Overview
S Balance
0 S
S Value
-More Info
Private Name Tags
ContractCreator
Loading...
Loading
Contract Name:
SonicxSwapEthStakingRewards
Compiler Version
v0.8.20+commit.a1b79de6
Contract Source Code (Solidity)
/** *Submitted for verification at SonicScan.org on 2024-12-19 */ // File: @openzeppelin/contracts/token/ERC20/IERC20.sol // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-20 standard as defined in the ERC. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); } // File: @openzeppelin/contracts/utils/Context.sol // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } } // File: @openzeppelin/contracts/access/Ownable.sol // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol) pragma solidity ^0.8.20; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * The initial owner is set to the address provided by the deployer. This can * later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; /** * @dev The caller account is not authorized to perform an operation. */ error OwnableUnauthorizedAccount(address account); /** * @dev The owner is not a valid owner account. (eg. `address(0)`) */ error OwnableInvalidOwner(address owner); event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the address provided by the deployer as the initial owner. */ constructor(address initialOwner) { if (initialOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(initialOwner); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { if (owner() != _msgSender()) { revert OwnableUnauthorizedAccount(_msgSender()); } } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { if (newOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } } // File: @openzeppelin/contracts/interfaces/IERC20.sol // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol) pragma solidity ^0.8.20; // File: @openzeppelin/contracts/utils/introspection/IERC165.sol // OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[ERC]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); } // File: @openzeppelin/contracts/interfaces/IERC165.sol // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol) pragma solidity ^0.8.20; // File: @openzeppelin/contracts/interfaces/IERC1363.sol // OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol) pragma solidity ^0.8.20; /** * @title IERC1363 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363]. * * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction. */ interface IERC1363 is IERC20, IERC165 { /* * Note: the ERC-165 identifier for this interface is 0xb0202a11. * 0xb0202a11 === * bytes4(keccak256('transferAndCall(address,uint256)')) ^ * bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^ * bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^ * bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^ * bytes4(keccak256('approveAndCall(address,uint256)')) ^ * bytes4(keccak256('approveAndCall(address,uint256,bytes)')) */ /** * @dev Moves a `value` amount of tokens from the caller's account to `to` * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferAndCall(address to, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from the caller's account to `to` * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @param data Additional data with no specified format, sent in call to `to`. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param from The address which you want to send tokens from. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferFromAndCall(address from, address to, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param from The address which you want to send tokens from. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @param data Additional data with no specified format, sent in call to `to`. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`. * @param spender The address which will spend the funds. * @param value The amount of tokens to be spent. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function approveAndCall(address spender, uint256 value) external returns (bool); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`. * @param spender The address which will spend the funds. * @param value The amount of tokens to be spent. * @param data Additional data with no specified format, sent in call to `spender`. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool); } // File: @openzeppelin/contracts/utils/Errors.sol // OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol) pragma solidity ^0.8.20; /** * @dev Collection of common custom errors used in multiple contracts * * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library. * It is recommended to avoid relying on the error API for critical functionality. * * _Available since v5.1._ */ library Errors { /** * @dev The ETH balance of the account is not enough to perform the operation. */ error InsufficientBalance(uint256 balance, uint256 needed); /** * @dev A call to an address target failed. The target may have reverted. */ error FailedCall(); /** * @dev The deployment failed. */ error FailedDeployment(); /** * @dev A necessary precompile is missing. */ error MissingPrecompile(address); } // File: @openzeppelin/contracts/utils/Address.sol // OpenZeppelin Contracts (last updated v5.1.0) (utils/Address.sol) pragma solidity ^0.8.20; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev There's no code at `target` (it is not a contract). */ error AddressEmptyCode(address target); /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { if (address(this).balance < amount) { revert Errors.InsufficientBalance(address(this).balance, amount); } (bool success, ) = recipient.call{value: amount}(""); if (!success) { revert Errors.FailedCall(); } } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason or custom error, it is bubbled * up by this function (like regular Solidity function calls). However, if * the call reverted with no returned reason, this function reverts with a * {Errors.FailedCall} error. * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { if (address(this).balance < value) { revert Errors.InsufficientBalance(address(this).balance, value); } (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target * was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case * of an unsuccessful call. */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata ) internal view returns (bytes memory) { if (!success) { _revert(returndata); } else { // only check if target is a contract if the call was successful and the return data is empty // otherwise we already know that it was a contract if (returndata.length == 0 && target.code.length == 0) { revert AddressEmptyCode(target); } return returndata; } } /** * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the * revert reason or with a default {Errors.FailedCall} error. */ function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) { if (!success) { _revert(returndata); } else { return returndata; } } /** * @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}. */ function _revert(bytes memory returndata) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly assembly ("memory-safe") { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert Errors.FailedCall(); } } } // File: @openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.20; /** * @title SafeERC20 * @dev Wrappers around ERC-20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { /** * @dev An operation with an ERC-20 token failed. */ error SafeERC20FailedOperation(address token); /** * @dev Indicates a failed `decreaseAllowance` request. */ error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease); /** * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value))); } /** * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful. */ function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value))); } /** * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. * * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client" * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior. */ function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 oldAllowance = token.allowance(address(this), spender); forceApprove(token, spender, oldAllowance + value); } /** * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no * value, non-reverting calls are assumed to be successful. * * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client" * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior. */ function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal { unchecked { uint256 currentAllowance = token.allowance(address(this), spender); if (currentAllowance < requestedDecrease) { revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease); } forceApprove(token, spender, currentAllowance - requestedDecrease); } } /** * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval * to be set to zero before setting it to a non-zero value, such as USDT. * * NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function * only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being * set here. */ function forceApprove(IERC20 token, address spender, uint256 value) internal { bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value)); if (!_callOptionalReturnBool(token, approvalCall)) { _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0))); _callOptionalReturn(token, approvalCall); } } /** * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when * targeting contracts. * * Reverts if the returned value is other than `true`. */ function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal { if (to.code.length == 0) { safeTransfer(token, to, value); } else if (!token.transferAndCall(to, value, data)) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when * targeting contracts. * * Reverts if the returned value is other than `true`. */ function transferFromAndCallRelaxed( IERC1363 token, address from, address to, uint256 value, bytes memory data ) internal { if (to.code.length == 0) { safeTransferFrom(token, from, to, value); } else if (!token.transferFromAndCall(from, to, value, data)) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when * targeting contracts. * * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}. * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall} * once without retrying, and relies on the returned value to be true. * * Reverts if the returned value is other than `true`. */ function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal { if (to.code.length == 0) { forceApprove(token, to, value); } else if (!token.approveAndCall(to, value, data)) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements. */ function _callOptionalReturn(IERC20 token, bytes memory data) private { uint256 returnSize; uint256 returnValue; assembly ("memory-safe") { let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20) // bubble errors if iszero(success) { let ptr := mload(0x40) returndatacopy(ptr, 0, returndatasize()) revert(ptr, returndatasize()) } returnSize := returndatasize() returnValue := mload(0) } if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead. */ function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) { bool success; uint256 returnSize; uint256 returnValue; assembly ("memory-safe") { success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20) returnSize := returndatasize() returnValue := mload(0) } return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1); } } // File: @openzeppelin/contracts/security/ReentrancyGuard.sol // OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol) pragma solidity ^0.8.0; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant _NOT_ENTERED = 1; uint256 private constant _ENTERED = 2; uint256 private _status; constructor() { _status = _NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { _nonReentrantBefore(); _; _nonReentrantAfter(); } function _nonReentrantBefore() private { // On the first call to nonReentrant, _status will be _NOT_ENTERED require(_status != _ENTERED, "ReentrancyGuard: reentrant call"); // Any calls to nonReentrant after this point will fail _status = _ENTERED; } function _nonReentrantAfter() private { // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = _NOT_ENTERED; } /** * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a * `nonReentrant` function in the call stack. */ function _reentrancyGuardEntered() internal view returns (bool) { return _status == _ENTERED; } } // File: @openzeppelin/contracts/utils/math/SafeMath.sol // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/SafeMath.sol) pragma solidity ^0.8.0; // CAUTION // This version of SafeMath should only be used with Solidity 0.8 or later, // because it relies on the compiler's built in overflow checks. /** * @dev Wrappers over Solidity's arithmetic operations. * * NOTE: `SafeMath` is generally not needed starting with Solidity 0.8, since the compiler * now has built in overflow checking. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { return a + b; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return a - b; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { return a * b; } /** * @dev Returns the integer division of two unsigned integers, reverting on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return a / b; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return a % b; } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {trySub}. * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { unchecked { require(b <= a, errorMessage); return a - b; } } /** * @dev Returns the integer division of two unsigned integers, reverting with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { unchecked { require(b > 0, errorMessage); return a / b; } } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting with custom message when dividing by zero. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryMod}. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { unchecked { require(b > 0, errorMessage); return a % b; } } } // File: @openzeppelin/contracts/utils/Panic.sol // OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol) pragma solidity ^0.8.20; /** * @dev Helper library for emitting standardized panic codes. * * ```solidity * contract Example { * using Panic for uint256; * * // Use any of the declared internal constants * function foo() { Panic.GENERIC.panic(); } * * // Alternatively * function foo() { Panic.panic(Panic.GENERIC); } * } * ``` * * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil]. * * _Available since v5.1._ */ // slither-disable-next-line unused-state library Panic { /// @dev generic / unspecified error uint256 internal constant GENERIC = 0x00; /// @dev used by the assert() builtin uint256 internal constant ASSERT = 0x01; /// @dev arithmetic underflow or overflow uint256 internal constant UNDER_OVERFLOW = 0x11; /// @dev division or modulo by zero uint256 internal constant DIVISION_BY_ZERO = 0x12; /// @dev enum conversion error uint256 internal constant ENUM_CONVERSION_ERROR = 0x21; /// @dev invalid encoding in storage uint256 internal constant STORAGE_ENCODING_ERROR = 0x22; /// @dev empty array pop uint256 internal constant EMPTY_ARRAY_POP = 0x31; /// @dev array out of bounds access uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32; /// @dev resource error (too large allocation or too large array) uint256 internal constant RESOURCE_ERROR = 0x41; /// @dev calling invalid internal function uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51; /// @dev Reverts with a panic code. Recommended to use with /// the internal constants with predefined codes. function panic(uint256 code) internal pure { assembly ("memory-safe") { mstore(0x00, 0x4e487b71) mstore(0x20, code) revert(0x1c, 0x24) } } } // File: @openzeppelin/contracts/utils/math/SafeCast.sol // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol) // This file was procedurally generated from scripts/generate/templates/SafeCast.js. pragma solidity ^0.8.20; /** * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeCast { /** * @dev Value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value); /** * @dev An int value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedIntToUint(int256 value); /** * @dev Value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedIntDowncast(uint8 bits, int256 value); /** * @dev An uint value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedUintToInt(uint256 value); /** * @dev Returns the downcasted uint248 from uint256, reverting on * overflow (when the input is greater than largest uint248). * * Counterpart to Solidity's `uint248` operator. * * Requirements: * * - input must fit into 248 bits */ function toUint248(uint256 value) internal pure returns (uint248) { if (value > type(uint248).max) { revert SafeCastOverflowedUintDowncast(248, value); } return uint248(value); } /** * @dev Returns the downcasted uint240 from uint256, reverting on * overflow (when the input is greater than largest uint240). * * Counterpart to Solidity's `uint240` operator. * * Requirements: * * - input must fit into 240 bits */ function toUint240(uint256 value) internal pure returns (uint240) { if (value > type(uint240).max) { revert SafeCastOverflowedUintDowncast(240, value); } return uint240(value); } /** * @dev Returns the downcasted uint232 from uint256, reverting on * overflow (when the input is greater than largest uint232). * * Counterpart to Solidity's `uint232` operator. * * Requirements: * * - input must fit into 232 bits */ function toUint232(uint256 value) internal pure returns (uint232) { if (value > type(uint232).max) { revert SafeCastOverflowedUintDowncast(232, value); } return uint232(value); } /** * @dev Returns the downcasted uint224 from uint256, reverting on * overflow (when the input is greater than largest uint224). * * Counterpart to Solidity's `uint224` operator. * * Requirements: * * - input must fit into 224 bits */ function toUint224(uint256 value) internal pure returns (uint224) { if (value > type(uint224).max) { revert SafeCastOverflowedUintDowncast(224, value); } return uint224(value); } /** * @dev Returns the downcasted uint216 from uint256, reverting on * overflow (when the input is greater than largest uint216). * * Counterpart to Solidity's `uint216` operator. * * Requirements: * * - input must fit into 216 bits */ function toUint216(uint256 value) internal pure returns (uint216) { if (value > type(uint216).max) { revert SafeCastOverflowedUintDowncast(216, value); } return uint216(value); } /** * @dev Returns the downcasted uint208 from uint256, reverting on * overflow (when the input is greater than largest uint208). * * Counterpart to Solidity's `uint208` operator. * * Requirements: * * - input must fit into 208 bits */ function toUint208(uint256 value) internal pure returns (uint208) { if (value > type(uint208).max) { revert SafeCastOverflowedUintDowncast(208, value); } return uint208(value); } /** * @dev Returns the downcasted uint200 from uint256, reverting on * overflow (when the input is greater than largest uint200). * * Counterpart to Solidity's `uint200` operator. * * Requirements: * * - input must fit into 200 bits */ function toUint200(uint256 value) internal pure returns (uint200) { if (value > type(uint200).max) { revert SafeCastOverflowedUintDowncast(200, value); } return uint200(value); } /** * @dev Returns the downcasted uint192 from uint256, reverting on * overflow (when the input is greater than largest uint192). * * Counterpart to Solidity's `uint192` operator. * * Requirements: * * - input must fit into 192 bits */ function toUint192(uint256 value) internal pure returns (uint192) { if (value > type(uint192).max) { revert SafeCastOverflowedUintDowncast(192, value); } return uint192(value); } /** * @dev Returns the downcasted uint184 from uint256, reverting on * overflow (when the input is greater than largest uint184). * * Counterpart to Solidity's `uint184` operator. * * Requirements: * * - input must fit into 184 bits */ function toUint184(uint256 value) internal pure returns (uint184) { if (value > type(uint184).max) { revert SafeCastOverflowedUintDowncast(184, value); } return uint184(value); } /** * @dev Returns the downcasted uint176 from uint256, reverting on * overflow (when the input is greater than largest uint176). * * Counterpart to Solidity's `uint176` operator. * * Requirements: * * - input must fit into 176 bits */ function toUint176(uint256 value) internal pure returns (uint176) { if (value > type(uint176).max) { revert SafeCastOverflowedUintDowncast(176, value); } return uint176(value); } /** * @dev Returns the downcasted uint168 from uint256, reverting on * overflow (when the input is greater than largest uint168). * * Counterpart to Solidity's `uint168` operator. * * Requirements: * * - input must fit into 168 bits */ function toUint168(uint256 value) internal pure returns (uint168) { if (value > type(uint168).max) { revert SafeCastOverflowedUintDowncast(168, value); } return uint168(value); } /** * @dev Returns the downcasted uint160 from uint256, reverting on * overflow (when the input is greater than largest uint160). * * Counterpart to Solidity's `uint160` operator. * * Requirements: * * - input must fit into 160 bits */ function toUint160(uint256 value) internal pure returns (uint160) { if (value > type(uint160).max) { revert SafeCastOverflowedUintDowncast(160, value); } return uint160(value); } /** * @dev Returns the downcasted uint152 from uint256, reverting on * overflow (when the input is greater than largest uint152). * * Counterpart to Solidity's `uint152` operator. * * Requirements: * * - input must fit into 152 bits */ function toUint152(uint256 value) internal pure returns (uint152) { if (value > type(uint152).max) { revert SafeCastOverflowedUintDowncast(152, value); } return uint152(value); } /** * @dev Returns the downcasted uint144 from uint256, reverting on * overflow (when the input is greater than largest uint144). * * Counterpart to Solidity's `uint144` operator. * * Requirements: * * - input must fit into 144 bits */ function toUint144(uint256 value) internal pure returns (uint144) { if (value > type(uint144).max) { revert SafeCastOverflowedUintDowncast(144, value); } return uint144(value); } /** * @dev Returns the downcasted uint136 from uint256, reverting on * overflow (when the input is greater than largest uint136). * * Counterpart to Solidity's `uint136` operator. * * Requirements: * * - input must fit into 136 bits */ function toUint136(uint256 value) internal pure returns (uint136) { if (value > type(uint136).max) { revert SafeCastOverflowedUintDowncast(136, value); } return uint136(value); } /** * @dev Returns the downcasted uint128 from uint256, reverting on * overflow (when the input is greater than largest uint128). * * Counterpart to Solidity's `uint128` operator. * * Requirements: * * - input must fit into 128 bits */ function toUint128(uint256 value) internal pure returns (uint128) { if (value > type(uint128).max) { revert SafeCastOverflowedUintDowncast(128, value); } return uint128(value); } /** * @dev Returns the downcasted uint120 from uint256, reverting on * overflow (when the input is greater than largest uint120). * * Counterpart to Solidity's `uint120` operator. * * Requirements: * * - input must fit into 120 bits */ function toUint120(uint256 value) internal pure returns (uint120) { if (value > type(uint120).max) { revert SafeCastOverflowedUintDowncast(120, value); } return uint120(value); } /** * @dev Returns the downcasted uint112 from uint256, reverting on * overflow (when the input is greater than largest uint112). * * Counterpart to Solidity's `uint112` operator. * * Requirements: * * - input must fit into 112 bits */ function toUint112(uint256 value) internal pure returns (uint112) { if (value > type(uint112).max) { revert SafeCastOverflowedUintDowncast(112, value); } return uint112(value); } /** * @dev Returns the downcasted uint104 from uint256, reverting on * overflow (when the input is greater than largest uint104). * * Counterpart to Solidity's `uint104` operator. * * Requirements: * * - input must fit into 104 bits */ function toUint104(uint256 value) internal pure returns (uint104) { if (value > type(uint104).max) { revert SafeCastOverflowedUintDowncast(104, value); } return uint104(value); } /** * @dev Returns the downcasted uint96 from uint256, reverting on * overflow (when the input is greater than largest uint96). * * Counterpart to Solidity's `uint96` operator. * * Requirements: * * - input must fit into 96 bits */ function toUint96(uint256 value) internal pure returns (uint96) { if (value > type(uint96).max) { revert SafeCastOverflowedUintDowncast(96, value); } return uint96(value); } /** * @dev Returns the downcasted uint88 from uint256, reverting on * overflow (when the input is greater than largest uint88). * * Counterpart to Solidity's `uint88` operator. * * Requirements: * * - input must fit into 88 bits */ function toUint88(uint256 value) internal pure returns (uint88) { if (value > type(uint88).max) { revert SafeCastOverflowedUintDowncast(88, value); } return uint88(value); } /** * @dev Returns the downcasted uint80 from uint256, reverting on * overflow (when the input is greater than largest uint80). * * Counterpart to Solidity's `uint80` operator. * * Requirements: * * - input must fit into 80 bits */ function toUint80(uint256 value) internal pure returns (uint80) { if (value > type(uint80).max) { revert SafeCastOverflowedUintDowncast(80, value); } return uint80(value); } /** * @dev Returns the downcasted uint72 from uint256, reverting on * overflow (when the input is greater than largest uint72). * * Counterpart to Solidity's `uint72` operator. * * Requirements: * * - input must fit into 72 bits */ function toUint72(uint256 value) internal pure returns (uint72) { if (value > type(uint72).max) { revert SafeCastOverflowedUintDowncast(72, value); } return uint72(value); } /** * @dev Returns the downcasted uint64 from uint256, reverting on * overflow (when the input is greater than largest uint64). * * Counterpart to Solidity's `uint64` operator. * * Requirements: * * - input must fit into 64 bits */ function toUint64(uint256 value) internal pure returns (uint64) { if (value > type(uint64).max) { revert SafeCastOverflowedUintDowncast(64, value); } return uint64(value); } /** * @dev Returns the downcasted uint56 from uint256, reverting on * overflow (when the input is greater than largest uint56). * * Counterpart to Solidity's `uint56` operator. * * Requirements: * * - input must fit into 56 bits */ function toUint56(uint256 value) internal pure returns (uint56) { if (value > type(uint56).max) { revert SafeCastOverflowedUintDowncast(56, value); } return uint56(value); } /** * @dev Returns the downcasted uint48 from uint256, reverting on * overflow (when the input is greater than largest uint48). * * Counterpart to Solidity's `uint48` operator. * * Requirements: * * - input must fit into 48 bits */ function toUint48(uint256 value) internal pure returns (uint48) { if (value > type(uint48).max) { revert SafeCastOverflowedUintDowncast(48, value); } return uint48(value); } /** * @dev Returns the downcasted uint40 from uint256, reverting on * overflow (when the input is greater than largest uint40). * * Counterpart to Solidity's `uint40` operator. * * Requirements: * * - input must fit into 40 bits */ function toUint40(uint256 value) internal pure returns (uint40) { if (value > type(uint40).max) { revert SafeCastOverflowedUintDowncast(40, value); } return uint40(value); } /** * @dev Returns the downcasted uint32 from uint256, reverting on * overflow (when the input is greater than largest uint32). * * Counterpart to Solidity's `uint32` operator. * * Requirements: * * - input must fit into 32 bits */ function toUint32(uint256 value) internal pure returns (uint32) { if (value > type(uint32).max) { revert SafeCastOverflowedUintDowncast(32, value); } return uint32(value); } /** * @dev Returns the downcasted uint24 from uint256, reverting on * overflow (when the input is greater than largest uint24). * * Counterpart to Solidity's `uint24` operator. * * Requirements: * * - input must fit into 24 bits */ function toUint24(uint256 value) internal pure returns (uint24) { if (value > type(uint24).max) { revert SafeCastOverflowedUintDowncast(24, value); } return uint24(value); } /** * @dev Returns the downcasted uint16 from uint256, reverting on * overflow (when the input is greater than largest uint16). * * Counterpart to Solidity's `uint16` operator. * * Requirements: * * - input must fit into 16 bits */ function toUint16(uint256 value) internal pure returns (uint16) { if (value > type(uint16).max) { revert SafeCastOverflowedUintDowncast(16, value); } return uint16(value); } /** * @dev Returns the downcasted uint8 from uint256, reverting on * overflow (when the input is greater than largest uint8). * * Counterpart to Solidity's `uint8` operator. * * Requirements: * * - input must fit into 8 bits */ function toUint8(uint256 value) internal pure returns (uint8) { if (value > type(uint8).max) { revert SafeCastOverflowedUintDowncast(8, value); } return uint8(value); } /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. */ function toUint256(int256 value) internal pure returns (uint256) { if (value < 0) { revert SafeCastOverflowedIntToUint(value); } return uint256(value); } /** * @dev Returns the downcasted int248 from int256, reverting on * overflow (when the input is less than smallest int248 or * greater than largest int248). * * Counterpart to Solidity's `int248` operator. * * Requirements: * * - input must fit into 248 bits */ function toInt248(int256 value) internal pure returns (int248 downcasted) { downcasted = int248(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(248, value); } } /** * @dev Returns the downcasted int240 from int256, reverting on * overflow (when the input is less than smallest int240 or * greater than largest int240). * * Counterpart to Solidity's `int240` operator. * * Requirements: * * - input must fit into 240 bits */ function toInt240(int256 value) internal pure returns (int240 downcasted) { downcasted = int240(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(240, value); } } /** * @dev Returns the downcasted int232 from int256, reverting on * overflow (when the input is less than smallest int232 or * greater than largest int232). * * Counterpart to Solidity's `int232` operator. * * Requirements: * * - input must fit into 232 bits */ function toInt232(int256 value) internal pure returns (int232 downcasted) { downcasted = int232(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(232, value); } } /** * @dev Returns the downcasted int224 from int256, reverting on * overflow (when the input is less than smallest int224 or * greater than largest int224). * * Counterpart to Solidity's `int224` operator. * * Requirements: * * - input must fit into 224 bits */ function toInt224(int256 value) internal pure returns (int224 downcasted) { downcasted = int224(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(224, value); } } /** * @dev Returns the downcasted int216 from int256, reverting on * overflow (when the input is less than smallest int216 or * greater than largest int216). * * Counterpart to Solidity's `int216` operator. * * Requirements: * * - input must fit into 216 bits */ function toInt216(int256 value) internal pure returns (int216 downcasted) { downcasted = int216(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(216, value); } } /** * @dev Returns the downcasted int208 from int256, reverting on * overflow (when the input is less than smallest int208 or * greater than largest int208). * * Counterpart to Solidity's `int208` operator. * * Requirements: * * - input must fit into 208 bits */ function toInt208(int256 value) internal pure returns (int208 downcasted) { downcasted = int208(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(208, value); } } /** * @dev Returns the downcasted int200 from int256, reverting on * overflow (when the input is less than smallest int200 or * greater than largest int200). * * Counterpart to Solidity's `int200` operator. * * Requirements: * * - input must fit into 200 bits */ function toInt200(int256 value) internal pure returns (int200 downcasted) { downcasted = int200(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(200, value); } } /** * @dev Returns the downcasted int192 from int256, reverting on * overflow (when the input is less than smallest int192 or * greater than largest int192). * * Counterpart to Solidity's `int192` operator. * * Requirements: * * - input must fit into 192 bits */ function toInt192(int256 value) internal pure returns (int192 downcasted) { downcasted = int192(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(192, value); } } /** * @dev Returns the downcasted int184 from int256, reverting on * overflow (when the input is less than smallest int184 or * greater than largest int184). * * Counterpart to Solidity's `int184` operator. * * Requirements: * * - input must fit into 184 bits */ function toInt184(int256 value) internal pure returns (int184 downcasted) { downcasted = int184(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(184, value); } } /** * @dev Returns the downcasted int176 from int256, reverting on * overflow (when the input is less than smallest int176 or * greater than largest int176). * * Counterpart to Solidity's `int176` operator. * * Requirements: * * - input must fit into 176 bits */ function toInt176(int256 value) internal pure returns (int176 downcasted) { downcasted = int176(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(176, value); } } /** * @dev Returns the downcasted int168 from int256, reverting on * overflow (when the input is less than smallest int168 or * greater than largest int168). * * Counterpart to Solidity's `int168` operator. * * Requirements: * * - input must fit into 168 bits */ function toInt168(int256 value) internal pure returns (int168 downcasted) { downcasted = int168(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(168, value); } } /** * @dev Returns the downcasted int160 from int256, reverting on * overflow (when the input is less than smallest int160 or * greater than largest int160). * * Counterpart to Solidity's `int160` operator. * * Requirements: * * - input must fit into 160 bits */ function toInt160(int256 value) internal pure returns (int160 downcasted) { downcasted = int160(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(160, value); } } /** * @dev Returns the downcasted int152 from int256, reverting on * overflow (when the input is less than smallest int152 or * greater than largest int152). * * Counterpart to Solidity's `int152` operator. * * Requirements: * * - input must fit into 152 bits */ function toInt152(int256 value) internal pure returns (int152 downcasted) { downcasted = int152(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(152, value); } } /** * @dev Returns the downcasted int144 from int256, reverting on * overflow (when the input is less than smallest int144 or * greater than largest int144). * * Counterpart to Solidity's `int144` operator. * * Requirements: * * - input must fit into 144 bits */ function toInt144(int256 value) internal pure returns (int144 downcasted) { downcasted = int144(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(144, value); } } /** * @dev Returns the downcasted int136 from int256, reverting on * overflow (when the input is less than smallest int136 or * greater than largest int136). * * Counterpart to Solidity's `int136` operator. * * Requirements: * * - input must fit into 136 bits */ function toInt136(int256 value) internal pure returns (int136 downcasted) { downcasted = int136(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(136, value); } } /** * @dev Returns the downcasted int128 from int256, reverting on * overflow (when the input is less than smallest int128 or * greater than largest int128). * * Counterpart to Solidity's `int128` operator. * * Requirements: * * - input must fit into 128 bits */ function toInt128(int256 value) internal pure returns (int128 downcasted) { downcasted = int128(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(128, value); } } /** * @dev Returns the downcasted int120 from int256, reverting on * overflow (when the input is less than smallest int120 or * greater than largest int120). * * Counterpart to Solidity's `int120` operator. * * Requirements: * * - input must fit into 120 bits */ function toInt120(int256 value) internal pure returns (int120 downcasted) { downcasted = int120(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(120, value); } } /** * @dev Returns the downcasted int112 from int256, reverting on * overflow (when the input is less than smallest int112 or * greater than largest int112). * * Counterpart to Solidity's `int112` operator. * * Requirements: * * - input must fit into 112 bits */ function toInt112(int256 value) internal pure returns (int112 downcasted) { downcasted = int112(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(112, value); } } /** * @dev Returns the downcasted int104 from int256, reverting on * overflow (when the input is less than smallest int104 or * greater than largest int104). * * Counterpart to Solidity's `int104` operator. * * Requirements: * * - input must fit into 104 bits */ function toInt104(int256 value) internal pure returns (int104 downcasted) { downcasted = int104(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(104, value); } } /** * @dev Returns the downcasted int96 from int256, reverting on * overflow (when the input is less than smallest int96 or * greater than largest int96). * * Counterpart to Solidity's `int96` operator. * * Requirements: * * - input must fit into 96 bits */ function toInt96(int256 value) internal pure returns (int96 downcasted) { downcasted = int96(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(96, value); } } /** * @dev Returns the downcasted int88 from int256, reverting on * overflow (when the input is less than smallest int88 or * greater than largest int88). * * Counterpart to Solidity's `int88` operator. * * Requirements: * * - input must fit into 88 bits */ function toInt88(int256 value) internal pure returns (int88 downcasted) { downcasted = int88(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(88, value); } } /** * @dev Returns the downcasted int80 from int256, reverting on * overflow (when the input is less than smallest int80 or * greater than largest int80). * * Counterpart to Solidity's `int80` operator. * * Requirements: * * - input must fit into 80 bits */ function toInt80(int256 value) internal pure returns (int80 downcasted) { downcasted = int80(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(80, value); } } /** * @dev Returns the downcasted int72 from int256, reverting on * overflow (when the input is less than smallest int72 or * greater than largest int72). * * Counterpart to Solidity's `int72` operator. * * Requirements: * * - input must fit into 72 bits */ function toInt72(int256 value) internal pure returns (int72 downcasted) { downcasted = int72(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(72, value); } } /** * @dev Returns the downcasted int64 from int256, reverting on * overflow (when the input is less than smallest int64 or * greater than largest int64). * * Counterpart to Solidity's `int64` operator. * * Requirements: * * - input must fit into 64 bits */ function toInt64(int256 value) internal pure returns (int64 downcasted) { downcasted = int64(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(64, value); } } /** * @dev Returns the downcasted int56 from int256, reverting on * overflow (when the input is less than smallest int56 or * greater than largest int56). * * Counterpart to Solidity's `int56` operator. * * Requirements: * * - input must fit into 56 bits */ function toInt56(int256 value) internal pure returns (int56 downcasted) { downcasted = int56(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(56, value); } } /** * @dev Returns the downcasted int48 from int256, reverting on * overflow (when the input is less than smallest int48 or * greater than largest int48). * * Counterpart to Solidity's `int48` operator. * * Requirements: * * - input must fit into 48 bits */ function toInt48(int256 value) internal pure returns (int48 downcasted) { downcasted = int48(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(48, value); } } /** * @dev Returns the downcasted int40 from int256, reverting on * overflow (when the input is less than smallest int40 or * greater than largest int40). * * Counterpart to Solidity's `int40` operator. * * Requirements: * * - input must fit into 40 bits */ function toInt40(int256 value) internal pure returns (int40 downcasted) { downcasted = int40(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(40, value); } } /** * @dev Returns the downcasted int32 from int256, reverting on * overflow (when the input is less than smallest int32 or * greater than largest int32). * * Counterpart to Solidity's `int32` operator. * * Requirements: * * - input must fit into 32 bits */ function toInt32(int256 value) internal pure returns (int32 downcasted) { downcasted = int32(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(32, value); } } /** * @dev Returns the downcasted int24 from int256, reverting on * overflow (when the input is less than smallest int24 or * greater than largest int24). * * Counterpart to Solidity's `int24` operator. * * Requirements: * * - input must fit into 24 bits */ function toInt24(int256 value) internal pure returns (int24 downcasted) { downcasted = int24(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(24, value); } } /** * @dev Returns the downcasted int16 from int256, reverting on * overflow (when the input is less than smallest int16 or * greater than largest int16). * * Counterpart to Solidity's `int16` operator. * * Requirements: * * - input must fit into 16 bits */ function toInt16(int256 value) internal pure returns (int16 downcasted) { downcasted = int16(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(16, value); } } /** * @dev Returns the downcasted int8 from int256, reverting on * overflow (when the input is less than smallest int8 or * greater than largest int8). * * Counterpart to Solidity's `int8` operator. * * Requirements: * * - input must fit into 8 bits */ function toInt8(int256 value) internal pure returns (int8 downcasted) { downcasted = int8(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(8, value); } } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. */ function toInt256(uint256 value) internal pure returns (int256) { // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive if (value > uint256(type(int256).max)) { revert SafeCastOverflowedUintToInt(value); } return int256(value); } /** * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump. */ function toUint(bool b) internal pure returns (uint256 u) { assembly ("memory-safe") { u := iszero(iszero(b)) } } } // File: @openzeppelin/contracts/utils/math/Math.sol // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol) pragma solidity ^0.8.20; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an success flag (no overflow). */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow). */ function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow). */ function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a success flag (no division by zero). */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero). */ function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * SafeCast.toUint(condition)); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. Panic.panic(Panic.DIVISION_BY_ZERO); } // The following calculation ensures accurate ceiling division without overflow. // Since a is non-zero, (a - 1) / b will not overflow. // The largest possible result occurs when (a - 1) / b is type(uint256).max, // but the largest value we can obtain is type(uint256).max - 1, which happens // when a = type(uint256).max and b = 1. unchecked { return SafeCast.toUint(a > 0) * ((a - 1) / b + 1); } } /** * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2²⁵⁶ + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0. if (denominator <= prod1) { Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW)); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv ≡ 1 mod 2⁴. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2⁸ inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶ inverse *= 2 - denominator * inverse; // inverse mod 2³² inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴ inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸ inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶ // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @dev Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0); } /** * @dev Calculate the modular multiplicative inverse of a number in Z/nZ. * * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0. * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible. * * If the input value is not inversible, 0 is returned. * * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}. */ function invMod(uint256 a, uint256 n) internal pure returns (uint256) { unchecked { if (n == 0) return 0; // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version) // Used to compute integers x and y such that: ax + ny = gcd(a, n). // When the gcd is 1, then the inverse of a modulo n exists and it's x. // ax + ny = 1 // ax = 1 + (-y)n // ax ≡ 1 (mod n) # x is the inverse of a modulo n // If the remainder is 0 the gcd is n right away. uint256 remainder = a % n; uint256 gcd = n; // Therefore the initial coefficients are: // ax + ny = gcd(a, n) = n // 0a + 1n = n int256 x = 0; int256 y = 1; while (remainder != 0) { uint256 quotient = gcd / remainder; (gcd, remainder) = ( // The old remainder is the next gcd to try. remainder, // Compute the next remainder. // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd // where gcd is at most n (capped to type(uint256).max) gcd - remainder * quotient ); (x, y) = ( // Increment the coefficient of a. y, // Decrement the coefficient of n. // Can overflow, but the result is casted to uint256 so that the // next value of y is "wrapped around" to a value between 0 and n - 1. x - y * int256(quotient) ); } if (gcd != 1) return 0; // No inverse exists. return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative. } } /** * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`. * * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that * `a**(p-2)` is the modular multiplicative inverse of a in Fp. * * NOTE: this function does NOT check that `p` is a prime greater than `2`. */ function invModPrime(uint256 a, uint256 p) internal view returns (uint256) { unchecked { return Math.modExp(a, p - 2, p); } } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m) * * Requirements: * - modulus can't be zero * - underlying staticcall to precompile must succeed * * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make * sure the chain you're using it on supports the precompiled contract for modular exponentiation * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, * the underlying function will succeed given the lack of a revert, but the result may be incorrectly * interpreted as 0. */ function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) { (bool success, uint256 result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m). * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying * to operate modulo 0 or if the underlying precompile reverted. * * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack * of a revert, but the result may be incorrectly interpreted as 0. */ function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) { if (m == 0) return (false, 0); assembly ("memory-safe") { let ptr := mload(0x40) // | Offset | Content | Content (Hex) | // |-----------|------------|--------------------------------------------------------------------| // | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x60:0x7f | value of b | 0x<.............................................................b> | // | 0x80:0x9f | value of e | 0x<.............................................................e> | // | 0xa0:0xbf | value of m | 0x<.............................................................m> | mstore(ptr, 0x20) mstore(add(ptr, 0x20), 0x20) mstore(add(ptr, 0x40), 0x20) mstore(add(ptr, 0x60), b) mstore(add(ptr, 0x80), e) mstore(add(ptr, 0xa0), m) // Given the result < m, it's guaranteed to fit in 32 bytes, // so we can use the memory scratch space located at offset 0. success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20) result := mload(0x00) } } /** * @dev Variant of {modExp} that supports inputs of arbitrary length. */ function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) { (bool success, bytes memory result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Variant of {tryModExp} that supports inputs of arbitrary length. */ function tryModExp( bytes memory b, bytes memory e, bytes memory m ) internal view returns (bool success, bytes memory result) { if (_zeroBytes(m)) return (false, new bytes(0)); uint256 mLen = m.length; // Encode call args in result and move the free memory pointer result = abi.encodePacked(b.length, e.length, mLen, b, e, m); assembly ("memory-safe") { let dataPtr := add(result, 0x20) // Write result on top of args to avoid allocating extra memory. success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen) // Overwrite the length. // result.length > returndatasize() is guaranteed because returndatasize() == m.length mstore(result, mLen) // Set the memory pointer after the returned data. mstore(0x40, add(dataPtr, mLen)) } } /** * @dev Returns whether the provided byte array is zero. */ function _zeroBytes(bytes memory byteArray) private pure returns (bool) { for (uint256 i = 0; i < byteArray.length; ++i) { if (byteArray[i] != 0) { return false; } } return true; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * This method is based on Newton's method for computing square roots; the algorithm is restricted to only * using integer operations. */ function sqrt(uint256 a) internal pure returns (uint256) { unchecked { // Take care of easy edge cases when a == 0 or a == 1 if (a <= 1) { return a; } // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between // the current value as `ε_n = | x_n - sqrt(a) |`. // // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is // bigger than any uint256. // // By noticing that // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)` // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar // to the msb function. uint256 aa = a; uint256 xn = 1; if (aa >= (1 << 128)) { aa >>= 128; xn <<= 64; } if (aa >= (1 << 64)) { aa >>= 64; xn <<= 32; } if (aa >= (1 << 32)) { aa >>= 32; xn <<= 16; } if (aa >= (1 << 16)) { aa >>= 16; xn <<= 8; } if (aa >= (1 << 8)) { aa >>= 8; xn <<= 4; } if (aa >= (1 << 4)) { aa >>= 4; xn <<= 2; } if (aa >= (1 << 2)) { xn <<= 1; } // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1). // // We can refine our estimation by noticing that the middle of that interval minimizes the error. // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2). // This is going to be our x_0 (and ε_0) xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2) // From here, Newton's method give us: // x_{n+1} = (x_n + a / x_n) / 2 // // One should note that: // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a // = ((x_n² + a) / (2 * x_n))² - a // = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a // = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²) // = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²) // = (x_n² - a)² / (2 * x_n)² // = ((x_n² - a) / (2 * x_n))² // ≥ 0 // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n // // This gives us the proof of quadratic convergence of the sequence: // ε_{n+1} = | x_{n+1} - sqrt(a) | // = | (x_n + a / x_n) / 2 - sqrt(a) | // = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) | // = | (x_n - sqrt(a))² / (2 * x_n) | // = | ε_n² / (2 * x_n) | // = ε_n² / | (2 * x_n) | // // For the first iteration, we have a special case where x_0 is known: // ε_1 = ε_0² / | (2 * x_0) | // ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2))) // ≤ 2**(2*e-4) / (3 * 2**(e-1)) // ≤ 2**(e-3) / 3 // ≤ 2**(e-3-log2(3)) // ≤ 2**(e-4.5) // // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n: // ε_{n+1} = ε_n² / | (2 * x_n) | // ≤ (2**(e-k))² / (2 * 2**(e-1)) // ≤ 2**(2*e-2*k) / 2**e // ≤ 2**(e-2*k) xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5 xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9 xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18 xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36 xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72 // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either // sqrt(a) or sqrt(a) + 1. return xn - SafeCast.toUint(xn > a / xn); } } /** * @dev Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 exp; unchecked { exp = 128 * SafeCast.toUint(value > (1 << 128) - 1); value >>= exp; result += exp; exp = 64 * SafeCast.toUint(value > (1 << 64) - 1); value >>= exp; result += exp; exp = 32 * SafeCast.toUint(value > (1 << 32) - 1); value >>= exp; result += exp; exp = 16 * SafeCast.toUint(value > (1 << 16) - 1); value >>= exp; result += exp; exp = 8 * SafeCast.toUint(value > (1 << 8) - 1); value >>= exp; result += exp; exp = 4 * SafeCast.toUint(value > (1 << 4) - 1); value >>= exp; result += exp; exp = 2 * SafeCast.toUint(value > (1 << 2) - 1); value >>= exp; result += exp; result += SafeCast.toUint(value > 1); } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 isGt; unchecked { isGt = SafeCast.toUint(value > (1 << 128) - 1); value >>= isGt * 128; result += isGt * 16; isGt = SafeCast.toUint(value > (1 << 64) - 1); value >>= isGt * 64; result += isGt * 8; isGt = SafeCast.toUint(value > (1 << 32) - 1); value >>= isGt * 32; result += isGt * 4; isGt = SafeCast.toUint(value > (1 << 16) - 1); value >>= isGt * 16; result += isGt * 2; result += SafeCast.toUint(value > (1 << 8) - 1); } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } } // File: SonicxswapEthStakingRewards.sol pragma solidity 0.8.20; contract SonicxSwapEthStakingRewards is Ownable, ReentrancyGuard { using SafeMath for uint256; using SafeERC20 for IERC20; IERC20 public rewardsToken; uint256 public periodFinish = 0; uint256 public rewardRate = 0; uint256 public rewardsDuration; uint256 public lastUpdateTime; uint256 public rewardPerTokenStored; mapping(address => uint256) public userRewardPerTokenPaid; mapping(address => uint256) public rewards; uint256 private _totalSupply; mapping(address => uint256) private _balances; constructor( address _rewardsToken, uint256 _rewardDuration )Ownable(msg.sender){ rewardsToken = IERC20(_rewardsToken); rewardsDuration = _rewardDuration; } receive() external payable { } /* ========== VIEWS ========== */ function totalSupply() external view returns (uint256) { return _totalSupply; } function balanceOf(address account) external view returns (uint256) { return _balances[account]; } function lastTimeRewardApplicable() public view returns (uint256) { return Math.min(block.timestamp, periodFinish); } function rewardPerToken() public view returns (uint256) { if (_totalSupply == 0) { return rewardPerTokenStored; } return rewardPerTokenStored.add( lastTimeRewardApplicable().sub(lastUpdateTime).mul(rewardRate).mul(1e18).div(_totalSupply) ); } function earned(address account) public view returns (uint256) { return _balances[account].mul(rewardPerToken().sub(userRewardPerTokenPaid[account])).div(1e18).add(rewards[account]); } function getRewardForDuration() external view returns (uint256) { return rewardRate.mul(rewardsDuration); } /* ========== MUTATIVE FUNCTIONS ========== */ function stake(uint256 amount) external payable nonReentrant updateReward(msg.sender) { require(amount > 0, "Cannot stake 0"); require(msg.value == amount, "Invalid deposit amount"); _totalSupply = _totalSupply.add(amount); _balances[msg.sender] = _balances[msg.sender].add(amount); emit Staked(msg.sender, amount); } function withdraw(uint256 amount) public nonReentrant updateReward(msg.sender) { require(amount > 0, "Cannot withdraw 0"); _totalSupply = _totalSupply.sub(amount); _balances[msg.sender] = _balances[msg.sender].sub(amount); payable(msg.sender).transfer(amount); emit Withdrawn(msg.sender, amount); } function getReward() public nonReentrant updateReward(msg.sender) { uint256 reward = rewards[msg.sender]; require(reward > 0 , "Reward Amount is 0"); rewards[msg.sender] = 0; rewardsToken.safeTransfer(msg.sender, reward); emit RewardPaid(msg.sender, reward); } /** * @dev failSafe: Returns transfer token */ function adminWithdraw(address _toUser, uint _amount) external onlyOwner returns(bool) { require(_toUser != address(0), "Invalid Address"); require(IERC20(rewardsToken).balanceOf(address(this)) >= _amount, "StakingFactory: insufficient amount"); IERC20(rewardsToken).transfer(_toUser, _amount); return true; } function exit() external { withdraw(_balances[msg.sender]); getReward(); } /* ========== RESTRICTED FUNCTIONS ========== */ function notifyRewardAmount(uint256 reward) external onlyOwner updateReward(address(0)) { if (block.timestamp >= periodFinish) { rewardRate = reward.div(rewardsDuration); } else { uint256 remaining = periodFinish.sub(block.timestamp); uint256 leftover = remaining.mul(rewardRate); rewardRate = reward.add(leftover).div(rewardsDuration); } // Ensure the provided reward amount is not more than the balance in the contract. // This keeps the reward rate in the right range, preventing overflows due to // very high values of rewardRate in the earned and rewardsPerToken functions; // Reward + leftover must be less than 2^256 / 10^18 to avoid overflow. uint balance = rewardsToken.balanceOf(address(this)); require(rewardRate <= balance.div(rewardsDuration), "Provided reward too high"); lastUpdateTime = block.timestamp; periodFinish = block.timestamp.add(rewardsDuration); emit RewardAdded(reward); } /* ========== MODIFIERS ========== */ modifier updateReward(address account) { rewardPerTokenStored = rewardPerToken(); lastUpdateTime = lastTimeRewardApplicable(); if (account != address(0)) { rewards[account] = earned(account); userRewardPerTokenPaid[account] = rewardPerTokenStored; } _; } /* ========== EVENTS ========== */ event RewardAdded(uint256 reward); event Staked(address indexed user, uint256 amount); event Withdrawn(address indexed user, uint256 amount); event RewardPaid(address indexed user, uint256 reward); }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"address","name":"_rewardsToken","type":"address"},{"internalType":"uint256","name":"_rewardDuration","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"reward","type":"uint256"}],"name":"RewardAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"reward","type":"uint256"}],"name":"RewardPaid","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Staked","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Withdrawn","type":"event"},{"inputs":[{"internalType":"address","name":"_toUser","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"adminWithdraw","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"earned","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"exit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"getReward","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"getRewardForDuration","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lastTimeRewardApplicable","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lastUpdateTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"reward","type":"uint256"}],"name":"notifyRewardAmount","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"periodFinish","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"rewardPerToken","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rewardPerTokenStored","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rewardRate","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"rewards","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rewardsDuration","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rewardsToken","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"stake","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"userRewardPerTokenPaid","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]
Contract Creation Code
60806040525f6003555f600455348015610017575f80fd5b506040516110d33803806110d3833981016040819052610036916100e1565b338061005b57604051631e4fbdf760e01b81525f600482015260240160405180910390fd5b61006481610092565b5060018055600280546001600160a01b0319166001600160a01b039390931692909217909155600555610118565b5f80546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b5f80604083850312156100f2575f80fd5b82516001600160a01b0381168114610108575f80fd5b6020939093015192949293505050565b610fae806101255f395ff3fe60806040526004361061013e575f3560e01c80637b0a47ee116100b3578063cd3daf9d1161006d578063cd3daf9d1461035a578063d1af0c7d1461036e578063df136d651461038d578063e9fad8ee146103a2578063ebe2b12b146103b6578063f2fde38b146103cb575f80fd5b80637b0a47ee146102ae57806380faa57d146102c35780638b876347146102d75780638da5cb5b14610302578063a694fc3a14610332578063c8f33c9114610345575f80fd5b8063386a952511610104578063386a9525146101ef5780633c6b16ab146102045780633d18b91214610223578063401d44821461023757806370a0823114610266578063715018a61461029a575f80fd5b80628cc262146101495780630700037d1461017b57806318160ddd146101a65780631c1f78eb146101ba5780632e1a7d4d146101ce575f80fd5b3661014557005b5f80fd5b348015610154575f80fd5b50610168610163366004610e7a565b6103ea565b6040519081526020015b60405180910390f35b348015610186575f80fd5b50610168610195366004610e7a565b60096020525f908152604090205481565b3480156101b1575f80fd5b50600a54610168565b3480156101c5575f80fd5b50610168610466565b3480156101d9575f80fd5b506101ed6101e8366004610e93565b610483565b005b3480156101fa575f80fd5b5061016860055481565b34801561020f575f80fd5b506101ed61021e366004610e93565b6105d5565b34801561022e575f80fd5b506101ed6107b7565b348015610242575f80fd5b50610256610251366004610eaa565b6108d4565b6040519015158152602001610172565b348015610271575f80fd5b50610168610280366004610e7a565b6001600160a01b03165f908152600b602052604090205490565b3480156102a5575f80fd5b506101ed610a67565b3480156102b9575f80fd5b5061016860045481565b3480156102ce575f80fd5b50610168610a78565b3480156102e2575f80fd5b506101686102f1366004610e7a565b60086020525f908152604090205481565b34801561030d575f80fd5b505f546001600160a01b03165b6040516001600160a01b039091168152602001610172565b6101ed610340366004610e93565b610a85565b348015610350575f80fd5b5061016860065481565b348015610365575f80fd5b50610168610bdd565b348015610379575f80fd5b5060025461031a906001600160a01b031681565b348015610398575f80fd5b5061016860075481565b3480156103ad575f80fd5b506101ed610c26565b3480156103c1575f80fd5b5061016860035481565b3480156103d6575f80fd5b506101ed6103e5366004610e7a565b610c46565b6001600160a01b0381165f908152600960209081526040808320546008909252822054610460919061045a90670de0b6b3a7640000906104549061043690610430610bdd565b90610c80565b6001600160a01b0388165f908152600b602052604090205490610c92565b90610c9d565b90610ca8565b92915050565b5f61047e600554600454610c9290919063ffffffff16565b905090565b61048b610cb3565b33610494610bdd565b60075561049f610a78565b6006556001600160a01b038116156104e5576104ba816103ea565b6001600160a01b0382165f908152600960209081526040808320939093556007546008909152919020555b5f821161052d5760405162461bcd60e51b8152602060048201526011602482015270043616e6e6f74207769746864726177203607c1b60448201526064015b60405180910390fd5b600a5461053a9083610c80565b600a55335f908152600b60205260409020546105569083610c80565b335f818152600b6020526040808220939093559151909184156108fc02918591818181858888f19350505050158015610591573d5f803e3d5ffd5b5060405182815233907f7084f5476618d8e60b11ef0d7d3f06914655adb8793e28ff7f018d4c76d505d5906020015b60405180910390a2506105d260018055565b50565b6105dd610d0c565b5f6105e6610bdd565b6007556105f1610a78565b6006556001600160a01b038116156106375761060c816103ea565b6001600160a01b0382165f908152600960209081526040808320939093556007546008909152919020555b60035442106106565760055461064e908390610c9d565b600455610697565b6003545f906106659042610c80565b90505f61067d60045483610c9290919063ffffffff16565b600554909150610691906104548684610ca8565b60045550505b6002546040516370a0823160e01b81523060048201525f916001600160a01b0316906370a0823190602401602060405180830381865afa1580156106dd573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906107019190610ed2565b905061071860055482610c9d90919063ffffffff16565b60045411156107695760405162461bcd60e51b815260206004820152601860248201527f50726f76696465642072657761726420746f6f206869676800000000000000006044820152606401610524565b42600681905560055461077c9190610ca8565b6003556040518381527fde88a922e0d3b88b24e9623efeb464919c6bf9f66857a65e2bfcf2ce87a9433d9060200160405180910390a1505050565b6107bf610cb3565b336107c8610bdd565b6007556107d3610a78565b6006556001600160a01b03811615610819576107ee816103ea565b6001600160a01b0382165f908152600960209081526040808320939093556007546008909152919020555b335f908152600960205260409020548061086a5760405162461bcd60e51b8152602060048201526012602482015271052657761726420416d6f756e7420697320360741b6044820152606401610524565b335f81815260096020526040812055600254610892916001600160a01b039091169083610d38565b60405181815233907fe2403640ba68fed3a2f88b7557551d1993f84b99bb10ff833f0cf8db0c5e04869060200160405180910390a250506108d260018055565b565b5f6108dd610d0c565b6001600160a01b0383166109255760405162461bcd60e51b815260206004820152600f60248201526e496e76616c6964204164647265737360881b6044820152606401610524565b6002546040516370a0823160e01b815230600482015283916001600160a01b0316906370a0823190602401602060405180830381865afa15801561096b573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061098f9190610ed2565b10156109e95760405162461bcd60e51b815260206004820152602360248201527f5374616b696e67466163746f72793a20696e73756666696369656e7420616d6f6044820152621d5b9d60ea1b6064820152608401610524565b60025460405163a9059cbb60e01b81526001600160a01b038581166004830152602482018590529091169063a9059cbb906044016020604051808303815f875af1158015610a39573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610a5d9190610ee9565b5060019392505050565b610a6f610d0c565b6108d25f610d8f565b5f61047e42600354610dde565b610a8d610cb3565b33610a96610bdd565b600755610aa1610a78565b6006556001600160a01b03811615610ae757610abc816103ea565b6001600160a01b0382165f908152600960209081526040808320939093556007546008909152919020555b5f8211610b275760405162461bcd60e51b815260206004820152600e60248201526d043616e6e6f74207374616b6520360941b6044820152606401610524565b813414610b6f5760405162461bcd60e51b8152602060048201526016602482015275125b9d985b1a590819195c1bdcda5d08185b5bdd5b9d60521b6044820152606401610524565b600a54610b7c9083610ca8565b600a55335f908152600b6020526040902054610b989083610ca8565b335f818152600b6020526040908190209290925590517f9e71bc8eea02a63969f509818f2dafb9254532904319f9dbda79b67bd34a5f3d906105c09085815260200190565b5f600a545f03610bee575060075490565b61047e610c1d600a54610454670de0b6b3a7640000610c17600454610c17600654610430610a78565b90610c92565b60075490610ca8565b335f908152600b6020526040902054610c3e90610483565b6108d26107b7565b610c4e610d0c565b6001600160a01b038116610c7757604051631e4fbdf760e01b81525f6004820152602401610524565b6105d281610d8f565b5f610c8b8284610f1c565b9392505050565b5f610c8b8284610f2f565b5f610c8b8284610f46565b5f610c8b8284610f65565b600260015403610d055760405162461bcd60e51b815260206004820152601f60248201527f5265656e7472616e637947756172643a207265656e7472616e742063616c6c006044820152606401610524565b6002600155565b5f546001600160a01b031633146108d25760405163118cdaa760e01b8152336004820152602401610524565b604080516001600160a01b038416602482015260448082018490528251808303909101815260649091019091526020810180516001600160e01b031663a9059cbb60e01b179052610d8a908490610ded565b505050565b5f80546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b5f828218828410028218610c8b565b5f8060205f8451602086015f885af180610e0c576040513d5f823e3d81fd5b50505f513d91508115610e23578060011415610e30565b6001600160a01b0384163b155b15610e5957604051635274afe760e01b81526001600160a01b0385166004820152602401610524565b50505050565b80356001600160a01b0381168114610e75575f80fd5b919050565b5f60208284031215610e8a575f80fd5b610c8b82610e5f565b5f60208284031215610ea3575f80fd5b5035919050565b5f8060408385031215610ebb575f80fd5b610ec483610e5f565b946020939093013593505050565b5f60208284031215610ee2575f80fd5b5051919050565b5f60208284031215610ef9575f80fd5b81518015158114610c8b575f80fd5b634e487b7160e01b5f52601160045260245ffd5b8181038181111561046057610460610f08565b808202811582820484141761046057610460610f08565b5f82610f6057634e487b7160e01b5f52601260045260245ffd5b500490565b8082018082111561046057610460610f0856fea26469706673582212202936e7f3dd2828512a1439a17ff81110cca6df787f3c774a6cb8436f900a520364736f6c63430008140033000000000000000000000000008d9c24266e09d26655395bd47b5f53bbca8aff0000000000000000000000000000000000000000000000000000000001e13380
Deployed Bytecode
0x60806040526004361061013e575f3560e01c80637b0a47ee116100b3578063cd3daf9d1161006d578063cd3daf9d1461035a578063d1af0c7d1461036e578063df136d651461038d578063e9fad8ee146103a2578063ebe2b12b146103b6578063f2fde38b146103cb575f80fd5b80637b0a47ee146102ae57806380faa57d146102c35780638b876347146102d75780638da5cb5b14610302578063a694fc3a14610332578063c8f33c9114610345575f80fd5b8063386a952511610104578063386a9525146101ef5780633c6b16ab146102045780633d18b91214610223578063401d44821461023757806370a0823114610266578063715018a61461029a575f80fd5b80628cc262146101495780630700037d1461017b57806318160ddd146101a65780631c1f78eb146101ba5780632e1a7d4d146101ce575f80fd5b3661014557005b5f80fd5b348015610154575f80fd5b50610168610163366004610e7a565b6103ea565b6040519081526020015b60405180910390f35b348015610186575f80fd5b50610168610195366004610e7a565b60096020525f908152604090205481565b3480156101b1575f80fd5b50600a54610168565b3480156101c5575f80fd5b50610168610466565b3480156101d9575f80fd5b506101ed6101e8366004610e93565b610483565b005b3480156101fa575f80fd5b5061016860055481565b34801561020f575f80fd5b506101ed61021e366004610e93565b6105d5565b34801561022e575f80fd5b506101ed6107b7565b348015610242575f80fd5b50610256610251366004610eaa565b6108d4565b6040519015158152602001610172565b348015610271575f80fd5b50610168610280366004610e7a565b6001600160a01b03165f908152600b602052604090205490565b3480156102a5575f80fd5b506101ed610a67565b3480156102b9575f80fd5b5061016860045481565b3480156102ce575f80fd5b50610168610a78565b3480156102e2575f80fd5b506101686102f1366004610e7a565b60086020525f908152604090205481565b34801561030d575f80fd5b505f546001600160a01b03165b6040516001600160a01b039091168152602001610172565b6101ed610340366004610e93565b610a85565b348015610350575f80fd5b5061016860065481565b348015610365575f80fd5b50610168610bdd565b348015610379575f80fd5b5060025461031a906001600160a01b031681565b348015610398575f80fd5b5061016860075481565b3480156103ad575f80fd5b506101ed610c26565b3480156103c1575f80fd5b5061016860035481565b3480156103d6575f80fd5b506101ed6103e5366004610e7a565b610c46565b6001600160a01b0381165f908152600960209081526040808320546008909252822054610460919061045a90670de0b6b3a7640000906104549061043690610430610bdd565b90610c80565b6001600160a01b0388165f908152600b602052604090205490610c92565b90610c9d565b90610ca8565b92915050565b5f61047e600554600454610c9290919063ffffffff16565b905090565b61048b610cb3565b33610494610bdd565b60075561049f610a78565b6006556001600160a01b038116156104e5576104ba816103ea565b6001600160a01b0382165f908152600960209081526040808320939093556007546008909152919020555b5f821161052d5760405162461bcd60e51b8152602060048201526011602482015270043616e6e6f74207769746864726177203607c1b60448201526064015b60405180910390fd5b600a5461053a9083610c80565b600a55335f908152600b60205260409020546105569083610c80565b335f818152600b6020526040808220939093559151909184156108fc02918591818181858888f19350505050158015610591573d5f803e3d5ffd5b5060405182815233907f7084f5476618d8e60b11ef0d7d3f06914655adb8793e28ff7f018d4c76d505d5906020015b60405180910390a2506105d260018055565b50565b6105dd610d0c565b5f6105e6610bdd565b6007556105f1610a78565b6006556001600160a01b038116156106375761060c816103ea565b6001600160a01b0382165f908152600960209081526040808320939093556007546008909152919020555b60035442106106565760055461064e908390610c9d565b600455610697565b6003545f906106659042610c80565b90505f61067d60045483610c9290919063ffffffff16565b600554909150610691906104548684610ca8565b60045550505b6002546040516370a0823160e01b81523060048201525f916001600160a01b0316906370a0823190602401602060405180830381865afa1580156106dd573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906107019190610ed2565b905061071860055482610c9d90919063ffffffff16565b60045411156107695760405162461bcd60e51b815260206004820152601860248201527f50726f76696465642072657761726420746f6f206869676800000000000000006044820152606401610524565b42600681905560055461077c9190610ca8565b6003556040518381527fde88a922e0d3b88b24e9623efeb464919c6bf9f66857a65e2bfcf2ce87a9433d9060200160405180910390a1505050565b6107bf610cb3565b336107c8610bdd565b6007556107d3610a78565b6006556001600160a01b03811615610819576107ee816103ea565b6001600160a01b0382165f908152600960209081526040808320939093556007546008909152919020555b335f908152600960205260409020548061086a5760405162461bcd60e51b8152602060048201526012602482015271052657761726420416d6f756e7420697320360741b6044820152606401610524565b335f81815260096020526040812055600254610892916001600160a01b039091169083610d38565b60405181815233907fe2403640ba68fed3a2f88b7557551d1993f84b99bb10ff833f0cf8db0c5e04869060200160405180910390a250506108d260018055565b565b5f6108dd610d0c565b6001600160a01b0383166109255760405162461bcd60e51b815260206004820152600f60248201526e496e76616c6964204164647265737360881b6044820152606401610524565b6002546040516370a0823160e01b815230600482015283916001600160a01b0316906370a0823190602401602060405180830381865afa15801561096b573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061098f9190610ed2565b10156109e95760405162461bcd60e51b815260206004820152602360248201527f5374616b696e67466163746f72793a20696e73756666696369656e7420616d6f6044820152621d5b9d60ea1b6064820152608401610524565b60025460405163a9059cbb60e01b81526001600160a01b038581166004830152602482018590529091169063a9059cbb906044016020604051808303815f875af1158015610a39573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610a5d9190610ee9565b5060019392505050565b610a6f610d0c565b6108d25f610d8f565b5f61047e42600354610dde565b610a8d610cb3565b33610a96610bdd565b600755610aa1610a78565b6006556001600160a01b03811615610ae757610abc816103ea565b6001600160a01b0382165f908152600960209081526040808320939093556007546008909152919020555b5f8211610b275760405162461bcd60e51b815260206004820152600e60248201526d043616e6e6f74207374616b6520360941b6044820152606401610524565b813414610b6f5760405162461bcd60e51b8152602060048201526016602482015275125b9d985b1a590819195c1bdcda5d08185b5bdd5b9d60521b6044820152606401610524565b600a54610b7c9083610ca8565b600a55335f908152600b6020526040902054610b989083610ca8565b335f818152600b6020526040908190209290925590517f9e71bc8eea02a63969f509818f2dafb9254532904319f9dbda79b67bd34a5f3d906105c09085815260200190565b5f600a545f03610bee575060075490565b61047e610c1d600a54610454670de0b6b3a7640000610c17600454610c17600654610430610a78565b90610c92565b60075490610ca8565b335f908152600b6020526040902054610c3e90610483565b6108d26107b7565b610c4e610d0c565b6001600160a01b038116610c7757604051631e4fbdf760e01b81525f6004820152602401610524565b6105d281610d8f565b5f610c8b8284610f1c565b9392505050565b5f610c8b8284610f2f565b5f610c8b8284610f46565b5f610c8b8284610f65565b600260015403610d055760405162461bcd60e51b815260206004820152601f60248201527f5265656e7472616e637947756172643a207265656e7472616e742063616c6c006044820152606401610524565b6002600155565b5f546001600160a01b031633146108d25760405163118cdaa760e01b8152336004820152602401610524565b604080516001600160a01b038416602482015260448082018490528251808303909101815260649091019091526020810180516001600160e01b031663a9059cbb60e01b179052610d8a908490610ded565b505050565b5f80546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b5f828218828410028218610c8b565b5f8060205f8451602086015f885af180610e0c576040513d5f823e3d81fd5b50505f513d91508115610e23578060011415610e30565b6001600160a01b0384163b155b15610e5957604051635274afe760e01b81526001600160a01b0385166004820152602401610524565b50505050565b80356001600160a01b0381168114610e75575f80fd5b919050565b5f60208284031215610e8a575f80fd5b610c8b82610e5f565b5f60208284031215610ea3575f80fd5b5035919050565b5f8060408385031215610ebb575f80fd5b610ec483610e5f565b946020939093013593505050565b5f60208284031215610ee2575f80fd5b5051919050565b5f60208284031215610ef9575f80fd5b81518015158114610c8b575f80fd5b634e487b7160e01b5f52601160045260245ffd5b8181038181111561046057610460610f08565b808202811582820484141761046057610460610f08565b5f82610f6057634e487b7160e01b5f52601260045260245ffd5b500490565b8082018082111561046057610460610f0856fea26469706673582212202936e7f3dd2828512a1439a17ff81110cca6df787f3c774a6cb8436f900a520364736f6c63430008140033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000008d9c24266e09d26655395bd47b5f53bbca8aff0000000000000000000000000000000000000000000000000000000001e13380
-----Decoded View---------------
Arg [0] : _rewardsToken (address): 0x008d9c24266e09D26655395bd47B5F53BbCA8AFF
Arg [1] : _rewardDuration (uint256): 31536000
-----Encoded View---------------
2 Constructor Arguments found :
Arg [0] : 000000000000000000000000008d9c24266e09d26655395bd47b5f53bbca8aff
Arg [1] : 0000000000000000000000000000000000000000000000000000000001e13380
Deployed Bytecode Sourcemap
106900:5296:0:-:0;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;108455:198;;;;;;;;;;-1:-1:-1;108455:198:0;;;;;:::i;:::-;;:::i;:::-;;;529:25:1;;;517:2;502:18;108455:198:0;;;;;;;;107328:42;;;;;;;;;;-1:-1:-1;107328:42:0;;;;;:::i;:::-;;;;;;;;;;;;;;107757:93;;;;;;;;;;-1:-1:-1;107830:12:0;;107757:93;;108661:121;;;;;;;;;;;;;:::i;109219:348::-;;;;;;;;;;-1:-1:-1;109219:348:0;;;;;:::i;:::-;;:::i;:::-;;107147:30;;;;;;;;;;;;;;;;110481:1069;;;;;;;;;;-1:-1:-1;110481:1069:0;;;;;:::i;:::-;;:::i;109575:310::-;;;;;;;;;;;;;:::i;109962:350::-;;;;;;;;;;-1:-1:-1;109962:350:0;;;;;:::i;:::-;;:::i;:::-;;;1174:14:1;;1167:22;1149:41;;1137:2;1122:18;109962:350:0;1009:187:1;107858:112:0;;;;;;;;;;-1:-1:-1;107858:112:0;;;;;:::i;:::-;-1:-1:-1;;;;;107944:18:0;107917:7;107944:18;;;:9;:18;;;;;;;107858:112;6250:103;;;;;;;;;;;;;:::i;107111:29::-;;;;;;;;;;;;;;;;107978:131;;;;;;;;;;;;;:::i;107264:57::-;;;;;;;;;;-1:-1:-1;107264:57:0;;;;;:::i;:::-;;;;;;;;;;;;;;5575:87;;;;;;;;;;-1:-1:-1;5621:7:0;5648:6;-1:-1:-1;;;;;5648:6:0;5575:87;;;-1:-1:-1;;;;;1365:32:1;;;1347:51;;1335:2;1320:18;5575:87:0;1201:203:1;108844:367:0;;;;;;:::i;:::-;;:::i;107184:29::-;;;;;;;;;;;;;;;;108117:330;;;;;;;;;;;;;:::i;107040:26::-;;;;;;;;;;-1:-1:-1;107040:26:0;;;;-1:-1:-1;;;;;107040:26:0;;;107220:35;;;;;;;;;;;;;;;;110320:97;;;;;;;;;;;;;:::i;107073:31::-;;;;;;;;;;;;;;;;6508:220;;;;;;;;;;-1:-1:-1;6508:220:0;;;;;:::i;:::-;;:::i;108455:198::-;-1:-1:-1;;;;;108628:16:0;;108509:7;108628:16;;;:7;:16;;;;;;;;;108580:22;:31;;;;;;108536:109;;108628:16;108536:87;;108618:4;;108536:77;;108559:53;;:16;:14;:16::i;:::-;:20;;:53::i;:::-;-1:-1:-1;;;;;108536:18:0;;;;;;:9;:18;;;;;;;:22;:77::i;:::-;:81;;:87::i;:::-;:91;;:109::i;:::-;108529:116;108455:198;-1:-1:-1;;108455:198:0:o;108661:121::-;108716:7;108743:31;108758:15;;108743:10;;:14;;:31;;;;:::i;:::-;108736:38;;108661:121;:::o;109219:348::-;31849:21;:19;:21::i;:::-;109286:10:::1;111676:16;:14;:16::i;:::-;111653:20;:39:::0;111720:26:::1;:24;:26::i;:::-;111703:14;:43:::0;-1:-1:-1;;;;;111761:21:0;::::1;::::0;111757:157:::1;;111818:15;111825:7;111818:6;:15::i;:::-;-1:-1:-1::0;;;;;111799:16:0;::::1;;::::0;;;:7:::1;:16;::::0;;;;;;;:34;;;;111882:20:::1;::::0;111848:22:::1;:31:::0;;;;;;:54;111757:157:::1;109326:1:::2;109317:6;:10;109309:40;;;::::0;-1:-1:-1;;;109309:40:0;;1832:2:1;109309:40:0::2;::::0;::::2;1814:21:1::0;1871:2;1851:18;;;1844:30;-1:-1:-1;;;1890:18:1;;;1883:47;1947:18;;109309:40:0::2;;;;;;;;;109375:12;::::0;:24:::2;::::0;109392:6;109375:16:::2;:24::i;:::-;109360:12;:39:::0;109444:10:::2;109434:21;::::0;;;:9:::2;:21;::::0;;;;;:33:::2;::::0;109460:6;109434:25:::2;:33::i;:::-;109420:10;109410:21;::::0;;;:9:::2;:21;::::0;;;;;:57;;;;109478:36;;109420:10;;109478:36;::::2;;;::::0;109507:6;;109478:36;109410:21;109478:36;109507:6;109420:10;109478:36;::::2;;;;;;;;;;;;;::::0;::::2;;;;;-1:-1:-1::0;109530:29:0::2;::::0;529:25:1;;;109540:10:0::2;::::0;109530:29:::2;::::0;517:2:1;502:18;109530:29:0::2;;;;;;;;31881:1:::1;31893:20:::0;31287:1;32413:22;;32230:213;31893:20;109219:348;:::o;110481:1069::-;5461:13;:11;:13::i;:::-;110565:1:::1;111676:16;:14;:16::i;:::-;111653:20;:39:::0;111720:26:::1;:24;:26::i;:::-;111703:14;:43:::0;-1:-1:-1;;;;;111761:21:0;::::1;::::0;111757:157:::1;;111818:15;111825:7;111818:6;:15::i;:::-;-1:-1:-1::0;;;;;111799:16:0;::::1;;::::0;;;:7:::1;:16;::::0;;;;;;;:34;;;;111882:20:::1;::::0;111848:22:::1;:31:::0;;;;;;:54;111757:157:::1;110603:12:::2;;110584:15;:31;110580:318;;110656:15;::::0;110645:27:::2;::::0;:6;;:10:::2;:27::i;:::-;110632:10;:40:::0;110580:318:::2;;;110725:12;::::0;110705:17:::2;::::0;110725:33:::2;::::0;110742:15:::2;110725:16;:33::i;:::-;110705:53;;110773:16;110792:25;110806:10;;110792:9;:13;;:25;;;;:::i;:::-;110870:15;::::0;110773:44;;-1:-1:-1;110845:41:0::2;::::0;:20:::2;:6:::0;110773:44;110845:10:::2;:20::i;:41::-;110832:10;:54:::0;-1:-1:-1;;110580:318:0::2;111273:12;::::0;:37:::2;::::0;-1:-1:-1;;;111273:37:0;;111304:4:::2;111273:37;::::0;::::2;1347:51:1::0;111258:12:0::2;::::0;-1:-1:-1;;;;;111273:12:0::2;::::0;:22:::2;::::0;1320:18:1;;111273:37:0::2;;;;;;;;;;;;;;;;;::::0;::::2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;111258:52;;111343:28;111355:15;;111343:7;:11;;:28;;;;:::i;:::-;111329:10;;:42;;111321:79;;;::::0;-1:-1:-1;;;111321:79:0;;2367:2:1;111321:79:0::2;::::0;::::2;2349:21:1::0;2406:2;2386:18;;;2379:30;2445:26;2425:18;;;2418:54;2489:18;;111321:79:0::2;2165:348:1::0;111321:79:0::2;111430:15;111413:14;:32:::0;;;111491:15:::2;::::0;111471:36:::2;::::0;111430:15;111471:19:::2;:36::i;:::-;111456:12;:51:::0;111523:19:::2;::::0;529:25:1;;;111523:19:0::2;::::0;517:2:1;502:18;111523:19:0::2;;;;;;;110569:981;5485:1:::1;110481:1069:::0;:::o;109575:310::-;31849:21;:19;:21::i;:::-;109629:10:::1;111676:16;:14;:16::i;:::-;111653:20;:39:::0;111720:26:::1;:24;:26::i;:::-;111703:14;:43:::0;-1:-1:-1;;;;;111761:21:0;::::1;::::0;111757:157:::1;;111818:15;111825:7;111818:6;:15::i;:::-;-1:-1:-1::0;;;;;111799:16:0;::::1;;::::0;;;:7:::1;:16;::::0;;;;;;;:34;;;;111882:20:::1;::::0;111848:22:::1;:31:::0;;;;;;:54;111757:157:::1;109677:10:::2;109652:14;109669:19:::0;;;:7:::2;:19;::::0;;;;;109707:10;109699:42:::2;;;::::0;-1:-1:-1;;;109699:42:0;;2720:2:1;109699:42:0::2;::::0;::::2;2702:21:1::0;2759:2;2739:18;;;2732:30;-1:-1:-1;;;2778:18:1;;;2771:48;2836:18;;109699:42:0::2;2518:342:1::0;109699:42:0::2;109760:10;109774:1;109752:19:::0;;;:7:::2;:19;::::0;;;;:23;109786:12:::2;::::0;:45:::2;::::0;-1:-1:-1;;;;;109786:12:0;;::::2;::::0;109824:6;109786:25:::2;:45::i;:::-;109847:30;::::0;529:25:1;;;109858:10:0::2;::::0;109847:30:::2;::::0;517:2:1;502:18;109847:30:0::2;;;;;;;109641:244;31881:1:::1;31893:20:::0;31287:1;32413:22;;32230:213;31893:20;109575:310::o;109962:350::-;110043:4;5461:13;:11;:13::i;:::-;-1:-1:-1;;;;;110068:21:0;::::1;110060:49;;;::::0;-1:-1:-1;;;110060:49:0;;3067:2:1;110060:49:0::1;::::0;::::1;3049:21:1::0;3106:2;3086:18;;;3079:30;-1:-1:-1;;;3125:18:1;;;3118:45;3180:18;;110060:49:0::1;2865:339:1::0;110060:49:0::1;110135:12;::::0;110128:45:::1;::::0;-1:-1:-1;;;110128:45:0;;110167:4:::1;110128:45;::::0;::::1;1347:51:1::0;110177:7:0;;-1:-1:-1;;;;;110135:12:0::1;::::0;110128:30:::1;::::0;1320:18:1;;110128:45:0::1;;;;;;;;;;;;;;;;;::::0;::::1;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;:56;;110120:104;;;::::0;-1:-1:-1;;;110120:104:0;;3411:2:1;110120:104:0::1;::::0;::::1;3393:21:1::0;3450:2;3430:18;;;3423:30;3489:34;3469:18;;;3462:62;-1:-1:-1;;;3540:18:1;;;3533:33;3583:19;;110120:104:0::1;3209:399:1::0;110120:104:0::1;110242:12;::::0;110235:47:::1;::::0;-1:-1:-1;;;110235:47:0;;-1:-1:-1;;;;;3805:32:1;;;110235:47:0::1;::::0;::::1;3787:51:1::0;3854:18;;;3847:34;;;110242:12:0;;::::1;::::0;110235:29:::1;::::0;3760:18:1;;110235:47:0::1;;;;;;;;;;;;;;;;;;::::0;::::1;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;-1:-1:-1::0;110300:4:0::1;::::0;109962:350;-1:-1:-1;;;109962:350:0:o;6250:103::-;5461:13;:11;:13::i;:::-;6315:30:::1;6342:1;6315:18;:30::i;107978:131::-:0;108035:7;108062:39;108071:15;108088:12;;108062:8;:39::i;108844:367::-;31849:21;:19;:21::i;:::-;108918:10:::1;111676:16;:14;:16::i;:::-;111653:20;:39:::0;111720:26:::1;:24;:26::i;:::-;111703:14;:43:::0;-1:-1:-1;;;;;111761:21:0;::::1;::::0;111757:157:::1;;111818:15;111825:7;111818:6;:15::i;:::-;-1:-1:-1::0;;;;;111799:16:0;::::1;;::::0;;;:7:::1;:16;::::0;;;;;;;:34;;;;111882:20:::1;::::0;111848:22:::1;:31:::0;;;;;;:54;111757:157:::1;108958:1:::2;108949:6;:10;108941:37;;;::::0;-1:-1:-1;;;108941:37:0;;4376:2:1;108941:37:0::2;::::0;::::2;4358:21:1::0;4415:2;4395:18;;;4388:30;-1:-1:-1;;;4434:18:1;;;4427:44;4488:18;;108941:37:0::2;4174:338:1::0;108941:37:0::2;109010:6;108997:9;:19;108989:54;;;::::0;-1:-1:-1;;;108989:54:0;;4719:2:1;108989:54:0::2;::::0;::::2;4701:21:1::0;4758:2;4738:18;;;4731:30;-1:-1:-1;;;4777:18:1;;;4770:52;4839:18;;108989:54:0::2;4517:346:1::0;108989:54:0::2;109069:12;::::0;:24:::2;::::0;109086:6;109069:16:::2;:24::i;:::-;109054:12;:39:::0;109138:10:::2;109128:21;::::0;;;:9:::2;:21;::::0;;;;;:33:::2;::::0;109154:6;109128:25:::2;:33::i;:::-;109114:10;109104:21;::::0;;;:9:::2;:21;::::0;;;;;;:57;;;;109177:26;;::::2;::::0;::::2;::::0;109196:6;529:25:1;;517:2;502:18;;383:177;108117:330:0;108164:7;108188:12;;108204:1;108188:17;108184:77;;-1:-1:-1;108229:20:0;;;108117:330::o;108184:77::-;108291:148;108334:90;108411:12;;108334:72;108401:4;108334:62;108385:10;;108334:46;108365:14;;108334:26;:24;:26::i;:46::-;:50;;:62::i;:90::-;108291:20;;;:24;:148::i;110320:97::-;110375:10;110365:21;;;;:9;:21;;;;;;110356:31;;:8;:31::i;:::-;110398:11;:9;:11::i;6508:220::-;5461:13;:11;:13::i;:::-;-1:-1:-1;;;;;6593:22:0;::::1;6589:93;;6639:31;::::0;-1:-1:-1;;;6639:31:0;;6667:1:::1;6639:31;::::0;::::1;1347:51:1::0;1320:18;;6639:31:0::1;1201:203:1::0;6589:93:0::1;6692:28;6711:8;6692:18;:28::i;36001:98::-:0;36059:7;36086:5;36090:1;36086;:5;:::i;:::-;36079:12;36001:98;-1:-1:-1;;;36001:98:0:o;36358:::-;36416:7;36443:5;36447:1;36443;:5;:::i;36757:98::-;36815:7;36842:5;36846:1;36842;:5;:::i;35620:98::-;35678:7;35705:5;35709:1;35705;:5;:::i;31929:293::-;31331:1;32063:7;;:19;32055:63;;;;-1:-1:-1;;;32055:63:0;;5860:2:1;32055:63:0;;;5842:21:1;5899:2;5879:18;;;5872:30;5938:33;5918:18;;;5911:61;5989:18;;32055:63:0;5658:355:1;32055:63:0;31331:1;32196:7;:18;31929:293::o;5740:166::-;5621:7;5648:6;-1:-1:-1;;;;;5648:6:0;3664:10;5800:23;5796:103;;5847:40;;-1:-1:-1;;;5847:40:0;;3664:10;5847:40;;;1347:51:1;1320:18;;5847:40:0;1201:203:1;21164:162:0;21274:43;;;-1:-1:-1;;;;;3805:32:1;;21274:43:0;;;3787:51:1;3854:18;;;;3847:34;;;21274:43:0;;;;;;;;;;3760:18:1;;;;21274:43:0;;;;;;;;-1:-1:-1;;;;;21274:43:0;-1:-1:-1;;;21274:43:0;;;21247:71;;21267:5;;21247:19;:71::i;:::-;21164:162;;;:::o;6888:191::-;6962:16;6981:6;;-1:-1:-1;;;;;6998:17:0;;;-1:-1:-1;;;;;;6998:17:0;;;;;;7031:40;;6981:6;;;;;;;7031:40;;6962:16;7031:40;6951:128;6888:191;:::o;81292:113::-;81350:7;80973:5;;;81385;;;80972:36;80967:42;;81377:20;80727:301;27757:738;27838:18;27867:19;28007:4;28004:1;27997:4;27991:11;27984:4;27978;27974:15;27971:1;27964:5;27957;27952:60;28066:7;28056:180;;28111:4;28105:11;28157:16;28154:1;28149:3;28134:40;28204:16;28199:3;28192:29;28056:180;-1:-1:-1;;28315:1:0;28309:8;28264:16;;-1:-1:-1;28344:15:0;;:68;;28396:11;28411:1;28396:16;;28344:68;;;-1:-1:-1;;;;;28362:26:0;;;:31;28344:68;28340:148;;;28436:40;;-1:-1:-1;;;28436:40:0;;-1:-1:-1;;;;;1365:32:1;;28436:40:0;;;1347:51:1;1320:18;;28436:40:0;1201:203:1;28340:148:0;27827:668;;27757:738;;:::o;14:173:1:-;82:20;;-1:-1:-1;;;;;131:31:1;;121:42;;111:70;;177:1;174;167:12;111:70;14:173;;;:::o;192:186::-;251:6;304:2;292:9;283:7;279:23;275:32;272:52;;;320:1;317;310:12;272:52;343:29;362:9;343:29;:::i;565:180::-;624:6;677:2;665:9;656:7;652:23;648:32;645:52;;;693:1;690;683:12;645:52;-1:-1:-1;716:23:1;;565:180;-1:-1:-1;565:180:1:o;750:254::-;818:6;826;879:2;867:9;858:7;854:23;850:32;847:52;;;895:1;892;885:12;847:52;918:29;937:9;918:29;:::i;:::-;908:39;994:2;979:18;;;;966:32;;-1:-1:-1;;;750:254:1:o;1976:184::-;2046:6;2099:2;2087:9;2078:7;2074:23;2070:32;2067:52;;;2115:1;2112;2105:12;2067:52;-1:-1:-1;2138:16:1;;1976:184;-1:-1:-1;1976:184:1:o;3892:277::-;3959:6;4012:2;4000:9;3991:7;3987:23;3983:32;3980:52;;;4028:1;4025;4018:12;3980:52;4060:9;4054:16;4113:5;4106:13;4099:21;4092:5;4089:32;4079:60;;4135:1;4132;4125:12;4868:127;4929:10;4924:3;4920:20;4917:1;4910:31;4960:4;4957:1;4950:15;4984:4;4981:1;4974:15;5000:128;5067:9;;;5088:11;;;5085:37;;;5102:18;;:::i;5133:168::-;5206:9;;;5237;;5254:15;;;5248:22;;5234:37;5224:71;;5275:18;;:::i;5306:217::-;5346:1;5372;5362:132;;5416:10;5411:3;5407:20;5404:1;5397:31;5451:4;5448:1;5441:15;5479:4;5476:1;5469:15;5362:132;-1:-1:-1;5508:9:1;;5306:217::o;5528:125::-;5593:9;;;5614:10;;;5611:36;;;5627:18;;:::i
Swarm Source
ipfs://2936e7f3dd2828512a1439a17ff81110cca6df787f3c774a6cb8436f900a5203
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.