S Price: $0.554637 (-4.50%)

Contract Diff Checker

Contract Name:
OptionPricingLinearV2_1

Contract Source Code:

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.13;

// Libraries
import {SafeMath} from "@openzeppelin/contracts/utils/math/SafeMath.sol";
import {BlackScholes} from "./external/BlackScholes.sol";
import {ABDKMathQuad} from "./external/ABDKMathQuad.sol";

// Contracts
import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol";

// Interfaces
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";

contract OptionPricingLinearV2_1 is Ownable {
    using SafeMath for uint256;

    // The % of the price of asset which is the minimum option price possible in 1e8 precision
    uint256 public minOptionPricePercentage;

    // The decimal precision for volatility calculation
    uint256 public constant VOLATILITY_PRECISION = 1e4;

    // xSYK token address
    address public xSyk;

    // Time to expiry => volatility
    mapping(uint256 => uint256) public ttlToVol;

    // TTL => The offset for volatility calculation in 1e4 precision
    mapping(uint256 => uint256) public volatilityOffsets;

    // TTL => The multiplier for volatility calculation in 1e4 precision
    mapping(uint256 => uint256) public volatilityMultipliers;

    // IV Setter addresses
    mapping(address => bool) public ivSetter;

    // xSYK Balances for each tier
    uint256[] public xSykBalances;

    // Discount for each tier
    uint256[] public discounts;

    error NotIVSetter();

    event UpdatedIVs(address sender, uint256[] ttls, uint256[] ttlIVs);

    constructor(uint256 _minOptionPricePercentage, address _xSyk) {
        minOptionPricePercentage = _minOptionPricePercentage;
        xSyk = _xSyk;

        ivSetter[msg.sender] = true;
    }

    /*---- GOVERNANCE FUNCTIONS ----*/

    /// @notice Updates the IV setter
    /// @param _setter Address of the setter
    /// @param _status Status  to set
    /// @dev Only the owner of the contract can call this function
    function updateIVSetter(address _setter, bool _status) external onlyOwner {
        ivSetter[_setter] = _status;
    }

    /// @notice Updates the implied volatility (IV) for the given time to expirations (TTLs).
    /// @param _ttls The TTLs to update the IV for.
    /// @param _ttlIVs The new IVs for the given TTLs.
    /// @dev Only the IV SETTER can call this function.
    function updateIVs(uint256[] calldata _ttls, uint256[] calldata _ttlIVs) external {
        if (!ivSetter[msg.sender]) revert NotIVSetter();

        for (uint256 i; i < _ttls.length; i++) {
            ttlToVol[_ttls[i]] = _ttlIVs[i];
        }

        emit UpdatedIVs(msg.sender, _ttls, _ttlIVs);
    }

    /// @notice updates the offset for volatility calculation
    /// @param _volatilityOffsets the new offset
    /// @param _ttls The TTLs to update the volatility offset for.
    /// @return whether offset was updated
    function updateVolatilityOffset(uint256[] calldata _volatilityOffsets, uint256[] calldata _ttls)
        external
        onlyOwner
        returns (bool)
    {
        uint256 volatilityOffsetsLength = _volatilityOffsets.length;

        for (uint256 i; i < volatilityOffsetsLength;) {
            volatilityOffsets[_ttls[i]] = _volatilityOffsets[i];

            unchecked {
                ++i;
            }
        }

        return true;
    }

    /// @notice updates the multiplier for volatility calculation
    /// @param _volatilityMultipliers the new multiplier
    /// @param _ttls The TTLs to update the volatility multiplier for.
    /// @return whether multiplier was updated
    function updateVolatilityMultiplier(uint256[] calldata _volatilityMultipliers, uint256[] calldata _ttls)
        external
        onlyOwner
        returns (bool)
    {
        for (uint256 i = 0; i < _volatilityMultipliers.length; i++) {
            volatilityMultipliers[_ttls[i]] = _volatilityMultipliers[i];
        }

        return true;
    }

    /// @notice updates % of the price of asset which is  the minimum option price possible
    /// @param _minOptionPricePercentage the new %
    /// @return whether % was updated
    function updateMinOptionPricePercentage(uint256 _minOptionPricePercentage) external onlyOwner returns (bool) {
        minOptionPricePercentage = _minOptionPricePercentage;

        return true;
    }

    /// @notice sets the xSYK balances and discounts for each tier
    /// @param _xSykBalances the xSYK balances
    /// @param _discounts the discounts
    /// @return whether the balances and discounts were set
    function setXSykBalancesAndDiscounts(uint256[] calldata _xSykBalances, uint256[] calldata _discounts)
        external
        onlyOwner
        returns (bool)
    {
        xSykBalances = _xSykBalances;
        discounts = _discounts;

        return true;
    }

    /*---- VIEWS ----*/

    /// @notice computes the option price (with liquidity multiplier)
    /// @param isPut is put option
    /// @param expiry expiry timestamp
    /// @param strike strike price
    /// @param lastPrice current price
    function getOptionPrice(bool isPut, uint256 expiry, uint256 strike, uint256 lastPrice)
        external
        view
        returns (uint256)
    {
        uint256 timeToExpiry = expiry.sub(block.timestamp).div(864);

        uint256 volatility = ttlToVol[expiry - block.timestamp];

        if (volatility == 0) revert();

        volatility = getVolatility(strike, lastPrice, volatility, expiry - block.timestamp);

        uint256 optionPrice = BlackScholes.calculate(isPut ? 1 : 0, lastPrice, strike, timeToExpiry, 0, volatility) // 0 - Put, 1 - Call
                // Number of days to expiry mul by 100
            .div(BlackScholes.DIVISOR);

        uint256 minOptionPrice = lastPrice.mul(minOptionPricePercentage).div(1e10);

        if (minOptionPrice > optionPrice) {
            return minOptionPrice;
        }

        return optionPrice;
    }

    /// @notice computes the option price (with liquidity multiplier)
    /// @param isPut is put option
    /// @param ttl time to live for the option
    /// @param strike strike price
    /// @param lastPrice current price
    function getOptionPriceViaTTL(bool isPut, uint256 ttl, uint256 strike, uint256 lastPrice)
        external
        view
        returns (uint256)
    {
        uint256 timeToExpiry = ttl.div(864);

        uint256 volatility = ttlToVol[ttl];

        if (volatility == 0) revert();

        volatility = getVolatility(strike, lastPrice, volatility, ttl);

        uint256 optionPrice = BlackScholes.calculate(isPut ? 1 : 0, lastPrice, strike, timeToExpiry, 0, volatility) // 0 - Put, 1 - Call
                // Number of days to expiry mul by 100
            .div(BlackScholes.DIVISOR);

        uint256 minOptionPrice = lastPrice.mul(minOptionPricePercentage).div(1e10);

        if (minOptionPrice > optionPrice) {
            return minOptionPrice;
        }

        return optionPrice;
    }

    /// @notice computes the volatility for a strike
    /// @param strike strike price
    /// @param lastPrice current price
    /// @param volatility volatility
    function getVolatility(uint256 strike, uint256 lastPrice, uint256 volatility, uint256 ttl)
        public
        view
        returns (uint256)
    {
        uint256 percentageDifference = strike.mul(1e2).mul(VOLATILITY_PRECISION).div(lastPrice); // 1e4 in percentage precision (1e6 is 100%)

        if (strike > lastPrice) {
            percentageDifference = percentageDifference.sub(1e6);
        } else {
            percentageDifference = uint256(1e6).sub(percentageDifference);
        }

        uint256 scaleFactor =
            volatilityOffsets[ttl] + (percentageDifference.mul(volatilityMultipliers[ttl]).div(VOLATILITY_PRECISION));

        volatility = volatility.mul(scaleFactor).div(VOLATILITY_PRECISION);

        address userAddress = tx.origin;
        uint256 tiers = xSykBalances.length;
        uint256 userDiscount = 0;
        if (tiers != 0) {
            for (uint256 i; i < tiers;) {
                uint256 balance = IERC20(xSyk).balanceOf(userAddress);
                if (balance >= xSykBalances[i]) {
                    userDiscount = discounts[i];
                } else {
                    break;
                }
                unchecked {
                    ++i;
                }
            }
        }

        volatility = volatility.mul(1e4 - userDiscount).div(1e4);

        return volatility;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/SafeMath.sol)

pragma solidity ^0.8.0;

// CAUTION
// This version of SafeMath should only be used with Solidity 0.8 or later,
// because it relies on the compiler's built in overflow checks.

/**
 * @dev Wrappers over Solidity's arithmetic operations.
 *
 * NOTE: `SafeMath` is generally not needed starting with Solidity 0.8, since the compiler
 * now has built in overflow checking.
 */
library SafeMath {
    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the addition of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     *
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        return a + b;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        return a - b;
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `*` operator.
     *
     * Requirements:
     *
     * - Multiplication cannot overflow.
     */
    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        return a * b;
    }

    /**
     * @dev Returns the integer division of two unsigned integers, reverting on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator.
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        return a / b;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        return a % b;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
     * overflow (when the result is negative).
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {trySub}.
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        unchecked {
            require(b <= a, errorMessage);
            return a - b;
        }
    }

    /**
     * @dev Returns the integer division of two unsigned integers, reverting with custom message on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        unchecked {
            require(b > 0, errorMessage);
            return a / b;
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting with custom message when dividing by zero.
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {tryMod}.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        unchecked {
            require(b > 0, errorMessage);
            return a % b;
        }
    }
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.13;

// Libraries
import {ABDKMathQuad} from "./ABDKMathQuad.sol";

/// @title Black-Scholes option pricing formula and supporting statistical functions
/// @author Dopex
/// @notice This library implements the Black-Scholes model to price options.
/// See - https://en.wikipedia.org/wiki/Black%E2%80%93Scholes_model
/// @dev Implements the following implementation - https://cseweb.ucsd.edu/~goguen/courses/130/SayBlackScholes.html
/// Uses the ABDKMathQuad(https://github.com/abdk-consulting/abdk-libraries-solidity/blob/master/ABDKMathQuad.md)
/// library to make precise calculations. It uses a DIVISOR (1e16) for maintaining precision in constants.
library BlackScholes {
    uint8 internal constant OPTION_TYPE_CALL = 0;
    uint8 internal constant OPTION_TYPE_PUT = 1;

    uint256 internal constant DIVISOR = 10 ** 16;

    /**
     * @notice The function that uses the Black-Scholes equation to calculate the option price
     * See http://en.wikipedia.org/wiki/Black%E2%80%93Scholes_model#Black-Scholes_formula
     * NOTE: The different parts of the equation are broken down to separate functions as using
     * ABDKMathQuad makes small equations verbose.
     * @param optionType Type of option - 0 = call, 1 = put
     * @param price Stock price
     * @param strike Strike price
     * @param timeToExpiry Time to expiry in days
     * @param riskFreeRate Risk-free rate
     * @param volatility Volatility on the asset
     * @return Option price based on the Black-Scholes model
     */
    function calculate(
        uint8 optionType,
        uint256 price,
        uint256 strike,
        uint256 timeToExpiry,
        uint256 riskFreeRate,
        uint256 volatility
    ) internal pure returns (uint256) {
        bytes16 S = ABDKMathQuad.fromUInt(price);
        bytes16 X = ABDKMathQuad.fromUInt(strike);
        bytes16 T = ABDKMathQuad.div(
            ABDKMathQuad.fromUInt(timeToExpiry),
            ABDKMathQuad.fromUInt(36500) // 365 * 10 ^ DAYS_PRECISION
        );
        bytes16 r = ABDKMathQuad.div(
            ABDKMathQuad.fromUInt(riskFreeRate),
            ABDKMathQuad.fromUInt(10000)
        );
        bytes16 v = ABDKMathQuad.div(
            ABDKMathQuad.fromUInt(volatility),
            ABDKMathQuad.fromUInt(100)
        );
        bytes16 d1 = ABDKMathQuad.div(
            ABDKMathQuad.add(
                ABDKMathQuad.ln(ABDKMathQuad.div(S, X)),
                ABDKMathQuad.mul(
                    ABDKMathQuad.add(
                        r,
                        ABDKMathQuad.mul(
                            v,
                            ABDKMathQuad.div(v, ABDKMathQuad.fromUInt(2))
                        )
                    ),
                    T
                )
            ),
            ABDKMathQuad.mul(v, ABDKMathQuad.sqrt(T))
        );
        bytes16 d2 = ABDKMathQuad.sub(
            d1,
            ABDKMathQuad.mul(v, ABDKMathQuad.sqrt(T))
        );
        if (optionType == OPTION_TYPE_CALL) {
            return
                ABDKMathQuad.toUInt(
                    ABDKMathQuad.mul(
                        _calculateCallTimeDecay(S, d1, X, r, T, d2),
                        ABDKMathQuad.fromUInt(DIVISOR)
                    )
                );
        } else if (optionType == OPTION_TYPE_PUT) {
            return
                ABDKMathQuad.toUInt(
                    ABDKMathQuad.mul(
                        _calculatePutTimeDecay(X, r, T, d2, S, d1),
                        ABDKMathQuad.fromUInt(DIVISOR)
                    )
                );
        } else return 0;
    }

    /// @dev Function to caluclate the call time decay
    /// From the implementation page(https://cseweb.ucsd.edu/~goguen/courses/130/SayBlackScholes.html); part of the equation
    /// ( S * CND(d1)-X * Math.exp(-r * T) * CND(d2) );
    function _calculateCallTimeDecay(
        bytes16 S,
        bytes16 d1,
        bytes16 X,
        bytes16 r,
        bytes16 T,
        bytes16 d2
    ) internal pure returns (bytes16) {
        return
            ABDKMathQuad.sub(
                ABDKMathQuad.mul(S, CND(d1)),
                ABDKMathQuad.mul(
                    ABDKMathQuad.mul(
                        X,
                        ABDKMathQuad.exp(
                            ABDKMathQuad.mul(ABDKMathQuad.neg(r), T)
                        )
                    ),
                    CND(d2)
                )
            );
    }

    /// @dev Function to caluclate the put time decay
    /// From the implementation page(https://cseweb.ucsd.edu/~goguen/courses/130/SayBlackScholes.html); part of the equation -
    /// ( X * Math.exp(-r * T) * CND(-d2) - S * CND(-d1) );
    function _calculatePutTimeDecay(
        bytes16 X,
        bytes16 r,
        bytes16 T,
        bytes16 d2,
        bytes16 S,
        bytes16 d1
    ) internal pure returns (bytes16) {
        bytes16 price_part1 = ABDKMathQuad.mul(
            ABDKMathQuad.mul(
                X,
                ABDKMathQuad.exp(ABDKMathQuad.mul(ABDKMathQuad.neg(r), T))
            ),
            CND(ABDKMathQuad.neg(d2))
        );
        bytes16 price_part2 = ABDKMathQuad.mul(S, CND(ABDKMathQuad.neg(d1)));
        bytes16 price = ABDKMathQuad.sub(price_part1, price_part2);
        return price;
    }

    /**
     * @notice Normal cumulative distribution function.
     * See http://en.wikipedia.org/wiki/Normal_distribution#Cumulative_distribution_function
     * From the implementation page(https://cseweb.ucsd.edu/~goguen/courses/130/SayBlackScholes.html); part of the equation -
     * "k = 1 / (1 + .2316419 * x); return ( 1 - Math.exp(-x * x / 2)/ Math.sqrt(2*Math.PI) * k * (.31938153 + k * (-.356563782 + k * (1.781477937 + k * (-1.821255978 + k * 1.330274429)))) );"
     * NOTE: The different parts of the equation are broken down to separate functions as using
     * ABDKMathQuad makes small equations verbose.
     */
    function CND(bytes16 x) internal pure returns (bytes16) {
        if (ABDKMathQuad.toInt(x) < 0) {
            return (
                ABDKMathQuad.sub(
                    ABDKMathQuad.fromUInt(1),
                    CND(ABDKMathQuad.neg(x))
                )
            );
        } else {
            bytes16 k = ABDKMathQuad.div(
                ABDKMathQuad.fromUInt(1),
                ABDKMathQuad.add(
                    ABDKMathQuad.fromUInt(1),
                    ABDKMathQuad.mul(
                        ABDKMathQuad.div(
                            ABDKMathQuad.fromUInt(2316419000000000),
                            ABDKMathQuad.fromUInt(DIVISOR)
                        ),
                        x
                    )
                )
            );
            bytes16 CND_part2 = _getCNDPart2(k, x);
            return ABDKMathQuad.sub(ABDKMathQuad.fromUInt(1), CND_part2);
        }
    }

    function _getCNDPart2(
        bytes16 k,
        bytes16 x
    ) internal pure returns (bytes16) {
        return ABDKMathQuad.mul(_getCNDPart2_1(x), _getCNDPart2_2(k));
    }

    function _getCNDPart2_1(bytes16 x) internal pure returns (bytes16) {
        return
            ABDKMathQuad.div(
                ABDKMathQuad.exp(
                    ABDKMathQuad.mul(
                        ABDKMathQuad.neg(x),
                        ABDKMathQuad.div(x, ABDKMathQuad.fromUInt(2))
                    )
                ),
                ABDKMathQuad.sqrt(
                    ABDKMathQuad.mul(
                        ABDKMathQuad.fromUInt(2),
                        ABDKMathQuad.div(
                            ABDKMathQuad.fromUInt(31415926530000000),
                            ABDKMathQuad.fromUInt(DIVISOR)
                        )
                    )
                )
            );
    }

    function _getCNDPart2_2(bytes16 k) internal pure returns (bytes16) {
        return
            ABDKMathQuad.mul(
                ABDKMathQuad.add(
                    ABDKMathQuad.div(
                        ABDKMathQuad.fromUInt(3193815300000000),
                        ABDKMathQuad.fromUInt(DIVISOR)
                    ),
                    ABDKMathQuad.mul(
                        k,
                        ABDKMathQuad.add(
                            ABDKMathQuad.neg(
                                ABDKMathQuad.div(
                                    ABDKMathQuad.fromUInt(3565637820000000),
                                    ABDKMathQuad.fromUInt(DIVISOR)
                                )
                            ),
                            ABDKMathQuad.mul(
                                k,
                                ABDKMathQuad.add(
                                    ABDKMathQuad.div(
                                        ABDKMathQuad.fromUInt(
                                            17814779370000000
                                        ),
                                        ABDKMathQuad.fromUInt(DIVISOR)
                                    ),
                                    _getCNDPart2_2_1(k)
                                )
                            )
                        )
                    )
                ),
                k
            );
    }

    function _getCNDPart2_2_1(bytes16 k) internal pure returns (bytes16) {
        return
            ABDKMathQuad.mul(
                k,
                ABDKMathQuad.add(
                    ABDKMathQuad.neg(
                        ABDKMathQuad.div(
                            ABDKMathQuad.fromUInt(18212559780000000),
                            ABDKMathQuad.fromUInt(DIVISOR)
                        )
                    ),
                    ABDKMathQuad.mul(
                        k,
                        ABDKMathQuad.div(
                            ABDKMathQuad.fromUInt(13302744290000000),
                            ABDKMathQuad.fromUInt(DIVISOR)
                        )
                    )
                )
            );
    }
}

// SPDX-License-Identifier: BSD-4-Clause
/*
 * ABDK Math Quad Smart Contract Library.  Copyright © 2019 by ABDK Consulting.
 * Author: Mikhail Vladimirov <[email protected]>
 */
pragma solidity ^0.8.13;

/**
 * Smart contract library of mathematical functions operating with IEEE 754
 * quadruple-precision binary floating-point numbers (quadruple precision
 * numbers).  As long as quadruple precision numbers are 16-bytes long, they are
 * represented by bytes16 type.
 */
library ABDKMathQuad {
    /*
     * 0.
     */
    bytes16 private constant POSITIVE_ZERO = 0x00000000000000000000000000000000;

    /*
     * -0.
     */
    bytes16 private constant NEGATIVE_ZERO = 0x80000000000000000000000000000000;

    /*
     * +Infinity.
     */
    bytes16 private constant POSITIVE_INFINITY =
        0x7FFF0000000000000000000000000000;

    /*
     * -Infinity.
     */
    bytes16 private constant NEGATIVE_INFINITY =
        0xFFFF0000000000000000000000000000;

    /*
     * Canonical NaN value.
     */
    bytes16 private constant NaN = 0x7FFF8000000000000000000000000000;

    /**
     * Convert signed 256-bit integer number into quadruple precision number.
     *
     * @param x signed 256-bit integer number
     * @return quadruple precision number
     */
    function fromInt(int256 x) internal pure returns (bytes16) {
        unchecked {
            if (x == 0) return bytes16(0);
            else {
                // We rely on overflow behavior here
                uint256 result = uint256(x > 0 ? x : -x);

                uint256 msb = mostSignificantBit(result);
                if (msb < 112) result <<= 112 - msb;
                else if (msb > 112) result >>= msb - 112;

                result =
                    (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) |
                    ((16383 + msb) << 112);
                if (x < 0) result |= 0x80000000000000000000000000000000;

                return bytes16(uint128(result));
            }
        }
    }

    /**
     * Convert quadruple precision number into signed 256-bit integer number
     * rounding towards zero.  Revert on overflow.
     *
     * @param x quadruple precision number
     * @return signed 256-bit integer number
     */
    function toInt(bytes16 x) internal pure returns (int256) {
        unchecked {
            uint256 exponent = (uint128(x) >> 112) & 0x7FFF;

            require(exponent <= 16638); // Overflow
            if (exponent < 16383) return 0; // Underflow

            uint256 result = (uint256(uint128(x)) &
                0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) |
                0x10000000000000000000000000000;

            if (exponent < 16495) result >>= 16495 - exponent;
            else if (exponent > 16495) result <<= exponent - 16495;

            if (uint128(x) >= 0x80000000000000000000000000000000) {
                // Negative
                require(
                    result <=
                        0x8000000000000000000000000000000000000000000000000000000000000000
                );
                return -int256(result); // We rely on overflow behavior here
            } else {
                require(
                    result <=
                        0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
                );
                return int256(result);
            }
        }
    }

    /**
     * Convert unsigned 256-bit integer number into quadruple precision number.
     *
     * @param x unsigned 256-bit integer number
     * @return quadruple precision number
     */
    function fromUInt(uint256 x) internal pure returns (bytes16) {
        unchecked {
            if (x == 0) return bytes16(0);
            else {
                uint256 result = x;

                uint256 msb = mostSignificantBit(result);
                if (msb < 112) result <<= 112 - msb;
                else if (msb > 112) result >>= msb - 112;

                result =
                    (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) |
                    ((16383 + msb) << 112);

                return bytes16(uint128(result));
            }
        }
    }

    /**
     * Convert quadruple precision number into unsigned 256-bit integer number
     * rounding towards zero.  Revert on underflow.  Note, that negative floating
     * point numbers in range (-1.0 .. 0.0) may be converted to unsigned integer
     * without error, because they are rounded to zero.
     *
     * @param x quadruple precision number
     * @return unsigned 256-bit integer number
     */
    function toUInt(bytes16 x) internal pure returns (uint256) {
        unchecked {
            uint256 exponent = (uint128(x) >> 112) & 0x7FFF;

            if (exponent < 16383) return 0; // Underflow

            require(uint128(x) < 0x80000000000000000000000000000000); // Negative

            require(exponent <= 16638); // Overflow
            uint256 result = (uint256(uint128(x)) &
                0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) |
                0x10000000000000000000000000000;

            if (exponent < 16495) result >>= 16495 - exponent;
            else if (exponent > 16495) result <<= exponent - 16495;

            return result;
        }
    }

    /**
     * Convert signed 128.128 bit fixed point number into quadruple precision
     * number.
     *
     * @param x signed 128.128 bit fixed point number
     * @return quadruple precision number
     */
    function from128x128(int256 x) internal pure returns (bytes16) {
        unchecked {
            if (x == 0) return bytes16(0);
            else {
                // We rely on overflow behavior here
                uint256 result = uint256(x > 0 ? x : -x);

                uint256 msb = mostSignificantBit(result);
                if (msb < 112) result <<= 112 - msb;
                else if (msb > 112) result >>= msb - 112;

                result =
                    (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) |
                    ((16255 + msb) << 112);
                if (x < 0) result |= 0x80000000000000000000000000000000;

                return bytes16(uint128(result));
            }
        }
    }

    /**
     * Convert quadruple precision number into signed 128.128 bit fixed point
     * number.  Revert on overflow.
     *
     * @param x quadruple precision number
     * @return signed 128.128 bit fixed point number
     */
    function to128x128(bytes16 x) internal pure returns (int256) {
        unchecked {
            uint256 exponent = (uint128(x) >> 112) & 0x7FFF;

            require(exponent <= 16510); // Overflow
            if (exponent < 16255) return 0; // Underflow

            uint256 result = (uint256(uint128(x)) &
                0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) |
                0x10000000000000000000000000000;

            if (exponent < 16367) result >>= 16367 - exponent;
            else if (exponent > 16367) result <<= exponent - 16367;

            if (uint128(x) >= 0x80000000000000000000000000000000) {
                // Negative
                require(
                    result <=
                        0x8000000000000000000000000000000000000000000000000000000000000000
                );
                return -int256(result); // We rely on overflow behavior here
            } else {
                require(
                    result <=
                        0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
                );
                return int256(result);
            }
        }
    }

    /**
     * Convert signed 64.64 bit fixed point number into quadruple precision
     * number.
     *
     * @param x signed 64.64 bit fixed point number
     * @return quadruple precision number
     */
    function from64x64(int128 x) internal pure returns (bytes16) {
        unchecked {
            if (x == 0) return bytes16(0);
            else {
                // We rely on overflow behavior here
                uint256 result = uint128(x > 0 ? x : -x);

                uint256 msb = mostSignificantBit(result);
                if (msb < 112) result <<= 112 - msb;
                else if (msb > 112) result >>= msb - 112;

                result =
                    (result & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) |
                    ((16319 + msb) << 112);
                if (x < 0) result |= 0x80000000000000000000000000000000;

                return bytes16(uint128(result));
            }
        }
    }

    /**
     * Convert quadruple precision number into signed 64.64 bit fixed point
     * number.  Revert on overflow.
     *
     * @param x quadruple precision number
     * @return signed 64.64 bit fixed point number
     */
    function to64x64(bytes16 x) internal pure returns (int128) {
        unchecked {
            uint256 exponent = (uint128(x) >> 112) & 0x7FFF;

            require(exponent <= 16446); // Overflow
            if (exponent < 16319) return 0; // Underflow

            uint256 result = (uint256(uint128(x)) &
                0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF) |
                0x10000000000000000000000000000;

            if (exponent < 16431) result >>= 16431 - exponent;
            else if (exponent > 16431) result <<= exponent - 16431;

            if (uint128(x) >= 0x80000000000000000000000000000000) {
                // Negative
                require(result <= 0x80000000000000000000000000000000);
                return -int128(int256(result)); // We rely on overflow behavior here
            } else {
                require(result <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF);
                return int128(int256(result));
            }
        }
    }

    /**
     * Convert octuple precision number into quadruple precision number.
     *
     * @param x octuple precision number
     * @return quadruple precision number
     */
    function fromOctuple(bytes32 x) internal pure returns (bytes16) {
        unchecked {
            bool negative = x &
                0x8000000000000000000000000000000000000000000000000000000000000000 >
                0;

            uint256 exponent = (uint256(x) >> 236) & 0x7FFFF;
            uint256 significand = uint256(x) &
                0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;

            if (exponent == 0x7FFFF) {
                if (significand > 0) return NaN;
                else return negative ? NEGATIVE_INFINITY : POSITIVE_INFINITY;
            }

            if (exponent > 278526)
                return negative ? NEGATIVE_INFINITY : POSITIVE_INFINITY;
            else if (exponent < 245649)
                return negative ? NEGATIVE_ZERO : POSITIVE_ZERO;
            else if (exponent < 245761) {
                significand =
                    (significand |
                        0x100000000000000000000000000000000000000000000000000000000000) >>
                    (245885 - exponent);
                exponent = 0;
            } else {
                significand >>= 124;
                exponent -= 245760;
            }

            uint128 result = uint128(significand | (exponent << 112));
            if (negative) result |= 0x80000000000000000000000000000000;

            return bytes16(result);
        }
    }

    /**
     * Convert quadruple precision number into octuple precision number.
     *
     * @param x quadruple precision number
     * @return octuple precision number
     */
    function toOctuple(bytes16 x) internal pure returns (bytes32) {
        unchecked {
            uint256 exponent = (uint128(x) >> 112) & 0x7FFF;

            uint256 result = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;

            if (exponent == 0x7FFF)
                exponent = 0x7FFFF; // Infinity or NaN
            else if (exponent == 0) {
                if (result > 0) {
                    uint256 msb = mostSignificantBit(result);
                    result =
                        (result << (236 - msb)) &
                        0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
                    exponent = 245649 + msb;
                }
            } else {
                result <<= 124;
                exponent += 245760;
            }

            result |= exponent << 236;
            if (uint128(x) >= 0x80000000000000000000000000000000)
                result |= 0x8000000000000000000000000000000000000000000000000000000000000000;

            return bytes32(result);
        }
    }

    /**
     * Convert double precision number into quadruple precision number.
     *
     * @param x double precision number
     * @return quadruple precision number
     */
    function fromDouble(bytes8 x) internal pure returns (bytes16) {
        unchecked {
            uint256 exponent = (uint64(x) >> 52) & 0x7FF;

            uint256 result = uint64(x) & 0xFFFFFFFFFFFFF;

            if (exponent == 0x7FF)
                exponent = 0x7FFF; // Infinity or NaN
            else if (exponent == 0) {
                if (result > 0) {
                    uint256 msb = mostSignificantBit(result);
                    result =
                        (result << (112 - msb)) &
                        0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
                    exponent = 15309 + msb;
                }
            } else {
                result <<= 60;
                exponent += 15360;
            }

            result |= exponent << 112;
            if (x & 0x8000000000000000 > 0)
                result |= 0x80000000000000000000000000000000;

            return bytes16(uint128(result));
        }
    }

    /**
     * Convert quadruple precision number into double precision number.
     *
     * @param x quadruple precision number
     * @return double precision number
     */
    function toDouble(bytes16 x) internal pure returns (bytes8) {
        unchecked {
            bool negative = uint128(x) >= 0x80000000000000000000000000000000;

            uint256 exponent = (uint128(x) >> 112) & 0x7FFF;
            uint256 significand = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;

            if (exponent == 0x7FFF) {
                if (significand > 0) return 0x7FF8000000000000;
                // NaN
                else
                    return
                        negative
                            ? bytes8(0xFFF0000000000000) // -Infinity
                            : bytes8(0x7FF0000000000000); // Infinity
            }

            if (exponent > 17406)
                return
                    negative
                        ? bytes8(0xFFF0000000000000) // -Infinity
                        : bytes8(0x7FF0000000000000);
            // Infinity
            else if (exponent < 15309)
                return
                    negative
                        ? bytes8(0x8000000000000000) // -0
                        : bytes8(0x0000000000000000);
            // 0
            else if (exponent < 15361) {
                significand =
                    (significand | 0x10000000000000000000000000000) >>
                    (15421 - exponent);
                exponent = 0;
            } else {
                significand >>= 60;
                exponent -= 15360;
            }

            uint64 result = uint64(significand | (exponent << 52));
            if (negative) result |= 0x8000000000000000;

            return bytes8(result);
        }
    }

    /**
     * Test whether given quadruple precision number is NaN.
     *
     * @param x quadruple precision number
     * @return true if x is NaN, false otherwise
     */
    function isNaN(bytes16 x) internal pure returns (bool) {
        unchecked {
            return
                uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF >
                0x7FFF0000000000000000000000000000;
        }
    }

    /**
     * Test whether given quadruple precision number is positive or negative
     * infinity.
     *
     * @param x quadruple precision number
     * @return true if x is positive or negative infinity, false otherwise
     */
    function isInfinity(bytes16 x) internal pure returns (bool) {
        unchecked {
            return
                uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ==
                0x7FFF0000000000000000000000000000;
        }
    }

    /**
     * Calculate sign of x, i.e. -1 if x is negative, 0 if x if zero, and 1 if x
     * is positive.  Note that sign (-0) is zero.  Revert if x is NaN.
     *
     * @param x quadruple precision number
     * @return sign of x
     */
    function sign(bytes16 x) internal pure returns (int8) {
        unchecked {
            uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;

            require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN

            if (absoluteX == 0) return 0;
            else if (uint128(x) >= 0x80000000000000000000000000000000)
                return -1;
            else return 1;
        }
    }

    /**
     * Calculate sign (x - y).  Revert if either argument is NaN, or both
     * arguments are infinities of the same sign.
     *
     * @param x quadruple precision number
     * @param y quadruple precision number
     * @return sign (x - y)
     */
    function cmp(bytes16 x, bytes16 y) internal pure returns (int8) {
        unchecked {
            uint128 absoluteX = uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;

            require(absoluteX <= 0x7FFF0000000000000000000000000000); // Not NaN

            uint128 absoluteY = uint128(y) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;

            require(absoluteY <= 0x7FFF0000000000000000000000000000); // Not NaN

            // Not infinities of the same sign
            require(x != y || absoluteX < 0x7FFF0000000000000000000000000000);

            if (x == y) return 0;
            else {
                bool negativeX = uint128(x) >=
                    0x80000000000000000000000000000000;
                bool negativeY = uint128(y) >=
                    0x80000000000000000000000000000000;

                if (negativeX) {
                    if (negativeY) return absoluteX > absoluteY ? -1 : int8(1);
                    else return -1;
                } else {
                    if (negativeY) return 1;
                    else return absoluteX > absoluteY ? int8(1) : -1;
                }
            }
        }
    }

    /**
     * Test whether x equals y.  NaN, infinity, and -infinity are not equal to
     * anything.
     *
     * @param x quadruple precision number
     * @param y quadruple precision number
     * @return true if x equals to y, false otherwise
     */
    function eq(bytes16 x, bytes16 y) internal pure returns (bool) {
        unchecked {
            if (x == y) {
                return
                    uint128(x) & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF <
                    0x7FFF0000000000000000000000000000;
            } else return false;
        }
    }

    /**
     * Calculate x + y.  Special values behave in the following way:
     *
     * NaN + x = NaN for any x.
     * Infinity + x = Infinity for any finite x.
     * -Infinity + x = -Infinity for any finite x.
     * Infinity + Infinity = Infinity.
     * -Infinity + -Infinity = -Infinity.
     * Infinity + -Infinity = -Infinity + Infinity = NaN.
     *
     * @param x quadruple precision number
     * @param y quadruple precision number
     * @return quadruple precision number
     */
    function add(bytes16 x, bytes16 y) internal pure returns (bytes16) {
        unchecked {
            uint256 xExponent = (uint128(x) >> 112) & 0x7FFF;
            uint256 yExponent = (uint128(y) >> 112) & 0x7FFF;

            if (xExponent == 0x7FFF) {
                if (yExponent == 0x7FFF) {
                    if (x == y) return x;
                    else return NaN;
                } else return x;
            } else if (yExponent == 0x7FFF) return y;
            else {
                bool xSign = uint128(x) >= 0x80000000000000000000000000000000;
                uint256 xSignifier = uint128(x) &
                    0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
                if (xExponent == 0) xExponent = 1;
                else xSignifier |= 0x10000000000000000000000000000;

                bool ySign = uint128(y) >= 0x80000000000000000000000000000000;
                uint256 ySignifier = uint128(y) &
                    0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
                if (yExponent == 0) yExponent = 1;
                else ySignifier |= 0x10000000000000000000000000000;

                if (xSignifier == 0)
                    return y == NEGATIVE_ZERO ? POSITIVE_ZERO : y;
                else if (ySignifier == 0)
                    return x == NEGATIVE_ZERO ? POSITIVE_ZERO : x;
                else {
                    int256 delta = int256(xExponent) - int256(yExponent);

                    if (xSign == ySign) {
                        if (delta > 112) return x;
                        else if (delta > 0) ySignifier >>= uint256(delta);
                        else if (delta < -112) return y;
                        else if (delta < 0) {
                            xSignifier >>= uint256(-delta);
                            xExponent = yExponent;
                        }

                        xSignifier += ySignifier;

                        if (xSignifier >= 0x20000000000000000000000000000) {
                            xSignifier >>= 1;
                            xExponent += 1;
                        }

                        if (xExponent == 0x7FFF)
                            return
                                xSign ? NEGATIVE_INFINITY : POSITIVE_INFINITY;
                        else {
                            if (xSignifier < 0x10000000000000000000000000000)
                                xExponent = 0;
                            else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;

                            return
                                bytes16(
                                    uint128(
                                        (
                                            xSign
                                                ? 0x80000000000000000000000000000000
                                                : 0
                                        ) |
                                            (xExponent << 112) |
                                            xSignifier
                                    )
                                );
                        }
                    } else {
                        if (delta > 0) {
                            xSignifier <<= 1;
                            xExponent -= 1;
                        } else if (delta < 0) {
                            ySignifier <<= 1;
                            xExponent = yExponent - 1;
                        }

                        if (delta > 112) ySignifier = 1;
                        else if (delta > 1)
                            ySignifier =
                                ((ySignifier - 1) >> uint256(delta - 1)) +
                                1;
                        else if (delta < -112) xSignifier = 1;
                        else if (delta < -1)
                            xSignifier =
                                ((xSignifier - 1) >> uint256(-delta - 1)) +
                                1;

                        if (xSignifier >= ySignifier) xSignifier -= ySignifier;
                        else {
                            xSignifier = ySignifier - xSignifier;
                            xSign = ySign;
                        }

                        if (xSignifier == 0) return POSITIVE_ZERO;

                        uint256 msb = mostSignificantBit(xSignifier);

                        if (msb == 113) {
                            xSignifier =
                                (xSignifier >> 1) &
                                0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
                            xExponent += 1;
                        } else if (msb < 112) {
                            uint256 shift = 112 - msb;
                            if (xExponent > shift) {
                                xSignifier =
                                    (xSignifier << shift) &
                                    0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
                                xExponent -= shift;
                            } else {
                                xSignifier <<= xExponent - 1;
                                xExponent = 0;
                            }
                        } else xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;

                        if (xExponent == 0x7FFF)
                            return
                                xSign ? NEGATIVE_INFINITY : POSITIVE_INFINITY;
                        else
                            return
                                bytes16(
                                    uint128(
                                        (
                                            xSign
                                                ? 0x80000000000000000000000000000000
                                                : 0
                                        ) |
                                            (xExponent << 112) |
                                            xSignifier
                                    )
                                );
                    }
                }
            }
        }
    }

    /**
     * Calculate x - y.  Special values behave in the following way:
     *
     * NaN - x = NaN for any x.
     * Infinity - x = Infinity for any finite x.
     * -Infinity - x = -Infinity for any finite x.
     * Infinity - -Infinity = Infinity.
     * -Infinity - Infinity = -Infinity.
     * Infinity - Infinity = -Infinity - -Infinity = NaN.
     *
     * @param x quadruple precision number
     * @param y quadruple precision number
     * @return quadruple precision number
     */
    function sub(bytes16 x, bytes16 y) internal pure returns (bytes16) {
        unchecked {
            return add(x, y ^ 0x80000000000000000000000000000000);
        }
    }

    /**
     * Calculate x * y.  Special values behave in the following way:
     *
     * NaN * x = NaN for any x.
     * Infinity * x = Infinity for any finite positive x.
     * Infinity * x = -Infinity for any finite negative x.
     * -Infinity * x = -Infinity for any finite positive x.
     * -Infinity * x = Infinity for any finite negative x.
     * Infinity * 0 = NaN.
     * -Infinity * 0 = NaN.
     * Infinity * Infinity = Infinity.
     * Infinity * -Infinity = -Infinity.
     * -Infinity * Infinity = -Infinity.
     * -Infinity * -Infinity = Infinity.
     *
     * @param x quadruple precision number
     * @param y quadruple precision number
     * @return quadruple precision number
     */
    function mul(bytes16 x, bytes16 y) internal pure returns (bytes16) {
        unchecked {
            uint256 xExponent = (uint128(x) >> 112) & 0x7FFF;
            uint256 yExponent = (uint128(y) >> 112) & 0x7FFF;

            if (xExponent == 0x7FFF) {
                if (yExponent == 0x7FFF) {
                    if (x == y)
                        return x ^ (y & 0x80000000000000000000000000000000);
                    else if (x ^ y == 0x80000000000000000000000000000000)
                        return x | y;
                    else return NaN;
                } else {
                    if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN;
                    else return x ^ (y & 0x80000000000000000000000000000000);
                }
            } else if (yExponent == 0x7FFF) {
                if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN;
                else return y ^ (x & 0x80000000000000000000000000000000);
            } else {
                uint256 xSignifier = uint128(x) &
                    0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
                if (xExponent == 0) xExponent = 1;
                else xSignifier |= 0x10000000000000000000000000000;

                uint256 ySignifier = uint128(y) &
                    0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
                if (yExponent == 0) yExponent = 1;
                else ySignifier |= 0x10000000000000000000000000000;

                xSignifier *= ySignifier;
                if (xSignifier == 0)
                    return
                        (x ^ y) & 0x80000000000000000000000000000000 > 0
                            ? NEGATIVE_ZERO
                            : POSITIVE_ZERO;

                xExponent += yExponent;

                uint256 msb = xSignifier >=
                    0x200000000000000000000000000000000000000000000000000000000
                    ? 225
                    : xSignifier >=
                        0x100000000000000000000000000000000000000000000000000000000
                    ? 224
                    : mostSignificantBit(xSignifier);

                if (xExponent + msb < 16496) {
                    // Underflow
                    xExponent = 0;
                    xSignifier = 0;
                } else if (xExponent + msb < 16608) {
                    // Subnormal
                    if (xExponent < 16496) xSignifier >>= 16496 - xExponent;
                    else if (xExponent > 16496)
                        xSignifier <<= xExponent - 16496;
                    xExponent = 0;
                } else if (xExponent + msb > 49373) {
                    xExponent = 0x7FFF;
                    xSignifier = 0;
                } else {
                    if (msb > 112) xSignifier >>= msb - 112;
                    else if (msb < 112) xSignifier <<= 112 - msb;

                    xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;

                    xExponent = xExponent + msb - 16607;
                }

                return
                    bytes16(
                        uint128(
                            uint128(
                                (x ^ y) & 0x80000000000000000000000000000000
                            ) |
                                (xExponent << 112) |
                                xSignifier
                        )
                    );
            }
        }
    }

    /**
     * Calculate x / y.  Special values behave in the following way:
     *
     * NaN / x = NaN for any x.
     * x / NaN = NaN for any x.
     * Infinity / x = Infinity for any finite non-negative x.
     * Infinity / x = -Infinity for any finite negative x including -0.
     * -Infinity / x = -Infinity for any finite non-negative x.
     * -Infinity / x = Infinity for any finite negative x including -0.
     * x / Infinity = 0 for any finite non-negative x.
     * x / -Infinity = -0 for any finite non-negative x.
     * x / Infinity = -0 for any finite non-negative x including -0.
     * x / -Infinity = 0 for any finite non-negative x including -0.
     *
     * Infinity / Infinity = NaN.
     * Infinity / -Infinity = -NaN.
     * -Infinity / Infinity = -NaN.
     * -Infinity / -Infinity = NaN.
     *
     * Division by zero behaves in the following way:
     *
     * x / 0 = Infinity for any finite positive x.
     * x / -0 = -Infinity for any finite positive x.
     * x / 0 = -Infinity for any finite negative x.
     * x / -0 = Infinity for any finite negative x.
     * 0 / 0 = NaN.
     * 0 / -0 = NaN.
     * -0 / 0 = NaN.
     * -0 / -0 = NaN.
     *
     * @param x quadruple precision number
     * @param y quadruple precision number
     * @return quadruple precision number
     */
    function div(bytes16 x, bytes16 y) internal pure returns (bytes16) {
        unchecked {
            uint256 xExponent = (uint128(x) >> 112) & 0x7FFF;
            uint256 yExponent = (uint128(y) >> 112) & 0x7FFF;

            if (xExponent == 0x7FFF) {
                if (yExponent == 0x7FFF) return NaN;
                else return x ^ (y & 0x80000000000000000000000000000000);
            } else if (yExponent == 0x7FFF) {
                if (y & 0x0000FFFFFFFFFFFFFFFFFFFFFFFFFFFF != 0) return NaN;
                else
                    return
                        POSITIVE_ZERO |
                        ((x ^ y) & 0x80000000000000000000000000000000);
            } else if (y & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) {
                if (x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF == 0) return NaN;
                else
                    return
                        POSITIVE_INFINITY |
                        ((x ^ y) & 0x80000000000000000000000000000000);
            } else {
                uint256 ySignifier = uint128(y) &
                    0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
                if (yExponent == 0) yExponent = 1;
                else ySignifier |= 0x10000000000000000000000000000;

                uint256 xSignifier = uint128(x) &
                    0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
                if (xExponent == 0) {
                    if (xSignifier != 0) {
                        uint256 shift = 226 - mostSignificantBit(xSignifier);

                        xSignifier <<= shift;

                        xExponent = 1;
                        yExponent += shift - 114;
                    }
                } else {
                    xSignifier =
                        (xSignifier | 0x10000000000000000000000000000) <<
                        114;
                }

                xSignifier = xSignifier / ySignifier;
                if (xSignifier == 0)
                    return
                        (x ^ y) & 0x80000000000000000000000000000000 > 0
                            ? NEGATIVE_ZERO
                            : POSITIVE_ZERO;

                assert(xSignifier >= 0x1000000000000000000000000000);

                uint256 msb = xSignifier >= 0x80000000000000000000000000000
                    ? mostSignificantBit(xSignifier)
                    : xSignifier >= 0x40000000000000000000000000000
                    ? 114
                    : xSignifier >= 0x20000000000000000000000000000
                    ? 113
                    : 112;

                if (xExponent + msb > yExponent + 16497) {
                    // Overflow
                    xExponent = 0x7FFF;
                    xSignifier = 0;
                } else if (xExponent + msb + 16380 < yExponent) {
                    // Underflow
                    xExponent = 0;
                    xSignifier = 0;
                } else if (xExponent + msb + 16268 < yExponent) {
                    // Subnormal
                    if (xExponent + 16380 > yExponent)
                        xSignifier <<= xExponent + 16380 - yExponent;
                    else if (xExponent + 16380 < yExponent)
                        xSignifier >>= yExponent - xExponent - 16380;

                    xExponent = 0;
                } else {
                    // Normal
                    if (msb > 112) xSignifier >>= msb - 112;

                    xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;

                    xExponent = xExponent + msb + 16269 - yExponent;
                }

                return
                    bytes16(
                        uint128(
                            uint128(
                                (x ^ y) & 0x80000000000000000000000000000000
                            ) |
                                (xExponent << 112) |
                                xSignifier
                        )
                    );
            }
        }
    }

    /**
     * Calculate -x.
     *
     * @param x quadruple precision number
     * @return quadruple precision number
     */
    function neg(bytes16 x) internal pure returns (bytes16) {
        unchecked {
            return x ^ 0x80000000000000000000000000000000;
        }
    }

    /**
     * Calculate |x|.
     *
     * @param x quadruple precision number
     * @return quadruple precision number
     */
    function abs(bytes16 x) internal pure returns (bytes16) {
        unchecked {
            return x & 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
        }
    }

    /**
     * Calculate square root of x.  Return NaN on negative x excluding -0.
     *
     * @param x quadruple precision number
     * @return quadruple precision number
     */
    function sqrt(bytes16 x) internal pure returns (bytes16) {
        unchecked {
            if (uint128(x) > 0x80000000000000000000000000000000) return NaN;
            else {
                uint256 xExponent = (uint128(x) >> 112) & 0x7FFF;
                if (xExponent == 0x7FFF) return x;
                else {
                    uint256 xSignifier = uint128(x) &
                        0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
                    if (xExponent == 0) xExponent = 1;
                    else xSignifier |= 0x10000000000000000000000000000;

                    if (xSignifier == 0) return POSITIVE_ZERO;

                    bool oddExponent = xExponent & 0x1 == 0;
                    xExponent = (xExponent + 16383) >> 1;

                    if (oddExponent) {
                        if (xSignifier >= 0x10000000000000000000000000000)
                            xSignifier <<= 113;
                        else {
                            uint256 msb = mostSignificantBit(xSignifier);
                            uint256 shift = (226 - msb) & 0xFE;
                            xSignifier <<= shift;
                            xExponent -= (shift - 112) >> 1;
                        }
                    } else {
                        if (xSignifier >= 0x10000000000000000000000000000)
                            xSignifier <<= 112;
                        else {
                            uint256 msb = mostSignificantBit(xSignifier);
                            uint256 shift = (225 - msb) & 0xFE;
                            xSignifier <<= shift;
                            xExponent -= (shift - 112) >> 1;
                        }
                    }

                    uint256 r = 0x10000000000000000000000000000;
                    r = (r + xSignifier / r) >> 1;
                    r = (r + xSignifier / r) >> 1;
                    r = (r + xSignifier / r) >> 1;
                    r = (r + xSignifier / r) >> 1;
                    r = (r + xSignifier / r) >> 1;
                    r = (r + xSignifier / r) >> 1;
                    r = (r + xSignifier / r) >> 1; // Seven iterations should be enough
                    uint256 r1 = xSignifier / r;
                    if (r1 < r) r = r1;

                    return
                        bytes16(
                            uint128(
                                (xExponent << 112) |
                                    (r & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
                            )
                        );
                }
            }
        }
    }

    /**
     * Calculate binary logarithm of x.  Return NaN on negative x excluding -0.
     *
     * @param x quadruple precision number
     * @return quadruple precision number
     */
    function log_2(bytes16 x) internal pure returns (bytes16) {
        unchecked {
            if (uint128(x) > 0x80000000000000000000000000000000) return NaN;
            else if (x == 0x3FFF0000000000000000000000000000)
                return POSITIVE_ZERO;
            else {
                uint256 xExponent = (uint128(x) >> 112) & 0x7FFF;
                if (xExponent == 0x7FFF) return x;
                else {
                    uint256 xSignifier = uint128(x) &
                        0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
                    if (xExponent == 0) xExponent = 1;
                    else xSignifier |= 0x10000000000000000000000000000;

                    if (xSignifier == 0) return NEGATIVE_INFINITY;

                    bool resultNegative;
                    uint256 resultExponent = 16495;
                    uint256 resultSignifier;

                    if (xExponent >= 0x3FFF) {
                        resultNegative = false;
                        resultSignifier = xExponent - 0x3FFF;
                        xSignifier <<= 15;
                    } else {
                        resultNegative = true;
                        if (xSignifier >= 0x10000000000000000000000000000) {
                            resultSignifier = 0x3FFE - xExponent;
                            xSignifier <<= 15;
                        } else {
                            uint256 msb = mostSignificantBit(xSignifier);
                            resultSignifier = 16493 - msb;
                            xSignifier <<= 127 - msb;
                        }
                    }

                    if (xSignifier == 0x80000000000000000000000000000000) {
                        if (resultNegative) resultSignifier += 1;
                        uint256 shift = 112 -
                            mostSignificantBit(resultSignifier);
                        resultSignifier <<= shift;
                        resultExponent -= shift;
                    } else {
                        uint256 bb = resultNegative ? 1 : 0;
                        while (
                            resultSignifier < 0x10000000000000000000000000000
                        ) {
                            resultSignifier <<= 1;
                            resultExponent -= 1;

                            xSignifier *= xSignifier;
                            uint256 b = xSignifier >> 255;
                            resultSignifier += b ^ bb;
                            xSignifier >>= 127 + b;
                        }
                    }

                    return
                        bytes16(
                            uint128(
                                (
                                    resultNegative
                                        ? 0x80000000000000000000000000000000
                                        : 0
                                ) |
                                    (resultExponent << 112) |
                                    (resultSignifier &
                                        0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
                            )
                        );
                }
            }
        }
    }

    /**
     * Calculate natural logarithm of x.  Return NaN on negative x excluding -0.
     *
     * @param x quadruple precision number
     * @return quadruple precision number
     */
    function ln(bytes16 x) internal pure returns (bytes16) {
        unchecked {
            return mul(log_2(x), 0x3FFE62E42FEFA39EF35793C7673007E5);
        }
    }

    /**
     * Calculate 2^x.
     *
     * @param x quadruple precision number
     * @return quadruple precision number
     */
    function pow_2(bytes16 x) internal pure returns (bytes16) {
        unchecked {
            bool xNegative = uint128(x) > 0x80000000000000000000000000000000;
            uint256 xExponent = (uint128(x) >> 112) & 0x7FFF;
            uint256 xSignifier = uint128(x) & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;

            if (xExponent == 0x7FFF && xSignifier != 0) return NaN;
            else if (xExponent > 16397)
                return xNegative ? POSITIVE_ZERO : POSITIVE_INFINITY;
            else if (xExponent < 16255)
                return 0x3FFF0000000000000000000000000000;
            else {
                if (xExponent == 0) xExponent = 1;
                else xSignifier |= 0x10000000000000000000000000000;

                if (xExponent > 16367) xSignifier <<= xExponent - 16367;
                else if (xExponent < 16367) xSignifier >>= 16367 - xExponent;

                if (
                    xNegative &&
                    xSignifier > 0x406E00000000000000000000000000000000
                ) return POSITIVE_ZERO;

                if (
                    !xNegative &&
                    xSignifier > 0x3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
                ) return POSITIVE_INFINITY;

                uint256 resultExponent = xSignifier >> 128;
                xSignifier &= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
                if (xNegative && xSignifier != 0) {
                    xSignifier = ~xSignifier;
                    resultExponent += 1;
                }

                uint256 resultSignifier = 0x80000000000000000000000000000000;
                if (xSignifier & 0x80000000000000000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x16A09E667F3BCC908B2FB1366EA957D3E) >>
                        128;
                if (xSignifier & 0x40000000000000000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x1306FE0A31B7152DE8D5A46305C85EDEC) >>
                        128;
                if (xSignifier & 0x20000000000000000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x1172B83C7D517ADCDF7C8C50EB14A791F) >>
                        128;
                if (xSignifier & 0x10000000000000000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x10B5586CF9890F6298B92B71842A98363) >>
                        128;
                if (xSignifier & 0x8000000000000000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x1059B0D31585743AE7C548EB68CA417FD) >>
                        128;
                if (xSignifier & 0x4000000000000000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x102C9A3E778060EE6F7CACA4F7A29BDE8) >>
                        128;
                if (xSignifier & 0x2000000000000000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x10163DA9FB33356D84A66AE336DCDFA3F) >>
                        128;
                if (xSignifier & 0x1000000000000000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x100B1AFA5ABCBED6129AB13EC11DC9543) >>
                        128;
                if (xSignifier & 0x800000000000000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x10058C86DA1C09EA1FF19D294CF2F679B) >>
                        128;
                if (xSignifier & 0x400000000000000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x1002C605E2E8CEC506D21BFC89A23A00F) >>
                        128;
                if (xSignifier & 0x200000000000000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x100162F3904051FA128BCA9C55C31E5DF) >>
                        128;
                if (xSignifier & 0x100000000000000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x1000B175EFFDC76BA38E31671CA939725) >>
                        128;
                if (xSignifier & 0x80000000000000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x100058BA01FB9F96D6CACD4B180917C3D) >>
                        128;
                if (xSignifier & 0x40000000000000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x10002C5CC37DA9491D0985C348C68E7B3) >>
                        128;
                if (xSignifier & 0x20000000000000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x1000162E525EE054754457D5995292026) >>
                        128;
                if (xSignifier & 0x10000000000000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x10000B17255775C040618BF4A4ADE83FC) >>
                        128;
                if (xSignifier & 0x8000000000000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x1000058B91B5BC9AE2EED81E9B7D4CFAB) >>
                        128;
                if (xSignifier & 0x4000000000000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x100002C5C89D5EC6CA4D7C8ACC017B7C9) >>
                        128;
                if (xSignifier & 0x2000000000000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x10000162E43F4F831060E02D839A9D16D) >>
                        128;
                if (xSignifier & 0x1000000000000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x100000B1721BCFC99D9F890EA06911763) >>
                        128;
                if (xSignifier & 0x800000000000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x10000058B90CF1E6D97F9CA14DBCC1628) >>
                        128;
                if (xSignifier & 0x400000000000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x1000002C5C863B73F016468F6BAC5CA2B) >>
                        128;
                if (xSignifier & 0x200000000000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x100000162E430E5A18F6119E3C02282A5) >>
                        128;
                if (xSignifier & 0x100000000000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x1000000B1721835514B86E6D96EFD1BFE) >>
                        128;
                if (xSignifier & 0x80000000000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x100000058B90C0B48C6BE5DF846C5B2EF) >>
                        128;
                if (xSignifier & 0x40000000000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x10000002C5C8601CC6B9E94213C72737A) >>
                        128;
                if (xSignifier & 0x20000000000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x1000000162E42FFF037DF38AA2B219F06) >>
                        128;
                if (xSignifier & 0x10000000000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x10000000B17217FBA9C739AA5819F44F9) >>
                        128;
                if (xSignifier & 0x8000000000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x1000000058B90BFCDEE5ACD3C1CEDC823) >>
                        128;
                if (xSignifier & 0x4000000000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x100000002C5C85FE31F35A6A30DA1BE50) >>
                        128;
                if (xSignifier & 0x2000000000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x10000000162E42FF0999CE3541B9FFFCF) >>
                        128;
                if (xSignifier & 0x1000000000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x100000000B17217F80F4EF5AADDA45554) >>
                        128;
                if (xSignifier & 0x800000000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x10000000058B90BFBF8479BD5A81B51AD) >>
                        128;
                if (xSignifier & 0x400000000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x1000000002C5C85FDF84BD62AE30A74CC) >>
                        128;
                if (xSignifier & 0x200000000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x100000000162E42FEFB2FED257559BDAA) >>
                        128;
                if (xSignifier & 0x100000000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x1000000000B17217F7D5A7716BBA4A9AE) >>
                        128;
                if (xSignifier & 0x80000000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x100000000058B90BFBE9DDBAC5E109CCE) >>
                        128;
                if (xSignifier & 0x40000000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x10000000002C5C85FDF4B15DE6F17EB0D) >>
                        128;
                if (xSignifier & 0x20000000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x1000000000162E42FEFA494F1478FDE05) >>
                        128;
                if (xSignifier & 0x10000000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x10000000000B17217F7D20CF927C8E94C) >>
                        128;
                if (xSignifier & 0x8000000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x1000000000058B90BFBE8F71CB4E4B33D) >>
                        128;
                if (xSignifier & 0x4000000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x100000000002C5C85FDF477B662B26945) >>
                        128;
                if (xSignifier & 0x2000000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x10000000000162E42FEFA3AE53369388C) >>
                        128;
                if (xSignifier & 0x1000000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x100000000000B17217F7D1D351A389D40) >>
                        128;
                if (xSignifier & 0x800000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x10000000000058B90BFBE8E8B2D3D4EDE) >>
                        128;
                if (xSignifier & 0x400000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x1000000000002C5C85FDF4741BEA6E77E) >>
                        128;
                if (xSignifier & 0x200000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x100000000000162E42FEFA39FE95583C2) >>
                        128;
                if (xSignifier & 0x100000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x1000000000000B17217F7D1CFB72B45E1) >>
                        128;
                if (xSignifier & 0x80000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x100000000000058B90BFBE8E7CC35C3F0) >>
                        128;
                if (xSignifier & 0x40000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x10000000000002C5C85FDF473E242EA38) >>
                        128;
                if (xSignifier & 0x20000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x1000000000000162E42FEFA39F02B772C) >>
                        128;
                if (xSignifier & 0x10000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x10000000000000B17217F7D1CF7D83C1A) >>
                        128;
                if (xSignifier & 0x8000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x1000000000000058B90BFBE8E7BDCBE2E) >>
                        128;
                if (xSignifier & 0x4000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x100000000000002C5C85FDF473DEA871F) >>
                        128;
                if (xSignifier & 0x2000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x10000000000000162E42FEFA39EF44D91) >>
                        128;
                if (xSignifier & 0x1000000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x100000000000000B17217F7D1CF79E949) >>
                        128;
                if (xSignifier & 0x800000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x10000000000000058B90BFBE8E7BCE544) >>
                        128;
                if (xSignifier & 0x400000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x1000000000000002C5C85FDF473DE6ECA) >>
                        128;
                if (xSignifier & 0x200000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x100000000000000162E42FEFA39EF366F) >>
                        128;
                if (xSignifier & 0x100000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x1000000000000000B17217F7D1CF79AFA) >>
                        128;
                if (xSignifier & 0x80000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x100000000000000058B90BFBE8E7BCD6D) >>
                        128;
                if (xSignifier & 0x40000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x10000000000000002C5C85FDF473DE6B2) >>
                        128;
                if (xSignifier & 0x20000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x1000000000000000162E42FEFA39EF358) >>
                        128;
                if (xSignifier & 0x10000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x10000000000000000B17217F7D1CF79AB) >>
                        128;
                if (xSignifier & 0x8000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x1000000000000000058B90BFBE8E7BCD5) >>
                        128;
                if (xSignifier & 0x4000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x100000000000000002C5C85FDF473DE6A) >>
                        128;
                if (xSignifier & 0x2000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x10000000000000000162E42FEFA39EF34) >>
                        128;
                if (xSignifier & 0x1000000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x100000000000000000B17217F7D1CF799) >>
                        128;
                if (xSignifier & 0x800000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x10000000000000000058B90BFBE8E7BCC) >>
                        128;
                if (xSignifier & 0x400000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x1000000000000000002C5C85FDF473DE5) >>
                        128;
                if (xSignifier & 0x200000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x100000000000000000162E42FEFA39EF2) >>
                        128;
                if (xSignifier & 0x100000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x1000000000000000000B17217F7D1CF78) >>
                        128;
                if (xSignifier & 0x80000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x100000000000000000058B90BFBE8E7BB) >>
                        128;
                if (xSignifier & 0x40000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x10000000000000000002C5C85FDF473DD) >>
                        128;
                if (xSignifier & 0x20000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x1000000000000000000162E42FEFA39EE) >>
                        128;
                if (xSignifier & 0x10000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x10000000000000000000B17217F7D1CF6) >>
                        128;
                if (xSignifier & 0x8000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x1000000000000000000058B90BFBE8E7A) >>
                        128;
                if (xSignifier & 0x4000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x100000000000000000002C5C85FDF473C) >>
                        128;
                if (xSignifier & 0x2000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x10000000000000000000162E42FEFA39D) >>
                        128;
                if (xSignifier & 0x1000000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x100000000000000000000B17217F7D1CE) >>
                        128;
                if (xSignifier & 0x800000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x10000000000000000000058B90BFBE8E6) >>
                        128;
                if (xSignifier & 0x400000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x1000000000000000000002C5C85FDF472) >>
                        128;
                if (xSignifier & 0x200000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x100000000000000000000162E42FEFA38) >>
                        128;
                if (xSignifier & 0x100000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x1000000000000000000000B17217F7D1B) >>
                        128;
                if (xSignifier & 0x80000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x100000000000000000000058B90BFBE8D) >>
                        128;
                if (xSignifier & 0x40000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x10000000000000000000002C5C85FDF46) >>
                        128;
                if (xSignifier & 0x20000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x1000000000000000000000162E42FEFA2) >>
                        128;
                if (xSignifier & 0x10000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x10000000000000000000000B17217F7D0) >>
                        128;
                if (xSignifier & 0x8000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x1000000000000000000000058B90BFBE7) >>
                        128;
                if (xSignifier & 0x4000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x100000000000000000000002C5C85FDF3) >>
                        128;
                if (xSignifier & 0x2000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x10000000000000000000000162E42FEF9) >>
                        128;
                if (xSignifier & 0x1000000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x100000000000000000000000B17217F7C) >>
                        128;
                if (xSignifier & 0x800000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x10000000000000000000000058B90BFBD) >>
                        128;
                if (xSignifier & 0x400000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x1000000000000000000000002C5C85FDE) >>
                        128;
                if (xSignifier & 0x200000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x100000000000000000000000162E42FEE) >>
                        128;
                if (xSignifier & 0x100000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x1000000000000000000000000B17217F6) >>
                        128;
                if (xSignifier & 0x80000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x100000000000000000000000058B90BFA) >>
                        128;
                if (xSignifier & 0x40000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x10000000000000000000000002C5C85FC) >>
                        128;
                if (xSignifier & 0x20000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x1000000000000000000000000162E42FD) >>
                        128;
                if (xSignifier & 0x10000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x10000000000000000000000000B17217E) >>
                        128;
                if (xSignifier & 0x8000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x1000000000000000000000000058B90BE) >>
                        128;
                if (xSignifier & 0x4000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x100000000000000000000000002C5C85E) >>
                        128;
                if (xSignifier & 0x2000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x10000000000000000000000000162E42E) >>
                        128;
                if (xSignifier & 0x1000000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x100000000000000000000000000B17216) >>
                        128;
                if (xSignifier & 0x800000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x10000000000000000000000000058B90A) >>
                        128;
                if (xSignifier & 0x400000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x1000000000000000000000000002C5C84) >>
                        128;
                if (xSignifier & 0x200000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x100000000000000000000000000162E41) >>
                        128;
                if (xSignifier & 0x100000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x1000000000000000000000000000B1720) >>
                        128;
                if (xSignifier & 0x80000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x100000000000000000000000000058B8F) >>
                        128;
                if (xSignifier & 0x40000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x10000000000000000000000000002C5C7) >>
                        128;
                if (xSignifier & 0x20000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x1000000000000000000000000000162E3) >>
                        128;
                if (xSignifier & 0x10000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x10000000000000000000000000000B171) >>
                        128;
                if (xSignifier & 0x8000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x1000000000000000000000000000058B8) >>
                        128;
                if (xSignifier & 0x4000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x100000000000000000000000000002C5B) >>
                        128;
                if (xSignifier & 0x2000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x10000000000000000000000000000162D) >>
                        128;
                if (xSignifier & 0x1000 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x100000000000000000000000000000B16) >>
                        128;
                if (xSignifier & 0x800 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x10000000000000000000000000000058A) >>
                        128;
                if (xSignifier & 0x400 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x1000000000000000000000000000002C4) >>
                        128;
                if (xSignifier & 0x200 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x100000000000000000000000000000161) >>
                        128;
                if (xSignifier & 0x100 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x1000000000000000000000000000000B0) >>
                        128;
                if (xSignifier & 0x80 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x100000000000000000000000000000057) >>
                        128;
                if (xSignifier & 0x40 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x10000000000000000000000000000002B) >>
                        128;
                if (xSignifier & 0x20 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x100000000000000000000000000000015) >>
                        128;
                if (xSignifier & 0x10 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x10000000000000000000000000000000A) >>
                        128;
                if (xSignifier & 0x8 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x100000000000000000000000000000004) >>
                        128;
                if (xSignifier & 0x4 > 0)
                    resultSignifier =
                        (resultSignifier *
                            0x100000000000000000000000000000001) >>
                        128;

                if (!xNegative) {
                    resultSignifier =
                        (resultSignifier >> 15) &
                        0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
                    resultExponent += 0x3FFF;
                } else if (resultExponent <= 0x3FFE) {
                    resultSignifier =
                        (resultSignifier >> 15) &
                        0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
                    resultExponent = 0x3FFF - resultExponent;
                } else {
                    resultSignifier =
                        resultSignifier >>
                        (resultExponent - 16367);
                    resultExponent = 0;
                }

                return
                    bytes16(uint128((resultExponent << 112) | resultSignifier));
            }
        }
    }

    /**
     * Calculate e^x.
     *
     * @param x quadruple precision number
     * @return quadruple precision number
     */
    function exp(bytes16 x) internal pure returns (bytes16) {
        unchecked {
            return pow_2(mul(x, 0x3FFF71547652B82FE1777D0FFDA0D23A));
        }
    }

    /**
     * Get index of the most significant non-zero bit in binary representation of
     * x.  Reverts if x is zero.
     *
     * @return index of the most significant non-zero bit in binary representation
     *         of x
     */
    function mostSignificantBit(uint256 x) private pure returns (uint256) {
        unchecked {
            require(x > 0);

            uint256 result = 0;

            if (x >= 0x100000000000000000000000000000000) {
                x >>= 128;
                result += 128;
            }
            if (x >= 0x10000000000000000) {
                x >>= 64;
                result += 64;
            }
            if (x >= 0x100000000) {
                x >>= 32;
                result += 32;
            }
            if (x >= 0x10000) {
                x >>= 16;
                result += 16;
            }
            if (x >= 0x100) {
                x >>= 8;
                result += 8;
            }
            if (x >= 0x10) {
                x >>= 4;
                result += 4;
            }
            if (x >= 0x4) {
                x >>= 2;
                result += 2;
            }
            if (x >= 0x2) result += 1; // No need to shift x anymore

            return result;
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)

pragma solidity ^0.8.0;

import "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor() {
        _transferOwnership(_msgSender());
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 amount) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):