Contract Source Code:
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.7 <0.9.0;
import {ERC721} from "./ERC721.sol";
import {ERC721Enumerable} from "./ERC721Enumerable.sol";
import {ERC1155} from "./ERC1155.sol";
import {Ownable} from "./Ownable.sol";
contract NFTFactory {
function deployERC721(address originalAddress,
string memory name,
string memory symbol,
string memory baseURI,
string memory extension,
address royaltyRecipient,
uint256 royaltyBps) public returns (address)
{
ERC721 newCollection = new ERC721(originalAddress, name, symbol, baseURI, extension, royaltyRecipient, royaltyBps);
Ownable(newCollection).transferOwnership(msg.sender);
address newAddress = address(newCollection);
return newAddress;
}
function deployERC721Enumerable(address originalAddress,
string memory name,
string memory symbol,
string memory baseURI,
string memory extension,
address royaltyRecipient,
uint256 royaltyBps) public returns (address)
{
ERC721 newCollection = new ERC721Enumerable(originalAddress, name, symbol, baseURI, extension, royaltyRecipient, royaltyBps);
Ownable(newCollection).transferOwnership(msg.sender);
address newAddress = address(newCollection);
return newAddress;
}
function deployERC1155(address originalAddress,
address royaltyRecipient,
uint256 royaltyBps) public returns (address)
{
ERC1155 newCollection = new ERC1155(originalAddress, royaltyRecipient, royaltyBps);
Ownable(newCollection).transferOwnership(msg.sender);
address newAddress = address(newCollection);
return newAddress;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
import {ERC721Base} from "./ERC721Base.sol";
import {LibString} from "./utils/LibString.sol";
import {ERC2981} from "./ERC2981.sol";
import {PermissionedMintingNFT} from "./PermissionedMintingNFT.sol";
import {BridgedNFT} from "./BridgedNFT.sol";
contract ERC721 is ERC721Base, ERC2981, PermissionedMintingNFT, BridgedNFT {
// NFT Metadata
string private _name;
string private _symbol;
string private _baseURI;
string private _extension;
mapping(uint256 => string) private _tokenURIs;
// Custom errors
error TokenExists();
error MismatchedLengths();
constructor(
address originalAddress,
string memory name,
string memory symbol,
string memory baseURI,
string memory hasExtension,
address royaltyRecipient,
uint256 royaltyBps
) ERC2981(royaltyRecipient, royaltyBps) PermissionedMintingNFT() BridgedNFT(originalAddress) {
_name = name;
_symbol = symbol;
_baseURI = baseURI;
_extension = hasExtension;
}
function name() public view override returns (string memory) {
return _name;
}
function symbol() public view override returns (string memory) {
return _symbol;
}
function tokenURI(uint256 tokenId) public view override returns (string memory) {
if (!_exists(tokenId)) revert TokenDoesNotExist();
if (bytes(_tokenURIs[tokenId]).length != 0) {
return _tokenURIs[tokenId];
}
return string(abi.encodePacked(_baseURI, LibString.toString(tokenId), _extension));
}
function setBaseURI(string memory baseURI) external onlyOwner {
_baseURI = baseURI;
}
function batchSetTokenURIs(uint256 startId, string[] calldata uris) public onlyOwner {
for (uint256 i = 0; i < uris.length; ++i) {
_tokenURIs[startId + i] = uris[i];
}
}
function mint(address to, uint256 id) public mintIsOpen onlyMinter {
if (_exists(id)) revert TokenExists();
_mint(to, id);
}
struct AirdropUnit {
address to;
uint256[] ids;
}
function bulkAirdrop(AirdropUnit[] calldata airdropUnits) public mintIsOpen onlyMinter {
for (uint256 i = 0; i < airdropUnits.length; ++i) {
for (uint256 j = 0; j < airdropUnits[i].ids.length; j++) {
uint256 id = airdropUnits[i].ids[j];
if (_exists(id)) revert TokenExists();
_mint(airdropUnits[i].to, id);
}
}
}
function setRoyalties(address recipient, uint256 bps) external onlyOwner {
_setRoyalties(recipient, bps);
}
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool result) {
/// @solidity memory-safe-assembly
assembly {
let s := shr(224, interfaceId)
// ERC165: 0x01ffc9a7, ERC2981: 0x2a55205a, ERC721: 0x80ac58cd
result := or(eq(s, 0x01ffc9a7), eq(s, 0x2a55205a))
result := or(result, eq(s, 0x80ac58cd))
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
import {ERC721} from "./ERC721.sol";
contract ERC721Enumerable is ERC721 {
// array with all token IDs, used for enumeration
uint256[] private _allTokens;
// Mapping from token ID to position in the allTokens array
mapping(uint256 => uint256) private _allTokensIndex;
// Mapping from owner to list-as-mapping of owned token IDs
mapping(address owner => mapping(uint256 index => uint256)) private _ownedTokens;
// Mapping from token ID to index in the ownedTokens mapping
mapping(uint256 tokenId => uint256) private _ownedTokensIndex;
function totalSupply() public view returns (uint256) {
return _allTokens.length;
}
function tokenByIndex(uint256 index) public view returns (uint256) {
require(index < totalSupply(), "ERC721Enumerable: INVALID_INDEX");
return _allTokens[index];
}
function tokenOfOwnerByIndex(address owner, uint256 index) public view returns (uint256) {
require(index < balanceOf(owner), "ERC721Enumerable: INVALID_INDEX");
return _ownedTokens[owner][index];
}
constructor(address originalAddress,
string memory name,
string memory symbol,
string memory baseURI,
string memory hasExtension,
address royaltyRecipient,
uint256 royaltyBps) ERC721(originalAddress, name, symbol, baseURI, hasExtension, royaltyRecipient, royaltyBps) {}
function _beforeTokenTransfer(address _from, address _to, uint256 _tokenId) internal override {
if (_from == address(0)) {
_addTokenToAllTokensEnumeration(_tokenId);
} else if (_from != _to){
_removeTokenFromOwnerEnumeration(_from, _tokenId);
}
if (_to == address(0)) {
_removeTokenFromAllTokensEnumeration(_tokenId);
_removeTokenFromOwnerEnumeration(_from, _tokenId);
} else if (_to != _from){
_addTokenToOwnerEnumeration(_to, _tokenId);
}
}
/* From OZ ERC721Enumerable */
/**
* @dev Private function to add a token to this extension's ownership-tracking data structures.
* @param to address representing the new owner of the given token ID
* @param tokenId uint256 ID of the token to be added to the tokens list of the given address
*/
function _addTokenToOwnerEnumeration(address to, uint256 tokenId) private {
// NOTE: Balance has not been incremented yet when this is called.
// Because of this, we don't subtract 1 from balanceOf(to) to get the index.
// Not only is this correct, it also prevents underflow on mint.
// The alternative would be moving this to the _afterTokenTransfer hook,
// but that would breack CEI (reentrancy)
uint256 length = balanceOf(to);
_ownedTokens[to][length] = tokenId;
_ownedTokensIndex[tokenId] = length;
}
/**
* @dev Private function to add a token to this extension's token tracking data structures.
* @param tokenId uint256 ID of the token to be added to the tokens list
*/
function _addTokenToAllTokensEnumeration(uint256 tokenId) private {
_allTokensIndex[tokenId] = _allTokens.length;
_allTokens.push(tokenId);
}
/**
* @dev Private function to remove a token from this extension's ownership-tracking data structures. Note that
* while the token is not assigned a new owner, the `_ownedTokensIndex` mapping is _not_ updated: this allows for
* gas optimizations e.g. when performing a transfer operation (avoiding double writes).
* This has O(1) time complexity, but alters the order of the _ownedTokens array.
* @param from address representing the previous owner of the given token ID
* @param tokenId uint256 ID of the token to be removed from the tokens list of the given address
*/
function _removeTokenFromOwnerEnumeration(address from, uint256 tokenId) private {
// To prevent a gap in from's tokens array, we store the last token in the index of the token to delete, and
// then delete the last slot (swap and pop).
// this decrement is safe because balanceOf has not been updated yet
// so if a user is sending their last token, balanceOf(from) will return 1
// and the value of lastTokenIndex will correctly be 0
uint256 lastTokenIndex = balanceOf(from) - 1;
uint256 tokenIndex = _ownedTokensIndex[tokenId];
mapping(uint256 index => uint256) storage _ownedTokensByOwner = _ownedTokens[from];
// When the token to delete is the last token, the swap operation is unnecessary
if (tokenIndex != lastTokenIndex) {
uint256 lastTokenId = _ownedTokensByOwner[lastTokenIndex];
_ownedTokensByOwner[tokenIndex] = lastTokenId; // Move the last token to the slot of the to-delete token
_ownedTokensIndex[lastTokenId] = tokenIndex; // Update the moved token's index
}
// This also deletes the contents at the last position of the array
delete _ownedTokensIndex[tokenId];
delete _ownedTokensByOwner[lastTokenIndex];
}
/**
* @dev Private function to remove a token from this extension's token tracking data structures.
* This has O(1) time complexity, but alters the order of the _allTokens array.
* @param tokenId uint256 ID of the token to be removed from the tokens list
*/
function _removeTokenFromAllTokensEnumeration(uint256 tokenId) private {
// To prevent a gap in the tokens array, we store the last token in the index of the token to delete, and
// then delete the last slot (swap and pop).
uint256 lastTokenIndex = _allTokens.length - 1;
uint256 tokenIndex = _allTokensIndex[tokenId];
// When the token to delete is the last token, the swap operation is unnecessary. However, since this occurs so
// rarely (when the last minted token is burnt) that we still do the swap here to avoid the gas cost of adding
// an 'if' statement (like in _removeTokenFromOwnerEnumeration)
uint256 lastTokenId = _allTokens[lastTokenIndex];
_allTokens[tokenIndex] = lastTokenId; // Move the last token to the slot of the to-delete token
_allTokensIndex[lastTokenId] = tokenIndex; // Update the moved token's index
// This also deletes the contents at the last position of the array
delete _allTokensIndex[tokenId];
_allTokens.pop();
}
/* ERC165 */
function supportsInterface(bytes4 interfaceId) public pure override returns (bool result) {
/// @solidity memory-safe-assembly
assembly {
let s := shr(224, interfaceId)
// ERC165: 0x01ffc9a7
// ERC2981: 0x2a55205a
result := or(eq(s, 0x01ffc9a7), eq(s, 0x2a55205a))
// ERC721: 0x80ac58cd
result := or(result, eq(s, 0x80ac58cd))
// ERC721Enumerable: 0x780e9d63
result := or(result, eq(s, 0x780e9d63))
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
import {ERC1155Base} from "./ERC1155Base.sol";
import {ERC2981} from "./ERC2981.sol";
import {LibString} from "./utils/LibString.sol";
import {PermissionedMintingNFT} from "./PermissionedMintingNFT.sol";
import {BridgedNFT} from "./BridgedNFT.sol";
contract ERC1155 is ERC1155Base, ERC2981, PermissionedMintingNFT, BridgedNFT {
// tokenURI overrides everything
mapping(uint256 => string) private _tokenURIs;
error URINotSet();
struct AirdropUnit {
address to;
uint256[] ids;
uint256[] amounts;
bytes data;
}
constructor(
address originalAddress,
address royaltyRecipient,
uint256 royaltyBps
) ERC2981(royaltyRecipient, royaltyBps) PermissionedMintingNFT() BridgedNFT(originalAddress) {}
function mint(address to, uint256 id, uint256 amount, bytes memory data) public mintIsOpen onlyMinter {
_mint(to, id, amount, data);
}
function bulkAirdrop(AirdropUnit[] calldata airdrops) public mintIsOpen onlyMinter {
for (uint256 i = 0; i < airdrops.length; ++i) {
_batchMint(airdrops[i].to, airdrops[i].ids, airdrops[i].amounts, airdrops[i].data);
}
}
function batchSetTokenURIs(uint256 startId, string[] calldata uris) public onlyMinter {
for (uint256 i = 0; i < uris.length; ++i) {
_tokenURIs[startId + i] = uris[i];
}
}
function setRoyalties(address recipient, uint256 bps) external onlyOwner {
_setRoyalties(recipient, bps);
}
function uri(uint256 id) public view override returns (string memory) {
if (bytes(_tokenURIs[id]).length != 0) {
return _tokenURIs[id];
} else {
revert URINotSet();
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != msg.sender) {
revert OwnableUnauthorizedAccount(msg.sender);
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
/// @notice Simple ERC721 implementation with storage hitchhiking.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/tokens/ERC721.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC721.sol)
/// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/tree/master/contracts/token/ERC721/ERC721.sol)
///
/// @dev Note:
/// - The ERC721 standard allows for self-approvals.
/// For performance, this implementation WILL NOT revert for such actions.
/// Please add any checks with overrides if desired.
/// - For performance, methods are made payable where permitted by the ERC721 standard.
/// - The `safeTransfer` functions use the identity precompile (0x4)
/// to copy memory internally.
///
/// If you are overriding:
/// - NEVER violate the ERC721 invariant:
/// the balance of an owner MUST always be equal to their number of ownership slots.
/// The transfer functions do not have an underflow guard for user token balances.
/// - Make sure all variables written to storage are properly cleaned
// (e.g. the bool value for `isApprovedForAll` MUST be either 1 or 0 under the hood).
/// - Check that the overridden function is actually used in the function you want to
/// change the behavior of. Much of the code has been manually inlined for performance.
abstract contract ERC721Base {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CONSTANTS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev An account can hold up to 4294967295 tokens.
uint256 internal constant _MAX_ACCOUNT_BALANCE = 0xffffffff;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CUSTOM ERRORS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Only the token owner or an approved account can manage the token.
error NotOwnerNorApproved();
/// @dev The token does not exist.
error TokenDoesNotExist();
/// @dev The token already exists.
error TokenAlreadyExists();
/// @dev Cannot query the balance for the zero address.
error BalanceQueryForZeroAddress();
/// @dev Cannot mint or transfer to the zero address.
error TransferToZeroAddress();
/// @dev The token must be owned by `from`.
error TransferFromIncorrectOwner();
/// @dev The recipient's balance has overflowed.
error AccountBalanceOverflow();
/// @dev Cannot safely transfer to a contract that does not implement
/// the ERC721Receiver interface.
error TransferToNonERC721ReceiverImplementer();
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* EVENTS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Emitted when token `id` is transferred from `from` to `to`.
event Transfer(address indexed from, address indexed to, uint256 indexed id);
/// @dev Emitted when `owner` enables `account` to manage the `id` token.
event Approval(address indexed owner, address indexed account, uint256 indexed id);
/// @dev Emitted when `owner` enables or disables `operator` to manage all of their tokens.
event ApprovalForAll(address indexed owner, address indexed operator, bool isApproved);
/// @dev `keccak256(bytes("Transfer(address,address,uint256)"))`.
uint256 private constant _TRANSFER_EVENT_SIGNATURE =
0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef;
/// @dev `keccak256(bytes("Approval(address,address,uint256)"))`.
uint256 private constant _APPROVAL_EVENT_SIGNATURE =
0x8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925;
/// @dev `keccak256(bytes("ApprovalForAll(address,address,bool)"))`.
uint256 private constant _APPROVAL_FOR_ALL_EVENT_SIGNATURE =
0x17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c31;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* STORAGE */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The ownership data slot of `id` is given by:
/// ```
/// mstore(0x00, id)
/// mstore(0x1c, _ERC721_MASTER_SLOT_SEED)
/// let ownershipSlot := add(id, add(id, keccak256(0x00, 0x20)))
/// ```
/// Bits Layout:
/// - [0..159] `addr`
/// - [160..255] `extraData`
///
/// The approved address slot is given by: `add(1, ownershipSlot)`.
///
/// See: https://notes.ethereum.org/%40vbuterin/verkle_tree_eip
///
/// The balance slot of `owner` is given by:
/// ```
/// mstore(0x1c, _ERC721_MASTER_SLOT_SEED)
/// mstore(0x00, owner)
/// let balanceSlot := keccak256(0x0c, 0x1c)
/// ```
/// Bits Layout:
/// - [0..31] `balance`
/// - [32..255] `aux`
///
/// The `operator` approval slot of `owner` is given by:
/// ```
/// mstore(0x1c, or(_ERC721_MASTER_SLOT_SEED, operator))
/// mstore(0x00, owner)
/// let operatorApprovalSlot := keccak256(0x0c, 0x30)
/// ```
uint256 private constant _ERC721_MASTER_SLOT_SEED = 0x7d8825530a5a2e7a << 192;
/// @dev Pre-shifted and pre-masked constant.
uint256 private constant _ERC721_MASTER_SLOT_SEED_MASKED = 0x0a5a2e7a00000000;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* ERC721 METADATA */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns the token collection name.
function name() public view virtual returns (string memory);
/// @dev Returns the token collection symbol.
function symbol() public view virtual returns (string memory);
/// @dev Returns the Uniform Resource Identifier (URI) for token `id`.
function tokenURI(uint256 id) public view virtual returns (string memory);
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* ERC721 */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns the owner of token `id`.
///
/// Requirements:
/// - Token `id` must exist.
function ownerOf(uint256 id) public view virtual returns (address result) {
result = _ownerOf(id);
/// @solidity memory-safe-assembly
assembly {
if iszero(result) {
mstore(0x00, 0xceea21b6) // `TokenDoesNotExist()`.
revert(0x1c, 0x04)
}
}
}
/// @dev Returns the number of tokens owned by `owner`.
///
/// Requirements:
/// - `owner` must not be the zero address.
function balanceOf(address owner) public view virtual returns (uint256 result) {
/// @solidity memory-safe-assembly
assembly {
// Revert if the `owner` is the zero address.
if iszero(owner) {
mstore(0x00, 0x8f4eb604) // `BalanceQueryForZeroAddress()`.
revert(0x1c, 0x04)
}
mstore(0x1c, _ERC721_MASTER_SLOT_SEED)
mstore(0x00, owner)
result := and(sload(keccak256(0x0c, 0x1c)), _MAX_ACCOUNT_BALANCE)
}
}
/// @dev Returns the account approved to manage token `id`.
///
/// Requirements:
/// - Token `id` must exist.
function getApproved(uint256 id) public view virtual returns (address result) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, id)
mstore(0x1c, _ERC721_MASTER_SLOT_SEED)
let ownershipSlot := add(id, add(id, keccak256(0x00, 0x20)))
if iszero(shl(96, sload(ownershipSlot))) {
mstore(0x00, 0xceea21b6) // `TokenDoesNotExist()`.
revert(0x1c, 0x04)
}
result := sload(add(1, ownershipSlot))
}
}
/// @dev Sets `account` as the approved account to manage token `id`.
///
/// Requirements:
/// - Token `id` must exist.
/// - The caller must be the owner of the token,
/// or an approved operator for the token owner.
///
/// Emits an {Approval} event.
function approve(address account, uint256 id) public payable virtual {
_approve(msg.sender, account, id);
}
/// @dev Returns whether `operator` is approved to manage the tokens of `owner`.
function isApprovedForAll(address owner, address operator)
public
view
virtual
returns (bool result)
{
/// @solidity memory-safe-assembly
assembly {
mstore(0x1c, operator)
mstore(0x08, _ERC721_MASTER_SLOT_SEED_MASKED)
mstore(0x00, owner)
result := sload(keccak256(0x0c, 0x30))
}
}
/// @dev Sets whether `operator` is approved to manage the tokens of the caller.
///
/// Emits an {ApprovalForAll} event.
function setApprovalForAll(address operator, bool isApproved) public virtual {
/// @solidity memory-safe-assembly
assembly {
// Convert to 0 or 1.
isApproved := iszero(iszero(isApproved))
// Update the `isApproved` for (`msg.sender`, `operator`).
mstore(0x1c, operator)
mstore(0x08, _ERC721_MASTER_SLOT_SEED_MASKED)
mstore(0x00, caller())
sstore(keccak256(0x0c, 0x30), isApproved)
// Emit the {ApprovalForAll} event.
mstore(0x00, isApproved)
// forgefmt: disable-next-item
log3(0x00, 0x20, _APPROVAL_FOR_ALL_EVENT_SIGNATURE, caller(), shr(96, shl(96, operator)))
}
}
/// @dev Transfers token `id` from `from` to `to`.
///
/// Requirements:
///
/// - Token `id` must exist.
/// - `from` must be the owner of the token.
/// - `to` cannot be the zero address.
/// - The caller must be the owner of the token, or be approved to manage the token.
///
/// Emits a {Transfer} event.
function transferFrom(address from, address to, uint256 id) public payable virtual {
_beforeTokenTransfer(from, to, id);
/// @solidity memory-safe-assembly
assembly {
// Clear the upper 96 bits.
let bitmaskAddress := shr(96, not(0))
from := and(bitmaskAddress, from)
to := and(bitmaskAddress, to)
// Load the ownership data.
mstore(0x00, id)
mstore(0x1c, or(_ERC721_MASTER_SLOT_SEED, caller()))
let ownershipSlot := add(id, add(id, keccak256(0x00, 0x20)))
let ownershipPacked := sload(ownershipSlot)
let owner := and(bitmaskAddress, ownershipPacked)
// Revert if the token does not exist, or if `from` is not the owner.
if iszero(mul(owner, eq(owner, from))) {
// `TokenDoesNotExist()`, `TransferFromIncorrectOwner()`.
mstore(shl(2, iszero(owner)), 0xceea21b6a1148100)
revert(0x1c, 0x04)
}
// Load, check, and update the token approval.
{
mstore(0x00, from)
let approvedAddress := sload(add(1, ownershipSlot))
// Revert if the caller is not the owner, nor approved.
if iszero(or(eq(caller(), from), eq(caller(), approvedAddress))) {
if iszero(sload(keccak256(0x0c, 0x30))) {
mstore(0x00, 0x4b6e7f18) // `NotOwnerNorApproved()`.
revert(0x1c, 0x04)
}
}
// Delete the approved address if any.
if approvedAddress { sstore(add(1, ownershipSlot), 0) }
}
// Update with the new owner.
sstore(ownershipSlot, xor(ownershipPacked, xor(from, to)))
// Decrement the balance of `from`.
{
let fromBalanceSlot := keccak256(0x0c, 0x1c)
sstore(fromBalanceSlot, sub(sload(fromBalanceSlot), 1))
}
// Increment the balance of `to`.
{
mstore(0x00, to)
let toBalanceSlot := keccak256(0x0c, 0x1c)
let toBalanceSlotPacked := add(sload(toBalanceSlot), 1)
// Revert if `to` is the zero address, or if the account balance overflows.
if iszero(mul(to, and(toBalanceSlotPacked, _MAX_ACCOUNT_BALANCE))) {
// `TransferToZeroAddress()`, `AccountBalanceOverflow()`.
mstore(shl(2, iszero(to)), 0xea553b3401336cea)
revert(0x1c, 0x04)
}
sstore(toBalanceSlot, toBalanceSlotPacked)
}
// Emit the {Transfer} event.
log4(codesize(), 0x00, _TRANSFER_EVENT_SIGNATURE, from, to, id)
}
_afterTokenTransfer(from, to, id);
}
/// @dev Equivalent to `safeTransferFrom(from, to, id, "")`.
function safeTransferFrom(address from, address to, uint256 id) public payable virtual {
transferFrom(from, to, id);
if (_hasCode(to)) _checkOnERC721Received(from, to, id, "");
}
/// @dev Transfers token `id` from `from` to `to`.
///
/// Requirements:
///
/// - Token `id` must exist.
/// - `from` must be the owner of the token.
/// - `to` cannot be the zero address.
/// - The caller must be the owner of the token, or be approved to manage the token.
/// - If `to` refers to a smart contract, it must implement
/// {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
///
/// Emits a {Transfer} event.
function safeTransferFrom(address from, address to, uint256 id, bytes calldata data)
public
payable
virtual
{
transferFrom(from, to, id);
if (_hasCode(to)) _checkOnERC721Received(from, to, id, data);
}
/// @dev Returns true if this contract implements the interface defined by `interfaceId`.
/// See: https://eips.ethereum.org/EIPS/eip-165
/// This function call must use less than 30000 gas.
function supportsInterface(bytes4 interfaceId) public view virtual returns (bool result) {
/// @solidity memory-safe-assembly
assembly {
let s := shr(224, interfaceId)
// ERC165: 0x01ffc9a7, ERC721: 0x80ac58cd, ERC721Metadata: 0x5b5e139f.
result := or(or(eq(s, 0x01ffc9a7), eq(s, 0x80ac58cd)), eq(s, 0x5b5e139f))
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* INTERNAL QUERY FUNCTIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns if token `id` exists.
function _exists(uint256 id) internal view virtual returns (bool result) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, id)
mstore(0x1c, _ERC721_MASTER_SLOT_SEED)
result := iszero(iszero(shl(96, sload(add(id, add(id, keccak256(0x00, 0x20)))))))
}
}
/// @dev Returns the owner of token `id`.
/// Returns the zero address instead of reverting if the token does not exist.
function _ownerOf(uint256 id) internal view virtual returns (address result) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, id)
mstore(0x1c, _ERC721_MASTER_SLOT_SEED)
result := shr(96, shl(96, sload(add(id, add(id, keccak256(0x00, 0x20))))))
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* INTERNAL DATA HITCHHIKING FUNCTIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
// For performance, no events are emitted for the hitchhiking setters.
// Please emit your own events if required.
/// @dev Returns the auxiliary data for `owner`.
/// Minting, transferring, burning the tokens of `owner` will not change the auxiliary data.
/// Auxiliary data can be set for any address, even if it does not have any tokens.
function _getAux(address owner) internal view virtual returns (uint224 result) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x1c, _ERC721_MASTER_SLOT_SEED)
mstore(0x00, owner)
result := shr(32, sload(keccak256(0x0c, 0x1c)))
}
}
/// @dev Set the auxiliary data for `owner` to `value`.
/// Minting, transferring, burning the tokens of `owner` will not change the auxiliary data.
/// Auxiliary data can be set for any address, even if it does not have any tokens.
function _setAux(address owner, uint224 value) internal virtual {
/// @solidity memory-safe-assembly
assembly {
mstore(0x1c, _ERC721_MASTER_SLOT_SEED)
mstore(0x00, owner)
let balanceSlot := keccak256(0x0c, 0x1c)
let packed := sload(balanceSlot)
sstore(balanceSlot, xor(packed, shl(32, xor(value, shr(32, packed)))))
}
}
/// @dev Returns the extra data for token `id`.
/// Minting, transferring, burning a token will not change the extra data.
/// The extra data can be set on a non-existent token.
function _getExtraData(uint256 id) internal view virtual returns (uint96 result) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, id)
mstore(0x1c, _ERC721_MASTER_SLOT_SEED)
result := shr(160, sload(add(id, add(id, keccak256(0x00, 0x20)))))
}
}
/// @dev Sets the extra data for token `id` to `value`.
/// Minting, transferring, burning a token will not change the extra data.
/// The extra data can be set on a non-existent token.
function _setExtraData(uint256 id, uint96 value) internal virtual {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, id)
mstore(0x1c, _ERC721_MASTER_SLOT_SEED)
let ownershipSlot := add(id, add(id, keccak256(0x00, 0x20)))
let packed := sload(ownershipSlot)
sstore(ownershipSlot, xor(packed, shl(160, xor(value, shr(160, packed)))))
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* INTERNAL MINT FUNCTIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Mints token `id` to `to`.
///
/// Requirements:
///
/// - Token `id` must not exist.
/// - `to` cannot be the zero address.
///
/// Emits a {Transfer} event.
function _mint(address to, uint256 id) internal virtual {
_beforeTokenTransfer(address(0), to, id);
/// @solidity memory-safe-assembly
assembly {
// Clear the upper 96 bits.
to := shr(96, shl(96, to))
// Load the ownership data.
mstore(0x00, id)
mstore(0x1c, _ERC721_MASTER_SLOT_SEED)
let ownershipSlot := add(id, add(id, keccak256(0x00, 0x20)))
let ownershipPacked := sload(ownershipSlot)
// Revert if the token already exists.
if shl(96, ownershipPacked) {
mstore(0x00, 0xc991cbb1) // `TokenAlreadyExists()`.
revert(0x1c, 0x04)
}
// Update with the owner.
sstore(ownershipSlot, or(ownershipPacked, to))
// Increment the balance of the owner.
{
mstore(0x00, to)
let balanceSlot := keccak256(0x0c, 0x1c)
let balanceSlotPacked := add(sload(balanceSlot), 1)
// Revert if `to` is the zero address, or if the account balance overflows.
if iszero(mul(to, and(balanceSlotPacked, _MAX_ACCOUNT_BALANCE))) {
// `TransferToZeroAddress()`, `AccountBalanceOverflow()`.
mstore(shl(2, iszero(to)), 0xea553b3401336cea)
revert(0x1c, 0x04)
}
sstore(balanceSlot, balanceSlotPacked)
}
// Emit the {Transfer} event.
log4(codesize(), 0x00, _TRANSFER_EVENT_SIGNATURE, 0, to, id)
}
_afterTokenTransfer(address(0), to, id);
}
/// @dev Mints token `id` to `to`, and updates the extra data for token `id` to `value`.
/// Does NOT check if token `id` already exists (assumes `id` is auto-incrementing).
///
/// Requirements:
///
/// - `to` cannot be the zero address.
///
/// Emits a {Transfer} event.
function _mintAndSetExtraDataUnchecked(address to, uint256 id, uint96 value) internal virtual {
_beforeTokenTransfer(address(0), to, id);
/// @solidity memory-safe-assembly
assembly {
// Clear the upper 96 bits.
to := shr(96, shl(96, to))
// Update with the owner and extra data.
mstore(0x00, id)
mstore(0x1c, _ERC721_MASTER_SLOT_SEED)
sstore(add(id, add(id, keccak256(0x00, 0x20))), or(shl(160, value), to))
// Increment the balance of the owner.
{
mstore(0x00, to)
let balanceSlot := keccak256(0x0c, 0x1c)
let balanceSlotPacked := add(sload(balanceSlot), 1)
// Revert if `to` is the zero address, or if the account balance overflows.
if iszero(mul(to, and(balanceSlotPacked, _MAX_ACCOUNT_BALANCE))) {
// `TransferToZeroAddress()`, `AccountBalanceOverflow()`.
mstore(shl(2, iszero(to)), 0xea553b3401336cea)
revert(0x1c, 0x04)
}
sstore(balanceSlot, balanceSlotPacked)
}
// Emit the {Transfer} event.
log4(codesize(), 0x00, _TRANSFER_EVENT_SIGNATURE, 0, to, id)
}
_afterTokenTransfer(address(0), to, id);
}
/// @dev Equivalent to `_safeMint(to, id, "")`.
function _safeMint(address to, uint256 id) internal virtual {
_safeMint(to, id, "");
}
/// @dev Mints token `id` to `to`.
///
/// Requirements:
///
/// - Token `id` must not exist.
/// - `to` cannot be the zero address.
/// - If `to` refers to a smart contract, it must implement
/// {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
///
/// Emits a {Transfer} event.
function _safeMint(address to, uint256 id, bytes memory data) internal virtual {
_mint(to, id);
if (_hasCode(to)) _checkOnERC721Received(address(0), to, id, data);
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* INTERNAL BURN FUNCTIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Equivalent to `_burn(address(0), id)`.
function _burn(uint256 id) internal virtual {
_burn(address(0), id);
}
/// @dev Destroys token `id`, using `by`.
///
/// Requirements:
///
/// - Token `id` must exist.
/// - If `by` is not the zero address,
/// it must be the owner of the token, or be approved to manage the token.
///
/// Emits a {Transfer} event.
function _burn(address by, uint256 id) internal virtual {
address owner = ownerOf(id);
_beforeTokenTransfer(owner, address(0), id);
/// @solidity memory-safe-assembly
assembly {
// Clear the upper 96 bits.
by := shr(96, shl(96, by))
// Load the ownership data.
mstore(0x00, id)
mstore(0x1c, or(_ERC721_MASTER_SLOT_SEED, by))
let ownershipSlot := add(id, add(id, keccak256(0x00, 0x20)))
let ownershipPacked := sload(ownershipSlot)
// Reload the owner in case it is changed in `_beforeTokenTransfer`.
owner := shr(96, shl(96, ownershipPacked))
// Revert if the token does not exist.
if iszero(owner) {
mstore(0x00, 0xceea21b6) // `TokenDoesNotExist()`.
revert(0x1c, 0x04)
}
// Load and check the token approval.
{
mstore(0x00, owner)
let approvedAddress := sload(add(1, ownershipSlot))
// If `by` is not the zero address, do the authorization check.
// Revert if the `by` is not the owner, nor approved.
if iszero(or(iszero(by), or(eq(by, owner), eq(by, approvedAddress)))) {
if iszero(sload(keccak256(0x0c, 0x30))) {
mstore(0x00, 0x4b6e7f18) // `NotOwnerNorApproved()`.
revert(0x1c, 0x04)
}
}
// Delete the approved address if any.
if approvedAddress { sstore(add(1, ownershipSlot), 0) }
}
// Clear the owner.
sstore(ownershipSlot, xor(ownershipPacked, owner))
// Decrement the balance of `owner`.
{
let balanceSlot := keccak256(0x0c, 0x1c)
sstore(balanceSlot, sub(sload(balanceSlot), 1))
}
// Emit the {Transfer} event.
log4(codesize(), 0x00, _TRANSFER_EVENT_SIGNATURE, owner, 0, id)
}
_afterTokenTransfer(owner, address(0), id);
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* INTERNAL APPROVAL FUNCTIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns whether `account` is the owner of token `id`, or is approved to manage it.
///
/// Requirements:
/// - Token `id` must exist.
function _isApprovedOrOwner(address account, uint256 id)
internal
view
virtual
returns (bool result)
{
/// @solidity memory-safe-assembly
assembly {
result := 1
// Clear the upper 96 bits.
account := shr(96, shl(96, account))
// Load the ownership data.
mstore(0x00, id)
mstore(0x1c, or(_ERC721_MASTER_SLOT_SEED, account))
let ownershipSlot := add(id, add(id, keccak256(0x00, 0x20)))
let owner := shr(96, shl(96, sload(ownershipSlot)))
// Revert if the token does not exist.
if iszero(owner) {
mstore(0x00, 0xceea21b6) // `TokenDoesNotExist()`.
revert(0x1c, 0x04)
}
// Check if `account` is the `owner`.
if iszero(eq(account, owner)) {
mstore(0x00, owner)
// Check if `account` is approved to manage the token.
if iszero(sload(keccak256(0x0c, 0x30))) {
result := eq(account, sload(add(1, ownershipSlot)))
}
}
}
}
/// @dev Returns the account approved to manage token `id`.
/// Returns the zero address instead of reverting if the token does not exist.
function _getApproved(uint256 id) internal view virtual returns (address result) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, id)
mstore(0x1c, _ERC721_MASTER_SLOT_SEED)
result := sload(add(1, add(id, add(id, keccak256(0x00, 0x20)))))
}
}
/// @dev Equivalent to `_approve(address(0), account, id)`.
function _approve(address account, uint256 id) internal virtual {
_approve(address(0), account, id);
}
/// @dev Sets `account` as the approved account to manage token `id`, using `by`.
///
/// Requirements:
/// - Token `id` must exist.
/// - If `by` is not the zero address, `by` must be the owner
/// or an approved operator for the token owner.
///
/// Emits a {Approval} event.
function _approve(address by, address account, uint256 id) internal virtual {
assembly {
// Clear the upper 96 bits.
let bitmaskAddress := shr(96, not(0))
account := and(bitmaskAddress, account)
by := and(bitmaskAddress, by)
// Load the owner of the token.
mstore(0x00, id)
mstore(0x1c, or(_ERC721_MASTER_SLOT_SEED, by))
let ownershipSlot := add(id, add(id, keccak256(0x00, 0x20)))
let owner := and(bitmaskAddress, sload(ownershipSlot))
// Revert if the token does not exist.
if iszero(owner) {
mstore(0x00, 0xceea21b6) // `TokenDoesNotExist()`.
revert(0x1c, 0x04)
}
// If `by` is not the zero address, do the authorization check.
// Revert if `by` is not the owner, nor approved.
if iszero(or(iszero(by), eq(by, owner))) {
mstore(0x00, owner)
if iszero(sload(keccak256(0x0c, 0x30))) {
mstore(0x00, 0x4b6e7f18) // `NotOwnerNorApproved()`.
revert(0x1c, 0x04)
}
}
// Sets `account` as the approved account to manage `id`.
sstore(add(1, ownershipSlot), account)
// Emit the {Approval} event.
log4(codesize(), 0x00, _APPROVAL_EVENT_SIGNATURE, owner, account, id)
}
}
/// @dev Approve or remove the `operator` as an operator for `by`,
/// without authorization checks.
///
/// Emits an {ApprovalForAll} event.
function _setApprovalForAll(address by, address operator, bool isApproved) internal virtual {
/// @solidity memory-safe-assembly
assembly {
// Clear the upper 96 bits.
by := shr(96, shl(96, by))
operator := shr(96, shl(96, operator))
// Convert to 0 or 1.
isApproved := iszero(iszero(isApproved))
// Update the `isApproved` for (`by`, `operator`).
mstore(0x1c, or(_ERC721_MASTER_SLOT_SEED, operator))
mstore(0x00, by)
sstore(keccak256(0x0c, 0x30), isApproved)
// Emit the {ApprovalForAll} event.
mstore(0x00, isApproved)
log3(0x00, 0x20, _APPROVAL_FOR_ALL_EVENT_SIGNATURE, by, operator)
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* INTERNAL TRANSFER FUNCTIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Equivalent to `_transfer(address(0), from, to, id)`.
function _transfer(address from, address to, uint256 id) internal virtual {
_transfer(address(0), from, to, id);
}
/// @dev Transfers token `id` from `from` to `to`.
///
/// Requirements:
///
/// - Token `id` must exist.
/// - `from` must be the owner of the token.
/// - `to` cannot be the zero address.
/// - If `by` is not the zero address,
/// it must be the owner of the token, or be approved to manage the token.
///
/// Emits a {Transfer} event.
function _transfer(address by, address from, address to, uint256 id) internal virtual {
_beforeTokenTransfer(from, to, id);
/// @solidity memory-safe-assembly
assembly {
// Clear the upper 96 bits.
let bitmaskAddress := shr(96, not(0))
from := and(bitmaskAddress, from)
to := and(bitmaskAddress, to)
by := and(bitmaskAddress, by)
// Load the ownership data.
mstore(0x00, id)
mstore(0x1c, or(_ERC721_MASTER_SLOT_SEED, by))
let ownershipSlot := add(id, add(id, keccak256(0x00, 0x20)))
let ownershipPacked := sload(ownershipSlot)
let owner := and(bitmaskAddress, ownershipPacked)
// Revert if the token does not exist, or if `from` is not the owner.
if iszero(mul(owner, eq(owner, from))) {
// `TokenDoesNotExist()`, `TransferFromIncorrectOwner()`.
mstore(shl(2, iszero(owner)), 0xceea21b6a1148100)
revert(0x1c, 0x04)
}
// Load, check, and update the token approval.
{
mstore(0x00, from)
let approvedAddress := sload(add(1, ownershipSlot))
// If `by` is not the zero address, do the authorization check.
// Revert if the `by` is not the owner, nor approved.
if iszero(or(iszero(by), or(eq(by, from), eq(by, approvedAddress)))) {
if iszero(sload(keccak256(0x0c, 0x30))) {
mstore(0x00, 0x4b6e7f18) // `NotOwnerNorApproved()`.
revert(0x1c, 0x04)
}
}
// Delete the approved address if any.
if approvedAddress { sstore(add(1, ownershipSlot), 0) }
}
// Update with the new owner.
sstore(ownershipSlot, xor(ownershipPacked, xor(from, to)))
// Decrement the balance of `from`.
{
let fromBalanceSlot := keccak256(0x0c, 0x1c)
sstore(fromBalanceSlot, sub(sload(fromBalanceSlot), 1))
}
// Increment the balance of `to`.
{
mstore(0x00, to)
let toBalanceSlot := keccak256(0x0c, 0x1c)
let toBalanceSlotPacked := add(sload(toBalanceSlot), 1)
// Revert if `to` is the zero address, or if the account balance overflows.
if iszero(mul(to, and(toBalanceSlotPacked, _MAX_ACCOUNT_BALANCE))) {
// `TransferToZeroAddress()`, `AccountBalanceOverflow()`.
mstore(shl(2, iszero(to)), 0xea553b3401336cea)
revert(0x1c, 0x04)
}
sstore(toBalanceSlot, toBalanceSlotPacked)
}
// Emit the {Transfer} event.
log4(codesize(), 0x00, _TRANSFER_EVENT_SIGNATURE, from, to, id)
}
_afterTokenTransfer(from, to, id);
}
/// @dev Equivalent to `_safeTransfer(from, to, id, "")`.
function _safeTransfer(address from, address to, uint256 id) internal virtual {
_safeTransfer(from, to, id, "");
}
/// @dev Transfers token `id` from `from` to `to`.
///
/// Requirements:
///
/// - Token `id` must exist.
/// - `from` must be the owner of the token.
/// - `to` cannot be the zero address.
/// - The caller must be the owner of the token, or be approved to manage the token.
/// - If `to` refers to a smart contract, it must implement
/// {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
///
/// Emits a {Transfer} event.
function _safeTransfer(address from, address to, uint256 id, bytes memory data)
internal
virtual
{
_transfer(address(0), from, to, id);
if (_hasCode(to)) _checkOnERC721Received(from, to, id, data);
}
/// @dev Equivalent to `_safeTransfer(by, from, to, id, "")`.
function _safeTransfer(address by, address from, address to, uint256 id) internal virtual {
_safeTransfer(by, from, to, id, "");
}
/// @dev Transfers token `id` from `from` to `to`.
///
/// Requirements:
///
/// - Token `id` must exist.
/// - `from` must be the owner of the token.
/// - `to` cannot be the zero address.
/// - If `by` is not the zero address,
/// it must be the owner of the token, or be approved to manage the token.
/// - If `to` refers to a smart contract, it must implement
/// {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
///
/// Emits a {Transfer} event.
function _safeTransfer(address by, address from, address to, uint256 id, bytes memory data)
internal
virtual
{
_transfer(by, from, to, id);
if (_hasCode(to)) _checkOnERC721Received(from, to, id, data);
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* HOOKS FOR OVERRIDING */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Hook that is called before any token transfers, including minting and burning.
function _beforeTokenTransfer(address from, address to, uint256 id) internal virtual {}
/// @dev Hook that is called after any token transfers, including minting and burning.
function _afterTokenTransfer(address from, address to, uint256 id) internal virtual {}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* PRIVATE HELPERS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns if `a` has bytecode of non-zero length.
function _hasCode(address a) private view returns (bool result) {
/// @solidity memory-safe-assembly
assembly {
result := extcodesize(a) // Can handle dirty upper bits.
}
}
/// @dev Perform a call to invoke {IERC721Receiver-onERC721Received} on `to`.
/// Reverts if the target does not support the function correctly.
function _checkOnERC721Received(address from, address to, uint256 id, bytes memory data)
private
{
/// @solidity memory-safe-assembly
assembly {
// Prepare the calldata.
let m := mload(0x40)
let onERC721ReceivedSelector := 0x150b7a02
mstore(m, onERC721ReceivedSelector)
mstore(add(m, 0x20), caller()) // The `operator`, which is always `msg.sender`.
mstore(add(m, 0x40), shr(96, shl(96, from)))
mstore(add(m, 0x60), id)
mstore(add(m, 0x80), 0x80)
let n := mload(data)
mstore(add(m, 0xa0), n)
if n { pop(staticcall(gas(), 4, add(data, 0x20), n, add(m, 0xc0), n)) }
// Revert if the call reverts.
if iszero(call(gas(), to, 0, add(m, 0x1c), add(n, 0xa4), m, 0x20)) {
if returndatasize() {
// Bubble up the revert if the call reverts.
returndatacopy(m, 0x00, returndatasize())
revert(m, returndatasize())
}
}
// Load the returndata and compare it.
if iszero(eq(mload(m), shl(224, onERC721ReceivedSelector))) {
mstore(0x00, 0xd1a57ed6) // `TransferToNonERC721ReceiverImplementer()`.
revert(0x1c, 0x04)
}
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
/// @notice Library for converting numbers into strings and other string operations.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibString.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/LibString.sol)
///
/// @dev Note:
/// For performance and bytecode compactness, most of the string operations are restricted to
/// byte strings (7-bit ASCII), except where otherwise specified.
/// Usage of byte string operations on charsets with runes spanning two or more bytes
/// can lead to undefined behavior.
library LibString {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CUSTOM ERRORS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The length of the output is too small to contain all the hex digits.
error HexLengthInsufficient();
/// @dev The length of the string is more than 32 bytes.
error TooBigForSmallString();
/// @dev The input string must be a 7-bit ASCII.
error StringNot7BitASCII();
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CONSTANTS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The constant returned when the `search` is not found in the string.
uint256 internal constant NOT_FOUND = type(uint256).max;
/// @dev Lookup for '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'.
uint128 internal constant ALPHANUMERIC_7_BIT_ASCII = 0x7fffffe07fffffe03ff000000000000;
/// @dev Lookup for 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'.
uint128 internal constant LETTERS_7_BIT_ASCII = 0x7fffffe07fffffe0000000000000000;
/// @dev Lookup for 'abcdefghijklmnopqrstuvwxyz'.
uint128 internal constant LOWERCASE_7_BIT_ASCII = 0x7fffffe000000000000000000000000;
/// @dev Lookup for 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'.
uint128 internal constant UPPERCASE_7_BIT_ASCII = 0x7fffffe0000000000000000;
/// @dev Lookup for '0123456789'.
uint128 internal constant DIGITS_7_BIT_ASCII = 0x3ff000000000000;
/// @dev Lookup for '0123456789abcdefABCDEF'.
uint128 internal constant HEXDIGITS_7_BIT_ASCII = 0x7e0000007e03ff000000000000;
/// @dev Lookup for '01234567'.
uint128 internal constant OCTDIGITS_7_BIT_ASCII = 0xff000000000000;
/// @dev Lookup for '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~ \t\n\r\x0b\x0c'.
uint128 internal constant PRINTABLE_7_BIT_ASCII = 0x7fffffffffffffffffffffff00003e00;
/// @dev Lookup for '!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~'.
uint128 internal constant PUNCTUATION_7_BIT_ASCII = 0x78000001f8000001fc00fffe00000000;
/// @dev Lookup for ' \t\n\r\x0b\x0c'.
uint128 internal constant WHITESPACE_7_BIT_ASCII = 0x100003e00;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* DECIMAL OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns the base 10 decimal representation of `value`.
function toString(uint256 value) internal pure returns (string memory result) {
/// @solidity memory-safe-assembly
assembly {
// The maximum value of a uint256 contains 78 digits (1 byte per digit), but
// we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned.
// We will need 1 word for the trailing zeros padding, 1 word for the length,
// and 3 words for a maximum of 78 digits.
result := add(mload(0x40), 0x80)
mstore(0x40, add(result, 0x20)) // Allocate memory.
mstore(result, 0) // Zeroize the slot after the string.
let end := result // Cache the end of the memory to calculate the length later.
let w := not(0) // Tsk.
// We write the string from rightmost digit to leftmost digit.
// The following is essentially a do-while loop that also handles the zero case.
for { let temp := value } 1 {} {
result := add(result, w) // `sub(result, 1)`.
// Store the character to the pointer.
// The ASCII index of the '0' character is 48.
mstore8(result, add(48, mod(temp, 10)))
temp := div(temp, 10) // Keep dividing `temp` until zero.
if iszero(temp) { break }
}
let n := sub(end, result)
result := sub(result, 0x20) // Move the pointer 32 bytes back to make room for the length.
mstore(result, n) // Store the length.
}
}
/// @dev Returns the base 10 decimal representation of `value`.
function toString(int256 value) internal pure returns (string memory result) {
if (value >= 0) return toString(uint256(value));
unchecked {
result = toString(~uint256(value) + 1);
}
/// @solidity memory-safe-assembly
assembly {
// We still have some spare memory space on the left,
// as we have allocated 3 words (96 bytes) for up to 78 digits.
let n := mload(result) // Load the string length.
mstore(result, 0x2d) // Store the '-' character.
result := sub(result, 1) // Move back the string pointer by a byte.
mstore(result, add(n, 1)) // Update the string length.
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* HEXADECIMAL OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns the hexadecimal representation of `value`,
/// left-padded to an input length of `length` bytes.
/// The output is prefixed with "0x" encoded using 2 hexadecimal digits per byte,
/// giving a total length of `length * 2 + 2` bytes.
/// Reverts if `length` is too small for the output to contain all the digits.
function toHexString(uint256 value, uint256 length)
internal
pure
returns (string memory result)
{
result = toHexStringNoPrefix(value, length);
/// @solidity memory-safe-assembly
assembly {
let n := add(mload(result), 2) // Compute the length.
mstore(result, 0x3078) // Store the "0x" prefix.
result := sub(result, 2) // Move the pointer.
mstore(result, n) // Store the length.
}
}
/// @dev Returns the hexadecimal representation of `value`,
/// left-padded to an input length of `length` bytes.
/// The output is not prefixed with "0x" and is encoded using 2 hexadecimal digits per byte,
/// giving a total length of `length * 2` bytes.
/// Reverts if `length` is too small for the output to contain all the digits.
function toHexStringNoPrefix(uint256 value, uint256 length)
internal
pure
returns (string memory result)
{
/// @solidity memory-safe-assembly
assembly {
// We need 0x20 bytes for the trailing zeros padding, `length * 2` bytes
// for the digits, 0x02 bytes for the prefix, and 0x20 bytes for the length.
// We add 0x20 to the total and round down to a multiple of 0x20.
// (0x20 + 0x20 + 0x02 + 0x20) = 0x62.
result := add(mload(0x40), and(add(shl(1, length), 0x42), not(0x1f)))
mstore(0x40, add(result, 0x20)) // Allocate memory.
mstore(result, 0) // Zeroize the slot after the string.
let end := result // Cache the end to calculate the length later.
// Store "0123456789abcdef" in scratch space.
mstore(0x0f, 0x30313233343536373839616263646566)
let start := sub(result, add(length, length))
let w := not(1) // Tsk.
let temp := value
// We write the string from rightmost digit to leftmost digit.
// The following is essentially a do-while loop that also handles the zero case.
for {} 1 {} {
result := add(result, w) // `sub(result, 2)`.
mstore8(add(result, 1), mload(and(temp, 15)))
mstore8(result, mload(and(shr(4, temp), 15)))
temp := shr(8, temp)
if iszero(xor(result, start)) { break }
}
if temp {
mstore(0x00, 0x2194895a) // `HexLengthInsufficient()`.
revert(0x1c, 0x04)
}
let n := sub(end, result)
result := sub(result, 0x20)
mstore(result, n) // Store the length.
}
}
/// @dev Returns the hexadecimal representation of `value`.
/// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte.
/// As address are 20 bytes long, the output will left-padded to have
/// a length of `20 * 2 + 2` bytes.
function toHexString(uint256 value) internal pure returns (string memory result) {
result = toHexStringNoPrefix(value);
/// @solidity memory-safe-assembly
assembly {
let n := add(mload(result), 2) // Compute the length.
mstore(result, 0x3078) // Store the "0x" prefix.
result := sub(result, 2) // Move the pointer.
mstore(result, n) // Store the length.
}
}
/// @dev Returns the hexadecimal representation of `value`.
/// The output is prefixed with "0x".
/// The output excludes leading "0" from the `toHexString` output.
/// `0x00: "0x0", 0x01: "0x1", 0x12: "0x12", 0x123: "0x123"`.
function toMinimalHexString(uint256 value) internal pure returns (string memory result) {
result = toHexStringNoPrefix(value);
/// @solidity memory-safe-assembly
assembly {
let o := eq(byte(0, mload(add(result, 0x20))), 0x30) // Whether leading zero is present.
let n := add(mload(result), 2) // Compute the length.
mstore(add(result, o), 0x3078) // Store the "0x" prefix, accounting for leading zero.
result := sub(add(result, o), 2) // Move the pointer, accounting for leading zero.
mstore(result, sub(n, o)) // Store the length, accounting for leading zero.
}
}
/// @dev Returns the hexadecimal representation of `value`.
/// The output excludes leading "0" from the `toHexStringNoPrefix` output.
/// `0x00: "0", 0x01: "1", 0x12: "12", 0x123: "123"`.
function toMinimalHexStringNoPrefix(uint256 value)
internal
pure
returns (string memory result)
{
result = toHexStringNoPrefix(value);
/// @solidity memory-safe-assembly
assembly {
let o := eq(byte(0, mload(add(result, 0x20))), 0x30) // Whether leading zero is present.
let n := mload(result) // Get the length.
result := add(result, o) // Move the pointer, accounting for leading zero.
mstore(result, sub(n, o)) // Store the length, accounting for leading zero.
}
}
/// @dev Returns the hexadecimal representation of `value`.
/// The output is encoded using 2 hexadecimal digits per byte.
/// As address are 20 bytes long, the output will left-padded to have
/// a length of `20 * 2` bytes.
function toHexStringNoPrefix(uint256 value) internal pure returns (string memory result) {
/// @solidity memory-safe-assembly
assembly {
// We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length,
// 0x02 bytes for the prefix, and 0x40 bytes for the digits.
// The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x40) is 0xa0.
result := add(mload(0x40), 0x80)
mstore(0x40, add(result, 0x20)) // Allocate memory.
mstore(result, 0) // Zeroize the slot after the string.
let end := result // Cache the end to calculate the length later.
mstore(0x0f, 0x30313233343536373839616263646566) // Store the "0123456789abcdef" lookup.
let w := not(1) // Tsk.
// We write the string from rightmost digit to leftmost digit.
// The following is essentially a do-while loop that also handles the zero case.
for { let temp := value } 1 {} {
result := add(result, w) // `sub(result, 2)`.
mstore8(add(result, 1), mload(and(temp, 15)))
mstore8(result, mload(and(shr(4, temp), 15)))
temp := shr(8, temp)
if iszero(temp) { break }
}
let n := sub(end, result)
result := sub(result, 0x20)
mstore(result, n) // Store the length.
}
}
/// @dev Returns the hexadecimal representation of `value`.
/// The output is prefixed with "0x", encoded using 2 hexadecimal digits per byte,
/// and the alphabets are capitalized conditionally according to
/// https://eips.ethereum.org/EIPS/eip-55
function toHexStringChecksummed(address value) internal pure returns (string memory result) {
result = toHexString(value);
/// @solidity memory-safe-assembly
assembly {
let mask := shl(6, div(not(0), 255)) // `0b010000000100000000 ...`
let o := add(result, 0x22)
let hashed := and(keccak256(o, 40), mul(34, mask)) // `0b10001000 ... `
let t := shl(240, 136) // `0b10001000 << 240`
for { let i := 0 } 1 {} {
mstore(add(i, i), mul(t, byte(i, hashed)))
i := add(i, 1)
if eq(i, 20) { break }
}
mstore(o, xor(mload(o), shr(1, and(mload(0x00), and(mload(o), mask)))))
o := add(o, 0x20)
mstore(o, xor(mload(o), shr(1, and(mload(0x20), and(mload(o), mask)))))
}
}
/// @dev Returns the hexadecimal representation of `value`.
/// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte.
function toHexString(address value) internal pure returns (string memory result) {
result = toHexStringNoPrefix(value);
/// @solidity memory-safe-assembly
assembly {
let n := add(mload(result), 2) // Compute the length.
mstore(result, 0x3078) // Store the "0x" prefix.
result := sub(result, 2) // Move the pointer.
mstore(result, n) // Store the length.
}
}
/// @dev Returns the hexadecimal representation of `value`.
/// The output is encoded using 2 hexadecimal digits per byte.
function toHexStringNoPrefix(address value) internal pure returns (string memory result) {
/// @solidity memory-safe-assembly
assembly {
result := mload(0x40)
// Allocate memory.
// We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length,
// 0x02 bytes for the prefix, and 0x28 bytes for the digits.
// The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x28) is 0x80.
mstore(0x40, add(result, 0x80))
mstore(0x0f, 0x30313233343536373839616263646566) // Store the "0123456789abcdef" lookup.
result := add(result, 2)
mstore(result, 40) // Store the length.
let o := add(result, 0x20)
mstore(add(o, 40), 0) // Zeroize the slot after the string.
value := shl(96, value)
// We write the string from rightmost digit to leftmost digit.
// The following is essentially a do-while loop that also handles the zero case.
for { let i := 0 } 1 {} {
let p := add(o, add(i, i))
let temp := byte(i, value)
mstore8(add(p, 1), mload(and(temp, 15)))
mstore8(p, mload(shr(4, temp)))
i := add(i, 1)
if eq(i, 20) { break }
}
}
}
/// @dev Returns the hex encoded string from the raw bytes.
/// The output is encoded using 2 hexadecimal digits per byte.
function toHexString(bytes memory raw) internal pure returns (string memory result) {
result = toHexStringNoPrefix(raw);
/// @solidity memory-safe-assembly
assembly {
let n := add(mload(result), 2) // Compute the length.
mstore(result, 0x3078) // Store the "0x" prefix.
result := sub(result, 2) // Move the pointer.
mstore(result, n) // Store the length.
}
}
/// @dev Returns the hex encoded string from the raw bytes.
/// The output is encoded using 2 hexadecimal digits per byte.
function toHexStringNoPrefix(bytes memory raw) internal pure returns (string memory result) {
/// @solidity memory-safe-assembly
assembly {
let n := mload(raw)
result := add(mload(0x40), 2) // Skip 2 bytes for the optional prefix.
mstore(result, add(n, n)) // Store the length of the output.
mstore(0x0f, 0x30313233343536373839616263646566) // Store the "0123456789abcdef" lookup.
let o := add(result, 0x20)
let end := add(raw, n)
for {} iszero(eq(raw, end)) {} {
raw := add(raw, 1)
mstore8(add(o, 1), mload(and(mload(raw), 15)))
mstore8(o, mload(and(shr(4, mload(raw)), 15)))
o := add(o, 2)
}
mstore(o, 0) // Zeroize the slot after the string.
mstore(0x40, add(o, 0x20)) // Allocate memory.
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* RUNE STRING OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns the number of UTF characters in the string.
function runeCount(string memory s) internal pure returns (uint256 result) {
/// @solidity memory-safe-assembly
assembly {
if mload(s) {
mstore(0x00, div(not(0), 255))
mstore(0x20, 0x0202020202020202020202020202020202020202020202020303030304040506)
let o := add(s, 0x20)
let end := add(o, mload(s))
for { result := 1 } 1 { result := add(result, 1) } {
o := add(o, byte(0, mload(shr(250, mload(o)))))
if iszero(lt(o, end)) { break }
}
}
}
}
/// @dev Returns if this string is a 7-bit ASCII string.
/// (i.e. all characters codes are in [0..127])
function is7BitASCII(string memory s) internal pure returns (bool result) {
/// @solidity memory-safe-assembly
assembly {
result := 1
let mask := shl(7, div(not(0), 255))
let n := mload(s)
if n {
let o := add(s, 0x20)
let end := add(o, n)
let last := mload(end)
mstore(end, 0)
for {} 1 {} {
if and(mask, mload(o)) {
result := 0
break
}
o := add(o, 0x20)
if iszero(lt(o, end)) { break }
}
mstore(end, last)
}
}
}
/// @dev Returns if this string is a 7-bit ASCII string,
/// AND all characters are in the `allowed` lookup.
/// Note: If `s` is empty, returns true regardless of `allowed`.
function is7BitASCII(string memory s, uint128 allowed) internal pure returns (bool result) {
/// @solidity memory-safe-assembly
assembly {
result := 1
if mload(s) {
let allowed_ := shr(128, shl(128, allowed))
let o := add(s, 0x20)
for { let end := add(o, mload(s)) } 1 {} {
result := and(result, shr(byte(0, mload(o)), allowed_))
o := add(o, 1)
if iszero(and(result, lt(o, end))) { break }
}
}
}
}
/// @dev Converts the bytes in the 7-bit ASCII string `s` to
/// an allowed lookup for use in `is7BitASCII(s, allowed)`.
/// To save runtime gas, you can cache the result in an immutable variable.
function to7BitASCIIAllowedLookup(string memory s) internal pure returns (uint128 result) {
/// @solidity memory-safe-assembly
assembly {
if mload(s) {
let o := add(s, 0x20)
for { let end := add(o, mload(s)) } 1 {} {
result := or(result, shl(byte(0, mload(o)), 1))
o := add(o, 1)
if iszero(lt(o, end)) { break }
}
if shr(128, result) {
mstore(0x00, 0xc9807e0d) // `StringNot7BitASCII()`.
revert(0x1c, 0x04)
}
}
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* BYTE STRING OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
// For performance and bytecode compactness, byte string operations are restricted
// to 7-bit ASCII strings. All offsets are byte offsets, not UTF character offsets.
// Usage of byte string operations on charsets with runes spanning two or more bytes
// can lead to undefined behavior.
/// @dev Returns `subject` all occurrences of `needle` replaced with `replacement`.
function replace(string memory subject, string memory needle, string memory replacement)
internal
pure
returns (string memory result)
{
/// @solidity memory-safe-assembly
assembly {
result := mload(0x40)
let needleLen := mload(needle)
let replacementLen := mload(replacement)
let d := sub(result, subject) // Memory difference.
let i := add(subject, 0x20) // Subject bytes pointer.
let end := add(i, mload(subject))
if iszero(gt(needleLen, mload(subject))) {
let subjectSearchEnd := add(sub(end, needleLen), 1)
let h := 0 // The hash of `needle`.
if iszero(lt(needleLen, 0x20)) { h := keccak256(add(needle, 0x20), needleLen) }
let s := mload(add(needle, 0x20))
for { let m := shl(3, sub(0x20, and(needleLen, 0x1f))) } 1 {} {
let t := mload(i)
// Whether the first `needleLen % 32` bytes of `subject` and `needle` matches.
if iszero(shr(m, xor(t, s))) {
if h {
if iszero(eq(keccak256(i, needleLen), h)) {
mstore(add(i, d), t)
i := add(i, 1)
if iszero(lt(i, subjectSearchEnd)) { break }
continue
}
}
// Copy the `replacement` one word at a time.
for { let j := 0 } 1 {} {
mstore(add(add(i, d), j), mload(add(add(replacement, 0x20), j)))
j := add(j, 0x20)
if iszero(lt(j, replacementLen)) { break }
}
d := sub(add(d, replacementLen), needleLen)
if needleLen {
i := add(i, needleLen)
if iszero(lt(i, subjectSearchEnd)) { break }
continue
}
}
mstore(add(i, d), t)
i := add(i, 1)
if iszero(lt(i, subjectSearchEnd)) { break }
}
}
let n := add(sub(d, add(result, 0x20)), end)
// Copy the rest of the string one word at a time.
for {} lt(i, end) { i := add(i, 0x20) } { mstore(add(i, d), mload(i)) }
let o := add(i, d)
mstore(o, 0) // Zeroize the slot after the string.
mstore(0x40, add(o, 0x20)) // Allocate memory.
mstore(result, n) // Store the length.
}
}
/// @dev Returns the byte index of the first location of `needle` in `subject`,
/// needleing from left to right, starting from `from`.
/// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `needle` is not found.
function indexOf(string memory subject, string memory needle, uint256 from)
internal
pure
returns (uint256 result)
{
/// @solidity memory-safe-assembly
assembly {
result := not(0) // Initialize to `NOT_FOUND`.
for { let subjectLen := mload(subject) } 1 {} {
if iszero(mload(needle)) {
result := from
if iszero(gt(from, subjectLen)) { break }
result := subjectLen
break
}
let needleLen := mload(needle)
let subjectStart := add(subject, 0x20)
subject := add(subjectStart, from)
let end := add(sub(add(subjectStart, subjectLen), needleLen), 1)
let m := shl(3, sub(0x20, and(needleLen, 0x1f)))
let s := mload(add(needle, 0x20))
if iszero(and(lt(subject, end), lt(from, subjectLen))) { break }
if iszero(lt(needleLen, 0x20)) {
for { let h := keccak256(add(needle, 0x20), needleLen) } 1 {} {
if iszero(shr(m, xor(mload(subject), s))) {
if eq(keccak256(subject, needleLen), h) {
result := sub(subject, subjectStart)
break
}
}
subject := add(subject, 1)
if iszero(lt(subject, end)) { break }
}
break
}
for {} 1 {} {
if iszero(shr(m, xor(mload(subject), s))) {
result := sub(subject, subjectStart)
break
}
subject := add(subject, 1)
if iszero(lt(subject, end)) { break }
}
break
}
}
}
/// @dev Returns the byte index of the first location of `needle` in `subject`,
/// needleing from left to right.
/// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `needle` is not found.
function indexOf(string memory subject, string memory needle)
internal
pure
returns (uint256 result)
{
result = indexOf(subject, needle, 0);
}
/// @dev Returns the byte index of the first location of `needle` in `subject`,
/// needleing from right to left, starting from `from`.
/// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `needle` is not found.
function lastIndexOf(string memory subject, string memory needle, uint256 from)
internal
pure
returns (uint256 result)
{
/// @solidity memory-safe-assembly
assembly {
for {} 1 {} {
result := not(0) // Initialize to `NOT_FOUND`.
let needleLen := mload(needle)
if gt(needleLen, mload(subject)) { break }
let w := result
let fromMax := sub(mload(subject), needleLen)
if iszero(gt(fromMax, from)) { from := fromMax }
let end := add(add(subject, 0x20), w)
subject := add(add(subject, 0x20), from)
if iszero(gt(subject, end)) { break }
// As this function is not too often used,
// we shall simply use keccak256 for smaller bytecode size.
for { let h := keccak256(add(needle, 0x20), needleLen) } 1 {} {
if eq(keccak256(subject, needleLen), h) {
result := sub(subject, add(end, 1))
break
}
subject := add(subject, w) // `sub(subject, 1)`.
if iszero(gt(subject, end)) { break }
}
break
}
}
}
/// @dev Returns the byte index of the first location of `needle` in `subject`,
/// needleing from right to left.
/// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `needle` is not found.
function lastIndexOf(string memory subject, string memory needle)
internal
pure
returns (uint256 result)
{
result = lastIndexOf(subject, needle, type(uint256).max);
}
/// @dev Returns true if `needle` is found in `subject`, false otherwise.
function contains(string memory subject, string memory needle) internal pure returns (bool) {
return indexOf(subject, needle) != NOT_FOUND;
}
/// @dev Returns whether `subject` starts with `needle`.
function startsWith(string memory subject, string memory needle)
internal
pure
returns (bool result)
{
/// @solidity memory-safe-assembly
assembly {
let needleLen := mload(needle)
// Just using keccak256 directly is actually cheaper.
// forgefmt: disable-next-item
result := and(
iszero(gt(needleLen, mload(subject))),
eq(
keccak256(add(subject, 0x20), needleLen),
keccak256(add(needle, 0x20), needleLen)
)
)
}
}
/// @dev Returns whether `subject` ends with `needle`.
function endsWith(string memory subject, string memory needle)
internal
pure
returns (bool result)
{
/// @solidity memory-safe-assembly
assembly {
let needleLen := mload(needle)
// Whether `needle` is not longer than `subject`.
let inRange := iszero(gt(needleLen, mload(subject)))
// Just using keccak256 directly is actually cheaper.
// forgefmt: disable-next-item
result := and(
eq(
keccak256(
// `subject + 0x20 + max(subjectLen - needleLen, 0)`.
add(add(subject, 0x20), mul(inRange, sub(mload(subject), needleLen))),
needleLen
),
keccak256(add(needle, 0x20), needleLen)
),
inRange
)
}
}
/// @dev Returns `subject` repeated `times`.
function repeat(string memory subject, uint256 times)
internal
pure
returns (string memory result)
{
/// @solidity memory-safe-assembly
assembly {
let subjectLen := mload(subject)
if iszero(or(iszero(times), iszero(subjectLen))) {
result := mload(0x40)
subject := add(subject, 0x20)
let o := add(result, 0x20)
for {} 1 {} {
// Copy the `subject` one word at a time.
for { let j := 0 } 1 {} {
mstore(add(o, j), mload(add(subject, j)))
j := add(j, 0x20)
if iszero(lt(j, subjectLen)) { break }
}
o := add(o, subjectLen)
times := sub(times, 1)
if iszero(times) { break }
}
mstore(o, 0) // Zeroize the slot after the string.
mstore(0x40, add(o, 0x20)) // Allocate memory.
mstore(result, sub(o, add(result, 0x20))) // Store the length.
}
}
}
/// @dev Returns a copy of `subject` sliced from `start` to `end` (exclusive).
/// `start` and `end` are byte offsets.
function slice(string memory subject, uint256 start, uint256 end)
internal
pure
returns (string memory result)
{
/// @solidity memory-safe-assembly
assembly {
let subjectLen := mload(subject)
if iszero(gt(subjectLen, end)) { end := subjectLen }
if iszero(gt(subjectLen, start)) { start := subjectLen }
if lt(start, end) {
result := mload(0x40)
let n := sub(end, start)
let i := add(subject, start)
let w := not(0x1f)
// Copy the `subject` one word at a time, backwards.
for { let j := and(add(n, 0x1f), w) } 1 {} {
mstore(add(result, j), mload(add(i, j)))
j := add(j, w) // `sub(j, 0x20)`.
if iszero(j) { break }
}
let o := add(add(result, 0x20), n)
mstore(o, 0) // Zeroize the slot after the string.
mstore(0x40, add(o, 0x20)) // Allocate memory.
mstore(result, n) // Store the length.
}
}
}
/// @dev Returns a copy of `subject` sliced from `start` to the end of the string.
/// `start` is a byte offset.
function slice(string memory subject, uint256 start)
internal
pure
returns (string memory result)
{
result = slice(subject, start, type(uint256).max);
}
/// @dev Returns all the indices of `needle` in `subject`.
/// The indices are byte offsets.
function indicesOf(string memory subject, string memory needle)
internal
pure
returns (uint256[] memory result)
{
/// @solidity memory-safe-assembly
assembly {
let searchLen := mload(needle)
if iszero(gt(searchLen, mload(subject))) {
result := mload(0x40)
let i := add(subject, 0x20)
let o := add(result, 0x20)
let subjectSearchEnd := add(sub(add(i, mload(subject)), searchLen), 1)
let h := 0 // The hash of `needle`.
if iszero(lt(searchLen, 0x20)) { h := keccak256(add(needle, 0x20), searchLen) }
let s := mload(add(needle, 0x20))
for { let m := shl(3, sub(0x20, and(searchLen, 0x1f))) } 1 {} {
let t := mload(i)
// Whether the first `searchLen % 32` bytes of `subject` and `needle` matches.
if iszero(shr(m, xor(t, s))) {
if h {
if iszero(eq(keccak256(i, searchLen), h)) {
i := add(i, 1)
if iszero(lt(i, subjectSearchEnd)) { break }
continue
}
}
mstore(o, sub(i, add(subject, 0x20))) // Append to `result`.
o := add(o, 0x20)
i := add(i, searchLen) // Advance `i` by `searchLen`.
if searchLen {
if iszero(lt(i, subjectSearchEnd)) { break }
continue
}
}
i := add(i, 1)
if iszero(lt(i, subjectSearchEnd)) { break }
}
mstore(result, shr(5, sub(o, add(result, 0x20)))) // Store the length of `result`.
// Allocate memory for result.
// We allocate one more word, so this array can be recycled for {split}.
mstore(0x40, add(o, 0x20))
}
}
}
/// @dev Returns a arrays of strings based on the `delimiter` inside of the `subject` string.
function split(string memory subject, string memory delimiter)
internal
pure
returns (string[] memory result)
{
uint256[] memory indices = indicesOf(subject, delimiter);
/// @solidity memory-safe-assembly
assembly {
let w := not(0x1f)
let indexPtr := add(indices, 0x20)
let indicesEnd := add(indexPtr, shl(5, add(mload(indices), 1)))
mstore(add(indicesEnd, w), mload(subject))
mstore(indices, add(mload(indices), 1))
for { let prevIndex := 0 } 1 {} {
let index := mload(indexPtr)
mstore(indexPtr, 0x60)
if iszero(eq(index, prevIndex)) {
let element := mload(0x40)
let l := sub(index, prevIndex)
mstore(element, l) // Store the length of the element.
// Copy the `subject` one word at a time, backwards.
for { let o := and(add(l, 0x1f), w) } 1 {} {
mstore(add(element, o), mload(add(add(subject, prevIndex), o)))
o := add(o, w) // `sub(o, 0x20)`.
if iszero(o) { break }
}
mstore(add(add(element, 0x20), l), 0) // Zeroize the slot after the string.
// Allocate memory for the length and the bytes, rounded up to a multiple of 32.
mstore(0x40, add(element, and(add(l, 0x3f), w)))
mstore(indexPtr, element) // Store the `element` into the array.
}
prevIndex := add(index, mload(delimiter))
indexPtr := add(indexPtr, 0x20)
if iszero(lt(indexPtr, indicesEnd)) { break }
}
result := indices
if iszero(mload(delimiter)) {
result := add(indices, 0x20)
mstore(result, sub(mload(indices), 2))
}
}
}
/// @dev Returns a concatenated string of `a` and `b`.
/// Cheaper than `string.concat()` and does not de-align the free memory pointer.
function concat(string memory a, string memory b)
internal
pure
returns (string memory result)
{
/// @solidity memory-safe-assembly
assembly {
result := mload(0x40)
let w := not(0x1f)
let aLen := mload(a)
// Copy `a` one word at a time, backwards.
for { let o := and(add(aLen, 0x20), w) } 1 {} {
mstore(add(result, o), mload(add(a, o)))
o := add(o, w) // `sub(o, 0x20)`.
if iszero(o) { break }
}
let bLen := mload(b)
let output := add(result, aLen)
// Copy `b` one word at a time, backwards.
for { let o := and(add(bLen, 0x20), w) } 1 {} {
mstore(add(output, o), mload(add(b, o)))
o := add(o, w) // `sub(o, 0x20)`.
if iszero(o) { break }
}
let totalLen := add(aLen, bLen)
let last := add(add(result, 0x20), totalLen)
mstore(last, 0) // Zeroize the slot after the string.
mstore(result, totalLen) // Store the length.
mstore(0x40, add(last, 0x20)) // Allocate memory.
}
}
/// @dev Returns a copy of the string in either lowercase or UPPERCASE.
/// WARNING! This function is only compatible with 7-bit ASCII strings.
function toCase(string memory subject, bool toUpper)
internal
pure
returns (string memory result)
{
/// @solidity memory-safe-assembly
assembly {
let n := mload(subject)
if n {
result := mload(0x40)
let o := add(result, 0x20)
let d := sub(subject, result)
let flags := shl(add(70, shl(5, toUpper)), 0x3ffffff)
for { let end := add(o, n) } 1 {} {
let b := byte(0, mload(add(d, o)))
mstore8(o, xor(and(shr(b, flags), 0x20), b))
o := add(o, 1)
if eq(o, end) { break }
}
mstore(result, n) // Store the length.
mstore(o, 0) // Zeroize the slot after the string.
mstore(0x40, add(o, 0x20)) // Allocate memory.
}
}
}
/// @dev Returns a string from a small bytes32 string.
/// `s` must be null-terminated, or behavior will be undefined.
function fromSmallString(bytes32 s) internal pure returns (string memory result) {
/// @solidity memory-safe-assembly
assembly {
result := mload(0x40)
let n := 0
for {} byte(n, s) { n := add(n, 1) } {} // Scan for '\0'.
mstore(result, n) // Store the length.
let o := add(result, 0x20)
mstore(o, s) // Store the bytes of the string.
mstore(add(o, n), 0) // Zeroize the slot after the string.
mstore(0x40, add(result, 0x40)) // Allocate memory.
}
}
/// @dev Returns the small string, with all bytes after the first null byte zeroized.
function normalizeSmallString(bytes32 s) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
for {} byte(result, s) { result := add(result, 1) } {} // Scan for '\0'.
mstore(0x00, s)
mstore(result, 0x00)
result := mload(0x00)
}
}
/// @dev Returns the string as a normalized null-terminated small string.
function toSmallString(string memory s) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
result := mload(s)
if iszero(lt(result, 33)) {
mstore(0x00, 0xec92f9a3) // `TooBigForSmallString()`.
revert(0x1c, 0x04)
}
result := shl(shl(3, sub(32, result)), mload(add(s, result)))
}
}
/// @dev Returns a lowercased copy of the string.
/// WARNING! This function is only compatible with 7-bit ASCII strings.
function lower(string memory subject) internal pure returns (string memory result) {
result = toCase(subject, false);
}
/// @dev Returns an UPPERCASED copy of the string.
/// WARNING! This function is only compatible with 7-bit ASCII strings.
function upper(string memory subject) internal pure returns (string memory result) {
result = toCase(subject, true);
}
/// @dev Escapes the string to be used within HTML tags.
function escapeHTML(string memory s) internal pure returns (string memory result) {
/// @solidity memory-safe-assembly
assembly {
result := mload(0x40)
let end := add(s, mload(s))
let o := add(result, 0x20)
// Store the bytes of the packed offsets and strides into the scratch space.
// `packed = (stride << 5) | offset`. Max offset is 20. Max stride is 6.
mstore(0x1f, 0x900094)
mstore(0x08, 0xc0000000a6ab)
// Store ""&'<>" into the scratch space.
mstore(0x00, shl(64, 0x2671756f743b26616d703b262333393b266c743b2667743b))
for {} iszero(eq(s, end)) {} {
s := add(s, 1)
let c := and(mload(s), 0xff)
// Not in `["\"","'","&","<",">"]`.
if iszero(and(shl(c, 1), 0x500000c400000000)) {
mstore8(o, c)
o := add(o, 1)
continue
}
let t := shr(248, mload(c))
mstore(o, mload(and(t, 0x1f)))
o := add(o, shr(5, t))
}
mstore(o, 0) // Zeroize the slot after the string.
mstore(result, sub(o, add(result, 0x20))) // Store the length.
mstore(0x40, add(o, 0x20)) // Allocate memory.
}
}
/// @dev Escapes the string to be used within double-quotes in a JSON.
/// If `addDoubleQuotes` is true, the result will be enclosed in double-quotes.
function escapeJSON(string memory s, bool addDoubleQuotes)
internal
pure
returns (string memory result)
{
/// @solidity memory-safe-assembly
assembly {
result := mload(0x40)
let o := add(result, 0x20)
if addDoubleQuotes {
mstore8(o, 34)
o := add(1, o)
}
// Store "\\u0000" in scratch space.
// Store "0123456789abcdef" in scratch space.
// Also, store `{0x08:"b", 0x09:"t", 0x0a:"n", 0x0c:"f", 0x0d:"r"}`.
// into the scratch space.
mstore(0x15, 0x5c75303030303031323334353637383961626364656662746e006672)
// Bitmask for detecting `["\"","\\"]`.
let e := or(shl(0x22, 1), shl(0x5c, 1))
for { let end := add(s, mload(s)) } iszero(eq(s, end)) {} {
s := add(s, 1)
let c := and(mload(s), 0xff)
if iszero(lt(c, 0x20)) {
if iszero(and(shl(c, 1), e)) {
// Not in `["\"","\\"]`.
mstore8(o, c)
o := add(o, 1)
continue
}
mstore8(o, 0x5c) // "\\".
mstore8(add(o, 1), c)
o := add(o, 2)
continue
}
if iszero(and(shl(c, 1), 0x3700)) {
// Not in `["\b","\t","\n","\f","\d"]`.
mstore8(0x1d, mload(shr(4, c))) // Hex value.
mstore8(0x1e, mload(and(c, 15))) // Hex value.
mstore(o, mload(0x19)) // "\\u00XX".
o := add(o, 6)
continue
}
mstore8(o, 0x5c) // "\\".
mstore8(add(o, 1), mload(add(c, 8)))
o := add(o, 2)
}
if addDoubleQuotes {
mstore8(o, 34)
o := add(1, o)
}
mstore(o, 0) // Zeroize the slot after the string.
mstore(result, sub(o, add(result, 0x20))) // Store the length.
mstore(0x40, add(o, 0x20)) // Allocate memory.
}
}
/// @dev Escapes the string to be used within double-quotes in a JSON.
function escapeJSON(string memory s) internal pure returns (string memory result) {
result = escapeJSON(s, false);
}
/// @dev Encodes `s` so that it can be safely used in a URI,
/// just like `encodeURIComponent` in JavaScript.
/// See: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/encodeURIComponent
/// See: https://datatracker.ietf.org/doc/html/rfc2396
/// See: https://datatracker.ietf.org/doc/html/rfc3986
function encodeURIComponent(string memory s) internal pure returns (string memory result) {
/// @solidity memory-safe-assembly
assembly {
result := mload(0x40)
// Store "0123456789ABCDEF" in scratch space.
// Uppercased to be consistent with JavaScript's implementation.
mstore(0x0f, 0x30313233343536373839414243444546)
let o := add(result, 0x20)
for { let end := add(s, mload(s)) } iszero(eq(s, end)) {} {
s := add(s, 1)
let c := and(mload(s), 0xff)
// If not in `[0-9A-Z-a-z-.!~*'()]`.
if iszero(and(1, shr(c, 0x47fffffe07fffffe03ff678200000000))) {
mstore8(o, 0x25) // '%'.
mstore8(add(o, 1), mload(and(shr(4, c), 15)))
mstore8(add(o, 2), mload(and(c, 15)))
o := add(o, 3)
continue
}
mstore8(o, c)
o := add(o, 1)
}
mstore(result, sub(o, add(result, 0x20))) // Store the length.
mstore(o, 0) // Zeroize the slot after the string.
mstore(0x40, add(o, 0x20)) // Allocate memory.
}
}
/// @dev Returns whether `a` equals `b`.
function eq(string memory a, string memory b) internal pure returns (bool result) {
/// @solidity memory-safe-assembly
assembly {
result := eq(keccak256(add(a, 0x20), mload(a)), keccak256(add(b, 0x20), mload(b)))
}
}
/// @dev Returns whether `a` equals `b`, where `b` is a null-terminated small string.
function eqs(string memory a, bytes32 b) internal pure returns (bool result) {
/// @solidity memory-safe-assembly
assembly {
// These should be evaluated on compile time, as far as possible.
let m := not(shl(7, div(not(iszero(b)), 255))) // `0x7f7f ...`.
let x := not(or(m, or(b, add(m, and(b, m)))))
let r := shl(7, iszero(iszero(shr(128, x))))
r := or(r, shl(6, iszero(iszero(shr(64, shr(r, x))))))
r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
r := or(r, shl(4, lt(0xffff, shr(r, x))))
r := or(r, shl(3, lt(0xff, shr(r, x))))
// forgefmt: disable-next-item
result := gt(eq(mload(a), add(iszero(x), xor(31, shr(3, r)))),
xor(shr(add(8, r), b), shr(add(8, r), mload(add(a, 0x20)))))
}
}
/// @dev Packs a single string with its length into a single word.
/// Returns `bytes32(0)` if the length is zero or greater than 31.
function packOne(string memory a) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
// We don't need to zero right pad the string,
// since this is our own custom non-standard packing scheme.
result :=
mul(
// Load the length and the bytes.
mload(add(a, 0x1f)),
// `length != 0 && length < 32`. Abuses underflow.
// Assumes that the length is valid and within the block gas limit.
lt(sub(mload(a), 1), 0x1f)
)
}
}
/// @dev Unpacks a string packed using {packOne}.
/// Returns the empty string if `packed` is `bytes32(0)`.
/// If `packed` is not an output of {packOne}, the output behavior is undefined.
function unpackOne(bytes32 packed) internal pure returns (string memory result) {
/// @solidity memory-safe-assembly
assembly {
result := mload(0x40) // Grab the free memory pointer.
mstore(0x40, add(result, 0x40)) // Allocate 2 words (1 for the length, 1 for the bytes).
mstore(result, 0) // Zeroize the length slot.
mstore(add(result, 0x1f), packed) // Store the length and bytes.
mstore(add(add(result, 0x20), mload(result)), 0) // Right pad with zeroes.
}
}
/// @dev Packs two strings with their lengths into a single word.
/// Returns `bytes32(0)` if combined length is zero or greater than 30.
function packTwo(string memory a, string memory b) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
let aLen := mload(a)
// We don't need to zero right pad the strings,
// since this is our own custom non-standard packing scheme.
result :=
mul(
or( // Load the length and the bytes of `a` and `b`.
shl(shl(3, sub(0x1f, aLen)), mload(add(a, aLen))), mload(sub(add(b, 0x1e), aLen))),
// `totalLen != 0 && totalLen < 31`. Abuses underflow.
// Assumes that the lengths are valid and within the block gas limit.
lt(sub(add(aLen, mload(b)), 1), 0x1e)
)
}
}
/// @dev Unpacks strings packed using {packTwo}.
/// Returns the empty strings if `packed` is `bytes32(0)`.
/// If `packed` is not an output of {packTwo}, the output behavior is undefined.
function unpackTwo(bytes32 packed)
internal
pure
returns (string memory resultA, string memory resultB)
{
/// @solidity memory-safe-assembly
assembly {
resultA := mload(0x40) // Grab the free memory pointer.
resultB := add(resultA, 0x40)
// Allocate 2 words for each string (1 for the length, 1 for the byte). Total 4 words.
mstore(0x40, add(resultB, 0x40))
// Zeroize the length slots.
mstore(resultA, 0)
mstore(resultB, 0)
// Store the lengths and bytes.
mstore(add(resultA, 0x1f), packed)
mstore(add(resultB, 0x1f), mload(add(add(resultA, 0x20), mload(resultA))))
// Right pad with zeroes.
mstore(add(add(resultA, 0x20), mload(resultA)), 0)
mstore(add(add(resultB, 0x20), mload(resultB)), 0)
}
}
/// @dev Directly returns `a` without copying.
function directReturn(string memory a) internal pure {
assembly {
// Assumes that the string does not start from the scratch space.
let retStart := sub(a, 0x20)
let retUnpaddedSize := add(mload(a), 0x40)
// Right pad with zeroes. Just in case the string is produced
// by a method that doesn't zero right pad.
mstore(add(retStart, retUnpaddedSize), 0)
mstore(retStart, 0x20) // Store the return offset.
// End the transaction, returning the string.
return(retStart, and(not(0x1f), add(0x1f, retUnpaddedSize)))
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.7 <0.9.0;
abstract contract ERC2981 {
// ERC165 bytes to add to interface array - set in parent contract
bytes4 private constant _INTERFACE_ID_ERC2981 = 0x2a55205a;
uint256 internal constant _SCALING_FACTOR = 10**12;
uint256 internal _royaltyBps;
address internal _royaltyRecipient;
constructor(address recipient, uint256 royaltyBps) {
_setRoyalties(recipient, royaltyBps);
}
// Called with the sale price to determine how much royalty
// is owed and to whom.
function royaltyInfo(uint256, uint256 _salePrice) external view virtual returns (address, uint256) {
if (_royaltyBps == 0) {
return (address(0), 0);
}
uint256 royaltyAmount = (_salePrice * _royaltyBps) / 10000;
return (_royaltyRecipient, royaltyAmount);
}
function _setRoyalties(address recipient, uint256 bps) internal {
require(bps <= 10000, "ERC721: INVALID_BPS");
_royaltyRecipient = recipient;
_royaltyBps = bps;
emit RoyaltiesSet(recipient, bps);
}
event RoyaltiesSet(address receiver, uint256 bps);
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
import {Ownable} from "./Ownable.sol";
/**
* @title PermissionedMintingNFT
* @dev Base contract for NFT collections with permissioned minting functionality
*/
abstract contract PermissionedMintingNFT is Ownable {
// Mapping of addresses allowed to mint
mapping(address => bool) private _minters;
// Global minting enabled flag
bool public mintingEnabled = true;
// Events
event MintRightsGranted(address indexed minter);
event MintRightsRevoked(address indexed minter);
// Custom errors
error NotMinter();
error MintClosed();
constructor() Ownable(msg.sender) {}
// Modifiers
modifier mintIsOpen() {
if (!mintingEnabled) {
revert MintClosed();
}
_;
}
modifier onlyMinter() {
if (!_minters[msg.sender] && owner() != msg.sender) {
revert NotMinter();
}
_;
}
// Minter management functions
function setCanMint(address newMinter, bool canMint) external onlyOwner {
_minters[newMinter] = canMint;
emit MintRightsGranted(newMinter);
}
function renounceMintingRights() external {
if (!_minters[msg.sender]) {
revert NotMinter();
}
_minters[msg.sender] = false;
emit MintRightsRevoked(msg.sender);
}
function closeMinting() external onlyOwner {
mintingEnabled = false;
}
// Internal helper
function _isMinter(address account) internal view returns (bool) {
return _minters[account] || account == owner();
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
/**
* @title BridgedNFT
* @dev Base contract for NFTs that are bridged from another chain
*/
abstract contract BridgedNFT {
// The address of the original collection on the source chain
address public immutable originalCollectionAddress;
constructor(address originalAddress) {
originalCollectionAddress = originalAddress;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
/// @notice Simple ERC1155 implementation.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/tokens/ERC1155.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC1155.sol)
/// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/tree/master/contracts/token/ERC1155/ERC1155.sol)
///
/// @dev Note:
/// - The ERC1155 standard allows for self-approvals.
/// For performance, this implementation WILL NOT revert for such actions.
/// Please add any checks with overrides if desired.
/// - The transfer functions use the identity precompile (0x4)
/// to copy memory internally.
///
/// If you are overriding:
/// - Make sure all variables written to storage are properly cleaned
// (e.g. the bool value for `isApprovedForAll` MUST be either 1 or 0 under the hood).
/// - Check that the overridden function is actually used in the function you want to
/// change the behavior of. Much of the code has been manually inlined for performance.
abstract contract ERC1155Base {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CUSTOM ERRORS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The lengths of the input arrays are not the same.
error ArrayLengthsMismatch();
/// @dev Cannot mint or transfer to the zero address.
error TransferToZeroAddress();
/// @dev The recipient's balance has overflowed.
error AccountBalanceOverflow();
/// @dev Insufficient balance.
error InsufficientBalance();
/// @dev Only the token owner or an approved account can manage the tokens.
error NotOwnerNorApproved();
/// @dev Cannot safely transfer to a contract that does not implement
/// the ERC1155Receiver interface.
error TransferToNonERC1155ReceiverImplementer();
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* EVENTS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Emitted when `amount` of token `id` is transferred
/// from `from` to `to` by `operator`.
event TransferSingle(
address indexed operator,
address indexed from,
address indexed to,
uint256 id,
uint256 amount
);
/// @dev Emitted when `amounts` of token `ids` are transferred
/// from `from` to `to` by `operator`.
event TransferBatch(
address indexed operator,
address indexed from,
address indexed to,
uint256[] ids,
uint256[] amounts
);
/// @dev Emitted when `owner` enables or disables `operator` to manage all of their tokens.
event ApprovalForAll(address indexed owner, address indexed operator, bool isApproved);
/// @dev Emitted when the Uniform Resource Identifier (URI) for token `id`
/// is updated to `value`. This event is not used in the base contract.
/// You may need to emit this event depending on your URI logic.
///
/// See: https://eips.ethereum.org/EIPS/eip-1155#metadata
event URI(string value, uint256 indexed id);
/// @dev `keccak256(bytes("TransferSingle(address,address,address,uint256,uint256)"))`.
uint256 private constant _TRANSFER_SINGLE_EVENT_SIGNATURE =
0xc3d58168c5ae7397731d063d5bbf3d657854427343f4c083240f7aacaa2d0f62;
/// @dev `keccak256(bytes("TransferBatch(address,address,address,uint256[],uint256[])"))`.
uint256 private constant _TRANSFER_BATCH_EVENT_SIGNATURE =
0x4a39dc06d4c0dbc64b70af90fd698a233a518aa5d07e595d983b8c0526c8f7fb;
/// @dev `keccak256(bytes("ApprovalForAll(address,address,bool)"))`.
uint256 private constant _APPROVAL_FOR_ALL_EVENT_SIGNATURE =
0x17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c31;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* STORAGE */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The `ownerSlotSeed` of a given owner is given by.
/// ```
/// let ownerSlotSeed := or(_ERC1155_MASTER_SLOT_SEED, shl(96, owner))
/// ```
///
/// The balance slot of `owner` is given by.
/// ```
/// mstore(0x20, ownerSlotSeed)
/// mstore(0x00, id)
/// let balanceSlot := keccak256(0x00, 0x40)
/// ```
///
/// The operator approval slot of `owner` is given by.
/// ```
/// mstore(0x20, ownerSlotSeed)
/// mstore(0x00, operator)
/// let operatorApprovalSlot := keccak256(0x0c, 0x34)
/// ```
uint256 private constant _ERC1155_MASTER_SLOT_SEED = 0x9a31110384e0b0c9;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* ERC1155 METADATA */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns the URI for token `id`.
///
/// You can either return the same templated URI for all token IDs,
/// (e.g. "https://example.com/api/{id}.json"),
/// or return a unique URI for each `id`.
///
/// See: https://eips.ethereum.org/EIPS/eip-1155#metadata
function uri(uint256 id) public view virtual returns (string memory);
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* ERC1155 */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns the amount of `id` owned by `owner`.
function balanceOf(address owner, uint256 id) public view virtual returns (uint256 result) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x20, _ERC1155_MASTER_SLOT_SEED)
mstore(0x14, owner)
mstore(0x00, id)
result := sload(keccak256(0x00, 0x40))
}
}
/// @dev Returns whether `operator` is approved to manage the tokens of `owner`.
function isApprovedForAll(address owner, address operator)
public
view
virtual
returns (bool result)
{
/// @solidity memory-safe-assembly
assembly {
mstore(0x20, _ERC1155_MASTER_SLOT_SEED)
mstore(0x14, owner)
mstore(0x00, operator)
result := sload(keccak256(0x0c, 0x34))
}
}
/// @dev Sets whether `operator` is approved to manage the tokens of the caller.
///
/// Emits a {ApprovalForAll} event.
function setApprovalForAll(address operator, bool isApproved) public virtual {
/// @solidity memory-safe-assembly
assembly {
// Convert to 0 or 1.
isApproved := iszero(iszero(isApproved))
// Update the `isApproved` for (`msg.sender`, `operator`).
mstore(0x20, _ERC1155_MASTER_SLOT_SEED)
mstore(0x14, caller())
mstore(0x00, operator)
sstore(keccak256(0x0c, 0x34), isApproved)
// Emit the {ApprovalForAll} event.
mstore(0x00, isApproved)
// forgefmt: disable-next-line
log3(0x00, 0x20, _APPROVAL_FOR_ALL_EVENT_SIGNATURE, caller(), shr(96, shl(96, operator)))
}
}
/// @dev Transfers `amount` of `id` from `from` to `to`.
///
/// Requirements:
/// - `to` cannot be the zero address.
/// - `from` must have at least `amount` of `id`.
/// - If the caller is not `from`,
/// it must be approved to manage the tokens of `from`.
/// - If `to` refers to a smart contract, it must implement
/// {ERC1155-onERC1155Received}, which is called upon a batch transfer.
///
/// Emits a {TransferSingle} event.
function safeTransferFrom(
address from,
address to,
uint256 id,
uint256 amount,
bytes calldata data
) public virtual {
if (_useBeforeTokenTransfer()) {
_beforeTokenTransfer(from, to, _single(id), _single(amount), data);
}
/// @solidity memory-safe-assembly
assembly {
let fromSlotSeed := or(_ERC1155_MASTER_SLOT_SEED, shl(96, from))
let toSlotSeed := or(_ERC1155_MASTER_SLOT_SEED, shl(96, to))
mstore(0x20, fromSlotSeed)
// Clear the upper 96 bits.
from := shr(96, fromSlotSeed)
to := shr(96, toSlotSeed)
// Revert if `to` is the zero address.
if iszero(to) {
mstore(0x00, 0xea553b34) // `TransferToZeroAddress()`.
revert(0x1c, 0x04)
}
// If the caller is not `from`, do the authorization check.
if iszero(eq(caller(), from)) {
mstore(0x00, caller())
if iszero(sload(keccak256(0x0c, 0x34))) {
mstore(0x00, 0x4b6e7f18) // `NotOwnerNorApproved()`.
revert(0x1c, 0x04)
}
}
// Subtract and store the updated balance of `from`.
{
mstore(0x00, id)
let fromBalanceSlot := keccak256(0x00, 0x40)
let fromBalance := sload(fromBalanceSlot)
if gt(amount, fromBalance) {
mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`.
revert(0x1c, 0x04)
}
sstore(fromBalanceSlot, sub(fromBalance, amount))
}
// Increase and store the updated balance of `to`.
{
mstore(0x20, toSlotSeed)
let toBalanceSlot := keccak256(0x00, 0x40)
let toBalanceBefore := sload(toBalanceSlot)
let toBalanceAfter := add(toBalanceBefore, amount)
if lt(toBalanceAfter, toBalanceBefore) {
mstore(0x00, 0x01336cea) // `AccountBalanceOverflow()`.
revert(0x1c, 0x04)
}
sstore(toBalanceSlot, toBalanceAfter)
}
// Emit a {TransferSingle} event.
mstore(0x20, amount)
log4(0x00, 0x40, _TRANSFER_SINGLE_EVENT_SIGNATURE, caller(), from, to)
}
if (_useAfterTokenTransfer()) {
_afterTokenTransfer(from, to, _single(id), _single(amount), data);
}
/// @solidity memory-safe-assembly
assembly {
// Do the {onERC1155Received} check if `to` is a smart contract.
if extcodesize(to) {
// Prepare the calldata.
let m := mload(0x40)
// `onERC1155Received(address,address,uint256,uint256,bytes)`.
mstore(m, 0xf23a6e61)
mstore(add(m, 0x20), caller())
mstore(add(m, 0x40), from)
mstore(add(m, 0x60), id)
mstore(add(m, 0x80), amount)
mstore(add(m, 0xa0), 0xa0)
calldatacopy(add(m, 0xc0), sub(data.offset, 0x20), add(0x20, data.length))
// Revert if the call reverts.
if iszero(call(gas(), to, 0, add(m, 0x1c), add(0xc4, data.length), m, 0x20)) {
if returndatasize() {
// Bubble up the revert if the call reverts.
returndatacopy(m, 0x00, returndatasize())
revert(m, returndatasize())
}
}
// Load the returndata and compare it with the function selector.
if iszero(eq(mload(m), shl(224, 0xf23a6e61))) {
mstore(0x00, 0x9c05499b) // `TransferToNonERC1155ReceiverImplementer()`.
revert(0x1c, 0x04)
}
}
}
}
/// @dev Transfers `amounts` of `ids` from `from` to `to`.
///
/// Requirements:
/// - `to` cannot be the zero address.
/// - `from` must have at least `amount` of `id`.
/// - `ids` and `amounts` must have the same length.
/// - If the caller is not `from`,
/// it must be approved to manage the tokens of `from`.
/// - If `to` refers to a smart contract, it must implement
/// {ERC1155-onERC1155BatchReceived}, which is called upon a batch transfer.
///
/// Emits a {TransferBatch} event.
function safeBatchTransferFrom(
address from,
address to,
uint256[] calldata ids,
uint256[] calldata amounts,
bytes calldata data
) public virtual {
if (_useBeforeTokenTransfer()) {
_beforeTokenTransfer(from, to, ids, amounts, data);
}
/// @solidity memory-safe-assembly
assembly {
if iszero(eq(ids.length, amounts.length)) {
mstore(0x00, 0x3b800a46) // `ArrayLengthsMismatch()`.
revert(0x1c, 0x04)
}
let fromSlotSeed := or(_ERC1155_MASTER_SLOT_SEED, shl(96, from))
let toSlotSeed := or(_ERC1155_MASTER_SLOT_SEED, shl(96, to))
mstore(0x20, fromSlotSeed)
// Clear the upper 96 bits.
from := shr(96, fromSlotSeed)
to := shr(96, toSlotSeed)
// Revert if `to` is the zero address.
if iszero(to) {
mstore(0x00, 0xea553b34) // `TransferToZeroAddress()`.
revert(0x1c, 0x04)
}
// If the caller is not `from`, do the authorization check.
if iszero(eq(caller(), from)) {
mstore(0x00, caller())
if iszero(sload(keccak256(0x0c, 0x34))) {
mstore(0x00, 0x4b6e7f18) // `NotOwnerNorApproved()`.
revert(0x1c, 0x04)
}
}
// Loop through all the `ids` and update the balances.
{
for { let i := shl(5, ids.length) } i {} {
i := sub(i, 0x20)
let amount := calldataload(add(amounts.offset, i))
// Subtract and store the updated balance of `from`.
{
mstore(0x20, fromSlotSeed)
mstore(0x00, calldataload(add(ids.offset, i)))
let fromBalanceSlot := keccak256(0x00, 0x40)
let fromBalance := sload(fromBalanceSlot)
if gt(amount, fromBalance) {
mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`.
revert(0x1c, 0x04)
}
sstore(fromBalanceSlot, sub(fromBalance, amount))
}
// Increase and store the updated balance of `to`.
{
mstore(0x20, toSlotSeed)
let toBalanceSlot := keccak256(0x00, 0x40)
let toBalanceBefore := sload(toBalanceSlot)
let toBalanceAfter := add(toBalanceBefore, amount)
if lt(toBalanceAfter, toBalanceBefore) {
mstore(0x00, 0x01336cea) // `AccountBalanceOverflow()`.
revert(0x1c, 0x04)
}
sstore(toBalanceSlot, toBalanceAfter)
}
}
}
// Emit a {TransferBatch} event.
{
let m := mload(0x40)
// Copy the `ids`.
mstore(m, 0x40)
let n := add(0x20, shl(5, ids.length))
let o := add(m, 0x40)
calldatacopy(o, sub(ids.offset, 0x20), n)
// Copy the `amounts`.
mstore(add(m, 0x20), add(0x40, n))
calldatacopy(add(o, n), sub(amounts.offset, 0x20), n)
// Do the emit.
log4(m, add(add(n, n), 0x40), _TRANSFER_BATCH_EVENT_SIGNATURE, caller(), from, to)
}
}
if (_useAfterTokenTransfer()) {
_afterTokenTransferCalldata(from, to, ids, amounts, data);
}
/// @solidity memory-safe-assembly
assembly {
// Do the {onERC1155BatchReceived} check if `to` is a smart contract.
if extcodesize(to) {
mstore(0x00, to) // Cache `to` to prevent stack too deep.
let m := mload(0x40)
// Prepare the calldata.
// `onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)`.
mstore(m, 0xbc197c81)
mstore(add(m, 0x20), caller())
mstore(add(m, 0x40), from)
// Copy the `ids`.
mstore(add(m, 0x60), 0xa0)
let n := add(0x20, shl(5, ids.length))
let o := add(m, 0xc0)
calldatacopy(o, sub(ids.offset, 0x20), n)
// Copy the `amounts`.
let s := add(0xa0, n)
mstore(add(m, 0x80), s)
calldatacopy(add(o, n), sub(amounts.offset, 0x20), n)
// Copy the `data`.
mstore(add(m, 0xa0), add(s, n))
calldatacopy(add(o, add(n, n)), sub(data.offset, 0x20), add(0x20, data.length))
let nAll := add(0xc4, add(data.length, add(n, n)))
// Revert if the call reverts.
if iszero(call(gas(), mload(0x00), 0, add(m, 0x1c), nAll, m, 0x20)) {
if returndatasize() {
// Bubble up the revert if the call reverts.
returndatacopy(m, 0x00, returndatasize())
revert(m, returndatasize())
}
}
// Load the returndata and compare it with the function selector.
if iszero(eq(mload(m), shl(224, 0xbc197c81))) {
mstore(0x00, 0x9c05499b) // `TransferToNonERC1155ReceiverImplementer()`.
revert(0x1c, 0x04)
}
}
}
}
/// @dev Returns the amounts of `ids` for `owners.
///
/// Requirements:
/// - `owners` and `ids` must have the same length.
function balanceOfBatch(address[] calldata owners, uint256[] calldata ids)
public
view
virtual
returns (uint256[] memory balances)
{
/// @solidity memory-safe-assembly
assembly {
if iszero(eq(ids.length, owners.length)) {
mstore(0x00, 0x3b800a46) // `ArrayLengthsMismatch()`.
revert(0x1c, 0x04)
}
balances := mload(0x40)
mstore(balances, ids.length)
let o := add(balances, 0x20)
let i := shl(5, ids.length)
mstore(0x40, add(i, o))
// Loop through all the `ids` and load the balances.
for {} i {} {
i := sub(i, 0x20)
let owner := calldataload(add(owners.offset, i))
mstore(0x20, or(_ERC1155_MASTER_SLOT_SEED, shl(96, owner)))
mstore(0x00, calldataload(add(ids.offset, i)))
mstore(add(o, i), sload(keccak256(0x00, 0x40)))
}
}
}
/// @dev Returns true if this contract implements the interface defined by `interfaceId`.
/// See: https://eips.ethereum.org/EIPS/eip-165
/// This function call must use less than 30000 gas.
function supportsInterface(bytes4 interfaceId) public view virtual returns (bool result) {
/// @solidity memory-safe-assembly
assembly {
let s := shr(224, interfaceId)
// ERC165: 0x01ffc9a7, ERC1155: 0xd9b67a26, ERC1155MetadataURI: 0x0e89341c.
result := or(or(eq(s, 0x01ffc9a7), eq(s, 0xd9b67a26)), eq(s, 0x0e89341c))
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* INTERNAL MINT FUNCTIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Mints `amount` of `id` to `to`.
///
/// Requirements:
/// - `to` cannot be the zero address.
/// - If `to` refers to a smart contract, it must implement
/// {ERC1155-onERC1155Received}, which is called upon a batch transfer.
///
/// Emits a {TransferSingle} event.
function _mint(address to, uint256 id, uint256 amount, bytes memory data) internal virtual {
if (_useBeforeTokenTransfer()) {
_beforeTokenTransfer(address(0), to, _single(id), _single(amount), data);
}
/// @solidity memory-safe-assembly
assembly {
let to_ := shl(96, to)
// Revert if `to` is the zero address.
if iszero(to_) {
mstore(0x00, 0xea553b34) // `TransferToZeroAddress()`.
revert(0x1c, 0x04)
}
// Increase and store the updated balance of `to`.
{
mstore(0x20, _ERC1155_MASTER_SLOT_SEED)
mstore(0x14, to)
mstore(0x00, id)
let toBalanceSlot := keccak256(0x00, 0x40)
let toBalanceBefore := sload(toBalanceSlot)
let toBalanceAfter := add(toBalanceBefore, amount)
if lt(toBalanceAfter, toBalanceBefore) {
mstore(0x00, 0x01336cea) // `AccountBalanceOverflow()`.
revert(0x1c, 0x04)
}
sstore(toBalanceSlot, toBalanceAfter)
}
// Emit a {TransferSingle} event.
mstore(0x20, amount)
log4(0x00, 0x40, _TRANSFER_SINGLE_EVENT_SIGNATURE, caller(), 0, shr(96, to_))
}
if (_useAfterTokenTransfer()) {
_afterTokenTransfer(address(0), to, _single(id), _single(amount), data);
}
if (_hasCode(to)) _checkOnERC1155Received(address(0), to, id, amount, data);
}
/// @dev Mints `amounts` of `ids` to `to`.
///
/// Requirements:
/// - `to` cannot be the zero address.
/// - `ids` and `amounts` must have the same length.
/// - If `to` refers to a smart contract, it must implement
/// {ERC1155-onERC1155BatchReceived}, which is called upon a batch transfer.
///
/// Emits a {TransferBatch} event.
function _batchMint(
address to,
uint256[] memory ids,
uint256[] memory amounts,
bytes memory data
) internal virtual {
if (_useBeforeTokenTransfer()) {
_beforeTokenTransfer(address(0), to, ids, amounts, data);
}
/// @solidity memory-safe-assembly
assembly {
if iszero(eq(mload(ids), mload(amounts))) {
mstore(0x00, 0x3b800a46) // `ArrayLengthsMismatch()`.
revert(0x1c, 0x04)
}
let to_ := shl(96, to)
// Revert if `to` is the zero address.
if iszero(to_) {
mstore(0x00, 0xea553b34) // `TransferToZeroAddress()`.
revert(0x1c, 0x04)
}
// Loop through all the `ids` and update the balances.
{
mstore(0x20, or(_ERC1155_MASTER_SLOT_SEED, to_))
for { let i := shl(5, mload(ids)) } i { i := sub(i, 0x20) } {
let amount := mload(add(amounts, i))
// Increase and store the updated balance of `to`.
{
mstore(0x00, mload(add(ids, i)))
let toBalanceSlot := keccak256(0x00, 0x40)
let toBalanceBefore := sload(toBalanceSlot)
let toBalanceAfter := add(toBalanceBefore, amount)
if lt(toBalanceAfter, toBalanceBefore) {
mstore(0x00, 0x01336cea) // `AccountBalanceOverflow()`.
revert(0x1c, 0x04)
}
sstore(toBalanceSlot, toBalanceAfter)
}
}
}
// Emit a {TransferBatch} event.
{
let m := mload(0x40)
// Copy the `ids`.
mstore(m, 0x40)
let n := add(0x20, shl(5, mload(ids)))
let o := add(m, 0x40)
pop(staticcall(gas(), 4, ids, n, o, n))
// Copy the `amounts`.
mstore(add(m, 0x20), add(0x40, returndatasize()))
o := add(o, returndatasize())
n := add(0x20, shl(5, mload(amounts)))
pop(staticcall(gas(), 4, amounts, n, o, n))
n := sub(add(o, returndatasize()), m)
// Do the emit.
log4(m, n, _TRANSFER_BATCH_EVENT_SIGNATURE, caller(), 0, shr(96, to_))
}
}
if (_useAfterTokenTransfer()) {
_afterTokenTransfer(address(0), to, ids, amounts, data);
}
if (_hasCode(to)) _checkOnERC1155BatchReceived(address(0), to, ids, amounts, data);
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* INTERNAL BURN FUNCTIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Equivalent to `_burn(address(0), from, id, amount)`.
function _burn(address from, uint256 id, uint256 amount) internal virtual {
_burn(address(0), from, id, amount);
}
/// @dev Destroys `amount` of `id` from `from`.
///
/// Requirements:
/// - `from` must have at least `amount` of `id`.
/// - If `by` is not the zero address, it must be either `from`,
/// or approved to manage the tokens of `from`.
///
/// Emits a {TransferSingle} event.
function _burn(address by, address from, uint256 id, uint256 amount) internal virtual {
if (_useBeforeTokenTransfer()) {
_beforeTokenTransfer(from, address(0), _single(id), _single(amount), "");
}
/// @solidity memory-safe-assembly
assembly {
let from_ := shl(96, from)
mstore(0x20, or(_ERC1155_MASTER_SLOT_SEED, from_))
// If `by` is not the zero address, and not equal to `from`,
// check if it is approved to manage all the tokens of `from`.
if iszero(or(iszero(shl(96, by)), eq(shl(96, by), from_))) {
mstore(0x00, by)
if iszero(sload(keccak256(0x0c, 0x34))) {
mstore(0x00, 0x4b6e7f18) // `NotOwnerNorApproved()`.
revert(0x1c, 0x04)
}
}
// Decrease and store the updated balance of `from`.
{
mstore(0x00, id)
let fromBalanceSlot := keccak256(0x00, 0x40)
let fromBalance := sload(fromBalanceSlot)
if gt(amount, fromBalance) {
mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`.
revert(0x1c, 0x04)
}
sstore(fromBalanceSlot, sub(fromBalance, amount))
}
// Emit a {TransferSingle} event.
mstore(0x20, amount)
log4(0x00, 0x40, _TRANSFER_SINGLE_EVENT_SIGNATURE, caller(), shr(96, from_), 0)
}
if (_useAfterTokenTransfer()) {
_afterTokenTransfer(from, address(0), _single(id), _single(amount), "");
}
}
/// @dev Equivalent to `_batchBurn(address(0), from, ids, amounts)`.
function _batchBurn(address from, uint256[] memory ids, uint256[] memory amounts)
internal
virtual
{
_batchBurn(address(0), from, ids, amounts);
}
/// @dev Destroys `amounts` of `ids` from `from`.
///
/// Requirements:
/// - `ids` and `amounts` must have the same length.
/// - `from` must have at least `amounts` of `ids`.
/// - If `by` is not the zero address, it must be either `from`,
/// or approved to manage the tokens of `from`.
///
/// Emits a {TransferBatch} event.
function _batchBurn(address by, address from, uint256[] memory ids, uint256[] memory amounts)
internal
virtual
{
if (_useBeforeTokenTransfer()) {
_beforeTokenTransfer(from, address(0), ids, amounts, "");
}
/// @solidity memory-safe-assembly
assembly {
if iszero(eq(mload(ids), mload(amounts))) {
mstore(0x00, 0x3b800a46) // `ArrayLengthsMismatch()`.
revert(0x1c, 0x04)
}
let from_ := shl(96, from)
mstore(0x20, or(_ERC1155_MASTER_SLOT_SEED, from_))
// If `by` is not the zero address, and not equal to `from`,
// check if it is approved to manage all the tokens of `from`.
let by_ := shl(96, by)
if iszero(or(iszero(by_), eq(by_, from_))) {
mstore(0x00, by)
if iszero(sload(keccak256(0x0c, 0x34))) {
mstore(0x00, 0x4b6e7f18) // `NotOwnerNorApproved()`.
revert(0x1c, 0x04)
}
}
// Loop through all the `ids` and update the balances.
{
for { let i := shl(5, mload(ids)) } i { i := sub(i, 0x20) } {
let amount := mload(add(amounts, i))
// Decrease and store the updated balance of `from`.
{
mstore(0x00, mload(add(ids, i)))
let fromBalanceSlot := keccak256(0x00, 0x40)
let fromBalance := sload(fromBalanceSlot)
if gt(amount, fromBalance) {
mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`.
revert(0x1c, 0x04)
}
sstore(fromBalanceSlot, sub(fromBalance, amount))
}
}
}
// Emit a {TransferBatch} event.
{
let m := mload(0x40)
// Copy the `ids`.
mstore(m, 0x40)
let n := add(0x20, shl(5, mload(ids)))
let o := add(m, 0x40)
pop(staticcall(gas(), 4, ids, n, o, n))
// Copy the `amounts`.
mstore(add(m, 0x20), add(0x40, returndatasize()))
o := add(o, returndatasize())
n := add(0x20, shl(5, mload(amounts)))
pop(staticcall(gas(), 4, amounts, n, o, n))
n := sub(add(o, returndatasize()), m)
// Do the emit.
log4(m, n, _TRANSFER_BATCH_EVENT_SIGNATURE, caller(), shr(96, from_), 0)
}
}
if (_useAfterTokenTransfer()) {
_afterTokenTransfer(from, address(0), ids, amounts, "");
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* INTERNAL APPROVAL FUNCTIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Approve or remove the `operator` as an operator for `by`,
/// without authorization checks.
///
/// Emits a {ApprovalForAll} event.
function _setApprovalForAll(address by, address operator, bool isApproved) internal virtual {
/// @solidity memory-safe-assembly
assembly {
// Convert to 0 or 1.
isApproved := iszero(iszero(isApproved))
// Update the `isApproved` for (`by`, `operator`).
mstore(0x20, _ERC1155_MASTER_SLOT_SEED)
mstore(0x14, by)
mstore(0x00, operator)
sstore(keccak256(0x0c, 0x34), isApproved)
// Emit the {ApprovalForAll} event.
mstore(0x00, isApproved)
let m := shr(96, not(0))
log3(0x00, 0x20, _APPROVAL_FOR_ALL_EVENT_SIGNATURE, and(m, by), and(m, operator))
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* INTERNAL TRANSFER FUNCTIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Equivalent to `_safeTransfer(address(0), from, to, id, amount, data)`.
function _safeTransfer(address from, address to, uint256 id, uint256 amount, bytes memory data)
internal
virtual
{
_safeTransfer(address(0), from, to, id, amount, data);
}
/// @dev Transfers `amount` of `id` from `from` to `to`.
///
/// Requirements:
/// - `to` cannot be the zero address.
/// - `from` must have at least `amount` of `id`.
/// - If `by` is not the zero address, it must be either `from`,
/// or approved to manage the tokens of `from`.
/// - If `to` refers to a smart contract, it must implement
/// {ERC1155-onERC1155Received}, which is called upon a batch transfer.
///
/// Emits a {TransferSingle} event.
function _safeTransfer(
address by,
address from,
address to,
uint256 id,
uint256 amount,
bytes memory data
) internal virtual {
if (_useBeforeTokenTransfer()) {
_beforeTokenTransfer(from, to, _single(id), _single(amount), data);
}
/// @solidity memory-safe-assembly
assembly {
let from_ := shl(96, from)
let to_ := shl(96, to)
// Revert if `to` is the zero address.
if iszero(to_) {
mstore(0x00, 0xea553b34) // `TransferToZeroAddress()`.
revert(0x1c, 0x04)
}
mstore(0x20, or(_ERC1155_MASTER_SLOT_SEED, from_))
// If `by` is not the zero address, and not equal to `from`,
// check if it is approved to manage all the tokens of `from`.
let by_ := shl(96, by)
if iszero(or(iszero(by_), eq(by_, from_))) {
mstore(0x00, by)
if iszero(sload(keccak256(0x0c, 0x34))) {
mstore(0x00, 0x4b6e7f18) // `NotOwnerNorApproved()`.
revert(0x1c, 0x04)
}
}
// Subtract and store the updated balance of `from`.
{
mstore(0x00, id)
let fromBalanceSlot := keccak256(0x00, 0x40)
let fromBalance := sload(fromBalanceSlot)
if gt(amount, fromBalance) {
mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`.
revert(0x1c, 0x04)
}
sstore(fromBalanceSlot, sub(fromBalance, amount))
}
// Increase and store the updated balance of `to`.
{
mstore(0x20, or(_ERC1155_MASTER_SLOT_SEED, to_))
let toBalanceSlot := keccak256(0x00, 0x40)
let toBalanceBefore := sload(toBalanceSlot)
let toBalanceAfter := add(toBalanceBefore, amount)
if lt(toBalanceAfter, toBalanceBefore) {
mstore(0x00, 0x01336cea) // `AccountBalanceOverflow()`.
revert(0x1c, 0x04)
}
sstore(toBalanceSlot, toBalanceAfter)
}
// Emit a {TransferSingle} event.
mstore(0x20, amount)
// forgefmt: disable-next-line
log4(0x00, 0x40, _TRANSFER_SINGLE_EVENT_SIGNATURE, caller(), shr(96, from_), shr(96, to_))
}
if (_useAfterTokenTransfer()) {
_afterTokenTransfer(from, to, _single(id), _single(amount), data);
}
if (_hasCode(to)) _checkOnERC1155Received(from, to, id, amount, data);
}
/// @dev Equivalent to `_safeBatchTransfer(address(0), from, to, ids, amounts, data)`.
function _safeBatchTransfer(
address from,
address to,
uint256[] memory ids,
uint256[] memory amounts,
bytes memory data
) internal virtual {
_safeBatchTransfer(address(0), from, to, ids, amounts, data);
}
/// @dev Transfers `amounts` of `ids` from `from` to `to`.
///
/// Requirements:
/// - `to` cannot be the zero address.
/// - `ids` and `amounts` must have the same length.
/// - `from` must have at least `amounts` of `ids`.
/// - If `by` is not the zero address, it must be either `from`,
/// or approved to manage the tokens of `from`.
/// - If `to` refers to a smart contract, it must implement
/// {ERC1155-onERC1155BatchReceived}, which is called upon a batch transfer.
///
/// Emits a {TransferBatch} event.
function _safeBatchTransfer(
address by,
address from,
address to,
uint256[] memory ids,
uint256[] memory amounts,
bytes memory data
) internal virtual {
if (_useBeforeTokenTransfer()) {
_beforeTokenTransfer(from, to, ids, amounts, data);
}
/// @solidity memory-safe-assembly
assembly {
if iszero(eq(mload(ids), mload(amounts))) {
mstore(0x00, 0x3b800a46) // `ArrayLengthsMismatch()`.
revert(0x1c, 0x04)
}
let from_ := shl(96, from)
let to_ := shl(96, to)
// Revert if `to` is the zero address.
if iszero(to_) {
mstore(0x00, 0xea553b34) // `TransferToZeroAddress()`.
revert(0x1c, 0x04)
}
let fromSlotSeed := or(_ERC1155_MASTER_SLOT_SEED, from_)
let toSlotSeed := or(_ERC1155_MASTER_SLOT_SEED, to_)
mstore(0x20, fromSlotSeed)
// If `by` is not the zero address, and not equal to `from`,
// check if it is approved to manage all the tokens of `from`.
let by_ := shl(96, by)
if iszero(or(iszero(by_), eq(by_, from_))) {
mstore(0x00, by)
if iszero(sload(keccak256(0x0c, 0x34))) {
mstore(0x00, 0x4b6e7f18) // `NotOwnerNorApproved()`.
revert(0x1c, 0x04)
}
}
// Loop through all the `ids` and update the balances.
{
for { let i := shl(5, mload(ids)) } i { i := sub(i, 0x20) } {
let amount := mload(add(amounts, i))
// Subtract and store the updated balance of `from`.
{
mstore(0x20, fromSlotSeed)
mstore(0x00, mload(add(ids, i)))
let fromBalanceSlot := keccak256(0x00, 0x40)
let fromBalance := sload(fromBalanceSlot)
if gt(amount, fromBalance) {
mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`.
revert(0x1c, 0x04)
}
sstore(fromBalanceSlot, sub(fromBalance, amount))
}
// Increase and store the updated balance of `to`.
{
mstore(0x20, toSlotSeed)
let toBalanceSlot := keccak256(0x00, 0x40)
let toBalanceBefore := sload(toBalanceSlot)
let toBalanceAfter := add(toBalanceBefore, amount)
if lt(toBalanceAfter, toBalanceBefore) {
mstore(0x00, 0x01336cea) // `AccountBalanceOverflow()`.
revert(0x1c, 0x04)
}
sstore(toBalanceSlot, toBalanceAfter)
}
}
}
// Emit a {TransferBatch} event.
{
let m := mload(0x40)
// Copy the `ids`.
mstore(m, 0x40)
let n := add(0x20, shl(5, mload(ids)))
let o := add(m, 0x40)
pop(staticcall(gas(), 4, ids, n, o, n))
// Copy the `amounts`.
mstore(add(m, 0x20), add(0x40, returndatasize()))
o := add(o, returndatasize())
n := add(0x20, shl(5, mload(amounts)))
pop(staticcall(gas(), 4, amounts, n, o, n))
n := sub(add(o, returndatasize()), m)
// Do the emit.
log4(m, n, _TRANSFER_BATCH_EVENT_SIGNATURE, caller(), shr(96, from_), shr(96, to_))
}
}
if (_useAfterTokenTransfer()) {
_afterTokenTransfer(from, to, ids, amounts, data);
}
if (_hasCode(to)) _checkOnERC1155BatchReceived(from, to, ids, amounts, data);
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* HOOKS FOR OVERRIDING */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Override this function to return true if `_beforeTokenTransfer` is used.
/// This is to help the compiler avoid producing dead bytecode.
function _useBeforeTokenTransfer() internal view virtual returns (bool) {
return false;
}
/// @dev Hook that is called before any token transfer.
/// This includes minting and burning, as well as batched variants.
///
/// The same hook is called on both single and batched variants.
/// For single transfers, the length of the `id` and `amount` arrays are 1.
function _beforeTokenTransfer(
address from,
address to,
uint256[] memory ids,
uint256[] memory amounts,
bytes memory data
) internal virtual {}
/// @dev Override this function to return true if `_afterTokenTransfer` is used.
/// This is to help the compiler avoid producing dead bytecode.
function _useAfterTokenTransfer() internal view virtual returns (bool) {
return false;
}
/// @dev Hook that is called after any token transfer.
/// This includes minting and burning, as well as batched variants.
///
/// The same hook is called on both single and batched variants.
/// For single transfers, the length of the `id` and `amount` arrays are 1.
function _afterTokenTransfer(
address from,
address to,
uint256[] memory ids,
uint256[] memory amounts,
bytes memory data
) internal virtual {}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* PRIVATE HELPERS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Helper for calling the `_afterTokenTransfer` hook.
/// This is to help the compiler avoid producing dead bytecode.
function _afterTokenTransferCalldata(
address from,
address to,
uint256[] calldata ids,
uint256[] calldata amounts,
bytes calldata data
) private {
if (_useAfterTokenTransfer()) {
_afterTokenTransfer(from, to, ids, amounts, data);
}
}
/// @dev Returns if `a` has bytecode of non-zero length.
function _hasCode(address a) private view returns (bool result) {
/// @solidity memory-safe-assembly
assembly {
result := extcodesize(a) // Can handle dirty upper bits.
}
}
/// @dev Perform a call to invoke {IERC1155Receiver-onERC1155Received} on `to`.
/// Reverts if the target does not support the function correctly.
function _checkOnERC1155Received(
address from,
address to,
uint256 id,
uint256 amount,
bytes memory data
) private {
/// @solidity memory-safe-assembly
assembly {
// Prepare the calldata.
let m := mload(0x40)
// `onERC1155Received(address,address,uint256,uint256,bytes)`.
mstore(m, 0xf23a6e61)
mstore(add(m, 0x20), caller())
mstore(add(m, 0x40), shr(96, shl(96, from)))
mstore(add(m, 0x60), id)
mstore(add(m, 0x80), amount)
mstore(add(m, 0xa0), 0xa0)
let n := mload(data)
mstore(add(m, 0xc0), n)
if n { pop(staticcall(gas(), 4, add(data, 0x20), n, add(m, 0xe0), n)) }
// Revert if the call reverts.
if iszero(call(gas(), to, 0, add(m, 0x1c), add(0xc4, n), m, 0x20)) {
if returndatasize() {
// Bubble up the revert if the call reverts.
returndatacopy(m, 0x00, returndatasize())
revert(m, returndatasize())
}
}
// Load the returndata and compare it with the function selector.
if iszero(eq(mload(m), shl(224, 0xf23a6e61))) {
mstore(0x00, 0x9c05499b) // `TransferToNonERC1155ReceiverImplementer()`.
revert(0x1c, 0x04)
}
}
}
/// @dev Perform a call to invoke {IERC1155Receiver-onERC1155BatchReceived} on `to`.
/// Reverts if the target does not support the function correctly.
function _checkOnERC1155BatchReceived(
address from,
address to,
uint256[] memory ids,
uint256[] memory amounts,
bytes memory data
) private {
/// @solidity memory-safe-assembly
assembly {
// Prepare the calldata.
let m := mload(0x40)
// `onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)`.
mstore(m, 0xbc197c81)
mstore(add(m, 0x20), caller())
mstore(add(m, 0x40), shr(96, shl(96, from)))
// Copy the `ids`.
mstore(add(m, 0x60), 0xa0)
let n := add(0x20, shl(5, mload(ids)))
let o := add(m, 0xc0)
pop(staticcall(gas(), 4, ids, n, o, n))
// Copy the `amounts`.
let s := add(0xa0, returndatasize())
mstore(add(m, 0x80), s)
o := add(o, returndatasize())
n := add(0x20, shl(5, mload(amounts)))
pop(staticcall(gas(), 4, amounts, n, o, n))
// Copy the `data`.
mstore(add(m, 0xa0), add(s, returndatasize()))
o := add(o, returndatasize())
n := add(0x20, mload(data))
pop(staticcall(gas(), 4, data, n, o, n))
n := sub(add(o, returndatasize()), add(m, 0x1c))
// Revert if the call reverts.
if iszero(call(gas(), to, 0, add(m, 0x1c), n, m, 0x20)) {
if returndatasize() {
// Bubble up the revert if the call reverts.
returndatacopy(m, 0x00, returndatasize())
revert(m, returndatasize())
}
}
// Load the returndata and compare it with the function selector.
if iszero(eq(mload(m), shl(224, 0xbc197c81))) {
mstore(0x00, 0x9c05499b) // `TransferToNonERC1155ReceiverImplementer()`.
revert(0x1c, 0x04)
}
}
}
/// @dev Returns `x` in an array with a single element.
function _single(uint256 x) private pure returns (uint256[] memory result) {
/// @solidity memory-safe-assembly
assembly {
result := mload(0x40)
mstore(0x40, add(result, 0x40))
mstore(result, 1)
mstore(add(result, 0x20), x)
}
}
}