Overview
S Balance
0 S
S Value
-More Info
Private Name Tags
ContractCreator
Loading...
Loading
Contract Name:
ShadowLpHandler
Compiler Version
v0.8.18+commit.87f61d96
Optimization Enabled:
Yes with 1337 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: UNKNOWN pragma solidity 0.8.18; // Interfaces import { Token } from "../../../../Token.sol"; interface IShadowFactory { function getPool( address tokenA, address tokenB, int24 tickSpacing ) external view returns (address pool); function createPool( address tokenA, address tokenB, int24 tickSpacing, uint160 sqrtPriceX96 ) external returns (address pool); } interface IShadowNonfungiblePositionManager { struct MintParams { address token0; address token1; int24 tickSpacing; int24 tickLower; int24 tickUpper; uint256 amount0Desired; uint256 amount1Desired; uint256 amount0Min; uint256 amount1Min; address recipient; uint256 deadline; } function mint( MintParams calldata params ) external payable returns (uint256 tokenId, uint128 liquidity, uint256 amount0, uint256 amount1); } contract ShadowLpHandler { struct Storage { mapping (address => uint256) positions; } function store() internal pure returns (Storage storage s) { bytes32 position = keccak256("diamond.shadowlp.storage"); assembly { s.slot := position } } // Shadow forwarding address constant factory = address(0); address constant nfpManager = address(0); function shadow_getPool( address tokenA, address tokenB, int24 tickSpacing ) external view returns (address) { return IShadowFactory(factory).getPool(tokenA, tokenB, tickSpacing); } function shadow_createPool( address tokenA, address tokenB, int24 tickSpacing, uint160 sqrtPriceX96 ) external returns (address) { return IShadowFactory(factory).createPool(tokenA, tokenB, tickSpacing, sqrtPriceX96); } function shadow_mint( IShadowNonfungiblePositionManager.MintParams calldata params ) external payable returns (uint256, uint128, uint256, uint256) { Token(params.token0).approve(nfpManager, params.amount0Desired); Token(params.token1).approve(nfpManager, params.amount1Desired); return IShadowNonfungiblePositionManager(nfpManager).mint(params); } // LP Handling function shadow_claimLP(address pool) external { } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/ERC20.sol) pragma solidity ^0.8.0; import "./IERC20.sol"; import "./extensions/IERC20Metadata.sol"; import "../../utils/Context.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * The default value of {decimals} is 18. To change this, you should override * this function so it returns a different value. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC20 * applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is Context, IERC20, IERC20Metadata { mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; /** * @dev Sets the values for {name} and {symbol}. * * All two of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the default value returned by this function, unless * it's overridden. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual override returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `to` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address to, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _transfer(owner, to, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on * `transferFrom`. This is semantically equivalent to an infinite approval. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _approve(owner, spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * NOTE: Does not update the allowance if the current allowance * is the maximum `uint256`. * * Requirements: * * - `from` and `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. * - the caller must have allowance for ``from``'s tokens of at least * `amount`. */ function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, amount); _transfer(from, to, amount); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { address owner = _msgSender(); _approve(owner, spender, allowance(owner, spender) + addedValue); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { address owner = _msgSender(); uint256 currentAllowance = allowance(owner, spender); require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero"); unchecked { _approve(owner, spender, currentAllowance - subtractedValue); } return true; } /** * @dev Moves `amount` of tokens from `from` to `to`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. */ function _transfer(address from, address to, uint256 amount) internal virtual { require(from != address(0), "ERC20: transfer from the zero address"); require(to != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(from, to, amount); uint256 fromBalance = _balances[from]; require(fromBalance >= amount, "ERC20: transfer amount exceeds balance"); unchecked { _balances[from] = fromBalance - amount; // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by // decrementing then incrementing. _balances[to] += amount; } emit Transfer(from, to, amount); _afterTokenTransfer(from, to, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply += amount; unchecked { // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above. _balances[account] += amount; } emit Transfer(address(0), account, amount); _afterTokenTransfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); uint256 accountBalance = _balances[account]; require(accountBalance >= amount, "ERC20: burn amount exceeds balance"); unchecked { _balances[account] = accountBalance - amount; // Overflow not possible: amount <= accountBalance <= totalSupply. _totalSupply -= amount; } emit Transfer(account, address(0), amount); _afterTokenTransfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Updates `owner` s allowance for `spender` based on spent `amount`. * * Does not update the allowance amount in case of infinite allowance. * Revert if not enough allowance is available. * * Might emit an {Approval} event. */ function _spendAllowance(address owner, address spender, uint256 amount) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance != type(uint256).max) { require(currentAllowance >= amount, "ERC20: insufficient allowance"); unchecked { _approve(owner, spender, currentAllowance - amount); } } } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {} /** * @dev Hook that is called after any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * has been transferred to `to`. * - when `from` is zero, `amount` tokens have been minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens have been burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {} }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 amount) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } }
// SPDX-License-Identifier: UNKNOWN pragma solidity 0.8.18; // Contracts/Libraries/Modifiers import { ERC20 } from "@openzeppelin/contracts/token/ERC20/ERC20.sol"; import { Base64 } from "solady/src/utils/Base64.sol"; import { LibString } from "solady/src/utils/LibString.sol"; contract Token is ERC20 { address internal protocol; bool internal locked = true; address internal creator; string internal descripiton; bytes internal image; string[] internal links; constructor(address _creator, string memory name, string memory symbol, string memory _desc, bytes memory _image, string[] memory _links, uint256 _supply, address _protocol) ERC20(name, symbol) { protocol = _protocol; creator = _creator; descripiton = _desc; image = _image; links = _links; _mint(msg.sender, _supply); } function unlock() external { require(msg.sender == protocol && locked == true); locked = false; } function updateMetadata( string calldata _desc, bytes calldata _image, string[] calldata _links ) external { require(msg.sender == creator); if (bytes(_desc).length > 0) { descripiton = _desc; } if (_image.length > 0) { image = _image; } if (_links.length != links.length) { links = _links; } } function tokenURI( uint256 _unused ) public view returns (string memory) { string memory linksString = ''; for (uint256 i = 0; i < links.length; i++) { linksString = string.concat(linksString, '"', links[i], '"'); if (i < links.length - 1) { linksString = string.concat(linksString, ","); } } return string.concat("data:application/json;base64,", Base64.encode( bytes( string.concat( "{", '"creator":"', LibString.toHexString(creator), '",', '"name":"', name(), '",', '"symbol":"', symbol(), '",', '"supply":"', LibString.toString(totalSupply() / (10 ** 18)), '",', '"description":"', descripiton, '",', '"links":[',linksString,'],', '"image_data":"data:image/webp;base64,', Base64.encode(image), '",', '"background_color":"000000"', "}" ) ) ) ); } function _beforeTokenTransfer(address from, address to, uint256 amount) internal override { if (locked) { require(from == protocol || to == protocol, "transfer not allowed before launch"); } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Library to encode strings in Base64. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/Base64.sol) /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/Base64.sol) /// @author Modified from (https://github.com/Brechtpd/base64/blob/main/base64.sol) by Brecht Devos - <[email protected]>. library Base64 { /// @dev Encodes `data` using the base64 encoding described in RFC 4648. /// See: https://datatracker.ietf.org/doc/html/rfc4648 /// @param fileSafe Whether to replace '+' with '-' and '/' with '_'. /// @param noPadding Whether to strip away the padding. function encode(bytes memory data, bool fileSafe, bool noPadding) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { let dataLength := mload(data) if dataLength { // Multiply by 4/3 rounded up. // The `shl(2, ...)` is equivalent to multiplying by 4. let encodedLength := shl(2, div(add(dataLength, 2), 3)) // Set `result` to point to the start of the free memory. result := mload(0x40) // Store the table into the scratch space. // Offsetted by -1 byte so that the `mload` will load the character. // We will rewrite the free memory pointer at `0x40` later with // the allocated size. // The magic constant 0x0670 will turn "-_" into "+/". mstore(0x1f, "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdef") mstore(0x3f, xor("ghijklmnopqrstuvwxyz0123456789-_", mul(iszero(fileSafe), 0x0670))) // Skip the first slot, which stores the length. let ptr := add(result, 0x20) let end := add(ptr, encodedLength) let dataEnd := add(add(0x20, data), dataLength) let dataEndValue := mload(dataEnd) // Cache the value at the `dataEnd` slot. mstore(dataEnd, 0x00) // Zeroize the `dataEnd` slot to clear dirty bits. // Run over the input, 3 bytes at a time. for {} 1 {} { data := add(data, 3) // Advance 3 bytes. let input := mload(data) // Write 4 bytes. Optimized for fewer stack operations. mstore8(0, mload(and(shr(18, input), 0x3F))) mstore8(1, mload(and(shr(12, input), 0x3F))) mstore8(2, mload(and(shr(6, input), 0x3F))) mstore8(3, mload(and(input, 0x3F))) mstore(ptr, mload(0x00)) ptr := add(ptr, 4) // Advance 4 bytes. if iszero(lt(ptr, end)) { break } } mstore(dataEnd, dataEndValue) // Restore the cached value at `dataEnd`. mstore(0x40, add(end, 0x20)) // Allocate the memory. // Equivalent to `o = [0, 2, 1][dataLength % 3]`. let o := div(2, mod(dataLength, 3)) // Offset `ptr` and pad with '='. We can simply write over the end. mstore(sub(ptr, o), shl(240, 0x3d3d)) // Set `o` to zero if there is padding. o := mul(iszero(iszero(noPadding)), o) mstore(sub(ptr, o), 0) // Zeroize the slot after the string. mstore(result, sub(encodedLength, o)) // Store the length. } } } /// @dev Encodes `data` using the base64 encoding described in RFC 4648. /// Equivalent to `encode(data, false, false)`. function encode(bytes memory data) internal pure returns (string memory result) { result = encode(data, false, false); } /// @dev Encodes `data` using the base64 encoding described in RFC 4648. /// Equivalent to `encode(data, fileSafe, false)`. function encode(bytes memory data, bool fileSafe) internal pure returns (string memory result) { result = encode(data, fileSafe, false); } /// @dev Decodes base64 encoded `data`. /// /// Supports: /// - RFC 4648 (both standard and file-safe mode). /// - RFC 3501 (63: ','). /// /// Does not support: /// - Line breaks. /// /// Note: For performance reasons, /// this function will NOT revert on invalid `data` inputs. /// Outputs for invalid inputs will simply be undefined behaviour. /// It is the user's responsibility to ensure that the `data` /// is a valid base64 encoded string. function decode(string memory data) internal pure returns (bytes memory result) { /// @solidity memory-safe-assembly assembly { let dataLength := mload(data) if dataLength { let decodedLength := mul(shr(2, dataLength), 3) for {} 1 {} { // If padded. if iszero(and(dataLength, 3)) { let t := xor(mload(add(data, dataLength)), 0x3d3d) // forgefmt: disable-next-item decodedLength := sub( decodedLength, add(iszero(byte(30, t)), iszero(byte(31, t))) ) break } // If non-padded. decodedLength := add(decodedLength, sub(and(dataLength, 3), 1)) break } result := mload(0x40) // Write the length of the bytes. mstore(result, decodedLength) // Skip the first slot, which stores the length. let ptr := add(result, 0x20) let end := add(ptr, decodedLength) // Load the table into the scratch space. // Constants are optimized for smaller bytecode with zero gas overhead. // `m` also doubles as the mask of the upper 6 bits. let m := 0xfc000000fc00686c7074787c8084888c9094989ca0a4a8acb0b4b8bcc0c4c8cc mstore(0x5b, m) mstore(0x3b, 0x04080c1014181c2024282c3034383c4044484c5054585c6064) mstore(0x1a, 0xf8fcf800fcd0d4d8dce0e4e8ecf0f4) for {} 1 {} { // Read 4 bytes. data := add(data, 4) let input := mload(data) // Write 3 bytes. // forgefmt: disable-next-item mstore(ptr, or( and(m, mload(byte(28, input))), shr(6, or( and(m, mload(byte(29, input))), shr(6, or( and(m, mload(byte(30, input))), shr(6, mload(byte(31, input))) )) )) )) ptr := add(ptr, 3) if iszero(lt(ptr, end)) { break } } mstore(0x40, add(end, 0x20)) // Allocate the memory. mstore(end, 0) // Zeroize the slot after the bytes. mstore(0x60, 0) // Restore the zero slot. } } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Library for byte related operations. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibBytes.sol) library LibBytes { /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* STRUCTS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Goated bytes storage struct that totally MOGs, no cap, fr. /// Uses less gas and bytecode than Solidity's native bytes storage. It's meta af. /// Packs length with the first 31 bytes if <255 bytes, so it’s mad tight. struct BytesStorage { bytes32 _spacer; } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CONSTANTS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The constant returned when the `search` is not found in the bytes. uint256 internal constant NOT_FOUND = type(uint256).max; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* BYTE STORAGE OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Sets the value of the bytes storage `$` to `s`. function set(BytesStorage storage $, bytes memory s) internal { /// @solidity memory-safe-assembly assembly { let n := mload(s) let packed := or(0xff, shl(8, n)) for { let i := 0 } 1 {} { if iszero(gt(n, 0xfe)) { i := 0x1f packed := or(n, shl(8, mload(add(s, i)))) if iszero(gt(n, i)) { break } } let o := add(s, 0x20) mstore(0x00, $.slot) for { let p := keccak256(0x00, 0x20) } 1 {} { sstore(add(p, shr(5, i)), mload(add(o, i))) i := add(i, 0x20) if iszero(lt(i, n)) { break } } break } sstore($.slot, packed) } } /// @dev Sets the value of the bytes storage `$` to `s`. function setCalldata(BytesStorage storage $, bytes calldata s) internal { /// @solidity memory-safe-assembly assembly { let packed := or(0xff, shl(8, s.length)) for { let i := 0 } 1 {} { if iszero(gt(s.length, 0xfe)) { i := 0x1f packed := or(s.length, shl(8, shr(8, calldataload(s.offset)))) if iszero(gt(s.length, i)) { break } } mstore(0x00, $.slot) for { let p := keccak256(0x00, 0x20) } 1 {} { sstore(add(p, shr(5, i)), calldataload(add(s.offset, i))) i := add(i, 0x20) if iszero(lt(i, s.length)) { break } } break } sstore($.slot, packed) } } /// @dev Sets the value of the bytes storage `$` to the empty bytes. function clear(BytesStorage storage $) internal { delete $._spacer; } /// @dev Returns whether the value stored is `$` is the empty bytes "". function isEmpty(BytesStorage storage $) internal view returns (bool) { return uint256($._spacer) & 0xff == uint256(0); } /// @dev Returns the length of the value stored in `$`. function length(BytesStorage storage $) internal view returns (uint256 result) { result = uint256($._spacer); /// @solidity memory-safe-assembly assembly { let n := and(0xff, result) result := or(mul(shr(8, result), eq(0xff, n)), mul(n, iszero(eq(0xff, n)))) } } /// @dev Returns the value stored in `$`. function get(BytesStorage storage $) internal view returns (bytes memory result) { /// @solidity memory-safe-assembly assembly { result := mload(0x40) let o := add(result, 0x20) let packed := sload($.slot) let n := shr(8, packed) for { let i := 0 } 1 {} { if iszero(eq(and(packed, 0xff), 0xff)) { mstore(o, packed) n := and(0xff, packed) i := 0x1f if iszero(gt(n, i)) { break } } mstore(0x00, $.slot) for { let p := keccak256(0x00, 0x20) } 1 {} { mstore(add(o, i), sload(add(p, shr(5, i)))) i := add(i, 0x20) if iszero(lt(i, n)) { break } } break } mstore(result, n) // Store the length of the memory. mstore(add(o, n), 0) // Zeroize the slot after the bytes. mstore(0x40, add(add(o, n), 0x20)) // Allocate memory. } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* BYTES OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns `subject` all occurrences of `needle` replaced with `replacement`. function replace(bytes memory subject, bytes memory needle, bytes memory replacement) internal pure returns (bytes memory result) { /// @solidity memory-safe-assembly assembly { result := mload(0x40) let needleLen := mload(needle) let replacementLen := mload(replacement) let d := sub(result, subject) // Memory difference. let i := add(subject, 0x20) // Subject bytes pointer. mstore(0x00, add(i, mload(subject))) // End of subject. if iszero(gt(needleLen, mload(subject))) { let subjectSearchEnd := add(sub(mload(0x00), needleLen), 1) let h := 0 // The hash of `needle`. if iszero(lt(needleLen, 0x20)) { h := keccak256(add(needle, 0x20), needleLen) } let s := mload(add(needle, 0x20)) for { let m := shl(3, sub(0x20, and(needleLen, 0x1f))) } 1 {} { let t := mload(i) // Whether the first `needleLen % 32` bytes of `subject` and `needle` matches. if iszero(shr(m, xor(t, s))) { if h { if iszero(eq(keccak256(i, needleLen), h)) { mstore(add(i, d), t) i := add(i, 1) if iszero(lt(i, subjectSearchEnd)) { break } continue } } // Copy the `replacement` one word at a time. for { let j := 0 } 1 {} { mstore(add(add(i, d), j), mload(add(add(replacement, 0x20), j))) j := add(j, 0x20) if iszero(lt(j, replacementLen)) { break } } d := sub(add(d, replacementLen), needleLen) if needleLen { i := add(i, needleLen) if iszero(lt(i, subjectSearchEnd)) { break } continue } } mstore(add(i, d), t) i := add(i, 1) if iszero(lt(i, subjectSearchEnd)) { break } } } let end := mload(0x00) let n := add(sub(d, add(result, 0x20)), end) // Copy the rest of the bytes one word at a time. for {} lt(i, end) { i := add(i, 0x20) } { mstore(add(i, d), mload(i)) } let o := add(i, d) mstore(o, 0) // Zeroize the slot after the bytes. mstore(0x40, add(o, 0x20)) // Allocate memory. mstore(result, n) // Store the length. } } /// @dev Returns the byte index of the first location of `needle` in `subject`, /// needleing from left to right, starting from `from`. /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `needle` is not found. function indexOf(bytes memory subject, bytes memory needle, uint256 from) internal pure returns (uint256 result) { /// @solidity memory-safe-assembly assembly { result := not(0) // Initialize to `NOT_FOUND`. for { let subjectLen := mload(subject) } 1 {} { if iszero(mload(needle)) { result := from if iszero(gt(from, subjectLen)) { break } result := subjectLen break } let needleLen := mload(needle) let subjectStart := add(subject, 0x20) subject := add(subjectStart, from) let end := add(sub(add(subjectStart, subjectLen), needleLen), 1) let m := shl(3, sub(0x20, and(needleLen, 0x1f))) let s := mload(add(needle, 0x20)) if iszero(and(lt(subject, end), lt(from, subjectLen))) { break } if iszero(lt(needleLen, 0x20)) { for { let h := keccak256(add(needle, 0x20), needleLen) } 1 {} { if iszero(shr(m, xor(mload(subject), s))) { if eq(keccak256(subject, needleLen), h) { result := sub(subject, subjectStart) break } } subject := add(subject, 1) if iszero(lt(subject, end)) { break } } break } for {} 1 {} { if iszero(shr(m, xor(mload(subject), s))) { result := sub(subject, subjectStart) break } subject := add(subject, 1) if iszero(lt(subject, end)) { break } } break } } } /// @dev Returns the byte index of the first location of `needle` in `subject`, /// needleing from left to right. /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `needle` is not found. function indexOf(bytes memory subject, bytes memory needle) internal pure returns (uint256) { return indexOf(subject, needle, 0); } /// @dev Returns the byte index of the first location of `needle` in `subject`, /// needleing from right to left, starting from `from`. /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `needle` is not found. function lastIndexOf(bytes memory subject, bytes memory needle, uint256 from) internal pure returns (uint256 result) { /// @solidity memory-safe-assembly assembly { for {} 1 {} { result := not(0) // Initialize to `NOT_FOUND`. let needleLen := mload(needle) if gt(needleLen, mload(subject)) { break } let w := result let fromMax := sub(mload(subject), needleLen) if iszero(gt(fromMax, from)) { from := fromMax } let end := add(add(subject, 0x20), w) subject := add(add(subject, 0x20), from) if iszero(gt(subject, end)) { break } // As this function is not too often used, // we shall simply use keccak256 for smaller bytecode size. for { let h := keccak256(add(needle, 0x20), needleLen) } 1 {} { if eq(keccak256(subject, needleLen), h) { result := sub(subject, add(end, 1)) break } subject := add(subject, w) // `sub(subject, 1)`. if iszero(gt(subject, end)) { break } } break } } } /// @dev Returns the byte index of the first location of `needle` in `subject`, /// needleing from right to left. /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `needle` is not found. function lastIndexOf(bytes memory subject, bytes memory needle) internal pure returns (uint256) { return lastIndexOf(subject, needle, type(uint256).max); } /// @dev Returns true if `needle` is found in `subject`, false otherwise. function contains(bytes memory subject, bytes memory needle) internal pure returns (bool) { return indexOf(subject, needle) != NOT_FOUND; } /// @dev Returns whether `subject` starts with `needle`. function startsWith(bytes memory subject, bytes memory needle) internal pure returns (bool result) { /// @solidity memory-safe-assembly assembly { let n := mload(needle) // Just using keccak256 directly is actually cheaper. let t := eq(keccak256(add(subject, 0x20), n), keccak256(add(needle, 0x20), n)) result := lt(gt(n, mload(subject)), t) } } /// @dev Returns whether `subject` ends with `needle`. function endsWith(bytes memory subject, bytes memory needle) internal pure returns (bool result) { /// @solidity memory-safe-assembly assembly { let n := mload(needle) let notInRange := gt(n, mload(subject)) // `subject + 0x20 + max(subject.length - needle.length, 0)`. let t := add(add(subject, 0x20), mul(iszero(notInRange), sub(mload(subject), n))) // Just using keccak256 directly is actually cheaper. result := gt(eq(keccak256(t, n), keccak256(add(needle, 0x20), n)), notInRange) } } /// @dev Returns `subject` repeated `times`. function repeat(bytes memory subject, uint256 times) internal pure returns (bytes memory result) { /// @solidity memory-safe-assembly assembly { let l := mload(subject) // Subject length. if iszero(or(iszero(times), iszero(l))) { result := mload(0x40) subject := add(subject, 0x20) let o := add(result, 0x20) for {} 1 {} { // Copy the `subject` one word at a time. for { let j := 0 } 1 {} { mstore(add(o, j), mload(add(subject, j))) j := add(j, 0x20) if iszero(lt(j, l)) { break } } o := add(o, l) times := sub(times, 1) if iszero(times) { break } } mstore(o, 0) // Zeroize the slot after the bytes. mstore(0x40, add(o, 0x20)) // Allocate memory. mstore(result, sub(o, add(result, 0x20))) // Store the length. } } } /// @dev Returns a copy of `subject` sliced from `start` to `end` (exclusive). /// `start` and `end` are byte offsets. function slice(bytes memory subject, uint256 start, uint256 end) internal pure returns (bytes memory result) { /// @solidity memory-safe-assembly assembly { let l := mload(subject) // Subject length. if iszero(gt(l, end)) { end := l } if iszero(gt(l, start)) { start := l } if lt(start, end) { result := mload(0x40) let n := sub(end, start) let i := add(subject, start) let w := not(0x1f) // Copy the `subject` one word at a time, backwards. for { let j := and(add(n, 0x1f), w) } 1 {} { mstore(add(result, j), mload(add(i, j))) j := add(j, w) // `sub(j, 0x20)`. if iszero(j) { break } } let o := add(add(result, 0x20), n) mstore(o, 0) // Zeroize the slot after the bytes. mstore(0x40, add(o, 0x20)) // Allocate memory. mstore(result, n) // Store the length. } } } /// @dev Returns a copy of `subject` sliced from `start` to the end of the bytes. /// `start` is a byte offset. function slice(bytes memory subject, uint256 start) internal pure returns (bytes memory result) { result = slice(subject, start, type(uint256).max); } /// @dev Returns a copy of `subject` sliced from `start` to `end` (exclusive). /// `start` and `end` are byte offsets. Faster than Solidity's native slicing. function sliceCalldata(bytes calldata subject, uint256 start, uint256 end) internal pure returns (bytes calldata result) { /// @solidity memory-safe-assembly assembly { end := xor(end, mul(xor(end, subject.length), lt(subject.length, end))) start := xor(start, mul(xor(start, subject.length), lt(subject.length, start))) result.offset := add(subject.offset, start) result.length := mul(lt(start, end), sub(end, start)) } } /// @dev Returns a copy of `subject` sliced from `start` to the end of the bytes. /// `start` is a byte offset. Faster than Solidity's native slicing. function sliceCalldata(bytes calldata subject, uint256 start) internal pure returns (bytes calldata result) { /// @solidity memory-safe-assembly assembly { start := xor(start, mul(xor(start, subject.length), lt(subject.length, start))) result.offset := add(subject.offset, start) result.length := mul(lt(start, subject.length), sub(subject.length, start)) } } /// @dev Reduces the size of `subject` to `n`. /// If `n` is greater than the size of `subject`, this will be a no-op. function truncate(bytes memory subject, uint256 n) internal pure returns (bytes memory result) { /// @solidity memory-safe-assembly assembly { result := subject mstore(mul(lt(n, mload(result)), result), n) } } /// @dev Returns a copy of `subject`, with the length reduced to `n`. /// If `n` is greater than the size of `subject`, this will be a no-op. function truncatedCalldata(bytes calldata subject, uint256 n) internal pure returns (bytes calldata result) { /// @solidity memory-safe-assembly assembly { result.offset := subject.offset result.length := xor(n, mul(xor(n, subject.length), lt(subject.length, n))) } } /// @dev Returns all the indices of `needle` in `subject`. /// The indices are byte offsets. function indicesOf(bytes memory subject, bytes memory needle) internal pure returns (uint256[] memory result) { /// @solidity memory-safe-assembly assembly { let searchLen := mload(needle) if iszero(gt(searchLen, mload(subject))) { result := mload(0x40) let i := add(subject, 0x20) let o := add(result, 0x20) let subjectSearchEnd := add(sub(add(i, mload(subject)), searchLen), 1) let h := 0 // The hash of `needle`. if iszero(lt(searchLen, 0x20)) { h := keccak256(add(needle, 0x20), searchLen) } let s := mload(add(needle, 0x20)) for { let m := shl(3, sub(0x20, and(searchLen, 0x1f))) } 1 {} { let t := mload(i) // Whether the first `searchLen % 32` bytes of `subject` and `needle` matches. if iszero(shr(m, xor(t, s))) { if h { if iszero(eq(keccak256(i, searchLen), h)) { i := add(i, 1) if iszero(lt(i, subjectSearchEnd)) { break } continue } } mstore(o, sub(i, add(subject, 0x20))) // Append to `result`. o := add(o, 0x20) i := add(i, searchLen) // Advance `i` by `searchLen`. if searchLen { if iszero(lt(i, subjectSearchEnd)) { break } continue } } i := add(i, 1) if iszero(lt(i, subjectSearchEnd)) { break } } mstore(result, shr(5, sub(o, add(result, 0x20)))) // Store the length of `result`. // Allocate memory for result. // We allocate one more word, so this array can be recycled for {split}. mstore(0x40, add(o, 0x20)) } } } /// @dev Returns a arrays of bytess based on the `delimiter` inside of the `subject` bytes. function split(bytes memory subject, bytes memory delimiter) internal pure returns (bytes[] memory result) { uint256[] memory indices = indicesOf(subject, delimiter); /// @solidity memory-safe-assembly assembly { let w := not(0x1f) let indexPtr := add(indices, 0x20) let indicesEnd := add(indexPtr, shl(5, add(mload(indices), 1))) mstore(add(indicesEnd, w), mload(subject)) mstore(indices, add(mload(indices), 1)) for { let prevIndex := 0 } 1 {} { let index := mload(indexPtr) mstore(indexPtr, 0x60) if iszero(eq(index, prevIndex)) { let element := mload(0x40) let l := sub(index, prevIndex) mstore(element, l) // Store the length of the element. // Copy the `subject` one word at a time, backwards. for { let o := and(add(l, 0x1f), w) } 1 {} { mstore(add(element, o), mload(add(add(subject, prevIndex), o))) o := add(o, w) // `sub(o, 0x20)`. if iszero(o) { break } } mstore(add(add(element, 0x20), l), 0) // Zeroize the slot after the bytes. // Allocate memory for the length and the bytes, rounded up to a multiple of 32. mstore(0x40, add(element, and(add(l, 0x3f), w))) mstore(indexPtr, element) // Store the `element` into the array. } prevIndex := add(index, mload(delimiter)) indexPtr := add(indexPtr, 0x20) if iszero(lt(indexPtr, indicesEnd)) { break } } result := indices if iszero(mload(delimiter)) { result := add(indices, 0x20) mstore(result, sub(mload(indices), 2)) } } } /// @dev Returns a concatenated bytes of `a` and `b`. /// Cheaper than `bytes.concat()` and does not de-align the free memory pointer. function concat(bytes memory a, bytes memory b) internal pure returns (bytes memory result) { /// @solidity memory-safe-assembly assembly { result := mload(0x40) let w := not(0x1f) let aLen := mload(a) // Copy `a` one word at a time, backwards. for { let o := and(add(aLen, 0x20), w) } 1 {} { mstore(add(result, o), mload(add(a, o))) o := add(o, w) // `sub(o, 0x20)`. if iszero(o) { break } } let bLen := mload(b) let output := add(result, aLen) // Copy `b` one word at a time, backwards. for { let o := and(add(bLen, 0x20), w) } 1 {} { mstore(add(output, o), mload(add(b, o))) o := add(o, w) // `sub(o, 0x20)`. if iszero(o) { break } } let totalLen := add(aLen, bLen) let last := add(add(result, 0x20), totalLen) mstore(last, 0) // Zeroize the slot after the bytes. mstore(result, totalLen) // Store the length. mstore(0x40, add(last, 0x20)) // Allocate memory. } } /// @dev Returns whether `a` equals `b`. function eq(bytes memory a, bytes memory b) internal pure returns (bool result) { /// @solidity memory-safe-assembly assembly { result := eq(keccak256(add(a, 0x20), mload(a)), keccak256(add(b, 0x20), mload(b))) } } /// @dev Returns whether `a` equals `b`, where `b` is a null-terminated small bytes. function eqs(bytes memory a, bytes32 b) internal pure returns (bool result) { /// @solidity memory-safe-assembly assembly { // These should be evaluated on compile time, as far as possible. let m := not(shl(7, div(not(iszero(b)), 255))) // `0x7f7f ...`. let x := not(or(m, or(b, add(m, and(b, m))))) let r := shl(7, iszero(iszero(shr(128, x)))) r := or(r, shl(6, iszero(iszero(shr(64, shr(r, x)))))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffff, shr(r, x)))) r := or(r, shl(3, lt(0xff, shr(r, x)))) // forgefmt: disable-next-item result := gt(eq(mload(a), add(iszero(x), xor(31, shr(3, r)))), xor(shr(add(8, r), b), shr(add(8, r), mload(add(a, 0x20))))) } } /// @dev Directly returns `a` without copying. function directReturn(bytes memory a) internal pure { assembly { // Assumes that the bytes does not start from the scratch space. let retStart := sub(a, 0x20) let retUnpaddedSize := add(mload(a), 0x40) // Right pad with zeroes. Just in case the bytes is produced // by a method that doesn't zero right pad. mstore(add(retStart, retUnpaddedSize), 0) mstore(retStart, 0x20) // Store the return offset. // End the transaction, returning the bytes. return(retStart, and(not(0x1f), add(0x1f, retUnpaddedSize))) } } /// @dev Directly returns `a` with minimal copying. function directReturn(bytes[] memory a) internal pure { assembly { let n := mload(a) // `a.length`. let o := add(a, 0x20) // Start of elements in `a`. let u := a // Highest memory slot. let w := not(0x1f) for { let i := 0 } iszero(eq(i, n)) { i := add(i, 1) } { let c := add(o, shl(5, i)) // Location of pointer to `a[i]`. let s := mload(c) // `a[i]`. let l := mload(s) // `a[i].length`. let r := and(l, 0x1f) // `a[i].length % 32`. let z := add(0x20, and(l, w)) // Offset of last word in `a[i]` from `s`. // If `s` comes before `o`, or `s` is not zero right padded. if iszero(lt(lt(s, o), or(iszero(r), iszero(shl(shl(3, r), mload(add(s, z))))))) { let m := mload(0x40) mstore(m, l) // Copy `a[i].length`. for {} 1 {} { mstore(add(m, z), mload(add(s, z))) // Copy `a[i]`, backwards. z := add(z, w) // `sub(z, 0x20)`. if iszero(z) { break } } let e := add(add(m, 0x20), l) mstore(e, 0) // Zeroize the slot after the copied bytes. mstore(0x40, add(e, 0x20)) // Allocate memory. s := m } mstore(c, sub(s, o)) // Convert to calldata offset. let t := add(l, add(s, 0x20)) if iszero(lt(t, u)) { u := t } } let retStart := add(a, w) // Assumes `a` doesn't start from scratch space. mstore(retStart, 0x20) // Store the return offset. return(retStart, add(0x40, sub(u, retStart))) // End the transaction. } } /// @dev Returns the word at `offset`, without any bounds checks. /// To load an address, you can use `address(bytes20(load(a, offset)))`. function load(bytes memory a, uint256 offset) internal pure returns (bytes32 result) { /// @solidity memory-safe-assembly assembly { result := mload(add(add(a, 0x20), offset)) } } /// @dev Returns the word at `offset`, without any bounds checks. /// To load an address, you can use `address(bytes20(loadCalldata(a, offset)))`. function loadCalldata(bytes calldata a, uint256 offset) internal pure returns (bytes32 result) { /// @solidity memory-safe-assembly assembly { result := calldataload(add(a.offset, offset)) } } /// @dev Returns empty calldata bytes. For silencing the compiler. function emptyCalldata() internal pure returns (bytes calldata result) { /// @solidity memory-safe-assembly assembly { result.length := 0 } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import {LibBytes} from "./LibBytes.sol"; /// @notice Library for converting numbers into strings and other string operations. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibString.sol) /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/LibString.sol) /// /// @dev Note: /// For performance and bytecode compactness, most of the string operations are restricted to /// byte strings (7-bit ASCII), except where otherwise specified. /// Usage of byte string operations on charsets with runes spanning two or more bytes /// can lead to undefined behavior. library LibString { /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* STRUCTS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Goated string storage struct that totally MOGs, no cap, fr. /// Uses less gas and bytecode than Solidity's native string storage. It's meta af. /// Packs length with the first 31 bytes if <255 bytes, so it’s mad tight. struct StringStorage { bytes32 _spacer; } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CUSTOM ERRORS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The length of the output is too small to contain all the hex digits. error HexLengthInsufficient(); /// @dev The length of the string is more than 32 bytes. error TooBigForSmallString(); /// @dev The input string must be a 7-bit ASCII. error StringNot7BitASCII(); /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CONSTANTS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The constant returned when the `search` is not found in the string. uint256 internal constant NOT_FOUND = type(uint256).max; /// @dev Lookup for '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'. uint128 internal constant ALPHANUMERIC_7_BIT_ASCII = 0x7fffffe07fffffe03ff000000000000; /// @dev Lookup for 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'. uint128 internal constant LETTERS_7_BIT_ASCII = 0x7fffffe07fffffe0000000000000000; /// @dev Lookup for 'abcdefghijklmnopqrstuvwxyz'. uint128 internal constant LOWERCASE_7_BIT_ASCII = 0x7fffffe000000000000000000000000; /// @dev Lookup for 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'. uint128 internal constant UPPERCASE_7_BIT_ASCII = 0x7fffffe0000000000000000; /// @dev Lookup for '0123456789'. uint128 internal constant DIGITS_7_BIT_ASCII = 0x3ff000000000000; /// @dev Lookup for '0123456789abcdefABCDEF'. uint128 internal constant HEXDIGITS_7_BIT_ASCII = 0x7e0000007e03ff000000000000; /// @dev Lookup for '01234567'. uint128 internal constant OCTDIGITS_7_BIT_ASCII = 0xff000000000000; /// @dev Lookup for '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~ \t\n\r\x0b\x0c'. uint128 internal constant PRINTABLE_7_BIT_ASCII = 0x7fffffffffffffffffffffff00003e00; /// @dev Lookup for '!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~'. uint128 internal constant PUNCTUATION_7_BIT_ASCII = 0x78000001f8000001fc00fffe00000000; /// @dev Lookup for ' \t\n\r\x0b\x0c'. uint128 internal constant WHITESPACE_7_BIT_ASCII = 0x100003e00; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* STRING STORAGE OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Sets the value of the string storage `$` to `s`. function set(StringStorage storage $, string memory s) internal { LibBytes.set(bytesStorage($), bytes(s)); } /// @dev Sets the value of the string storage `$` to `s`. function setCalldata(StringStorage storage $, string calldata s) internal { LibBytes.setCalldata(bytesStorage($), bytes(s)); } /// @dev Sets the value of the string storage `$` to the empty string. function clear(StringStorage storage $) internal { delete $._spacer; } /// @dev Returns whether the value stored is `$` is the empty string "". function isEmpty(StringStorage storage $) internal view returns (bool) { return uint256($._spacer) & 0xff == uint256(0); } /// @dev Returns the length of the value stored in `$`. function length(StringStorage storage $) internal view returns (uint256) { return LibBytes.length(bytesStorage($)); } /// @dev Returns the value stored in `$`. function get(StringStorage storage $) internal view returns (string memory) { return string(LibBytes.get(bytesStorage($))); } /// @dev Helper to cast `$` to a `BytesStorage`. function bytesStorage(StringStorage storage $) internal pure returns (LibBytes.BytesStorage storage casted) { /// @solidity memory-safe-assembly assembly { casted.slot := $.slot } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* DECIMAL OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns the base 10 decimal representation of `value`. function toString(uint256 value) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { // The maximum value of a uint256 contains 78 digits (1 byte per digit), but // we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned. // We will need 1 word for the trailing zeros padding, 1 word for the length, // and 3 words for a maximum of 78 digits. result := add(mload(0x40), 0x80) mstore(0x40, add(result, 0x20)) // Allocate memory. mstore(result, 0) // Zeroize the slot after the string. let end := result // Cache the end of the memory to calculate the length later. let w := not(0) // Tsk. // We write the string from rightmost digit to leftmost digit. // The following is essentially a do-while loop that also handles the zero case. for { let temp := value } 1 {} { result := add(result, w) // `sub(result, 1)`. // Store the character to the pointer. // The ASCII index of the '0' character is 48. mstore8(result, add(48, mod(temp, 10))) temp := div(temp, 10) // Keep dividing `temp` until zero. if iszero(temp) { break } } let n := sub(end, result) result := sub(result, 0x20) // Move the pointer 32 bytes back to make room for the length. mstore(result, n) // Store the length. } } /// @dev Returns the base 10 decimal representation of `value`. function toString(int256 value) internal pure returns (string memory result) { if (value >= 0) return toString(uint256(value)); unchecked { result = toString(~uint256(value) + 1); } /// @solidity memory-safe-assembly assembly { // We still have some spare memory space on the left, // as we have allocated 3 words (96 bytes) for up to 78 digits. let n := mload(result) // Load the string length. mstore(result, 0x2d) // Store the '-' character. result := sub(result, 1) // Move back the string pointer by a byte. mstore(result, add(n, 1)) // Update the string length. } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* HEXADECIMAL OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns the hexadecimal representation of `value`, /// left-padded to an input length of `byteCount` bytes. /// The output is prefixed with "0x" encoded using 2 hexadecimal digits per byte, /// giving a total length of `byteCount * 2 + 2` bytes. /// Reverts if `byteCount` is too small for the output to contain all the digits. function toHexString(uint256 value, uint256 byteCount) internal pure returns (string memory result) { result = toHexStringNoPrefix(value, byteCount); /// @solidity memory-safe-assembly assembly { let n := add(mload(result), 2) // Compute the length. mstore(result, 0x3078) // Store the "0x" prefix. result := sub(result, 2) // Move the pointer. mstore(result, n) // Store the length. } } /// @dev Returns the hexadecimal representation of `value`, /// left-padded to an input length of `byteCount` bytes. /// The output is not prefixed with "0x" and is encoded using 2 hexadecimal digits per byte, /// giving a total length of `byteCount * 2` bytes. /// Reverts if `byteCount` is too small for the output to contain all the digits. function toHexStringNoPrefix(uint256 value, uint256 byteCount) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { // We need 0x20 bytes for the trailing zeros padding, `byteCount * 2` bytes // for the digits, 0x02 bytes for the prefix, and 0x20 bytes for the length. // We add 0x20 to the total and round down to a multiple of 0x20. // (0x20 + 0x20 + 0x02 + 0x20) = 0x62. result := add(mload(0x40), and(add(shl(1, byteCount), 0x42), not(0x1f))) mstore(0x40, add(result, 0x20)) // Allocate memory. mstore(result, 0) // Zeroize the slot after the string. let end := result // Cache the end to calculate the length later. // Store "0123456789abcdef" in scratch space. mstore(0x0f, 0x30313233343536373839616263646566) let start := sub(result, add(byteCount, byteCount)) let w := not(1) // Tsk. let temp := value // We write the string from rightmost digit to leftmost digit. // The following is essentially a do-while loop that also handles the zero case. for {} 1 {} { result := add(result, w) // `sub(result, 2)`. mstore8(add(result, 1), mload(and(temp, 15))) mstore8(result, mload(and(shr(4, temp), 15))) temp := shr(8, temp) if iszero(xor(result, start)) { break } } if temp { mstore(0x00, 0x2194895a) // `HexLengthInsufficient()`. revert(0x1c, 0x04) } let n := sub(end, result) result := sub(result, 0x20) mstore(result, n) // Store the length. } } /// @dev Returns the hexadecimal representation of `value`. /// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte. /// As address are 20 bytes long, the output will left-padded to have /// a length of `20 * 2 + 2` bytes. function toHexString(uint256 value) internal pure returns (string memory result) { result = toHexStringNoPrefix(value); /// @solidity memory-safe-assembly assembly { let n := add(mload(result), 2) // Compute the length. mstore(result, 0x3078) // Store the "0x" prefix. result := sub(result, 2) // Move the pointer. mstore(result, n) // Store the length. } } /// @dev Returns the hexadecimal representation of `value`. /// The output is prefixed with "0x". /// The output excludes leading "0" from the `toHexString` output. /// `0x00: "0x0", 0x01: "0x1", 0x12: "0x12", 0x123: "0x123"`. function toMinimalHexString(uint256 value) internal pure returns (string memory result) { result = toHexStringNoPrefix(value); /// @solidity memory-safe-assembly assembly { let o := eq(byte(0, mload(add(result, 0x20))), 0x30) // Whether leading zero is present. let n := add(mload(result), 2) // Compute the length. mstore(add(result, o), 0x3078) // Store the "0x" prefix, accounting for leading zero. result := sub(add(result, o), 2) // Move the pointer, accounting for leading zero. mstore(result, sub(n, o)) // Store the length, accounting for leading zero. } } /// @dev Returns the hexadecimal representation of `value`. /// The output excludes leading "0" from the `toHexStringNoPrefix` output. /// `0x00: "0", 0x01: "1", 0x12: "12", 0x123: "123"`. function toMinimalHexStringNoPrefix(uint256 value) internal pure returns (string memory result) { result = toHexStringNoPrefix(value); /// @solidity memory-safe-assembly assembly { let o := eq(byte(0, mload(add(result, 0x20))), 0x30) // Whether leading zero is present. let n := mload(result) // Get the length. result := add(result, o) // Move the pointer, accounting for leading zero. mstore(result, sub(n, o)) // Store the length, accounting for leading zero. } } /// @dev Returns the hexadecimal representation of `value`. /// The output is encoded using 2 hexadecimal digits per byte. /// As address are 20 bytes long, the output will left-padded to have /// a length of `20 * 2` bytes. function toHexStringNoPrefix(uint256 value) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { // We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length, // 0x02 bytes for the prefix, and 0x40 bytes for the digits. // The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x40) is 0xa0. result := add(mload(0x40), 0x80) mstore(0x40, add(result, 0x20)) // Allocate memory. mstore(result, 0) // Zeroize the slot after the string. let end := result // Cache the end to calculate the length later. mstore(0x0f, 0x30313233343536373839616263646566) // Store the "0123456789abcdef" lookup. let w := not(1) // Tsk. // We write the string from rightmost digit to leftmost digit. // The following is essentially a do-while loop that also handles the zero case. for { let temp := value } 1 {} { result := add(result, w) // `sub(result, 2)`. mstore8(add(result, 1), mload(and(temp, 15))) mstore8(result, mload(and(shr(4, temp), 15))) temp := shr(8, temp) if iszero(temp) { break } } let n := sub(end, result) result := sub(result, 0x20) mstore(result, n) // Store the length. } } /// @dev Returns the hexadecimal representation of `value`. /// The output is prefixed with "0x", encoded using 2 hexadecimal digits per byte, /// and the alphabets are capitalized conditionally according to /// https://eips.ethereum.org/EIPS/eip-55 function toHexStringChecksummed(address value) internal pure returns (string memory result) { result = toHexString(value); /// @solidity memory-safe-assembly assembly { let mask := shl(6, div(not(0), 255)) // `0b010000000100000000 ...` let o := add(result, 0x22) let hashed := and(keccak256(o, 40), mul(34, mask)) // `0b10001000 ... ` let t := shl(240, 136) // `0b10001000 << 240` for { let i := 0 } 1 {} { mstore(add(i, i), mul(t, byte(i, hashed))) i := add(i, 1) if eq(i, 20) { break } } mstore(o, xor(mload(o), shr(1, and(mload(0x00), and(mload(o), mask))))) o := add(o, 0x20) mstore(o, xor(mload(o), shr(1, and(mload(0x20), and(mload(o), mask))))) } } /// @dev Returns the hexadecimal representation of `value`. /// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte. function toHexString(address value) internal pure returns (string memory result) { result = toHexStringNoPrefix(value); /// @solidity memory-safe-assembly assembly { let n := add(mload(result), 2) // Compute the length. mstore(result, 0x3078) // Store the "0x" prefix. result := sub(result, 2) // Move the pointer. mstore(result, n) // Store the length. } } /// @dev Returns the hexadecimal representation of `value`. /// The output is encoded using 2 hexadecimal digits per byte. function toHexStringNoPrefix(address value) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { result := mload(0x40) // Allocate memory. // We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length, // 0x02 bytes for the prefix, and 0x28 bytes for the digits. // The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x28) is 0x80. mstore(0x40, add(result, 0x80)) mstore(0x0f, 0x30313233343536373839616263646566) // Store the "0123456789abcdef" lookup. result := add(result, 2) mstore(result, 40) // Store the length. let o := add(result, 0x20) mstore(add(o, 40), 0) // Zeroize the slot after the string. value := shl(96, value) // We write the string from rightmost digit to leftmost digit. // The following is essentially a do-while loop that also handles the zero case. for { let i := 0 } 1 {} { let p := add(o, add(i, i)) let temp := byte(i, value) mstore8(add(p, 1), mload(and(temp, 15))) mstore8(p, mload(shr(4, temp))) i := add(i, 1) if eq(i, 20) { break } } } } /// @dev Returns the hex encoded string from the raw bytes. /// The output is encoded using 2 hexadecimal digits per byte. function toHexString(bytes memory raw) internal pure returns (string memory result) { result = toHexStringNoPrefix(raw); /// @solidity memory-safe-assembly assembly { let n := add(mload(result), 2) // Compute the length. mstore(result, 0x3078) // Store the "0x" prefix. result := sub(result, 2) // Move the pointer. mstore(result, n) // Store the length. } } /// @dev Returns the hex encoded string from the raw bytes. /// The output is encoded using 2 hexadecimal digits per byte. function toHexStringNoPrefix(bytes memory raw) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { let n := mload(raw) result := add(mload(0x40), 2) // Skip 2 bytes for the optional prefix. mstore(result, add(n, n)) // Store the length of the output. mstore(0x0f, 0x30313233343536373839616263646566) // Store the "0123456789abcdef" lookup. let o := add(result, 0x20) let end := add(raw, n) for {} iszero(eq(raw, end)) {} { raw := add(raw, 1) mstore8(add(o, 1), mload(and(mload(raw), 15))) mstore8(o, mload(and(shr(4, mload(raw)), 15))) o := add(o, 2) } mstore(o, 0) // Zeroize the slot after the string. mstore(0x40, add(o, 0x20)) // Allocate memory. } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* RUNE STRING OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns the number of UTF characters in the string. function runeCount(string memory s) internal pure returns (uint256 result) { /// @solidity memory-safe-assembly assembly { if mload(s) { mstore(0x00, div(not(0), 255)) mstore(0x20, 0x0202020202020202020202020202020202020202020202020303030304040506) let o := add(s, 0x20) let end := add(o, mload(s)) for { result := 1 } 1 { result := add(result, 1) } { o := add(o, byte(0, mload(shr(250, mload(o))))) if iszero(lt(o, end)) { break } } } } } /// @dev Returns if this string is a 7-bit ASCII string. /// (i.e. all characters codes are in [0..127]) function is7BitASCII(string memory s) internal pure returns (bool result) { /// @solidity memory-safe-assembly assembly { result := 1 let mask := shl(7, div(not(0), 255)) let n := mload(s) if n { let o := add(s, 0x20) let end := add(o, n) let last := mload(end) mstore(end, 0) for {} 1 {} { if and(mask, mload(o)) { result := 0 break } o := add(o, 0x20) if iszero(lt(o, end)) { break } } mstore(end, last) } } } /// @dev Returns if this string is a 7-bit ASCII string, /// AND all characters are in the `allowed` lookup. /// Note: If `s` is empty, returns true regardless of `allowed`. function is7BitASCII(string memory s, uint128 allowed) internal pure returns (bool result) { /// @solidity memory-safe-assembly assembly { result := 1 if mload(s) { let allowed_ := shr(128, shl(128, allowed)) let o := add(s, 0x20) for { let end := add(o, mload(s)) } 1 {} { result := and(result, shr(byte(0, mload(o)), allowed_)) o := add(o, 1) if iszero(and(result, lt(o, end))) { break } } } } } /// @dev Converts the bytes in the 7-bit ASCII string `s` to /// an allowed lookup for use in `is7BitASCII(s, allowed)`. /// To save runtime gas, you can cache the result in an immutable variable. function to7BitASCIIAllowedLookup(string memory s) internal pure returns (uint128 result) { /// @solidity memory-safe-assembly assembly { if mload(s) { let o := add(s, 0x20) for { let end := add(o, mload(s)) } 1 {} { result := or(result, shl(byte(0, mload(o)), 1)) o := add(o, 1) if iszero(lt(o, end)) { break } } if shr(128, result) { mstore(0x00, 0xc9807e0d) // `StringNot7BitASCII()`. revert(0x1c, 0x04) } } } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* BYTE STRING OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ // For performance and bytecode compactness, byte string operations are restricted // to 7-bit ASCII strings. All offsets are byte offsets, not UTF character offsets. // Usage of byte string operations on charsets with runes spanning two or more bytes // can lead to undefined behavior. /// @dev Returns `subject` all occurrences of `needle` replaced with `replacement`. function replace(string memory subject, string memory needle, string memory replacement) internal pure returns (string memory) { return string(LibBytes.replace(bytes(subject), bytes(needle), bytes(replacement))); } /// @dev Returns the byte index of the first location of `needle` in `subject`, /// needleing from left to right, starting from `from`. /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `needle` is not found. function indexOf(string memory subject, string memory needle, uint256 from) internal pure returns (uint256) { return LibBytes.indexOf(bytes(subject), bytes(needle), from); } /// @dev Returns the byte index of the first location of `needle` in `subject`, /// needleing from left to right. /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `needle` is not found. function indexOf(string memory subject, string memory needle) internal pure returns (uint256) { return LibBytes.indexOf(bytes(subject), bytes(needle), 0); } /// @dev Returns the byte index of the first location of `needle` in `subject`, /// needleing from right to left, starting from `from`. /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `needle` is not found. function lastIndexOf(string memory subject, string memory needle, uint256 from) internal pure returns (uint256) { return LibBytes.lastIndexOf(bytes(subject), bytes(needle), from); } /// @dev Returns the byte index of the first location of `needle` in `subject`, /// needleing from right to left. /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `needle` is not found. function lastIndexOf(string memory subject, string memory needle) internal pure returns (uint256) { return LibBytes.lastIndexOf(bytes(subject), bytes(needle), type(uint256).max); } /// @dev Returns true if `needle` is found in `subject`, false otherwise. function contains(string memory subject, string memory needle) internal pure returns (bool) { return LibBytes.contains(bytes(subject), bytes(needle)); } /// @dev Returns whether `subject` starts with `needle`. function startsWith(string memory subject, string memory needle) internal pure returns (bool) { return LibBytes.startsWith(bytes(subject), bytes(needle)); } /// @dev Returns whether `subject` ends with `needle`. function endsWith(string memory subject, string memory needle) internal pure returns (bool) { return LibBytes.endsWith(bytes(subject), bytes(needle)); } /// @dev Returns `subject` repeated `times`. function repeat(string memory subject, uint256 times) internal pure returns (string memory) { return string(LibBytes.repeat(bytes(subject), times)); } /// @dev Returns a copy of `subject` sliced from `start` to `end` (exclusive). /// `start` and `end` are byte offsets. function slice(string memory subject, uint256 start, uint256 end) internal pure returns (string memory) { return string(LibBytes.slice(bytes(subject), start, end)); } /// @dev Returns a copy of `subject` sliced from `start` to the end of the string. /// `start` is a byte offset. function slice(string memory subject, uint256 start) internal pure returns (string memory) { return string(LibBytes.slice(bytes(subject), start, type(uint256).max)); } /// @dev Returns all the indices of `needle` in `subject`. /// The indices are byte offsets. function indicesOf(string memory subject, string memory needle) internal pure returns (uint256[] memory) { return LibBytes.indicesOf(bytes(subject), bytes(needle)); } /// @dev Returns a arrays of strings based on the `delimiter` inside of the `subject` string. function split(string memory subject, string memory delimiter) internal pure returns (string[] memory result) { bytes[] memory a = LibBytes.split(bytes(subject), bytes(delimiter)); /// @solidity memory-safe-assembly assembly { result := a } } /// @dev Returns a concatenated string of `a` and `b`. /// Cheaper than `string.concat()` and does not de-align the free memory pointer. function concat(string memory a, string memory b) internal pure returns (string memory) { return string(LibBytes.concat(bytes(a), bytes(b))); } /// @dev Returns a copy of the string in either lowercase or UPPERCASE. /// WARNING! This function is only compatible with 7-bit ASCII strings. function toCase(string memory subject, bool toUpper) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { let n := mload(subject) if n { result := mload(0x40) let o := add(result, 0x20) let d := sub(subject, result) let flags := shl(add(70, shl(5, toUpper)), 0x3ffffff) for { let end := add(o, n) } 1 {} { let b := byte(0, mload(add(d, o))) mstore8(o, xor(and(shr(b, flags), 0x20), b)) o := add(o, 1) if eq(o, end) { break } } mstore(result, n) // Store the length. mstore(o, 0) // Zeroize the slot after the string. mstore(0x40, add(o, 0x20)) // Allocate memory. } } } /// @dev Returns a string from a small bytes32 string. /// `s` must be null-terminated, or behavior will be undefined. function fromSmallString(bytes32 s) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { result := mload(0x40) let n := 0 for {} byte(n, s) { n := add(n, 1) } {} // Scan for '\0'. mstore(result, n) // Store the length. let o := add(result, 0x20) mstore(o, s) // Store the bytes of the string. mstore(add(o, n), 0) // Zeroize the slot after the string. mstore(0x40, add(result, 0x40)) // Allocate memory. } } /// @dev Returns the small string, with all bytes after the first null byte zeroized. function normalizeSmallString(bytes32 s) internal pure returns (bytes32 result) { /// @solidity memory-safe-assembly assembly { for {} byte(result, s) { result := add(result, 1) } {} // Scan for '\0'. mstore(0x00, s) mstore(result, 0x00) result := mload(0x00) } } /// @dev Returns the string as a normalized null-terminated small string. function toSmallString(string memory s) internal pure returns (bytes32 result) { /// @solidity memory-safe-assembly assembly { result := mload(s) if iszero(lt(result, 33)) { mstore(0x00, 0xec92f9a3) // `TooBigForSmallString()`. revert(0x1c, 0x04) } result := shl(shl(3, sub(32, result)), mload(add(s, result))) } } /// @dev Returns a lowercased copy of the string. /// WARNING! This function is only compatible with 7-bit ASCII strings. function lower(string memory subject) internal pure returns (string memory result) { result = toCase(subject, false); } /// @dev Returns an UPPERCASED copy of the string. /// WARNING! This function is only compatible with 7-bit ASCII strings. function upper(string memory subject) internal pure returns (string memory result) { result = toCase(subject, true); } /// @dev Escapes the string to be used within HTML tags. function escapeHTML(string memory s) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { result := mload(0x40) let end := add(s, mload(s)) let o := add(result, 0x20) // Store the bytes of the packed offsets and strides into the scratch space. // `packed = (stride << 5) | offset`. Max offset is 20. Max stride is 6. mstore(0x1f, 0x900094) mstore(0x08, 0xc0000000a6ab) // Store ""&'<>" into the scratch space. mstore(0x00, shl(64, 0x2671756f743b26616d703b262333393b266c743b2667743b)) for {} iszero(eq(s, end)) {} { s := add(s, 1) let c := and(mload(s), 0xff) // Not in `["\"","'","&","<",">"]`. if iszero(and(shl(c, 1), 0x500000c400000000)) { mstore8(o, c) o := add(o, 1) continue } let t := shr(248, mload(c)) mstore(o, mload(and(t, 0x1f))) o := add(o, shr(5, t)) } mstore(o, 0) // Zeroize the slot after the string. mstore(result, sub(o, add(result, 0x20))) // Store the length. mstore(0x40, add(o, 0x20)) // Allocate memory. } } /// @dev Escapes the string to be used within double-quotes in a JSON. /// If `addDoubleQuotes` is true, the result will be enclosed in double-quotes. function escapeJSON(string memory s, bool addDoubleQuotes) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { result := mload(0x40) let o := add(result, 0x20) if addDoubleQuotes { mstore8(o, 34) o := add(1, o) } // Store "\\u0000" in scratch space. // Store "0123456789abcdef" in scratch space. // Also, store `{0x08:"b", 0x09:"t", 0x0a:"n", 0x0c:"f", 0x0d:"r"}`. // into the scratch space. mstore(0x15, 0x5c75303030303031323334353637383961626364656662746e006672) // Bitmask for detecting `["\"","\\"]`. let e := or(shl(0x22, 1), shl(0x5c, 1)) for { let end := add(s, mload(s)) } iszero(eq(s, end)) {} { s := add(s, 1) let c := and(mload(s), 0xff) if iszero(lt(c, 0x20)) { if iszero(and(shl(c, 1), e)) { // Not in `["\"","\\"]`. mstore8(o, c) o := add(o, 1) continue } mstore8(o, 0x5c) // "\\". mstore8(add(o, 1), c) o := add(o, 2) continue } if iszero(and(shl(c, 1), 0x3700)) { // Not in `["\b","\t","\n","\f","\d"]`. mstore8(0x1d, mload(shr(4, c))) // Hex value. mstore8(0x1e, mload(and(c, 15))) // Hex value. mstore(o, mload(0x19)) // "\\u00XX". o := add(o, 6) continue } mstore8(o, 0x5c) // "\\". mstore8(add(o, 1), mload(add(c, 8))) o := add(o, 2) } if addDoubleQuotes { mstore8(o, 34) o := add(1, o) } mstore(o, 0) // Zeroize the slot after the string. mstore(result, sub(o, add(result, 0x20))) // Store the length. mstore(0x40, add(o, 0x20)) // Allocate memory. } } /// @dev Escapes the string to be used within double-quotes in a JSON. function escapeJSON(string memory s) internal pure returns (string memory result) { result = escapeJSON(s, false); } /// @dev Encodes `s` so that it can be safely used in a URI, /// just like `encodeURIComponent` in JavaScript. /// See: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/encodeURIComponent /// See: https://datatracker.ietf.org/doc/html/rfc2396 /// See: https://datatracker.ietf.org/doc/html/rfc3986 function encodeURIComponent(string memory s) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { result := mload(0x40) // Store "0123456789ABCDEF" in scratch space. // Uppercased to be consistent with JavaScript's implementation. mstore(0x0f, 0x30313233343536373839414243444546) let o := add(result, 0x20) for { let end := add(s, mload(s)) } iszero(eq(s, end)) {} { s := add(s, 1) let c := and(mload(s), 0xff) // If not in `[0-9A-Z-a-z-_.!~*'()]`. if iszero(and(1, shr(c, 0x47fffffe87fffffe03ff678200000000))) { mstore8(o, 0x25) // '%'. mstore8(add(o, 1), mload(and(shr(4, c), 15))) mstore8(add(o, 2), mload(and(c, 15))) o := add(o, 3) continue } mstore8(o, c) o := add(o, 1) } mstore(result, sub(o, add(result, 0x20))) // Store the length. mstore(o, 0) // Zeroize the slot after the string. mstore(0x40, add(o, 0x20)) // Allocate memory. } } /// @dev Returns whether `a` equals `b`. function eq(string memory a, string memory b) internal pure returns (bool result) { /// @solidity memory-safe-assembly assembly { result := eq(keccak256(add(a, 0x20), mload(a)), keccak256(add(b, 0x20), mload(b))) } } /// @dev Returns whether `a` equals `b`, where `b` is a null-terminated small string. function eqs(string memory a, bytes32 b) internal pure returns (bool result) { /// @solidity memory-safe-assembly assembly { // These should be evaluated on compile time, as far as possible. let m := not(shl(7, div(not(iszero(b)), 255))) // `0x7f7f ...`. let x := not(or(m, or(b, add(m, and(b, m))))) let r := shl(7, iszero(iszero(shr(128, x)))) r := or(r, shl(6, iszero(iszero(shr(64, shr(r, x)))))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffff, shr(r, x)))) r := or(r, shl(3, lt(0xff, shr(r, x)))) // forgefmt: disable-next-item result := gt(eq(mload(a), add(iszero(x), xor(31, shr(3, r)))), xor(shr(add(8, r), b), shr(add(8, r), mload(add(a, 0x20))))) } } /// @dev Packs a single string with its length into a single word. /// Returns `bytes32(0)` if the length is zero or greater than 31. function packOne(string memory a) internal pure returns (bytes32 result) { /// @solidity memory-safe-assembly assembly { // We don't need to zero right pad the string, // since this is our own custom non-standard packing scheme. result := mul( // Load the length and the bytes. mload(add(a, 0x1f)), // `length != 0 && length < 32`. Abuses underflow. // Assumes that the length is valid and within the block gas limit. lt(sub(mload(a), 1), 0x1f) ) } } /// @dev Unpacks a string packed using {packOne}. /// Returns the empty string if `packed` is `bytes32(0)`. /// If `packed` is not an output of {packOne}, the output behavior is undefined. function unpackOne(bytes32 packed) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { result := mload(0x40) // Grab the free memory pointer. mstore(0x40, add(result, 0x40)) // Allocate 2 words (1 for the length, 1 for the bytes). mstore(result, 0) // Zeroize the length slot. mstore(add(result, 0x1f), packed) // Store the length and bytes. mstore(add(add(result, 0x20), mload(result)), 0) // Right pad with zeroes. } } /// @dev Packs two strings with their lengths into a single word. /// Returns `bytes32(0)` if combined length is zero or greater than 30. function packTwo(string memory a, string memory b) internal pure returns (bytes32 result) { /// @solidity memory-safe-assembly assembly { let aLen := mload(a) // We don't need to zero right pad the strings, // since this is our own custom non-standard packing scheme. result := mul( or( // Load the length and the bytes of `a` and `b`. shl(shl(3, sub(0x1f, aLen)), mload(add(a, aLen))), mload(sub(add(b, 0x1e), aLen))), // `totalLen != 0 && totalLen < 31`. Abuses underflow. // Assumes that the lengths are valid and within the block gas limit. lt(sub(add(aLen, mload(b)), 1), 0x1e) ) } } /// @dev Unpacks strings packed using {packTwo}. /// Returns the empty strings if `packed` is `bytes32(0)`. /// If `packed` is not an output of {packTwo}, the output behavior is undefined. function unpackTwo(bytes32 packed) internal pure returns (string memory resultA, string memory resultB) { /// @solidity memory-safe-assembly assembly { resultA := mload(0x40) // Grab the free memory pointer. resultB := add(resultA, 0x40) // Allocate 2 words for each string (1 for the length, 1 for the byte). Total 4 words. mstore(0x40, add(resultB, 0x40)) // Zeroize the length slots. mstore(resultA, 0) mstore(resultB, 0) // Store the lengths and bytes. mstore(add(resultA, 0x1f), packed) mstore(add(resultB, 0x1f), mload(add(add(resultA, 0x20), mload(resultA)))) // Right pad with zeroes. mstore(add(add(resultA, 0x20), mload(resultA)), 0) mstore(add(add(resultB, 0x20), mload(resultB)), 0) } } /// @dev Directly returns `a` without copying. function directReturn(string memory a) internal pure { assembly { // Assumes that the string does not start from the scratch space. let retStart := sub(a, 0x20) let retUnpaddedSize := add(mload(a), 0x40) // Right pad with zeroes. Just in case the string is produced // by a method that doesn't zero right pad. mstore(add(retStart, retUnpaddedSize), 0) mstore(retStart, 0x20) // Store the return offset. // End the transaction, returning the string. return(retStart, and(not(0x1f), add(0x1f, retUnpaddedSize))) } } }
{ "optimizer": { "enabled": true, "runs": 1337 }, "viaIR": true, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"address","name":"pool","type":"address"}],"name":"shadow_claimLP","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"tokenA","type":"address"},{"internalType":"address","name":"tokenB","type":"address"},{"internalType":"int24","name":"tickSpacing","type":"int24"},{"internalType":"uint160","name":"sqrtPriceX96","type":"uint160"}],"name":"shadow_createPool","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"tokenA","type":"address"},{"internalType":"address","name":"tokenB","type":"address"},{"internalType":"int24","name":"tickSpacing","type":"int24"}],"name":"shadow_getPool","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"token0","type":"address"},{"internalType":"address","name":"token1","type":"address"},{"internalType":"int24","name":"tickSpacing","type":"int24"},{"internalType":"int24","name":"tickLower","type":"int24"},{"internalType":"int24","name":"tickUpper","type":"int24"},{"internalType":"uint256","name":"amount0Desired","type":"uint256"},{"internalType":"uint256","name":"amount1Desired","type":"uint256"},{"internalType":"uint256","name":"amount0Min","type":"uint256"},{"internalType":"uint256","name":"amount1Min","type":"uint256"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"deadline","type":"uint256"}],"internalType":"struct IShadowNonfungiblePositionManager.MintParams","name":"params","type":"tuple"}],"name":"shadow_mint","outputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint128","name":"","type":"uint128"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"payable","type":"function"}]
Contract Creation Code
60808060405234610016576105c5908161001c8239f35b600080fdfe6080604081815260048036101561001557600080fd5b600092833560e01c908163695851651461047e578163d357bd03146103c95750838163dd18a7d21461012d575063e090dbd31461005157600080fd5b346101295760603660031901126101295761006a61049f565b916100736104c7565b9261007c6104ea565b908251947f28af8d0b00000000000000000000000000000000000000000000000000000000865273ffffffffffffffffffffffffffffffffffffffff94858093169087015216602485015260020b6044840152602083606481875afa92831561011f57602094936100f0575b505191168152f35b610111919350843d8111610118575b61010981836104fa565b81019061054b565b91386100e8565b503d6100ff565b81513d86823e3d90fd5b8280fd5b8084846101603660031901126103c557803573ffffffffffffffffffffffffffffffffffffffff908181168091036103c15760a43584517f095ea7b3000000000000000000000000000000000000000000000000000000009283825287868301528260248301528160448160209a8b945af18015610396576103a4575b50866024358481168091036103a0578790604460c43595895194859384928352818b8401528860248401525af1801561039657610369575b508451937f6d70c4150000000000000000000000000000000000000000000000000000000085528361021261049f565b1690850152826102206104c7565b16602485015261022e6104ea565b60020b60448501526064358060020b8091036103655760648501526084358060020b80910361036557608485015260a484015260c483015260e43560e4830152610104803590830152610124803591821680920361034c578201526101448035908201526080816101648187805af191821561035c57849385809381956102da575b50506fffffffffffffffffffffffffffffffff608096835196875216908501528301526060820152f35b94509550935090506080823d8211610354575b816102fa608093836104fa565b810103126103505781519083830151936fffffffffffffffffffffffffffffffff8516850361034c57608095506fffffffffffffffffffffffffffffffff6060838601519501519395949394966102b0565b8580fd5b8380fd5b3d91506102ed565b513d85823e3d90fd5b8780fd5b61038890873d891161038f575b61038081836104fa565b810190610577565b50876101e2565b503d610376565b86513d8a823e3d90fd5b5080fd5b6103ba90873d891161038f5761038081836104fa565b50876101aa565b8480fd5b5050fd5b92905034610350576080366003190112610350576103e561049f565b6103ed6104c7565b906103f66104ea565b906064359273ffffffffffffffffffffffffffffffffffffffff9586851680950361047a578680937f232aa5ac000000000000000000000000000000000000000000000000000000008a52169088015216602486015260020b6044850152606484015260208360848187805af192831561011f57602094936100f057505191168152f35b8880fd5b843461049c57602036600319011261049c5761049861049f565b5080f35b80fd5b6004359073ffffffffffffffffffffffffffffffffffffffff821682036104c257565b600080fd5b6024359073ffffffffffffffffffffffffffffffffffffffff821682036104c257565b604435908160020b82036104c257565b90601f8019910116810190811067ffffffffffffffff82111761051c57604052565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b908160209103126104c2575173ffffffffffffffffffffffffffffffffffffffff811681036104c25790565b908160209103126104c2575180151581036104c2579056fea2646970667358221220f054ea879adff8c885540044877e16419700ca859178be59606c3507d23c84ff64736f6c63430008120033
Deployed Bytecode
0x6080604081815260048036101561001557600080fd5b600092833560e01c908163695851651461047e578163d357bd03146103c95750838163dd18a7d21461012d575063e090dbd31461005157600080fd5b346101295760603660031901126101295761006a61049f565b916100736104c7565b9261007c6104ea565b908251947f28af8d0b00000000000000000000000000000000000000000000000000000000865273ffffffffffffffffffffffffffffffffffffffff94858093169087015216602485015260020b6044840152602083606481875afa92831561011f57602094936100f0575b505191168152f35b610111919350843d8111610118575b61010981836104fa565b81019061054b565b91386100e8565b503d6100ff565b81513d86823e3d90fd5b8280fd5b8084846101603660031901126103c557803573ffffffffffffffffffffffffffffffffffffffff908181168091036103c15760a43584517f095ea7b3000000000000000000000000000000000000000000000000000000009283825287868301528260248301528160448160209a8b945af18015610396576103a4575b50866024358481168091036103a0578790604460c43595895194859384928352818b8401528860248401525af1801561039657610369575b508451937f6d70c4150000000000000000000000000000000000000000000000000000000085528361021261049f565b1690850152826102206104c7565b16602485015261022e6104ea565b60020b60448501526064358060020b8091036103655760648501526084358060020b80910361036557608485015260a484015260c483015260e43560e4830152610104803590830152610124803591821680920361034c578201526101448035908201526080816101648187805af191821561035c57849385809381956102da575b50506fffffffffffffffffffffffffffffffff608096835196875216908501528301526060820152f35b94509550935090506080823d8211610354575b816102fa608093836104fa565b810103126103505781519083830151936fffffffffffffffffffffffffffffffff8516850361034c57608095506fffffffffffffffffffffffffffffffff6060838601519501519395949394966102b0565b8580fd5b8380fd5b3d91506102ed565b513d85823e3d90fd5b8780fd5b61038890873d891161038f575b61038081836104fa565b810190610577565b50876101e2565b503d610376565b86513d8a823e3d90fd5b5080fd5b6103ba90873d891161038f5761038081836104fa565b50876101aa565b8480fd5b5050fd5b92905034610350576080366003190112610350576103e561049f565b6103ed6104c7565b906103f66104ea565b906064359273ffffffffffffffffffffffffffffffffffffffff9586851680950361047a578680937f232aa5ac000000000000000000000000000000000000000000000000000000008a52169088015216602486015260020b6044850152606484015260208360848187805af192831561011f57602094936100f057505191168152f35b8880fd5b843461049c57602036600319011261049c5761049861049f565b5080f35b80fd5b6004359073ffffffffffffffffffffffffffffffffffffffff821682036104c257565b600080fd5b6024359073ffffffffffffffffffffffffffffffffffffffff821682036104c257565b604435908160020b82036104c257565b90601f8019910116810190811067ffffffffffffffff82111761051c57604052565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b908160209103126104c2575173ffffffffffffffffffffffffffffffffffffffff811681036104c25790565b908160209103126104c2575180151581036104c2579056fea2646970667358221220f054ea879adff8c885540044877e16419700ca859178be59606c3507d23c84ff64736f6c63430008120033
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.