Source Code
Overview
S Balance
S Value
$0.00| Transaction Hash |
|
Block
|
From
|
To
|
|||||
|---|---|---|---|---|---|---|---|---|---|
Latest 1 internal transaction
Advanced mode:
| Parent Transaction Hash | Block | From | To | |||
|---|---|---|---|---|---|---|
| 57765230 | 45 days ago | Contract Creation | 0 S |
Cross-Chain Transactions
Loading...
Loading
This contract may be a proxy contract. Click on More Options and select Is this a proxy? to confirm and enable the "Read as Proxy" & "Write as Proxy" tabs.
Contract Name:
SiloHookV2
Compiler Version
v0.8.28+commit.7893614a
Optimization Enabled:
Yes with 200 runs
Other Settings:
cancun EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity 0.8.28;
import {ISiloConfig} from "silo-core/contracts/interfaces/ISiloConfig.sol";
import {IHookReceiver} from "silo-core/contracts/interfaces/IHookReceiver.sol";
import {ISilo} from "silo-core/contracts/interfaces/ISilo.sol";
import {IVersioned} from "silo-core/contracts/interfaces/IVersioned.sol";
import {GaugeHookReceiver} from "silo-core/contracts/hooks/gauge/GaugeHookReceiver.sol";
import {PartialLiquidationByDefaulting} from "silo-core/contracts/hooks/defaulting/PartialLiquidationByDefaulting.sol";
import {BaseHookReceiver} from "silo-core/contracts/hooks/_common/BaseHookReceiver.sol";
contract SiloHookV2 is GaugeHookReceiver, PartialLiquidationByDefaulting, IVersioned {
function VERSION() external pure virtual returns (string memory) { // solhint-disable-line func-name-mixedcase
return "SiloHookV2 4.0.0";
}
/// @inheritdoc IHookReceiver
function initialize(ISiloConfig _config, bytes calldata _data) public virtual initializer {
(address owner) = abi.decode(_data, (address));
BaseHookReceiver.__BaseHookReceiver_init(_config);
GaugeHookReceiver.__GaugeHookReceiver_init(owner);
PartialLiquidationByDefaulting.__PartialLiquidationByDefaulting_init(owner);
}
/// @inheritdoc IHookReceiver
function beforeAction(address, uint256, bytes calldata) public virtual override onlySilo {
// Do not expect any actions.
revert RequestNotSupported();
}
/// @inheritdoc IHookReceiver
function afterAction(address _silo, uint256 _action, bytes calldata _inputAndOutput)
public
virtual
override(GaugeHookReceiver, IHookReceiver)
onlySiloOrShareToken
{
GaugeHookReceiver.afterAction(_silo, _action, _inputAndOutput);
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;
import {ISilo} from "./ISilo.sol";
import {ICrossReentrancyGuard} from "./ICrossReentrancyGuard.sol";
interface ISiloConfig is ICrossReentrancyGuard {
struct InitData {
/// @notice Can be address zero if deployer fees are not to be collected. If deployer address is zero then
/// deployer fee must be zero as well. Deployer will be minted an NFT that gives the right to claim deployer
/// fees. NFT can be transferred with the right to claim.
address deployer;
/// @notice Address of the hook receiver called on every before/after action on Silo. Hook contract also
/// implements liquidation logic and veSilo gauge connection.
address hookReceiver;
/// @notice Deployer's fee in 18 decimals points. Deployer will earn this fee based on the interest earned
/// by the Silo. Max deployer fee is set by the DAO. At deployment it is 15%.
uint256 deployerFee;
/// @notice DAO's fee in 18 decimals points. DAO will earn this fee based on the interest earned
/// by the Silo. Acceptable fee range fee is set by the DAO. Default at deployment is 5% - 50%.
uint256 daoFee;
/// @notice Address of the first token
address token0;
/// @notice Address of the solvency oracle. Solvency oracle is used to calculate LTV when deciding if borrower
/// is solvent or should be liquidated. Solvency oracle is optional and if not set price of 1 will be assumed.
address solvencyOracle0;
/// @notice Address of the maxLtv oracle. Max LTV oracle is used to calculate LTV when deciding if borrower
/// can borrow given amount of assets. Max LTV oracle is optional and if not set it defaults to solvency
/// oracle. If neither is set price of 1 will be assumed.
address maxLtvOracle0;
/// @notice Address of the interest rate model
address interestRateModel0;
/// @notice Maximum LTV for first token. maxLTV is in 18 decimals points and is used to determine, if borrower
/// can borrow given amount of assets. MaxLtv is in 18 decimals points. MaxLtv must be lower or equal to LT.
uint256 maxLtv0;
/// @notice Liquidation threshold for first token. LT is used to calculate solvency. LT is in 18 decimals
/// points. LT must not be lower than maxLTV.
uint256 lt0;
/// @notice minimal acceptable LTV after liquidation, in 18 decimals points
uint256 liquidationTargetLtv0;
/// @notice Liquidation fee for the first token in 18 decimals points. Liquidation fee is what liquidator earns
/// for repaying insolvent loan.
uint256 liquidationFee0;
/// @notice Flashloan fee sets the cost of taking a flashloan in 18 decimals points
uint256 flashloanFee0;
/// @notice Indicates if a beforeQuote on oracle contract should be called before quoting price
bool callBeforeQuote0;
/// @notice Address of the second token
address token1;
/// @notice Address of the solvency oracle. Solvency oracle is used to calculate LTV when deciding if borrower
/// is solvent or should be liquidated. Solvency oracle is optional and if not set price of 1 will be assumed.
address solvencyOracle1;
/// @notice Address of the maxLtv oracle. Max LTV oracle is used to calculate LTV when deciding if borrower
/// can borrow given amount of assets. Max LTV oracle is optional and if not set it defaults to solvency
/// oracle. If neither is set price of 1 will be assumed.
address maxLtvOracle1;
/// @notice Address of the interest rate model
address interestRateModel1;
/// @notice Maximum LTV for first token. maxLTV is in 18 decimals points and is used to determine,
/// if borrower can borrow given amount of assets. maxLtv is in 18 decimals points
uint256 maxLtv1;
/// @notice Liquidation threshold for first token. LT is used to calculate solvency. LT is in 18 decimals points
uint256 lt1;
/// @notice minimal acceptable LTV after liquidation, in 18 decimals points
uint256 liquidationTargetLtv1;
/// @notice Liquidation fee is what liquidator earns for repaying insolvent loan.
uint256 liquidationFee1;
/// @notice Flashloan fee sets the cost of taking a flashloan in 18 decimals points
uint256 flashloanFee1;
/// @notice Indicates if a beforeQuote on oracle contract should be called before quoting price
bool callBeforeQuote1;
}
struct ConfigData {
uint256 daoFee;
uint256 deployerFee;
address silo;
address token;
address protectedShareToken;
address collateralShareToken;
address debtShareToken;
address solvencyOracle;
address maxLtvOracle;
address interestRateModel;
uint256 maxLtv;
uint256 lt;
uint256 liquidationTargetLtv;
uint256 liquidationFee;
uint256 flashloanFee;
address hookReceiver;
bool callBeforeQuote;
}
struct DepositConfig {
address silo;
address token;
address collateralShareToken;
address protectedShareToken;
uint256 daoFee;
uint256 deployerFee;
address interestRateModel;
}
error OnlySilo();
error OnlySiloOrTokenOrHookReceiver();
error WrongSilo();
error OnlyDebtShareToken();
error DebtExistInOtherSilo();
error FeeTooHigh();
error Deprecated();
/// @dev It should be called on debt transfer (debt share token transfer).
/// In the case if the`_recipient` doesn't have configured a collateral silo,
/// it will be set to the collateral silo of the `_sender`.
/// @param _sender sender address
/// @param _recipient recipient address
function onDebtTransfer(address _sender, address _recipient) external;
/// @notice deprecated
function setThisSiloAsCollateralSilo(address _borrower) external returns (bool collateralSiloChanged);
/// @notice Set collateral silo
/// @dev Revert if msg.sender is not a SILO_0 or SILO_1.
/// @dev Always set collateral silo opposite to the msg.sender.
/// @param _borrower borrower address
/// @return collateralSiloChanged TRUE if collateral silo changed
function setOtherSiloAsCollateralSilo(address _borrower) external returns (bool collateralSiloChanged);
/// @notice Accrue interest for the silo
/// @param _silo silo for which accrue interest
function accrueInterestForSilo(address _silo) external;
/// @notice Accrue interest for both silos (SILO_0 and SILO_1 in a config)
function accrueInterestForBothSilos() external;
/// @notice Retrieves the collateral silo for a specific borrower.
/// @dev As a user can deposit into `Silo0` and `Silo1`, this property specifies which Silo
/// will be used as collateral for the debt. Later on, it will be used for max LTV and solvency checks.
/// After being set, the collateral silo is never set to `address(0)` again but such getters as
/// `getConfigsForSolvency`, `getConfigsForBorrow`, `getConfigsForWithdraw` will return empty
/// collateral silo config if borrower doesn't have debt.
///
/// In the SiloConfig collateral silo is set by the following functions:
/// `onDebtTransfer` - only if the recipient doesn't have collateral silo set (inherits it from the sender)
/// This function is called on debt share token transfer (debt transfer).
/// `setOtherSiloAsCollateralSilo` - sets the opposite silo as collateral from the one that calls the function.
///
/// In the Silo collateral silo is set by the following functions:
/// `borrow` - always sets opposite silo as collateral.
/// If Silo0 borrows, then Silo1 will be collateral and vice versa.
/// @param _borrower The address of the borrower for which the collateral silo is being retrieved
/// @return collateralSilo The address of the collateral silo for the specified borrower
function borrowerCollateralSilo(address _borrower) external view returns (address collateralSilo);
/// @notice Retrieves the silo ID
/// @dev Each silo is assigned a unique ID. ERC-721 token is minted with identical ID to deployer.
/// An owner of that token receives the deployer fees.
/// @return siloId The ID of the silo
function SILO_ID() external view returns (uint256 siloId); // solhint-disable-line func-name-mixedcase
/// @notice Retrieves the addresses of the two silos
/// @return silo0 The address of the first silo
/// @return silo1 The address of the second silo
function getSilos() external view returns (address silo0, address silo1);
/// @notice Retrieves the asset associated with a specific silo
/// @dev This function reverts for incorrect silo address input
/// @param _silo The address of the silo for which the associated asset is being retrieved
/// @return asset The address of the asset associated with the specified silo
function getAssetForSilo(address _silo) external view returns (address asset);
/// @notice Verifies if the borrower has debt in other silo by checking the debt share token balance
/// @param _thisSilo The address of the silo in respect of which the debt is checked
/// @param _borrower The address of the borrower for which the debt is checked
/// @return hasDebt true if the borrower has debt in other silo
function hasDebtInOtherSilo(address _thisSilo, address _borrower) external view returns (bool hasDebt);
/// @notice Retrieves the debt silo associated with a specific borrower
/// @dev This function reverts if debt present in two silo (should not happen)
/// @param _borrower The address of the borrower for which the debt silo is being retrieved
function getDebtSilo(address _borrower) external view returns (address debtSilo);
/// @notice Retrieves configuration data for both silos. First config is for the silo that is asking for configs.
/// @param borrower borrower address for which debtConfig will be returned
/// @return collateralConfig The configuration data for collateral silo (empty if there is no debt).
/// @return debtConfig The configuration data for debt silo (empty if there is no debt).
function getConfigsForSolvency(address borrower)
external
view
returns (ConfigData memory collateralConfig, ConfigData memory debtConfig);
/// @notice Retrieves configuration data for a specific silo
/// @dev This function reverts for incorrect silo address input.
/// @param _silo The address of the silo for which configuration data is being retrieved
/// @return config The configuration data for the specified silo
function getConfig(address _silo) external view returns (ConfigData memory config);
/// @notice Retrieves configuration data for a specific silo for withdraw fn.
/// @dev This function reverts for incorrect silo address input.
/// @param _silo The address of the silo for which configuration data is being retrieved
/// @return depositConfig The configuration data for the specified silo (always config for `_silo`)
/// @return collateralConfig The configuration data for the collateral silo (empty if there is no debt)
/// @return debtConfig The configuration data for the debt silo (empty if there is no debt)
function getConfigsForWithdraw(address _silo, address _borrower) external view returns (
DepositConfig memory depositConfig,
ConfigData memory collateralConfig,
ConfigData memory debtConfig
);
/// @notice Retrieves configuration data for a specific silo for borrow fn.
/// @dev This function reverts for incorrect silo address input.
/// @param _debtSilo The address of the silo for which configuration data is being retrieved
/// @return collateralConfig The configuration data for the collateral silo (always other than `_debtSilo`)
/// @return debtConfig The configuration data for the debt silo (always config for `_debtSilo`)
function getConfigsForBorrow(address _debtSilo)
external
view
returns (ConfigData memory collateralConfig, ConfigData memory debtConfig);
/// @notice Retrieves fee-related information for a specific silo
/// @dev This function reverts for incorrect silo address input
/// @param _silo The address of the silo for which fee-related information is being retrieved.
/// @return daoFee The DAO fee percentage in 18 decimals points.
/// @return deployerFee The deployer fee percentage in 18 decimals points.
/// @return flashloanFee The flashloan fee percentage in 18 decimals points.
/// @return asset The address of the asset associated with the specified silo.
function getFeesWithAsset(address _silo)
external
view
returns (uint256 daoFee, uint256 deployerFee, uint256 flashloanFee, address asset);
/// @notice Retrieves share tokens associated with a specific silo
/// @dev This function reverts for incorrect silo address input
/// @param _silo The address of the silo for which share tokens are being retrieved
/// @return protectedShareToken The address of the protected (non-borrowable) share token
/// @return collateralShareToken The address of the collateral share token
/// @return debtShareToken The address of the debt share token
function getShareTokens(address _silo)
external
view
returns (address protectedShareToken, address collateralShareToken, address debtShareToken);
/// @notice Retrieves the share token and the silo token associated with a specific silo
/// @param _silo The address of the silo for which the share token and silo token are being retrieved
/// @param _collateralType The type of collateral
/// @return shareToken The address of the share token (collateral or protected collateral)
/// @return asset The address of the silo token
function getCollateralShareTokenAndAsset(address _silo, ISilo.CollateralType _collateralType)
external
view
returns (address shareToken, address asset);
/// @notice Retrieves the share token and the silo token associated with a specific silo
/// @param _silo The address of the silo for which the share token and silo token are being retrieved
/// @return shareToken The address of the share token (debt)
/// @return asset The address of the silo token
function getDebtShareTokenAndAsset(address _silo)
external
view
returns (address shareToken, address asset);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;
import {ISiloConfig} from "./ISiloConfig.sol";
interface IHookReceiver {
struct HookConfig {
uint24 hooksBefore;
uint24 hooksAfter;
}
event HookConfigured(address silo, uint24 hooksBefore, uint24 hooksAfter);
/// @dev Revert if provided silo configuration during initialization is empty
error EmptySiloConfig();
/// @dev Revert if the hook receiver is already configured/initialized
error AlreadyConfigured();
/// @dev Revert if the caller is not a silo
error OnlySilo();
/// @dev Revert if the caller is not a silo or a share token
error OnlySiloOrShareToken();
/// @notice Initialize a hook receiver
/// @param _siloConfig Silo configuration with all the details about the silo
/// @param _data Data to initialize the hook receiver (if needed)
function initialize(ISiloConfig _siloConfig, bytes calldata _data) external;
/// @notice state of Silo before action, can be also without interest, if you need them, call silo.accrueInterest()
function beforeAction(address _silo, uint256 _action, bytes calldata _input) external;
function afterAction(address _silo, uint256 _action, bytes calldata _inputAndOutput) external;
/// @notice return hooksBefore and hooksAfter configuration
function hookReceiverConfig(address _silo) external view returns (uint24 hooksBefore, uint24 hooksAfter);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;
import {IERC4626, IERC20, IERC20Metadata} from "openzeppelin5/interfaces/IERC4626.sol";
import {IERC3156FlashLender} from "./IERC3156FlashLender.sol";
import {ISiloConfig} from "./ISiloConfig.sol";
import {ISiloFactory} from "./ISiloFactory.sol";
import {IHookReceiver} from "./IHookReceiver.sol";
// solhint-disable ordering
interface ISilo is IERC20, IERC4626, IERC3156FlashLender {
/// @dev Interest accrual happens on each deposit/withdraw/borrow/repay. View methods work on storage that might be
/// outdate. Some calculations require accrued interest to return current state of Silo. This struct is used
/// to make a decision inside functions if interest should be accrued in memory to work on updated values.
enum AccrueInterestInMemory {
No,
Yes
}
/// @dev Silo has two separate oracles for solvency and maxLtv calculations. MaxLtv oracle is optional. Solvency
/// oracle can also be optional if asset is used as denominator in Silo config. For example, in ETH/USDC Silo
/// one could setup only solvency oracle for ETH that returns price in USDC. Then USDC does not need an oracle
/// because it's used as denominator for ETH and it's "price" can be assume as 1.
enum OracleType {
Solvency,
MaxLtv
}
/// @dev There are 3 types of accounting in the system: for non-borrowable collateral deposit called "protected",
/// for borrowable collateral deposit called "collateral" and for borrowed tokens called "debt". System does
/// identical calculations for each type of accounting but it uses different data. To avoid code duplication
/// this enum is used to decide which data should be read.
enum AssetType {
Protected, // default
Collateral,
Debt
}
/// @dev There are 2 types of accounting in the system: for non-borrowable collateral deposit called "protected" and
/// for borrowable collateral deposit called "collateral". System does
/// identical calculations for each type of accounting but it uses different data. To avoid code duplication
/// this enum is used to decide which data should be read.
enum CollateralType {
Protected, // default
Collateral
}
/// @dev Types of calls that can be made by the hook receiver on behalf of Silo via `callOnBehalfOfSilo` fn
enum CallType {
Call, // default
Delegatecall
}
/// @param _assets Amount of assets the user wishes to withdraw. Use 0 if shares are provided.
/// @param _shares Shares the user wishes to burn in exchange for the withdrawal. Use 0 if assets are provided.
/// @param _receiver Address receiving the withdrawn assets
/// @param _owner Address of the owner of the shares being burned
/// @param _spender Address executing the withdrawal; may be different than `_owner` if an allowance was set
/// @param _collateralType Type of the asset being withdrawn (Collateral or Protected)
struct WithdrawArgs {
uint256 assets;
uint256 shares;
address receiver;
address owner;
address spender;
ISilo.CollateralType collateralType;
}
/// @param assets Number of assets the borrower intends to borrow. Use 0 if shares are provided.
/// @param shares Number of shares corresponding to the assets that the borrower intends to borrow. Use 0 if
/// assets are provided.
/// @param receiver Address that will receive the borrowed assets
/// @param borrower The user who is borrowing the assets
struct BorrowArgs {
uint256 assets;
uint256 shares;
address receiver;
address borrower;
}
/// @param shares Amount of shares the user wishes to transit.
/// @param owner owner of the shares after transition.
/// @param transitionFrom type of collateral that will be transitioned.
struct TransitionCollateralArgs {
uint256 shares;
address owner;
ISilo.CollateralType transitionFrom;
}
struct UtilizationData {
/// @dev COLLATERAL: Amount of asset token that has been deposited to Silo plus interest earned by depositors.
/// It also includes token amount that has been borrowed.
uint256 collateralAssets;
/// @dev DEBT: Amount of asset token that has been borrowed plus accrued interest.
uint256 debtAssets;
/// @dev timestamp of the last interest accrual
uint64 interestRateTimestamp;
}
/// @dev Interest and revenue may be rounded down to zero if the underlying token's decimal is low.
/// Because of that, we need to store fractions for further calculation to minimize losses.
struct Fractions {
/// @dev interest value that we could not convert to full token in 36 decimals, max value for it is 1e18.
/// this value was not yet apply as interest for borrowers
uint64 interest;
/// @dev revenue value that we could not convert to full token in 36 decimals, max value for it is 1e18.
uint64 revenue;
}
struct SiloStorage {
/// @param daoAndDeployerRevenue Current amount of assets (fees) accrued by DAO and Deployer
/// but not yet withdrawn
uint192 daoAndDeployerRevenue;
/// @dev timestamp of the last interest accrual
uint64 interestRateTimestamp;
/// @dev Interest and revenue fractions for more precise calculations
Fractions fractions;
/// @dev silo is just for one asset,
/// but this one asset can be of three types: mapping key is uint256(AssetType), so we store `assets` by type.
/// Assets based on type:
/// - PROTECTED COLLATERAL: Amount of asset token that has been deposited to Silo that can be ONLY used
/// as collateral. These deposits do NOT earn interest and CANNOT be borrowed.
/// - COLLATERAL: Amount of asset token that has been deposited to Silo plus interest earned by depositors.
/// It also includes token amount that has been borrowed.
/// - DEBT: Amount of asset token that has been borrowed plus accrued interest.
/// `totalAssets` can have outdated value (without interest), if you doing view call (of off-chain call)
/// please use getters eg `getCollateralAssets()` to fetch value that includes interest.
mapping(AssetType assetType => uint256 assets) totalAssets;
}
/// @notice Emitted on protected deposit
/// @param sender wallet address that deposited asset
/// @param owner wallet address that received shares in Silo
/// @param assets amount of asset that was deposited
/// @param shares amount of shares that was minted
event DepositProtected(address indexed sender, address indexed owner, uint256 assets, uint256 shares);
/// @notice Emitted on protected withdraw
/// @param sender wallet address that sent transaction
/// @param receiver wallet address that received asset
/// @param owner wallet address that owned asset
/// @param assets amount of asset that was withdrew
/// @param shares amount of shares that was burn
event WithdrawProtected(
address indexed sender, address indexed receiver, address indexed owner, uint256 assets, uint256 shares
);
/// @notice Emitted on borrow
/// @param sender wallet address that sent transaction
/// @param receiver wallet address that received asset
/// @param owner wallet address that owes assets
/// @param assets amount of asset that was borrowed
/// @param shares amount of shares that was minted
event Borrow(
address indexed sender, address indexed receiver, address indexed owner, uint256 assets, uint256 shares
);
/// @notice Emitted on repayment
/// @param sender wallet address that repaid asset
/// @param owner wallet address that owed asset
/// @param assets amount of asset that was repaid
/// @param shares amount of shares that was burn
event Repay(address indexed sender, address indexed owner, uint256 assets, uint256 shares);
/// @notice emitted only when collateral has been switched to other one
event CollateralTypeChanged(address indexed borrower);
event HooksUpdated(uint24 hooksBefore, uint24 hooksAfter);
event AccruedInterest(uint256 hooksBefore);
event FlashLoan(uint256 amount);
event WithdrawnFees(uint256 daoFees, uint256 deployerFees, bool redirectedDeployerFees);
event DeployerFeesRedirected(uint256 deployerFees);
error UnsupportedFlashloanToken();
error FlashloanAmountTooBig();
error NothingToWithdraw();
error ProtectedProtection();
error NotEnoughLiquidity();
error NotSolvent();
error BorrowNotPossible();
error EarnedZero();
error FlashloanFailed();
error AboveMaxLtv();
error SiloInitialized();
error OnlyHookReceiver();
error NoLiquidity();
error InputCanBeAssetsOrShares();
error CollateralSiloAlreadySet();
error RepayTooHigh();
error ZeroAmount();
error InputZeroShares();
error ReturnZeroAssets();
error ReturnZeroShares();
error Deprecated();
/// @return siloFactory The associated factory of the silo
function factory() external view returns (ISiloFactory siloFactory);
/// @notice Method for HookReceiver only to call on behalf of Silo
/// @param _target address of the contract to call
/// @param _value amount of ETH to send
/// @param _callType type of the call (Call or Delegatecall)
/// @param _input calldata for the call
function callOnBehalfOfSilo(address _target, uint256 _value, CallType _callType, bytes calldata _input)
external
payable
returns (bool success, bytes memory result);
/// @notice Initialize Silo
/// @param _siloConfig address of ISiloConfig with full config for this Silo
function initialize(ISiloConfig _siloConfig) external;
/// @notice Update hooks configuration for Silo
/// @dev This function must be called after the hooks configuration is changed in the hook receiver
function updateHooks() external;
/// @notice Fetches the silo configuration contract
/// @return siloConfig Address of the configuration contract associated with the silo
function config() external view returns (ISiloConfig siloConfig);
/// @notice Fetches the utilization data of the silo used by IRM
function utilizationData() external view returns (UtilizationData memory utilizationData);
/// @notice Fetches the real (available to borrow) liquidity in the silo, it does include interest
/// @return liquidity The amount of liquidity
function getLiquidity() external view returns (uint256 liquidity);
/// @notice Determines if a borrower is solvent
/// @param _borrower Address of the borrower to check for solvency
/// @return True if the borrower is solvent, otherwise false
function isSolvent(address _borrower) external view returns (bool);
/// @notice Retrieves the raw total amount of assets based on provided type (direct storage access)
function getTotalAssetsStorage(AssetType _assetType) external view returns (uint256);
/// @notice Direct storage access to silo storage
/// @dev See struct `SiloStorage` for more details
function getSiloStorage()
external
view
returns (
uint192 daoAndDeployerRevenue,
uint64 interestRateTimestamp,
uint256 protectedAssets,
uint256 collateralAssets,
uint256 debtAssets
);
/// @notice Direct access to silo storage fractions variables
function getFractionsStorage() external view returns (Fractions memory fractions);
/// @notice Retrieves the total amount of collateral (borrowable) assets with interest
/// @return totalCollateralAssets The total amount of assets of type 'Collateral'
function getCollateralAssets() external view returns (uint256 totalCollateralAssets);
/// @notice Retrieves the total amount of debt assets with interest
/// @return totalDebtAssets The total amount of assets of type 'Debt'
function getDebtAssets() external view returns (uint256 totalDebtAssets);
/// @notice Retrieves the total amounts of collateral and protected (non-borrowable) assets
/// @return totalCollateralAssets The total amount of assets of type 'Collateral'
/// @return totalProtectedAssets The total amount of protected (non-borrowable) assets
function getCollateralAndProtectedTotalsStorage()
external
view
returns (uint256 totalCollateralAssets, uint256 totalProtectedAssets);
/// @notice Retrieves the total amounts of collateral and debt assets
/// @return totalCollateralAssets The total amount of assets of type 'Collateral'
/// @return totalDebtAssets The total amount of debt assets of type 'Debt'
function getCollateralAndDebtTotalsStorage()
external
view
returns (uint256 totalCollateralAssets, uint256 totalDebtAssets);
/// @notice Implements IERC4626.convertToShares for each asset type
function convertToShares(uint256 _assets, AssetType _assetType) external view returns (uint256 shares);
/// @notice Implements IERC4626.convertToAssets for each asset type
function convertToAssets(uint256 _shares, AssetType _assetType) external view returns (uint256 assets);
/// @notice Implements IERC4626.previewDeposit for protected (non-borrowable) collateral and collateral
/// @dev Reverts for debt asset type
function previewDeposit(uint256 _assets, CollateralType _collateralType) external view returns (uint256 shares);
/// @notice Implements IERC4626.deposit for protected (non-borrowable) collateral and collateral
/// @dev Reverts for debt asset type
function deposit(uint256 _assets, address _receiver, CollateralType _collateralType)
external
returns (uint256 shares);
/// @notice Implements IERC4626.previewMint for protected (non-borrowable) collateral and collateral
/// @dev Reverts for debt asset type
function previewMint(uint256 _shares, CollateralType _collateralType) external view returns (uint256 assets);
/// @notice Implements IERC4626.mint for protected (non-borrowable) collateral and collateral
/// @dev Reverts for debt asset type
function mint(uint256 _shares, address _receiver, CollateralType _collateralType) external returns (uint256 assets);
/// @notice Implements IERC4626.maxWithdraw for protected (non-borrowable) collateral and collateral
/// @dev Reverts for debt asset type
function maxWithdraw(address _owner, CollateralType _collateralType) external view returns (uint256 maxAssets);
/// @notice Implements IERC4626.previewWithdraw for protected (non-borrowable) collateral and collateral
/// @dev Reverts for debt asset type
function previewWithdraw(uint256 _assets, CollateralType _collateralType) external view returns (uint256 shares);
/// @notice Implements IERC4626.withdraw for protected (non-borrowable) collateral and collateral
/// @dev Reverts for debt asset type
function withdraw(uint256 _assets, address _receiver, address _owner, CollateralType _collateralType)
external
returns (uint256 shares);
/// @notice Implements IERC4626.maxRedeem for protected (non-borrowable) collateral and collateral
/// @dev Reverts for debt asset type
function maxRedeem(address _owner, CollateralType _collateralType) external view returns (uint256 maxShares);
/// @notice Implements IERC4626.previewRedeem for protected (non-borrowable) collateral and collateral
/// @dev Reverts for debt asset type
function previewRedeem(uint256 _shares, CollateralType _collateralType) external view returns (uint256 assets);
/// @notice Implements IERC4626.redeem for protected (non-borrowable) collateral and collateral
/// @dev Reverts for debt asset type
function redeem(uint256 _shares, address _receiver, address _owner, CollateralType _collateralType)
external
returns (uint256 assets);
/// @notice Calculates the maximum amount of assets that can be borrowed by the given address
/// @param _borrower Address of the potential borrower
/// @return maxAssets Maximum amount of assets that the borrower can borrow, this value is underestimated
/// That means, in some cases when you borrow maxAssets, you will be able to borrow again eg. up to 2wei
/// Reason for underestimation is to return value that will not cause borrow revert
function maxBorrow(address _borrower) external view returns (uint256 maxAssets);
/// @notice Previews the amount of shares equivalent to the given asset amount for borrowing
/// @param _assets Amount of assets to preview the equivalent shares for
/// @return shares Amount of shares equivalent to the provided asset amount
function previewBorrow(uint256 _assets) external view returns (uint256 shares);
/// @notice Allows an address to borrow a specified amount of assets
/// @param _assets Amount of assets to borrow
/// @param _receiver Address receiving the borrowed assets
/// @param _borrower Address responsible for the borrowed assets
/// @return shares Amount of shares equivalent to the borrowed assets
function borrow(uint256 _assets, address _receiver, address _borrower)
external returns (uint256 shares);
/// @notice Calculates the maximum amount of shares that can be borrowed by the given address
/// @param _borrower Address of the potential borrower
/// @return maxShares Maximum number of shares that the borrower can borrow
function maxBorrowShares(address _borrower) external view returns (uint256 maxShares);
/// @notice Previews the amount of assets equivalent to the given share amount for borrowing
/// @param _shares Amount of shares to preview the equivalent assets for
/// @return assets Amount of assets equivalent to the provided share amount
function previewBorrowShares(uint256 _shares) external view returns (uint256 assets);
/// @notice deprecated
function maxBorrowSameAsset(address _borrower) external view returns (uint256 maxAssets);
/// @notice deprecated
function borrowSameAsset(uint256 _assets, address _receiver, address _borrower)
external returns (uint256 shares);
/// @notice Allows a user to borrow assets based on the provided share amount
/// @param _shares Amount of shares to borrow against
/// @param _receiver Address to receive the borrowed assets
/// @param _borrower Address responsible for the borrowed assets
/// @return assets Amount of assets borrowed
function borrowShares(uint256 _shares, address _receiver, address _borrower)
external
returns (uint256 assets);
/// @notice Calculates the maximum amount an address can repay based on their debt shares
/// @param _borrower Address of the borrower
/// @return assets Maximum amount of assets the borrower can repay
function maxRepay(address _borrower) external view returns (uint256 assets);
/// @notice Provides an estimation of the number of shares equivalent to a given asset amount for repayment
/// @param _assets Amount of assets to be repaid
/// @return shares Estimated number of shares equivalent to the provided asset amount
function previewRepay(uint256 _assets) external view returns (uint256 shares);
/// @notice Repays a given asset amount and returns the equivalent number of shares
/// @param _assets Amount of assets to be repaid
/// @param _borrower Address of the borrower whose debt is being repaid
/// @return shares The equivalent number of shares for the provided asset amount
function repay(uint256 _assets, address _borrower) external returns (uint256 shares);
/// @notice Calculates the maximum number of shares that can be repaid for a given borrower
/// @param _borrower Address of the borrower
/// @return shares The maximum number of shares that can be repaid for the borrower
function maxRepayShares(address _borrower) external view returns (uint256 shares);
/// @notice Provides a preview of the equivalent assets for a given number of shares to repay
/// @param _shares Number of shares to preview repayment for
/// @return assets Equivalent assets for the provided shares
function previewRepayShares(uint256 _shares) external view returns (uint256 assets);
/// @notice Allows a user to repay a loan using shares instead of assets
/// @param _shares The number of shares the borrower wants to repay with
/// @param _borrower The address of the borrower for whom to repay the loan
/// @return assets The equivalent assets amount for the provided shares
function repayShares(uint256 _shares, address _borrower) external returns (uint256 assets);
/// @notice Transitions assets between borrowable (collateral) and non-borrowable (protected) states
/// @dev This function allows assets to move between collateral and protected (non-borrowable) states without
/// leaving the protocol
/// @param _shares Amount of shares to be transitioned
/// @param _owner Owner of the assets being transitioned
/// @param _transitionFrom Specifies if the transition is from collateral or protected assets
/// @return assets Amount of assets transitioned
function transitionCollateral(uint256 _shares, address _owner, CollateralType _transitionFrom)
external
returns (uint256 assets);
/// @notice deprecated
function switchCollateralToThisSilo() external;
/// @notice Accrues interest for the asset and returns the accrued interest amount
/// @return accruedInterest The total interest accrued during this operation
function accrueInterest() external returns (uint256 accruedInterest);
/// @notice only for SiloConfig
function accrueInterestForConfig(
address _interestRateModel,
uint256 _daoFee,
uint256 _deployerFee
) external;
/// @notice Withdraws earned fees and distributes them to the DAO and deployer fee receivers
function withdrawFees() external;
}// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;
interface IVersioned {
/// @notice Returns the version of the contract
/// @return version The version of the contract in format "SiloLens v3.17.0"
function VERSION() external pure returns (string memory version); // solhint-disable-line func-name-mixedcase
}// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity 0.8.28;
// solhint-disable ordering
import {Ownable1and2Steps} from "common/access/Ownable1and2Steps.sol";
import {IShareToken} from "silo-core/contracts/interfaces/IShareToken.sol";
import {ISiloConfig} from "silo-core/contracts/interfaces/ISiloConfig.sol";
import {IPartialLiquidation} from "silo-core/contracts/interfaces/IPartialLiquidation.sol";
import {Hook} from "silo-core/contracts/lib/Hook.sol";
import {ISiloIncentivesController} from "silo-core/contracts/incentives/interfaces/ISiloIncentivesController.sol";
import {IGaugeHookReceiver, IHookReceiver} from "silo-core/contracts/interfaces/IGaugeHookReceiver.sol";
import {BaseHookReceiver} from "silo-core/contracts/hooks/_common/BaseHookReceiver.sol";
/// @notice Silo share token hook receiver for the gauge.
/// It notifies the gauge (if configured) about any balance update in the Silo share token.
abstract contract GaugeHookReceiver is BaseHookReceiver, IGaugeHookReceiver, Ownable1and2Steps {
using Hook for uint256;
using Hook for bytes;
mapping(IShareToken => ISiloIncentivesController) public configuredGauges;
constructor() Ownable1and2Steps(msg.sender) {
// lock implementation
_transferOwnership(address(0));
}
/// @inheritdoc IGaugeHookReceiver
function setGauge(ISiloIncentivesController _gauge, IShareToken _shareToken) external virtual onlyOwner {
require(address(_gauge) != address(0), EmptyGaugeAddress());
require(_gauge.SHARE_TOKEN() == address(_shareToken), WrongGaugeShareToken());
address configuredGauge = address(configuredGauges[_shareToken]);
require(configuredGauge == address(0), GaugeAlreadyConfigured());
address silo = address(_shareToken.silo());
uint256 tokenType = _getTokenType(silo, address(_shareToken));
uint256 hooksAfter = _getHooksAfter(silo);
uint256 action = tokenType | Hook.SHARE_TOKEN_TRANSFER;
hooksAfter = hooksAfter.addAction(action);
_setHookConfig(silo, uint24(_getHooksBefore(silo)), uint24(hooksAfter));
configuredGauges[_shareToken] = _gauge;
emit GaugeConfigured(address(_gauge), address(_shareToken));
}
/// @inheritdoc IGaugeHookReceiver
function removeGauge(IShareToken _shareToken) external virtual onlyOwner {
ISiloIncentivesController configuredGauge = configuredGauges[_shareToken];
require(address(configuredGauge) != address(0), GaugeIsNotConfigured());
delete configuredGauges[_shareToken];
emit GaugeRemoved(address(_shareToken));
}
/// @inheritdoc IHookReceiver
function afterAction(address _silo, uint256 _action, bytes calldata _inputAndOutput)
public
virtual
override
{
ISiloIncentivesController theGauge = configuredGauges[IShareToken(msg.sender)];
if (theGauge == ISiloIncentivesController(address(0))) return;
if (!_getHooksAfter(_silo).matchAction(_action)) return;
Hook.AfterTokenTransfer memory input = _inputAndOutput.afterTokenTransferDecode();
theGauge.afterTokenTransfer(
input.sender,
input.senderBalance,
input.recipient,
input.recipientBalance,
input.totalSupply,
input.amount
);
}
/// @notice Get the token type for the share token
/// @param _silo Silo address for which tokens was deployed
/// @param _shareToken Share token address
/// @dev Revert if wrong silo
/// @dev Revert if the share token is not one of the collateral, protected or debt tokens
function _getTokenType(address _silo, address _shareToken) internal view virtual returns (uint256) {
(
address protectedShareToken,
address collateralShareToken,
address debtShareToken
) = siloConfig.getShareTokens(_silo);
if (_shareToken == collateralShareToken) return Hook.COLLATERAL_TOKEN;
if (_shareToken == protectedShareToken) return Hook.PROTECTED_TOKEN;
if (_shareToken == debtShareToken) return Hook.DEBT_TOKEN;
revert InvalidShareToken();
}
/// @notice Set the owner of the hook receiver
/// @param _owner Owner address
function __GaugeHookReceiver_init(address _owner) // solhint-disable-line func-name-mixedcase
internal
onlyInitializing
virtual
{
require(_owner != address(0), OwnerIsZeroAddress());
_transferOwnership(_owner);
}
}// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity 0.8.28;
import {Math} from "openzeppelin5/utils/math/Math.sol";
import {ISiloIncentivesController} from "silo-core/contracts/incentives/interfaces/ISiloIncentivesController.sol";
import {IGaugeHookReceiver, IHookReceiver} from "silo-core/contracts/interfaces/IGaugeHookReceiver.sol";
import {IPartialLiquidationByDefaulting} from "silo-core/contracts/interfaces/IPartialLiquidationByDefaulting.sol";
import {SiloStorageLib} from "silo-core/contracts/lib/SiloStorageLib.sol";
import {PartialLiquidationLib} from "silo-core/contracts/hooks/liquidation/lib/PartialLiquidationLib.sol";
import {
PartialLiquidation,
Rounding,
SiloMathLib,
ISiloConfig,
ISilo,
IShareToken,
PartialLiquidationExecLib,
RevertLib,
CallBeforeQuoteLib
} from "../liquidation/PartialLiquidation.sol";
import {DefaultingSiloLogic} from "./DefaultingSiloLogic.sol";
import {Whitelist} from "silo-core/contracts/hooks/_common/Whitelist.sol";
// solhint-disable ordering
/// @title PartialLiquidation module for executing liquidations
/// @dev if we need additional hook functionality, this contract should be included as parent
abstract contract PartialLiquidationByDefaulting is IPartialLiquidationByDefaulting, PartialLiquidation, Whitelist {
using CallBeforeQuoteLib for ISiloConfig.ConfigData;
/// @dev The portion of total liquidation fee proceeds allocated to the keeper. Expressed in 18 decimals.
/// For example, liquidation fee is 10% (0.1e18), and keeper fee is 20% (0.2e18),
/// then 2% liquidation fee goes to the keeper and 8% goes to the protocol.
uint256 public constant KEEPER_FEE = 0.2e18;
/// @dev Address of the DefaultingSiloLogic contract used by Silo for delegate calls
address public immutable LIQUIDATION_LOGIC;
/// @dev Additional liquidation threshold (LT) margin applied during defaulting liquidations
/// to give priority to traditional liquidations over defaulting ones. Expressed in 18 decimals.
uint256 public constant LT_MARGIN_FOR_DEFAULTING = 0.025e18;
uint256 internal constant _DECIMALS_PRECISION = 1e18;
constructor() {
LIQUIDATION_LOGIC = address(new DefaultingSiloLogic());
}
function __PartialLiquidationByDefaulting_init(address _owner) // solhint-disable-line func-name-mixedcase
internal
onlyInitializing
virtual
{
__Whitelist_init(_owner);
validateDefaultingCollateral();
}
/// @inheritdoc IPartialLiquidationByDefaulting
function liquidationCallByDefaulting(address _borrower)
external
virtual
returns (uint256 withdrawCollateral, uint256 repayDebtAssets)
{
(withdrawCollateral, repayDebtAssets) = liquidationCallByDefaulting(_borrower, type(uint256).max);
}
/// @inheritdoc IPartialLiquidationByDefaulting
// solhint-disable-next-line function-max-lines, code-complexity
function liquidationCallByDefaulting(address _borrower, uint256 _maxDebtToCover)
public
virtual
nonReentrant
onlyAllowedOrPublic
returns (uint256 withdrawCollateral, uint256 repayDebtAssets)
{
ISiloConfig siloConfigCached = siloConfig;
require(address(siloConfigCached) != address(0), EmptySiloConfig());
siloConfigCached.turnOnReentrancyProtection();
(ISiloConfig.ConfigData memory collateralConfig, ISiloConfig.ConfigData memory debtConfig) =
_fetchConfigs(siloConfigCached, _borrower);
collateralConfig.lt += LT_MARGIN_FOR_DEFAULTING;
CallParams memory params;
(
params.withdrawAssetsFromCollateral, params.withdrawAssetsFromProtected, repayDebtAssets, params.customError
) = PartialLiquidationExecLib.getExactLiquidationAmounts({
_collateralConfig: collateralConfig,
_debtConfig: debtConfig,
_user: _borrower,
_maxDebtToCover: _maxDebtToCover,
_liquidationFee: collateralConfig.liquidationFee
});
RevertLib.revertIfError(params.customError);
// calculate split between keeper and lenders
(params.collateralSharesTotal, params.collateralSharesForKeeper, params.collateralSharesForLenders) =
_getKeeperAndLenderSharesSplit({
_silo: collateralConfig.silo,
_shareToken: collateralConfig.collateralShareToken,
_liquidationFee: collateralConfig.liquidationFee,
_assetsToLiquidate: params.withdrawAssetsFromCollateral,
_collateralType: ISilo.CollateralType.Collateral
});
(params.protectedSharesTotal, params.protectedSharesForKeeper, params.protectedSharesForLenders) =
_getKeeperAndLenderSharesSplit({
_silo: collateralConfig.silo,
_shareToken: collateralConfig.protectedShareToken,
_liquidationFee: collateralConfig.liquidationFee,
_assetsToLiquidate: params.withdrawAssetsFromProtected,
_collateralType: ISilo.CollateralType.Protected
});
_liquidateByDistributingCollateral({
_borrower: _borrower,
_debtSilo: debtConfig.silo,
_shareToken: collateralConfig.collateralShareToken,
_withdrawSharesForLenders: params.collateralSharesForLenders,
_withdrawSharesForKeeper: params.collateralSharesForKeeper
});
_liquidateByDistributingCollateral({
_borrower: _borrower,
_debtSilo: debtConfig.silo,
_shareToken: collateralConfig.protectedShareToken,
_withdrawSharesForLenders: params.protectedSharesForLenders,
_withdrawSharesForKeeper: params.protectedSharesForKeeper
});
// calculate total withdrawn collateral
if (params.collateralSharesTotal != 0) {
withdrawCollateral = ISilo(collateralConfig.silo).previewRedeem(
params.collateralSharesTotal, ISilo.CollateralType.Collateral
);
}
if (params.protectedSharesTotal != 0) {
withdrawCollateral += ISilo(collateralConfig.silo).previewRedeem(
params.protectedSharesTotal, ISilo.CollateralType.Protected
);
}
_deductDefaultedDebtFromCollateral(debtConfig.silo, repayDebtAssets);
siloConfigCached.turnOffReentrancyProtection();
// settle debt without transferring tokens to silo, by defaulting on debt repayment
// during actual repay we have conversion assets -> shares -> assets, so we can loose some precision
// it is possible to deduct 1 wei less from debtTotalAssets than from collateralTotalAssets because of rounding
(, repayDebtAssets) = _repayDebtByDefaulting(debtConfig.silo, repayDebtAssets, _borrower);
emit LiquidationCall(msg.sender, debtConfig.silo, _borrower, repayDebtAssets, withdrawCollateral, true);
}
function getKeeperAndLenderSharesSplit(
uint256 _assetsToLiquidate,
ISilo.CollateralType _collateralType
) external view virtual returns (uint256 totalSharesToLiquidate, uint256 keeperShares, uint256 lendersShares) {
(address silo, address shareToken, uint256 liquidationFee) = _resolveSplitData(_collateralType);
(totalSharesToLiquidate, keeperShares, lendersShares) = _getKeeperAndLenderSharesSplit({
_silo: silo,
_shareToken: shareToken,
_liquidationFee: liquidationFee,
_assetsToLiquidate: _assetsToLiquidate,
_collateralType: _collateralType
});
}
/// @inheritdoc IPartialLiquidationByDefaulting
function validateControllerForCollateral(address _silo)
public
view
virtual
returns (ISiloIncentivesController controllerCollateral)
{
(, address collateralShareToken,) = siloConfig.getShareTokens(_silo);
require(collateralShareToken != address(0), EmptyCollateralShareToken());
controllerCollateral = IGaugeHookReceiver(address(this)).configuredGauges(IShareToken(collateralShareToken));
require(address(controllerCollateral) != address(0), NoControllerForCollateral());
}
/// @inheritdoc IPartialLiquidationByDefaulting
function validateDefaultingCollateral() public view virtual {
(address silo0, address silo1) = siloConfig.getSilos();
ISiloConfig.ConfigData memory config0 = siloConfig.getConfig(silo0);
ISiloConfig.ConfigData memory config1 = siloConfig.getConfig(silo1);
require(config0.lt == 0 || config1.lt == 0, TwoWayMarketNotAllowed());
require(config0.lt + LT_MARGIN_FOR_DEFAULTING < _DECIMALS_PRECISION, InvalidLTConfig0());
require(config1.lt + LT_MARGIN_FOR_DEFAULTING < _DECIMALS_PRECISION, InvalidLTConfig1());
}
function _deductDefaultedDebtFromCollateral(address _silo, uint256 _assetsToRepay) internal virtual {
bytes memory input =
abi.encodeWithSelector(DefaultingSiloLogic.deductDefaultedDebtFromCollateral.selector, _assetsToRepay);
_callOnBehalfOfSilo({
_silo: ISilo(_silo),
_calldata: input,
_errorWhenRevert: DeductDefaultedDebtFromCollateralFailed.selector
});
}
function _repayDebtByDefaulting(address _silo, uint256 _assets, address _borrower)
internal
virtual
returns (uint256 shares, uint256 assets)
{
(bytes memory data) = _callOnBehalfOfSilo({
_silo: ISilo(_silo),
_calldata: abi.encodeWithSelector(
DefaultingSiloLogic.repayDebtByDefaulting.selector, _assets, _borrower
),
_errorWhenRevert: RepayDebtByDefaultingFailed.selector
});
(shares, assets) = abi.decode(data, (uint256, uint256));
}
function _callOnBehalfOfSilo(ISilo _silo, bytes memory _calldata, bytes4 _errorWhenRevert)
internal
virtual
returns (bytes memory data)
{
bool success;
(success, data) = _silo.callOnBehalfOfSilo({
_target: LIQUIDATION_LOGIC,
_value: 0,
_callType: ISilo.CallType.Delegatecall,
_input: _calldata
});
if (!success) RevertLib.revertBytes(data, _errorWhenRevert);
}
function _liquidateByDistributingCollateral(
address _borrower,
address _debtSilo,
address _shareToken,
uint256 _withdrawSharesForLenders,
uint256 _withdrawSharesForKeeper
) internal virtual {
ISiloIncentivesController controllerCollateral = validateControllerForCollateral(_debtSilo);
// distribute collateral shares to lenders
if (_withdrawSharesForLenders > 0) {
IShareToken(_shareToken).forwardTransferFromNoChecks(
_borrower, address(controllerCollateral), _withdrawSharesForLenders
);
require(_withdrawSharesForLenders <= type(uint104).max, WithdrawSharesForLendersTooHighForDistribution());
controllerCollateral.immediateDistribution(_shareToken, uint104(_withdrawSharesForLenders));
}
// distribute collateral shares to keeper
if (_withdrawSharesForKeeper > 0) {
IShareToken(_shareToken).forwardTransferFromNoChecks(_borrower, msg.sender, _withdrawSharesForKeeper);
}
}
function _fetchConfigs(ISiloConfig _siloConfigCached, address _borrower)
internal
virtual
returns (ISiloConfig.ConfigData memory collateralConfig, ISiloConfig.ConfigData memory debtConfig)
{
(collateralConfig, debtConfig) = _siloConfigCached.getConfigsForSolvency(_borrower);
require(debtConfig.silo != address(0), UserIsSolvent());
ISilo(debtConfig.silo).accrueInterest();
if (collateralConfig.silo != debtConfig.silo) {
ISilo(collateralConfig.silo).accrueInterest();
collateralConfig.callSolvencyOracleBeforeQuote();
debtConfig.callSolvencyOracleBeforeQuote();
}
}
// solhint-disable function-max-lines
function _getKeeperAndLenderSharesSplit(
address _silo,
address _shareToken,
uint256 _liquidationFee,
uint256 _assetsToLiquidate,
ISilo.CollateralType _collateralType
) internal view virtual returns (uint256 totalSharesToLiquidate, uint256 keeperShares, uint256 lendersShares) {
if (_assetsToLiquidate == 0) return (0, 0, 0);
uint256 totalAssets = ISilo(_silo).getTotalAssetsStorage(ISilo.AssetType(uint8(_collateralType)));
uint256 totalShares = IShareToken(_shareToken).totalSupply();
// assets were calculating with rounding down for withdraw,
// if we want to go back to shares, we can round up,
// however we choose to have exact results as we get via original liquidation, so we are using same direction
totalSharesToLiquidate = SiloMathLib.convertToShares({
_assets: _assetsToLiquidate,
_totalAssets: totalAssets,
_totalShares: totalShares,
_rounding: Rounding.LIQUIDATE_TO_SHARES,
_assetType: ISilo.AssetType(uint8(_collateralType))
});
// c - collateral that equals debt value
// f - liquidation fee
// CL - total collateral to liquidate
// kf - keeper fee
// kp - keeper part
// D - normalization divider
// c + c * f = CL
// c * (1 + f) = CL
// c = CL / (1 + f)
// kp = c * f * kf => f * kf * CL / (1 + f)
// final pseudo code is:
// kp = f * kf * CL / (1 + f)
// kp = muldiv(f * kf, CL, (1 + f), R)
// R - rounding, we want to round down for keeper
keeperShares = Math.mulDiv(
_liquidationFee * KEEPER_FEE,
totalSharesToLiquidate,
PartialLiquidationLib._PRECISION_DECIMALS,
Math.Rounding.Floor
) / (PartialLiquidationLib._PRECISION_DECIMALS + _liquidationFee);
lendersShares = totalSharesToLiquidate - keeperShares;
}
function _resolveSplitData(ISilo.CollateralType _collateralType)
internal
view
virtual
returns (address silo, address shareToken, uint256 liquidationFee)
{
ISiloConfig configCached = siloConfig;
(address silo0, address silo1) = configCached.getSilos();
silo = silo0;
ISiloConfig.ConfigData memory collateralConfig = configCached.getConfig(silo0);
if (collateralConfig.lt == 0) {
// if LT is 0, then this can not be collateral, so we pull other config
collateralConfig = configCached.getConfig(silo1);
silo = silo1;
}
shareToken = _collateralType == ISilo.CollateralType.Collateral
? collateralConfig.collateralShareToken
: collateralConfig.protectedShareToken;
liquidationFee = collateralConfig.liquidationFee;
}
}// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity 0.8.28;
import {Initializable} from "openzeppelin5/proxy/utils/Initializable.sol";
import {ISilo} from "silo-core/contracts/interfaces/ISilo.sol";
import {IHookReceiver} from "silo-core/contracts/interfaces/IHookReceiver.sol";
import {ISiloConfig} from "silo-core/contracts/interfaces/ISiloConfig.sol";
abstract contract BaseHookReceiver is IHookReceiver, Initializable {
ISiloConfig public siloConfig;
mapping(address silo => HookConfig) private _hookConfig;
modifier onlySilo() {
require(_isSilo(msg.sender), OnlySilo());
_;
}
modifier onlySiloOrShareToken() {
require(_isSiloOrShareToken(msg.sender), OnlySiloOrShareToken());
_;
}
constructor() {
_disableInitializers();
}
/// @inheritdoc IHookReceiver
function hookReceiverConfig(address _silo)
external
view
virtual
returns (uint24 hooksBefore, uint24 hooksAfter)
{
(hooksBefore, hooksAfter) = _hookReceiverConfig(_silo);
}
/// @notice Set the silo config
/// @param _config Silo config
function __BaseHookReceiver_init(ISiloConfig _config) // solhint-disable-line func-name-mixedcase
internal
onlyInitializing
virtual
{
require(address(_config) != address(0), EmptySiloConfig());
require(address(siloConfig) == address(0), AlreadyConfigured());
siloConfig = _config;
}
/// @notice Set the hook config
/// @param _silo Silo address
/// @param _hooksBefore Hooks before
/// @param _hooksAfter Hooks after
function _setHookConfig(address _silo, uint24 _hooksBefore, uint24 _hooksAfter) internal virtual {
_hookConfig[_silo] = HookConfig(_hooksBefore, _hooksAfter);
emit HookConfigured(_silo, _hooksBefore, _hooksAfter);
ISilo(_silo).updateHooks();
}
/// @notice Get the hook config
/// @param _silo Silo address
/// @return hooksBefore Hooks before
/// @return hooksAfter Hooks after
function _hookReceiverConfig(address _silo) internal view virtual returns (uint24 hooksBefore, uint24 hooksAfter) {
HookConfig memory hookConfig = _hookConfig[_silo];
hooksBefore = hookConfig.hooksBefore;
hooksAfter = hookConfig.hooksAfter;
}
/// @notice Get the hooks before
/// @param _silo Silo address
/// @return hooksBefore Hooks before
function _getHooksBefore(address _silo) internal view virtual returns (uint256 hooksBefore) {
hooksBefore = _hookConfig[_silo].hooksBefore;
}
/// @notice Get the hooks after
/// @param _silo Silo address
/// @return hooksAfter Hooks after
function _getHooksAfter(address _silo) internal view virtual returns (uint256 hooksAfter) {
hooksAfter = _hookConfig[_silo].hooksAfter;
}
/// @notice Check if the address is a Silo
/// @param _addr Address to check
/// @return result True if the address is a Silo, false otherwise
function _isSilo(address _addr) internal view virtual returns (bool result) {
(address silo0, address silo1) = siloConfig.getSilos();
result = _addr == silo0 || _addr == silo1;
}
/// @notice Check if the address is a Silo or a share token
/// @param _addr Address to check
/// @return result True if the address is a Silo or a share token, false otherwise
function _isSiloOrShareToken(address _addr) internal view virtual returns (bool result) {
(address silo0, address silo1) = siloConfig.getSilos();
if (_addr == silo0 || _addr == silo1) return true;
address protectedCollateralShareToken;
address debtShareToken;
(protectedCollateralShareToken,, debtShareToken) = siloConfig.getShareTokens(silo0);
if (_addr == protectedCollateralShareToken || _addr == debtShareToken) return true;
(protectedCollateralShareToken,, debtShareToken) = siloConfig.getShareTokens(silo1);
if (_addr == protectedCollateralShareToken || _addr == debtShareToken) return true;
return false;
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;
interface ICrossReentrancyGuard {
error CrossReentrantCall();
error CrossReentrancyNotActive();
/// @notice only silo method for cross Silo reentrancy
function turnOnReentrancyProtection() external;
/// @notice only silo method for cross Silo reentrancy
function turnOffReentrancyProtection() external;
/// @notice view method for checking cross Silo reentrancy flag
/// @return entered true if the reentrancy guard is currently set to "entered", which indicates there is a
/// `nonReentrant` function in the call stack.
function reentrancyGuardEntered() external view returns (bool entered);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC4626.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../token/ERC20/IERC20.sol";
import {IERC20Metadata} from "../token/ERC20/extensions/IERC20Metadata.sol";
/**
* @dev Interface of the ERC-4626 "Tokenized Vault Standard", as defined in
* https://eips.ethereum.org/EIPS/eip-4626[ERC-4626].
*/
interface IERC4626 is IERC20, IERC20Metadata {
event Deposit(address indexed sender, address indexed owner, uint256 assets, uint256 shares);
event Withdraw(
address indexed sender,
address indexed receiver,
address indexed owner,
uint256 assets,
uint256 shares
);
/**
* @dev Returns the address of the underlying token used for the Vault for accounting, depositing, and withdrawing.
*
* - MUST be an ERC-20 token contract.
* - MUST NOT revert.
*/
function asset() external view returns (address assetTokenAddress);
/**
* @dev Returns the total amount of the underlying asset that is “managed” by Vault.
*
* - SHOULD include any compounding that occurs from yield.
* - MUST be inclusive of any fees that are charged against assets in the Vault.
* - MUST NOT revert.
*/
function totalAssets() external view returns (uint256 totalManagedAssets);
/**
* @dev Returns the amount of shares that the Vault would exchange for the amount of assets provided, in an ideal
* scenario where all the conditions are met.
*
* - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
* - MUST NOT show any variations depending on the caller.
* - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
* - MUST NOT revert.
*
* NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
* “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
* from.
*/
function convertToShares(uint256 assets) external view returns (uint256 shares);
/**
* @dev Returns the amount of assets that the Vault would exchange for the amount of shares provided, in an ideal
* scenario where all the conditions are met.
*
* - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
* - MUST NOT show any variations depending on the caller.
* - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
* - MUST NOT revert.
*
* NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
* “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
* from.
*/
function convertToAssets(uint256 shares) external view returns (uint256 assets);
/**
* @dev Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver,
* through a deposit call.
*
* - MUST return a limited value if receiver is subject to some deposit limit.
* - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of assets that may be deposited.
* - MUST NOT revert.
*/
function maxDeposit(address receiver) external view returns (uint256 maxAssets);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their deposit at the current block, given
* current on-chain conditions.
*
* - MUST return as close to and no more than the exact amount of Vault shares that would be minted in a deposit
* call in the same transaction. I.e. deposit should return the same or more shares as previewDeposit if called
* in the same transaction.
* - MUST NOT account for deposit limits like those returned from maxDeposit and should always act as though the
* deposit would be accepted, regardless if the user has enough tokens approved, etc.
* - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToShares and previewDeposit SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by depositing.
*/
function previewDeposit(uint256 assets) external view returns (uint256 shares);
/**
* @dev Mints shares Vault shares to receiver by depositing exactly amount of underlying tokens.
*
* - MUST emit the Deposit event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
* deposit execution, and are accounted for during deposit.
* - MUST revert if all of assets cannot be deposited (due to deposit limit being reached, slippage, the user not
* approving enough underlying tokens to the Vault contract, etc).
*
* NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
*/
function deposit(uint256 assets, address receiver) external returns (uint256 shares);
/**
* @dev Returns the maximum amount of the Vault shares that can be minted for the receiver, through a mint call.
* - MUST return a limited value if receiver is subject to some mint limit.
* - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of shares that may be minted.
* - MUST NOT revert.
*/
function maxMint(address receiver) external view returns (uint256 maxShares);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their mint at the current block, given
* current on-chain conditions.
*
* - MUST return as close to and no fewer than the exact amount of assets that would be deposited in a mint call
* in the same transaction. I.e. mint should return the same or fewer assets as previewMint if called in the
* same transaction.
* - MUST NOT account for mint limits like those returned from maxMint and should always act as though the mint
* would be accepted, regardless if the user has enough tokens approved, etc.
* - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToAssets and previewMint SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by minting.
*/
function previewMint(uint256 shares) external view returns (uint256 assets);
/**
* @dev Mints exactly shares Vault shares to receiver by depositing amount of underlying tokens.
*
* - MUST emit the Deposit event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the mint
* execution, and are accounted for during mint.
* - MUST revert if all of shares cannot be minted (due to deposit limit being reached, slippage, the user not
* approving enough underlying tokens to the Vault contract, etc).
*
* NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
*/
function mint(uint256 shares, address receiver) external returns (uint256 assets);
/**
* @dev Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the
* Vault, through a withdraw call.
*
* - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
* - MUST NOT revert.
*/
function maxWithdraw(address owner) external view returns (uint256 maxAssets);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their withdrawal at the current block,
* given current on-chain conditions.
*
* - MUST return as close to and no fewer than the exact amount of Vault shares that would be burned in a withdraw
* call in the same transaction. I.e. withdraw should return the same or fewer shares as previewWithdraw if
* called
* in the same transaction.
* - MUST NOT account for withdrawal limits like those returned from maxWithdraw and should always act as though
* the withdrawal would be accepted, regardless if the user has enough shares, etc.
* - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToShares and previewWithdraw SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by depositing.
*/
function previewWithdraw(uint256 assets) external view returns (uint256 shares);
/**
* @dev Burns shares from owner and sends exactly assets of underlying tokens to receiver.
*
* - MUST emit the Withdraw event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
* withdraw execution, and are accounted for during withdraw.
* - MUST revert if all of assets cannot be withdrawn (due to withdrawal limit being reached, slippage, the owner
* not having enough shares, etc).
*
* Note that some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
* Those methods should be performed separately.
*/
function withdraw(uint256 assets, address receiver, address owner) external returns (uint256 shares);
/**
* @dev Returns the maximum amount of Vault shares that can be redeemed from the owner balance in the Vault,
* through a redeem call.
*
* - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
* - MUST return balanceOf(owner) if owner is not subject to any withdrawal limit or timelock.
* - MUST NOT revert.
*/
function maxRedeem(address owner) external view returns (uint256 maxShares);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their redeemption at the current block,
* given current on-chain conditions.
*
* - MUST return as close to and no more than the exact amount of assets that would be withdrawn in a redeem call
* in the same transaction. I.e. redeem should return the same or more assets as previewRedeem if called in the
* same transaction.
* - MUST NOT account for redemption limits like those returned from maxRedeem and should always act as though the
* redemption would be accepted, regardless if the user has enough shares, etc.
* - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToAssets and previewRedeem SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by redeeming.
*/
function previewRedeem(uint256 shares) external view returns (uint256 assets);
/**
* @dev Burns exactly shares from owner and sends assets of underlying tokens to receiver.
*
* - MUST emit the Withdraw event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
* redeem execution, and are accounted for during redeem.
* - MUST revert if all of shares cannot be redeemed (due to withdrawal limit being reached, slippage, the owner
* not having enough shares, etc).
*
* NOTE: some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
* Those methods should be performed separately.
*/
function redeem(uint256 shares, address receiver, address owner) external returns (uint256 assets);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;
import {IERC3156FlashBorrower} from "./IERC3156FlashBorrower.sol";
/// @notice https://eips.ethereum.org/EIPS/eip-3156
interface IERC3156FlashLender {
/// @notice Protected deposits are not available for a flash loan.
/// During the execution of the flashloan, Silo methods are not taking into consideration the fact,
/// that some (or all) tokens were transferred as flashloan, therefore some methods can return invalid state
/// eg. maxWithdraw can return amount that are not available to withdraw during flashlon.
/// @dev Initiate a flash loan.
/// @param _receiver The receiver of the tokens in the loan, and the receiver of the callback.
/// @param _token The loan currency.
/// @param _amount The amount of tokens lent.
/// @param _data Arbitrary data structure, intended to contain user-defined parameters.
function flashLoan(IERC3156FlashBorrower _receiver, address _token, uint256 _amount, bytes calldata _data)
external
returns (bool);
/// @dev The amount of currency available to be lent.
/// @param _token The loan currency.
/// @return The amount of `token` that can be borrowed.
function maxFlashLoan(address _token) external view returns (uint256);
/// @dev The fee to be charged for a given loan.
/// @param _token The loan currency.
/// @param _amount The amount of tokens lent.
/// @return The amount of `token` to be charged for the loan, on top of the returned principal.
function flashFee(address _token, uint256 _amount) external view returns (uint256);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;
import {IERC721} from "openzeppelin5/interfaces/IERC721.sol";
import {ISiloConfig} from "./ISiloConfig.sol";
interface ISiloFactory is IERC721 {
struct Range {
uint128 min;
uint128 max;
}
/// @notice Emitted on the creation of a Silo.
/// @param implementation Address of the Silo implementation.
/// @param token0 Address of the first Silo token.
/// @param token1 Address of the second Silo token.
/// @param silo0 Address of the first Silo.
/// @param silo1 Address of the second Silo.
/// @param siloConfig Address of the SiloConfig.
event NewSilo(
address indexed implementation,
address indexed token0,
address indexed token1,
address silo0,
address silo1,
address siloConfig
);
event BaseURI(string newBaseURI);
/// @notice Emitted on the update of DAO fee.
/// @param minDaoFee Value of the new minimal DAO fee.
/// @param maxDaoFee Value of the new maximal DAO fee.
event DaoFeeChanged(uint128 minDaoFee, uint128 maxDaoFee);
/// @notice Emitted on the update of max deployer fee.
/// @param maxDeployerFee Value of the new max deployer fee.
event MaxDeployerFeeChanged(uint256 maxDeployerFee);
/// @notice Emitted on the update of max flashloan fee.
/// @param maxFlashloanFee Value of the new max flashloan fee.
event MaxFlashloanFeeChanged(uint256 maxFlashloanFee);
/// @notice Emitted on the update of max liquidation fee.
/// @param maxLiquidationFee Value of the new max liquidation fee.
event MaxLiquidationFeeChanged(uint256 maxLiquidationFee);
/// @notice Emitted on the change of DAO fee receiver.
/// @param daoFeeReceiver Address of the new DAO fee receiver.
event DaoFeeReceiverChanged(address daoFeeReceiver);
/// @notice Emitted on the change of DAO fee receiver for particular silo
/// @param silo Address for which new DAO fee receiver is set.
/// @param daoFeeReceiver Address of the new DAO fee receiver.
event DaoFeeReceiverChangedForSilo(address silo, address daoFeeReceiver);
/// @notice Emitted on the change of DAO fee receiver for particular asset
/// @param asset Address for which new DAO fee receiver is set.
/// @param daoFeeReceiver Address of the new DAO fee receiver.
event DaoFeeReceiverChangedForAsset(address asset, address daoFeeReceiver);
error MissingHookReceiver();
error ZeroAddress();
error DaoFeeReceiverZeroAddress();
error SameDaoFeeReceiver();
error EmptyToken0();
error EmptyToken1();
error MaxFeeExceeded();
error InvalidFeeRange();
error SameAsset();
error SameRange();
error InvalidIrm();
error InvalidMaxLtv();
error InvalidLt();
error InvalidDeployer();
error DaoMinRangeExceeded();
error DaoMaxRangeExceeded();
error MaxDeployerFeeExceeded();
error MaxFlashloanFeeExceeded();
error MaxLiquidationFeeExceeded();
error InvalidCallBeforeQuote();
error OracleMisconfiguration();
error InvalidQuoteToken();
error HookIsZeroAddress();
error LiquidationTargetLtvTooHigh();
error NotYourSilo();
error ConfigMismatchSilo();
error ConfigMismatchShareProtectedToken();
error ConfigMismatchShareDebtToken();
error ConfigMismatchShareCollateralToken();
/// @notice Create a new Silo.
/// @param _siloConfig Silo configuration.
/// @param _siloImpl Address of the `Silo` implementation.
/// @param _shareProtectedCollateralTokenImpl Address of the `ShareProtectedCollateralToken` implementation.
/// @param _shareDebtTokenImpl Address of the `ShareDebtToken` implementation.
/// @param _deployer Address of the deployer.
/// @param _creator Address of the creator.
function createSilo(
ISiloConfig _siloConfig,
address _siloImpl,
address _shareProtectedCollateralTokenImpl,
address _shareDebtTokenImpl,
address _deployer,
address _creator
)
external;
/// @notice NFT ownership represents the deployer fee receiver for the each Silo ID. After burning,
/// the deployer fee is sent to the DAO. Burning doesn't affect Silo's behavior. It is only about fee distribution.
/// @param _siloIdToBurn silo ID to burn.
function burn(uint256 _siloIdToBurn) external;
/// @notice Update the value of DAO fee. Updated value will be used only for a new Silos.
/// Previously deployed SiloConfigs are immutable.
/// @param _minFee Value of the new DAO minimal fee.
/// @param _maxFee Value of the new DAO maximal fee.
function setDaoFee(uint128 _minFee, uint128 _maxFee) external;
/// @notice Set the default DAO fee receiver.
/// @param _newDaoFeeReceiver Address of the new DAO fee receiver.
function setDaoFeeReceiver(address _newDaoFeeReceiver) external;
/// @notice Set the new DAO fee receiver for asset, this setup will be used when fee receiver for silo is empty.
/// @param _asset Address for which new DAO fee receiver is set.
/// @param _newDaoFeeReceiver Address of the new DAO fee receiver.
function setDaoFeeReceiverForAsset(address _asset, address _newDaoFeeReceiver) external;
/// @notice Set the new DAO fee receiver for silo. This setup has highest priority.
/// @param _silo Address for which new DAO fee receiver is set.
/// @param _newDaoFeeReceiver Address of the new DAO fee receiver.
function setDaoFeeReceiverForSilo(address _silo, address _newDaoFeeReceiver) external;
/// @notice Update the value of max deployer fee. Updated value will be used only for a new Silos max deployer
/// fee validation. Previously deployed SiloConfigs are immutable.
/// @param _newMaxDeployerFee Value of the new max deployer fee.
function setMaxDeployerFee(uint256 _newMaxDeployerFee) external;
/// @notice Update the value of max flashloan fee. Updated value will be used only for a new Silos max flashloan
/// fee validation. Previously deployed SiloConfigs are immutable.
/// @param _newMaxFlashloanFee Value of the new max flashloan fee.
function setMaxFlashloanFee(uint256 _newMaxFlashloanFee) external;
/// @notice Update the value of max liquidation fee. Updated value will be used only for a new Silos max
/// liquidation fee validation. Previously deployed SiloConfigs are immutable.
/// @param _newMaxLiquidationFee Value of the new max liquidation fee.
function setMaxLiquidationFee(uint256 _newMaxLiquidationFee) external;
/// @notice Update the base URI.
/// @param _newBaseURI Value of the new base URI.
function setBaseURI(string calldata _newBaseURI) external;
/// @notice Acceptable DAO fee range for new Silos. Denominated in 18 decimals points. 1e18 == 100%.
function daoFeeRange() external view returns (Range memory);
/// @notice Max deployer fee for a new Silos. Denominated in 18 decimals points. 1e18 == 100%.
function maxDeployerFee() external view returns (uint256);
/// @notice Max flashloan fee for a new Silos. Denominated in 18 decimals points. 1e18 == 100%.
function maxFlashloanFee() external view returns (uint256);
/// @notice Max liquidation fee for a new Silos. Denominated in 18 decimals points. 1e18 == 100%.
function maxLiquidationFee() external view returns (uint256);
/// @notice The recipient of DAO fees.
function daoFeeReceiver() external view returns (address);
/// @notice Get SiloConfig address by Silo id.
function idToSiloConfig(uint256 _id) external view returns (address);
/// @notice Get the counter of silos created by the wallet.
function creatorSiloCounter(address _creator) external view returns (uint256);
/// @notice Do not use this method to check if silo is secure. Anyone can deploy silo with any configuration
/// and implementation. Most critical part of verification would be to check who deployed it.
/// @dev True if the address was deployed using SiloFactory.
function isSilo(address _silo) external view returns (bool);
/// @notice Id of a next Silo to be deployed. This is an ID of non-existing Silo outside of createSilo
/// function call. ID of a first Silo is 1.
function getNextSiloId() external view returns (uint256);
/// @notice Get the DAO and deployer fee receivers for a particular Silo address.
/// @param _silo Silo address.
/// @return dao DAO fee receiver.
/// @return deployer Deployer fee receiver.
function getFeeReceivers(address _silo) external view returns (address dao, address deployer);
/// @notice Validate InitData for a new Silo. Config will be checked for the fee limits, missing parameters.
/// @param _initData Silo init data.
function validateSiloInitData(ISiloConfig.InitData memory _initData) external view returns (bool);
}// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity 0.8.28;
import {Ownable2Step, Ownable} from "openzeppelin5/access/Ownable2Step.sol";
/// @dev This contract is a wrapper around Ownable2Step that allows for 1-step ownership transfer
abstract contract Ownable1and2Steps is Ownable2Step {
constructor(address _initialOwner) Ownable(_initialOwner) {}
/// @notice Transfer ownership to a new address. Pending ownership transfer will be canceled.
/// @param newOwner The new owner of the contract
function transferOwnership1Step(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
Ownable2Step._transferOwnership(newOwner);
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;
import {IERC20Metadata} from "openzeppelin5/token/ERC20/extensions/IERC20Metadata.sol";
import {ISiloConfig} from "./ISiloConfig.sol";
import {ISilo} from "./ISilo.sol";
interface IShareToken is IERC20Metadata {
struct HookSetup {
/// @param this is the same as in siloConfig
address hookReceiver;
/// @param hooks bitmap
uint24 hooksBefore;
/// @param hooks bitmap
uint24 hooksAfter;
/// @param tokenType must be one of this hooks values: COLLATERAL_TOKEN, PROTECTED_TOKEN, DEBT_TOKEN
uint24 tokenType;
}
struct ShareTokenStorage {
/// @notice Silo address for which tokens was deployed
ISilo silo;
/// @dev cached silo config address
ISiloConfig siloConfig;
/// @notice Copy of hooks setup from SiloConfig for optimisation purposes
HookSetup hookSetup;
bool transferWithChecks;
}
/// @notice Emitted every time receiver is notified about token transfer
/// @param notificationReceiver receiver address
/// @param success false if TX reverted on `notificationReceiver` side, otherwise true
event NotificationSent(address indexed notificationReceiver, bool success);
error OnlySilo();
error OnlySiloConfig();
error OwnerIsZero();
error RecipientIsZero();
error AmountExceedsAllowance();
error RecipientNotSolventAfterTransfer();
error SenderNotSolventAfterTransfer();
error ZeroTransfer();
/// @notice method for SiloConfig to synchronize hooks
/// @param _hooksBefore hooks bitmap to trigger hooks BEFORE action
/// @param _hooksAfter hooks bitmap to trigger hooks AFTER action
function synchronizeHooks(uint24 _hooksBefore, uint24 _hooksAfter) external;
/// @notice Mint method for Silo to create debt
/// @param _owner wallet for which to mint token
/// @param _spender wallet that asks for mint
/// @param _amount amount of token to be minted
function mint(address _owner, address _spender, uint256 _amount) external;
/// @notice Burn method for Silo to close debt
/// @param _owner wallet for which to burn token
/// @param _spender wallet that asks for burn
/// @param _amount amount of token to be burned
function burn(address _owner, address _spender, uint256 _amount) external;
/// @notice TransferFrom method for liquidation
/// @param _from wallet from which we transferring tokens
/// @param _to wallet that will get tokens
/// @param _amount amount of token to transfer
function forwardTransferFromNoChecks(address _from, address _to, uint256 _amount) external;
/// @dev Returns the amount of tokens owned by `account`.
/// @param _account address for which to return data
/// @return balance of the _account
/// @return totalSupply total supply of the token
function balanceOfAndTotalSupply(address _account) external view returns (uint256 balance, uint256 totalSupply);
/// @notice Returns silo address for which token was deployed
/// @return silo address
function silo() external view returns (ISilo silo);
function siloConfig() external view returns (ISiloConfig silo);
/// @notice Returns hook setup
function hookSetup() external view returns (HookSetup memory);
/// @notice Returns hook receiver address
function hookReceiver() external view returns (address);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;
interface IPartialLiquidation {
struct HookSetup {
/// @param this is the same as in siloConfig
address hookReceiver;
/// @param hooks bitmap
uint24 hooksBefore;
/// @param hooks bitmap
uint24 hooksAfter;
}
/// @dev Emitted when a borrower is liquidated.
/// @param liquidator The address of the liquidator
/// @param silo The address of the silo on which position was liquidated
/// @param borrower The address of the borrower
/// @param repayDebtAssets Repay amount
/// @param withdrawCollateral Total (collateral + protected) withdraw amount, in case `receiveSToken` is TRUE
/// then this is estimated withdraw, and representation of this amount in sToken was transferred
/// @param receiveSToken True if the liquidators wants to receive the collateral sTokens, `false` if he wants
/// to receive the underlying collateral asset directly
event LiquidationCall(
address indexed liquidator,
address indexed silo,
address indexed borrower,
uint256 repayDebtAssets,
uint256 withdrawCollateral,
bool receiveSToken
);
error UnexpectedCollateralToken();
error UnexpectedDebtToken();
error NoDebtToCover();
error FullLiquidationRequired();
error UserIsSolvent();
error UnknownRatio();
error NoRepayAssets();
error NoCollateralToLiquidate();
/// @notice Function to liquidate insolvent position
/// - The caller (liquidator) covers `debtToCover` amount of debt of the user getting liquidated, and receives
/// an equivalent amount in `collateralAsset` plus a liquidation fee to cover market risk
/// @dev this method reverts when:
/// - `_maxDebtToCover` is zero
/// - `_collateralAsset` is not `_user` collateral token (note, that user can have both tokens in Silo, but only one
/// is for backing debt
/// - `_debtAsset` is not a token that `_user` borrow
/// - `_user` is solvent and there is no debt to cover
/// - `_maxDebtToCover` is set to cover only part of the debt but full liquidation is required
/// - when not enough liquidity to transfer from `_user` collateral to liquidator
/// (use `_receiveSToken == true` in that case)
/// @param _collateralAsset The address of the underlying asset used as collateral, to receive as result
/// @param _debtAsset The address of the underlying borrowed asset to be repaid with the liquidation
/// @param _user The address of the borrower getting liquidated
/// @param _maxDebtToCover The maximum debt amount of borrowed `asset` the liquidator wants to cover,
/// in case this amount is too big, it will be reduced to maximum allowed liquidation amount
/// @param _receiveSToken True if the liquidators wants to receive the collateral sTokens, `false` if he wants
/// to receive the underlying collateral asset directly.
/// `_receiveSToken` is ignored in case when it's not possible to convert shares to assets,
/// eg 999 shares => 0 assets.
/// @return withdrawCollateral collateral that was send to `msg.sender`, in case of `_receiveSToken` is TRUE,
/// `withdrawCollateral` will be estimated, on redeem one can expect this value to be rounded down
/// @return repayDebtAssets actual debt value that was repaid by `msg.sender`
function liquidationCall(
address _collateralAsset,
address _debtAsset,
address _user,
uint256 _maxDebtToCover,
bool _receiveSToken
)
external
returns (uint256 withdrawCollateral, uint256 repayDebtAssets);
/// @dev debt is keep growing over time, so when dApp use this view to calculate max, tx should never revert
/// because actual max can be only higher
/// @return collateralToLiquidate underestimated amount of collateral liquidator will get
/// @return debtToRepay debt amount needed to be repay to get `collateralToLiquidate`
/// @return sTokenRequired TRUE, when liquidation with underlying asset is not possible because of not enough
/// liquidity
function maxLiquidation(address _borrower)
external
view
returns (uint256 collateralToLiquidate, uint256 debtToRepay, bool sTokenRequired);
}// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.28;
import {ISilo} from "../interfaces/ISilo.sol";
// solhint-disable private-vars-leading-underscore
library Hook {
/// @notice The data structure for the deposit hook
/// @param assets The amount of assets deposited
/// @param shares The amount of shares deposited
/// @param receiver The receiver of the deposit
struct BeforeDepositInput {
uint256 assets;
uint256 shares;
address receiver;
}
/// @notice The data structure for the deposit hook
/// @param assets The amount of assets deposited
/// @param shares The amount of shares deposited
/// @param receiver The receiver of the deposit
/// @param receivedAssets The exact amount of assets being deposited
/// @param mintedShares The exact amount of shares being minted
struct AfterDepositInput {
uint256 assets;
uint256 shares;
address receiver;
uint256 receivedAssets;
uint256 mintedShares;
}
/// @notice The data structure for the withdraw hook
/// @param assets The amount of assets withdrawn
/// @param shares The amount of shares withdrawn
/// @param receiver The receiver of the withdrawal
/// @param owner The owner of the shares
/// @param spender The spender of the shares
struct BeforeWithdrawInput {
uint256 assets;
uint256 shares;
address receiver;
address owner;
address spender;
}
/// @notice The data structure for the withdraw hook
/// @param assets The amount of assets withdrawn
/// @param shares The amount of shares withdrawn
/// @param receiver The receiver of the withdrawal
/// @param owner The owner of the shares
/// @param spender The spender of the shares
/// @param withdrawnAssets The exact amount of assets being withdrawn
/// @param withdrawnShares The exact amount of shares being withdrawn
struct AfterWithdrawInput {
uint256 assets;
uint256 shares;
address receiver;
address owner;
address spender;
uint256 withdrawnAssets;
uint256 withdrawnShares;
}
/// @notice The data structure for the share token transfer hook
/// @param sender The sender of the transfer (address(0) on mint)
/// @param recipient The recipient of the transfer (address(0) on burn)
/// @param amount The amount of tokens transferred/minted/burned
/// @param senderBalance The balance of the sender after the transfer (empty on mint)
/// @param recipientBalance The balance of the recipient after the transfer (empty on burn)
/// @param totalSupply The total supply of the share token
struct AfterTokenTransfer {
address sender;
address recipient;
uint256 amount;
uint256 senderBalance;
uint256 recipientBalance;
uint256 totalSupply;
}
/// @notice The data structure for the before borrow hook
/// @param assets The amount of assets to borrow
/// @param shares The amount of shares to borrow
/// @param receiver The receiver of the borrow
/// @param borrower The borrower of the assets
/// @param _spender Address which initiates the borrowing action on behalf of the borrower
struct BeforeBorrowInput {
uint256 assets;
uint256 shares;
address receiver;
address borrower;
address spender;
}
/// @notice The data structure for the after borrow hook
/// @param assets The amount of assets borrowed
/// @param shares The amount of shares borrowed
/// @param receiver The receiver of the borrow
/// @param borrower The borrower of the assets
/// @param spender Address which initiates the borrowing action on behalf of the borrower
/// @param borrowedAssets The exact amount of assets being borrowed
/// @param borrowedShares The exact amount of shares being borrowed
struct AfterBorrowInput {
uint256 assets;
uint256 shares;
address receiver;
address borrower;
address spender;
uint256 borrowedAssets;
uint256 borrowedShares;
}
/// @notice The data structure for the before repay hook
/// @param assets The amount of assets to repay
/// @param shares The amount of shares to repay
/// @param borrower The borrower of the assets
/// @param repayer The repayer of the assets
struct BeforeRepayInput {
uint256 assets;
uint256 shares;
address borrower;
address repayer;
}
/// @notice The data structure for the after repay hook
/// @param assets The amount of assets to repay
/// @param shares The amount of shares to repay
/// @param borrower The borrower of the assets
/// @param repayer The repayer of the assets
/// @param repaidAssets The exact amount of assets being repaid
/// @param repaidShares The exact amount of shares being repaid
struct AfterRepayInput {
uint256 assets;
uint256 shares;
address borrower;
address repayer;
uint256 repaidAssets;
uint256 repaidShares;
}
/// @notice The data structure for the before flash loan hook
/// @param receiver The flash loan receiver
/// @param token The flash loan token
/// @param amount Requested amount of tokens
struct BeforeFlashLoanInput {
address receiver;
address token;
uint256 amount;
}
/// @notice The data structure for the after flash loan hook
/// @param receiver The flash loan receiver
/// @param token The flash loan token
/// @param amount Received amount of tokens
/// @param fee The flash loan fee
struct AfterFlashLoanInput {
address receiver;
address token;
uint256 amount;
uint256 fee;
}
/// @notice The data structure for the before transition collateral hook
/// @param shares The amount of shares to transition
struct BeforeTransitionCollateralInput {
uint256 shares;
address owner;
}
/// @notice The data structure for the after transition collateral hook
/// @param shares The amount of shares to transition
struct AfterTransitionCollateralInput {
uint256 shares;
address owner;
uint256 assets;
}
/// @notice The data structure for the switch collateral hook
/// @param user The user switching collateral
struct SwitchCollateralInput {
address user;
}
/// @notice Supported hooks
/// @dev The hooks are stored as a bitmap and can be combined with bitwise OR
uint256 internal constant NONE = 0;
uint256 internal constant DEPOSIT = 2 ** 1;
uint256 internal constant BORROW = 2 ** 2;
uint256 internal constant BORROW_SAME_ASSET = 2 ** 3; // deprecated
uint256 internal constant REPAY = 2 ** 4;
uint256 internal constant WITHDRAW = 2 ** 5;
uint256 internal constant FLASH_LOAN = 2 ** 6;
uint256 internal constant TRANSITION_COLLATERAL = 2 ** 7;
uint256 internal constant SWITCH_COLLATERAL = 2 ** 8; // deprecated
uint256 internal constant SHARE_TOKEN_TRANSFER = 2 ** 10;
uint256 internal constant COLLATERAL_TOKEN = 2 ** 11;
uint256 internal constant PROTECTED_TOKEN = 2 ** 12;
uint256 internal constant DEBT_TOKEN = 2 ** 13;
// note: currently we can support hook value up to 2 ** 23,
// because for optimisation purposes, we storing hooks as uint24
// For decoding packed data
uint256 private constant PACKED_ADDRESS_LENGTH = 20;
uint256 private constant PACKED_FULL_LENGTH = 32;
uint256 private constant PACKED_ENUM_LENGTH = 1;
uint256 private constant PACKED_BOOL_LENGTH = 1;
error FailedToParseBoolean();
error InvalidTokenType();
/// @notice Checks if the action has a specific hook
/// @param _action The action
/// @param _expectedHook The expected hook
/// @dev The function returns true if the action has the expected hook.
/// As hooks actions can be combined with bitwise OR, the following examples are valid:
/// `matchAction(WITHDRAW | COLLATERAL_TOKEN, WITHDRAW) == true`
/// `matchAction(WITHDRAW | COLLATERAL_TOKEN, COLLATERAL_TOKEN) == true`
/// `matchAction(WITHDRAW | COLLATERAL_TOKEN, WITHDRAW | COLLATERAL_TOKEN) == true`
function matchAction(uint256 _action, uint256 _expectedHook) internal pure returns (bool) {
return (_action & _expectedHook) == _expectedHook;
}
/// @notice Adds a hook to an action
/// @param _action The action
/// @param _newAction The new hook to be added
function addAction(uint256 _action, uint256 _newAction) internal pure returns (uint256) {
return _action | _newAction;
}
/// @dev please be careful with removing actions, because other hooks might using them
/// eg when you have `_action = COLLATERAL_TOKEN | PROTECTED_TOKEN | SHARE_TOKEN_TRANSFER`
/// and you want to remove action on protected token transfer by doing
/// `remove(_action, PROTECTED_TOKEN | SHARE_TOKEN_TRANSFER)`, the result will be `_action=COLLATERAL_TOKEN`
/// and it will not trigger collateral token transfer. In this example you should do:
/// `remove(_action, PROTECTED_TOKEN)`
function removeAction(uint256 _action, uint256 _actionToRemove) internal pure returns (uint256) {
return _action & (~_actionToRemove);
}
/// @notice Returns the action for depositing a specific collateral type
/// @param _type The collateral type
function depositAction(ISilo.CollateralType _type) internal pure returns (uint256) {
return DEPOSIT | (_type == ISilo.CollateralType.Collateral ? COLLATERAL_TOKEN : PROTECTED_TOKEN);
}
/// @notice Returns the action for withdrawing a specific collateral type
/// @param _type The collateral type
function withdrawAction(ISilo.CollateralType _type) internal pure returns (uint256) {
return WITHDRAW | (_type == ISilo.CollateralType.Collateral ? COLLATERAL_TOKEN : PROTECTED_TOKEN);
}
/// @notice Returns the action for collateral transition
/// @param _type The collateral type
function transitionCollateralAction(ISilo.CollateralType _type) internal pure returns (uint256) {
return TRANSITION_COLLATERAL | (_type == ISilo.CollateralType.Collateral ? COLLATERAL_TOKEN : PROTECTED_TOKEN);
}
/// @notice Returns the share token transfer action
/// @param _tokenType The token type (COLLATERAL_TOKEN || PROTECTED_TOKEN || DEBT_TOKEN)
function shareTokenTransfer(uint256 _tokenType) internal pure returns (uint256) {
require(
_tokenType == COLLATERAL_TOKEN || _tokenType == PROTECTED_TOKEN || _tokenType == DEBT_TOKEN,
InvalidTokenType()
);
return SHARE_TOKEN_TRANSFER | _tokenType;
}
/// @dev Decodes packed data from the share token after the transfer hook
/// @param packed The packed data (via abi.encodePacked)
/// @return input decoded
function afterTokenTransferDecode(bytes memory packed)
internal
pure
returns (AfterTokenTransfer memory input)
{
address sender;
address recipient;
uint256 amount;
uint256 senderBalance;
uint256 recipientBalance;
uint256 totalSupply;
assembly { // solhint-disable-line no-inline-assembly
let pointer := PACKED_ADDRESS_LENGTH
sender := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
recipient := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
amount := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
senderBalance := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
recipientBalance := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
totalSupply := mload(add(packed, pointer))
}
input = AfterTokenTransfer(sender, recipient, amount, senderBalance, recipientBalance, totalSupply);
}
/// @dev Decodes packed data from the deposit hook
/// @param packed The packed data (via abi.encodePacked)
/// @return input decoded
function beforeDepositDecode(bytes memory packed)
internal
pure
returns (BeforeDepositInput memory input)
{
uint256 assets;
uint256 shares;
address receiver;
assembly { // solhint-disable-line no-inline-assembly
let pointer := PACKED_FULL_LENGTH
assets := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
shares := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
receiver := mload(add(packed, pointer))
}
input = BeforeDepositInput(assets, shares, receiver);
}
/// @dev Decodes packed data from the deposit hook
/// @param packed The packed data (via abi.encodePacked)
/// @return input decoded
function afterDepositDecode(bytes memory packed)
internal
pure
returns (AfterDepositInput memory input)
{
uint256 assets;
uint256 shares;
address receiver;
uint256 receivedAssets;
uint256 mintedShares;
assembly { // solhint-disable-line no-inline-assembly
let pointer := PACKED_FULL_LENGTH
assets := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
shares := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
receiver := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
receivedAssets := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
mintedShares := mload(add(packed, pointer))
}
input = AfterDepositInput(assets, shares, receiver, receivedAssets, mintedShares);
}
/// @dev Decodes packed data from the withdraw hook
/// @param packed The packed data (via abi.encodePacked)
/// @return input decoded
function beforeWithdrawDecode(bytes memory packed)
internal
pure
returns (BeforeWithdrawInput memory input)
{
uint256 assets;
uint256 shares;
address receiver;
address owner;
address spender;
assembly { // solhint-disable-line no-inline-assembly
let pointer := PACKED_FULL_LENGTH
assets := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
shares := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
receiver := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
owner := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
spender := mload(add(packed, pointer))
}
input = BeforeWithdrawInput(assets, shares, receiver, owner, spender);
}
/// @dev Decodes packed data from the withdraw hook
/// @param packed The packed data (via abi.encodePacked)
/// @return input decoded
function afterWithdrawDecode(bytes memory packed)
internal
pure
returns (AfterWithdrawInput memory input)
{
uint256 assets;
uint256 shares;
address receiver;
address owner;
address spender;
uint256 withdrawnAssets;
uint256 withdrawnShares;
assembly { // solhint-disable-line no-inline-assembly
let pointer := PACKED_FULL_LENGTH
assets := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
shares := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
receiver := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
owner := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
spender := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
withdrawnAssets := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
withdrawnShares := mload(add(packed, pointer))
}
input = AfterWithdrawInput(assets, shares, receiver, owner, spender, withdrawnAssets, withdrawnShares);
}
/// @dev Decodes packed data from the before borrow hook
/// @param packed The packed data (via abi.encodePacked)
/// @return input decoded
function beforeBorrowDecode(bytes memory packed)
internal
pure
returns (BeforeBorrowInput memory input)
{
uint256 assets;
uint256 shares;
address receiver;
address borrower;
address spender;
assembly { // solhint-disable-line no-inline-assembly
let pointer := PACKED_FULL_LENGTH
assets := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
shares := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
receiver := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
borrower := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
spender := mload(add(packed, pointer))
}
input = BeforeBorrowInput(assets, shares, receiver, borrower, spender);
}
/// @dev Decodes packed data from the after borrow hook
/// @param packed The packed data (via abi.encodePacked)
/// @return input decoded
function afterBorrowDecode(bytes memory packed)
internal
pure
returns (AfterBorrowInput memory input)
{
uint256 assets;
uint256 shares;
address receiver;
address borrower;
address spender;
uint256 borrowedAssets;
uint256 borrowedShares;
assembly { // solhint-disable-line no-inline-assembly
let pointer := PACKED_FULL_LENGTH
assets := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
shares := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
receiver := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
borrower := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
spender := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
borrowedAssets := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
borrowedShares := mload(add(packed, pointer))
}
input = AfterBorrowInput(assets, shares, receiver, borrower, spender, borrowedAssets, borrowedShares);
}
/// @dev Decodes packed data from the before repay hook
/// @param packed The packed data (via abi.encodePacked)
/// @return input decoded
function beforeRepayDecode(bytes memory packed)
internal
pure
returns (BeforeRepayInput memory input)
{
uint256 assets;
uint256 shares;
address borrower;
address repayer;
assembly { // solhint-disable-line no-inline-assembly
let pointer := PACKED_FULL_LENGTH
assets := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
shares := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
borrower := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
repayer := mload(add(packed, pointer))
}
input = BeforeRepayInput(assets, shares, borrower, repayer);
}
/// @dev Decodes packed data from the after repay hook
/// @param packed The packed data (via abi.encodePacked)
/// @return input decoded
function afterRepayDecode(bytes memory packed)
internal
pure
returns (AfterRepayInput memory input)
{
uint256 assets;
uint256 shares;
address borrower;
address repayer;
uint256 repaidAssets;
uint256 repaidShares;
assembly { // solhint-disable-line no-inline-assembly
let pointer := PACKED_FULL_LENGTH
assets := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
shares := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
borrower := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
repayer := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
repaidAssets := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
repaidShares := mload(add(packed, pointer))
}
input = AfterRepayInput(assets, shares, borrower, repayer, repaidAssets, repaidShares);
}
/// @dev Decodes packed data from the before flash loan hook
/// @param packed The packed data (via abi.encodePacked)
/// @return input decoded
function beforeFlashLoanDecode(bytes memory packed)
internal
pure
returns (BeforeFlashLoanInput memory input)
{
address receiver;
address token;
uint256 amount;
assembly { // solhint-disable-line no-inline-assembly
let pointer := PACKED_ADDRESS_LENGTH
receiver := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
token := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
amount := mload(add(packed, pointer))
}
input = BeforeFlashLoanInput(receiver, token, amount);
}
/// @dev Decodes packed data from the before flash loan hook
/// @param packed The packed data (via abi.encodePacked)
/// @return input decoded
function afterFlashLoanDecode(bytes memory packed)
internal
pure
returns (AfterFlashLoanInput memory input)
{
address receiver;
address token;
uint256 amount;
uint256 fee;
assembly { // solhint-disable-line no-inline-assembly
let pointer := PACKED_ADDRESS_LENGTH
receiver := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
token := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
amount := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
fee := mload(add(packed, pointer))
}
input = AfterFlashLoanInput(receiver, token, amount, fee);
}
/// @dev Decodes packed data from the transition collateral hook
/// @param packed The packed data (via abi.encodePacked)
/// @return input decoded
function beforeTransitionCollateralDecode(bytes memory packed)
internal
pure
returns (BeforeTransitionCollateralInput memory input)
{
uint256 shares;
address owner;
assembly { // solhint-disable-line no-inline-assembly
let pointer := PACKED_FULL_LENGTH
shares := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
owner := mload(add(packed, pointer))
}
input = BeforeTransitionCollateralInput(shares, owner);
}
/// @dev Decodes packed data from the transition collateral hook
/// @param packed The packed data (via abi.encodePacked)
/// @return input decoded
function afterTransitionCollateralDecode(bytes memory packed)
internal
pure
returns (AfterTransitionCollateralInput memory input)
{
uint256 shares;
address owner;
uint256 assets;
assembly { // solhint-disable-line no-inline-assembly
let pointer := PACKED_FULL_LENGTH
shares := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
owner := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
assets := mload(add(packed, pointer))
}
input = AfterTransitionCollateralInput(shares, owner, assets);
}
/// @dev Decodes packed data from the switch collateral hook
/// @param packed The packed data (via abi.encodePacked)
/// @return input decoded
function switchCollateralDecode(bytes memory packed)
internal
pure
returns (SwitchCollateralInput memory input)
{
address user;
assembly { // solhint-disable-line no-inline-assembly
let pointer := PACKED_ADDRESS_LENGTH
user := mload(add(packed, pointer))
}
input = SwitchCollateralInput(user);
}
/// @dev Converts a uint8 to a boolean
function _toBoolean(uint8 _value) internal pure returns (bool result) {
if (_value == 0) {
result = false;
} else if (_value == 1) {
result = true;
} else {
revert FailedToParseBoolean();
}
}
}// SPDX-License-Identifier: agpl-3.0
pragma solidity 0.8.28;
import {IDistributionManager} from "./IDistributionManager.sol";
import {DistributionTypes} from "../lib/DistributionTypes.sol";
interface ISiloIncentivesController is IDistributionManager {
event ClaimerSet(address indexed user, address indexed claimer);
event IncentivesProgramCreated(string name);
event IncentivesProgramUpdated(string name);
event RewardsAccrued(
address indexed user,
address indexed rewardToken,
string indexed programName,
uint256 amount
);
event RewardsClaimed(
address indexed user,
address indexed to,
address indexed rewardToken,
bytes32 programId,
address claimer,
uint256 amount
);
error InvalidDistributionEnd();
error InvalidConfiguration();
error IndexOverflowAtEmissionsPerSecond();
error InvalidToAddress();
error InvalidUserAddress();
error ClaimerUnauthorized();
error InvalidRewardToken();
error IncentivesProgramAlreadyExists();
error IncentivesProgramNotFound();
error DifferentRewardsTokens();
error EmissionPerSecondTooHigh();
error EmptyShareToken();
/**
* @dev Silo share token event handler
* @param _sender The address of the sender
* @param _senderBalance The balance of the sender
* @param _recipient The address of the recipient
* @param _recipientBalance The balance of the recipient
* @param _totalSupply The total supply of the asset in the lending pool
* @param _amount The amount of the transfer
*/
function afterTokenTransfer(
address _sender,
uint256 _senderBalance,
address _recipient,
uint256 _recipientBalance,
uint256 _totalSupply,
uint256 _amount
) external;
/**
* @dev Immediately distributes rewards to the incentives program
* Expect an `_amount` to be transferred to the contract before calling this fn
* @param _tokenToDistribute The token to distribute
* @param _amount The amount of rewards to distribute
* @return programId The id of the created or existing program, or bytes32(0) if _amount is 0
*/
function immediateDistribution(address _tokenToDistribute, uint104 _amount) external returns (bytes32 programId);
/// @dev It will transfer all the reward token balance to the owner.
/// @param _rewardToken The reward token to rescue
function rescueRewards(address _rewardToken) external;
/**
* @dev Whitelists an address to claim the rewards on behalf of another address
* @param _user The address of the user
* @param _claimer The address of the claimer
*/
function setClaimer(address _user, address _claimer) external;
/**
* @dev Creates a new incentives program
* @param _incentivesProgramInput The incentives program creation input
*/
function createIncentivesProgram(DistributionTypes.IncentivesProgramCreationInput memory _incentivesProgramInput)
external;
/**
* @dev Updates an existing incentives program
* @param _incentivesProgram The incentives program name
* @param _distributionEnd The distribution end
* @param _emissionPerSecond The emission per second
*/
function updateIncentivesProgram(
string calldata _incentivesProgram,
uint40 _distributionEnd,
uint104 _emissionPerSecond
) external;
/**
* @dev Claims reward for an user to the desired address, on all the assets of the lending pool,
* accumulating the pending rewards
* @param _to Address that will be receiving the rewards
* @return accruedRewards
*/
function claimRewards(address _to) external returns (AccruedRewards[] memory accruedRewards);
/**
* @dev Claims reward for an user to the desired address, on all the assets of the lending pool,
* accumulating the pending rewards
* @param _to Address that will be receiving the rewards
* @param _programNames The incentives program names
* @return accruedRewards
*/
function claimRewards(address _to, string[] calldata _programNames)
external
returns (AccruedRewards[] memory accruedRewards);
/**
* @dev Claims reward for an user on behalf, on all the assets of the lending pool, accumulating the pending
* rewards. The caller must be whitelisted via "allowClaimOnBehalf" function by the RewardsAdmin role manager
* @param _user Address to check and claim rewards
* @param _to Address that will be receiving the rewards
* @param _programNames The incentives program names
* @return accruedRewards
*/
function claimRewardsOnBehalf(address _user, address _to, string[] calldata _programNames)
external
returns (AccruedRewards[] memory accruedRewards);
/**
* @dev Returns the whitelisted claimer for a certain address (0x0 if not set)
* @param _user The address of the user
* @return The claimer address
*/
function getClaimer(address _user) external view returns (address);
/**
* @dev Returns the total of rewards of an user, already accrued + not yet accrued
* @param _user The address of the user
* @param _programName The incentives program name
* @return unclaimedRewards
*/
function getRewardsBalance(address _user, string calldata _programName)
external
view
returns (uint256 unclaimedRewards);
/**
* @dev Returns the total of rewards of an user, already accrued + not yet accrued
* @param _user The address of the user
* @param _programNames The incentives program names (should have the same rewards token)
* @return unclaimedRewards
*/
function getRewardsBalance(address _user, string[] calldata _programNames)
external
view
returns (uint256 unclaimedRewards);
/**
* @dev returns the unclaimed rewards of the user
* @param _user the address of the user
* @param _programName The incentives program name
* @return the unclaimed user rewards
*/
function getUserUnclaimedRewards(address _user, string calldata _programName) external view returns (uint256);
/// @notice SHARE_TOKEN is contract with IERC20 interface with users balances, based based on which
/// rewards distribution is calculated. In Silo it is ususally collateral share token or debt share token.
function SHARE_TOKEN() external view returns (address); // solhint-disable-line func-name-mixedcase
}// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;
import {IShareToken} from "./IShareToken.sol";
import {IHookReceiver} from "./IHookReceiver.sol";
import {ISiloIncentivesController} from "silo-core/contracts/incentives/interfaces/ISiloIncentivesController.sol";
/// @notice Silo share token hook receiver for the gauge
interface IGaugeHookReceiver is IHookReceiver {
/// @dev Emit when the new gauge is configured
/// @param gauge Gauge for which hook receiver will send notification about the share token balance updates.
/// @param shareToken Share token.
event GaugeConfigured(address gauge, address shareToken);
/// @dev Emit when the gauge is removed
/// @param shareToken Share token for which the gauge was removed
event GaugeRemoved(address shareToken);
/// @dev Revert on an attempt to initialize with a zero `_owner` address
error OwnerIsZeroAddress();
/// @dev Revert on an attempt to initialize with an invalid `_shareToken` address
error InvalidShareToken();
/// @dev Revert on an attempt to setup a `_gauge` with a different `_shareToken`
/// than hook receiver were initialized
error WrongGaugeShareToken();
/// @dev Revert on an attempt to remove a `gauge` that still can mint SILO tokens
error CantRemoveActiveGauge();
/// @dev Revert on an attempt to set a gauge with a zero address
error EmptyGaugeAddress();
/// @dev Revert if the hook received `beforeAction` notification
error RequestNotSupported();
/// @dev Revert on an attempt to remove not configured gauge
error GaugeIsNotConfigured();
/// @dev Revert on an attempt to configure already configured gauge
error GaugeAlreadyConfigured();
/// @notice Configuration of the gauge
/// for which the hook receiver should send notifications about the share token balance updates.
/// The `_gauge` can be updated by an owner (DAO)
/// @dev Overrides existing configuration
/// @param _shareToken Share token for which the gauge is configured
/// @param _gauge Array of gauges for which hook receiver will send notification.
function setGauge(ISiloIncentivesController _gauge, IShareToken _shareToken) external;
/// @notice Remove the gauge from the hook receiver for the share token
/// @dev While removing the gauge,
/// we do not remove the action because we don't know if any other hook is using it.
/// @param _shareToken Share token for which the gauge needs to be removed
function removeGauge(IShareToken _shareToken) external;
/// @notice Get the gauge for the share token
/// @param _shareToken Share token
function configuredGauges(IShareToken _shareToken) external view returns (ISiloIncentivesController);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return a == 0 ? 0 : (a - 1) / b + 1;
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2²⁵⁶ + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= prod1) {
Panic.panic(denominator == 0 ? Panic.DIVISION_BY_ZERO : Panic.UNDER_OVERFLOW);
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, expect 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Ferma's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return x < 0 ? (n - uint256(-x)) : uint256(x); // Wrap the result if it's negative.
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked has failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
/// @solidity memory-safe-assembly
assembly {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
/// @solidity memory-safe-assembly
assembly {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ≥ 0
// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ≤ 2**(2*e-4) / (3 * 2**(e-1))
// ≤ 2**(e-3) / 3
// ≤ 2**(e-3-log2(3))
// ≤ 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ≤ (2**(e-k))² / (2 * 2**(e-1))
// ≤ 2**(2*e-2*k) / 2**e
// ≤ 2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 exp;
unchecked {
exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
value >>= exp;
result += exp;
exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
value >>= exp;
result += exp;
exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
value >>= exp;
result += exp;
exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
value >>= exp;
result += exp;
exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
value >>= exp;
result += exp;
exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
value >>= exp;
result += exp;
exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
value >>= exp;
result += exp;
result += SafeCast.toUint(value > 1);
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 isGt;
unchecked {
isGt = SafeCast.toUint(value > (1 << 128) - 1);
value >>= isGt * 128;
result += isGt * 16;
isGt = SafeCast.toUint(value > (1 << 64) - 1);
value >>= isGt * 64;
result += isGt * 8;
isGt = SafeCast.toUint(value > (1 << 32) - 1);
value >>= isGt * 32;
result += isGt * 4;
isGt = SafeCast.toUint(value > (1 << 16) - 1);
value >>= isGt * 16;
result += isGt * 2;
result += SafeCast.toUint(value > (1 << 8) - 1);
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;
import {ISilo} from "./ISilo.sol";
import {ISiloIncentivesController} from "../incentives/interfaces/ISiloIncentivesController.sol";
/// @notice Partial liquidation by defaulting will cancel borrower debt and distribute collateral shares
/// to lenders via incentive contract. Lenders have to claim their shares to get them.
/// Executor will get liquidation fee directly on his wallet.
/// Partial liquidation by defaulting can reset total assets completely while leaving shares behind.
/// In that case, all shares will be worth 0 and next deposit will lose the value of that left shares.
/// Partial liquidation by defaulting can deduct collateral by 1 wei more than debt. This can happen
/// when we doing full liquidation and conversion assets -> shares -> assets loses 1 wei.
interface IPartialLiquidationByDefaulting {
struct CallParams {
uint256 collateralSharesTotal;
uint256 protectedSharesTotal;
uint256 withdrawAssetsFromCollateral;
uint256 withdrawAssetsFromProtected;
uint256 collateralSharesForKeeper;
uint256 collateralSharesForLenders;
uint256 protectedSharesForKeeper;
uint256 protectedSharesForLenders;
bytes4 customError;
}
/// @param canceledDebt amount of debt that was canceled by liquidation
/// @param deductedFromCollateral amount of collateral that was deducted from collateral,
/// it might be lower then debt eg in case of bad debt
event DefaultingLiquidation(uint256 canceledDebt, uint256 deductedFromCollateral);
error NoControllerForCollateral();
error CollateralNotSupportedForDefaulting();
error TwoWayMarketNotAllowed();
error EmptyCollateralShareToken();
error DeductDefaultedDebtFromCollateralFailed();
error RepayDebtByDefaultingFailed();
error InvalidLTConfig0();
error InvalidLTConfig1();
error WithdrawSharesForLendersTooHighForDistribution();
/// @notice Function to liquidate insolvent position by distributing user's collateral to lenders
/// - The caller (liquidator) does not cover any debt. `debtToCover` is amount of debt being liquidated
/// based on which amount of `collateralAsset` is calculated to distribute to lenders plus a liquidation fee.
/// Liquidation fee is split 80/20 between lenders and liquidator.
/// @dev this method reverts when:
/// - `_maxDebtToCover` is zero
/// - `_user` is solvent and there is no debt to cover
/// - `_borrower` is solvent in terms of defaulting (might be insolvent for standard liquidation)
/// - when asset:share ratio is changes so much
/// that `convertToShares` returns more shares to liquidate than totalShares in system, eg:
/// totalAssets = 100, totalShares = 10, assetsToLiquidate = 1
/// @param _user The address of the borrower getting liquidated
/// @param _maxDebtToCover The maximum debt amount of borrowed `asset` the liquidator wants to cover
/// @return withdrawCollateral collateral that was send to `msg.sender`, in case of `_receiveSToken` is TRUE,
/// `withdrawCollateral` will be estimated, on redeem one can expect this value to be rounded down
/// @return repayDebtAssets actual debt value that was repaid by `msg.sender`
function liquidationCallByDefaulting(address _user, uint256 _maxDebtToCover)
external
returns (uint256 withdrawCollateral, uint256 repayDebtAssets);
/// @notice check `liquidationCallByDefaulting(address _user, uint256 _maxDebtToCover)` for details
function liquidationCallByDefaulting(address _user)
external
returns (uint256 withdrawCollateral, uint256 repayDebtAssets);
/// @dev it can revert in case of assets or shares values close to max uint256
function getKeeperAndLenderSharesSplit(
uint256 _assetsToLiquidate,
ISilo.CollateralType _collateralType
) external view returns (uint256 totalSharesToLiquidate, uint256 keeperShares, uint256 lendersShares);
/// @notice Validate if market is supported by defaulting, reverts if not
function validateDefaultingCollateral() external view;
/// @notice Validate if gauge controller (silo incentives controller) is set for debt silo, reverts if not
/// @param _silo The address of the silo from which debt is borrowed
/// @return controllerCollateral The address of the gauge for debt silo
function validateControllerForCollateral(address _silo)
external
view
returns (ISiloIncentivesController controllerCollateral);
// solhint-disable-next-line func-name-mixedcase
function LT_MARGIN_FOR_DEFAULTING() external view returns (uint256);
// solhint-disable-next-line func-name-mixedcase
function LIQUIDATION_LOGIC() external view returns (address);
// solhint-disable-next-line func-name-mixedcase
function KEEPER_FEE() external view returns (uint256);
}// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.28;
import {ISilo} from "silo-core/contracts/interfaces/ISilo.sol";
library SiloStorageLib {
// keccak256(abi.encode(uint256(keccak256("silo.storage.SiloVault")) - 1)) & ~bytes32(uint256(0xff));
bytes32 private constant _STORAGE_LOCATION = 0xd7513ffe3a01a9f6606089d1b67011bca35bec018ac0faa914e1c529408f8300;
function getSiloStorage() internal pure returns (ISilo.SiloStorage storage $) {
// solhint-disable-next-line no-inline-assembly
assembly {
$.slot := _STORAGE_LOCATION
}
}
}// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity 0.8.28;
import {Math} from "openzeppelin5/utils/math/Math.sol";
import {IPartialLiquidation} from "silo-core/contracts/interfaces/IPartialLiquidation.sol";
import {Rounding} from "silo-core/contracts/lib/Rounding.sol";
library PartialLiquidationLib {
using Math for uint256;
struct LiquidationPreviewParams {
uint256 collateralLt;
address collateralConfigAsset;
address debtConfigAsset;
uint256 maxDebtToCover;
uint256 liquidationFee;
uint256 liquidationTargetLtv;
}
/// @dev this is basically LTV == 100%
uint256 internal constant _BAD_DEBT = 1e18;
uint256 internal constant _PRECISION_DECIMALS = 1e18;
/// @dev underestimation for collateral that user gets on liquidation
/// liquidation is executed based on sTokens, additional flow is: assets -> shares -> assets
/// this two conversions are rounding down and can create 2 wai difference
uint256 internal constant _UNDERESTIMATION = 2;
/// @dev If the ratio of the repay value to the total debt value during liquidation exceeds the
/// _FULL_LIQUIDATION_THRESHOLD threshold, a full liquidation is triggered.
/// For example, if the total debt value is 51 and the dust level is set at 98%,
/// then we are unable to liquidate 50, we must proceed to liquidate the entire 51.
uint256 internal constant _FULL_LIQUIDATION_THRESHOLD = 0.9e18; // 90%
/// @dev debt keeps growing over time, so when dApp use this view to calculate max, tx should never revert
/// because actual max can be only higher
/// @notice This method does not check, if user is solvent and it can return non zero result when user solvent
function maxLiquidation(
uint256 _sumOfCollateralAssets,
uint256 _sumOfCollateralValue,
uint256 _borrowerDebtAssets,
uint256 _borrowerDebtValue,
uint256 _liquidationTargetLTV,
uint256 _liquidationFee
)
internal
pure
returns (uint256 collateralToLiquidate, uint256 debtToRepay)
{
(
uint256 collateralValueToLiquidate, uint256 repayValue
) = maxLiquidationPreview(
_sumOfCollateralValue,
_borrowerDebtValue,
_liquidationTargetLTV,
_liquidationFee
);
collateralToLiquidate = valueToAssetsByRatio(
collateralValueToLiquidate,
_sumOfCollateralAssets,
_sumOfCollateralValue
);
if (collateralToLiquidate > _UNDERESTIMATION) {
// -_UNDERESTIMATION here is to underestimate collateral that user gets on liquidation
// liquidation is executed based on sTokens, additional flow is: assets -> shares -> assets
// this two conversions are rounding down and can create 2 wei difference
// we will not underflow on -_UNDERESTIMATION because collateralToLiquidate is >= _UNDERESTIMATION
unchecked { collateralToLiquidate -= _UNDERESTIMATION; }
} else {
collateralToLiquidate = 0;
}
debtToRepay = valueToAssetsByRatio(repayValue, _borrowerDebtAssets, _borrowerDebtValue);
}
/// @dev in case of bad debt, we do not apply any restrictions.
/// @notice might revert when one of this values will be zero:
/// `_sumOfCollateralValue`, `_borrowerDebtAssets`, `_borrowerDebtValue`
function liquidationPreview( // solhint-disable-line function-max-lines
uint256 _ltvBefore,
uint256 _sumOfCollateralAssets,
uint256 _sumOfCollateralValue,
uint256 _borrowerDebtAssets,
uint256 _borrowerDebtValue,
LiquidationPreviewParams memory _params
)
internal
pure
returns (uint256 collateralToLiquidate, uint256 debtToRepay, uint256 ltvAfter)
{
uint256 collateralValueToLiquidate;
uint256 debtValueToRepay;
if (_ltvBefore >= _BAD_DEBT) {
// in case of bad debt, we allow for any amount
debtToRepay = _params.maxDebtToCover > _borrowerDebtAssets ? _borrowerDebtAssets : _params.maxDebtToCover;
debtValueToRepay = valueToAssetsByRatio(debtToRepay, _borrowerDebtValue, _borrowerDebtAssets);
} else {
uint256 maxRepayValue = estimateMaxRepayValue(
_borrowerDebtValue,
_sumOfCollateralValue,
_params.liquidationTargetLtv,
_params.liquidationFee
);
if (maxRepayValue == _borrowerDebtValue) {
// forced full liquidation
debtToRepay = _borrowerDebtAssets;
debtValueToRepay = _borrowerDebtValue;
} else {
// partial liquidation
uint256 maxDebtToRepay = valueToAssetsByRatio(maxRepayValue, _borrowerDebtAssets, _borrowerDebtValue);
debtToRepay = _params.maxDebtToCover > maxDebtToRepay ? maxDebtToRepay : _params.maxDebtToCover;
debtValueToRepay = valueToAssetsByRatio(debtToRepay, _borrowerDebtValue, _borrowerDebtAssets);
}
}
collateralValueToLiquidate = calculateCollateralToLiquidate(
debtValueToRepay, _sumOfCollateralValue, _params.liquidationFee
);
collateralToLiquidate = valueToAssetsByRatio(
collateralValueToLiquidate,
_sumOfCollateralAssets,
_sumOfCollateralValue
);
ltvAfter = _calculateLtvAfter(
_sumOfCollateralValue, _borrowerDebtValue, collateralValueToLiquidate, debtValueToRepay
);
}
/// @notice reverts on `_totalValue` == 0
/// @dev calculate assets based on ratio: assets = (value, totalAssets, totalValue)
/// to calculate assets => value, use it like: value = (assets, totalValue, totalAssets)
function valueToAssetsByRatio(uint256 _value, uint256 _totalAssets, uint256 _totalValue)
internal
pure
returns (uint256 assets)
{
require(_totalValue != 0, IPartialLiquidation.UnknownRatio());
// rounding direction was discavered based on set of tests,
// especially with 1 wei collateral and borrow agains it
assets = Math.mulDiv(_value, _totalAssets, _totalValue, Rounding.UP);
}
/// @notice this function never reverts
/// @dev in case there is not enough collateral to liquidate, whole collateral is returned, no revert
/// @param _totalBorrowerCollateralValue can not be 0, otherwise revert
function calculateCollateralsToLiquidate(
uint256 _debtValueToCover,
uint256 _totalBorrowerCollateralValue,
uint256 _totalBorrowerCollateralAssets,
uint256 _liquidationFee
) internal pure returns (uint256 collateralAssetsToLiquidate, uint256 collateralValueToLiquidate) {
collateralValueToLiquidate = calculateCollateralToLiquidate(
_debtValueToCover, _totalBorrowerCollateralValue, _liquidationFee
);
// this is also true if _totalBorrowerCollateralValue == 0, so div below will not revert
if (collateralValueToLiquidate == _totalBorrowerCollateralValue) {
return (_totalBorrowerCollateralAssets, _totalBorrowerCollateralValue);
}
// this will never revert, because of `if collateralValueToLiquidate == _totalBorrowerCollateralValue`
collateralAssetsToLiquidate = valueToAssetsByRatio(
collateralValueToLiquidate, _totalBorrowerCollateralAssets, _totalBorrowerCollateralValue
);
}
/// @dev the math is based on: (Dv - x)/(Cv - (x + xf)) = LT
/// where Dv: debt value, Cv: collateral value, LT: expected LT, f: liquidation fee, x: is value we looking for
/// @notice in case math fail to calculate repay value, eg when collateral is not enough to cover repay and fee
/// function will return full debt value and full collateral value, it will not revert. It is up to liquidator
/// to make decision if it will be profitable
/// @param _totalBorrowerCollateralValue regular and protected
/// @param _ltvAfterLiquidation % of `repayValue` that liquidator will use as profit from liquidating
function maxLiquidationPreview(
uint256 _totalBorrowerCollateralValue,
uint256 _totalBorrowerDebtValue,
uint256 _ltvAfterLiquidation,
uint256 _liquidationFee
) internal pure returns (uint256 collateralValueToLiquidate, uint256 repayValue) {
repayValue = estimateMaxRepayValue(
_totalBorrowerDebtValue, _totalBorrowerCollateralValue, _ltvAfterLiquidation, _liquidationFee
);
collateralValueToLiquidate = calculateCollateralToLiquidate(
repayValue, _totalBorrowerCollateralValue, _liquidationFee
);
}
/// @param _maxDebtToCover assets or value, but must be in sync with `_totalCollateral`
/// @param _sumOfCollateral assets or value, but must be in sync with `_maxDebtToCover`
/// @return toLiquidate depends on inputs, it might be collateral value or collateral assets
function calculateCollateralToLiquidate(uint256 _maxDebtToCover, uint256 _sumOfCollateral, uint256 _liquidationFee)
internal
pure
returns (uint256 toLiquidate)
{
uint256 fee = _maxDebtToCover * _liquidationFee / _PRECISION_DECIMALS;
toLiquidate = _maxDebtToCover + fee;
if (toLiquidate > _sumOfCollateral) {
toLiquidate = _sumOfCollateral;
}
}
/// @dev the math is based on: (Dv - x)/(Cv - (x + xf)) = LTV
/// where
/// Dv: debt value,
/// Cv: collateral value,
/// LTV: expected LTV after liquidation,
/// f: liquidation fee,
/// x: is value we looking for
/// x = (Dv - LTV * Cv) / (DP - LTV - LTV * f)
/// result also take into consideration the dust
/// @notice protocol does not uses this method, because in protocol our input is debt to cover in assets
/// however this is useful to figure out what is max debt to cover.
/// @param _totalBorrowerCollateralValue regular and protected
/// @param _ltvAfterLiquidation % of `repayValue` that liquidator will use as profit from liquidating
/// @return repayValue max repay value that is allowed for partial liquidation. if this value equals
/// `_totalBorrowerDebtValue`, that means dust threshold was triggered and result force to do full liquidation
function estimateMaxRepayValue( // solhint-disable-line code-complexity
uint256 _totalBorrowerDebtValue,
uint256 _totalBorrowerCollateralValue,
uint256 _ltvAfterLiquidation,
uint256 _liquidationFee
) internal pure returns (uint256 repayValue) {
if (_totalBorrowerDebtValue == 0) return 0;
if (_liquidationFee >= _PRECISION_DECIMALS) return 0;
// this will cover case, when _totalBorrowerCollateralValue == 0
if (_totalBorrowerDebtValue >= _totalBorrowerCollateralValue) return _totalBorrowerDebtValue;
if (_ltvAfterLiquidation == 0) return _totalBorrowerDebtValue; // full liquidation
// x = (Dv - LTV * Cv) / (DP - LTV - LTV * f) ==> (Dv - LTV * Cv) / (DP - (LTV + LTV * f))
uint256 ltCv = _ltvAfterLiquidation * _totalBorrowerCollateralValue;
// to lose as low precision as possible, instead of `ltCv/1e18`, we increase precision of DebtValue
_totalBorrowerDebtValue *= _PRECISION_DECIMALS;
// negative value means our current LTV is lower than _ltvAfterLiquidation
if (ltCv >= _totalBorrowerDebtValue) return 0;
uint256 dividerR; // LTV + LTV * f
unchecked {
// safe because of above `LTCv >= _totalBorrowerDebtValue`
repayValue = _totalBorrowerDebtValue - ltCv;
// we checked at begin `_liquidationFee >= _PRECISION_DECIMALS`
// mul on DP will not overflow on uint256, div is safe
dividerR = _ltvAfterLiquidation + _ltvAfterLiquidation * _liquidationFee / _PRECISION_DECIMALS;
}
// now we can go back to proper precision
unchecked { _totalBorrowerDebtValue /= _PRECISION_DECIMALS; }
// if dividerR is more than 100%, means it is impossible to go down to _ltvAfterLiquidation, return all
if (dividerR >= _PRECISION_DECIMALS) {
return _totalBorrowerDebtValue;
}
unchecked { repayValue /= (_PRECISION_DECIMALS - dividerR); }
// early return so we do not have to check for dust
if (repayValue > _totalBorrowerDebtValue) return _totalBorrowerDebtValue;
// here is weird case, sometimes it is impossible to go down to target LTV, however math can calculate it
// eg with negative numerator and denominator and result will be positive, that's why we simply return all
// we also cover dust case here
return repayValue * _PRECISION_DECIMALS / _totalBorrowerDebtValue > _FULL_LIQUIDATION_THRESHOLD
? _totalBorrowerDebtValue
: repayValue;
}
/// @dev protected collateral is prioritized
/// @param _borrowerProtectedAssets available users protected collateral
function splitReceiveCollateralToLiquidate(uint256 _collateralToLiquidate, uint256 _borrowerProtectedAssets)
internal
pure
returns (uint256 withdrawAssetsFromCollateral, uint256 withdrawAssetsFromProtected)
{
if (_collateralToLiquidate == 0) return (0, 0);
unchecked {
(
withdrawAssetsFromCollateral, withdrawAssetsFromProtected
) = _collateralToLiquidate > _borrowerProtectedAssets
// safe to uncheck because of above condition
? (_collateralToLiquidate - _borrowerProtectedAssets, _borrowerProtectedAssets)
: (0, _collateralToLiquidate);
}
}
/// @notice must stay private because this is not for general LTV, only for ltv after internally
function _calculateLtvAfter(
uint256 _sumOfCollateralValue,
uint256 _totalDebtValue,
uint256 _collateralValueToLiquidate,
uint256 _debtValueToCover
)
private
pure
returns (uint256 ltvAfterLiquidation)
{
if (_sumOfCollateralValue <= _collateralValueToLiquidate || _totalDebtValue <= _debtValueToCover) {
return 0;
}
unchecked { // all subs are safe because these values are chunks of total, so we will not underflow
ltvAfterLiquidation = _ltvAfter(
_sumOfCollateralValue - _collateralValueToLiquidate,
_totalDebtValue - _debtValueToCover
);
}
}
/// @notice must stay private because this is not for general LTV, only for ltv after
function _ltvAfter(uint256 _collateral, uint256 _debt) private pure returns (uint256 ltv) {
// previous calculation of LTV
ltv = _debt * _PRECISION_DECIMALS;
ltv = Math.ceilDiv(ltv, _collateral); // Rounding.LTV is up/ceil
}
}// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity 0.8.28;
import {IERC20} from "openzeppelin5/interfaces/IERC20.sol";
import {SafeERC20} from "openzeppelin5/token/ERC20/utils/SafeERC20.sol";
import {ISilo} from "silo-core/contracts/interfaces/ISilo.sol";
import {IShareToken} from "silo-core/contracts/interfaces/IShareToken.sol";
import {IPartialLiquidation} from "silo-core/contracts/interfaces/IPartialLiquidation.sol";
import {ISiloConfig} from "silo-core/contracts/interfaces/ISiloConfig.sol";
import {IHookReceiver} from "silo-core/contracts/interfaces/IHookReceiver.sol";
import {SiloMathLib} from "silo-core/contracts/lib/SiloMathLib.sol";
import {Hook} from "silo-core/contracts/lib/Hook.sol";
import {Rounding} from "silo-core/contracts/lib/Rounding.sol";
import {RevertLib} from "silo-core/contracts/lib/RevertLib.sol";
import {CallBeforeQuoteLib} from "silo-core/contracts/lib/CallBeforeQuoteLib.sol";
import {PartialLiquidationExecLib} from "silo-core/contracts/hooks/liquidation/lib/PartialLiquidationExecLib.sol";
import {TransientReentrancy} from "silo-core/contracts/hooks/_common/TransientReentrancy.sol";
import {BaseHookReceiver} from "silo-core/contracts/hooks/_common/BaseHookReceiver.sol";
/// @title PartialLiquidation module for executing liquidations
/// @dev if we need additional hook functionality, this contract should be included as parent
abstract contract PartialLiquidation is TransientReentrancy, BaseHookReceiver, IPartialLiquidation {
using SafeERC20 for IERC20;
using Hook for uint24;
using CallBeforeQuoteLib for ISiloConfig.ConfigData;
struct LiquidationCallParams {
uint256 collateralShares;
uint256 protectedShares;
uint256 withdrawAssetsFromCollateral;
uint256 withdrawAssetsFromProtected;
bytes4 customError;
}
/// @inheritdoc IPartialLiquidation
function liquidationCall( // solhint-disable-line function-max-lines, code-complexity
address _collateralAsset,
address _debtAsset,
address _borrower,
uint256 _maxDebtToCover,
bool _receiveSToken
)
external
virtual
nonReentrant
returns (uint256 withdrawCollateral, uint256 repayDebtAssets)
{
ISiloConfig siloConfigCached = siloConfig;
require(address(siloConfigCached) != address(0), EmptySiloConfig());
require(_maxDebtToCover != 0, NoDebtToCover());
siloConfigCached.turnOnReentrancyProtection();
(
ISiloConfig.ConfigData memory collateralConfig,
ISiloConfig.ConfigData memory debtConfig
) = _fetchConfigs(siloConfigCached, _collateralAsset, _debtAsset, _borrower);
LiquidationCallParams memory params;
(
params.withdrawAssetsFromCollateral, params.withdrawAssetsFromProtected, repayDebtAssets, params.customError
) = PartialLiquidationExecLib.getExactLiquidationAmounts(
collateralConfig,
debtConfig,
_borrower,
_maxDebtToCover,
collateralConfig.liquidationFee
);
RevertLib.revertIfError(params.customError);
// we do not allow dust so full liquidation is required
require(repayDebtAssets <= _maxDebtToCover, FullLiquidationRequired());
IERC20(debtConfig.token).safeTransferFrom(msg.sender, address(this), repayDebtAssets);
IERC20(debtConfig.token).safeIncreaseAllowance(debtConfig.silo, repayDebtAssets);
address shareTokenReceiver = _receiveSToken ? msg.sender : address(this);
params.collateralShares = _callShareTokenForwardTransferNoChecks(
collateralConfig.silo,
_borrower,
shareTokenReceiver,
params.withdrawAssetsFromCollateral,
collateralConfig.collateralShareToken,
ISilo.AssetType.Collateral
);
params.protectedShares = _callShareTokenForwardTransferNoChecks(
collateralConfig.silo,
_borrower,
shareTokenReceiver,
params.withdrawAssetsFromProtected,
collateralConfig.protectedShareToken,
ISilo.AssetType.Protected
);
siloConfigCached.turnOffReentrancyProtection();
ISilo(debtConfig.silo).repay(repayDebtAssets, _borrower);
// without collateral this is not longer liquidation, it's repay
require(params.collateralShares != 0 || params.protectedShares != 0, NoCollateralToLiquidate());
if (_receiveSToken) {
if (params.collateralShares != 0) {
withdrawCollateral = ISilo(collateralConfig.silo).previewRedeem(
params.collateralShares,
ISilo.CollateralType.Collateral
);
}
if (params.protectedShares != 0) {
unchecked {
// protected and collateral values were split from total collateral to withdraw,
// so we will not overflow when we sum them back, especially that on redeem, we rounding down
withdrawCollateral += ISilo(collateralConfig.silo).previewRedeem(
params.protectedShares,
ISilo.CollateralType.Protected
);
}
}
} else {
// in case of liquidation redeem, hook transfers sTokens to itself and it has no debt
// so solvency will not be checked in silo on redeem action
// if share token offset is more than 0, positive number of shares can generate 0 assets
// so there is a need to check assets before we withdraw collateral/protected
withdrawCollateral = _tryRedeem({
_silo: collateralConfig.silo,
_shareToken: collateralConfig.collateralShareToken,
_shares: params.collateralShares,
_collateralType: ISilo.CollateralType.Collateral
});
unchecked {
// protected and collateral values were split from total collateral to withdraw,
// so we will not overflow when we sum them back, especially that on redeem, we rounding down
withdrawCollateral += _tryRedeem({
_silo: collateralConfig.silo,
_shareToken: collateralConfig.protectedShareToken,
_shares: params.protectedShares,
_collateralType: ISilo.CollateralType.Protected
});
}
}
emit LiquidationCall(
msg.sender, debtConfig.silo, _borrower, repayDebtAssets, withdrawCollateral, _receiveSToken
);
}
/// @inheritdoc IPartialLiquidation
function maxLiquidation(address _borrower)
external
view
virtual
returns (uint256 collateralToLiquidate, uint256 debtToRepay, bool sTokenRequired)
{
return PartialLiquidationExecLib.maxLiquidation(siloConfig, _borrower);
}
function _fetchConfigs(
ISiloConfig _siloConfigCached,
address _collateralAsset,
address _debtAsset,
address _borrower
)
internal
virtual
returns (
ISiloConfig.ConfigData memory collateralConfig,
ISiloConfig.ConfigData memory debtConfig
)
{
(collateralConfig, debtConfig) = _siloConfigCached.getConfigsForSolvency(_borrower);
require(debtConfig.silo != address(0), UserIsSolvent());
require(_collateralAsset == collateralConfig.token, UnexpectedCollateralToken());
require(_debtAsset == debtConfig.token, UnexpectedDebtToken());
ISilo(debtConfig.silo).accrueInterest();
if (collateralConfig.silo != debtConfig.silo) {
ISilo(collateralConfig.silo).accrueInterest();
collateralConfig.callSolvencyOracleBeforeQuote();
debtConfig.callSolvencyOracleBeforeQuote();
}
}
function _callShareTokenForwardTransferNoChecks(
address _silo,
address _borrower,
address _receiver,
uint256 _withdrawAssets,
address _shareToken,
ISilo.AssetType _assetType
) internal virtual returns (uint256 shares) {
if (_withdrawAssets == 0) return 0;
shares = SiloMathLib.convertToShares(
_withdrawAssets,
ISilo(_silo).getTotalAssetsStorage(_assetType),
IShareToken(_shareToken).totalSupply(),
Rounding.LIQUIDATE_TO_SHARES,
ISilo.AssetType(_assetType)
);
if (shares == 0) return 0;
IShareToken(_shareToken).forwardTransferFromNoChecks(_borrower, _receiver, shares);
}
function _tryRedeem(
address _silo,
address _shareToken,
uint256 _shares,
ISilo.CollateralType _collateralType
) internal returns (uint256 withdrawCollateral) {
if (_shares == 0) return 0;
try ISilo(_silo).redeem({
_shares: _shares,
_receiver: msg.sender,
_owner: address(this),
_collateralType: _collateralType
}) returns (uint256 assets) {
withdrawCollateral = assets;
} catch (bytes memory e) {
if (_isToAssetsConvertionError(e)) {
IERC20(_shareToken).transfer(msg.sender, _shares);
} else {
RevertLib.revertBytes(e, string(""));
}
}
}
/// @dev this method detect if error is caused by unable to convert shares to assets eg 999 shares => 0 assets
function _isToAssetsConvertionError(bytes memory _error) internal pure returns (bool) {
return bytes4(_error) == ISilo.ReturnZeroAssets.selector;
}
}// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity 0.8.28;
import {ISilo} from "silo-core/contracts/interfaces/ISilo.sol";
import {Math} from "openzeppelin-contracts/contracts/utils/math/Math.sol";
import {SafeCast} from "openzeppelin-contracts/contracts/utils/math/SafeCast.sol";
import {SiloStorageLib} from "silo-core/contracts/lib/SiloStorageLib.sol";
import {DefaultingRepayLib} from "silo-core/contracts/hooks/defaulting/DefaultingRepayLib.sol";
import {IPartialLiquidationByDefaulting} from "silo-core/contracts/interfaces/IPartialLiquidationByDefaulting.sol";
/// @title DefaultingSiloLogic
/// @dev implements custom logic for Silo to do delegate calls
contract DefaultingSiloLogic {
using Math for uint256;
using Math for uint192;
using SafeCast for uint256;
/// @dev This is a copy of Silo.sol repay() function with this changes:
/// - DefaultingRepayLib.actionsRepay() is used instead of Actions.repay()
/// - returns shares and assets instead only shares
function repayDebtByDefaulting(uint256 _assets, address _borrower)
external
virtual
returns (uint256 shares, uint256 assets)
{
(assets, shares) = DefaultingRepayLib.actionsRepay({
_assets: _assets,
_shares: 0,
_borrower: _borrower,
_repayer: msg.sender
});
emit ISilo.Repay(msg.sender, _borrower, assets, shares);
}
function deductDefaultedDebtFromCollateral(uint256 _assetsToRepay) external virtual {
ISilo.SiloStorage storage $ = SiloStorageLib.getSiloStorage();
bool success;
uint256 totalCollateralAssets = $.totalAssets[ISilo.AssetType.Collateral];
// if underflow happens, $.totalAssets[ISilo.AssetType.Collateral] is set to 0 and success is false
(success, $.totalAssets[ISilo.AssetType.Collateral]) = totalCollateralAssets.trySub(_assetsToRepay);
uint256 deductedFromCollateral = _assetsToRepay;
if (!success) {
uint256 excessDebt = _assetsToRepay - totalCollateralAssets;
deductedFromCollateral = totalCollateralAssets;
(, uint256 revenue) = uint256($.daoAndDeployerRevenue).trySub(excessDebt);
$.daoAndDeployerRevenue = revenue.toUint192();
}
emit IPartialLiquidationByDefaulting.DefaultingLiquidation(_assetsToRepay, deductedFromCollateral);
}
}// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity 0.8.28;
import {AccessControlEnumerable} from "openzeppelin5/access/extensions/AccessControlEnumerable.sol";
abstract contract Whitelist is AccessControlEnumerable {
bytes32 public constant ALLOWED_ROLE = keccak256("ALLOWED_ROLE");
error OnlyAllowedRole();
modifier onlyAllowedOrPublic() {
// If no allowed role is set, allow anyone to liquidate
require(getRoleMemberCount(ALLOWED_ROLE) == 0 || hasRole(ALLOWED_ROLE, msg.sender), OnlyAllowedRole());
_;
}
modifier onlyAllowed() {
require(hasRole(ALLOWED_ROLE, msg.sender), OnlyAllowedRole());
_;
}
// solhint-disable-next-line func-name-mixedcase
function __Whitelist_init(address _owner) internal virtual {
_grantRole(DEFAULT_ADMIN_ROLE, _owner);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol)
pragma solidity ^0.8.20;
/**
* @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
* behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
* external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
* function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
*
* The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
* reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
* case an upgrade adds a module that needs to be initialized.
*
* For example:
*
* [.hljs-theme-light.nopadding]
* ```solidity
* contract MyToken is ERC20Upgradeable {
* function initialize() initializer public {
* __ERC20_init("MyToken", "MTK");
* }
* }
*
* contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
* function initializeV2() reinitializer(2) public {
* __ERC20Permit_init("MyToken");
* }
* }
* ```
*
* TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
* possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
*
* CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
* that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
*
* [CAUTION]
* ====
* Avoid leaving a contract uninitialized.
*
* An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
* contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
* the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
*
* [.hljs-theme-light.nopadding]
* ```
* /// @custom:oz-upgrades-unsafe-allow constructor
* constructor() {
* _disableInitializers();
* }
* ```
* ====
*/
abstract contract Initializable {
/**
* @dev Storage of the initializable contract.
*
* It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions
* when using with upgradeable contracts.
*
* @custom:storage-location erc7201:openzeppelin.storage.Initializable
*/
struct InitializableStorage {
/**
* @dev Indicates that the contract has been initialized.
*/
uint64 _initialized;
/**
* @dev Indicates that the contract is in the process of being initialized.
*/
bool _initializing;
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00;
/**
* @dev The contract is already initialized.
*/
error InvalidInitialization();
/**
* @dev The contract is not initializing.
*/
error NotInitializing();
/**
* @dev Triggered when the contract has been initialized or reinitialized.
*/
event Initialized(uint64 version);
/**
* @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
* `onlyInitializing` functions can be used to initialize parent contracts.
*
* Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any
* number of times. This behavior in the constructor can be useful during testing and is not expected to be used in
* production.
*
* Emits an {Initialized} event.
*/
modifier initializer() {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
// Cache values to avoid duplicated sloads
bool isTopLevelCall = !$._initializing;
uint64 initialized = $._initialized;
// Allowed calls:
// - initialSetup: the contract is not in the initializing state and no previous version was
// initialized
// - construction: the contract is initialized at version 1 (no reininitialization) and the
// current contract is just being deployed
bool initialSetup = initialized == 0 && isTopLevelCall;
bool construction = initialized == 1 && address(this).code.length == 0;
if (!initialSetup && !construction) {
revert InvalidInitialization();
}
$._initialized = 1;
if (isTopLevelCall) {
$._initializing = true;
}
_;
if (isTopLevelCall) {
$._initializing = false;
emit Initialized(1);
}
}
/**
* @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
* contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
* used to initialize parent contracts.
*
* A reinitializer may be used after the original initialization step. This is essential to configure modules that
* are added through upgrades and that require initialization.
*
* When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
* cannot be nested. If one is invoked in the context of another, execution will revert.
*
* Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
* a contract, executing them in the right order is up to the developer or operator.
*
* WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization.
*
* Emits an {Initialized} event.
*/
modifier reinitializer(uint64 version) {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
if ($._initializing || $._initialized >= version) {
revert InvalidInitialization();
}
$._initialized = version;
$._initializing = true;
_;
$._initializing = false;
emit Initialized(version);
}
/**
* @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
* {initializer} and {reinitializer} modifiers, directly or indirectly.
*/
modifier onlyInitializing() {
_checkInitializing();
_;
}
/**
* @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}.
*/
function _checkInitializing() internal view virtual {
if (!_isInitializing()) {
revert NotInitializing();
}
}
/**
* @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
* Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
* to any version. It is recommended to use this to lock implementation contracts that are designed to be called
* through proxies.
*
* Emits an {Initialized} event the first time it is successfully executed.
*/
function _disableInitializers() internal virtual {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
if ($._initializing) {
revert InvalidInitialization();
}
if ($._initialized != type(uint64).max) {
$._initialized = type(uint64).max;
emit Initialized(type(uint64).max);
}
}
/**
* @dev Returns the highest version that has been initialized. See {reinitializer}.
*/
function _getInitializedVersion() internal view returns (uint64) {
return _getInitializableStorage()._initialized;
}
/**
* @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
*/
function _isInitializing() internal view returns (bool) {
return _getInitializableStorage()._initializing;
}
/**
* @dev Returns a pointer to the storage namespace.
*/
// solhint-disable-next-line var-name-mixedcase
function _getInitializableStorage() private pure returns (InitializableStorage storage $) {
assembly {
$.slot := INITIALIZABLE_STORAGE
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-20 standard as defined in the ERC.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC-20 standard.
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;
interface IERC3156FlashBorrower {
/// @notice During the execution of the flashloan, Silo methods are not taking into consideration the fact,
/// that some (or all) tokens were transferred as flashloan, therefore some methods can return invalid state
/// eg. maxWithdraw can return amount that are not available to withdraw during flashlon.
/// @dev Receive a flash loan.
/// @param _initiator The initiator of the loan.
/// @param _token The loan currency.
/// @param _amount The amount of tokens lent.
/// @param _fee The additional amount of tokens to repay.
/// @param _data Arbitrary data structure, intended to contain user-defined parameters.
/// @return The keccak256 hash of "ERC3156FlashBorrower.onFlashLoan"
function onFlashLoan(address _initiator, address _token, uint256 _amount, uint256 _fee, bytes calldata _data)
external
returns (bytes32);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC721.sol)
pragma solidity ^0.8.20;
import {IERC721} from "../token/ERC721/IERC721.sol";// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable2Step.sol)
pragma solidity ^0.8.20;
import {Ownable} from "./Ownable.sol";
/**
* @dev Contract module which provides access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* This extension of the {Ownable} contract includes a two-step mechanism to transfer
* ownership, where the new owner must call {acceptOwnership} in order to replace the
* old one. This can help prevent common mistakes, such as transfers of ownership to
* incorrect accounts, or to contracts that are unable to interact with the
* permission system.
*
* The initial owner is specified at deployment time in the constructor for `Ownable`. This
* can later be changed with {transferOwnership} and {acceptOwnership}.
*
* This module is used through inheritance. It will make available all functions
* from parent (Ownable).
*/
abstract contract Ownable2Step is Ownable {
address private _pendingOwner;
event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);
/**
* @dev Returns the address of the pending owner.
*/
function pendingOwner() public view virtual returns (address) {
return _pendingOwner;
}
/**
* @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual override onlyOwner {
_pendingOwner = newOwner;
emit OwnershipTransferStarted(owner(), newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual override {
delete _pendingOwner;
super._transferOwnership(newOwner);
}
/**
* @dev The new owner accepts the ownership transfer.
*/
function acceptOwnership() public virtual {
address sender = _msgSender();
if (pendingOwner() != sender) {
revert OwnableUnauthorizedAccount(sender);
}
_transferOwnership(sender);
}
}// SPDX-License-Identifier: agpl-3.0
pragma solidity 0.8.28;
import {DistributionTypes} from "../lib/DistributionTypes.sol";
interface IDistributionManager {
struct IncentivesProgram {
uint256 index;
address rewardToken; // can't be updated after creation
uint104 emissionPerSecond; // configured by owner
uint40 lastUpdateTimestamp;
uint40 distributionEnd; // configured by owner
mapping(address user => uint256 userIndex) users;
}
struct IncentiveProgramDetails {
uint256 index;
address rewardToken;
uint104 emissionPerSecond;
uint40 lastUpdateTimestamp;
uint40 distributionEnd;
}
struct AccruedRewards {
uint256 amount;
bytes32 programId;
address rewardToken;
}
event AssetConfigUpdated(address indexed asset, uint256 emission);
event AssetIndexUpdated(address indexed asset, uint256 index);
event DistributionEndUpdated(string incentivesProgram, uint256 newDistributionEnd);
event IncentivesProgramIndexUpdated(string incentivesProgram, uint256 newIndex);
event UserIndexUpdated(address indexed user, string incentivesProgram, uint256 newIndex);
error OnlyNotifier();
error TooLongProgramName();
error InvalidIncentivesProgramName();
error OnlyNotifierOrOwner();
error ZeroAddress();
/**
* @dev Sets the end date for the distribution
* @param _incentivesProgram The incentives program name
* @param _distributionEnd The end date timestamp
*/
function setDistributionEnd(string calldata _incentivesProgram, uint40 _distributionEnd) external;
/**
* @dev Gets the end date for the distribution
* @param _incentivesProgram The incentives program name
* @return The end of the distribution
*/
function getDistributionEnd(string calldata _incentivesProgram) external view returns (uint256);
/**
* @dev Returns the data of an user on a distribution
* @param _user Address of the user
* @param _incentivesProgram The incentives program name
* @return The new index
*/
function getUserData(address _user, string calldata _incentivesProgram) external view returns (uint256);
/**
* @dev Returns the configuration of the distribution for a certain incentives program
* @param _incentivesProgram The incentives program name
* @return details The configuration of the incentives program
*/
function incentivesProgram(string calldata _incentivesProgram)
external
view
returns (IncentiveProgramDetails memory details);
/**
* @dev returns the names of all the incentives programs
* @return programsNames the names of all the incentives programs
*/
function getAllProgramsNames() external view returns (string[] memory programsNames);
/**
* @dev Returns the name of an incentives program (converts bytes32 to string)
* @notice This function has a bug and can't do it in proper way when _programId is for
* immediate distribution (token address) that was not created yet.
* It works for programs that already exists.
*
* @param _programId the id (bytes32) of the incentives program
* @return programName the name (string) of the incentives program
*/
function getProgramName(bytes32 _programId) external view returns (string memory programName);
/// @dev NOTIFIER is contract that is allowed to notify controller about token transfers.
/// In original Aave implementation it was share token, but in Silo implementation it is usually hook contract.
function NOTIFIER() external view returns (address); // solhint-disable-line func-name-mixedcase
/**
* @dev Returns the program id for the given program name.
* This method TRUNCATES the program name to 32 bytes.
* If provided strings only differ after the 32nd byte they would result in the same ProgramId.
* Ensure to use inputs that will result in 32 bytes or less.
* @param _programName The incentives program name
* @return programId
*/
function getProgramId(string calldata _programName) external pure returns (bytes32 programId);
}// SPDX-License-Identifier: agpl-3.0
pragma solidity 0.8.28;
library DistributionTypes {
struct IncentivesProgramCreationInput {
string name;
address rewardToken;
uint104 emissionPerSecond;
uint40 distributionEnd;
}
struct AssetConfigInput {
uint104 emissionPerSecond;
uint256 totalStaked;
address underlyingAsset;
}
struct UserStakeInput {
address underlyingAsset;
uint256 stakedByUser;
uint256 totalStaked;
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
/**
* @dev Helper library for emitting standardized panic codes.
*
* ```solidity
* contract Example {
* using Panic for uint256;
*
* // Use any of the declared internal constants
* function foo() { Panic.GENERIC.panic(); }
*
* // Alternatively
* function foo() { Panic.panic(Panic.GENERIC); }
* }
* ```
*
* Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
*/
// slither-disable-next-line unused-state
library Panic {
/// @dev generic / unspecified error
uint256 internal constant GENERIC = 0x00;
/// @dev used by the assert() builtin
uint256 internal constant ASSERT = 0x01;
/// @dev arithmetic underflow or overflow
uint256 internal constant UNDER_OVERFLOW = 0x11;
/// @dev division or modulo by zero
uint256 internal constant DIVISION_BY_ZERO = 0x12;
/// @dev enum conversion error
uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
/// @dev invalid encoding in storage
uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
/// @dev empty array pop
uint256 internal constant EMPTY_ARRAY_POP = 0x31;
/// @dev array out of bounds access
uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
/// @dev resource error (too large allocation or too large array)
uint256 internal constant RESOURCE_ERROR = 0x41;
/// @dev calling invalid internal function
uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
/// @dev Reverts with a panic code. Recommended to use with
/// the internal constants with predefined codes.
function panic(uint256 code) internal pure {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, 0x4e487b71)
mstore(0x20, code)
revert(0x1c, 0x24)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
/**
* @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
*/
function toUint(bool b) internal pure returns (uint256 u) {
/// @solidity memory-safe-assembly
assembly {
u := iszero(iszero(b))
}
}
}// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.28;
import {Math} from "openzeppelin5/utils/math/Math.sol";
// solhint-disable private-vars-leading-underscore
library Rounding {
Math.Rounding internal constant UP = Math.Rounding.Ceil;
Math.Rounding internal constant DOWN = Math.Rounding.Floor;
Math.Rounding internal constant DEBT_TO_ASSETS = Math.Rounding.Ceil;
// COLLATERAL_TO_ASSETS is used to calculate borrower collateral (so we want to round down)
Math.Rounding internal constant COLLATERAL_TO_ASSETS = Math.Rounding.Floor;
// why DEPOSIT_TO_ASSETS is Up if COLLATERAL_TO_ASSETS is Down?
// DEPOSIT_TO_ASSETS is used for preview deposit and deposit, based on provided shares we want to pull "more" tokens
// so we rounding up, "token flow" is in different direction than for COLLATERAL_TO_ASSETS, that's why
// different rounding policy
Math.Rounding internal constant DEPOSIT_TO_ASSETS = Math.Rounding.Ceil;
Math.Rounding internal constant DEPOSIT_TO_SHARES = Math.Rounding.Floor;
Math.Rounding internal constant BORROW_TO_ASSETS = Math.Rounding.Floor;
Math.Rounding internal constant BORROW_TO_SHARES = Math.Rounding.Ceil;
Math.Rounding internal constant MAX_BORROW_TO_ASSETS = Math.Rounding.Floor;
Math.Rounding internal constant MAX_BORROW_TO_SHARES = Math.Rounding.Floor;
Math.Rounding internal constant MAX_BORROW_VALUE = Math.Rounding.Floor;
Math.Rounding internal constant REPAY_TO_ASSETS = Math.Rounding.Ceil;
Math.Rounding internal constant REPAY_TO_SHARES = Math.Rounding.Floor;
Math.Rounding internal constant MAX_REPAY_TO_ASSETS = Math.Rounding.Ceil;
Math.Rounding internal constant WITHDRAW_TO_ASSETS = Math.Rounding.Floor;
Math.Rounding internal constant WITHDRAW_TO_SHARES = Math.Rounding.Ceil;
Math.Rounding internal constant MAX_WITHDRAW_TO_ASSETS = Math.Rounding.Floor;
Math.Rounding internal constant MAX_WITHDRAW_TO_SHARES = Math.Rounding.Floor;
Math.Rounding internal constant LIQUIDATE_TO_SHARES = Math.Rounding.Floor;
Math.Rounding internal constant LTV = Math.Rounding.Ceil;
Math.Rounding internal constant ACCRUED_INTEREST = Math.Rounding.Floor;
Math.Rounding internal constant DAO_REVENUE = Math.Rounding.Ceil;
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../token/ERC20/IERC20.sol";// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";
import {Address} from "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC-20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev An operation with an ERC-20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
safeTransfer(token, to, value);
} else if (!token.transferAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
* has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferFromAndCallRelaxed(
IERC1363 token,
address from,
address to,
uint256 value,
bytes memory data
) internal {
if (to.code.length == 0) {
safeTransferFrom(token, from, to, value);
} else if (!token.transferFromAndCall(from, to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
* Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
* once without retrying, and relies on the returned value to be true.
*
* Reverts if the returned value is other than `true`.
*/
function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
forceApprove(token, to, value);
} else if (!token.approveAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data);
if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
}
}// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.28;
// solhint-disable ordering
import {Math} from "openzeppelin5/utils/math/Math.sol";
import {Rounding} from "../lib/Rounding.sol";
import {ISilo} from "../interfaces/ISilo.sol";
library SiloMathLib {
using Math for uint256;
uint256 internal constant _PRECISION_DECIMALS = 1e18;
uint256 internal constant _DECIMALS_OFFSET = 3;
/// @dev this is constant version of openzeppelin5/contracts/token/ERC20/extensions/ERC4626._decimalsOffset
uint256 internal constant _DECIMALS_OFFSET_POW = 10 ** _DECIMALS_OFFSET;
/// @notice Returns available liquidity to be borrowed
/// @dev Accrued interest is entirely added to `debtAssets` but only part of it is added to `collateralAssets`. The
/// difference is DAO's and deployer's cut. That means DAO's and deployer's cut is not considered a borrowable
/// liquidity.
function liquidity(uint256 _collateralAssets, uint256 _debtAssets) internal pure returns (uint256 liquidAssets) {
unchecked {
// we checked the underflow
liquidAssets = _debtAssets > _collateralAssets ? 0 : _collateralAssets - _debtAssets;
}
}
/// @notice Calculate collateral assets with accrued interest and associated fees
/// @param _collateralAssets The total amount of collateral assets
/// @param _debtAssets The total amount of debt assets
/// @param _rcomp Compound interest rate for debt
/// @param _daoFee The fee (in 18 decimals points) to be taken for the DAO
/// @param _deployerFee The fee (in 18 decimals points) to be taken for the deployer
/// @return collateralAssetsWithInterest The total collateral assets including the accrued interest
/// @return debtAssetsWithInterest The debt assets with accrued interest
/// @return daoAndDeployerRevenue Total fees amount to be split between DAO and deployer
/// @return accruedInterest The total accrued interest
function getCollateralAmountsWithInterest(
uint256 _collateralAssets,
uint256 _debtAssets,
uint256 _rcomp,
uint256 _daoFee,
uint256 _deployerFee
)
internal
pure
returns (
uint256 collateralAssetsWithInterest,
uint256 debtAssetsWithInterest,
uint256 daoAndDeployerRevenue,
uint256 accruedInterest
)
{
(debtAssetsWithInterest, accruedInterest) = getDebtAmountsWithInterest(_debtAssets, _rcomp);
uint256 fees;
// _daoFee and _deployerFee are expected to be less than 1e18, so we will not overflow
unchecked { fees = _daoFee + _deployerFee; }
daoAndDeployerRevenue = mulDivOverflow(accruedInterest, fees, _PRECISION_DECIMALS);
// we will not underflow because daoAndDeployerRevenue is chunk of accruedInterest
uint256 collateralInterest = accruedInterest - daoAndDeployerRevenue;
uint256 cap;
// save to uncheck because variable can not be more than max
unchecked { cap = type(uint256).max - _collateralAssets; }
if (cap < collateralInterest) {
// avoid overflow on interest
collateralInterest = cap;
}
// safe to uncheck because of cap
unchecked { collateralAssetsWithInterest = _collateralAssets + collateralInterest; }
}
/// @notice Calculate the debt assets with accrued interest, it should never revert with over/under flow
/// @param _totalDebtAssets The total amount of debt assets before accrued interest
/// @param _rcomp Compound interest rate for the debt in 18 decimal precision
/// @return debtAssetsWithInterest The debt assets including the accrued interest
/// @return accruedInterest The total amount of interest accrued on the debt assets
function getDebtAmountsWithInterest(uint256 _totalDebtAssets, uint256 _rcomp)
internal
pure
returns (uint256 debtAssetsWithInterest, uint256 accruedInterest)
{
if (_totalDebtAssets == 0 || _rcomp == 0) {
return (_totalDebtAssets, 0);
}
accruedInterest = mulDivOverflow(_totalDebtAssets, _rcomp, _PRECISION_DECIMALS);
unchecked {
// We intentionally allow overflow here, to prevent transaction revert due to interest calculation.
debtAssetsWithInterest = _totalDebtAssets + accruedInterest;
// If overflow occurs, we skip accruing interest.
if (debtAssetsWithInterest < _totalDebtAssets) {
debtAssetsWithInterest = _totalDebtAssets;
accruedInterest = 0;
}
}
}
/// @notice Calculates fraction between borrowed and deposited amount of tokens denominated in percentage
/// @dev It assumes `_dp` = 100%.
/// @param _dp decimal points used by model
/// @param _collateralAssets current total deposits for assets
/// @param _debtAssets current total borrows for assets
/// @return utilization value, capped to 100%
/// Limiting utilization ratio by 100% max will allows us to perform better interest rate computations
/// and should not affect any other part of protocol. It is possible to go over 100% only when bad debt.
function calculateUtilization(uint256 _dp, uint256 _collateralAssets, uint256 _debtAssets)
internal
pure
returns (uint256 utilization)
{
if (_collateralAssets == 0 || _debtAssets == 0 || _dp == 0) return 0;
/*
how to prevent overflow on: _debtAssets.mulDiv(_dp, _collateralAssets, Rounding.ACCRUED_INTEREST):
1. max > _debtAssets * _dp / _collateralAssets
2. max / _dp > _debtAssets / _collateralAssets
*/
if (type(uint256).max / _dp > _debtAssets / _collateralAssets) {
utilization = _debtAssets.mulDiv(_dp, _collateralAssets, Rounding.ACCRUED_INTEREST);
// cap at 100%
if (utilization > _dp) utilization = _dp;
} else {
// we have overflow
utilization = _dp;
}
}
function convertToAssetsOrToShares(
uint256 _assets,
uint256 _shares,
uint256 _totalAssets,
uint256 _totalShares,
Math.Rounding _roundingToAssets,
Math.Rounding _roundingToShares,
ISilo.AssetType _assetType
) internal pure returns (uint256 assets, uint256 shares) {
if (_assets == 0) {
require(_shares != 0, ISilo.InputZeroShares());
shares = _shares;
assets = convertToAssets(_shares, _totalAssets, _totalShares, _roundingToAssets, _assetType);
require(assets != 0, ISilo.ReturnZeroAssets());
} else if (_shares == 0) {
shares = convertToShares(_assets, _totalAssets, _totalShares, _roundingToShares, _assetType);
assets = _assets;
require(shares != 0, ISilo.ReturnZeroShares());
} else {
revert ISilo.InputCanBeAssetsOrShares();
}
}
/// @dev Math for collateral is exact copy of
/// openzeppelin5/contracts/token/ERC20/extensions/ERC4626._convertToShares
function convertToShares(
uint256 _assets,
uint256 _totalAssets,
uint256 _totalShares,
Math.Rounding _rounding,
ISilo.AssetType _assetType
) internal pure returns (uint256 shares) {
(uint256 totalShares, uint256 totalAssets) = _commonConvertTo(_totalAssets, _totalShares, _assetType);
// initially, in case of debt, if silo is empty we return shares==assets
// for collateral, this will never be the case, because we are adding `+1` and offset in `_commonConvertTo`
if (totalShares == 0) return _assets;
shares = _assets.mulDiv(totalShares, totalAssets, _rounding);
}
/// @dev Math for collateral is exact copy of
/// openzeppelin5/contracts/token/ERC20/extensions/ERC4626._convertToAssets
function convertToAssets(
uint256 _shares,
uint256 _totalAssets,
uint256 _totalShares,
Math.Rounding _rounding,
ISilo.AssetType _assetType
) internal pure returns (uint256 assets) {
(uint256 totalShares, uint256 totalAssets) = _commonConvertTo(_totalAssets, _totalShares, _assetType);
// initially, in case of debt, if silo is empty we return shares==assets
// for collateral, this will never be the case, because of `+1` in line above
if (totalShares == 0) return _shares;
assets = _shares.mulDiv(totalAssets, totalShares, _rounding);
}
/// @param _collateralMaxLtv maxLTV in 18 decimals that is set for debt asset
/// @param _sumOfBorrowerCollateralValue borrower total collateral value (including protected)
/// @param _borrowerDebtValue total value of borrower debt
/// @return maxBorrowValue max borrow value yet available for borrower
function calculateMaxBorrowValue(
uint256 _collateralMaxLtv,
uint256 _sumOfBorrowerCollateralValue,
uint256 _borrowerDebtValue
) internal pure returns (uint256 maxBorrowValue) {
if (_sumOfBorrowerCollateralValue == 0) {
return 0;
}
uint256 maxDebtValue = _sumOfBorrowerCollateralValue.mulDiv(
_collateralMaxLtv, _PRECISION_DECIMALS, Rounding.MAX_BORROW_VALUE
);
unchecked {
// we will not underflow because we checking `maxDebtValue > _borrowerDebtValue`
maxBorrowValue = maxDebtValue > _borrowerDebtValue ? maxDebtValue - _borrowerDebtValue : 0;
}
}
/// @notice Calculate the maximum assets a borrower can withdraw without breaching the liquidation threshold
/// @param _sumOfCollateralsValue The combined value of collateral and protected assets of the borrower
/// @param _debtValue The total debt value of the borrower
/// @param _lt The liquidation threshold in 18 decimal points
/// @param _borrowerCollateralAssets The borrower's collateral assets before the withdrawal
/// @param _borrowerProtectedAssets The borrower's protected assets before the withdrawal
/// @return maxAssets The maximum assets the borrower can safely withdraw
function calculateMaxAssetsToWithdraw(
uint256 _sumOfCollateralsValue,
uint256 _debtValue,
uint256 _lt,
uint256 _borrowerCollateralAssets,
uint256 _borrowerProtectedAssets
) internal pure returns (uint256 maxAssets) {
if (_sumOfCollateralsValue == 0) return 0;
if (_debtValue == 0) return _sumOfCollateralsValue;
if (_lt == 0) return 0;
// using Rounding.LT (up) to have highest collateralValue that we have to leave for user to stay solvent
uint256 minimumCollateralValue = _debtValue.mulDiv(_PRECISION_DECIMALS, _lt, Rounding.LTV);
// if we over LT, we can not withdraw
if (_sumOfCollateralsValue <= minimumCollateralValue) {
return 0;
}
uint256 spareCollateralValue;
// safe because we checked `if (_sumOfCollateralsValue <= minimumCollateralValue)`
unchecked { spareCollateralValue = _sumOfCollateralsValue - minimumCollateralValue; }
maxAssets = (_borrowerProtectedAssets + _borrowerCollateralAssets)
.mulDiv(spareCollateralValue, _sumOfCollateralsValue, Rounding.MAX_WITHDRAW_TO_ASSETS);
}
/// @notice Determines the maximum number of assets and corresponding shares a borrower can safely withdraw
/// @param _maxAssets The calculated limit on how many assets can be withdrawn without breaching the liquidation
/// threshold
/// @param _borrowerCollateralAssets Amount of collateral assets currently held by the borrower
/// @param _borrowerProtectedAssets Amount of protected assets currently held by the borrower
/// @param _collateralType Specifies whether the asset is of type Collateral or Protected
/// @param _totalAssets The entire quantity of assets available in the system for withdrawal
/// @param _assetTypeShareTokenTotalSupply Total supply of share tokens for the specified asset type
/// @param _liquidity Current liquidity in the system for the asset type
/// @return assets Maximum assets the borrower can withdraw
/// @return shares Corresponding number of shares for the derived `assets` amount
function maxWithdrawToAssetsAndShares(
uint256 _maxAssets,
uint256 _borrowerCollateralAssets,
uint256 _borrowerProtectedAssets,
ISilo.CollateralType _collateralType,
uint256 _totalAssets,
uint256 _assetTypeShareTokenTotalSupply,
uint256 _liquidity
) internal pure returns (uint256 assets, uint256 shares) {
if (_maxAssets == 0) return (0, 0);
if (_assetTypeShareTokenTotalSupply == 0) return (0, 0);
if (_collateralType == ISilo.CollateralType.Collateral) {
assets = _maxAssets > _borrowerCollateralAssets ? _borrowerCollateralAssets : _maxAssets;
if (assets > _liquidity) {
assets = _liquidity;
}
} else {
assets = _maxAssets > _borrowerProtectedAssets ? _borrowerProtectedAssets : _maxAssets;
}
shares = SiloMathLib.convertToShares(
assets,
_totalAssets,
_assetTypeShareTokenTotalSupply,
Rounding.MAX_WITHDRAW_TO_SHARES,
ISilo.AssetType(uint256(_collateralType))
);
}
/// @dev executed `_a * _b / _c`, reverts on _c == 0
/// @return mulDivResult on overflow returns 0
function mulDivOverflow(uint256 _a, uint256 _b, uint256 _c)
internal
pure
returns (uint256 mulDivResult)
{
if (_a == 0) return (0);
unchecked {
// we have to uncheck to detect overflow
mulDivResult = _a * _b;
if (mulDivResult / _a != _b) return 0;
mulDivResult /= _c;
}
}
/// @dev Debt calculations should not lower the result. Debt is a liability so protocol should not take any for
/// itself. It should return actual result and round it up.
function _commonConvertTo(
uint256 _totalAssets,
uint256 _totalShares,
ISilo.AssetType _assetType
) private pure returns (uint256 totalShares, uint256 totalAssets) {
if (_totalShares == 0) {
// silo is empty and we have dust to redistribute: this can only happen when everyone exits silo
// this case can happen only for collateral, because for collateral we rounding in favorite of protocol
// by resetting totalAssets, the dust that we have will go to first depositor and we starts from clean state
_totalAssets = 0;
}
(totalShares, totalAssets) = _assetType == ISilo.AssetType.Debt
? (_totalShares, _totalAssets)
: (_totalShares + _DECIMALS_OFFSET_POW, _totalAssets + 1);
}
/// @dev Calculates the fraction of a given total and percentage
/// @param _total The total value to calculate the fraction from
/// @param _percent The percentage to calculate the fraction from
/// @param _currentFraction The current fraction to add to the result
/// @return integral The integral part of the fraction
/// @return fraction The fractional part of the fraction
function calculateFraction(
uint256 _total,
uint256 _percent,
uint64 _currentFraction
) internal pure returns (uint256 integral, uint64 fraction) {
if (_total == 0) {
return (0, _currentFraction);
}
unchecked {
// safe to unchecked because: _currentFraction if never more than max uint256, div is safe
if (type(uint256).max / _total < _percent) {
// when overflow, reset `_currentFraction ` to zero as part of circuit breaker
return (0, 0);
}
// `_total * _percent` safe to unchecked because we checked for overflow in above `if`
// `% _PRECISION_DECIMALS` safe, because max value after modulo will be 1e18 - 1 (_PRECISION_DECIMALS - 1)
// and this is less than 2 ** 64
// calculate remainder for current interest
uint256 remainder = (_total * _percent) % _PRECISION_DECIMALS;
// integral is amount above 1e18 after adding _currentFraction and remainder
integral = (_currentFraction + remainder) / _PRECISION_DECIMALS;
// fraction is what we get below 1e18
fraction = uint64((_currentFraction + remainder) % _PRECISION_DECIMALS);
}
}
}// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.28;
library RevertLib {
function revertBytes(bytes memory _errMsg, string memory _customErr) internal pure {
if (_errMsg.length > 0) {
assembly { // solhint-disable-line no-inline-assembly
revert(add(32, _errMsg), mload(_errMsg))
}
}
revert(_customErr);
}
function revertBytes(bytes memory _errMsg, bytes4 _customErrSelector) internal pure {
if (_errMsg.length > 0) {
assembly { // solhint-disable-line no-inline-assembly
revert(add(32, _errMsg), mload(_errMsg))
}
}
revertWithCustomError(_customErrSelector);
}
function revertIfError(bytes4 _errorSelector) internal pure {
if (_errorSelector == 0) return;
revertWithCustomError(_errorSelector);
}
function revertWithCustomError(bytes4 _errorSelector) internal pure {
bytes memory customError = abi.encodeWithSelector(_errorSelector);
// solhint-disable-next-line no-inline-assembly
assembly {
revert(add(32, customError), mload(customError))
}
}
}// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.28;
import {ISiloConfig} from "../interfaces/ISiloConfig.sol";
import {ISiloOracle} from "../interfaces/ISiloOracle.sol";
library CallBeforeQuoteLib {
/// @dev Call `beforeQuote` on the `solvencyOracle` oracle
/// @param _config Silo config data
function callSolvencyOracleBeforeQuote(ISiloConfig.ConfigData memory _config) internal {
if (_config.callBeforeQuote && _config.solvencyOracle != address(0)) {
ISiloOracle(_config.solvencyOracle).beforeQuote(_config.token);
}
}
/// @dev Call `beforeQuote` on the `maxLtvOracle` oracle
/// @param _config Silo config data
function callMaxLtvOracleBeforeQuote(ISiloConfig.ConfigData memory _config) internal {
if (_config.callBeforeQuote && _config.maxLtvOracle != address(0)) {
ISiloOracle(_config.maxLtvOracle).beforeQuote(_config.token);
}
}
}// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity 0.8.28;
import {ISilo} from "silo-core/contracts/interfaces/ISilo.sol";
import {ISiloConfig} from "silo-core/contracts/interfaces/ISiloConfig.sol";
import {IPartialLiquidation} from "silo-core/contracts/interfaces/IPartialLiquidation.sol";
import {SiloSolvencyLib} from "silo-core/contracts/lib/SiloSolvencyLib.sol";
import {PartialLiquidationLib} from "./PartialLiquidationLib.sol";
library PartialLiquidationExecLib {
/// @dev it will be user responsibility to check profit, this method expect interest to be already accrued
function getExactLiquidationAmounts(
ISiloConfig.ConfigData memory _collateralConfig,
ISiloConfig.ConfigData memory _debtConfig,
address _user,
uint256 _maxDebtToCover,
uint256 _liquidationFee
)
external
view
returns (
uint256 withdrawAssetsFromCollateral,
uint256 withdrawAssetsFromProtected,
uint256 repayDebtAssets,
bytes4 customError
)
{
SiloSolvencyLib.LtvData memory ltvData = SiloSolvencyLib.getAssetsDataForLtvCalculations({
_collateralConfig: _collateralConfig,
_debtConfig: _debtConfig,
_borrower: _user,
_oracleType: ISilo.OracleType.Solvency,
_accrueInMemory: ISilo.AccrueInterestInMemory.No,
_debtShareBalanceCached:0 /* no cached balance */
});
uint256 borrowerCollateralToLiquidate;
(
borrowerCollateralToLiquidate, repayDebtAssets, customError
) = liquidationPreview(
ltvData,
PartialLiquidationLib.LiquidationPreviewParams({
collateralLt: _collateralConfig.lt,
collateralConfigAsset: _collateralConfig.token,
debtConfigAsset: _debtConfig.token,
maxDebtToCover: _maxDebtToCover,
liquidationTargetLtv: _collateralConfig.liquidationTargetLtv,
liquidationFee: _liquidationFee
})
);
(
withdrawAssetsFromCollateral, withdrawAssetsFromProtected
) = PartialLiquidationLib.splitReceiveCollateralToLiquidate(
borrowerCollateralToLiquidate, ltvData.borrowerProtectedAssets
);
}
/// @dev debt keeps growing over time, so when dApp use this view to calculate max, tx should never revert
/// because actual max can be only higher
// solhint-disable-next-line function-max-lines
function maxLiquidation(ISiloConfig _siloConfig, address _borrower)
external
view
returns (uint256 collateralToLiquidate, uint256 debtToRepay, bool sTokenRequired)
{
(
ISiloConfig.ConfigData memory collateralConfig,
ISiloConfig.ConfigData memory debtConfig
) = _siloConfig.getConfigsForSolvency(_borrower);
if (debtConfig.silo == address(0)) {
return (0, 0, false);
}
SiloSolvencyLib.LtvData memory ltvData = SiloSolvencyLib.getAssetsDataForLtvCalculations(
collateralConfig,
debtConfig,
_borrower,
ISilo.OracleType.Solvency,
ISilo.AccrueInterestInMemory.Yes,
0 /* no cached balance */
);
if (ltvData.borrowerDebtAssets == 0) return (0, 0, false);
(
uint256 sumOfCollateralValue, uint256 debtValue
) = SiloSolvencyLib.getPositionValues(ltvData, collateralConfig.token, debtConfig.token);
uint256 sumOfCollateralAssets = ltvData.borrowerProtectedAssets + ltvData.borrowerCollateralAssets;
if (sumOfCollateralValue == 0) return (sumOfCollateralAssets, ltvData.borrowerDebtAssets, false);
uint256 ltvInDp = SiloSolvencyLib.ltvMath(debtValue, sumOfCollateralValue);
if (ltvInDp <= collateralConfig.lt) return (0, 0, false); // user solvent
(collateralToLiquidate, debtToRepay) = PartialLiquidationLib.maxLiquidation(
sumOfCollateralAssets,
sumOfCollateralValue,
ltvData.borrowerDebtAssets,
debtValue,
collateralConfig.liquidationTargetLtv,
collateralConfig.liquidationFee
);
// maxLiquidation() can underestimate collateral by `PartialLiquidationLib._UNDERESTIMATION`,
// when we do that, actual collateral that we will transfer will match exactly liquidity,
// but we will liquidate higher value by 1 or 2, then sTokenRequired will return false,
// but we can not withdraw (because we will be short by 2) solution is to include this 2wei here
unchecked {
// safe to uncheck, because we underestimated this value in a first place by _UNDERESTIMATION
uint256 overestimatedCollateral = collateralToLiquidate + PartialLiquidationLib._UNDERESTIMATION;
sTokenRequired = overestimatedCollateral > ISilo(collateralConfig.silo).getLiquidity();
}
}
/// @return receiveCollateralAssets collateral + protected to liquidate, on self liquidation when borrower repay
/// all debt, he will receive all collateral back
/// @return repayDebtAssets
function liquidationPreview( // solhint-disable-line function-max-lines, code-complexity
SiloSolvencyLib.LtvData memory _ltvData,
PartialLiquidationLib.LiquidationPreviewParams memory _params
)
internal
view
returns (uint256 receiveCollateralAssets, uint256 repayDebtAssets, bytes4 customError)
{
uint256 sumOfCollateralAssets = _ltvData.borrowerCollateralAssets + _ltvData.borrowerProtectedAssets;
if (_ltvData.borrowerDebtAssets == 0 || _params.maxDebtToCover == 0) {
return (0, 0, IPartialLiquidation.NoDebtToCover.selector);
}
if (sumOfCollateralAssets == 0) {
return (
0,
_params.maxDebtToCover > _ltvData.borrowerDebtAssets
? _ltvData.borrowerDebtAssets
: _params.maxDebtToCover,
bytes4(0) // no error
);
}
(
uint256 sumOfBorrowerCollateralValue, uint256 totalBorrowerDebtValue, uint256 ltvBefore
) = SiloSolvencyLib.calculateLtv(_ltvData, _params.collateralConfigAsset, _params.debtConfigAsset);
if (_params.collateralLt >= ltvBefore) return (0, 0, IPartialLiquidation.UserIsSolvent.selector);
uint256 ltvAfter;
(receiveCollateralAssets, repayDebtAssets, ltvAfter) = PartialLiquidationLib.liquidationPreview(
ltvBefore,
sumOfCollateralAssets,
sumOfBorrowerCollateralValue,
_ltvData.borrowerDebtAssets,
totalBorrowerDebtValue,
_params
);
if (receiveCollateralAssets == 0 || repayDebtAssets == 0) {
return (0, 0, IPartialLiquidation.NoRepayAssets.selector);
}
}
}// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity 0.8.28;
abstract contract TransientReentrancy {
error ReentrancyGuardReentrantCall();
bool private transient _lock;
modifier nonReentrant() {
require(!_lock, ReentrancyGuardReentrantCall());
_lock = true;
_;
_lock = false;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "ON", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function reentrancyGuardEntered() internal view returns (bool) {
return _lock;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return a == 0 ? 0 : (a - 1) / b + 1;
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2²⁵⁶ + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= prod1) {
Panic.panic(denominator == 0 ? Panic.DIVISION_BY_ZERO : Panic.UNDER_OVERFLOW);
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, expect 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Ferma's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return x < 0 ? (n - uint256(-x)) : uint256(x); // Wrap the result if it's negative.
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked has failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
/// @solidity memory-safe-assembly
assembly {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
/// @solidity memory-safe-assembly
assembly {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ≥ 0
// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ≤ 2**(2*e-4) / (3 * 2**(e-1))
// ≤ 2**(e-3) / 3
// ≤ 2**(e-3-log2(3))
// ≤ 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ≤ (2**(e-k))² / (2 * 2**(e-1))
// ≤ 2**(2*e-2*k) / 2**e
// ≤ 2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 exp;
unchecked {
exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
value >>= exp;
result += exp;
exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
value >>= exp;
result += exp;
exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
value >>= exp;
result += exp;
exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
value >>= exp;
result += exp;
exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
value >>= exp;
result += exp;
exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
value >>= exp;
result += exp;
exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
value >>= exp;
result += exp;
result += SafeCast.toUint(value > 1);
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 isGt;
unchecked {
isGt = SafeCast.toUint(value > (1 << 128) - 1);
value >>= isGt * 128;
result += isGt * 16;
isGt = SafeCast.toUint(value > (1 << 64) - 1);
value >>= isGt * 64;
result += isGt * 8;
isGt = SafeCast.toUint(value > (1 << 32) - 1);
value >>= isGt * 32;
result += isGt * 4;
isGt = SafeCast.toUint(value > (1 << 16) - 1);
value >>= isGt * 16;
result += isGt * 2;
result += SafeCast.toUint(value > (1 << 8) - 1);
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
/**
* @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
*/
function toUint(bool b) internal pure returns (uint256 u) {
/// @solidity memory-safe-assembly
assembly {
u := iszero(iszero(b))
}
}
}// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity 0.8.28;
import {ISilo} from "silo-core/contracts/interfaces/ISilo.sol";
import {SiloStorageLib} from "silo-core/contracts/lib/SiloStorageLib.sol";
import {IShareToken} from "silo-core/contracts/interfaces/IShareToken.sol";
import {ISiloConfig} from "silo-core/contracts/interfaces/ISiloConfig.sol";
import {Rounding} from "silo-core/contracts/lib/Rounding.sol";
import {SiloMathLib} from "silo-core/contracts/lib/SiloMathLib.sol";
import {ShareTokenLib} from "silo-core/contracts/lib/ShareTokenLib.sol";
import {Hook} from "silo-core/contracts/lib/Hook.sol";
import {IHookReceiver} from "silo-core/contracts/interfaces/IHookReceiver.sol";
/// @title PartialLiquidationByDefaultingLogic
/// @dev implements custom delegate call logic for Silo
library DefaultingRepayLib {
using Hook for uint256;
using Hook for uint24;
/// @notice Repays a given asset amount and returns the equivalent number of shares
/// @dev This is a copy of lib/Actions.sol repay() function with a single line changed.
/// this.actionsRepay() is used instead of SiloLendingLib.repay().
/// @param _assets Amount of assets to be repaid
/// @param _borrower Address of the borrower whose debt is being repaid
/// @param _repayer Address of the repayer who repay debt
/// @return assets number of assets that had been repay
/// @return shares number of shares that had been repay
// solhint-disable-next-line function-max-lines
function actionsRepay(uint256 _assets, uint256 _shares, address _borrower, address _repayer)
external
returns (uint256 assets, uint256 shares)
{
IShareToken.ShareTokenStorage storage _shareStorage = ShareTokenLib.getShareTokenStorage();
if (_shareStorage.hookSetup.hooksBefore.matchAction(Hook.REPAY)) {
bytes memory data = abi.encodePacked(_assets, _shares, _borrower, _repayer);
IHookReceiver(_shareStorage.hookSetup.hookReceiver).beforeAction(address(this), Hook.REPAY, data);
}
ISiloConfig siloConfig = _shareStorage.siloConfig;
siloConfig.turnOnReentrancyProtection();
siloConfig.accrueInterestForSilo(address(this));
(address debtShareToken, address debtAsset) = siloConfig.getDebtShareTokenAndAsset(address(this));
(assets, shares) = siloLendingLibRepay(
IShareToken(debtShareToken), debtAsset, _assets, _shares, _borrower, _repayer
);
siloConfig.turnOffReentrancyProtection();
if (_shareStorage.hookSetup.hooksAfter.matchAction(Hook.REPAY)) {
bytes memory data = abi.encodePacked(_assets, _shares, _borrower, _repayer, assets, shares);
IHookReceiver(_shareStorage.hookSetup.hookReceiver).afterAction(address(this), Hook.REPAY, data);
}
}
/// @dev This is a copy of lib/SiloLendingLib.sol repay() function with a single line changed.
/// In the last line _debtAsset transfer from repayer is removed.
function siloLendingLibRepay(
IShareToken _debtShareToken,
address, /* _debtAsset */
uint256 _assets,
uint256 _shares,
address _borrower,
address _repayer
) internal returns (uint256 assets, uint256 shares) {
ISilo.SiloStorage storage $ = SiloStorageLib.getSiloStorage();
uint256 totalDebtAssets = $.totalAssets[ISilo.AssetType.Debt];
(uint256 debtSharesBalance, uint256 totalDebtShares) = _debtShareToken.balanceOfAndTotalSupply(_borrower);
(assets, shares) = SiloMathLib.convertToAssetsOrToShares({
_assets: _assets,
_shares: _shares,
_totalAssets: totalDebtAssets,
_totalShares: totalDebtShares,
_roundingToAssets: Rounding.REPAY_TO_ASSETS,
_roundingToShares: Rounding.REPAY_TO_SHARES,
_assetType: ISilo.AssetType.Debt
});
if (shares > debtSharesBalance) {
shares = debtSharesBalance;
(assets, shares) = SiloMathLib.convertToAssetsOrToShares({
_assets: 0,
_shares: shares,
_totalAssets: totalDebtAssets,
_totalShares: totalDebtShares,
_roundingToAssets: Rounding.REPAY_TO_ASSETS,
_roundingToShares: Rounding.REPAY_TO_SHARES,
_assetType: ISilo.AssetType.Debt
});
}
require(totalDebtAssets >= assets, ISilo.RepayTooHigh());
// subtract repayment from debt, save to unchecked because of above `totalDebtAssets < assets`
unchecked { $.totalAssets[ISilo.AssetType.Debt] = totalDebtAssets - assets; }
// Anyone can repay anyone's debt so no approval check is needed.
_debtShareToken.burn(_borrower, _repayer, shares);
// _debtAsset transfer from repayer removed.
// This is the only change in the function in comparison to lib/SiloLendingLib.sol repay() function.
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/extensions/AccessControlEnumerable.sol)
pragma solidity ^0.8.20;
import {IAccessControlEnumerable} from "./IAccessControlEnumerable.sol";
import {AccessControl} from "../AccessControl.sol";
import {EnumerableSet} from "../../utils/structs/EnumerableSet.sol";
/**
* @dev Extension of {AccessControl} that allows enumerating the members of each role.
*/
abstract contract AccessControlEnumerable is IAccessControlEnumerable, AccessControl {
using EnumerableSet for EnumerableSet.AddressSet;
mapping(bytes32 role => EnumerableSet.AddressSet) private _roleMembers;
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IAccessControlEnumerable).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @dev Returns one of the accounts that have `role`. `index` must be a
* value between 0 and {getRoleMemberCount}, non-inclusive.
*
* Role bearers are not sorted in any particular way, and their ordering may
* change at any point.
*
* WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure
* you perform all queries on the same block. See the following
* https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post]
* for more information.
*/
function getRoleMember(bytes32 role, uint256 index) public view virtual returns (address) {
return _roleMembers[role].at(index);
}
/**
* @dev Returns the number of accounts that have `role`. Can be used
* together with {getRoleMember} to enumerate all bearers of a role.
*/
function getRoleMemberCount(bytes32 role) public view virtual returns (uint256) {
return _roleMembers[role].length();
}
/**
* @dev Return all accounts that have `role`
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function getRoleMembers(bytes32 role) public view virtual returns (address[] memory) {
return _roleMembers[role].values();
}
/**
* @dev Overload {AccessControl-_grantRole} to track enumerable memberships
*/
function _grantRole(bytes32 role, address account) internal virtual override returns (bool) {
bool granted = super._grantRole(role, account);
if (granted) {
_roleMembers[role].add(account);
}
return granted;
}
/**
* @dev Overload {AccessControl-_revokeRole} to track enumerable memberships
*/
function _revokeRole(bytes32 role, address account) internal virtual override returns (bool) {
bool revoked = super._revokeRole(role, account);
if (revoked) {
_roleMembers[role].remove(account);
}
return revoked;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/IERC721.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC-721 compliant contract.
*/
interface IERC721 is IERC165 {
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
* a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC-721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must have been allowed to move this token by either {approve} or
* {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
* a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC-721
* or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
* understand this adds an external call which potentially creates a reentrancy vulnerability.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the address zero.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC1363.sol)
pragma solidity ^0.8.20;
import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";
/**
* @title IERC1363
* @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
*
* Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
* after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
*/
interface IERC1363 is IERC20, IERC165 {
/*
* Note: the ERC-165 identifier for this interface is 0xb0202a11.
* 0xb0202a11 ===
* bytes4(keccak256('transferAndCall(address,uint256)')) ^
* bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
* bytes4(keccak256('approveAndCall(address,uint256)')) ^
* bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
*/
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferAndCall(address to, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @param data Additional data with no specified format, sent in call to `to`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param from The address which you want to send tokens from.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferFromAndCall(address from, address to, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param from The address which you want to send tokens from.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @param data Additional data with no specified format, sent in call to `to`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function approveAndCall(address spender, uint256 value) external returns (bool);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
* @param data Additional data with no specified format, sent in call to `spender`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)
pragma solidity ^0.8.20;
import {Errors} from "./Errors.sol";
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert Errors.InsufficientBalance(address(this).balance, amount);
}
(bool success, ) = recipient.call{value: amount}("");
if (!success) {
revert Errors.FailedCall();
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {Errors.FailedCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert Errors.InsufficientBalance(address(this).balance, value);
}
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case
* of an unsuccessful call.
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata
) internal view returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
if (returndata.length == 0 && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {Errors.FailedCall} error.
*/
function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}.
*/
function _revert(bytes memory returndata) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert Errors.FailedCall();
}
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;
interface ISiloOracle {
/// @notice Hook function to call before `quote` function reads price
/// @dev This hook function can be used to change state right before the price is read. For example it can be used
/// for curve read only reentrancy protection. In majority of implementations this will be an empty function.
/// WARNING: reverts are propagated to Silo so if `beforeQuote` reverts, Silo reverts as well.
/// @param _baseToken Address of priced token
function beforeQuote(address _baseToken) external;
/// @return quoteAmount Returns quote price for _baseAmount of _baseToken
/// @param _baseAmount Amount of priced token
/// @param _baseToken Address of priced token
function quote(uint256 _baseAmount, address _baseToken) external view returns (uint256 quoteAmount);
/// @return address of token in which quote (price) is denominated
function quoteToken() external view returns (address);
}// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.28;
import {Math} from "openzeppelin5/utils/math/Math.sol";
import {ISiloOracle} from "../interfaces/ISiloOracle.sol";
import {SiloStdLib, ISiloConfig, IShareToken, ISilo} from "./SiloStdLib.sol";
import {SiloMathLib} from "./SiloMathLib.sol";
import {Rounding} from "./Rounding.sol";
library SiloSolvencyLib {
using Math for uint256;
struct LtvData {
ISiloOracle collateralOracle;
ISiloOracle debtOracle;
uint256 borrowerProtectedAssets;
uint256 borrowerCollateralAssets;
uint256 borrowerDebtAssets;
}
uint256 internal constant _PRECISION_DECIMALS = 1e18;
uint256 internal constant _INFINITY = type(uint256).max;
/// @notice Determines if a borrower is solvent based on the Loan-to-Value (LTV) ratio
/// @param _collateralConfig Configuration data for the collateral
/// @param _debtConfig Configuration data for the debt
/// @param _borrower Address of the borrower to check solvency for
/// @param _accrueInMemory Determines whether or not to consider un-accrued interest in calculations
/// @return True if the borrower is solvent, false otherwise
function isSolvent(
ISiloConfig.ConfigData memory _collateralConfig,
ISiloConfig.ConfigData memory _debtConfig,
address _borrower,
ISilo.AccrueInterestInMemory _accrueInMemory
) internal view returns (bool) {
if (_debtConfig.silo == address(0)) return true; // no debt, so solvent
uint256 ltv = getLtv(
_collateralConfig,
_debtConfig,
_borrower,
ISilo.OracleType.Solvency,
_accrueInMemory,
IShareToken(_debtConfig.debtShareToken).balanceOf(_borrower)
);
return ltv <= _collateralConfig.lt;
}
/// @notice Determines if a borrower's Loan-to-Value (LTV) ratio is below the maximum allowed LTV
/// @param _collateralConfig Configuration data for the collateral
/// @param _debtConfig Configuration data for the debt
/// @param _borrower Address of the borrower to check against max LTV
/// @param _accrueInMemory Determines whether or not to consider un-accrued interest in calculations
/// @return True if the borrower's LTV is below the maximum, false otherwise
function isBelowMaxLtv(
ISiloConfig.ConfigData memory _collateralConfig,
ISiloConfig.ConfigData memory _debtConfig,
address _borrower,
ISilo.AccrueInterestInMemory _accrueInMemory
) internal view returns (bool) {
uint256 debtShareBalance = IShareToken(_debtConfig.debtShareToken).balanceOf(_borrower);
if (debtShareBalance == 0) return true;
uint256 ltv = getLtv(
_collateralConfig,
_debtConfig,
_borrower,
ISilo.OracleType.MaxLtv,
_accrueInMemory,
debtShareBalance
);
return ltv <= _collateralConfig.maxLtv;
}
/// @notice Retrieves assets data required for LTV calculations
/// @param _collateralConfig Configuration data for the collateral
/// @param _debtConfig Configuration data for the debt
/// @param _borrower Address of the borrower whose LTV data is to be calculated
/// @param _oracleType Specifies whether to use the MaxLTV or Solvency oracle type for calculations
/// @param _accrueInMemory Determines whether or not to consider un-accrued interest in calculations
/// @param _debtShareBalanceCached Cached value of debt share balance for the borrower. If debt shares of
/// `_borrower` is unknown, simply pass `0`.
/// @return ltvData Data structure containing necessary data to compute LTV
function getAssetsDataForLtvCalculations( // solhint-disable-line function-max-lines
ISiloConfig.ConfigData memory _collateralConfig,
ISiloConfig.ConfigData memory _debtConfig,
address _borrower,
ISilo.OracleType _oracleType,
ISilo.AccrueInterestInMemory _accrueInMemory,
uint256 _debtShareBalanceCached
) internal view returns (LtvData memory ltvData) {
if (_collateralConfig.token != _debtConfig.token) {
// When calculating maxLtv, use maxLtv oracle.
(ltvData.collateralOracle, ltvData.debtOracle) = _oracleType == ISilo.OracleType.MaxLtv
? (ISiloOracle(_collateralConfig.maxLtvOracle), ISiloOracle(_debtConfig.maxLtvOracle))
: (ISiloOracle(_collateralConfig.solvencyOracle), ISiloOracle(_debtConfig.solvencyOracle));
}
uint256 totalShares;
uint256 shares;
(shares, totalShares) = SiloStdLib.getSharesAndTotalSupply(
_collateralConfig.protectedShareToken, _borrower, 0 /* no cache */
);
(
uint256 totalCollateralAssets, uint256 totalProtectedAssets
) = ISilo(_collateralConfig.silo).getCollateralAndProtectedTotalsStorage();
ltvData.borrowerProtectedAssets = SiloMathLib.convertToAssets(
shares, totalProtectedAssets, totalShares, Rounding.COLLATERAL_TO_ASSETS, ISilo.AssetType.Protected
);
(shares, totalShares) = SiloStdLib.getSharesAndTotalSupply(
_collateralConfig.collateralShareToken, _borrower, 0 /* no cache */
);
totalCollateralAssets = _accrueInMemory == ISilo.AccrueInterestInMemory.Yes
? SiloStdLib.getTotalCollateralAssetsWithInterest(
_collateralConfig.silo,
_collateralConfig.interestRateModel,
_collateralConfig.daoFee,
_collateralConfig.deployerFee
)
: totalCollateralAssets;
ltvData.borrowerCollateralAssets = SiloMathLib.convertToAssets(
shares, totalCollateralAssets, totalShares, Rounding.COLLATERAL_TO_ASSETS, ISilo.AssetType.Collateral
);
(shares, totalShares) = SiloStdLib.getSharesAndTotalSupply(
_debtConfig.debtShareToken, _borrower, _debtShareBalanceCached
);
uint256 totalDebtAssets = _accrueInMemory == ISilo.AccrueInterestInMemory.Yes
? SiloStdLib.getTotalDebtAssetsWithInterest(_debtConfig.silo, _debtConfig.interestRateModel)
: ISilo(_debtConfig.silo).getTotalAssetsStorage(ISilo.AssetType.Debt);
// BORROW value -> to assets -> UP
ltvData.borrowerDebtAssets = SiloMathLib.convertToAssets(
shares, totalDebtAssets, totalShares, Rounding.DEBT_TO_ASSETS, ISilo.AssetType.Debt
);
}
/// @notice Calculates the Loan-To-Value (LTV) ratio for a given borrower
/// @param _collateralConfig Configuration data related to the collateral asset
/// @param _debtConfig Configuration data related to the debt asset
/// @param _borrower Address of the borrower whose LTV is to be computed
/// @param _oracleType Oracle type to use for fetching the asset prices
/// @param _accrueInMemory Determines whether or not to consider un-accrued interest in calculations
/// @return ltvInDp The computed LTV ratio in 18 decimals precision
function getLtv(
ISiloConfig.ConfigData memory _collateralConfig,
ISiloConfig.ConfigData memory _debtConfig,
address _borrower,
ISilo.OracleType _oracleType,
ISilo.AccrueInterestInMemory _accrueInMemory,
uint256 _debtShareBalance
) internal view returns (uint256 ltvInDp) {
if (_debtShareBalance == 0) return 0;
LtvData memory ltvData = getAssetsDataForLtvCalculations(
_collateralConfig, _debtConfig, _borrower, _oracleType, _accrueInMemory, _debtShareBalance
);
if (ltvData.borrowerDebtAssets == 0) return 0;
(,, ltvInDp) = calculateLtv(ltvData, _collateralConfig.token, _debtConfig.token);
}
/// @notice Calculates the Loan-to-Value (LTV) ratio based on provided collateral and debt data
/// @dev calculation never reverts, if there is revert, then it is because of oracle
/// @param _ltvData Data structure containing relevant information to calculate LTV
/// @param _collateralToken Address of the collateral token
/// @param _debtAsset Address of the debt token
/// @return sumOfBorrowerCollateralValue Total value of borrower's collateral
/// @return totalBorrowerDebtValue Total debt value for the borrower
/// @return ltvInDp Calculated LTV in 18 decimal precision
function calculateLtv(
SiloSolvencyLib.LtvData memory _ltvData, address _collateralToken, address _debtAsset)
internal
view
returns (uint256 sumOfBorrowerCollateralValue, uint256 totalBorrowerDebtValue, uint256 ltvInDp)
{
(
sumOfBorrowerCollateralValue, totalBorrowerDebtValue
) = getPositionValues(_ltvData, _collateralToken, _debtAsset);
if (sumOfBorrowerCollateralValue == 0 && totalBorrowerDebtValue == 0) {
return (0, 0, 0);
} else if (sumOfBorrowerCollateralValue == 0) {
ltvInDp = _INFINITY;
} else {
ltvInDp = ltvMath(totalBorrowerDebtValue, sumOfBorrowerCollateralValue);
}
}
/// @notice Computes the value of collateral and debt based on given LTV data and asset addresses
/// @param _ltvData Data structure containing the assets data required for LTV calculations
/// @param _collateralAsset Address of the collateral asset
/// @param _debtAsset Address of the debt asset
/// @return sumOfCollateralValue Total value of collateral assets considering both protected and regular collateral
/// assets
/// @return debtValue Total value of debt assets
function getPositionValues(LtvData memory _ltvData, address _collateralAsset, address _debtAsset)
internal
view
returns (uint256 sumOfCollateralValue, uint256 debtValue)
{
uint256 sumOfCollateralAssets;
sumOfCollateralAssets = _ltvData.borrowerProtectedAssets + _ltvData.borrowerCollateralAssets;
if (sumOfCollateralAssets != 0) {
// if no oracle is set, assume price 1, we should also not set oracle for quote token
sumOfCollateralValue = address(_ltvData.collateralOracle) != address(0)
? _ltvData.collateralOracle.quote(sumOfCollateralAssets, _collateralAsset)
: sumOfCollateralAssets;
}
if (_ltvData.borrowerDebtAssets != 0) {
// if no oracle is set, assume price 1, we should also not set oracle for quote token
debtValue = address(_ltvData.debtOracle) != address(0)
? _ltvData.debtOracle.quote(_ltvData.borrowerDebtAssets, _debtAsset)
: _ltvData.borrowerDebtAssets;
}
}
function ltvMath(uint256 _totalBorrowerDebtValue, uint256 _sumOfBorrowerCollateralValue)
internal
pure
returns (uint256 ltvInDp)
{
ltvInDp = _totalBorrowerDebtValue.mulDiv(_PRECISION_DECIMALS, _sumOfBorrowerCollateralValue, Rounding.LTV);
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
/**
* @dev Helper library for emitting standardized panic codes.
*
* ```solidity
* contract Example {
* using Panic for uint256;
*
* // Use any of the declared internal constants
* function foo() { Panic.GENERIC.panic(); }
*
* // Alternatively
* function foo() { Panic.panic(Panic.GENERIC); }
* }
* ```
*
* Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
*/
// slither-disable-next-line unused-state
library Panic {
/// @dev generic / unspecified error
uint256 internal constant GENERIC = 0x00;
/// @dev used by the assert() builtin
uint256 internal constant ASSERT = 0x01;
/// @dev arithmetic underflow or overflow
uint256 internal constant UNDER_OVERFLOW = 0x11;
/// @dev division or modulo by zero
uint256 internal constant DIVISION_BY_ZERO = 0x12;
/// @dev enum conversion error
uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
/// @dev invalid encoding in storage
uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
/// @dev empty array pop
uint256 internal constant EMPTY_ARRAY_POP = 0x31;
/// @dev array out of bounds access
uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
/// @dev resource error (too large allocation or too large array)
uint256 internal constant RESOURCE_ERROR = 0x41;
/// @dev calling invalid internal function
uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
/// @dev Reverts with a panic code. Recommended to use with
/// the internal constants with predefined codes.
function panic(uint256 code) internal pure {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, 0x4e487b71)
mstore(0x20, code)
revert(0x1c, 0x24)
}
}
}// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.0;
import {Strings} from "openzeppelin5/utils/Strings.sol";
import {ISilo} from "../interfaces/ISilo.sol";
import {IShareToken} from "../interfaces/IShareToken.sol";
import {ISiloConfig} from "../interfaces/ISiloConfig.sol";
import {TokenHelper} from "../lib/TokenHelper.sol";
import {CallBeforeQuoteLib} from "../lib/CallBeforeQuoteLib.sol";
import {Hook} from "../lib/Hook.sol";
// solhint-disable ordering
library ShareTokenLib {
using Hook for uint24;
using CallBeforeQuoteLib for ISiloConfig.ConfigData;
// keccak256(abi.encode(uint256(keccak256("silo.storage.ShareToken")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant _STORAGE_LOCATION = 0x01b0b3f9d6e360167e522fa2b18ba597ad7b2b35841fec7e1ca4dbb0adea1200;
function getShareTokenStorage() internal pure returns (IShareToken.ShareTokenStorage storage $) {
// solhint-disable-next-line no-inline-assembly
assembly {
$.slot := _STORAGE_LOCATION
}
}
// solhint-disable-next-line func-name-mixedcase, private-vars-leading-underscore
function __ShareToken_init(ISilo _silo, address _hookReceiver, uint24 _tokenType) external {
IShareToken.ShareTokenStorage storage $ = ShareTokenLib.getShareTokenStorage();
$.silo = _silo;
$.siloConfig = _silo.config();
$.hookSetup.hookReceiver = _hookReceiver;
$.hookSetup.tokenType = _tokenType;
$.transferWithChecks = true;
}
/// @dev decimals of share token
function decimals() external view returns (uint8) {
IShareToken.ShareTokenStorage storage $ = getShareTokenStorage();
ISiloConfig.ConfigData memory configData = $.siloConfig.getConfig(address($.silo));
return uint8(TokenHelper.assertAndGetDecimals(configData.token));
}
/// @dev Name convention:
/// NAME - asset name
/// SILO_ID - unique silo id
///
/// Protected deposit: "Silo Finance Non-borrowable NAME Deposit, SiloId: SILO_ID"
/// Borrowable deposit: "Silo Finance Borrowable NAME Deposit, SiloId: SILO_ID"
/// Debt: "Silo Finance NAME Debt, SiloId: SILO_ID"
function name() external view returns (string memory) {
IShareToken.ShareTokenStorage storage $ = getShareTokenStorage();
ISiloConfig.ConfigData memory configData = $.siloConfig.getConfig(address($.silo));
string memory siloIdAscii = Strings.toString($.siloConfig.SILO_ID());
string memory pre = "";
string memory post = " Deposit";
if (address(this) == configData.protectedShareToken) {
pre = "Non-borrowable ";
} else if (address(this) == configData.collateralShareToken) {
pre = "Borrowable ";
} else if (address(this) == configData.debtShareToken) {
post = " Debt";
}
string memory tokenSymbol = TokenHelper.symbol(configData.token);
return string.concat("Silo Finance ", pre, tokenSymbol, post, ", SiloId: ", siloIdAscii);
}
/// @dev Symbol convention:
/// SYMBOL - asset symbol
/// SILO_ID - unique silo id
///
/// Protected deposit: "nbSYMBOL-SILO_ID"
/// Borrowable deposit: "bSYMBOL-SILO_ID"
/// Debt: "dSYMBOL-SILO_ID"
function symbol() external view returns (string memory) {
IShareToken.ShareTokenStorage storage $ = getShareTokenStorage();
ISiloConfig.ConfigData memory configData = $.siloConfig.getConfig(address($.silo));
string memory siloIdAscii = Strings.toString($.siloConfig.SILO_ID());
string memory pre;
if (address(this) == configData.protectedShareToken) {
pre = "nb";
} else if (address(this) == configData.collateralShareToken) {
pre = "b";
} else if (address(this) == configData.debtShareToken) {
pre = "d";
}
string memory tokenSymbol = TokenHelper.symbol(configData.token);
return string.concat(pre, tokenSymbol, "-", siloIdAscii);
}
/// @notice Call beforeQuote on solvency oracles
/// @param _user user address for which the solvent check is performed
function callOracleBeforeQuote(ISiloConfig _siloConfig, address _user) internal {
(
ISiloConfig.ConfigData memory collateralConfig,
ISiloConfig.ConfigData memory debtConfig
) = _siloConfig.getConfigsForSolvency(_user);
collateralConfig.callSolvencyOracleBeforeQuote();
debtConfig.callSolvencyOracleBeforeQuote();
}
/// @dev Call on behalf of share token
/// @param _target target address to call
/// @param _value value to send
/// @param _callType call type
/// @param _input input data
/// @return success true if the call was successful, false otherwise
/// @return result bytes returned by the call
function callOnBehalfOfShareToken(address _target, uint256 _value, ISilo.CallType _callType, bytes calldata _input)
internal
returns (bool success, bytes memory result)
{
// Share token will not send back any ether leftovers after the call.
// The hook receiver should request the ether if needed in a separate call.
if (_callType == ISilo.CallType.Delegatecall) {
(success, result) = _target.delegatecall(_input); // solhint-disable-line avoid-low-level-calls
} else {
(success, result) = _target.call{value: _value}(_input); // solhint-disable-line avoid-low-level-calls
}
}
/// @dev checks if operation is "real" transfer
/// @param _sender sender address
/// @param _recipient recipient address
/// @return bool true if operation is real transfer, false if it is mint or burn
function isTransfer(address _sender, address _recipient) internal pure returns (bool) {
// in order this check to be true, it is required to have:
// require(sender != address(0), "ERC20: transfer from the zero address");
// require(recipient != address(0), "ERC20: transfer to the zero address");
// on transfer. ERC20 has them, so we good.
return _sender != address(0) && _recipient != address(0);
}
function siloConfig() internal view returns (ISiloConfig thisSiloConfig) {
return ShareTokenLib.getShareTokenStorage().siloConfig;
}
function getConfig() internal view returns (ISiloConfig.ConfigData memory thisSiloConfigData) {
thisSiloConfigData = ShareTokenLib.getShareTokenStorage().siloConfig.getConfig(address(this));
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/extensions/IAccessControlEnumerable.sol)
pragma solidity ^0.8.20;
import {IAccessControl} from "../IAccessControl.sol";
/**
* @dev External interface of AccessControlEnumerable declared to support ERC-165 detection.
*/
interface IAccessControlEnumerable is IAccessControl {
/**
* @dev Returns one of the accounts that have `role`. `index` must be a
* value between 0 and {getRoleMemberCount}, non-inclusive.
*
* Role bearers are not sorted in any particular way, and their ordering may
* change at any point.
*
* WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure
* you perform all queries on the same block. See the following
* https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post]
* for more information.
*/
function getRoleMember(bytes32 role, uint256 index) external view returns (address);
/**
* @dev Returns the number of accounts that have `role`. Can be used
* together with {getRoleMember} to enumerate all bearers of a role.
*/
function getRoleMemberCount(bytes32 role) external view returns (uint256);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/AccessControl.sol)
pragma solidity ^0.8.20;
import {IAccessControl} from "./IAccessControl.sol";
import {Context} from "../utils/Context.sol";
import {ERC165} from "../utils/introspection/ERC165.sol";
/**
* @dev Contract module that allows children to implement role-based access
* control mechanisms. This is a lightweight version that doesn't allow enumerating role
* members except through off-chain means by accessing the contract event logs. Some
* applications may benefit from on-chain enumerability, for those cases see
* {AccessControlEnumerable}.
*
* Roles are referred to by their `bytes32` identifier. These should be exposed
* in the external API and be unique. The best way to achieve this is by
* using `public constant` hash digests:
*
* ```solidity
* bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
* ```
*
* Roles can be used to represent a set of permissions. To restrict access to a
* function call, use {hasRole}:
*
* ```solidity
* function foo() public {
* require(hasRole(MY_ROLE, msg.sender));
* ...
* }
* ```
*
* Roles can be granted and revoked dynamically via the {grantRole} and
* {revokeRole} functions. Each role has an associated admin role, and only
* accounts that have a role's admin role can call {grantRole} and {revokeRole}.
*
* By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
* that only accounts with this role will be able to grant or revoke other
* roles. More complex role relationships can be created by using
* {_setRoleAdmin}.
*
* WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
* grant and revoke this role. Extra precautions should be taken to secure
* accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
* to enforce additional security measures for this role.
*/
abstract contract AccessControl is Context, IAccessControl, ERC165 {
struct RoleData {
mapping(address account => bool) hasRole;
bytes32 adminRole;
}
mapping(bytes32 role => RoleData) private _roles;
bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
/**
* @dev Modifier that checks that an account has a specific role. Reverts
* with an {AccessControlUnauthorizedAccount} error including the required role.
*/
modifier onlyRole(bytes32 role) {
_checkRole(role);
_;
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) public view virtual returns (bool) {
return _roles[role].hasRole[account];
}
/**
* @dev Reverts with an {AccessControlUnauthorizedAccount} error if `_msgSender()`
* is missing `role`. Overriding this function changes the behavior of the {onlyRole} modifier.
*/
function _checkRole(bytes32 role) internal view virtual {
_checkRole(role, _msgSender());
}
/**
* @dev Reverts with an {AccessControlUnauthorizedAccount} error if `account`
* is missing `role`.
*/
function _checkRole(bytes32 role, address account) internal view virtual {
if (!hasRole(role, account)) {
revert AccessControlUnauthorizedAccount(account, role);
}
}
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) public view virtual returns (bytes32) {
return _roles[role].adminRole;
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleGranted} event.
*/
function grantRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
_grantRole(role, account);
}
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleRevoked} event.
*/
function revokeRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
_revokeRole(role, account);
}
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been revoked `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `callerConfirmation`.
*
* May emit a {RoleRevoked} event.
*/
function renounceRole(bytes32 role, address callerConfirmation) public virtual {
if (callerConfirmation != _msgSender()) {
revert AccessControlBadConfirmation();
}
_revokeRole(role, callerConfirmation);
}
/**
* @dev Sets `adminRole` as ``role``'s admin role.
*
* Emits a {RoleAdminChanged} event.
*/
function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
bytes32 previousAdminRole = getRoleAdmin(role);
_roles[role].adminRole = adminRole;
emit RoleAdminChanged(role, previousAdminRole, adminRole);
}
/**
* @dev Attempts to grant `role` to `account` and returns a boolean indicating if `role` was granted.
*
* Internal function without access restriction.
*
* May emit a {RoleGranted} event.
*/
function _grantRole(bytes32 role, address account) internal virtual returns (bool) {
if (!hasRole(role, account)) {
_roles[role].hasRole[account] = true;
emit RoleGranted(role, account, _msgSender());
return true;
} else {
return false;
}
}
/**
* @dev Attempts to revoke `role` to `account` and returns a boolean indicating if `role` was revoked.
*
* Internal function without access restriction.
*
* May emit a {RoleRevoked} event.
*/
function _revokeRole(bytes32 role, address account) internal virtual returns (bool) {
if (hasRole(role, account)) {
_roles[role].hasRole[account] = false;
emit RoleRevoked(role, account, _msgSender());
return true;
} else {
return false;
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/structs/EnumerableSet.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.
pragma solidity ^0.8.20;
/**
* @dev Library for managing
* https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
* types.
*
* Sets have the following properties:
*
* - Elements are added, removed, and checked for existence in constant time
* (O(1)).
* - Elements are enumerated in O(n). No guarantees are made on the ordering.
*
* ```solidity
* contract Example {
* // Add the library methods
* using EnumerableSet for EnumerableSet.AddressSet;
*
* // Declare a set state variable
* EnumerableSet.AddressSet private mySet;
* }
* ```
*
* As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
* and `uint256` (`UintSet`) are supported.
*
* [WARNING]
* ====
* Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
* unusable.
* See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
*
* In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
* array of EnumerableSet.
* ====
*/
library EnumerableSet {
// To implement this library for multiple types with as little code
// repetition as possible, we write it in terms of a generic Set type with
// bytes32 values.
// The Set implementation uses private functions, and user-facing
// implementations (such as AddressSet) are just wrappers around the
// underlying Set.
// This means that we can only create new EnumerableSets for types that fit
// in bytes32.
struct Set {
// Storage of set values
bytes32[] _values;
// Position is the index of the value in the `values` array plus 1.
// Position 0 is used to mean a value is not in the set.
mapping(bytes32 value => uint256) _positions;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function _add(Set storage set, bytes32 value) private returns (bool) {
if (!_contains(set, value)) {
set._values.push(value);
// The value is stored at length-1, but we add 1 to all indexes
// and use 0 as a sentinel value
set._positions[value] = set._values.length;
return true;
} else {
return false;
}
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function _remove(Set storage set, bytes32 value) private returns (bool) {
// We cache the value's position to prevent multiple reads from the same storage slot
uint256 position = set._positions[value];
if (position != 0) {
// Equivalent to contains(set, value)
// To delete an element from the _values array in O(1), we swap the element to delete with the last one in
// the array, and then remove the last element (sometimes called as 'swap and pop').
// This modifies the order of the array, as noted in {at}.
uint256 valueIndex = position - 1;
uint256 lastIndex = set._values.length - 1;
if (valueIndex != lastIndex) {
bytes32 lastValue = set._values[lastIndex];
// Move the lastValue to the index where the value to delete is
set._values[valueIndex] = lastValue;
// Update the tracked position of the lastValue (that was just moved)
set._positions[lastValue] = position;
}
// Delete the slot where the moved value was stored
set._values.pop();
// Delete the tracked position for the deleted slot
delete set._positions[value];
return true;
} else {
return false;
}
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function _contains(Set storage set, bytes32 value) private view returns (bool) {
return set._positions[value] != 0;
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function _length(Set storage set) private view returns (uint256) {
return set._values.length;
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function _at(Set storage set, uint256 index) private view returns (bytes32) {
return set._values[index];
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function _values(Set storage set) private view returns (bytes32[] memory) {
return set._values;
}
// Bytes32Set
struct Bytes32Set {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _add(set._inner, value);
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _remove(set._inner, value);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
return _contains(set._inner, value);
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(Bytes32Set storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
return _at(set._inner, index);
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
bytes32[] memory store = _values(set._inner);
bytes32[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
// AddressSet
struct AddressSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(AddressSet storage set, address value) internal returns (bool) {
return _add(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(AddressSet storage set, address value) internal returns (bool) {
return _remove(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(AddressSet storage set, address value) internal view returns (bool) {
return _contains(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(AddressSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(AddressSet storage set, uint256 index) internal view returns (address) {
return address(uint160(uint256(_at(set._inner, index))));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(AddressSet storage set) internal view returns (address[] memory) {
bytes32[] memory store = _values(set._inner);
address[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
// UintSet
struct UintSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(UintSet storage set, uint256 value) internal returns (bool) {
return _add(set._inner, bytes32(value));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(UintSet storage set, uint256 value) internal returns (bool) {
return _remove(set._inner, bytes32(value));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(UintSet storage set, uint256 value) internal view returns (bool) {
return _contains(set._inner, bytes32(value));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(UintSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(UintSet storage set, uint256 index) internal view returns (uint256) {
return uint256(_at(set._inner, index));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(UintSet storage set) internal view returns (uint256[] memory) {
bytes32[] memory store = _values(set._inner);
uint256[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[ERC].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../utils/introspection/IERC165.sol";// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
/**
* @dev Collection of common custom errors used in multiple contracts
*
* IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
* It is recommended to avoid relying on the error API for critical functionality.
*/
library Errors {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error InsufficientBalance(uint256 balance, uint256 needed);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedCall();
/**
* @dev The deployment failed.
*/
error FailedDeployment();
}// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.28;
import {SafeERC20} from "openzeppelin5/token/ERC20/utils/SafeERC20.sol";
import {IERC20} from "openzeppelin5/token/ERC20/IERC20.sol";
import {ISiloConfig} from "../interfaces/ISiloConfig.sol";
import {ISilo} from "../interfaces/ISilo.sol";
import {IInterestRateModel} from "../interfaces/IInterestRateModel.sol";
import {IShareToken} from "../interfaces/IShareToken.sol";
import {SiloMathLib} from "./SiloMathLib.sol";
library SiloStdLib {
using SafeERC20 for IERC20;
uint256 internal constant _PRECISION_DECIMALS = 1e18;
/// @notice Returns flash fee amount
/// @param _config address of config contract for Silo
/// @param _token for which fee is calculated
/// @param _amount for which fee is calculated
/// @return fee flash fee amount
function flashFee(ISiloConfig _config, address _token, uint256 _amount) internal view returns (uint256 fee) {
if (_amount == 0) return 0;
// all user set fees are in 18 decimals points
(,, uint256 flashloanFee, address asset) = _config.getFeesWithAsset(address(this));
require(_token == asset, ISilo.UnsupportedFlashloanToken());
if (flashloanFee == 0) return 0;
require(type(uint256).max / _amount >= flashloanFee, ISilo.FlashloanAmountTooBig());
fee = _amount * flashloanFee / _PRECISION_DECIMALS;
// round up
if (fee == 0) return 1;
}
/// @notice Returns totalAssets and totalShares for conversion math (convertToAssets and convertToShares)
/// @dev This is useful for view functions that do not accrue interest before doing calculations. To work on
/// updated numbers, interest should be added on the fly.
/// @param _configData for a single token for which to do calculations
/// @param _assetType used to read proper storage data
/// @return totalAssets total assets in Silo with interest for given asset type
/// @return totalShares total shares in Silo for given asset type
function getTotalAssetsAndTotalSharesWithInterest(
ISiloConfig.ConfigData memory _configData,
ISilo.AssetType _assetType
)
internal
view
returns (uint256 totalAssets, uint256 totalShares)
{
if (_assetType == ISilo.AssetType.Protected) {
totalAssets = ISilo(_configData.silo).getTotalAssetsStorage(ISilo.AssetType.Protected);
totalShares = IShareToken(_configData.protectedShareToken).totalSupply();
} else if (_assetType == ISilo.AssetType.Collateral) {
totalAssets = getTotalCollateralAssetsWithInterest(
_configData.silo,
_configData.interestRateModel,
_configData.daoFee,
_configData.deployerFee
);
totalShares = IShareToken(_configData.collateralShareToken).totalSupply();
} else { // ISilo.AssetType.Debt
totalAssets = getTotalDebtAssetsWithInterest(_configData.silo, _configData.interestRateModel);
totalShares = IShareToken(_configData.debtShareToken).totalSupply();
}
}
/// @notice Retrieves fee amounts in 18 decimals points and their respective receivers along with the asset
/// @param _silo Silo address
/// @return daoFeeReceiver Address of the DAO fee receiver
/// @return deployerFeeReceiver Address of the deployer fee receiver
/// @return daoFee DAO fee amount in 18 decimals points
/// @return deployerFee Deployer fee amount in 18 decimals points
/// @return asset Address of the associated asset
function getFeesAndFeeReceiversWithAsset(ISilo _silo)
internal
view
returns (
address daoFeeReceiver,
address deployerFeeReceiver,
uint256 daoFee,
uint256 deployerFee,
address asset
)
{
(daoFee, deployerFee,, asset) = _silo.config().getFeesWithAsset(address(_silo));
(daoFeeReceiver, deployerFeeReceiver) = _silo.factory().getFeeReceivers(address(_silo));
}
/// @notice Calculates the total collateral assets with accrued interest
/// @dev Do not use this method when accrueInterest were executed already, in that case total does not change
/// @param _silo Address of the silo contract
/// @param _interestRateModel Interest rate model to fetch compound interest rates
/// @param _daoFee DAO fee in 18 decimals points
/// @param _deployerFee Deployer fee in 18 decimals points
/// @return totalCollateralAssetsWithInterest Accumulated collateral amount with interest
function getTotalCollateralAssetsWithInterest(
address _silo,
address _interestRateModel,
uint256 _daoFee,
uint256 _deployerFee
) internal view returns (uint256 totalCollateralAssetsWithInterest) {
uint256 rcomp;
try IInterestRateModel(_interestRateModel).getCompoundInterestRate(_silo, block.timestamp) returns (uint256 r) {
rcomp = r;
} catch {
// do not lock silo
}
(uint256 collateralAssets, uint256 debtAssets) = ISilo(_silo).getCollateralAndDebtTotalsStorage();
(totalCollateralAssetsWithInterest,,,) = SiloMathLib.getCollateralAmountsWithInterest({
_collateralAssets: collateralAssets,
_debtAssets: debtAssets,
_rcomp: rcomp,
_daoFee: _daoFee,
_deployerFee: _deployerFee
});
}
/// @param _balanceCached if balance of `_owner` is unknown beforehand, then pass `0`
function getSharesAndTotalSupply(address _shareToken, address _owner, uint256 _balanceCached)
internal
view
returns (uint256 shares, uint256 totalSupply)
{
if (_balanceCached == 0) {
(shares, totalSupply) = IShareToken(_shareToken).balanceOfAndTotalSupply(_owner);
} else {
shares = _balanceCached;
totalSupply = IShareToken(_shareToken).totalSupply();
}
}
/// @notice Calculates the total debt assets with accrued interest
/// @param _silo Address of the silo contract
/// @param _interestRateModel Interest rate model to fetch compound interest rates
/// @return totalDebtAssetsWithInterest Accumulated debt amount with interest
function getTotalDebtAssetsWithInterest(address _silo, address _interestRateModel)
internal
view
returns (uint256 totalDebtAssetsWithInterest)
{
uint256 rcomp;
try IInterestRateModel(_interestRateModel).getCompoundInterestRate(_silo, block.timestamp) returns (uint256 r) {
rcomp = r;
} catch {
// do not lock silo
}
(
totalDebtAssetsWithInterest,
) = SiloMathLib.getDebtAmountsWithInterest(ISilo(_silo).getTotalAssetsStorage(ISilo.AssetType.Debt), rcomp);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
}// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.28;
import {IERC20Metadata} from "openzeppelin5/token/ERC20/extensions/IERC20Metadata.sol";
import {IsContract} from "./IsContract.sol";
library TokenHelper {
uint256 private constant _BYTES32_SIZE = 32;
error TokenIsNotAContract();
function assertAndGetDecimals(address _token) internal view returns (uint256) {
(bool hasMetadata, bytes memory data) =
_tokenMetadataCall(_token, abi.encodeCall(IERC20Metadata.decimals, ()));
// decimals() is optional in the ERC20 standard, so if metadata is not accessible
// we assume there are no decimals and use 0.
if (!hasMetadata) {
return 0;
}
return abi.decode(data, (uint8));
}
/// @dev Returns the symbol for the provided ERC20 token.
/// An empty string is returned if the call to the token didn't succeed.
/// @param _token address of the token to get the symbol for
/// @return assetSymbol the token symbol
function symbol(address _token) internal view returns (string memory assetSymbol) {
(bool hasMetadata, bytes memory data) =
_tokenMetadataCall(_token, abi.encodeCall(IERC20Metadata.symbol, ()));
if (!hasMetadata || data.length == 0) {
return "?";
} else if (data.length == _BYTES32_SIZE) {
return string(removeZeros(data));
} else {
return abi.decode(data, (string));
}
}
/// @dev Removes bytes with value equal to 0 from the provided byte array.
/// @param _data byte array from which to remove zeroes
/// @return result byte array with zeroes removed
function removeZeros(bytes memory _data) internal pure returns (bytes memory result) {
uint256 n = _data.length;
for (uint256 i; i < n; i++) {
if (_data[i] == 0) continue;
result = abi.encodePacked(result, _data[i]);
}
}
/// @dev Performs a staticcall to the token to get its metadata (symbol, decimals, name)
function _tokenMetadataCall(address _token, bytes memory _data) private view returns (bool, bytes memory) {
// We need to do this before the call, otherwise the call will succeed even for EOAs
require(IsContract.isContract(_token), TokenIsNotAContract());
(bool success, bytes memory result) = _token.staticcall(_data);
// If the call reverted we assume the token doesn't follow the metadata extension
if (!success) {
return (false, "");
}
return (true, result);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/IAccessControl.sol)
pragma solidity ^0.8.20;
/**
* @dev External interface of AccessControl declared to support ERC-165 detection.
*/
interface IAccessControl {
/**
* @dev The `account` is missing a role.
*/
error AccessControlUnauthorizedAccount(address account, bytes32 neededRole);
/**
* @dev The caller of a function is not the expected one.
*
* NOTE: Don't confuse with {AccessControlUnauthorizedAccount}.
*/
error AccessControlBadConfirmation();
/**
* @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
*
* `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
* {RoleAdminChanged} not being emitted signaling this.
*/
event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
/**
* @dev Emitted when `account` is granted `role`.
*
* `sender` is the account that originated the contract call. This account bears the admin role (for the granted role).
* Expected in cases where the role was granted using the internal {AccessControl-_grantRole}.
*/
event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Emitted when `account` is revoked `role`.
*
* `sender` is the account that originated the contract call:
* - if using `revokeRole`, it is the admin role bearer
* - if using `renounceRole`, it is the role bearer (i.e. `account`)
*/
event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) external view returns (bool);
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {AccessControl-_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) external view returns (bytes32);
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function grantRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function revokeRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been granted `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `callerConfirmation`.
*/
function renounceRole(bytes32 role, address callerConfirmation) external;
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/ERC165.sol)
pragma solidity ^0.8.20;
import {IERC165} from "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;
interface IInterestRateModel {
event InterestRateModelError();
/// @dev Sets config address for all Silos that will use this model
/// @param _irmConfig address of IRM config contract
function initialize(address _irmConfig) external;
/// @dev get compound interest rate and update model storage for current block.timestamp
/// @param _collateralAssets total silo collateral assets
/// @param _debtAssets total silo debt assets
/// @param _interestRateTimestamp last IRM timestamp
/// @return rcomp compounded interest rate from last update until now (1e18 == 100%)
function getCompoundInterestRateAndUpdate(
uint256 _collateralAssets,
uint256 _debtAssets,
uint256 _interestRateTimestamp
)
external
returns (uint256 rcomp);
/// @dev get compound interest rate
/// @param _silo address of Silo for which interest rate should be calculated
/// @param _blockTimestamp current block timestamp
/// @return rcomp compounded interest rate from last update until now (1e18 == 100%)
function getCompoundInterestRate(address _silo, uint256 _blockTimestamp)
external
view
returns (uint256 rcomp);
/// @dev get current annual interest rate
/// @param _silo address of Silo for which interest rate should be calculated
/// @param _blockTimestamp current block timestamp
/// @return rcur current annual interest rate (1e18 == 100%)
function getCurrentInterestRate(address _silo, uint256 _blockTimestamp)
external
view
returns (uint256 rcur);
/// @dev returns decimal points used by model
function decimals() external view returns (uint256);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
// Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
// taking advantage of the most significant (or "sign" bit) in two's complement representation.
// This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
// the mask will either be `bytes(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
int256 mask = n >> 255;
// A `bytes(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
return uint256((n + mask) ^ mask);
}
}
}// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.24;
library IsContract {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address _account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return _account.code.length > 0;
}
}{
"remappings": [
"forge-std/=gitmodules/forge-std/src/",
"silo-foundry-utils/=gitmodules/silo-foundry-utils/contracts/",
"properties/=gitmodules/crytic/properties/contracts/",
"silo-core/=silo-core/",
"silo-oracles/=silo-oracles/",
"silo-vaults/=silo-vaults/",
"@openzeppelin/=gitmodules/openzeppelin-contracts-5/",
"morpho-blue/=gitmodules/morpho-blue/src/",
"openzeppelin5/=gitmodules/openzeppelin-contracts-5/contracts/",
"openzeppelin5-upgradeable/=gitmodules/openzeppelin-contracts-upgradeable-5/contracts/",
"chainlink/=gitmodules/chainlink/contracts/src/",
"chainlink-ccip/=gitmodules/chainlink-ccip/contracts/src/",
"uniswap/=gitmodules/uniswap/",
"@uniswap/v3-core/=gitmodules/uniswap/v3-core/",
"pyth-sdk-solidity/=gitmodules/pyth-sdk-solidity/target_chains/ethereum/sdk/solidity/",
"a16z-erc4626-tests/=gitmodules/a16z-erc4626-tests/",
"@ensdomains/=node_modules/@ensdomains/",
"@solidity-parser/=node_modules/prettier-plugin-solidity/node_modules/@solidity-parser/",
"ERC4626/=gitmodules/crytic/properties/lib/ERC4626/contracts/",
"createx/=gitmodules/pyth-sdk-solidity/lazer/contracts/evm/lib/createx/src/",
"crytic/=gitmodules/crytic/",
"ds-test/=gitmodules/openzeppelin-contracts-5/lib/forge-std/lib/ds-test/src/",
"erc4626-tests/=gitmodules/openzeppelin-contracts-5/lib/erc4626-tests/",
"halmos-cheatcodes/=gitmodules/morpho-blue/lib/halmos-cheatcodes/src/",
"hardhat/=node_modules/hardhat/",
"openzeppelin-contracts-5/=gitmodules/openzeppelin-contracts-5/",
"openzeppelin-contracts-upgradeable-5/=gitmodules/openzeppelin-contracts-upgradeable-5/",
"openzeppelin-contracts-upgradeable/=gitmodules/pyth-sdk-solidity/lazer/contracts/evm/lib/openzeppelin-contracts-upgradeable/",
"openzeppelin-contracts/=gitmodules/openzeppelin-contracts-upgradeable-5/lib/openzeppelin-contracts/",
"prettier-plugin-solidity/=node_modules/prettier-plugin-solidity/",
"solady/=gitmodules/pyth-sdk-solidity/lazer/contracts/evm/lib/createx/lib/solady/",
"solmate/=gitmodules/crytic/properties/lib/solmate/src/",
"x-silo/=node_modules/x-silo/"
],
"optimizer": {
"enabled": true,
"runs": 200
},
"metadata": {
"useLiteralContent": false,
"bytecodeHash": "ipfs",
"appendCBOR": true
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"evmVersion": "cancun",
"viaIR": false,
"libraries": {
"silo-core/contracts/hooks/SiloHookV2.sol": {
"DefaultingRepayLib": "0x74bc22929853db5b517cf5cdeef8d9ba9b01069a",
"PartialLiquidationExecLib": "0x72d888043104c186eff766025fa9032f6b0a687d"
}
}
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[],"name":"AccessControlBadConfirmation","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"bytes32","name":"neededRole","type":"bytes32"}],"name":"AccessControlUnauthorizedAccount","type":"error"},{"inputs":[{"internalType":"address","name":"target","type":"address"}],"name":"AddressEmptyCode","type":"error"},{"inputs":[],"name":"AlreadyConfigured","type":"error"},{"inputs":[],"name":"CantRemoveActiveGauge","type":"error"},{"inputs":[],"name":"CollateralNotSupportedForDefaulting","type":"error"},{"inputs":[],"name":"DeductDefaultedDebtFromCollateralFailed","type":"error"},{"inputs":[],"name":"EmptyCollateralShareToken","type":"error"},{"inputs":[],"name":"EmptyGaugeAddress","type":"error"},{"inputs":[],"name":"EmptySiloConfig","type":"error"},{"inputs":[],"name":"FailedCall","type":"error"},{"inputs":[],"name":"FullLiquidationRequired","type":"error"},{"inputs":[],"name":"GaugeAlreadyConfigured","type":"error"},{"inputs":[],"name":"GaugeIsNotConfigured","type":"error"},{"inputs":[{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"InsufficientBalance","type":"error"},{"inputs":[],"name":"InvalidInitialization","type":"error"},{"inputs":[],"name":"InvalidLTConfig0","type":"error"},{"inputs":[],"name":"InvalidLTConfig1","type":"error"},{"inputs":[],"name":"InvalidShareToken","type":"error"},{"inputs":[],"name":"NoCollateralToLiquidate","type":"error"},{"inputs":[],"name":"NoControllerForCollateral","type":"error"},{"inputs":[],"name":"NoDebtToCover","type":"error"},{"inputs":[],"name":"NoRepayAssets","type":"error"},{"inputs":[],"name":"NotInitializing","type":"error"},{"inputs":[],"name":"OnlyAllowedRole","type":"error"},{"inputs":[],"name":"OnlySilo","type":"error"},{"inputs":[],"name":"OnlySiloOrShareToken","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"OwnerIsZeroAddress","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[],"name":"RepayDebtByDefaultingFailed","type":"error"},{"inputs":[],"name":"RequestNotSupported","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"inputs":[],"name":"TwoWayMarketNotAllowed","type":"error"},{"inputs":[],"name":"UnexpectedCollateralToken","type":"error"},{"inputs":[],"name":"UnexpectedDebtToken","type":"error"},{"inputs":[],"name":"UnknownRatio","type":"error"},{"inputs":[],"name":"UserIsSolvent","type":"error"},{"inputs":[],"name":"WithdrawSharesForLendersTooHighForDistribution","type":"error"},{"inputs":[],"name":"WrongGaugeShareToken","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"canceledDebt","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"deductedFromCollateral","type":"uint256"}],"name":"DefaultingLiquidation","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"gauge","type":"address"},{"indexed":false,"internalType":"address","name":"shareToken","type":"address"}],"name":"GaugeConfigured","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"shareToken","type":"address"}],"name":"GaugeRemoved","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"silo","type":"address"},{"indexed":false,"internalType":"uint24","name":"hooksBefore","type":"uint24"},{"indexed":false,"internalType":"uint24","name":"hooksAfter","type":"uint24"}],"name":"HookConfigured","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint64","name":"version","type":"uint64"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"liquidator","type":"address"},{"indexed":true,"internalType":"address","name":"silo","type":"address"},{"indexed":true,"internalType":"address","name":"borrower","type":"address"},{"indexed":false,"internalType":"uint256","name":"repayDebtAssets","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"withdrawCollateral","type":"uint256"},{"indexed":false,"internalType":"bool","name":"receiveSToken","type":"bool"}],"name":"LiquidationCall","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferStarted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"previousAdminRole","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"newAdminRole","type":"bytes32"}],"name":"RoleAdminChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleGranted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleRevoked","type":"event"},{"inputs":[],"name":"ALLOWED_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"DEFAULT_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"KEEPER_FEE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"LIQUIDATION_LOGIC","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"LT_MARGIN_FOR_DEFAULTING","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"VERSION","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"acceptOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_silo","type":"address"},{"internalType":"uint256","name":"_action","type":"uint256"},{"internalType":"bytes","name":"_inputAndOutput","type":"bytes"}],"name":"afterAction","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"bytes","name":"","type":"bytes"}],"name":"beforeAction","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IShareToken","name":"","type":"address"}],"name":"configuredGauges","outputs":[{"internalType":"contract ISiloIncentivesController","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_assetsToLiquidate","type":"uint256"},{"internalType":"enum ISilo.CollateralType","name":"_collateralType","type":"uint8"}],"name":"getKeeperAndLenderSharesSplit","outputs":[{"internalType":"uint256","name":"totalSharesToLiquidate","type":"uint256"},{"internalType":"uint256","name":"keeperShares","type":"uint256"},{"internalType":"uint256","name":"lendersShares","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleAdmin","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"uint256","name":"index","type":"uint256"}],"name":"getRoleMember","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleMemberCount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleMembers","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"grantRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"hasRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_silo","type":"address"}],"name":"hookReceiverConfig","outputs":[{"internalType":"uint24","name":"hooksBefore","type":"uint24"},{"internalType":"uint24","name":"hooksAfter","type":"uint24"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract ISiloConfig","name":"_config","type":"address"},{"internalType":"bytes","name":"_data","type":"bytes"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_collateralAsset","type":"address"},{"internalType":"address","name":"_debtAsset","type":"address"},{"internalType":"address","name":"_borrower","type":"address"},{"internalType":"uint256","name":"_maxDebtToCover","type":"uint256"},{"internalType":"bool","name":"_receiveSToken","type":"bool"}],"name":"liquidationCall","outputs":[{"internalType":"uint256","name":"withdrawCollateral","type":"uint256"},{"internalType":"uint256","name":"repayDebtAssets","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_borrower","type":"address"}],"name":"liquidationCallByDefaulting","outputs":[{"internalType":"uint256","name":"withdrawCollateral","type":"uint256"},{"internalType":"uint256","name":"repayDebtAssets","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_borrower","type":"address"},{"internalType":"uint256","name":"_maxDebtToCover","type":"uint256"}],"name":"liquidationCallByDefaulting","outputs":[{"internalType":"uint256","name":"withdrawCollateral","type":"uint256"},{"internalType":"uint256","name":"repayDebtAssets","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_borrower","type":"address"}],"name":"maxLiquidation","outputs":[{"internalType":"uint256","name":"collateralToLiquidate","type":"uint256"},{"internalType":"uint256","name":"debtToRepay","type":"uint256"},{"internalType":"bool","name":"sTokenRequired","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendingOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IShareToken","name":"_shareToken","type":"address"}],"name":"removeGauge","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"callerConfirmation","type":"address"}],"name":"renounceRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"revokeRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract ISiloIncentivesController","name":"_gauge","type":"address"},{"internalType":"contract IShareToken","name":"_shareToken","type":"address"}],"name":"setGauge","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"siloConfig","outputs":[{"internalType":"contract ISiloConfig","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership1Step","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_silo","type":"address"}],"name":"validateControllerForCollateral","outputs":[{"internalType":"contract ISiloIncentivesController","name":"controllerCollateral","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"validateDefaultingCollateral","outputs":[],"stateMutability":"view","type":"function"}]Contract Creation Code
60a060405234801561000f575f5ffd5b50338061001a610093565b6001600160a01b03811661004757604051631e4fbdf760e01b81525f600482015260240160405180910390fd5b61005081610145565b5061005c90505f610145565b604051610068906101aa565b604051809103905ff080158015610081573d5f5f3e3d5ffd5b506001600160a01b03166080526101b7565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00805468010000000000000000900460ff16156100e35760405163f92ee8a960e01b815260040160405180910390fd5b80546001600160401b03908116146101425780546001600160401b0319166001600160401b0390811782556040519081527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d29060200160405180910390a15b50565b600380546001600160a01b031916905561014281600280546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b6103ca8061480183390190565b60805161462b6101d65f395f818161041f01526134de015261462b5ff3fe608060405234801561000f575f5ffd5b5060043610610212575f3560e01c8063a217fddf1161011f578063d32f7154116100a9578063e30c397811610079578063e30c397814610509578063e4784fa91461051a578063f2fde38b14610549578063fc5bcd381461055c578063ffa1ad741461056f575f5ffd5b8063d32f7154146104aa578063d547741f146104d1578063d714fd19146104e4578063e1b97139146104f6575f5ffd5b8063b24972ee116100ef578063b24972ee1461041a578063b55cb64214610441578063bd02d84814610454578063ca15c87314610484578063d1f5789414610497575f5ffd5b8063a217fddf146103b8578063a3246ad3146103bf578063a37d9411146103df578063aef2823514610407575f5ffd5b80633a045145116101a0578063715018a611610170578063715018a61461035d57806379ba5097146103655780638da5cb5b1461036d5780639010d07c1461039257806391d14854146103a5575f5ffd5b80633a0451451461031a5780633d1b760b1461032d578063430f09941461033c578063632c2d851461034f575f5ffd5b8063237e6d64116101e6578063237e6d641461029e578063248a9ca3146102b15780632f2ff15d146102e157806335cb1099146102f457806336568abe14610307575f5ffd5b8062a718a91461021657806301ffc9a7146102435780630b85609b146102665780631f9c9dfc14610270575b5f5ffd5b610229610224366004613a7b565b6105a1565b604080519283526020830191909152015b60405180910390f35b610256610251366004613af4565b610ac4565b604051901515815260200161023a565b61026e610aee565b005b61028361027e366004613b0f565b610cf1565b6040805193845260208401929092529082015260600161023a565b61026e6102ac366004613b40565b610d24565b6102d36102bf366004613b6c565b5f9081526005602052604090206001015490565b60405190815260200161023a565b61026e6102ef366004613b83565b610f61565b61026e610302366004613be4565b610f85565b61026e610315366004613b83565b610fc4565b61026e610328366004613c3c565b610ffc565b6102d36702c68af0bb14000081565b61022961034a366004613c3c565b611099565b6102d36658d15e1762800081565b61026e6110b0565b61026e6110c3565b6002546001600160a01b03165b6040516001600160a01b03909116815260200161023a565b61037a6103a0366004613c57565b61110c565b6102566103b3366004613b83565b61112a565b6102d35f81565b6103d26103cd366004613b6c565b611154565b60405161023a9190613c77565b61037a6103ed366004613c3c565b60046020525f90815260409020546001600160a01b031681565b61026e610415366004613be4565b61116d565b61037a7f000000000000000000000000000000000000000000000000000000000000000081565b61037a61044f366004613c3c565b61119f565b610467610462366004613c3c565b6112ce565b60408051938452602084019290925215159082015260600161023a565b6102d3610492366004613b6c565b611365565b61026e6104a5366004613cc2565b61137b565b6102d37fd5dc6b389d0dd5687ab5bd9338f760ebeaff2d2852a93a9a9ebaebbfefc763ac81565b61026e6104df366004613b83565b6114ad565b5f5461037a906001600160a01b031681565b61026e610504366004613c3c565b6114d1565b6003546001600160a01b031661037a565b61052d610528366004613c3c565b611502565b6040805162ffffff93841681529290911660208301520161023a565b61026e610557366004613c3c565b611547565b61022961056a366004613d13565b6115b8565b604080518082018252601081526f053696c6f486f6f6b563220342e302e360841b6020820152905161023a9190613d6b565b5f8060ff815c16156105c657604051633ee5aeb560e01b815260040160405180910390fd5b60015f805c60ff19168217905d505f546001600160a01b0316806105fd576040516379c39cf960e01b815260040160405180910390fd5b845f0361061d576040516317ff0e0960e11b815260040160405180910390fd5b806001600160a01b0316639dd413306040518163ffffffff1660e01b81526004015f604051808303815f87803b158015610655575f5ffd5b505af1158015610667573d5f5f3e3d5ffd5b505050505f5f610679838b8b8b611a90565b915091506106b46040518060a001604052805f81526020015f81526020015f81526020015f81526020015f6001600160e01b03191681525090565b6101a0830151604051636da707db60e01b81527372d888043104c186eff766025fa9032f6b0a687d91636da707db916106f891879187918f918f9190600401613ed5565b608060405180830381865af4158015610713573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906107379190613f1a565b6001600160e01b031916608085018190526060850192909252604084019290925290955061076490611cad565b878511156107855760405163d65db62d60e01b815260040160405180910390fd5b606082015161079f906001600160a01b0316333088611cca565b6107c582604001518684606001516001600160a01b0316611d249092919063ffffffff16565b5f876107d157306107d3565b335b90506107f084604001518b8385604001518860a001516001611dab565b825260408401516060830151608086015161081192918d918591905f611dab565b826020018181525050846001600160a01b03166362402b046040518163ffffffff1660e01b81526004015f604051808303815f87803b158015610852575f5ffd5b505af1158015610864573d5f5f3e3d5ffd5b505050604080850151905163acb7081560e01b8152600481018990526001600160a01b038d81166024830152909116915063acb70815906044016020604051808303815f875af11580156108ba573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906108de9190613f5a565b5081511515806108f15750602082015115155b61090e5760405163797c40e160e01b815260040160405180910390fd5b8715610a1c57815115610993576040808501518351915163a7d6e44b60e01b81526001600160a01b039091169163a7d6e44b916109519190600190600401613f95565b602060405180830381865afa15801561096c573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906109909190613f5a565b96505b602082015115610a175783604001516001600160a01b031663a7d6e44b83602001515f6040518363ffffffff1660e01b81526004016109d3929190613f95565b602060405180830381865afa1580156109ee573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610a129190613f5a565b870196505b610a53565b610a3484604001518560a00151845f01516001611f08565b9650610a4e8460400151856080015184602001515f611f08565b870196505b6040838101518151888152602081018a90528a15158184015291516001600160a01b038d81169392169133917f3a84f64446e8eada995aa9da2ddbfcd9b5d5d650503b19f024096d04c05ef2a99181900360600190a4505f93505050815c60ff19169050815d509550959350505050565b5f6001600160e01b03198216635a05180f60e01b1480610ae85750610ae882612061565b92915050565b5f80546040805163aecc90cb60e01b8152815184936001600160a01b03169263aecc90cb92600480820193918290030181865afa158015610b31573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610b559190613fc2565b5f805460405163e48a5f7b60e01b81526001600160a01b0380861660048301529496509294509092169063e48a5f7b9060240161022060405180830381865afa158015610ba4573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610bc89190614181565b5f805460405163e48a5f7b60e01b81526001600160a01b0386811660048301529394509192169063e48a5f7b9060240161022060405180830381865afa158015610c14573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610c389190614181565b90508161016001515f1480610c505750610160810151155b610c6d576040516329c5f0dd60e21b815260040160405180910390fd5b670de0b6b3a76400006658d15e17628000836101600151610c8e91906141b0565b10610cac5760405163732481ab60e01b815260040160405180910390fd5b670de0b6b3a76400006658d15e17628000826101600151610ccd91906141b0565b10610ceb576040516312b0b4f560e21b815260040160405180910390fd5b50505050565b5f5f5f5f5f5f610d0087612095565b925092509250610d138383838b8b612234565b919a90995090975095505050505050565b610d2c6123d2565b6001600160a01b038216610d535760405163d1af83ef60e01b815260040160405180910390fd5b806001600160a01b0316826001600160a01b0316631d7e35566040518163ffffffff1660e01b8152600401602060405180830381865afa158015610d99573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610dbd91906141c3565b6001600160a01b031614610de45760405163060a0aaf60e41b815260040160405180910390fd5b6001600160a01b038082165f90815260046020526040902054168015610e1d5760405163d0c7225560e01b815260040160405180910390fd5b5f826001600160a01b031663eb3beb296040518163ffffffff1660e01b8152600401602060405180830381865afa158015610e5a573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610e7e91906141c3565b90505f610e8b82856123ff565b6001600160a01b0383165f90815260016020526040812054919250906301000000900462ffffff1690506104008217610ec382821790565b9150610ef284610eec866001600160a01b03165f9081526001602052604090205462ffffff1690565b84612502565b6001600160a01b038681165f8181526004602090815260409182902080546001600160a01b031916948c16948517905581519384528301919091527f213d54ca7d6adb897962b4f78f6c2424aa527ee584f57a6000f961c507e0ec27910160405180910390a150505050505050565b5f82815260056020526040902060010154610f7b816125e5565b610ceb83836125ef565b610f8e33612622565b610fab576040516310528c6d60e11b815260040160405180910390fd5b604051632a188cb160e21b815260040160405180910390fd5b6001600160a01b0381163314610fed5760405163334bd91960e11b815260040160405180910390fd5b610ff782826126c9565b505050565b6110046123d2565b6001600160a01b038082165f90815260046020526040902054168061103c57604051632e77844760e21b815260040160405180910390fd5b6001600160a01b0382165f8181526004602090815260409182902080546001600160a01b031916905590519182527f94ac12f5301759f065db9de7f23677e50bef009f062b028d4d4612f620f0f5fb910160405180910390a15050565b5f5f6110a6835f196115b8565b9094909350915050565b6110b86123d2565b6110c15f6126f4565b565b60035433906001600160a01b031681146111005760405163118cdaa760e01b81526001600160a01b03821660048201526024015b60405180910390fd5b611109816126f4565b50565b5f828152600660205260408120611123908361270d565b9392505050565b5f9182526005602090815260408084206001600160a01b0393909316845291905290205460ff1690565b5f818152600660205260409020606090610ae890612718565b61117633612724565b611193576040516358ec9b7760e11b815260040160405180910390fd5b610ceb8484848461293b565b5f8054604051630483b24f60e41b81526001600160a01b0384811660048301528392169063483b24f090602401606060405180830381865afa1580156111e7573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061120b91906141de565b509150506001600160a01b03811661123657604051638b3f447160e01b815260040160405180910390fd5b60405163a37d941160e01b81526001600160a01b0382166004820152309063a37d941190602401602060405180830381865afa158015611278573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061129c91906141c3565b91506001600160a01b0382166112c857604051600162036e1560e11b0319815260040160405180910390fd5b50919050565b5f8054604051631c2b1ded60e01b81526001600160a01b0391821660048201529083166024820152819081907372d888043104c186eff766025fa9032f6b0a687d90631c2b1ded90604401606060405180830381865af4158015611334573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906113589190614228565b9250925092509193909250565b5f818152600660205260408120610ae890612a7b565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a008054600160401b810460ff16159067ffffffffffffffff165f811580156113c05750825b90505f8267ffffffffffffffff1660011480156113dc5750303b155b9050811580156113ea575080155b156114085760405163f92ee8a960e01b815260040160405180910390fd5b845467ffffffffffffffff19166001178555831561143257845460ff60401b1916600160401b1785555b5f61143f87890189613c3c565b905061144a89612a84565b61145381612afd565b61145c81612b2c565b5083156114a357845460ff60401b19168555604051600181527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d29060200160405180910390a15b5050505050505050565b5f828152600560205260409020600101546114c7816125e5565b610ceb83836126c9565b6114d96123d2565b6001600160a01b03811661110057604051631e4fbdf760e01b81525f60048201526024016110f7565b6001600160a01b0381165f90815260016020908152604080832081518083019092525462ffffff808216808452630100000090920416919092018190528291906110a6565b61154f6123d2565b600380546001600160a01b0383166001600160a01b031990911681179091556115806002546001600160a01b031690565b6001600160a01b03167f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e2270060405160405180910390a350565b5f8060ff815c16156115dd57604051633ee5aeb560e01b815260040160405180910390fd5b60015f805c60ff19168217905d506116147fd5dc6b389d0dd5687ab5bd9338f760ebeaff2d2852a93a9a9ebaebbfefc763ac611365565b158061164557506116457fd5dc6b389d0dd5687ab5bd9338f760ebeaff2d2852a93a9a9ebaebbfefc763ac3361112a565b611662576040516394572de960e01b815260040160405180910390fd5b5f546001600160a01b03168061168b576040516379c39cf960e01b815260040160405180910390fd5b806001600160a01b0316639dd413306040518163ffffffff1660e01b81526004015f604051808303815f87803b1580156116c3575f5ffd5b505af11580156116d5573d5f5f3e3d5ffd5b505050505f5f6116e58388612b45565b915091506658d15e17628000826101600181815161170391906141b0565b9150818152505061175a6040518061012001604052805f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f6001600160e01b03191681525090565b6101a0830151604051636da707db60e01b81527372d888043104c186eff766025fa9032f6b0a687d91636da707db9161179e91879187918e918e9190600401613ed5565b608060405180830381865af41580156117b9573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906117dd9190613f1a565b6001600160e01b03191661010085018190526060850192909252604084019290925290955061180b90611cad565b61182a83604001518460a00151856101a0015184604001516001612234565b60a08401526080808401919091529082526040840151908401516101a0850151606084015161185c939291905f612234565b60e084015260c08301526020820152604082015160a08481015190830151608084015161188e938c9390929091612cf4565b6118ab88836040015185608001518460e001518560c00151612cf4565b80511561192a576040808401518251915163a7d6e44b60e01b81526001600160a01b039091169163a7d6e44b916118e89190600190600401613f95565b602060405180830381865afa158015611903573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906119279190613f5a565b95505b6020810151156119b65782604001516001600160a01b031663a7d6e44b82602001515f6040518363ffffffff1660e01b815260040161196a929190613f95565b602060405180830381865afa158015611985573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906119a99190613f5a565b6119b390876141b0565b95505b6119c4826040015186612e50565b836001600160a01b03166362402b046040518163ffffffff1660e01b81526004015f604051808303815f87803b1580156119fc575f5ffd5b505af1158015611a0e573d5f5f3e3d5ffd5b50505050611a218260400151868a612e9a565b6040848101518151838152602081018b905260018184015291519298506001600160a01b038c81169450169133917f3a84f64446e8eada995aa9da2ddbfcd9b5d5d650503b19f024096d04c05ef2a9919081900360600190a4505f92505050805c60ff1916815d509250929050565b611a986139cf565b611aa06139cf565b6040516394c0527d60e01b81526001600160a01b0384811660048301528716906394c0527d9060240161044060405180830381865afa158015611ae5573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611b099190614254565b604081015191935091506001600160a01b0316611b3957604051632f13551560e11b815260040160405180910390fd5b81606001516001600160a01b0316856001600160a01b031614611b6f5760405163055692d760e21b815260040160405180910390fd5b80606001516001600160a01b0316846001600160a01b031614611ba55760405163129e080d60e21b815260040160405180910390fd5b80604001516001600160a01b031663a6afed956040518163ffffffff1660e01b81526004016020604051808303815f875af1158015611be6573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611c0a9190613f5a565b5080604001516001600160a01b031682604001516001600160a01b031614611ca45781604001516001600160a01b031663a6afed956040518163ffffffff1660e01b81526004016020604051808303815f875af1158015611c6d573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611c919190613f5a565b50611c9b82612f30565b611ca481612f30565b94509492505050565b6001600160e01b031981165f03611cc15750565b61110981612fb6565b610ceb84856001600160a01b03166323b872dd868686604051602401611cf293929190614289565b604051602081830303815290604052915060e01b6020820180516001600160e01b038381831617835250505050612fe7565b604051636eb1769f60e11b81523060048201526001600160a01b0383811660248301525f919085169063dd62ed3e90604401602060405180830381865afa158015611d71573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611d959190613f5a565b9050610ceb8484611da685856141b0565b613048565b5f835f03611dba57505f611efe565b611e9084886001600160a01b031663b6d821c7856040518263ffffffff1660e01b8152600401611dea91906142ad565b602060405180830381865afa158015611e05573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611e299190613f5a565b856001600160a01b03166318160ddd6040518163ffffffff1660e01b8152600401602060405180830381865afa158015611e65573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611e899190613f5a565b5f866130d7565b9050805f03611ea057505f611efe565b604051633661585b60e21b81526001600160a01b0384169063d985616c90611ed090899089908690600401614289565b5f604051808303815f87803b158015611ee7575f5ffd5b505af1158015611ef9573d5f5f3e3d5ffd5b505050505b9695505050505050565b5f825f03611f1757505f612059565b6040516306d29bb360e51b81526001600160a01b0386169063da53766090611f499086903390309088906004016142c7565b6020604051808303815f875af1925050508015611f83575060408051601f3d908101601f19168201909252611f8091810190613f5a565b60015b612056573d808015611fb0576040519150601f19603f3d011682016040523d82523d5f602084013e611fb5565b606091505b50611fbf81613114565b156120385760405163a9059cbb60e01b8152336004820152602481018590526001600160a01b0386169063a9059cbb906044016020604051808303815f875af115801561200e573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061203291906142fd565b50612050565b6120508160405180602001604052805f815250613137565b50612059565b90505b949350505050565b5f6001600160e01b03198216637965db0b60e01b1480610ae857506301ffc9a760e01b6001600160e01b0319831614610ae8565b5f80546040805163aecc90cb60e01b81528151849384936001600160a01b039091169284928392859263aecc90cb92600480830193928290030181865afa1580156120e2573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906121069190613fc2565b60405163e48a5f7b60e01b81526001600160a01b0380841660048301529298508894509092505f9185169063e48a5f7b9060240161022060405180830381865afa158015612156573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061217a9190614181565b90508061016001515f036121f75760405163e48a5f7b60e01b81526001600160a01b03838116600483015285169063e48a5f7b9060240161022060405180830381865afa1580156121cd573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906121f19190614181565b90508196505b600188600181111561220b5761220b613f71565b1461221a578060800151612220565b8060a001515b6101a0909101519698909750945050505050565b5f5f5f845f0361224b57505f9150819050806123c7565b5f886001600160a01b031663b6d821c786600181111561226d5761226d613f71565b60ff16600281111561228157612281613f71565b6040518263ffffffff1660e01b815260040161229d91906142ad565b602060405180830381865afa1580156122b8573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906122dc9190613f5a565b90505f886001600160a01b03166318160ddd6040518163ffffffff1660e01b8152600401602060405180830381865afa15801561231b573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061233f9190613f5a565b90506123738783835f8a600181111561235a5761235a613f71565b60ff16600281111561236e5761236e613f71565b6130d7565b945061238788670de0b6b3a76400006141b0565b6123ac61239c6702c68af0bb1400008b614318565b87670de0b6b3a76400005f613160565b6123b69190614343565b93506123c28486614356565b925050505b955095509592505050565b6002546001600160a01b031633146110c15760405163118cdaa760e01b81523360048201526024016110f7565b5f8054604051630483b24f60e41b81526001600160a01b0385811660048301528392839283929091169063483b24f090602401606060405180830381865afa15801561244d573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061247191906141de565b925092509250816001600160a01b0316856001600160a01b03160361249d576108009350505050610ae8565b826001600160a01b0316856001600160a01b0316036124c3576110009350505050610ae8565b806001600160a01b0316856001600160a01b0316036124e9576120009350505050610ae8565b60405163d938fa3760e01b815260040160405180910390fd5b60408051808201825262ffffff84811680835284821660208085018281526001600160a01b038a165f81815260018452889020965187549251871663010000000265ffffffffffff1990931696169590951717909455845192835292820152918201527f1c26a8451bc890d476a0e7bb8310f00750604879bb30d4813a7718a1ee089fa69060600160405180910390a1826001600160a01b031663cad1aacf6040518163ffffffff1660e01b81526004015f604051808303815f87803b1580156125ca575f5ffd5b505af11580156125dc573d5f5f3e3d5ffd5b50505050505050565b61110981336131a2565b5f5f6125fb84846131df565b90508015611123575f84815260066020526040902061261a9084613270565b509392505050565b5f80546040805163aecc90cb60e01b81528151849384936001600160a01b039091169263aecc90cb92600480830193928290030181865afa158015612669573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061268d9190613fc2565b91509150816001600160a01b0316846001600160a01b031614806120595750806001600160a01b0316846001600160a01b031614949350505050565b5f5f6126d58484613284565b90508015611123575f84815260066020526040902061261a90846132ef565b600380546001600160a01b031916905561110981613303565b5f6111238383613354565b60605f6111238361337a565b5f80546040805163aecc90cb60e01b81528151849384936001600160a01b039091169263aecc90cb92600480830193928290030181865afa15801561276b573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061278f9190613fc2565b91509150816001600160a01b0316846001600160a01b031614806127c45750806001600160a01b0316846001600160a01b0316145b156127d3575060019392505050565b5f8054604051630483b24f60e41b81526001600160a01b0385811660048301528392169063483b24f090602401606060405180830381865afa15801561281b573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061283f91906141de565b919350909150506001600160a01b0386811690831614806128715750806001600160a01b0316866001600160a01b0316145b156128825750600195945050505050565b5f54604051630483b24f60e41b81526001600160a01b0385811660048301529091169063483b24f090602401606060405180830381865afa1580156128c9573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906128ed91906141de565b919350909150506001600160a01b03868116908316148061291f5750806001600160a01b0316866001600160a01b0316145b156129305750600195945050505050565b505f95945050505050565b335f908152600460205260409020546001600160a01b03168061295e5750610ceb565b6129938461298d876001600160a01b03165f9081526001602052604090205462ffffff63010000009091041690565b81161490565b61299d5750610ceb565b5f6129dc84848080601f0160208091040260200160405190810160405280939291908181526020018383808284375f920191909152506133d392505050565b805160608201516020830151608084015160a0850151604080870151905163bbdc013b60e01b81526001600160a01b039687166004820152602481019590955292851660448501526064840191909152608483015260a482015291925083169063bbdc013b9060c4015b5f604051808303815f87803b158015612a5d575f5ffd5b505af1158015612a6f573d5f5f3e3d5ffd5b50505050505050505050565b5f610ae8825490565b612a8c613477565b6001600160a01b038116612ab3576040516379c39cf960e01b815260040160405180910390fd5b5f546001600160a01b031615612adc576040516308db0db560e11b815260040160405180910390fd5b5f80546001600160a01b0319166001600160a01b0392909216919091179055565b612b05613477565b6001600160a01b038116611100576040516354a4010f60e01b815260040160405180910390fd5b612b34613477565b612b3d816134c0565b611109610aee565b612b4d6139cf565b612b556139cf565b6040516394c0527d60e01b81526001600160a01b0384811660048301528516906394c0527d9060240161044060405180830381865afa158015612b9a573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190612bbe9190614254565b604081015191935091506001600160a01b0316612bee57604051632f13551560e11b815260040160405180910390fd5b80604001516001600160a01b031663a6afed956040518163ffffffff1660e01b81526004016020604051808303815f875af1158015612c2f573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190612c539190613f5a565b5080604001516001600160a01b031682604001516001600160a01b031614612ced5781604001516001600160a01b031663a6afed956040518163ffffffff1660e01b81526004016020604051808303815f875af1158015612cb6573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190612cda9190613f5a565b50612ce482612f30565b612ced81612f30565b9250929050565b5f612cfe8561119f565b90508215612e1257604051633661585b60e21b81526001600160a01b0385169063d985616c90612d3690899085908890600401614289565b5f604051808303815f87803b158015612d4d575f5ffd5b505af1158015612d5f573d5f5f3e3d5ffd5b5050506cffffffffffffffffffffffffff8411159050612d9257604051631ffa331360e21b815260040160405180910390fd5b604051632e953c2160e01b81526001600160a01b0385811660048301526cffffffffffffffffffffffffff85166024830152821690632e953c21906044016020604051808303815f875af1158015612dec573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190612e109190613f5a565b505b8115612e4857604051633661585b60e21b81526001600160a01b0385169063d985616c90612a4690899033908790600401614289565b505050505050565b6040805160248082018490528251808303909101815260449091019091526020810180516001600160e01b031663194af7dd60e11b179052610ceb838263fe568fd160e01b6134ca565b5f5f5f612f0d86631bc77f3060e01b8787604051602401612ece9291909182526001600160a01b0316602082015260400190565b60408051601f198184030181529190526020810180516001600160e01b03166001600160e01b0319909316929092179091526340561a9d60e11b6134ca565b905080806020019051810190612f239190614369565b9097909650945050505050565b8061020001518015612f4e575060e08101516001600160a01b031615155b156111095760e08101516060820151604051637cfd30cd60e11b81526001600160a01b03918216600482015291169063f9fa619a906024015f604051808303815f87803b158015612f9d575f5ffd5b505af1158015612faf573d5f5f3e3d5ffd5b5050505050565b6040805160048152602481019091526020810180516001600160e01b03166001600160e01b03198416178152815190fd5b5f612ffb6001600160a01b03841683613575565b905080515f1415801561301f57508080602001905181019061301d91906142fd565b155b15610ff757604051635274afe760e01b81526001600160a01b03841660048201526024016110f7565b604080516001600160a01b038416602482015260448082018490528251808303909101815260649091019091526020810180516001600160e01b031663095ea7b360e01b1790526130998482613582565b610ceb576040516001600160a01b0384811660248301525f60448301526130cd91869182169063095ea7b390606401611cf2565b610ceb8482612fe7565b5f5f5f6130e587878661361f565b91509150815f036130fa57879250505061310b565b61310688838388613160565b925050505b95945050505050565b5f63284fe51560e01b6131268361438b565b6001600160e01b0319161492915050565b81511561314657815182602001fd5b8060405162461bcd60e51b81526004016110f79190613d6b565b5f61318d61316d8361367a565b801561318857505f84806131835761318361432f565b868809115b151590565b6131988686866136a6565b61205691906141b0565b6131ac828261112a565b6131db5760405163e2517d3f60e01b81526001600160a01b0382166004820152602481018390526044016110f7565b5050565b5f6131ea838361112a565b613269575f8381526005602090815260408083206001600160a01b03861684529091529020805460ff191660011790556132213390565b6001600160a01b0316826001600160a01b0316847f2f8788117e7eff1d82e926ec794901d17c78024a50270940304540a733656f0d60405160405180910390a4506001610ae8565b505f610ae8565b5f611123836001600160a01b038416613763565b5f61328f838361112a565b15613269575f8381526005602090815260408083206001600160a01b0386168085529252808320805460ff1916905551339286917ff6391f5c32d9c69d2a47ea670b442974b53935d1edc7fd64eb21e047a839171b9190a4506001610ae8565b5f611123836001600160a01b0384166137a8565b600280546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b5f825f018281548110613369576133696143c9565b905f5260205f200154905092915050565b6060815f018054806020026020016040519081016040528092919081815260200182805480156133c757602002820191905f5260205f20905b8154815260200190600101908083116133b3575b50505050509050919050565b6134186040518060c001604052805f6001600160a01b031681526020015f6001600160a01b031681526020015f81526020015f81526020015f81526020015f81525090565b506014810151602882015160488301516068840151608885015160a8909501516040805160c0810182526001600160a01b039687168152959094166020860152928401919091526060830152608082019290925260a081019190915290565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a0054600160401b900460ff166110c157604051631afcd79f60e31b815260040160405180910390fd5b6131db5f826125ef565b60605f846001600160a01b0316634624c6a77f00000000000000000000000000000000000000000000000000000000000000005f6001886040518563ffffffff1660e01b815260040161352094939291906143dd565b5f604051808303815f875af115801561353b573d5f5f3e3d5ffd5b505050506040513d5f823e601f3d908101601f191682016040526135629190810190614414565b925090508061261a5761261a828461388b565b606061112383835f6138a3565b5f5f5f846001600160a01b03168460405161359d91906144bc565b5f604051808303815f865af19150503d805f81146135d6576040519150601f19603f3d011682016040523d82523d5f602084013e6135db565b606091505b509150915081801561360557508051158061360557508080602001905181019061360591906142fd565b801561310b5750505050506001600160a01b03163b151590565b5f5f835f0361362c575f94505b600283600281111561364057613640613f71565b1461366b576136516003600a6145b5565b61365b90856141b0565b6136668660016141b0565b61366e565b83855b90969095509350505050565b5f600282600381111561368f5761368f613f71565b61369991906145c0565b60ff166001149050919050565b5f838302815f1985870982811083820303915050805f036136da578382816136d0576136d061432f565b0492505050611123565b8084116136f8576136f884156136f1576011613939565b6012613939565b5f848688095f868103871696879004966002600389028118808a02820302808a02820302808a02820302808a02820302808a02820302808a02909103029181900381900460010186841190950394909402919094039290920491909117919091029150509392505050565b5f81815260018301602052604081205461326957508154600181810184555f848152602080822090930184905584548482528286019093526040902091909155610ae8565b5f8181526001830160205260408120548015613882575f6137ca600183614356565b85549091505f906137dd90600190614356565b905080821461383c575f865f0182815481106137fb576137fb6143c9565b905f5260205f200154905080875f01848154811061381b5761381b6143c9565b5f918252602080832090910192909255918252600188019052604090208390555b855486908061384d5761384d6145e1565b600190038181905f5260205f20015f90559055856001015f8681526020019081526020015f205f905560019350505050610ae8565b5f915050610ae8565b81511561389a57815182602001fd5b6131db81612fb6565b6060814710156138cf5760405163cf47918160e01b8152476004820152602481018390526044016110f7565b5f5f856001600160a01b031684866040516138ea91906144bc565b5f6040518083038185875af1925050503d805f8114613924576040519150601f19603f3d011682016040523d82523d5f602084013e613929565b606091505b5091509150611efe86838361394a565b634e487b715f52806020526024601cfd5b60608261395f5761395a826139a6565b611123565b815115801561397657506001600160a01b0384163b155b1561399f57604051639996b31560e01b81526001600160a01b03851660048201526024016110f7565b5080611123565b8051156139b65780518082602001fd5b60405163d6bda27560e01b815260040160405180910390fd5b60408051610220810182525f80825260208201819052918101829052606081018290526080810182905260a0810182905260c0810182905260e08101829052610100810182905261012081018290526101408101829052610160810182905261018081018290526101a081018290526101c081018290526101e0810182905261020081019190915290565b6001600160a01b0381168114611109575f5ffd5b8015158114611109575f5ffd5b5f5f5f5f5f60a08688031215613a8f575f5ffd5b8535613a9a81613a5a565b94506020860135613aaa81613a5a565b93506040860135613aba81613a5a565b9250606086013591506080860135613ad181613a6e565b809150509295509295909350565b6001600160e01b031981168114611109575f5ffd5b5f60208284031215613b04575f5ffd5b813561112381613adf565b5f5f60408385031215613b20575f5ffd5b82359150602083013560028110613b35575f5ffd5b809150509250929050565b5f5f60408385031215613b51575f5ffd5b8235613b5c81613a5a565b91506020830135613b3581613a5a565b5f60208284031215613b7c575f5ffd5b5035919050565b5f5f60408385031215613b94575f5ffd5b823591506020830135613b3581613a5a565b5f5f83601f840112613bb6575f5ffd5b50813567ffffffffffffffff811115613bcd575f5ffd5b602083019150836020828501011115612ced575f5ffd5b5f5f5f5f60608587031215613bf7575f5ffd5b8435613c0281613a5a565b935060208501359250604085013567ffffffffffffffff811115613c24575f5ffd5b613c3087828801613ba6565b95989497509550505050565b5f60208284031215613c4c575f5ffd5b813561112381613a5a565b5f5f60408385031215613c68575f5ffd5b50508035926020909101359150565b602080825282518282018190525f918401906040840190835b81811015613cb75783516001600160a01b0316835260209384019390920191600101613c90565b509095945050505050565b5f5f5f60408486031215613cd4575f5ffd5b8335613cdf81613a5a565b9250602084013567ffffffffffffffff811115613cfa575f5ffd5b613d0686828701613ba6565b9497909650939450505050565b5f5f60408385031215613d24575f5ffd5b8235613d2f81613a5a565b946020939093013593505050565b5f81518084528060208401602086015e5f602082860101526020601f19601f83011685010191505092915050565b602081525f6111236020830184613d3d565b80518252602081015160208301526040810151613da560408401826001600160a01b03169052565b506060810151613dc060608401826001600160a01b03169052565b506080810151613ddb60808401826001600160a01b03169052565b5060a0810151613df660a08401826001600160a01b03169052565b5060c0810151613e1160c08401826001600160a01b03169052565b5060e0810151613e2c60e08401826001600160a01b03169052565b50610100810151613e496101008401826001600160a01b03169052565b50610120810151613e666101208401826001600160a01b03169052565b506101408101516101408301526101608101516101608301526101808101516101808301526101a08101516101a08301526101c08101516101c08301526101e0810151613ebf6101e08401826001600160a01b03169052565b50610200810151610ff761020084018215159052565b6104a08101613ee48288613d7d565b613ef2610220830187613d7d565b6001600160a01b03949094166104408201526104608101929092526104809091015292915050565b5f5f5f5f60808587031215613f2d575f5ffd5b84516020860151604087015160608801519296509094509250613f4f81613adf565b939692955090935050565b5f60208284031215613f6a575f5ffd5b5051919050565b634e487b7160e01b5f52602160045260245ffd5b6002811061110957611109613f71565b82815260408101613fa583613f85565b8260208301529392505050565b8051613fbd81613a5a565b919050565b5f5f60408385031215613fd3575f5ffd5b8251613fde81613a5a565b6020840151909250613b3581613a5a565b634e487b7160e01b5f52604160045260245ffd5b604051610220810167ffffffffffffffff8111828210171561402757614027613fef565b60405290565b604051601f8201601f1916810167ffffffffffffffff8111828210171561405657614056613fef565b604052919050565b8051613fbd81613a6e565b5f610220828403121561407a575f5ffd5b614082614003565b8251815260208084015190820152905061409e60408301613fb2565b60408201526140af60608301613fb2565b60608201526140c060808301613fb2565b60808201526140d160a08301613fb2565b60a08201526140e260c08301613fb2565b60c08201526140f360e08301613fb2565b60e08201526141056101008301613fb2565b6101008201526141186101208301613fb2565b6101208201526101408281015190820152610160808301519082015261018080830151908201526101a080830151908201526101c080830151908201526141626101e08301613fb2565b6101e0820152614175610200830161405e565b61020082015292915050565b5f6102208284031215614192575f5ffd5b6111238383614069565b634e487b7160e01b5f52601160045260245ffd5b80820180821115610ae857610ae861419c565b5f602082840312156141d3575f5ffd5b815161112381613a5a565b5f5f5f606084860312156141f0575f5ffd5b83516141fb81613a5a565b602085015190935061420c81613a5a565b604085015190925061421d81613a5a565b809150509250925092565b5f5f5f6060848603121561423a575f5ffd5b835160208501516040860151919450925061421d81613a6e565b5f5f6104408385031215614266575f5ffd5b6142708484614069565b9150614280846102208501614069565b90509250929050565b6001600160a01b039384168152919092166020820152604081019190915260600190565b60208101600383106142c1576142c1613f71565b91905290565b8481526001600160a01b03848116602083015283166040820152608081016142ee83613f85565b82606083015295945050505050565b5f6020828403121561430d575f5ffd5b815161112381613a6e565b8082028115828204841417610ae857610ae861419c565b634e487b7160e01b5f52601260045260245ffd5b5f826143515761435161432f565b500490565b81810381811115610ae857610ae861419c565b5f5f6040838503121561437a575f5ffd5b505080516020909101519092909150565b805160208201516001600160e01b03198116919060048210156143c2576001600160e01b0319600483900360031b81901b82161692505b5050919050565b634e487b7160e01b5f52603260045260245ffd5b6001600160a01b0385168152602081018490526143f983613f85565b826040820152608060608201525f611efe6080830184613d3d565b5f5f60408385031215614425575f5ffd5b825161443081613a6e565b602084015190925067ffffffffffffffff81111561444c575f5ffd5b8301601f8101851361445c575f5ffd5b805167ffffffffffffffff81111561447657614476613fef565b614489601f8201601f191660200161402d565b81815286602083850101111561449d575f5ffd5b8160208401602083015e5f602083830101528093505050509250929050565b5f82518060208501845e5f920191825250919050565b6001815b600184111561450d578085048111156144f1576144f161419c565b60018416156144ff57908102905b60019390931c9280026144d6565b935093915050565b5f8261452357506001610ae8565b8161452f57505f610ae8565b8160018114614545576002811461454f5761456b565b6001915050610ae8565b60ff8411156145605761456061419c565b50506001821b610ae8565b5060208310610133831016604e8410600b841016171561458e575081810a610ae8565b61459a5f1984846144d2565b805f19048211156145ad576145ad61419c565b029392505050565b5f6111238383614515565b5f60ff8316806145d2576145d261432f565b8060ff84160691505092915050565b634e487b7160e01b5f52603160045260245ffdfea2646970667358221220506eaac58b9ad0f1baa9fc6bb66cf191edfcc4ff76a405036d5d86ca1f670ea464736f6c634300081c00336080604052348015600e575f5ffd5b506103ae8061001c5f395ff3fe608060405234801561000f575f5ffd5b5060043610610034575f3560e01c80631bc77f30146100385780633295efba14610064575b5f5ffd5b61004b6100463660046102e1565b610079565b6040805192835260208301919091520160405180910390f35b61007761007236600461031a565b61015d565b005b604051632811815960e11b8152600481018390525f602482018190526001600160a01b03831660448301523360648301529081907374bc22929853db5b517cf5cdeef8d9ba9b01069a9063502302b2906084016040805180830381865af41580156100e6573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061010a9190610331565b60408051838152602081018390529194509192506001600160a01b0385169133917fe4a1ae657f49cb1fb1c7d3a94ae6093565c4c8c0e03de488f79c377c3c3a24e0910160405180910390a39250929050565b60015f9081527fd7513ffe3a01a9f6606089d1b67011bca35bec018ac0faa914e1c529408f83026020527f9f4c9b90b8375e1a1c51483b3ca447c3cef6557c7e1ddcfb2935a045af6b0ec7547fd7513ffe3a01a9f6606089d1b67011bca35bec018ac0faa914e1c529408f830091906101d68185610282565b60015f90815260028601602052604090205591508382610242575f6101fb8387610353565b85548493509091505f90610218906001600160c01b031683610282565b915050610224816102a6565b86546001600160c01b0319166001600160c01b039190911617865550505b60408051868152602081018390527fa5329f73da29674b6bc0fb1faa44d0eafe0c62c249e1d478ce992ba1f7dea2ad910160405180910390a15050505050565b5f5f8383111561029657505f90508061029f565b50600190508183035b9250929050565b5f6001600160c01b038211156102dd576040516306dfcc6560e41b815260c060048201526024810183905260440160405180910390fd5b5090565b5f5f604083850312156102f2575f5ffd5b8235915060208301356001600160a01b038116811461030f575f5ffd5b809150509250929050565b5f6020828403121561032a575f5ffd5b5035919050565b5f5f60408385031215610342575f5ffd5b505080516020909101519092909150565b8181038181111561037257634e487b7160e01b5f52601160045260245ffd5b9291505056fea26469706673582212208513f8f95d9263fcd14ab0951d1a9e1d513bc83d633e0a54dfb1886ae315a61164736f6c634300081c0033
Deployed Bytecode
0x608060405234801561000f575f5ffd5b5060043610610212575f3560e01c8063a217fddf1161011f578063d32f7154116100a9578063e30c397811610079578063e30c397814610509578063e4784fa91461051a578063f2fde38b14610549578063fc5bcd381461055c578063ffa1ad741461056f575f5ffd5b8063d32f7154146104aa578063d547741f146104d1578063d714fd19146104e4578063e1b97139146104f6575f5ffd5b8063b24972ee116100ef578063b24972ee1461041a578063b55cb64214610441578063bd02d84814610454578063ca15c87314610484578063d1f5789414610497575f5ffd5b8063a217fddf146103b8578063a3246ad3146103bf578063a37d9411146103df578063aef2823514610407575f5ffd5b80633a045145116101a0578063715018a611610170578063715018a61461035d57806379ba5097146103655780638da5cb5b1461036d5780639010d07c1461039257806391d14854146103a5575f5ffd5b80633a0451451461031a5780633d1b760b1461032d578063430f09941461033c578063632c2d851461034f575f5ffd5b8063237e6d64116101e6578063237e6d641461029e578063248a9ca3146102b15780632f2ff15d146102e157806335cb1099146102f457806336568abe14610307575f5ffd5b8062a718a91461021657806301ffc9a7146102435780630b85609b146102665780631f9c9dfc14610270575b5f5ffd5b610229610224366004613a7b565b6105a1565b604080519283526020830191909152015b60405180910390f35b610256610251366004613af4565b610ac4565b604051901515815260200161023a565b61026e610aee565b005b61028361027e366004613b0f565b610cf1565b6040805193845260208401929092529082015260600161023a565b61026e6102ac366004613b40565b610d24565b6102d36102bf366004613b6c565b5f9081526005602052604090206001015490565b60405190815260200161023a565b61026e6102ef366004613b83565b610f61565b61026e610302366004613be4565b610f85565b61026e610315366004613b83565b610fc4565b61026e610328366004613c3c565b610ffc565b6102d36702c68af0bb14000081565b61022961034a366004613c3c565b611099565b6102d36658d15e1762800081565b61026e6110b0565b61026e6110c3565b6002546001600160a01b03165b6040516001600160a01b03909116815260200161023a565b61037a6103a0366004613c57565b61110c565b6102566103b3366004613b83565b61112a565b6102d35f81565b6103d26103cd366004613b6c565b611154565b60405161023a9190613c77565b61037a6103ed366004613c3c565b60046020525f90815260409020546001600160a01b031681565b61026e610415366004613be4565b61116d565b61037a7f000000000000000000000000c3569379a892392fc2c897e93a79d008f924ddfb81565b61037a61044f366004613c3c565b61119f565b610467610462366004613c3c565b6112ce565b60408051938452602084019290925215159082015260600161023a565b6102d3610492366004613b6c565b611365565b61026e6104a5366004613cc2565b61137b565b6102d37fd5dc6b389d0dd5687ab5bd9338f760ebeaff2d2852a93a9a9ebaebbfefc763ac81565b61026e6104df366004613b83565b6114ad565b5f5461037a906001600160a01b031681565b61026e610504366004613c3c565b6114d1565b6003546001600160a01b031661037a565b61052d610528366004613c3c565b611502565b6040805162ffffff93841681529290911660208301520161023a565b61026e610557366004613c3c565b611547565b61022961056a366004613d13565b6115b8565b604080518082018252601081526f053696c6f486f6f6b563220342e302e360841b6020820152905161023a9190613d6b565b5f8060ff815c16156105c657604051633ee5aeb560e01b815260040160405180910390fd5b60015f805c60ff19168217905d505f546001600160a01b0316806105fd576040516379c39cf960e01b815260040160405180910390fd5b845f0361061d576040516317ff0e0960e11b815260040160405180910390fd5b806001600160a01b0316639dd413306040518163ffffffff1660e01b81526004015f604051808303815f87803b158015610655575f5ffd5b505af1158015610667573d5f5f3e3d5ffd5b505050505f5f610679838b8b8b611a90565b915091506106b46040518060a001604052805f81526020015f81526020015f81526020015f81526020015f6001600160e01b03191681525090565b6101a0830151604051636da707db60e01b81527372d888043104c186eff766025fa9032f6b0a687d91636da707db916106f891879187918f918f9190600401613ed5565b608060405180830381865af4158015610713573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906107379190613f1a565b6001600160e01b031916608085018190526060850192909252604084019290925290955061076490611cad565b878511156107855760405163d65db62d60e01b815260040160405180910390fd5b606082015161079f906001600160a01b0316333088611cca565b6107c582604001518684606001516001600160a01b0316611d249092919063ffffffff16565b5f876107d157306107d3565b335b90506107f084604001518b8385604001518860a001516001611dab565b825260408401516060830151608086015161081192918d918591905f611dab565b826020018181525050846001600160a01b03166362402b046040518163ffffffff1660e01b81526004015f604051808303815f87803b158015610852575f5ffd5b505af1158015610864573d5f5f3e3d5ffd5b505050604080850151905163acb7081560e01b8152600481018990526001600160a01b038d81166024830152909116915063acb70815906044016020604051808303815f875af11580156108ba573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906108de9190613f5a565b5081511515806108f15750602082015115155b61090e5760405163797c40e160e01b815260040160405180910390fd5b8715610a1c57815115610993576040808501518351915163a7d6e44b60e01b81526001600160a01b039091169163a7d6e44b916109519190600190600401613f95565b602060405180830381865afa15801561096c573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906109909190613f5a565b96505b602082015115610a175783604001516001600160a01b031663a7d6e44b83602001515f6040518363ffffffff1660e01b81526004016109d3929190613f95565b602060405180830381865afa1580156109ee573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610a129190613f5a565b870196505b610a53565b610a3484604001518560a00151845f01516001611f08565b9650610a4e8460400151856080015184602001515f611f08565b870196505b6040838101518151888152602081018a90528a15158184015291516001600160a01b038d81169392169133917f3a84f64446e8eada995aa9da2ddbfcd9b5d5d650503b19f024096d04c05ef2a99181900360600190a4505f93505050815c60ff19169050815d509550959350505050565b5f6001600160e01b03198216635a05180f60e01b1480610ae85750610ae882612061565b92915050565b5f80546040805163aecc90cb60e01b8152815184936001600160a01b03169263aecc90cb92600480820193918290030181865afa158015610b31573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610b559190613fc2565b5f805460405163e48a5f7b60e01b81526001600160a01b0380861660048301529496509294509092169063e48a5f7b9060240161022060405180830381865afa158015610ba4573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610bc89190614181565b5f805460405163e48a5f7b60e01b81526001600160a01b0386811660048301529394509192169063e48a5f7b9060240161022060405180830381865afa158015610c14573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610c389190614181565b90508161016001515f1480610c505750610160810151155b610c6d576040516329c5f0dd60e21b815260040160405180910390fd5b670de0b6b3a76400006658d15e17628000836101600151610c8e91906141b0565b10610cac5760405163732481ab60e01b815260040160405180910390fd5b670de0b6b3a76400006658d15e17628000826101600151610ccd91906141b0565b10610ceb576040516312b0b4f560e21b815260040160405180910390fd5b50505050565b5f5f5f5f5f5f610d0087612095565b925092509250610d138383838b8b612234565b919a90995090975095505050505050565b610d2c6123d2565b6001600160a01b038216610d535760405163d1af83ef60e01b815260040160405180910390fd5b806001600160a01b0316826001600160a01b0316631d7e35566040518163ffffffff1660e01b8152600401602060405180830381865afa158015610d99573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610dbd91906141c3565b6001600160a01b031614610de45760405163060a0aaf60e41b815260040160405180910390fd5b6001600160a01b038082165f90815260046020526040902054168015610e1d5760405163d0c7225560e01b815260040160405180910390fd5b5f826001600160a01b031663eb3beb296040518163ffffffff1660e01b8152600401602060405180830381865afa158015610e5a573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610e7e91906141c3565b90505f610e8b82856123ff565b6001600160a01b0383165f90815260016020526040812054919250906301000000900462ffffff1690506104008217610ec382821790565b9150610ef284610eec866001600160a01b03165f9081526001602052604090205462ffffff1690565b84612502565b6001600160a01b038681165f8181526004602090815260409182902080546001600160a01b031916948c16948517905581519384528301919091527f213d54ca7d6adb897962b4f78f6c2424aa527ee584f57a6000f961c507e0ec27910160405180910390a150505050505050565b5f82815260056020526040902060010154610f7b816125e5565b610ceb83836125ef565b610f8e33612622565b610fab576040516310528c6d60e11b815260040160405180910390fd5b604051632a188cb160e21b815260040160405180910390fd5b6001600160a01b0381163314610fed5760405163334bd91960e11b815260040160405180910390fd5b610ff782826126c9565b505050565b6110046123d2565b6001600160a01b038082165f90815260046020526040902054168061103c57604051632e77844760e21b815260040160405180910390fd5b6001600160a01b0382165f8181526004602090815260409182902080546001600160a01b031916905590519182527f94ac12f5301759f065db9de7f23677e50bef009f062b028d4d4612f620f0f5fb910160405180910390a15050565b5f5f6110a6835f196115b8565b9094909350915050565b6110b86123d2565b6110c15f6126f4565b565b60035433906001600160a01b031681146111005760405163118cdaa760e01b81526001600160a01b03821660048201526024015b60405180910390fd5b611109816126f4565b50565b5f828152600660205260408120611123908361270d565b9392505050565b5f9182526005602090815260408084206001600160a01b0393909316845291905290205460ff1690565b5f818152600660205260409020606090610ae890612718565b61117633612724565b611193576040516358ec9b7760e11b815260040160405180910390fd5b610ceb8484848461293b565b5f8054604051630483b24f60e41b81526001600160a01b0384811660048301528392169063483b24f090602401606060405180830381865afa1580156111e7573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061120b91906141de565b509150506001600160a01b03811661123657604051638b3f447160e01b815260040160405180910390fd5b60405163a37d941160e01b81526001600160a01b0382166004820152309063a37d941190602401602060405180830381865afa158015611278573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061129c91906141c3565b91506001600160a01b0382166112c857604051600162036e1560e11b0319815260040160405180910390fd5b50919050565b5f8054604051631c2b1ded60e01b81526001600160a01b0391821660048201529083166024820152819081907372d888043104c186eff766025fa9032f6b0a687d90631c2b1ded90604401606060405180830381865af4158015611334573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906113589190614228565b9250925092509193909250565b5f818152600660205260408120610ae890612a7b565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a008054600160401b810460ff16159067ffffffffffffffff165f811580156113c05750825b90505f8267ffffffffffffffff1660011480156113dc5750303b155b9050811580156113ea575080155b156114085760405163f92ee8a960e01b815260040160405180910390fd5b845467ffffffffffffffff19166001178555831561143257845460ff60401b1916600160401b1785555b5f61143f87890189613c3c565b905061144a89612a84565b61145381612afd565b61145c81612b2c565b5083156114a357845460ff60401b19168555604051600181527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d29060200160405180910390a15b5050505050505050565b5f828152600560205260409020600101546114c7816125e5565b610ceb83836126c9565b6114d96123d2565b6001600160a01b03811661110057604051631e4fbdf760e01b81525f60048201526024016110f7565b6001600160a01b0381165f90815260016020908152604080832081518083019092525462ffffff808216808452630100000090920416919092018190528291906110a6565b61154f6123d2565b600380546001600160a01b0383166001600160a01b031990911681179091556115806002546001600160a01b031690565b6001600160a01b03167f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e2270060405160405180910390a350565b5f8060ff815c16156115dd57604051633ee5aeb560e01b815260040160405180910390fd5b60015f805c60ff19168217905d506116147fd5dc6b389d0dd5687ab5bd9338f760ebeaff2d2852a93a9a9ebaebbfefc763ac611365565b158061164557506116457fd5dc6b389d0dd5687ab5bd9338f760ebeaff2d2852a93a9a9ebaebbfefc763ac3361112a565b611662576040516394572de960e01b815260040160405180910390fd5b5f546001600160a01b03168061168b576040516379c39cf960e01b815260040160405180910390fd5b806001600160a01b0316639dd413306040518163ffffffff1660e01b81526004015f604051808303815f87803b1580156116c3575f5ffd5b505af11580156116d5573d5f5f3e3d5ffd5b505050505f5f6116e58388612b45565b915091506658d15e17628000826101600181815161170391906141b0565b9150818152505061175a6040518061012001604052805f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f6001600160e01b03191681525090565b6101a0830151604051636da707db60e01b81527372d888043104c186eff766025fa9032f6b0a687d91636da707db9161179e91879187918e918e9190600401613ed5565b608060405180830381865af41580156117b9573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906117dd9190613f1a565b6001600160e01b03191661010085018190526060850192909252604084019290925290955061180b90611cad565b61182a83604001518460a00151856101a0015184604001516001612234565b60a08401526080808401919091529082526040840151908401516101a0850151606084015161185c939291905f612234565b60e084015260c08301526020820152604082015160a08481015190830151608084015161188e938c9390929091612cf4565b6118ab88836040015185608001518460e001518560c00151612cf4565b80511561192a576040808401518251915163a7d6e44b60e01b81526001600160a01b039091169163a7d6e44b916118e89190600190600401613f95565b602060405180830381865afa158015611903573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906119279190613f5a565b95505b6020810151156119b65782604001516001600160a01b031663a7d6e44b82602001515f6040518363ffffffff1660e01b815260040161196a929190613f95565b602060405180830381865afa158015611985573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906119a99190613f5a565b6119b390876141b0565b95505b6119c4826040015186612e50565b836001600160a01b03166362402b046040518163ffffffff1660e01b81526004015f604051808303815f87803b1580156119fc575f5ffd5b505af1158015611a0e573d5f5f3e3d5ffd5b50505050611a218260400151868a612e9a565b6040848101518151838152602081018b905260018184015291519298506001600160a01b038c81169450169133917f3a84f64446e8eada995aa9da2ddbfcd9b5d5d650503b19f024096d04c05ef2a9919081900360600190a4505f92505050805c60ff1916815d509250929050565b611a986139cf565b611aa06139cf565b6040516394c0527d60e01b81526001600160a01b0384811660048301528716906394c0527d9060240161044060405180830381865afa158015611ae5573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611b099190614254565b604081015191935091506001600160a01b0316611b3957604051632f13551560e11b815260040160405180910390fd5b81606001516001600160a01b0316856001600160a01b031614611b6f5760405163055692d760e21b815260040160405180910390fd5b80606001516001600160a01b0316846001600160a01b031614611ba55760405163129e080d60e21b815260040160405180910390fd5b80604001516001600160a01b031663a6afed956040518163ffffffff1660e01b81526004016020604051808303815f875af1158015611be6573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611c0a9190613f5a565b5080604001516001600160a01b031682604001516001600160a01b031614611ca45781604001516001600160a01b031663a6afed956040518163ffffffff1660e01b81526004016020604051808303815f875af1158015611c6d573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611c919190613f5a565b50611c9b82612f30565b611ca481612f30565b94509492505050565b6001600160e01b031981165f03611cc15750565b61110981612fb6565b610ceb84856001600160a01b03166323b872dd868686604051602401611cf293929190614289565b604051602081830303815290604052915060e01b6020820180516001600160e01b038381831617835250505050612fe7565b604051636eb1769f60e11b81523060048201526001600160a01b0383811660248301525f919085169063dd62ed3e90604401602060405180830381865afa158015611d71573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611d959190613f5a565b9050610ceb8484611da685856141b0565b613048565b5f835f03611dba57505f611efe565b611e9084886001600160a01b031663b6d821c7856040518263ffffffff1660e01b8152600401611dea91906142ad565b602060405180830381865afa158015611e05573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611e299190613f5a565b856001600160a01b03166318160ddd6040518163ffffffff1660e01b8152600401602060405180830381865afa158015611e65573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611e899190613f5a565b5f866130d7565b9050805f03611ea057505f611efe565b604051633661585b60e21b81526001600160a01b0384169063d985616c90611ed090899089908690600401614289565b5f604051808303815f87803b158015611ee7575f5ffd5b505af1158015611ef9573d5f5f3e3d5ffd5b505050505b9695505050505050565b5f825f03611f1757505f612059565b6040516306d29bb360e51b81526001600160a01b0386169063da53766090611f499086903390309088906004016142c7565b6020604051808303815f875af1925050508015611f83575060408051601f3d908101601f19168201909252611f8091810190613f5a565b60015b612056573d808015611fb0576040519150601f19603f3d011682016040523d82523d5f602084013e611fb5565b606091505b50611fbf81613114565b156120385760405163a9059cbb60e01b8152336004820152602481018590526001600160a01b0386169063a9059cbb906044016020604051808303815f875af115801561200e573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061203291906142fd565b50612050565b6120508160405180602001604052805f815250613137565b50612059565b90505b949350505050565b5f6001600160e01b03198216637965db0b60e01b1480610ae857506301ffc9a760e01b6001600160e01b0319831614610ae8565b5f80546040805163aecc90cb60e01b81528151849384936001600160a01b039091169284928392859263aecc90cb92600480830193928290030181865afa1580156120e2573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906121069190613fc2565b60405163e48a5f7b60e01b81526001600160a01b0380841660048301529298508894509092505f9185169063e48a5f7b9060240161022060405180830381865afa158015612156573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061217a9190614181565b90508061016001515f036121f75760405163e48a5f7b60e01b81526001600160a01b03838116600483015285169063e48a5f7b9060240161022060405180830381865afa1580156121cd573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906121f19190614181565b90508196505b600188600181111561220b5761220b613f71565b1461221a578060800151612220565b8060a001515b6101a0909101519698909750945050505050565b5f5f5f845f0361224b57505f9150819050806123c7565b5f886001600160a01b031663b6d821c786600181111561226d5761226d613f71565b60ff16600281111561228157612281613f71565b6040518263ffffffff1660e01b815260040161229d91906142ad565b602060405180830381865afa1580156122b8573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906122dc9190613f5a565b90505f886001600160a01b03166318160ddd6040518163ffffffff1660e01b8152600401602060405180830381865afa15801561231b573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061233f9190613f5a565b90506123738783835f8a600181111561235a5761235a613f71565b60ff16600281111561236e5761236e613f71565b6130d7565b945061238788670de0b6b3a76400006141b0565b6123ac61239c6702c68af0bb1400008b614318565b87670de0b6b3a76400005f613160565b6123b69190614343565b93506123c28486614356565b925050505b955095509592505050565b6002546001600160a01b031633146110c15760405163118cdaa760e01b81523360048201526024016110f7565b5f8054604051630483b24f60e41b81526001600160a01b0385811660048301528392839283929091169063483b24f090602401606060405180830381865afa15801561244d573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061247191906141de565b925092509250816001600160a01b0316856001600160a01b03160361249d576108009350505050610ae8565b826001600160a01b0316856001600160a01b0316036124c3576110009350505050610ae8565b806001600160a01b0316856001600160a01b0316036124e9576120009350505050610ae8565b60405163d938fa3760e01b815260040160405180910390fd5b60408051808201825262ffffff84811680835284821660208085018281526001600160a01b038a165f81815260018452889020965187549251871663010000000265ffffffffffff1990931696169590951717909455845192835292820152918201527f1c26a8451bc890d476a0e7bb8310f00750604879bb30d4813a7718a1ee089fa69060600160405180910390a1826001600160a01b031663cad1aacf6040518163ffffffff1660e01b81526004015f604051808303815f87803b1580156125ca575f5ffd5b505af11580156125dc573d5f5f3e3d5ffd5b50505050505050565b61110981336131a2565b5f5f6125fb84846131df565b90508015611123575f84815260066020526040902061261a9084613270565b509392505050565b5f80546040805163aecc90cb60e01b81528151849384936001600160a01b039091169263aecc90cb92600480830193928290030181865afa158015612669573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061268d9190613fc2565b91509150816001600160a01b0316846001600160a01b031614806120595750806001600160a01b0316846001600160a01b031614949350505050565b5f5f6126d58484613284565b90508015611123575f84815260066020526040902061261a90846132ef565b600380546001600160a01b031916905561110981613303565b5f6111238383613354565b60605f6111238361337a565b5f80546040805163aecc90cb60e01b81528151849384936001600160a01b039091169263aecc90cb92600480830193928290030181865afa15801561276b573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061278f9190613fc2565b91509150816001600160a01b0316846001600160a01b031614806127c45750806001600160a01b0316846001600160a01b0316145b156127d3575060019392505050565b5f8054604051630483b24f60e41b81526001600160a01b0385811660048301528392169063483b24f090602401606060405180830381865afa15801561281b573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061283f91906141de565b919350909150506001600160a01b0386811690831614806128715750806001600160a01b0316866001600160a01b0316145b156128825750600195945050505050565b5f54604051630483b24f60e41b81526001600160a01b0385811660048301529091169063483b24f090602401606060405180830381865afa1580156128c9573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906128ed91906141de565b919350909150506001600160a01b03868116908316148061291f5750806001600160a01b0316866001600160a01b0316145b156129305750600195945050505050565b505f95945050505050565b335f908152600460205260409020546001600160a01b03168061295e5750610ceb565b6129938461298d876001600160a01b03165f9081526001602052604090205462ffffff63010000009091041690565b81161490565b61299d5750610ceb565b5f6129dc84848080601f0160208091040260200160405190810160405280939291908181526020018383808284375f920191909152506133d392505050565b805160608201516020830151608084015160a0850151604080870151905163bbdc013b60e01b81526001600160a01b039687166004820152602481019590955292851660448501526064840191909152608483015260a482015291925083169063bbdc013b9060c4015b5f604051808303815f87803b158015612a5d575f5ffd5b505af1158015612a6f573d5f5f3e3d5ffd5b50505050505050505050565b5f610ae8825490565b612a8c613477565b6001600160a01b038116612ab3576040516379c39cf960e01b815260040160405180910390fd5b5f546001600160a01b031615612adc576040516308db0db560e11b815260040160405180910390fd5b5f80546001600160a01b0319166001600160a01b0392909216919091179055565b612b05613477565b6001600160a01b038116611100576040516354a4010f60e01b815260040160405180910390fd5b612b34613477565b612b3d816134c0565b611109610aee565b612b4d6139cf565b612b556139cf565b6040516394c0527d60e01b81526001600160a01b0384811660048301528516906394c0527d9060240161044060405180830381865afa158015612b9a573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190612bbe9190614254565b604081015191935091506001600160a01b0316612bee57604051632f13551560e11b815260040160405180910390fd5b80604001516001600160a01b031663a6afed956040518163ffffffff1660e01b81526004016020604051808303815f875af1158015612c2f573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190612c539190613f5a565b5080604001516001600160a01b031682604001516001600160a01b031614612ced5781604001516001600160a01b031663a6afed956040518163ffffffff1660e01b81526004016020604051808303815f875af1158015612cb6573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190612cda9190613f5a565b50612ce482612f30565b612ced81612f30565b9250929050565b5f612cfe8561119f565b90508215612e1257604051633661585b60e21b81526001600160a01b0385169063d985616c90612d3690899085908890600401614289565b5f604051808303815f87803b158015612d4d575f5ffd5b505af1158015612d5f573d5f5f3e3d5ffd5b5050506cffffffffffffffffffffffffff8411159050612d9257604051631ffa331360e21b815260040160405180910390fd5b604051632e953c2160e01b81526001600160a01b0385811660048301526cffffffffffffffffffffffffff85166024830152821690632e953c21906044016020604051808303815f875af1158015612dec573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190612e109190613f5a565b505b8115612e4857604051633661585b60e21b81526001600160a01b0385169063d985616c90612a4690899033908790600401614289565b505050505050565b6040805160248082018490528251808303909101815260449091019091526020810180516001600160e01b031663194af7dd60e11b179052610ceb838263fe568fd160e01b6134ca565b5f5f5f612f0d86631bc77f3060e01b8787604051602401612ece9291909182526001600160a01b0316602082015260400190565b60408051601f198184030181529190526020810180516001600160e01b03166001600160e01b0319909316929092179091526340561a9d60e11b6134ca565b905080806020019051810190612f239190614369565b9097909650945050505050565b8061020001518015612f4e575060e08101516001600160a01b031615155b156111095760e08101516060820151604051637cfd30cd60e11b81526001600160a01b03918216600482015291169063f9fa619a906024015f604051808303815f87803b158015612f9d575f5ffd5b505af1158015612faf573d5f5f3e3d5ffd5b5050505050565b6040805160048152602481019091526020810180516001600160e01b03166001600160e01b03198416178152815190fd5b5f612ffb6001600160a01b03841683613575565b905080515f1415801561301f57508080602001905181019061301d91906142fd565b155b15610ff757604051635274afe760e01b81526001600160a01b03841660048201526024016110f7565b604080516001600160a01b038416602482015260448082018490528251808303909101815260649091019091526020810180516001600160e01b031663095ea7b360e01b1790526130998482613582565b610ceb576040516001600160a01b0384811660248301525f60448301526130cd91869182169063095ea7b390606401611cf2565b610ceb8482612fe7565b5f5f5f6130e587878661361f565b91509150815f036130fa57879250505061310b565b61310688838388613160565b925050505b95945050505050565b5f63284fe51560e01b6131268361438b565b6001600160e01b0319161492915050565b81511561314657815182602001fd5b8060405162461bcd60e51b81526004016110f79190613d6b565b5f61318d61316d8361367a565b801561318857505f84806131835761318361432f565b868809115b151590565b6131988686866136a6565b61205691906141b0565b6131ac828261112a565b6131db5760405163e2517d3f60e01b81526001600160a01b0382166004820152602481018390526044016110f7565b5050565b5f6131ea838361112a565b613269575f8381526005602090815260408083206001600160a01b03861684529091529020805460ff191660011790556132213390565b6001600160a01b0316826001600160a01b0316847f2f8788117e7eff1d82e926ec794901d17c78024a50270940304540a733656f0d60405160405180910390a4506001610ae8565b505f610ae8565b5f611123836001600160a01b038416613763565b5f61328f838361112a565b15613269575f8381526005602090815260408083206001600160a01b0386168085529252808320805460ff1916905551339286917ff6391f5c32d9c69d2a47ea670b442974b53935d1edc7fd64eb21e047a839171b9190a4506001610ae8565b5f611123836001600160a01b0384166137a8565b600280546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b5f825f018281548110613369576133696143c9565b905f5260205f200154905092915050565b6060815f018054806020026020016040519081016040528092919081815260200182805480156133c757602002820191905f5260205f20905b8154815260200190600101908083116133b3575b50505050509050919050565b6134186040518060c001604052805f6001600160a01b031681526020015f6001600160a01b031681526020015f81526020015f81526020015f81526020015f81525090565b506014810151602882015160488301516068840151608885015160a8909501516040805160c0810182526001600160a01b039687168152959094166020860152928401919091526060830152608082019290925260a081019190915290565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a0054600160401b900460ff166110c157604051631afcd79f60e31b815260040160405180910390fd5b6131db5f826125ef565b60605f846001600160a01b0316634624c6a77f000000000000000000000000c3569379a892392fc2c897e93a79d008f924ddfb5f6001886040518563ffffffff1660e01b815260040161352094939291906143dd565b5f604051808303815f875af115801561353b573d5f5f3e3d5ffd5b505050506040513d5f823e601f3d908101601f191682016040526135629190810190614414565b925090508061261a5761261a828461388b565b606061112383835f6138a3565b5f5f5f846001600160a01b03168460405161359d91906144bc565b5f604051808303815f865af19150503d805f81146135d6576040519150601f19603f3d011682016040523d82523d5f602084013e6135db565b606091505b509150915081801561360557508051158061360557508080602001905181019061360591906142fd565b801561310b5750505050506001600160a01b03163b151590565b5f5f835f0361362c575f94505b600283600281111561364057613640613f71565b1461366b576136516003600a6145b5565b61365b90856141b0565b6136668660016141b0565b61366e565b83855b90969095509350505050565b5f600282600381111561368f5761368f613f71565b61369991906145c0565b60ff166001149050919050565b5f838302815f1985870982811083820303915050805f036136da578382816136d0576136d061432f565b0492505050611123565b8084116136f8576136f884156136f1576011613939565b6012613939565b5f848688095f868103871696879004966002600389028118808a02820302808a02820302808a02820302808a02820302808a02820302808a02909103029181900381900460010186841190950394909402919094039290920491909117919091029150509392505050565b5f81815260018301602052604081205461326957508154600181810184555f848152602080822090930184905584548482528286019093526040902091909155610ae8565b5f8181526001830160205260408120548015613882575f6137ca600183614356565b85549091505f906137dd90600190614356565b905080821461383c575f865f0182815481106137fb576137fb6143c9565b905f5260205f200154905080875f01848154811061381b5761381b6143c9565b5f918252602080832090910192909255918252600188019052604090208390555b855486908061384d5761384d6145e1565b600190038181905f5260205f20015f90559055856001015f8681526020019081526020015f205f905560019350505050610ae8565b5f915050610ae8565b81511561389a57815182602001fd5b6131db81612fb6565b6060814710156138cf5760405163cf47918160e01b8152476004820152602481018390526044016110f7565b5f5f856001600160a01b031684866040516138ea91906144bc565b5f6040518083038185875af1925050503d805f8114613924576040519150601f19603f3d011682016040523d82523d5f602084013e613929565b606091505b5091509150611efe86838361394a565b634e487b715f52806020526024601cfd5b60608261395f5761395a826139a6565b611123565b815115801561397657506001600160a01b0384163b155b1561399f57604051639996b31560e01b81526001600160a01b03851660048201526024016110f7565b5080611123565b8051156139b65780518082602001fd5b60405163d6bda27560e01b815260040160405180910390fd5b60408051610220810182525f80825260208201819052918101829052606081018290526080810182905260a0810182905260c0810182905260e08101829052610100810182905261012081018290526101408101829052610160810182905261018081018290526101a081018290526101c081018290526101e0810182905261020081019190915290565b6001600160a01b0381168114611109575f5ffd5b8015158114611109575f5ffd5b5f5f5f5f5f60a08688031215613a8f575f5ffd5b8535613a9a81613a5a565b94506020860135613aaa81613a5a565b93506040860135613aba81613a5a565b9250606086013591506080860135613ad181613a6e565b809150509295509295909350565b6001600160e01b031981168114611109575f5ffd5b5f60208284031215613b04575f5ffd5b813561112381613adf565b5f5f60408385031215613b20575f5ffd5b82359150602083013560028110613b35575f5ffd5b809150509250929050565b5f5f60408385031215613b51575f5ffd5b8235613b5c81613a5a565b91506020830135613b3581613a5a565b5f60208284031215613b7c575f5ffd5b5035919050565b5f5f60408385031215613b94575f5ffd5b823591506020830135613b3581613a5a565b5f5f83601f840112613bb6575f5ffd5b50813567ffffffffffffffff811115613bcd575f5ffd5b602083019150836020828501011115612ced575f5ffd5b5f5f5f5f60608587031215613bf7575f5ffd5b8435613c0281613a5a565b935060208501359250604085013567ffffffffffffffff811115613c24575f5ffd5b613c3087828801613ba6565b95989497509550505050565b5f60208284031215613c4c575f5ffd5b813561112381613a5a565b5f5f60408385031215613c68575f5ffd5b50508035926020909101359150565b602080825282518282018190525f918401906040840190835b81811015613cb75783516001600160a01b0316835260209384019390920191600101613c90565b509095945050505050565b5f5f5f60408486031215613cd4575f5ffd5b8335613cdf81613a5a565b9250602084013567ffffffffffffffff811115613cfa575f5ffd5b613d0686828701613ba6565b9497909650939450505050565b5f5f60408385031215613d24575f5ffd5b8235613d2f81613a5a565b946020939093013593505050565b5f81518084528060208401602086015e5f602082860101526020601f19601f83011685010191505092915050565b602081525f6111236020830184613d3d565b80518252602081015160208301526040810151613da560408401826001600160a01b03169052565b506060810151613dc060608401826001600160a01b03169052565b506080810151613ddb60808401826001600160a01b03169052565b5060a0810151613df660a08401826001600160a01b03169052565b5060c0810151613e1160c08401826001600160a01b03169052565b5060e0810151613e2c60e08401826001600160a01b03169052565b50610100810151613e496101008401826001600160a01b03169052565b50610120810151613e666101208401826001600160a01b03169052565b506101408101516101408301526101608101516101608301526101808101516101808301526101a08101516101a08301526101c08101516101c08301526101e0810151613ebf6101e08401826001600160a01b03169052565b50610200810151610ff761020084018215159052565b6104a08101613ee48288613d7d565b613ef2610220830187613d7d565b6001600160a01b03949094166104408201526104608101929092526104809091015292915050565b5f5f5f5f60808587031215613f2d575f5ffd5b84516020860151604087015160608801519296509094509250613f4f81613adf565b939692955090935050565b5f60208284031215613f6a575f5ffd5b5051919050565b634e487b7160e01b5f52602160045260245ffd5b6002811061110957611109613f71565b82815260408101613fa583613f85565b8260208301529392505050565b8051613fbd81613a5a565b919050565b5f5f60408385031215613fd3575f5ffd5b8251613fde81613a5a565b6020840151909250613b3581613a5a565b634e487b7160e01b5f52604160045260245ffd5b604051610220810167ffffffffffffffff8111828210171561402757614027613fef565b60405290565b604051601f8201601f1916810167ffffffffffffffff8111828210171561405657614056613fef565b604052919050565b8051613fbd81613a6e565b5f610220828403121561407a575f5ffd5b614082614003565b8251815260208084015190820152905061409e60408301613fb2565b60408201526140af60608301613fb2565b60608201526140c060808301613fb2565b60808201526140d160a08301613fb2565b60a08201526140e260c08301613fb2565b60c08201526140f360e08301613fb2565b60e08201526141056101008301613fb2565b6101008201526141186101208301613fb2565b6101208201526101408281015190820152610160808301519082015261018080830151908201526101a080830151908201526101c080830151908201526141626101e08301613fb2565b6101e0820152614175610200830161405e565b61020082015292915050565b5f6102208284031215614192575f5ffd5b6111238383614069565b634e487b7160e01b5f52601160045260245ffd5b80820180821115610ae857610ae861419c565b5f602082840312156141d3575f5ffd5b815161112381613a5a565b5f5f5f606084860312156141f0575f5ffd5b83516141fb81613a5a565b602085015190935061420c81613a5a565b604085015190925061421d81613a5a565b809150509250925092565b5f5f5f6060848603121561423a575f5ffd5b835160208501516040860151919450925061421d81613a6e565b5f5f6104408385031215614266575f5ffd5b6142708484614069565b9150614280846102208501614069565b90509250929050565b6001600160a01b039384168152919092166020820152604081019190915260600190565b60208101600383106142c1576142c1613f71565b91905290565b8481526001600160a01b03848116602083015283166040820152608081016142ee83613f85565b82606083015295945050505050565b5f6020828403121561430d575f5ffd5b815161112381613a6e565b8082028115828204841417610ae857610ae861419c565b634e487b7160e01b5f52601260045260245ffd5b5f826143515761435161432f565b500490565b81810381811115610ae857610ae861419c565b5f5f6040838503121561437a575f5ffd5b505080516020909101519092909150565b805160208201516001600160e01b03198116919060048210156143c2576001600160e01b0319600483900360031b81901b82161692505b5050919050565b634e487b7160e01b5f52603260045260245ffd5b6001600160a01b0385168152602081018490526143f983613f85565b826040820152608060608201525f611efe6080830184613d3d565b5f5f60408385031215614425575f5ffd5b825161443081613a6e565b602084015190925067ffffffffffffffff81111561444c575f5ffd5b8301601f8101851361445c575f5ffd5b805167ffffffffffffffff81111561447657614476613fef565b614489601f8201601f191660200161402d565b81815286602083850101111561449d575f5ffd5b8160208401602083015e5f602083830101528093505050509250929050565b5f82518060208501845e5f920191825250919050565b6001815b600184111561450d578085048111156144f1576144f161419c565b60018416156144ff57908102905b60019390931c9280026144d6565b935093915050565b5f8261452357506001610ae8565b8161452f57505f610ae8565b8160018114614545576002811461454f5761456b565b6001915050610ae8565b60ff8411156145605761456061419c565b50506001821b610ae8565b5060208310610133831016604e8410600b841016171561458e575081810a610ae8565b61459a5f1984846144d2565b805f19048211156145ad576145ad61419c565b029392505050565b5f6111238383614515565b5f60ff8316806145d2576145d261432f565b8060ff84160691505092915050565b634e487b7160e01b5f52603160045260245ffdfea2646970667358221220506eaac58b9ad0f1baa9fc6bb66cf191edfcc4ff76a405036d5d86ca1f670ea464736f6c634300081c0033
Loading...
Loading
Loading...
Loading
Loading...
Loading
Net Worth in USD
$0.00
Net Worth in S
Multichain Portfolio | 35 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.