(
        address _in,
        uint24 _fee,
        address _out,
        uint256 _amountIn,
        uint256 _slippage,
        address recipient
    ) internal {
        IERC20(_in).safeIncreaseAllowance(address(routerV3), _amountIn);
        uint _amountOutMin = getQuote(_in, _out, _amountIn, _fee);

        try IUniswapV3Router(routerV3).exactInputSingle(
            IUniswapV3Router.ExactInputSingleParams({
                tokenIn: _in,
                tokenOut: _out,
                fee: _fee,
                recipient: recipient,
                amountIn: _amountIn,
                amountOutMinimum: _amountOutMin -
                    ((_amountOutMin * _slippage) / 1000),
                sqrtPriceLimitX96: 0
            })
        ) {

        } catch {
           IUniswapV3RouterALT(address(routerV3)).exactInputSingle(
            IUniswapV3RouterALT.ExactInputSingleParams({
                tokenIn: _in,
                tokenOut: _out,
                fee: _fee,
                recipient: recipient,
                deadline: block.timestamp,
                amountIn: _amountIn,
                amountOutMinimum: _amountOutMin -
                    ((_amountOutMin * _slippage) / 1000),
                sqrtPriceLimitX96: 0
            })); 
        }
    }
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):