S Price: $0.488027 (+8.20%)
    /

    Contract Diff Checker

    Contract Name:
    SpinnerVerifiedToken

    Contract Source Code:

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
    
    pragma solidity ^0.8.20;
    
    import {Context} from "../utils/Context.sol";
    
    /**
     * @dev Contract module which provides a basic access control mechanism, where
     * there is an account (an owner) that can be granted exclusive access to
     * specific functions.
     *
     * The initial owner is set to the address provided by the deployer. This can
     * later be changed with {transferOwnership}.
     *
     * This module is used through inheritance. It will make available the modifier
     * `onlyOwner`, which can be applied to your functions to restrict their use to
     * the owner.
     */
    abstract contract Ownable is Context {
        address private _owner;
    
        /**
         * @dev The caller account is not authorized to perform an operation.
         */
        error OwnableUnauthorizedAccount(address account);
    
        /**
         * @dev The owner is not a valid owner account. (eg. `address(0)`)
         */
        error OwnableInvalidOwner(address owner);
    
        event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
    
        /**
         * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
         */
        constructor(address initialOwner) {
            if (initialOwner == address(0)) {
                revert OwnableInvalidOwner(address(0));
            }
            _transferOwnership(initialOwner);
        }
    
        /**
         * @dev Throws if called by any account other than the owner.
         */
        modifier onlyOwner() {
            _checkOwner();
            _;
        }
    
        /**
         * @dev Returns the address of the current owner.
         */
        function owner() public view virtual returns (address) {
            return _owner;
        }
    
        /**
         * @dev Throws if the sender is not the owner.
         */
        function _checkOwner() internal view virtual {
            if (owner() != _msgSender()) {
                revert OwnableUnauthorizedAccount(_msgSender());
            }
        }
    
        /**
         * @dev Leaves the contract without owner. It will not be possible to call
         * `onlyOwner` functions. Can only be called by the current owner.
         *
         * NOTE: Renouncing ownership will leave the contract without an owner,
         * thereby disabling any functionality that is only available to the owner.
         */
        function renounceOwnership() public virtual onlyOwner {
            _transferOwnership(address(0));
        }
    
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Can only be called by the current owner.
         */
        function transferOwnership(address newOwner) public virtual onlyOwner {
            if (newOwner == address(0)) {
                revert OwnableInvalidOwner(address(0));
            }
            _transferOwnership(newOwner);
        }
    
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Internal function without access restriction.
         */
        function _transferOwnership(address newOwner) internal virtual {
            address oldOwner = _owner;
            _owner = newOwner;
            emit OwnershipTransferred(oldOwner, newOwner);
        }
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol)
    pragma solidity ^0.8.20;
    
    /**
     * @dev Standard ERC20 Errors
     * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC20 tokens.
     */
    interface IERC20Errors {
        /**
         * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
         * @param sender Address whose tokens are being transferred.
         * @param balance Current balance for the interacting account.
         * @param needed Minimum amount required to perform a transfer.
         */
        error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
    
        /**
         * @dev Indicates a failure with the token `sender`. Used in transfers.
         * @param sender Address whose tokens are being transferred.
         */
        error ERC20InvalidSender(address sender);
    
        /**
         * @dev Indicates a failure with the token `receiver`. Used in transfers.
         * @param receiver Address to which tokens are being transferred.
         */
        error ERC20InvalidReceiver(address receiver);
    
        /**
         * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
         * @param spender Address that may be allowed to operate on tokens without being their owner.
         * @param allowance Amount of tokens a `spender` is allowed to operate with.
         * @param needed Minimum amount required to perform a transfer.
         */
        error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
    
        /**
         * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
         * @param approver Address initiating an approval operation.
         */
        error ERC20InvalidApprover(address approver);
    
        /**
         * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
         * @param spender Address that may be allowed to operate on tokens without being their owner.
         */
        error ERC20InvalidSpender(address spender);
    }
    
    /**
     * @dev Standard ERC721 Errors
     * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC721 tokens.
     */
    interface IERC721Errors {
        /**
         * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in EIP-20.
         * Used in balance queries.
         * @param owner Address of the current owner of a token.
         */
        error ERC721InvalidOwner(address owner);
    
        /**
         * @dev Indicates a `tokenId` whose `owner` is the zero address.
         * @param tokenId Identifier number of a token.
         */
        error ERC721NonexistentToken(uint256 tokenId);
    
        /**
         * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
         * @param sender Address whose tokens are being transferred.
         * @param tokenId Identifier number of a token.
         * @param owner Address of the current owner of a token.
         */
        error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);
    
        /**
         * @dev Indicates a failure with the token `sender`. Used in transfers.
         * @param sender Address whose tokens are being transferred.
         */
        error ERC721InvalidSender(address sender);
    
        /**
         * @dev Indicates a failure with the token `receiver`. Used in transfers.
         * @param receiver Address to which tokens are being transferred.
         */
        error ERC721InvalidReceiver(address receiver);
    
        /**
         * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
         * @param operator Address that may be allowed to operate on tokens without being their owner.
         * @param tokenId Identifier number of a token.
         */
        error ERC721InsufficientApproval(address operator, uint256 tokenId);
    
        /**
         * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
         * @param approver Address initiating an approval operation.
         */
        error ERC721InvalidApprover(address approver);
    
        /**
         * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
         * @param operator Address that may be allowed to operate on tokens without being their owner.
         */
        error ERC721InvalidOperator(address operator);
    }
    
    /**
     * @dev Standard ERC1155 Errors
     * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC1155 tokens.
     */
    interface IERC1155Errors {
        /**
         * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
         * @param sender Address whose tokens are being transferred.
         * @param balance Current balance for the interacting account.
         * @param needed Minimum amount required to perform a transfer.
         * @param tokenId Identifier number of a token.
         */
        error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);
    
        /**
         * @dev Indicates a failure with the token `sender`. Used in transfers.
         * @param sender Address whose tokens are being transferred.
         */
        error ERC1155InvalidSender(address sender);
    
        /**
         * @dev Indicates a failure with the token `receiver`. Used in transfers.
         * @param receiver Address to which tokens are being transferred.
         */
        error ERC1155InvalidReceiver(address receiver);
    
        /**
         * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
         * @param operator Address that may be allowed to operate on tokens without being their owner.
         * @param owner Address of the current owner of a token.
         */
        error ERC1155MissingApprovalForAll(address operator, address owner);
    
        /**
         * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
         * @param approver Address initiating an approval operation.
         */
        error ERC1155InvalidApprover(address approver);
    
        /**
         * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
         * @param operator Address that may be allowed to operate on tokens without being their owner.
         */
        error ERC1155InvalidOperator(address operator);
    
        /**
         * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
         * Used in batch transfers.
         * @param idsLength Length of the array of token identifiers
         * @param valuesLength Length of the array of token amounts
         */
        error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/ERC20.sol)
    
    pragma solidity ^0.8.20;
    
    import {IERC20} from "./IERC20.sol";
    import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
    import {Context} from "../../utils/Context.sol";
    import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";
    
    /**
     * @dev Implementation of the {IERC20} interface.
     *
     * This implementation is agnostic to the way tokens are created. This means
     * that a supply mechanism has to be added in a derived contract using {_mint}.
     *
     * TIP: For a detailed writeup see our guide
     * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
     * to implement supply mechanisms].
     *
     * The default value of {decimals} is 18. To change this, you should override
     * this function so it returns a different value.
     *
     * We have followed general OpenZeppelin Contracts guidelines: functions revert
     * instead returning `false` on failure. This behavior is nonetheless
     * conventional and does not conflict with the expectations of ERC20
     * applications.
     *
     * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
     * This allows applications to reconstruct the allowance for all accounts just
     * by listening to said events. Other implementations of the EIP may not emit
     * these events, as it isn't required by the specification.
     */
    abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
        mapping(address account => uint256) private _balances;
    
        mapping(address account => mapping(address spender => uint256)) private _allowances;
    
        uint256 private _totalSupply;
    
        string private _name;
        string private _symbol;
    
        /**
         * @dev Sets the values for {name} and {symbol}.
         *
         * All two of these values are immutable: they can only be set once during
         * construction.
         */
        constructor(string memory name_, string memory symbol_) {
            _name = name_;
            _symbol = symbol_;
        }
    
        /**
         * @dev Returns the name of the token.
         */
        function name() public view virtual returns (string memory) {
            return _name;
        }
    
        /**
         * @dev Returns the symbol of the token, usually a shorter version of the
         * name.
         */
        function symbol() public view virtual returns (string memory) {
            return _symbol;
        }
    
        /**
         * @dev Returns the number of decimals used to get its user representation.
         * For example, if `decimals` equals `2`, a balance of `505` tokens should
         * be displayed to a user as `5.05` (`505 / 10 ** 2`).
         *
         * Tokens usually opt for a value of 18, imitating the relationship between
         * Ether and Wei. This is the default value returned by this function, unless
         * it's overridden.
         *
         * NOTE: This information is only used for _display_ purposes: it in
         * no way affects any of the arithmetic of the contract, including
         * {IERC20-balanceOf} and {IERC20-transfer}.
         */
        function decimals() public view virtual returns (uint8) {
            return 18;
        }
    
        /**
         * @dev See {IERC20-totalSupply}.
         */
        function totalSupply() public view virtual returns (uint256) {
            return _totalSupply;
        }
    
        /**
         * @dev See {IERC20-balanceOf}.
         */
        function balanceOf(address account) public view virtual returns (uint256) {
            return _balances[account];
        }
    
        /**
         * @dev See {IERC20-transfer}.
         *
         * Requirements:
         *
         * - `to` cannot be the zero address.
         * - the caller must have a balance of at least `value`.
         */
        function transfer(address to, uint256 value) public virtual returns (bool) {
            address owner = _msgSender();
            _transfer(owner, to, value);
            return true;
        }
    
        /**
         * @dev See {IERC20-allowance}.
         */
        function allowance(address owner, address spender) public view virtual returns (uint256) {
            return _allowances[owner][spender];
        }
    
        /**
         * @dev See {IERC20-approve}.
         *
         * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
         * `transferFrom`. This is semantically equivalent to an infinite approval.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function approve(address spender, uint256 value) public virtual returns (bool) {
            address owner = _msgSender();
            _approve(owner, spender, value);
            return true;
        }
    
        /**
         * @dev See {IERC20-transferFrom}.
         *
         * Emits an {Approval} event indicating the updated allowance. This is not
         * required by the EIP. See the note at the beginning of {ERC20}.
         *
         * NOTE: Does not update the allowance if the current allowance
         * is the maximum `uint256`.
         *
         * Requirements:
         *
         * - `from` and `to` cannot be the zero address.
         * - `from` must have a balance of at least `value`.
         * - the caller must have allowance for ``from``'s tokens of at least
         * `value`.
         */
        function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
            address spender = _msgSender();
            _spendAllowance(from, spender, value);
            _transfer(from, to, value);
            return true;
        }
    
        /**
         * @dev Moves a `value` amount of tokens from `from` to `to`.
         *
         * This internal function is equivalent to {transfer}, and can be used to
         * e.g. implement automatic token fees, slashing mechanisms, etc.
         *
         * Emits a {Transfer} event.
         *
         * NOTE: This function is not virtual, {_update} should be overridden instead.
         */
        function _transfer(address from, address to, uint256 value) internal {
            if (from == address(0)) {
                revert ERC20InvalidSender(address(0));
            }
            if (to == address(0)) {
                revert ERC20InvalidReceiver(address(0));
            }
            _update(from, to, value);
        }
    
        /**
         * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
         * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
         * this function.
         *
         * Emits a {Transfer} event.
         */
        function _update(address from, address to, uint256 value) internal virtual {
            if (from == address(0)) {
                // Overflow check required: The rest of the code assumes that totalSupply never overflows
                _totalSupply += value;
            } else {
                uint256 fromBalance = _balances[from];
                if (fromBalance < value) {
                    revert ERC20InsufficientBalance(from, fromBalance, value);
                }
                unchecked {
                    // Overflow not possible: value <= fromBalance <= totalSupply.
                    _balances[from] = fromBalance - value;
                }
            }
    
            if (to == address(0)) {
                unchecked {
                    // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                    _totalSupply -= value;
                }
            } else {
                unchecked {
                    // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                    _balances[to] += value;
                }
            }
    
            emit Transfer(from, to, value);
        }
    
        /**
         * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
         * Relies on the `_update` mechanism
         *
         * Emits a {Transfer} event with `from` set to the zero address.
         *
         * NOTE: This function is not virtual, {_update} should be overridden instead.
         */
        function _mint(address account, uint256 value) internal {
            if (account == address(0)) {
                revert ERC20InvalidReceiver(address(0));
            }
            _update(address(0), account, value);
        }
    
        /**
         * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
         * Relies on the `_update` mechanism.
         *
         * Emits a {Transfer} event with `to` set to the zero address.
         *
         * NOTE: This function is not virtual, {_update} should be overridden instead
         */
        function _burn(address account, uint256 value) internal {
            if (account == address(0)) {
                revert ERC20InvalidSender(address(0));
            }
            _update(account, address(0), value);
        }
    
        /**
         * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
         *
         * This internal function is equivalent to `approve`, and can be used to
         * e.g. set automatic allowances for certain subsystems, etc.
         *
         * Emits an {Approval} event.
         *
         * Requirements:
         *
         * - `owner` cannot be the zero address.
         * - `spender` cannot be the zero address.
         *
         * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
         */
        function _approve(address owner, address spender, uint256 value) internal {
            _approve(owner, spender, value, true);
        }
    
        /**
         * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
         *
         * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
         * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
         * `Approval` event during `transferFrom` operations.
         *
         * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
         * true using the following override:
         * ```
         * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
         *     super._approve(owner, spender, value, true);
         * }
         * ```
         *
         * Requirements are the same as {_approve}.
         */
        function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
            if (owner == address(0)) {
                revert ERC20InvalidApprover(address(0));
            }
            if (spender == address(0)) {
                revert ERC20InvalidSpender(address(0));
            }
            _allowances[owner][spender] = value;
            if (emitEvent) {
                emit Approval(owner, spender, value);
            }
        }
    
        /**
         * @dev Updates `owner` s allowance for `spender` based on spent `value`.
         *
         * Does not update the allowance value in case of infinite allowance.
         * Revert if not enough allowance is available.
         *
         * Does not emit an {Approval} event.
         */
        function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
            uint256 currentAllowance = allowance(owner, spender);
            if (currentAllowance != type(uint256).max) {
                if (currentAllowance < value) {
                    revert ERC20InsufficientAllowance(spender, currentAllowance, value);
                }
                unchecked {
                    _approve(owner, spender, currentAllowance - value, false);
                }
            }
        }
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)
    
    pragma solidity ^0.8.20;
    
    import {IERC20} from "../IERC20.sol";
    
    /**
     * @dev Interface for the optional metadata functions from the ERC20 standard.
     */
    interface IERC20Metadata is IERC20 {
        /**
         * @dev Returns the name of the token.
         */
        function name() external view returns (string memory);
    
        /**
         * @dev Returns the symbol of the token.
         */
        function symbol() external view returns (string memory);
    
        /**
         * @dev Returns the decimals places of the token.
         */
        function decimals() external view returns (uint8);
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
    
    pragma solidity ^0.8.20;
    
    /**
     * @dev Interface of the ERC20 standard as defined in the EIP.
     */
    interface IERC20 {
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
    
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to {approve}. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
    
        /**
         * @dev Returns the value of tokens in existence.
         */
        function totalSupply() external view returns (uint256);
    
        /**
         * @dev Returns the value of tokens owned by `account`.
         */
        function balanceOf(address account) external view returns (uint256);
    
        /**
         * @dev Moves a `value` amount of tokens from the caller's account to `to`.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transfer(address to, uint256 value) external returns (bool);
    
        /**
         * @dev Returns the remaining number of tokens that `spender` will be
         * allowed to spend on behalf of `owner` through {transferFrom}. This is
         * zero by default.
         *
         * This value changes when {approve} or {transferFrom} are called.
         */
        function allowance(address owner, address spender) external view returns (uint256);
    
        /**
         * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
         * caller's tokens.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * IMPORTANT: Beware that changing an allowance with this method brings the risk
         * that someone may use both the old and the new allowance by unfortunate
         * transaction ordering. One possible solution to mitigate this race
         * condition is to first reduce the spender's allowance to 0 and set the
         * desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         *
         * Emits an {Approval} event.
         */
        function approve(address spender, uint256 value) external returns (bool);
    
        /**
         * @dev Moves a `value` amount of tokens from `from` to `to` using the
         * allowance mechanism. `value` is then deducted from the caller's
         * allowance.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(address from, address to, uint256 value) external returns (bool);
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
    
    pragma solidity ^0.8.20;
    
    /**
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    abstract contract Context {
        function _msgSender() internal view virtual returns (address) {
            return msg.sender;
        }
    
        function _msgData() internal view virtual returns (bytes calldata) {
            return msg.data;
        }
    
        function _contextSuffixLength() internal view virtual returns (uint256) {
            return 0;
        }
    }

    // SPDX-License-Identifier: GPL-2.0-or-later
    pragma solidity >=0.5.0;
    
    /// @title Math library for computing sqrt prices from ticks and vice versa
    /// @notice Computes sqrt price for ticks of size 1.0001, i.e. sqrt(1.0001^tick) as fixed point Q64.96 numbers. Supports
    /// prices between 2**-128 and 2**128
    library TickMath {
        /// @dev The minimum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**-128
        int24 internal constant MIN_TICK = -887272;
        /// @dev The maximum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**128
        int24 internal constant MAX_TICK = -MIN_TICK;
    
        /// @dev The minimum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MIN_TICK)
        uint160 internal constant MIN_SQRT_RATIO = 4295128739;
        /// @dev The maximum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MAX_TICK)
        uint160 internal constant MAX_SQRT_RATIO = 1461446703485210103287273052203988822378723970342;
    
        /// @notice Calculates sqrt(1.0001^tick) * 2^96
        /// @dev Throws if |tick| > max tick
        /// @param tick The input tick for the above formula
        /// @return sqrtPriceX96 A Fixed point Q64.96 number representing the sqrt of the ratio of the two assets (token1/token0)
        /// at the given tick
        function getSqrtRatioAtTick(int24 tick) internal pure returns (uint160 sqrtPriceX96) {
            uint256 absTick = tick < 0 ? uint256(-int256(tick)) : uint256(int256(tick));
            require(absTick <= uint256(int(MAX_TICK)), 'T');
    
            uint256 ratio = absTick & 0x1 != 0 ? 0xfffcb933bd6fad37aa2d162d1a594001 : 0x100000000000000000000000000000000;
            if (absTick & 0x2 != 0) ratio = (ratio * 0xfff97272373d413259a46990580e213a) >> 128;
            if (absTick & 0x4 != 0) ratio = (ratio * 0xfff2e50f5f656932ef12357cf3c7fdcc) >> 128;
            if (absTick & 0x8 != 0) ratio = (ratio * 0xffe5caca7e10e4e61c3624eaa0941cd0) >> 128;
            if (absTick & 0x10 != 0) ratio = (ratio * 0xffcb9843d60f6159c9db58835c926644) >> 128;
            if (absTick & 0x20 != 0) ratio = (ratio * 0xff973b41fa98c081472e6896dfb254c0) >> 128;
            if (absTick & 0x40 != 0) ratio = (ratio * 0xff2ea16466c96a3843ec78b326b52861) >> 128;
            if (absTick & 0x80 != 0) ratio = (ratio * 0xfe5dee046a99a2a811c461f1969c3053) >> 128;
            if (absTick & 0x100 != 0) ratio = (ratio * 0xfcbe86c7900a88aedcffc83b479aa3a4) >> 128;
            if (absTick & 0x200 != 0) ratio = (ratio * 0xf987a7253ac413176f2b074cf7815e54) >> 128;
            if (absTick & 0x400 != 0) ratio = (ratio * 0xf3392b0822b70005940c7a398e4b70f3) >> 128;
            if (absTick & 0x800 != 0) ratio = (ratio * 0xe7159475a2c29b7443b29c7fa6e889d9) >> 128;
            if (absTick & 0x1000 != 0) ratio = (ratio * 0xd097f3bdfd2022b8845ad8f792aa5825) >> 128;
            if (absTick & 0x2000 != 0) ratio = (ratio * 0xa9f746462d870fdf8a65dc1f90e061e5) >> 128;
            if (absTick & 0x4000 != 0) ratio = (ratio * 0x70d869a156d2a1b890bb3df62baf32f7) >> 128;
            if (absTick & 0x8000 != 0) ratio = (ratio * 0x31be135f97d08fd981231505542fcfa6) >> 128;
            if (absTick & 0x10000 != 0) ratio = (ratio * 0x9aa508b5b7a84e1c677de54f3e99bc9) >> 128;
            if (absTick & 0x20000 != 0) ratio = (ratio * 0x5d6af8dedb81196699c329225ee604) >> 128;
            if (absTick & 0x40000 != 0) ratio = (ratio * 0x2216e584f5fa1ea926041bedfe98) >> 128;
            if (absTick & 0x80000 != 0) ratio = (ratio * 0x48a170391f7dc42444e8fa2) >> 128;
    
            if (tick > 0) ratio = type(uint256).max / ratio;
    
            // this divides by 1<<32 rounding up to go from a Q128.128 to a Q128.96.
            // we then downcast because we know the result always fits within 160 bits due to our tick input constraint
            // we round up in the division so getTickAtSqrtRatio of the output price is always consistent
            sqrtPriceX96 = uint160((ratio >> 32) + (ratio % (1 << 32) == 0 ? 0 : 1));
        }
    
        /// @notice Calculates the greatest tick value such that getRatioAtTick(tick) <= ratio
        /// @dev Throws in case sqrtPriceX96 < MIN_SQRT_RATIO, as MIN_SQRT_RATIO is the lowest value getRatioAtTick may
        /// ever return.
        /// @param sqrtPriceX96 The sqrt ratio for which to compute the tick as a Q64.96
        /// @return tick The greatest tick for which the ratio is less than or equal to the input ratio
        function getTickAtSqrtRatio(uint160 sqrtPriceX96) internal pure returns (int24 tick) {
            // second inequality must be < because the price can never reach the price at the max tick
            require(sqrtPriceX96 >= MIN_SQRT_RATIO && sqrtPriceX96 < MAX_SQRT_RATIO, 'R');
            uint256 ratio = uint256(sqrtPriceX96) << 32;
    
            uint256 r = ratio;
            uint256 msb = 0;
    
            assembly {
                let f := shl(7, gt(r, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF))
                msb := or(msb, f)
                r := shr(f, r)
            }
            assembly {
                let f := shl(6, gt(r, 0xFFFFFFFFFFFFFFFF))
                msb := or(msb, f)
                r := shr(f, r)
            }
            assembly {
                let f := shl(5, gt(r, 0xFFFFFFFF))
                msb := or(msb, f)
                r := shr(f, r)
            }
            assembly {
                let f := shl(4, gt(r, 0xFFFF))
                msb := or(msb, f)
                r := shr(f, r)
            }
            assembly {
                let f := shl(3, gt(r, 0xFF))
                msb := or(msb, f)
                r := shr(f, r)
            }
            assembly {
                let f := shl(2, gt(r, 0xF))
                msb := or(msb, f)
                r := shr(f, r)
            }
            assembly {
                let f := shl(1, gt(r, 0x3))
                msb := or(msb, f)
                r := shr(f, r)
            }
            assembly {
                let f := gt(r, 0x1)
                msb := or(msb, f)
            }
    
            if (msb >= 128) r = ratio >> (msb - 127);
            else r = ratio << (127 - msb);
    
            int256 log_2 = (int256(msb) - 128) << 64;
    
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(63, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(62, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(61, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(60, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(59, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(58, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(57, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(56, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(55, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(54, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(53, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(52, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(51, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(50, f))
            }
    
            int256 log_sqrt10001 = log_2 * 255738958999603826347141; // 128.128 number
    
            int24 tickLow = int24((log_sqrt10001 - 3402992956809132418596140100660247210) >> 128);
            int24 tickHi = int24((log_sqrt10001 + 291339464771989622907027621153398088495) >> 128);
    
            tick = tickLow == tickHi ? tickLow : getSqrtRatioAtTick(tickHi) <= sqrtPriceX96 ? tickHi : tickLow;
        }
    }

    // SPDX-License-Identifier: AGPL-3.0-only
    pragma solidity >=0.8.0;
    
    /// @notice Library for converting between addresses and bytes32 values.
    /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/Bytes32AddressLib.sol)
    library Bytes32AddressLib {
        function fromLast20Bytes(
            bytes32 bytesValue
        ) internal pure returns (address) {
            return address(uint160(uint256(bytesValue)));
        }
    
        function fillLast12Bytes(
            address addressValue
        ) internal pure returns (bytes32) {
            return bytes32(bytes20(addressValue));
        }
    }

    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.25;
    
    interface ILocker {
        function initializer(uint256 tokenId) external;
    }
    
    interface ILockerFactory {
        function deploy(
            address token,
            address beneficiary,
            uint64 durationSeconds,
            uint256 tokenId,
            uint256 fees
        ) external payable returns (address);
    }
    
    interface INonfungiblePositionManager {
        struct MintParams {
            address token0;
            address token1;
            uint24 fee;
            int24 tickLower;
            int24 tickUpper;
            uint256 amount0Desired;
            uint256 amount1Desired;
            uint256 amount0Min;
            uint256 amount1Min;
            address recipient;
            uint256 deadline;
        }
    
        struct CollectParams {
            uint256 tokenId;
            address recipient;
            uint128 amount0Max;
            uint128 amount1Max;
        }
    
        function mint(
            MintParams calldata params
        )
            external
            payable
            returns (
                uint256 tokenId,
                uint128 liquidity,
                uint256 amount0,
                uint256 amount1
            );
    
        function createAndInitializePoolIfNecessary(
            address token0,
            address token1,
            uint24 fee,
            uint160 sqrtPriceX96
        ) external payable returns (address pool);
    
        function collect(
            CollectParams calldata params
        ) external payable returns (uint256 amount0, uint256 amount1);
    
        function safeTransferFrom(
            address from,
            address to,
            uint256 tokenId
        ) external;
    }
    
    interface IUniswapV3Factory {
        function initialize(uint160 sqrtPriceX96) external;
    
        function createPool(
            address tokenA,
            address tokenB,
            uint24 fee
        ) external returns (address pool);
    
        function feeAmountTickSpacing(uint24 fee) external view returns (int24);
    }
    
    // interface ILockerFactory {
    //     function deploy(
    //         address token,
    //         address beneficiary,
    //         uint64 durationSeconds,
    //         uint256 tokenId,
    //         uint256 fees
    //     ) external payable returns (address);
    // }
    
    // interface ILocker {
    //     function initializer(uint256 tokenId) external;
    // }
    
    struct ExactInputSingleParams {
        address tokenIn;
        address tokenOut;
        uint24 fee;
        address recipient;
        uint256 amountIn;
        uint256 amountOutMinimum;
        uint160 sqrtPriceLimitX96;
    }
    
    interface ISwapRouter {
        function exactInputSingle(
            ExactInputSingleParams calldata params
        ) external payable returns (uint256 amountOut);
    }

    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.26;
    
    import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
    import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol";
    import {TickMath} from "@uniswap/v3-core/contracts/libraries/TickMath.sol";
    
    import {INonfungiblePositionManager, IUniswapV3Factory, ILockerFactory, ExactInputSingleParams, ISwapRouter, ILocker} from "./interface.sol";
    import {Bytes32AddressLib} from "./Bytes32AddressLib.sol";
    
    ///@dev SpinnerVerifiedToken is a verified ERC20 token, make sure it's safe to use
    /// and not a scam token
    contract SpinnerVerifiedToken is ERC20 {
        constructor(
            string memory name_,
            string memory symbol_,
            uint256 maxSupply_
        ) ERC20(name_, symbol_) {
            _mint(msg.sender, maxSupply_);
        }
    
        function burn(uint256 amount) external {
            _burn(msg.sender, amount);
        }
    }
    
    
    ///@dev SpinnerFactory is a factory contract to create verified tokens
    /// The factory will be triggered automatically by AI to create verified tokens
    /// The liquidity NFT will be locked in a locker contract
    contract SpinnerFactory is Ownable {
        using TickMath for int24;
        using Bytes32AddressLib for bytes32;
        uint64 public defaultLockingPeriod = 3 * 365 days;
    
        address public taxCollector;
        address public deadAddress = 0x000000000000000000000000000000000000dEaD;
        uint8 public taxRate = 25;
        uint8 public lpFeesCut = 50;
        uint8 public protocolCut = 30;
        ILockerFactory public liquidityLocker;
        mapping(address => uint256) public nonce;
    
        address public weth;
        IUniswapV3Factory public uniswapV3Factory;
        INonfungiblePositionManager public positionManager;
    
        address public swapRouter;
    
        event TokenCreated(
            address tokenAddress,
            uint256 lpNftId,
            address deployer,
            string name,
            string symbol,
            uint256 supply,
            uint256 _supply
        );
    
        event LockerCreated(
            address tokenAddress,
            uint256 lpNftId,
            address lockerAddress
        );
    
        constructor(
            address taxCollector_,
            address weth_,
            address locker_,
            address uniswapV3Factory_,
            address positionManager_,
            uint64 defaultLockingPeriod_,
            address swapRouter_
        ) Ownable(msg.sender) {
            taxCollector = taxCollector_;
            weth = weth_;
            uniswapV3Factory = IUniswapV3Factory(uniswapV3Factory_);
            positionManager = INonfungiblePositionManager(positionManager_);
            swapRouter = swapRouter_;
            liquidityLocker = ILockerFactory(locker_);
            defaultLockingPeriod = defaultLockingPeriod_;
        }
    
        function createToken(
            string calldata _name,
            string calldata _symbol,
            uint256 _supply,
            int24 _initialTick,
            uint24 _fee,
            bytes32 _salt
        ) external payable returns (SpinnerVerifiedToken token, uint256 tokenId) {
            int24 tickSpacing = uniswapV3Factory.feeAmountTickSpacing(_fee);
    
            require(
                tickSpacing != 0 && _initialTick % tickSpacing == 0,
                "SpinnerError: Invalid tick"
            );
    
            token = new SpinnerVerifiedToken{
                salt: keccak256(abi.encode(msg.sender, _salt))
            }(_name, _symbol, _supply);
    
            require(address(token) < weth, "SpinnerError: Invalid salt");
    
            uint160 sqrtPriceX96 = _initialTick.getSqrtRatioAtTick();
            address pool = uniswapV3Factory.createPool(address(token), weth, _fee);
            IUniswapV3Factory(pool).initialize(sqrtPriceX96);
    
            INonfungiblePositionManager.MintParams
                memory params = INonfungiblePositionManager.MintParams(
                    address(token),
                    weth,
                    _fee,
                    _initialTick,
                    maxUsableTick(tickSpacing),
                    _supply,
                    0,
                    0,
                    0,
                    address(this),
                    block.timestamp
                );
    
            token.approve(address(positionManager), _supply);
            (tokenId, , , ) = positionManager.mint(params);
    
            address lockerAddress = liquidityLocker.deploy(
                address(positionManager),
                msg.sender,
                defaultLockingPeriod,
                tokenId,
                lpFeesCut
            );
    
            positionManager.safeTransferFrom(address(this), lockerAddress, tokenId);
    
            ILocker(lockerAddress).initializer(tokenId);
    
            uint256 protocolFees = (msg.value * protocolCut) / 1000;
            uint256 remainingFundsToBuyTokens = msg.value - protocolFees;
    
            if (msg.value > 0) {
                ExactInputSingleParams memory swapParams = ExactInputSingleParams({
                    tokenIn: weth,
                    tokenOut: address(token),
                    fee: _fee,
                    recipient: msg.sender,
                    amountIn: remainingFundsToBuyTokens,
                    amountOutMinimum: 0,
                    sqrtPriceLimitX96: 0
                });
    
                ISwapRouter(swapRouter).exactInputSingle{
                    value: remainingFundsToBuyTokens
                }(swapParams);
            }
    
            (bool success, ) = payable(taxCollector).call{value: protocolFees}("");
    
            if (!success) {
                revert("SpinnerError: Failed to send protocol fees");
            }
            nonce[msg.sender]++;
    
            emit TokenCreated(
                address(token),
                tokenId,
                msg.sender,
                _name,
                _symbol,
                _supply,
                _supply
            );
    
            emit LockerCreated(address(token), tokenId, lockerAddress);
        }
    
        function initialSwapTokens(address token, uint24 _fee) public payable {
            ExactInputSingleParams memory swapParams = ExactInputSingleParams({
                tokenIn: weth,
                tokenOut: address(token),
                fee: _fee,
                recipient: msg.sender,
                amountIn: msg.value,
                amountOutMinimum: 0,
                sqrtPriceLimitX96: 0
            });
            ISwapRouter(swapRouter).exactInputSingle{value: msg.value}(swapParams);
        }
    
        function updateLiquidityLocker(address newLocker) external onlyOwner {
            liquidityLocker = ILockerFactory(newLocker);
        }
    
        function updateDefaultLockingPeriod(uint64 newPeriod) external onlyOwner {
            defaultLockingPeriod = newPeriod;
        }
    
        function predictToken(
            address deployer,
            string calldata name,
            string calldata symbol,
            uint256 supply,
            bytes32 salt
        ) public view returns (address) {
            bytes32 create2Salt = keccak256(abi.encode(deployer, salt));
            return
                keccak256(
                    abi.encodePacked(
                        bytes1(0xFF),
                        address(this),
                        create2Salt,
                        keccak256(
                            abi.encodePacked(
                                type(SpinnerVerifiedToken).creationCode,
                                abi.encode(name, symbol, supply)
                            )
                        )
                    )
                ).fromLast20Bytes();
        }
    
        function generateSalt(
            address deployer,
            string calldata name,
            string calldata symbol,
            uint256 supply
        ) external view returns (bytes32 salt, address token) {
            uint256 deployerNonce = nonce[deployer];
            for (uint256 i; ; i++) {
                salt = keccak256(abi.encode(deployerNonce, i));
                token = predictToken(deployer, name, symbol, supply, salt);
                if (token < weth && token.code.length == 0) {
                    break;
                }
            }
        }
    
        function updateTaxCollector(address newCollector) external onlyOwner {
            taxCollector = newCollector;
        }
    
        function updateProtocolFees(uint8 newFee) external onlyOwner {
            lpFeesCut = newFee;
        }
    
        function updateTaxRate(uint8 newRate) external onlyOwner {
            taxRate = newRate;
        }
    }
    
    function maxUsableTick(int24 tickSpacing) pure returns (int24) {
        unchecked {
            return (TickMath.MAX_TICK / tickSpacing) * tickSpacing;
        }
    }

    Contract Name:
    SpinnerVerifiedToken

    Contract Source Code:

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
    
    pragma solidity ^0.8.20;
    
    import {Context} from "../utils/Context.sol";
    
    /**
     * @dev Contract module which provides a basic access control mechanism, where
     * there is an account (an owner) that can be granted exclusive access to
     * specific functions.
     *
     * The initial owner is set to the address provided by the deployer. This can
     * later be changed with {transferOwnership}.
     *
     * This module is used through inheritance. It will make available the modifier
     * `onlyOwner`, which can be applied to your functions to restrict their use to
     * the owner.
     */
    abstract contract Ownable is Context {
        address private _owner;
    
        /**
         * @dev The caller account is not authorized to perform an operation.
         */
        error OwnableUnauthorizedAccount(address account);
    
        /**
         * @dev The owner is not a valid owner account. (eg. `address(0)`)
         */
        error OwnableInvalidOwner(address owner);
    
        event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
    
        /**
         * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
         */
        constructor(address initialOwner) {
            if (initialOwner == address(0)) {
                revert OwnableInvalidOwner(address(0));
            }
            _transferOwnership(initialOwner);
        }
    
        /**
         * @dev Throws if called by any account other than the owner.
         */
        modifier onlyOwner() {
            _checkOwner();
            _;
        }
    
        /**
         * @dev Returns the address of the current owner.
         */
        function owner() public view virtual returns (address) {
            return _owner;
        }
    
        /**
         * @dev Throws if the sender is not the owner.
         */
        function _checkOwner() internal view virtual {
            if (owner() != _msgSender()) {
                revert OwnableUnauthorizedAccount(_msgSender());
            }
        }
    
        /**
         * @dev Leaves the contract without owner. It will not be possible to call
         * `onlyOwner` functions. Can only be called by the current owner.
         *
         * NOTE: Renouncing ownership will leave the contract without an owner,
         * thereby disabling any functionality that is only available to the owner.
         */
        function renounceOwnership() public virtual onlyOwner {
            _transferOwnership(address(0));
        }
    
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Can only be called by the current owner.
         */
        function transferOwnership(address newOwner) public virtual onlyOwner {
            if (newOwner == address(0)) {
                revert OwnableInvalidOwner(address(0));
            }
            _transferOwnership(newOwner);
        }
    
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Internal function without access restriction.
         */
        function _transferOwnership(address newOwner) internal virtual {
            address oldOwner = _owner;
            _owner = newOwner;
            emit OwnershipTransferred(oldOwner, newOwner);
        }
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol)
    pragma solidity ^0.8.20;
    
    /**
     * @dev Standard ERC20 Errors
     * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC20 tokens.
     */
    interface IERC20Errors {
        /**
         * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
         * @param sender Address whose tokens are being transferred.
         * @param balance Current balance for the interacting account.
         * @param needed Minimum amount required to perform a transfer.
         */
        error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
    
        /**
         * @dev Indicates a failure with the token `sender`. Used in transfers.
         * @param sender Address whose tokens are being transferred.
         */
        error ERC20InvalidSender(address sender);
    
        /**
         * @dev Indicates a failure with the token `receiver`. Used in transfers.
         * @param receiver Address to which tokens are being transferred.
         */
        error ERC20InvalidReceiver(address receiver);
    
        /**
         * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
         * @param spender Address that may be allowed to operate on tokens without being their owner.
         * @param allowance Amount of tokens a `spender` is allowed to operate with.
         * @param needed Minimum amount required to perform a transfer.
         */
        error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
    
        /**
         * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
         * @param approver Address initiating an approval operation.
         */
        error ERC20InvalidApprover(address approver);
    
        /**
         * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
         * @param spender Address that may be allowed to operate on tokens without being their owner.
         */
        error ERC20InvalidSpender(address spender);
    }
    
    /**
     * @dev Standard ERC721 Errors
     * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC721 tokens.
     */
    interface IERC721Errors {
        /**
         * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in EIP-20.
         * Used in balance queries.
         * @param owner Address of the current owner of a token.
         */
        error ERC721InvalidOwner(address owner);
    
        /**
         * @dev Indicates a `tokenId` whose `owner` is the zero address.
         * @param tokenId Identifier number of a token.
         */
        error ERC721NonexistentToken(uint256 tokenId);
    
        /**
         * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
         * @param sender Address whose tokens are being transferred.
         * @param tokenId Identifier number of a token.
         * @param owner Address of the current owner of a token.
         */
        error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);
    
        /**
         * @dev Indicates a failure with the token `sender`. Used in transfers.
         * @param sender Address whose tokens are being transferred.
         */
        error ERC721InvalidSender(address sender);
    
        /**
         * @dev Indicates a failure with the token `receiver`. Used in transfers.
         * @param receiver Address to which tokens are being transferred.
         */
        error ERC721InvalidReceiver(address receiver);
    
        /**
         * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
         * @param operator Address that may be allowed to operate on tokens without being their owner.
         * @param tokenId Identifier number of a token.
         */
        error ERC721InsufficientApproval(address operator, uint256 tokenId);
    
        /**
         * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
         * @param approver Address initiating an approval operation.
         */
        error ERC721InvalidApprover(address approver);
    
        /**
         * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
         * @param operator Address that may be allowed to operate on tokens without being their owner.
         */
        error ERC721InvalidOperator(address operator);
    }
    
    /**
     * @dev Standard ERC1155 Errors
     * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC1155 tokens.
     */
    interface IERC1155Errors {
        /**
         * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
         * @param sender Address whose tokens are being transferred.
         * @param balance Current balance for the interacting account.
         * @param needed Minimum amount required to perform a transfer.
         * @param tokenId Identifier number of a token.
         */
        error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);
    
        /**
         * @dev Indicates a failure with the token `sender`. Used in transfers.
         * @param sender Address whose tokens are being transferred.
         */
        error ERC1155InvalidSender(address sender);
    
        /**
         * @dev Indicates a failure with the token `receiver`. Used in transfers.
         * @param receiver Address to which tokens are being transferred.
         */
        error ERC1155InvalidReceiver(address receiver);
    
        /**
         * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
         * @param operator Address that may be allowed to operate on tokens without being their owner.
         * @param owner Address of the current owner of a token.
         */
        error ERC1155MissingApprovalForAll(address operator, address owner);
    
        /**
         * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
         * @param approver Address initiating an approval operation.
         */
        error ERC1155InvalidApprover(address approver);
    
        /**
         * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
         * @param operator Address that may be allowed to operate on tokens without being their owner.
         */
        error ERC1155InvalidOperator(address operator);
    
        /**
         * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
         * Used in batch transfers.
         * @param idsLength Length of the array of token identifiers
         * @param valuesLength Length of the array of token amounts
         */
        error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/ERC20.sol)
    
    pragma solidity ^0.8.20;
    
    import {IERC20} from "./IERC20.sol";
    import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
    import {Context} from "../../utils/Context.sol";
    import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";
    
    /**
     * @dev Implementation of the {IERC20} interface.
     *
     * This implementation is agnostic to the way tokens are created. This means
     * that a supply mechanism has to be added in a derived contract using {_mint}.
     *
     * TIP: For a detailed writeup see our guide
     * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
     * to implement supply mechanisms].
     *
     * The default value of {decimals} is 18. To change this, you should override
     * this function so it returns a different value.
     *
     * We have followed general OpenZeppelin Contracts guidelines: functions revert
     * instead returning `false` on failure. This behavior is nonetheless
     * conventional and does not conflict with the expectations of ERC20
     * applications.
     *
     * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
     * This allows applications to reconstruct the allowance for all accounts just
     * by listening to said events. Other implementations of the EIP may not emit
     * these events, as it isn't required by the specification.
     */
    abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
        mapping(address account => uint256) private _balances;
    
        mapping(address account => mapping(address spender => uint256)) private _allowances;
    
        uint256 private _totalSupply;
    
        string private _name;
        string private _symbol;
    
        /**
         * @dev Sets the values for {name} and {symbol}.
         *
         * All two of these values are immutable: they can only be set once during
         * construction.
         */
        constructor(string memory name_, string memory symbol_) {
            _name = name_;
            _symbol = symbol_;
        }
    
        /**
         * @dev Returns the name of the token.
         */
        function name() public view virtual returns (string memory) {
            return _name;
        }
    
        /**
         * @dev Returns the symbol of the token, usually a shorter version of the
         * name.
         */
        function symbol() public view virtual returns (string memory) {
            return _symbol;
        }
    
        /**
         * @dev Returns the number of decimals used to get its user representation.
         * For example, if `decimals` equals `2`, a balance of `505` tokens should
         * be displayed to a user as `5.05` (`505 / 10 ** 2`).
         *
         * Tokens usually opt for a value of 18, imitating the relationship between
         * Ether and Wei. This is the default value returned by this function, unless
         * it's overridden.
         *
         * NOTE: This information is only used for _display_ purposes: it in
         * no way affects any of the arithmetic of the contract, including
         * {IERC20-balanceOf} and {IERC20-transfer}.
         */
        function decimals() public view virtual returns (uint8) {
            return 18;
        }
    
        /**
         * @dev See {IERC20-totalSupply}.
         */
        function totalSupply() public view virtual returns (uint256) {
            return _totalSupply;
        }
    
        /**
         * @dev See {IERC20-balanceOf}.
         */
        function balanceOf(address account) public view virtual returns (uint256) {
            return _balances[account];
        }
    
        /**
         * @dev See {IERC20-transfer}.
         *
         * Requirements:
         *
         * - `to` cannot be the zero address.
         * - the caller must have a balance of at least `value`.
         */
        function transfer(address to, uint256 value) public virtual returns (bool) {
            address owner = _msgSender();
            _transfer(owner, to, value);
            return true;
        }
    
        /**
         * @dev See {IERC20-allowance}.
         */
        function allowance(address owner, address spender) public view virtual returns (uint256) {
            return _allowances[owner][spender];
        }
    
        /**
         * @dev See {IERC20-approve}.
         *
         * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
         * `transferFrom`. This is semantically equivalent to an infinite approval.
         *
         * Requirements:
         *
         * - `spender` cannot be the zero address.
         */
        function approve(address spender, uint256 value) public virtual returns (bool) {
            address owner = _msgSender();
            _approve(owner, spender, value);
            return true;
        }
    
        /**
         * @dev See {IERC20-transferFrom}.
         *
         * Emits an {Approval} event indicating the updated allowance. This is not
         * required by the EIP. See the note at the beginning of {ERC20}.
         *
         * NOTE: Does not update the allowance if the current allowance
         * is the maximum `uint256`.
         *
         * Requirements:
         *
         * - `from` and `to` cannot be the zero address.
         * - `from` must have a balance of at least `value`.
         * - the caller must have allowance for ``from``'s tokens of at least
         * `value`.
         */
        function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
            address spender = _msgSender();
            _spendAllowance(from, spender, value);
            _transfer(from, to, value);
            return true;
        }
    
        /**
         * @dev Moves a `value` amount of tokens from `from` to `to`.
         *
         * This internal function is equivalent to {transfer}, and can be used to
         * e.g. implement automatic token fees, slashing mechanisms, etc.
         *
         * Emits a {Transfer} event.
         *
         * NOTE: This function is not virtual, {_update} should be overridden instead.
         */
        function _transfer(address from, address to, uint256 value) internal {
            if (from == address(0)) {
                revert ERC20InvalidSender(address(0));
            }
            if (to == address(0)) {
                revert ERC20InvalidReceiver(address(0));
            }
            _update(from, to, value);
        }
    
        /**
         * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
         * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
         * this function.
         *
         * Emits a {Transfer} event.
         */
        function _update(address from, address to, uint256 value) internal virtual {
            if (from == address(0)) {
                // Overflow check required: The rest of the code assumes that totalSupply never overflows
                _totalSupply += value;
            } else {
                uint256 fromBalance = _balances[from];
                if (fromBalance < value) {
                    revert ERC20InsufficientBalance(from, fromBalance, value);
                }
                unchecked {
                    // Overflow not possible: value <= fromBalance <= totalSupply.
                    _balances[from] = fromBalance - value;
                }
            }
    
            if (to == address(0)) {
                unchecked {
                    // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                    _totalSupply -= value;
                }
            } else {
                unchecked {
                    // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                    _balances[to] += value;
                }
            }
    
            emit Transfer(from, to, value);
        }
    
        /**
         * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
         * Relies on the `_update` mechanism
         *
         * Emits a {Transfer} event with `from` set to the zero address.
         *
         * NOTE: This function is not virtual, {_update} should be overridden instead.
         */
        function _mint(address account, uint256 value) internal {
            if (account == address(0)) {
                revert ERC20InvalidReceiver(address(0));
            }
            _update(address(0), account, value);
        }
    
        /**
         * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
         * Relies on the `_update` mechanism.
         *
         * Emits a {Transfer} event with `to` set to the zero address.
         *
         * NOTE: This function is not virtual, {_update} should be overridden instead
         */
        function _burn(address account, uint256 value) internal {
            if (account == address(0)) {
                revert ERC20InvalidSender(address(0));
            }
            _update(account, address(0), value);
        }
    
        /**
         * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
         *
         * This internal function is equivalent to `approve`, and can be used to
         * e.g. set automatic allowances for certain subsystems, etc.
         *
         * Emits an {Approval} event.
         *
         * Requirements:
         *
         * - `owner` cannot be the zero address.
         * - `spender` cannot be the zero address.
         *
         * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
         */
        function _approve(address owner, address spender, uint256 value) internal {
            _approve(owner, spender, value, true);
        }
    
        /**
         * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
         *
         * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
         * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
         * `Approval` event during `transferFrom` operations.
         *
         * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
         * true using the following override:
         * ```
         * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
         *     super._approve(owner, spender, value, true);
         * }
         * ```
         *
         * Requirements are the same as {_approve}.
         */
        function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
            if (owner == address(0)) {
                revert ERC20InvalidApprover(address(0));
            }
            if (spender == address(0)) {
                revert ERC20InvalidSpender(address(0));
            }
            _allowances[owner][spender] = value;
            if (emitEvent) {
                emit Approval(owner, spender, value);
            }
        }
    
        /**
         * @dev Updates `owner` s allowance for `spender` based on spent `value`.
         *
         * Does not update the allowance value in case of infinite allowance.
         * Revert if not enough allowance is available.
         *
         * Does not emit an {Approval} event.
         */
        function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
            uint256 currentAllowance = allowance(owner, spender);
            if (currentAllowance != type(uint256).max) {
                if (currentAllowance < value) {
                    revert ERC20InsufficientAllowance(spender, currentAllowance, value);
                }
                unchecked {
                    _approve(owner, spender, currentAllowance - value, false);
                }
            }
        }
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)
    
    pragma solidity ^0.8.20;
    
    import {IERC20} from "../IERC20.sol";
    
    /**
     * @dev Interface for the optional metadata functions from the ERC20 standard.
     */
    interface IERC20Metadata is IERC20 {
        /**
         * @dev Returns the name of the token.
         */
        function name() external view returns (string memory);
    
        /**
         * @dev Returns the symbol of the token.
         */
        function symbol() external view returns (string memory);
    
        /**
         * @dev Returns the decimals places of the token.
         */
        function decimals() external view returns (uint8);
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
    
    pragma solidity ^0.8.20;
    
    /**
     * @dev Interface of the ERC20 standard as defined in the EIP.
     */
    interface IERC20 {
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
    
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to {approve}. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
    
        /**
         * @dev Returns the value of tokens in existence.
         */
        function totalSupply() external view returns (uint256);
    
        /**
         * @dev Returns the value of tokens owned by `account`.
         */
        function balanceOf(address account) external view returns (uint256);
    
        /**
         * @dev Moves a `value` amount of tokens from the caller's account to `to`.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transfer(address to, uint256 value) external returns (bool);
    
        /**
         * @dev Returns the remaining number of tokens that `spender` will be
         * allowed to spend on behalf of `owner` through {transferFrom}. This is
         * zero by default.
         *
         * This value changes when {approve} or {transferFrom} are called.
         */
        function allowance(address owner, address spender) external view returns (uint256);
    
        /**
         * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
         * caller's tokens.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * IMPORTANT: Beware that changing an allowance with this method brings the risk
         * that someone may use both the old and the new allowance by unfortunate
         * transaction ordering. One possible solution to mitigate this race
         * condition is to first reduce the spender's allowance to 0 and set the
         * desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         *
         * Emits an {Approval} event.
         */
        function approve(address spender, uint256 value) external returns (bool);
    
        /**
         * @dev Moves a `value` amount of tokens from `from` to `to` using the
         * allowance mechanism. `value` is then deducted from the caller's
         * allowance.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(address from, address to, uint256 value) external returns (bool);
    }

    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
    
    pragma solidity ^0.8.20;
    
    /**
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    abstract contract Context {
        function _msgSender() internal view virtual returns (address) {
            return msg.sender;
        }
    
        function _msgData() internal view virtual returns (bytes calldata) {
            return msg.data;
        }
    
        function _contextSuffixLength() internal view virtual returns (uint256) {
            return 0;
        }
    }

    // SPDX-License-Identifier: GPL-2.0-or-later
    pragma solidity >=0.5.0;
    
    /// @title Math library for computing sqrt prices from ticks and vice versa
    /// @notice Computes sqrt price for ticks of size 1.0001, i.e. sqrt(1.0001^tick) as fixed point Q64.96 numbers. Supports
    /// prices between 2**-128 and 2**128
    library TickMath {
        /// @dev The minimum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**-128
        int24 internal constant MIN_TICK = -887272;
        /// @dev The maximum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**128
        int24 internal constant MAX_TICK = -MIN_TICK;
    
        /// @dev The minimum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MIN_TICK)
        uint160 internal constant MIN_SQRT_RATIO = 4295128739;
        /// @dev The maximum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MAX_TICK)
        uint160 internal constant MAX_SQRT_RATIO = 1461446703485210103287273052203988822378723970342;
    
        /// @notice Calculates sqrt(1.0001^tick) * 2^96
        /// @dev Throws if |tick| > max tick
        /// @param tick The input tick for the above formula
        /// @return sqrtPriceX96 A Fixed point Q64.96 number representing the sqrt of the ratio of the two assets (token1/token0)
        /// at the given tick
        function getSqrtRatioAtTick(int24 tick) internal pure returns (uint160 sqrtPriceX96) {
            uint256 absTick = tick < 0 ? uint256(-int256(tick)) : uint256(int256(tick));
            require(absTick <= uint256(int(MAX_TICK)), 'T');
    
            uint256 ratio = absTick & 0x1 != 0 ? 0xfffcb933bd6fad37aa2d162d1a594001 : 0x100000000000000000000000000000000;
            if (absTick & 0x2 != 0) ratio = (ratio * 0xfff97272373d413259a46990580e213a) >> 128;
            if (absTick & 0x4 != 0) ratio = (ratio * 0xfff2e50f5f656932ef12357cf3c7fdcc) >> 128;
            if (absTick & 0x8 != 0) ratio = (ratio * 0xffe5caca7e10e4e61c3624eaa0941cd0) >> 128;
            if (absTick & 0x10 != 0) ratio = (ratio * 0xffcb9843d60f6159c9db58835c926644) >> 128;
            if (absTick & 0x20 != 0) ratio = (ratio * 0xff973b41fa98c081472e6896dfb254c0) >> 128;
            if (absTick & 0x40 != 0) ratio = (ratio * 0xff2ea16466c96a3843ec78b326b52861) >> 128;
            if (absTick & 0x80 != 0) ratio = (ratio * 0xfe5dee046a99a2a811c461f1969c3053) >> 128;
            if (absTick & 0x100 != 0) ratio = (ratio * 0xfcbe86c7900a88aedcffc83b479aa3a4) >> 128;
            if (absTick & 0x200 != 0) ratio = (ratio * 0xf987a7253ac413176f2b074cf7815e54) >> 128;
            if (absTick & 0x400 != 0) ratio = (ratio * 0xf3392b0822b70005940c7a398e4b70f3) >> 128;
            if (absTick & 0x800 != 0) ratio = (ratio * 0xe7159475a2c29b7443b29c7fa6e889d9) >> 128;
            if (absTick & 0x1000 != 0) ratio = (ratio * 0xd097f3bdfd2022b8845ad8f792aa5825) >> 128;
            if (absTick & 0x2000 != 0) ratio = (ratio * 0xa9f746462d870fdf8a65dc1f90e061e5) >> 128;
            if (absTick & 0x4000 != 0) ratio = (ratio * 0x70d869a156d2a1b890bb3df62baf32f7) >> 128;
            if (absTick & 0x8000 != 0) ratio = (ratio * 0x31be135f97d08fd981231505542fcfa6) >> 128;
            if (absTick & 0x10000 != 0) ratio = (ratio * 0x9aa508b5b7a84e1c677de54f3e99bc9) >> 128;
            if (absTick & 0x20000 != 0) ratio = (ratio * 0x5d6af8dedb81196699c329225ee604) >> 128;
            if (absTick & 0x40000 != 0) ratio = (ratio * 0x2216e584f5fa1ea926041bedfe98) >> 128;
            if (absTick & 0x80000 != 0) ratio = (ratio * 0x48a170391f7dc42444e8fa2) >> 128;
    
            if (tick > 0) ratio = type(uint256).max / ratio;
    
            // this divides by 1<<32 rounding up to go from a Q128.128 to a Q128.96.
            // we then downcast because we know the result always fits within 160 bits due to our tick input constraint
            // we round up in the division so getTickAtSqrtRatio of the output price is always consistent
            sqrtPriceX96 = uint160((ratio >> 32) + (ratio % (1 << 32) == 0 ? 0 : 1));
        }
    
        /// @notice Calculates the greatest tick value such that getRatioAtTick(tick) <= ratio
        /// @dev Throws in case sqrtPriceX96 < MIN_SQRT_RATIO, as MIN_SQRT_RATIO is the lowest value getRatioAtTick may
        /// ever return.
        /// @param sqrtPriceX96 The sqrt ratio for which to compute the tick as a Q64.96
        /// @return tick The greatest tick for which the ratio is less than or equal to the input ratio
        function getTickAtSqrtRatio(uint160 sqrtPriceX96) internal pure returns (int24 tick) {
            // second inequality must be < because the price can never reach the price at the max tick
            require(sqrtPriceX96 >= MIN_SQRT_RATIO && sqrtPriceX96 < MAX_SQRT_RATIO, 'R');
            uint256 ratio = uint256(sqrtPriceX96) << 32;
    
            uint256 r = ratio;
            uint256 msb = 0;
    
            assembly {
                let f := shl(7, gt(r, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF))
                msb := or(msb, f)
                r := shr(f, r)
            }
            assembly {
                let f := shl(6, gt(r, 0xFFFFFFFFFFFFFFFF))
                msb := or(msb, f)
                r := shr(f, r)
            }
            assembly {
                let f := shl(5, gt(r, 0xFFFFFFFF))
                msb := or(msb, f)
                r := shr(f, r)
            }
            assembly {
                let f := shl(4, gt(r, 0xFFFF))
                msb := or(msb, f)
                r := shr(f, r)
            }
            assembly {
                let f := shl(3, gt(r, 0xFF))
                msb := or(msb, f)
                r := shr(f, r)
            }
            assembly {
                let f := shl(2, gt(r, 0xF))
                msb := or(msb, f)
                r := shr(f, r)
            }
            assembly {
                let f := shl(1, gt(r, 0x3))
                msb := or(msb, f)
                r := shr(f, r)
            }
            assembly {
                let f := gt(r, 0x1)
                msb := or(msb, f)
            }
    
            if (msb >= 128) r = ratio >> (msb - 127);
            else r = ratio << (127 - msb);
    
            int256 log_2 = (int256(msb) - 128) << 64;
    
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(63, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(62, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(61, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(60, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(59, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(58, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(57, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(56, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(55, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(54, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(53, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(52, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(51, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(50, f))
            }
    
            int256 log_sqrt10001 = log_2 * 255738958999603826347141; // 128.128 number
    
            int24 tickLow = int24((log_sqrt10001 - 3402992956809132418596140100660247210) >> 128);
            int24 tickHi = int24((log_sqrt10001 + 291339464771989622907027621153398088495) >> 128);
    
            tick = tickLow == tickHi ? tickLow : getSqrtRatioAtTick(tickHi) <= sqrtPriceX96 ? tickHi : tickLow;
        }
    }

    // SPDX-License-Identifier: AGPL-3.0-only
    pragma solidity >=0.8.0;
    
    /// @notice Library for converting between addresses and bytes32 values.
    /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/Bytes32AddressLib.sol)
    library Bytes32AddressLib {
        function fromLast20Bytes(
            bytes32 bytesValue
        ) internal pure returns (address) {
            return address(uint160(uint256(bytesValue)));
        }
    
        function fillLast12Bytes(
            address addressValue
        ) internal pure returns (bytes32) {
            return bytes32(bytes20(addressValue));
        }
    }

    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.25;
    
    interface ILocker {
        function initializer(uint256 tokenId) external;
    }
    
    interface ILockerFactory {
        function deploy(
            address token,
            address beneficiary,
            uint64 durationSeconds,
            uint256 tokenId,
            uint256 fees
        ) external payable returns (address);
    }
    
    interface INonfungiblePositionManager {
        struct MintParams {
            address token0;
            address token1;
            uint24 fee;
            int24 tickLower;
            int24 tickUpper;
            uint256 amount0Desired;
            uint256 amount1Desired;
            uint256 amount0Min;
            uint256 amount1Min;
            address recipient;
            uint256 deadline;
        }
    
        struct CollectParams {
            uint256 tokenId;
            address recipient;
            uint128 amount0Max;
            uint128 amount1Max;
        }
    
        function mint(
            MintParams calldata params
        )
            external
            payable
            returns (
                uint256 tokenId,
                uint128 liquidity,
                uint256 amount0,
                uint256 amount1
            );
    
        function createAndInitializePoolIfNecessary(
            address token0,
            address token1,
            uint24 fee,
            uint160 sqrtPriceX96
        ) external payable returns (address pool);
    
        function collect(
            CollectParams calldata params
        ) external payable returns (uint256 amount0, uint256 amount1);
    
        function safeTransferFrom(
            address from,
            address to,
            uint256 tokenId
        ) external;
    }
    
    interface IUniswapV3Factory {
        function initialize(uint160 sqrtPriceX96) external;
    
        function createPool(
            address tokenA,
            address tokenB,
            uint24 fee
        ) external returns (address pool);
    
        function feeAmountTickSpacing(uint24 fee) external view returns (int24);
    }
    
    // interface ILockerFactory {
    //     function deploy(
    //         address token,
    //         address beneficiary,
    //         uint64 durationSeconds,
    //         uint256 tokenId,
    //         uint256 fees
    //     ) external payable returns (address);
    // }
    
    // interface ILocker {
    //     function initializer(uint256 tokenId) external;
    // }
    
    struct ExactInputSingleParams {
        address tokenIn;
        address tokenOut;
        uint24 fee;
        address recipient;
        uint256 amountIn;
        uint256 amountOutMinimum;
        uint160 sqrtPriceLimitX96;
    }
    
    interface ISwapRouter {
        function exactInputSingle(
            ExactInputSingleParams calldata params
        ) external payable returns (uint256 amountOut);
    }

    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.26;
    
    import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
    import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol";
    import {TickMath} from "@uniswap/v3-core/contracts/libraries/TickMath.sol";
    
    import {INonfungiblePositionManager, IUniswapV3Factory, ILockerFactory, ExactInputSingleParams, ISwapRouter, ILocker} from "./interface.sol";
    import {Bytes32AddressLib} from "./Bytes32AddressLib.sol";
    
    ///@dev SpinnerVerifiedToken is a verified ERC20 token, make sure it's safe to use
    /// and not a scam token
    contract SpinnerVerifiedToken is ERC20 {
        constructor(
            string memory name_,
            string memory symbol_,
            uint256 maxSupply_
        ) ERC20(name_, symbol_) {
            _mint(msg.sender, maxSupply_);
        }
    
        function burn(uint256 amount) external {
            _burn(msg.sender, amount);
        }
    }
    
    
    ///@dev SpinnerFactory is a factory contract to create verified tokens
    /// The factory will be triggered automatically by AI to create verified tokens
    /// The liquidity NFT will be locked in a locker contract
    contract SpinnerFactory is Ownable {
        using TickMath for int24;
        using Bytes32AddressLib for bytes32;
        uint64 public defaultLockingPeriod = 3 * 365 days;
    
        address public taxCollector;
        address public deadAddress = 0x000000000000000000000000000000000000dEaD;
        uint8 public taxRate = 25;
        uint8 public lpFeesCut = 50;
        uint8 public protocolCut = 30;
        ILockerFactory public liquidityLocker;
        mapping(address => uint256) public nonce;
    
        address public weth;
        IUniswapV3Factory public uniswapV3Factory;
        INonfungiblePositionManager public positionManager;
    
        address public swapRouter;
    
        event TokenCreated(
            address tokenAddress,
            uint256 lpNftId,
            address deployer,
            string name,
            string symbol,
            uint256 supply,
            uint256 _supply
        );
    
        event LockerCreated(
            address tokenAddress,
            uint256 lpNftId,
            address lockerAddress
        );
    
        constructor(
            address taxCollector_,
            address weth_,
            address locker_,
            address uniswapV3Factory_,
            address positionManager_,
            uint64 defaultLockingPeriod_,
            address swapRouter_
        ) Ownable(msg.sender) {
            taxCollector = taxCollector_;
            weth = weth_;
            uniswapV3Factory = IUniswapV3Factory(uniswapV3Factory_);
            positionManager = INonfungiblePositionManager(positionManager_);
            swapRouter = swapRouter_;
            liquidityLocker = ILockerFactory(locker_);
            defaultLockingPeriod = defaultLockingPeriod_;
        }
    
        function createToken(
            string calldata _name,
            string calldata _symbol,
            uint256 _supply,
            int24 _initialTick,
            uint24 _fee,
            bytes32 _salt
        ) external payable returns (SpinnerVerifiedToken token, uint256 tokenId) {
            int24 tickSpacing = uniswapV3Factory.feeAmountTickSpacing(_fee);
    
            require(
                tickSpacing != 0 && _initialTick % tickSpacing == 0,
                "SpinnerError: Invalid tick"
            );
    
            token = new SpinnerVerifiedToken{
                salt: keccak256(abi.encode(msg.sender, _salt))
            }(_name, _symbol, _supply);
    
            require(address(token) < weth, "SpinnerError: Invalid salt");
    
            uint160 sqrtPriceX96 = _initialTick.getSqrtRatioAtTick();
            address pool = uniswapV3Factory.createPool(address(token), weth, _fee);
            IUniswapV3Factory(pool).initialize(sqrtPriceX96);
    
            INonfungiblePositionManager.MintParams
                memory params = INonfungiblePositionManager.MintParams(
                    address(token),
                    weth,
                    _fee,
                    _initialTick,
                    maxUsableTick(tickSpacing),
                    _supply,
                    0,
                    0,
                    0,
                    address(this),
                    block.timestamp
                );
    
            token.approve(address(positionManager), _supply);
            (tokenId, , , ) = positionManager.mint(params);
    
            address lockerAddress = liquidityLocker.deploy(
                address(positionManager),
                msg.sender,
                defaultLockingPeriod,
                tokenId,
                lpFeesCut
            );
    
            positionManager.safeTransferFrom(address(this), lockerAddress, tokenId);
    
            ILocker(lockerAddress).initializer(tokenId);
    
            uint256 protocolFees = (msg.value * protocolCut) / 1000;
            uint256 remainingFundsToBuyTokens = msg.value - protocolFees;
    
            if (msg.value > 0) {
                ExactInputSingleParams memory swapParams = ExactInputSingleParams({
                    tokenIn: weth,
                    tokenOut: address(token),
                    fee: _fee,
                    recipient: msg.sender,
                    amountIn: remainingFundsToBuyTokens,
                    amountOutMinimum: 0,
                    sqrtPriceLimitX96: 0
                });
    
                ISwapRouter(swapRouter).exactInputSingle{
                    value: remainingFundsToBuyTokens
                }(swapParams);
            }
    
            (bool success, ) = payable(taxCollector).call{value: protocolFees}("");
    
            if (!success) {
                revert("SpinnerError: Failed to send protocol fees");
            }
            nonce[msg.sender]++;
    
            emit TokenCreated(
                address(token),
                tokenId,
                msg.sender,
                _name,
                _symbol,
                _supply,
                _supply
            );
    
            emit LockerCreated(address(token), tokenId, lockerAddress);
        }
    
        function initialSwapTokens(address token, uint24 _fee) public payable {
            ExactInputSingleParams memory swapParams = ExactInputSingleParams({
                tokenIn: weth,
                tokenOut: address(token),
                fee: _fee,
                recipient: msg.sender,
                amountIn: msg.value,
                amountOutMinimum: 0,
                sqrtPriceLimitX96: 0
            });
            ISwapRouter(swapRouter).exactInputSingle{value: msg.value}(swapParams);
        }
    
        function updateLiquidityLocker(address newLocker) external onlyOwner {
            liquidityLocker = ILockerFactory(newLocker);
        }
    
        function updateDefaultLockingPeriod(uint64 newPeriod) external onlyOwner {
            defaultLockingPeriod = newPeriod;
        }
    
        function predictToken(
            address deployer,
            string calldata name,
            string calldata symbol,
            uint256 supply,
            bytes32 salt
        ) public view returns (address) {
            bytes32 create2Salt = keccak256(abi.encode(deployer, salt));
            return
                keccak256(
                    abi.encodePacked(
                        bytes1(0xFF),
                        address(this),
                        create2Salt,
                        keccak256(
                            abi.encodePacked(
                                type(SpinnerVerifiedToken).creationCode,
                                abi.encode(name, symbol, supply)
                            )
                        )
                    )
                ).fromLast20Bytes();
        }
    
        function generateSalt(
            address deployer,
            string calldata name,
            string calldata symbol,
            uint256 supply
        ) external view returns (bytes32 salt, address token) {
            uint256 deployerNonce = nonce[deployer];
            for (uint256 i; ; i++) {
                salt = keccak256(abi.encode(deployerNonce, i));
                token = predictToken(deployer, name, symbol, supply, salt);
                if (token < weth && token.code.length == 0) {
                    break;
                }
            }
        }
    
        function updateTaxCollector(address newCollector) external onlyOwner {
            taxCollector = newCollector;
        }
    
        function updateProtocolFees(uint8 newFee) external onlyOwner {
            lpFeesCut = newFee;
        }
    
        function updateTaxRate(uint8 newRate) external onlyOwner {
            taxRate = newRate;
        }
    }
    
    function maxUsableTick(int24 tickSpacing) pure returns (int24) {
        unchecked {
            return (TickMath.MAX_TICK / tickSpacing) * tickSpacing;
        }
    }

    Context size (optional):