Contract Source Code:
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/IERC721.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC721 compliant contract.
*/
interface IERC721 is IERC165 {
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
* a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must have been allowed to move this token by either {approve} or
* {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
* a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
* or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
* understand this adds an external call which potentially creates a reentrancy vulnerability.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the address zero.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/IERC721Receiver.sol)
pragma solidity ^0.8.20;
/**
* @title ERC721 token receiver interface
* @dev Interface for any contract that wants to support safeTransfers
* from ERC721 asset contracts.
*/
interface IERC721Receiver {
/**
* @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
* by `operator` from `from`, this function is called.
*
* It must return its Solidity selector to confirm the token transfer.
* If any other value is returned or the interface is not implemented by the recipient, the transfer will be
* reverted.
*
* The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
*/
function onERC721Received(
address operator,
address from,
uint256 tokenId,
bytes calldata data
) external returns (bytes4);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error AddressInsufficientBalance(address account);
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedInnerCall();
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert AddressInsufficientBalance(address(this));
}
(bool success, ) = recipient.call{value: amount}("");
if (!success) {
revert FailedInnerCall();
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {FailedInnerCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert AddressInsufficientBalance(address(this));
}
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
* unsuccessful call.
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata
) internal view returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
if (returndata.length == 0 && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {FailedInnerCall} error.
*/
function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
*/
function _revert(bytes memory returndata) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert FailedInnerCall();
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.25;
import {IERC721} from "@openzeppelin/contracts/token/ERC721/IERC721.sol";
interface NonFungibleContract is IERC721 {
/// @notice Returns the position information associated with a given token ID.
/// @dev Throws if the token ID is not valid.
/// @param tokenId The ID of the token that represents the position
/// @return nonce The nonce for permits
/// @return operator The address that is approved for spending
/// @return token0 The address of the token0 for a specific pool
/// @return token1 The address of the token1 for a specific pool
/// @return fee The fee associated with the pool
/// @return tickLower The lower end of the tick range for the position
/// @return tickUpper The higher end of the tick range for the position
/// @return liquidity The liquidity of the position
/// @return feeGrowthInside0LastX128 The fee growth of token0 as of the last action on the individual position
/// @return feeGrowthInside1LastX128 The fee growth of token1 as of the last action on the individual position
/// @return tokensOwed0 The uncollected amount of token0 owed to the position as of the last computation
/// @return tokensOwed1 The uncollected amount of token1 owed to the position as of the last computation
function positions(
uint256 tokenId
)
external
view
returns (
uint96 nonce,
address operator,
address token0,
address token1,
uint24 fee,
int24 tickLower,
int24 tickUpper,
uint128 liquidity,
uint256 feeGrowthInside0LastX128,
uint256 feeGrowthInside1LastX128,
uint128 tokensOwed0,
uint128 tokensOwed1
);
struct CollectParams {
uint256 tokenId;
address recipient;
uint128 amount0Max;
uint128 amount1Max;
}
/// @notice Collects up to a maximum amount of fees owed to a specific position to the recipient
/// @param params tokenId The ID of the NFT for which tokens are being collected,
/// recipient The account that should receive the tokens,
/// amount0Max The maximum amount of token0 to collect,
/// amount1Max The maximum amount of token1 to collect
/// @return amount0 The amount of fees collected in token0
/// @return amount1 The amount of fees collected in token1
function collect(
CollectParams calldata params
) external payable returns (uint256 amount0, uint256 amount1);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.26;
import "@openzeppelin/contracts/token/ERC721/IERC721.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/utils/Context.sol";
import "@openzeppelin/contracts/utils/Address.sol";
import {IERC721Receiver} from "@openzeppelin/contracts/token/ERC721/IERC721Receiver.sol";
import {NonFungibleContract} from "./IManager.sol";
interface INonfungiblePositionManager is IERC721 {
struct CollectParams {
uint256 tokenId;
address recipient;
uint128 amount0Max;
uint128 amount1Max;
}
function collect(
CollectParams calldata params
) external payable returns (uint256 amount0, uint256 amount1);
}
contract LpLocker is Ownable, IERC721Receiver {
event ERC721Released(address indexed token, uint256 amount);
event LockId(uint256 _id);
event LockDuration(uint256 _time);
event Received(address indexed from, uint256 tokenId);
event ClaimedFees(
address indexed claimer,
address indexed token0,
address indexed token1,
uint256 amount0,
uint256 amount1,
uint256 totalAmount1,
uint256 totalAmount0
);
uint256 private _released;
mapping(address => uint256) public _erc721Released;
IERC721 private SafeERC721;
uint64 private immutable _duration;
address private immutable e721Token;
bool private flag;
NonFungibleContract private positionManager;
string public constant version = "1.0";
uint256 public _fee;
address public _feeRecipient;
/**
* @dev Sets the sender as the initial owner, the beneficiary as the pending owner, and the duration for the lock
* vesting duration of the vesting wallet.
*/
constructor(
address token,
address beneficiary,
uint64 durationSeconds,
uint256 fee,
address feeRecipient
) payable Ownable(beneficiary) {
_duration = durationSeconds;
SafeERC721 = IERC721(token);
//already false but lets be safe
flag = false;
e721Token = token;
_fee = fee;
_feeRecipient = feeRecipient;
emit LockDuration(durationSeconds);
}
function initializer(uint256 token_id) public {
require(flag == false, "contract already initialized");
_erc721Released[e721Token] = token_id;
flag = true;
positionManager = NonFungibleContract(e721Token);
if (positionManager.ownerOf(token_id) != address(this)) {
SafeERC721.transferFrom(owner(), address(this), token_id);
}
emit LockId(token_id);
}
/**
* @dev Getter for the vesting duration.
*/
function duration() public view virtual returns (uint256) {
return _duration;
}
/**
* @dev The contract should be able to receive Eth.
*/
receive() external payable virtual {}
/**
* @dev Getter for the end timestamp.
*/
function end() public view virtual returns (uint256) {
return duration();
}
/**
* @dev returns the tokenId of the locked LP
*/
function released(address token) public view virtual returns (uint256) {
return _erc721Released[token];
}
/**
* @dev Release the token that have already vested.
*
* Emits a {ERC721Released} event.
*/
function release() public virtual {
if (vestingSchedule() != 0) {
revert();
}
uint256 id = _erc721Released[e721Token];
emit ERC721Released(e721Token, id);
SafeERC721.transferFrom(address(this), owner(), id);
}
function withdrawERC20(address _token) public {
require(owner() == msg.sender, "only owner can call");
IERC20 IToken = IERC20(_token);
IToken.transferFrom(address(this), owner(), IToken.balanceOf(owner()));
}
/**
* @dev sourced from: https://docs.uniswap.org/contracts/v3/reference/deployments
*/
function _getAddresses()
internal
view
returns (
address weth,
INonfungiblePositionManager nonFungiblePositionManager
)
{
uint256 chainId = block.chainid;
// base
if (chainId == 8453) {
weth = 0x4200000000000000000000000000000000000006;
nonFungiblePositionManager = INonfungiblePositionManager(
0x03a520b32C04BF3bEEf7BEb72E919cf822Ed34f1
);
}
// degen chain
if (chainId == 666666666) {
// wrapped degen
weth = 0xEb54dACB4C2ccb64F8074eceEa33b5eBb38E5387;
nonFungiblePositionManager = INonfungiblePositionManager( // proxy swap
0x56c65e35f2Dd06f659BCFe327C4D7F21c9b69C2f
);
}
if (chainId == 5112) {
// wrapped ETH
weth = 0x4200000000000000000000000000000000000006;
nonFungiblePositionManager = INonfungiblePositionManager( // proxy swap
0xD088322Fa988225B3936555894E1D21c1A727859
);
}
if (chainId == 56) {
weth = 0xbb4CdB9CBd36B01bD1cBaEBF2De08d9173bc095c;
nonFungiblePositionManager = INonfungiblePositionManager(
0x46A15B0b27311cedF172AB29E4f4766fbE7F4364
);
}
if (chainId == 146) {
weth = 0x039e2fB66102314Ce7b64Ce5Ce3E5183bc94aD38;
nonFungiblePositionManager = INonfungiblePositionManager(
0x77DcC9b09C6Ae94CDC726540735682A38e18d690
);
}
}
//Use collect fees to collect the fees
function collectFees(address _recipient, uint256 _tokenId) public {
require(owner() == msg.sender, "only owner can call");
(
,
INonfungiblePositionManager nonfungiblePositionManager
) = _getAddresses();
if (_fee == 0) {
(uint256 amount0, uint256 amount1) = nonfungiblePositionManager
.collect(
INonfungiblePositionManager.CollectParams({
recipient: _recipient,
amount0Max: type(uint128).max,
amount1Max: type(uint128).max,
tokenId: _tokenId
})
);
emit ClaimedFees(
_recipient,
address(0),
address(0),
amount0,
amount1,
amount0,
amount1
);
} else {
(uint256 amount0, uint256 amount1) = nonfungiblePositionManager
.collect(
INonfungiblePositionManager.CollectParams({
recipient: address(this),
amount0Max: type(uint128).max,
amount1Max: type(uint128).max,
tokenId: _tokenId
})
);
(
,
,
address token0,
address token1,
,
,
,
,
,
,
,
) = positionManager.positions(_tokenId);
IERC20 feeToken0 = IERC20(token0);
IERC20 feeToken1 = IERC20(token1);
uint256 protocolFee0 = (amount0 * _fee) / 100;
uint256 protocolFee1 = (amount1 * _fee) / 100;
uint256 recipientFee0 = amount0 - protocolFee0;
uint256 recipientFee1 = amount1 - protocolFee1;
feeToken0.transfer(_recipient, recipientFee0);
feeToken1.transfer(_recipient, recipientFee1);
feeToken0.transfer(_feeRecipient, protocolFee0);
feeToken1.transfer(_feeRecipient, protocolFee1);
emit ClaimedFees(
_recipient,
token0,
token1,
recipientFee0,
recipientFee1,
amount0,
amount1
);
}
}
/**
* Checks the vesting schedule for the token
*/
function vestingSchedule() public view returns (uint256) {
if (block.timestamp > duration()) {
return 0;
} else {
return duration() - block.timestamp;
}
}
function onERC721Received(
address,
address from,
uint256 id,
bytes calldata data
) external override returns (bytes4) {
emit Received(from, id);
return IERC721Receiver.onERC721Received.selector;
}
}