S Price: $0.070084 (-0.80%)
Gas: 55 Gwei

Contract

0xe12E0f117d23a5ccc57f8935CD8c4E80cD91FF01

Overview

S Balance

Sonic LogoSonic LogoSonic Logo0 S

S Value

$0.00

More Info

Private Name Tags

Multichain Info

No addresses found
Transaction Hash
Block
From
To
Create609334852026-01-22 16:35:512 days ago1769099751IN
0xe12E0f11...0cD91FF01
610 S0.0098023956.995
Create608904192026-01-22 1:14:232 days ago1769044463IN
0xe12E0f11...0cD91FF01
2,384 S0.0072705550
Create606910912026-01-19 10:43:265 days ago1768819406IN
0xe12E0f11...0cD91FF01
5,820 S0.0080023355
Create606456502026-01-18 19:35:326 days ago1768764932IN
0xe12E0f11...0cD91FF01
1,000 S0.00727350
Create606447362026-01-18 19:13:016 days ago1768763581IN
0xe12E0f11...0cD91FF01
90 S0.007272450
Create606440562026-01-18 18:55:576 days ago1768762557IN
0xe12E0f11...0cD91FF01
5,976.661125 S0.00727350
Create606044852026-01-18 2:51:416 days ago1768704701IN
0xe12E0f11...0cD91FF01
5,104.3831393 S0.0079996455
Create604353822026-01-15 10:18:549 days ago1768472334IN
0xe12E0f11...0cD91FF01
800 S0.007273650
Create603179682026-01-13 19:03:0711 days ago1768330987IN
0xe12E0f11...0cD91FF01
5,000 S0.0080703155.49999999
Create602813542026-01-13 8:34:4111 days ago1768293281IN
0xe12E0f11...0cD91FF01
6,300 S0.05383389370
Create602810082026-01-13 8:27:3311 days ago1768292853IN
0xe12E0f11...0cD91FF01
6,300 S0.05383389370
Create602803862026-01-13 8:14:4511 days ago1768292085IN
0xe12E0f11...0cD91FF01
6,240 S0.05383389370
Create602800332026-01-13 8:07:4311 days ago1768291663IN
0xe12E0f11...0cD91FF01
12,480 S0.05382464370
Create601099652026-01-10 23:11:1913 days ago1768086679IN
0xe12E0f11...0cD91FF01
700 S0.0080016755
Create601094462026-01-10 22:57:4813 days ago1768085868IN
0xe12E0f11...0cD91FF01
700 S0.0080016755
Create601058122026-01-10 21:31:3314 days ago1768080693IN
0xe12E0f11...0cD91FF01
2,000 S0.0071649550
Create601051422026-01-10 21:14:0414 days ago1768079644IN
0xe12E0f11...0cD91FF01
2,500 S0.0071655550
Create600446542026-01-10 0:00:0514 days ago1768003205IN
0xe12E0f11...0cD91FF01
1,500 S0.0082775555
Create600370502026-01-09 21:41:5215 days ago1767994912IN
0xe12E0f11...0cD91FF01
50 S0.00727350
Create600330002026-01-09 20:31:1615 days ago1767990676IN
0xe12E0f11...0cD91FF01
267.43481654 S0.0079989855
Create599266142026-01-08 15:42:5416 days ago1767886974IN
0xe12E0f11...0cD91FF01
131.67007282 S0.007273650
Create598412182026-01-07 16:28:5417 days ago1767803334IN
0xe12E0f11...0cD91FF01
5.73349999 S0.00727350
Create597764972026-01-06 20:29:2918 days ago1767731369IN
0xe12E0f11...0cD91FF01
5,200 S0.0071661550
Create597688922026-01-06 18:07:0518 days ago1767722825IN
0xe12E0f11...0cD91FF01
879.10206593 S0.0076749351
Create597535172026-01-06 15:05:5418 days ago1767711954IN
0xe12E0f11...0cD91FF01
62.11749026 S0.0082740955
View all transactions

Latest 25 internal transactions (View All)

Advanced mode:
Parent Transaction Hash Block From To
609334852026-01-22 16:35:512 days ago1769099751
0xe12E0f11...0cD91FF01
610 S
609334852026-01-22 16:35:512 days ago1769099751
0xe12E0f11...0cD91FF01
 Contract Creation0 S
608904192026-01-22 1:14:232 days ago1769044463
0xe12E0f11...0cD91FF01
2,384 S
608904192026-01-22 1:14:232 days ago1769044463
0xe12E0f11...0cD91FF01
 Contract Creation0 S
606910912026-01-19 10:43:265 days ago1768819406
0xe12E0f11...0cD91FF01
5,820 S
606910912026-01-19 10:43:265 days ago1768819406
0xe12E0f11...0cD91FF01
 Contract Creation0 S
606456502026-01-18 19:35:326 days ago1768764932
0xe12E0f11...0cD91FF01
1,000 S
606456502026-01-18 19:35:326 days ago1768764932
0xe12E0f11...0cD91FF01
 Contract Creation0 S
606447362026-01-18 19:13:016 days ago1768763581
0xe12E0f11...0cD91FF01
90 S
606447362026-01-18 19:13:016 days ago1768763581
0xe12E0f11...0cD91FF01
 Contract Creation0 S
606440562026-01-18 18:55:576 days ago1768762557
0xe12E0f11...0cD91FF01
5,976.661125 S
606440562026-01-18 18:55:576 days ago1768762557
0xe12E0f11...0cD91FF01
 Contract Creation0 S
606044852026-01-18 2:51:416 days ago1768704701
0xe12E0f11...0cD91FF01
5,104.3831393 S
606044852026-01-18 2:51:416 days ago1768704701
0xe12E0f11...0cD91FF01
 Contract Creation0 S
604353822026-01-15 10:18:549 days ago1768472334
0xe12E0f11...0cD91FF01
800 S
604353822026-01-15 10:18:549 days ago1768472334
0xe12E0f11...0cD91FF01
 Contract Creation0 S
603179682026-01-13 19:03:0711 days ago1768330987
0xe12E0f11...0cD91FF01
5,000 S
603179682026-01-13 19:03:0711 days ago1768330987
0xe12E0f11...0cD91FF01
 Contract Creation0 S
602813542026-01-13 8:34:4111 days ago1768293281
0xe12E0f11...0cD91FF01
6,300 S
602813542026-01-13 8:34:4111 days ago1768293281
0xe12E0f11...0cD91FF01
 Contract Creation0 S
602810082026-01-13 8:27:3311 days ago1768292853
0xe12E0f11...0cD91FF01
6,300 S
602810082026-01-13 8:27:3311 days ago1768292853
0xe12E0f11...0cD91FF01
 Contract Creation0 S
602803862026-01-13 8:14:4511 days ago1768292085
0xe12E0f11...0cD91FF01
6,240 S
602803862026-01-13 8:14:4511 days ago1768292085
0xe12E0f11...0cD91FF01
 Contract Creation0 S
602800332026-01-13 8:07:4311 days ago1768291663
0xe12E0f11...0cD91FF01
12,480 S
View All Internal Transactions
Cross-Chain Transactions
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
NativeOrderFactory

Compiler Version
v0.8.30+commit.73712a01

Optimization Enabled:
Yes with 1000000 runs

Other Settings:
shanghai EvmVersion
// SPDX-License-Identifier: MIT

pragma solidity 0.8.30;

import { Clones } from "@openzeppelin/contracts/proxy/Clones.sol";
import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
import { Address, AddressLib } from "@1inch/solidity-utils/contracts/libraries/AddressLib.sol";
import { SafeERC20, IERC20, IWETH } from "@1inch/solidity-utils/contracts/libraries/SafeERC20.sol";

import { IOrderMixin } from "../interfaces/IOrderMixin.sol";
import { Errors } from "../libraries/Errors.sol";
import { EIP712Alien } from "../utils/EIP712Alien.sol";
import { OrderLib } from "../OrderLib.sol";
import { NativeOrderImpl } from "./NativeOrderImpl.sol";

contract NativeOrderFactory is Ownable, EIP712Alien {
    using Clones for address;
    using AddressLib for Address;
    using SafeERC20 for IERC20;
    using OrderLib for IOrderMixin.Order;

    event NativeOrderCreated(address maker, bytes32 orderHash, address clone, uint256 value);

    error OrderReceiverShouldBeSetCorrectly(address receiver);
    error OrderMakerShouldBeMsgSender(address expected, address actual);
    error OrderMakingAmountShouldBeEqualToMsgValue(uint256 expected, uint256 actual);

    address public immutable IMPLEMENTATION;

    constructor(
        IWETH weth,
        address limitOrderProtocol,
        IERC20 accessToken,
        uint256 cancellationDelay, // Recommended 60 seconds delay after order expiration for rewardable cancellation
        string memory name,
        string memory version
    )
        Ownable(msg.sender)
        EIP712Alien(limitOrderProtocol, name, version)
    {
        IMPLEMENTATION = address(new NativeOrderImpl(
            weth,
            address(this),
            limitOrderProtocol,
            accessToken,
            cancellationDelay,
            name,
            version
        ));
    }

    function create(IOrderMixin.Order calldata makerOrder) external payable returns (address clone) {
        // Validate main order parameters
        if (makerOrder.maker.get() != msg.sender) revert OrderMakerShouldBeMsgSender(msg.sender, makerOrder.maker.get());
        address receiver = makerOrder.receiver.get();
        if (receiver == address(0) || receiver == address(this)) revert OrderReceiverShouldBeSetCorrectly(receiver);
        if (msg.value != makerOrder.makingAmount) revert OrderMakingAmountShouldBeEqualToMsgValue(makerOrder.makingAmount, msg.value);

        bytes32 makerOrderHash = makerOrder.hash(_domainSeparatorV4());
        clone = IMPLEMENTATION.cloneDeterministic(makerOrderHash);
        NativeOrderImpl(payable(clone)).depositAndApprove{ value: msg.value }();

        IOrderMixin.Order memory order = makerOrder;
        order.maker = Address.wrap(uint160(clone));
        bytes32 orderHash = order.hashMemory(_domainSeparatorV4());
        emit NativeOrderCreated(msg.sender, orderHash, clone, msg.value);
    }

    function rescueFunds(address token, address to, uint256 amount) external onlyOwner {
        if (token == address(0)) {
            (bool success, ) = payable(to).call{ value: amount }("");
            if (!success) revert Errors.ETHTransferFailed();
        } else {
            IERC20(token).safeTransfer(to, amount);
        }
    }
}

File 2 of 36 : IDaiLikePermit.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

/**
 * @title IDaiLikePermit
 * @dev Interface for Dai-like permit function allowing token spending via signatures.
 */
interface IDaiLikePermit {
    /**
     * @notice Approves spending of tokens via off-chain signatures.
     * @param holder Token holder's address.
     * @param spender Spender's address.
     * @param nonce Current nonce of the holder.
     * @param expiry Time when the permit expires.
     * @param allowed True to allow, false to disallow spending.
     * @param v, r, s Signature components.
     */
    function permit(
        address holder,
        address spender,
        uint256 nonce,
        uint256 expiry,
        bool allowed,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;
}

File 3 of 36 : IERC7597Permit.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

/**
 * @title IERC7597Permit
 * @dev A new extension for ERC-2612 permit, which has already been added to USDC v2.2.
 */
interface IERC7597Permit {
    /**
     * @notice Update allowance with a signed permit.
     * @dev Signature bytes can be used for both EOA wallets and contract wallets.
     * @param owner Token owner's address (Authorizer).
     * @param spender Spender's address.
     * @param value Amount of allowance.
     * @param deadline The time at which the signature expires (unixtime).
     * @param signature Unstructured bytes signature signed by an EOA wallet or a contract wallet.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        bytes memory signature
    ) external;
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

/**
 * @title IPermit2
 * @dev Interface for a flexible permit system that extends ERC20 tokens to support permits in tokens lacking native permit functionality.
 */
interface IPermit2 {
    /**
     * @dev Struct for holding permit details.
     * @param token ERC20 token address for which the permit is issued.
     * @param amount The maximum amount allowed to spend.
     * @param expiration Timestamp until which the permit is valid.
     * @param nonce An incrementing value for each signature, unique per owner, token, and spender.
     */
    struct PermitDetails {
        address token;
        uint160 amount;
        uint48 expiration;
        uint48 nonce;
    }

    /**
     * @dev Struct for a single token allowance permit.
     * @param details Permit details including token, amount, expiration, and nonce.
     * @param spender Address authorized to spend the tokens.
     * @param sigDeadline Deadline for the permit signature, ensuring timeliness of the permit.
     */
    struct PermitSingle {
        PermitDetails details;
        address spender;
        uint256 sigDeadline;
    }

    /**
     * @dev Struct for packed allowance data to optimize storage.
     * @param amount Amount allowed.
     * @param expiration Permission expiry timestamp.
     * @param nonce Unique incrementing value for tracking allowances.
     */
    struct PackedAllowance {
        uint160 amount;
        uint48 expiration;
        uint48 nonce;
    }

    /**
     * @notice Executes a token transfer from one address to another.
     * @param user The token owner's address.
     * @param spender The address authorized to spend the tokens.
     * @param amount The amount of tokens to transfer.
     * @param token The address of the token being transferred.
     */
    function transferFrom(address user, address spender, uint160 amount, address token) external;

    /**
     * @notice Issues a permit for spending tokens via a signed authorization.
     * @param owner The token owner's address.
     * @param permitSingle Struct containing the permit details.
     * @param signature The signature proving the owner authorized the permit.
     */
    function permit(address owner, PermitSingle memory permitSingle, bytes calldata signature) external;

    /**
     * @notice Retrieves the allowance details between a token owner and spender.
     * @param user The token owner's address.
     * @param token The token address.
     * @param spender The spender's address.
     * @return The packed allowance details.
     */
    function allowance(address user, address token, address spender) external view returns (PackedAllowance memory);

    /**
     * @notice Approves the spender to use up to amount of the specified token up until the expiration
     * @param token The token to approve
     * @param spender The spender address to approve
     * @param amount The approved amount of the token
     * @param expiration The timestamp at which the approval is no longer valid
     * @dev The packed allowance also holds a nonce, which will stay unchanged in approve
     * @dev Setting amount to type(uint160).max sets an unlimited approval
     */
    function approve(address token, address spender, uint160 amount, uint48 expiration) external;
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";

/**
 * @title IWETH
 * @dev Interface for wrapper as WETH-like token.
 */
interface IWETH is IERC20 {
    /**
     * @notice Emitted when Ether is deposited to get wrapper tokens.
     */
    event Deposit(address indexed dst, uint256 wad);

    /**
     * @notice Emitted when wrapper tokens is withdrawn as Ether.
     */
    event Withdrawal(address indexed src, uint256 wad);

    /**
     * @notice Deposit Ether to get wrapper tokens.
     */
    function deposit() external payable;

    /**
     * @notice Withdraw wrapped tokens as Ether.
     * @param amount Amount of wrapped tokens to withdraw.
     */
    function withdraw(uint256 amount) external;
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

type Address is uint256;

/**
* @notice AddressLib
* @notice Library for working with addresses encoded as uint256 values, which can include flags in the highest bits.
*/
library AddressLib {
    uint256 private constant _LOW_160_BIT_MASK = (1 << 160) - 1;

    /**
    * @notice Returns the address representation of a uint256.
    * @param a The uint256 value to convert to an address.
    * @return The address representation of the provided uint256 value.
    */
    function get(Address a) internal pure returns (address) {
        return address(uint160(Address.unwrap(a) & _LOW_160_BIT_MASK));
    }

    /**
    * @notice Checks if a given flag is set for the provided address.
    * @param a The address to check for the flag.
    * @param flag The flag to check for in the provided address.
    * @return True if the provided flag is set in the address, false otherwise.
    */
    function getFlag(Address a, uint256 flag) internal pure returns (bool) {
        return (Address.unwrap(a) & flag) != 0;
    }

    /**
    * @notice Returns a uint32 value stored at a specific bit offset in the provided address.
    * @param a The address containing the uint32 value.
    * @param offset The bit offset at which the uint32 value is stored.
    * @return The uint32 value stored in the address at the specified bit offset.
    */
    function getUint32(Address a, uint256 offset) internal pure returns (uint32) {
        return uint32(Address.unwrap(a) >> offset);
    }

    /**
    * @notice Returns a uint64 value stored at a specific bit offset in the provided address.
    * @param a The address containing the uint64 value.
    * @param offset The bit offset at which the uint64 value is stored.
    * @return The uint64 value stored in the address at the specified bit offset.
    */
    function getUint64(Address a, uint256 offset) internal pure returns (uint64) {
        return uint64(Address.unwrap(a) >> offset);
    }
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import "@openzeppelin/contracts/interfaces/IERC1271.sol";

/**
 * @title ECDSA signature operations
 * @notice Provides functions for recovering addresses from signatures and verifying signatures, including support for EIP-2098 compact signatures.
 */
library ECDSA {
    // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
    // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
    // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
    // signatures from current libraries generate a unique signature with an s-value in the lower half order.
    //
    // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
    // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
    // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
    // these malleable signatures as well.
    uint256 private constant _S_BOUNDARY = 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0 + 1;
    uint256 private constant _COMPACT_S_MASK = 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff;
    uint256 private constant _COMPACT_V_SHIFT = 255;

    /**
     * @notice Recovers the signer's address from the signature.
     * @dev Recovers the address that has signed a hash with `(v, r, s)` signature.
     * @param hash The keccak256 hash of the data signed.
     * @param v The recovery byte of the signature.
     * @param r The first 32 bytes of the signature.
     * @param s The second 32 bytes of the signature.
     * @return signer The address of the signer.
     */
    function recover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal view returns (address signer) {
        assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
            if lt(s, _S_BOUNDARY) {
                let ptr := mload(0x40)

                mstore(ptr, hash)
                mstore(add(ptr, 0x20), v)
                mstore(add(ptr, 0x40), r)
                mstore(add(ptr, 0x60), s)
                mstore(0, 0)
                pop(staticcall(gas(), 0x1, ptr, 0x80, 0, 0x20))
                signer := mload(0)
            }
        }
    }

    /**
     * @notice Recovers the signer's address from the signature using `r` and `vs` components.
     * @dev Recovers the address that has signed a hash with `r` and `vs`, where `vs` combines `v` and `s`.
     * @param hash The keccak256 hash of the data signed.
     * @param r The first 32 bytes of the signature.
     * @param vs The combined `v` and `s` values of the signature.
     * @return signer The address of the signer.
     */
    function recover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal view returns (address signer) {
        assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
            let s := and(vs, _COMPACT_S_MASK)
            if lt(s, _S_BOUNDARY) {
                let ptr := mload(0x40)

                mstore(ptr, hash)
                mstore(add(ptr, 0x20), add(27, shr(_COMPACT_V_SHIFT, vs)))
                mstore(add(ptr, 0x40), r)
                mstore(add(ptr, 0x60), s)
                mstore(0, 0)
                pop(staticcall(gas(), 0x1, ptr, 0x80, 0, 0x20))
                signer := mload(0)
            }
        }
    }

    /**
     * @notice Recovers the signer's address from a hash and a signature.
     * @param hash The keccak256 hash of the signed data.
     * @param signature The full signature from which the signer will be recovered.
     * @return signer The address of the signer.
     */
    /// @dev WARNING!!!
    /// There is a known signature malleability issue with two representations of signatures!
    /// Even though this function is able to verify both standard 65-byte and compact 64-byte EIP-2098 signatures
    /// one should never use raw signatures for any kind of invalidation logic in their code.
    /// As the standard and compact representations are interchangeable any invalidation logic that relies on
    /// signature uniqueness will get rekt.
    /// More info: https://github.com/OpenZeppelin/openzeppelin-contracts/security/advisories/GHSA-4h98-2769-gh6h
    function recover(bytes32 hash, bytes calldata signature) internal view returns (address signer) {
        assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
            let ptr := mload(0x40)

            // memory[ptr:ptr+0x80] = (hash, v, r, s)
            switch signature.length
            case 65 {
                // memory[ptr+0x20:ptr+0x80] = (v, r, s)
                mstore(add(ptr, 0x20), byte(0, calldataload(add(signature.offset, 0x40))))
                calldatacopy(add(ptr, 0x40), signature.offset, 0x40)
            }
            case 64 {
                // memory[ptr+0x20:ptr+0x80] = (v, r, s)
                let vs := calldataload(add(signature.offset, 0x20))
                mstore(add(ptr, 0x20), add(27, shr(_COMPACT_V_SHIFT, vs)))
                calldatacopy(add(ptr, 0x40), signature.offset, 0x20)
                mstore(add(ptr, 0x60), and(vs, _COMPACT_S_MASK))
            }
            default {
                ptr := 0
            }

            if ptr {
                if lt(mload(add(ptr, 0x60)), _S_BOUNDARY) {
                    // memory[ptr:ptr+0x20] = (hash)
                    mstore(ptr, hash)

                    mstore(0, 0)
                    pop(staticcall(gas(), 0x1, ptr, 0x80, 0, 0x20))
                    signer := mload(0)
                }
            }
        }
    }

    /**
     * @notice Verifies the signature for a hash, either by recovering the signer or using EIP-1271's `isValidSignature` function.
     * @dev Attempts to recover the signer's address from the signature; if the address is non-zero, checks if it's valid according to EIP-1271.
     * @param signer The address to validate the signature against.
     * @param hash The hash of the signed data.
     * @param signature The signature to verify.
     * @return success True if the signature is verified, false otherwise.
     */
    function recoverOrIsValidSignature(
        address signer,
        bytes32 hash,
        bytes calldata signature
    ) internal view returns (bool success) {
        if (signer == address(0)) return false;
        if ((signature.length == 64 || signature.length == 65) && recover(hash, signature) == signer) {
            return true;
        }
        return isValidSignature(signer, hash, signature);
    }

    /**
     * @notice Verifies the signature for a hash, either by recovering the signer or using EIP-1271's `isValidSignature` function.
     * @dev Attempts to recover the signer's address from the signature; if the address is non-zero, checks if it's valid according to EIP-1271.
     * @param signer The address to validate the signature against.
     * @param hash The hash of the signed data.
     * @param v The recovery byte of the signature.
     * @param r The first 32 bytes of the signature.
     * @param s The second 32 bytes of the signature.
     * @return success True if the signature is verified, false otherwise.
     */
    function recoverOrIsValidSignature(
        address signer,
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal view returns (bool success) {
        if (signer == address(0)) return false;
        if (recover(hash, v, r, s) == signer) {
            return true;
        }
        return isValidSignature(signer, hash, v, r, s);
    }

    /**
     * @notice Verifies the signature for a hash, either by recovering the signer or using EIP-1271's `isValidSignature` function.
     * @dev Attempts to recover the signer's address from the signature; if the address is non-zero, checks if it's valid according to EIP-1271.
     * @param signer The address to validate the signature against.
     * @param hash The hash of the signed data.
     * @param r The first 32 bytes of the signature.
     * @param vs The combined `v` and `s` values of the signature.
     * @return success True if the signature is verified, false otherwise.
     */
    function recoverOrIsValidSignature(
        address signer,
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal view returns (bool success) {
        if (signer == address(0)) return false;
        if (recover(hash, r, vs) == signer) {
            return true;
        }
        return isValidSignature(signer, hash, r, vs);
    }

    /**
     * @notice Verifies the signature for a given hash, attempting to recover the signer's address or validates it using EIP-1271 for 65-byte signatures.
     * @dev Attempts to recover the signer's address from the signature. If the address is a contract, checks if the signature is valid according to EIP-1271.
     * @param signer The expected signer's address.
     * @param hash The keccak256 hash of the signed data.
     * @param r The first 32 bytes of the signature.
     * @param vs The last 32 bytes of the signature, with the last byte being the recovery id.
     * @return success True if the signature is valid, false otherwise.
     */
    function recoverOrIsValidSignature65(
        address signer,
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal view returns (bool success) {
        if (signer == address(0)) return false;
        if (recover(hash, r, vs) == signer) {
            return true;
        }
        return isValidSignature65(signer, hash, r, vs);
    }

    /**
     * @notice Validates a signature for a hash using EIP-1271, if `signer` is a contract.
     * @dev Makes a static call to `signer` with `isValidSignature` function selector from EIP-1271.
     * @param signer The address of the signer to validate against, which could be an EOA or a contract.
     * @param hash The hash of the signed data.
     * @param signature The signature to validate.
     * @return success True if the signature is valid according to EIP-1271, false otherwise.
     */
    function isValidSignature(
        address signer,
        bytes32 hash,
        bytes calldata signature
    ) internal view returns (bool success) {
        // (bool success, bytes memory data) = signer.staticcall(abi.encodeWithSelector(IERC1271.isValidSignature.selector, hash, signature));
        // return success && data.length == 32 && abi.decode(data, (bytes4)) == IERC1271.isValidSignature.selector;
        bytes4 selector = IERC1271.isValidSignature.selector;
        assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
            let ptr := mload(0x40)

            mstore(ptr, selector)
            mstore(add(ptr, 0x04), hash)
            mstore(add(ptr, 0x24), 0x40)
            mstore(add(ptr, 0x44), signature.length)
            calldatacopy(add(ptr, 0x64), signature.offset, signature.length)
            if staticcall(gas(), signer, ptr, add(0x64, signature.length), 0, 0x20) {
                success := and(eq(selector, mload(0)), eq(returndatasize(), 0x20))
            }
        }
    }

    /**
     * @notice Validates a signature for a hash using EIP-1271, if `signer` is a contract.
     * @dev Makes a static call to `signer` with `isValidSignature` function selector from EIP-1271.
     * @param signer The address of the signer to validate against, which could be an EOA or a contract.
     * @param hash The hash of the signed data.
     * @param v The recovery byte of the signature.
     * @param r The first 32 bytes of the signature.
     * @param s The second 32 bytes of the signature.
     * @return success True if the signature is valid according to EIP-1271, false otherwise.
     */
    function isValidSignature(
        address signer,
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal view returns (bool success) {
        bytes4 selector = IERC1271.isValidSignature.selector;
        assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
            let ptr := mload(0x40)

            mstore(ptr, selector)
            mstore(add(ptr, 0x04), hash)
            mstore(add(ptr, 0x24), 0x40)
            mstore(add(ptr, 0x44), 65)
            mstore(add(ptr, 0x64), r)
            mstore(add(ptr, 0x84), s)
            mstore8(add(ptr, 0xa4), v)
            if staticcall(gas(), signer, ptr, 0xa5, 0, 0x20) {
                success := and(eq(selector, mload(0)), eq(returndatasize(), 0x20))
            }
        }
    }

    /**
     * @notice Validates a signature for a hash using EIP-1271, if `signer` is a contract.
     * @dev Makes a static call to `signer` with `isValidSignature` function selector from EIP-1271.
     * @param signer The address of the signer to validate against, which could be an EOA or a contract.
     * @param hash The hash of the signed data.
     * @param r The first 32 bytes of the signature.
     * @param vs The last 32 bytes of the signature, with the last byte being the recovery id.
     * @return success True if the signature is valid according to EIP-1271, false otherwise.
     */
    function isValidSignature(
        address signer,
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal view returns (bool success) {
        // (bool success, bytes memory data) = signer.staticcall(abi.encodeWithSelector(IERC1271.isValidSignature.selector, hash, abi.encodePacked(r, vs)));
        // return success && data.length == 32 && abi.decode(data, (bytes4)) == IERC1271.isValidSignature.selector;
        bytes4 selector = IERC1271.isValidSignature.selector;
        assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
            let ptr := mload(0x40)

            mstore(ptr, selector)
            mstore(add(ptr, 0x04), hash)
            mstore(add(ptr, 0x24), 0x40)
            mstore(add(ptr, 0x44), 64)
            mstore(add(ptr, 0x64), r)
            mstore(add(ptr, 0x84), vs)
            if staticcall(gas(), signer, ptr, 0xa4, 0, 0x20) {
                success := and(eq(selector, mload(0)), eq(returndatasize(), 0x20))
            }
        }
    }

    /**
     * @notice Verifies if a 65-byte signature is valid for a given hash, according to EIP-1271.
     * @param signer The address of the signer to validate against, which could be an EOA or a contract.
     * @param hash The hash of the signed data.
     * @param r The first 32 bytes of the signature.
     * @param vs The combined `v` (recovery id) and `s` component of the signature, packed into the last 32 bytes.
     * @return success True if the signature is valid according to EIP-1271, false otherwise.
     */
    function isValidSignature65(
        address signer,
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal view returns (bool success) {
        // (bool success, bytes memory data) = signer.staticcall(abi.encodeWithSelector(IERC1271.isValidSignature.selector, hash, abi.encodePacked(r, vs & ~uint256(1 << 255), uint8(vs >> 255))));
        // return success && data.length == 32 && abi.decode(data, (bytes4)) == IERC1271.isValidSignature.selector;
        bytes4 selector = IERC1271.isValidSignature.selector;
        assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
            let ptr := mload(0x40)

            mstore(ptr, selector)
            mstore(add(ptr, 0x04), hash)
            mstore(add(ptr, 0x24), 0x40)
            mstore(add(ptr, 0x44), 65)
            mstore(add(ptr, 0x64), r)
            mstore(add(ptr, 0x84), and(vs, _COMPACT_S_MASK))
            mstore8(add(ptr, 0xa4), add(27, shr(_COMPACT_V_SHIFT, vs)))
            if staticcall(gas(), signer, ptr, 0xa5, 0, 0x20) {
                success := and(eq(selector, mload(0)), eq(returndatasize(), 0x20))
            }
        }
    }

    /**
     * @notice Generates a hash compatible with Ethereum's signed message format.
     * @dev Prepends the hash with Ethereum's message prefix before hashing it.
     * @param hash The hash of the data to sign.
     * @return res The Ethereum signed message hash.
     */
    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 res) {
        // 32 is the length in bytes of hash, enforced by the type signature above
        // return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash));
        assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
            mstore(0, 0x19457468657265756d205369676e6564204d6573736167653a0a333200000000) // "\x19Ethereum Signed Message:\n32"
            mstore(28, hash)
            res := keccak256(0, 60)
        }
    }

    /**
     * @notice Generates an EIP-712 compliant hash.
     * @dev Encodes the domain separator and the struct hash according to EIP-712.
     * @param domainSeparator The EIP-712 domain separator.
     * @param structHash The EIP-712 struct hash.
     * @return res The EIP-712 compliant hash.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 res) {
        // return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash));
        assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
            let ptr := mload(0x40)
            mstore(ptr, 0x1901000000000000000000000000000000000000000000000000000000000000) // "\x19\x01"
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            res := keccak256(ptr, 66)
        }
    }
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

/**
 * @title RevertReasonForwarder
 * @notice Provides utilities for forwarding and retrieving revert reasons from failed external calls.
 */
library RevertReasonForwarder {
    /**
     * @dev Forwards the revert reason from the latest external call.
     * This method allows propagating the revert reason of a failed external call to the caller.
     */
    function reRevert() internal pure {
        // bubble up revert reason from latest external call
        assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
            let ptr := mload(0x40)
            returndatacopy(ptr, 0, returndatasize())
            revert(ptr, returndatasize())
        }
    }

    /**
     * @dev Retrieves the revert reason from the latest external call.
     * This method enables capturing the revert reason of a failed external call for inspection or processing.
     * @return reason The latest external call revert reason.
     */
    function reReason() internal pure returns (bytes memory reason) {
        assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
            reason := mload(0x40)
            let length := returndatasize()
            mstore(reason, length)
            returndatacopy(add(reason, 0x20), 0, length)
            mstore(0x40, add(reason, add(0x20, length)))
        }
    }
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Permit.sol";
import "../interfaces/IDaiLikePermit.sol";
import "../interfaces/IPermit2.sol";
import "../interfaces/IERC7597Permit.sol";
import "../interfaces/IWETH.sol";
import "../libraries/RevertReasonForwarder.sol";

/**
 * @title Implements efficient safe methods for ERC20 interface.
 * @notice Compared to the standard ERC20, this implementation offers several enhancements:
 * 1. more gas-efficient, providing significant savings in transaction costs.
 * 2. support for different permit implementations
 * 3. forceApprove functionality
 * 4. support for WETH deposit and withdraw
 */
library SafeERC20 {
    error SafeTransferFailed();
    error SafeTransferFromFailed();
    error ForceApproveFailed();
    error SafeIncreaseAllowanceFailed();
    error SafeDecreaseAllowanceFailed();
    error SafePermitBadLength();
    error Permit2TransferAmountTooHigh();

    // Uniswap Permit2 address
    address private constant _PERMIT2 = 0x000000000022D473030F116dDEE9F6B43aC78BA3;
    address private constant _PERMIT2_ZKSYNC = 0x0000000000225e31D15943971F47aD3022F714Fa;
    bytes4 private constant _PERMIT_LENGTH_ERROR = 0x68275857;  // SafePermitBadLength.selector

    /**
     * @notice Fetches the balance of a specific ERC20 token held by an account.
     * Consumes less gas then regular `ERC20.balanceOf`.
     * @dev Note that the implementation does not perform dirty bits cleaning, so it is the
     * responsibility of the caller to make sure that the higher 96 bits of the `account` parameter are clean.
     * @param token The IERC20 token contract for which the balance will be fetched.
     * @param account The address of the account whose token balance will be fetched.
     * @return tokenBalance The balance of the specified ERC20 token held by the account.
     */
    function safeBalanceOf(
        IERC20 token,
        address account
    ) internal view returns(uint256 tokenBalance) {
        bytes4 selector = IERC20.balanceOf.selector;
        assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
            mstore(0x00, selector)
            mstore(0x04, account)
            let success := staticcall(gas(), token, 0x00, 0x24, 0x00, 0x20)
            tokenBalance := mload(0)

            if or(iszero(success), lt(returndatasize(), 0x20)) {
                let ptr := mload(0x40)
                returndatacopy(ptr, 0, returndatasize())
                revert(ptr, returndatasize())
            }
        }
    }

    /**
     * @notice Attempts to safely transfer tokens from one address to another.
     * @dev If permit2 is true, uses the Permit2 standard; otherwise uses the standard ERC20 transferFrom.
     * Either requires `true` in return data, or requires target to be smart-contract and empty return data.
     * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
     * the caller to make sure that the higher 96 bits of the `from` and `to` parameters are clean.
     * @param token The IERC20 token contract from which the tokens will be transferred.
     * @param from The address from which the tokens will be transferred.
     * @param to The address to which the tokens will be transferred.
     * @param amount The amount of tokens to transfer.
     * @param permit2 If true, uses the Permit2 standard for the transfer; otherwise uses the standard ERC20 transferFrom.
     */
    function safeTransferFromUniversal(
        IERC20 token,
        address from,
        address to,
        uint256 amount,
        bool permit2
    ) internal {
        if (permit2) {
            safeTransferFromPermit2(token, from, to, amount);
        } else {
            safeTransferFrom(token, from, to, amount);
        }
    }

    /**
     * @notice Attempts to safely transfer tokens from one address to another using the ERC20 standard.
     * @dev Either requires `true` in return data, or requires target to be smart-contract and empty return data.
     * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
     * the caller to make sure that the higher 96 bits of the `from` and `to` parameters are clean.
     * @param token The IERC20 token contract from which the tokens will be transferred.
     * @param from The address from which the tokens will be transferred.
     * @param to The address to which the tokens will be transferred.
     * @param amount The amount of tokens to transfer.
     */
    function safeTransferFrom(
        IERC20 token,
        address from,
        address to,
        uint256 amount
    ) internal {
        bytes4 selector = token.transferFrom.selector;
        bool success;
        assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
            let data := mload(0x40)

            mstore(data, selector)
            mstore(add(data, 0x04), from)
            mstore(add(data, 0x24), to)
            mstore(add(data, 0x44), amount)
            success := call(gas(), token, 0, data, 0x64, 0x0, 0x20)
            if success {
                switch returndatasize()
                case 0 {
                    success := gt(extcodesize(token), 0)
                }
                default {
                    success := and(gt(returndatasize(), 31), eq(mload(0), 1))
                }
            }
        }
        if (!success) revert SafeTransferFromFailed();
    }

    /**
     * @notice Attempts to safely transfer tokens from one address to another using the Permit2 standard.
     * @dev Either requires `true` in return data, or requires target to be smart-contract and empty return data.
     * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
     * the caller to make sure that the higher 96 bits of the `from` and `to` parameters are clean.
     * @param token The IERC20 token contract from which the tokens will be transferred.
     * @param from The address from which the tokens will be transferred.
     * @param to The address to which the tokens will be transferred.
     * @param amount The amount of tokens to transfer.
     */
    function safeTransferFromPermit2(
        IERC20 token,
        address from,
        address to,
        uint256 amount
    ) internal {
        if (amount > type(uint160).max) revert Permit2TransferAmountTooHigh();
        address permit2 = _getPermit2Address();
        bytes4 selector = IPermit2.transferFrom.selector;
        bool success;
        assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
            let data := mload(0x40)

            mstore(data, selector)
            mstore(add(data, 0x04), from)
            mstore(add(data, 0x24), to)
            mstore(add(data, 0x44), amount)
            mstore(add(data, 0x64), token)
            success := call(gas(), permit2, 0, data, 0x84, 0x0, 0x0)
            if success {
                success := gt(extcodesize(permit2), 0)
            }
        }
        if (!success) revert SafeTransferFromFailed();
    }

    /**
     * @notice Attempts to safely transfer tokens to another address.
     * @dev Either requires `true` in return data, or requires target to be smart-contract and empty return data.
     * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
     * the caller to make sure that the higher 96 bits of the `to` parameter are clean.
     * @param token The IERC20 token contract from which the tokens will be transferred.
     * @param to The address to which the tokens will be transferred.
     * @param amount The amount of tokens to transfer.
     */
    function safeTransfer(
        IERC20 token,
        address to,
        uint256 amount
    ) internal {
        if (!_makeCall(token, token.transfer.selector, to, amount)) {
            revert SafeTransferFailed();
        }
    }

    /**
     * @notice Attempts to approve a spender to spend a certain amount of tokens.
     * @dev If `approve(from, to, amount)` fails, it tries to set the allowance to zero, and retries the `approve` call.
     * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
     * the caller to make sure that the higher 96 bits of the `spender` parameter are clean.
     * @param token The IERC20 token contract on which the call will be made.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     */
    function forceApprove(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        if (!_makeCall(token, token.approve.selector, spender, value)) {
            if (
                !_makeCall(token, token.approve.selector, spender, 0) ||
                !_makeCall(token, token.approve.selector, spender, value)
            ) {
                revert ForceApproveFailed();
            }
        }
    }

    /**
     * @notice Safely increases the allowance of a spender.
     * @dev Increases with safe math check. Checks if the increased allowance will overflow, if yes, then it reverts the transaction.
     * Then uses `forceApprove` to increase the allowance.
     * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
     * the caller to make sure that the higher 96 bits of the `spender` parameter are clean.
     * @param token The IERC20 token contract on which the call will be made.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to increase the allowance by.
     */
    function safeIncreaseAllowance(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        uint256 allowance = token.allowance(address(this), spender);
        if (value > type(uint256).max - allowance) revert SafeIncreaseAllowanceFailed();
        forceApprove(token, spender, allowance + value);
    }

    /**
     * @notice Safely decreases the allowance of a spender.
     * @dev Decreases with safe math check. Checks if the decreased allowance will underflow, if yes, then it reverts the transaction.
     * Then uses `forceApprove` to increase the allowance.
     * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
     * the caller to make sure that the higher 96 bits of the `spender` parameter are clean.
     * @param token The IERC20 token contract on which the call will be made.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to decrease the allowance by.
     */
    function safeDecreaseAllowance(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        uint256 allowance = token.allowance(address(this), spender);
        if (value > allowance) revert SafeDecreaseAllowanceFailed();
        forceApprove(token, spender, allowance - value);
    }

    /**
     * @notice Attempts to execute the `permit` function on the provided token with the sender and contract as parameters.
     * Permit type is determined automatically based on permit calldata (IERC20Permit, IDaiLikePermit, and IPermit2).
     * @dev Wraps `tryPermit` function and forwards revert reason if permit fails.
     * @param token The IERC20 token to execute the permit function on.
     * @param permit The permit data to be used in the function call.
     */
    function safePermit(IERC20 token, bytes calldata permit) internal {
        if (!tryPermit(token, msg.sender, address(this), permit)) RevertReasonForwarder.reRevert();
    }

    /**
     * @notice Attempts to execute the `permit` function on the provided token with custom owner and spender parameters.
     * Permit type is determined automatically based on permit calldata (IERC20Permit, IDaiLikePermit, and IPermit2).
     * @dev Wraps `tryPermit` function and forwards revert reason if permit fails.
     * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
     * the caller to make sure that the higher 96 bits of the `owner` and `spender` parameters are clean.
     * @param token The IERC20 token to execute the permit function on.
     * @param owner The owner of the tokens for which the permit is made.
     * @param spender The spender allowed to spend the tokens by the permit.
     * @param permit The permit data to be used in the function call.
     */
    function safePermit(IERC20 token, address owner, address spender, bytes calldata permit) internal {
        if (!tryPermit(token, owner, spender, permit)) RevertReasonForwarder.reRevert();
    }

    /**
     * @notice Attempts to execute the `permit` function on the provided token with the sender and contract as parameters.
     * @dev Invokes `tryPermit` with sender as owner and contract as spender.
     * @param token The IERC20 token to execute the permit function on.
     * @param permit The permit data to be used in the function call.
     * @return success Returns true if the permit function was successfully executed, false otherwise.
     */
    function tryPermit(IERC20 token, bytes calldata permit) internal returns(bool success) {
        return tryPermit(token, msg.sender, address(this), permit);
    }

    /**
     * @notice The function attempts to call the permit function on a given ERC20 token.
     * @dev The function is designed to support a variety of permit functions, namely: IERC20Permit, IDaiLikePermit, IERC7597Permit and IPermit2.
     * It accommodates both Compact and Full formats of these permit types.
     * Please note, it is expected that the `expiration` parameter for the compact Permit2 and the `deadline` parameter
     * for the compact Permit are to be incremented by one before invoking this function. This approach is motivated by
     * gas efficiency considerations; as the unlimited expiration period is likely to be the most common scenario, and
     * zeros are cheaper to pass in terms of gas cost. Thus, callers should increment the expiration or deadline by one
     * before invocation for optimized performance.
     * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
     * the caller to make sure that the higher 96 bits of the `owner` and `spender` parameters are clean.
     * @param token The address of the ERC20 token on which to call the permit function.
     * @param owner The owner of the tokens. This address should have signed the off-chain permit.
     * @param spender The address which will be approved for transfer of tokens.
     * @param permit The off-chain permit data, containing different fields depending on the type of permit function.
     * @return success A boolean indicating whether the permit call was successful.
     */
    function tryPermit(IERC20 token, address owner, address spender, bytes calldata permit) internal returns(bool success) {
        address permit2 = _getPermit2Address();
        // load function selectors for different permit standards
        bytes4 permitSelector = IERC20Permit.permit.selector;
        bytes4 daiPermitSelector = IDaiLikePermit.permit.selector;
        bytes4 permit2Selector = IPermit2.permit.selector;
        bytes4 erc7597PermitSelector = IERC7597Permit.permit.selector;
        assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
            let ptr := mload(0x40)

            // Switch case for different permit lengths, indicating different permit standards
            switch permit.length
            // Compact IERC20Permit
            case 100 {
                mstore(ptr, permitSelector)     // store selector
                mstore(add(ptr, 0x04), owner)   // store owner
                mstore(add(ptr, 0x24), spender) // store spender

                // Compact IERC20Permit.permit(uint256 value, uint32 deadline, uint256 r, uint256 vs)
                {  // stack too deep
                    let deadline := shr(224, calldataload(add(permit.offset, 0x20))) // loads permit.offset 0x20..0x23
                    let vs := calldataload(add(permit.offset, 0x44))                 // loads permit.offset 0x44..0x63

                    calldatacopy(add(ptr, 0x44), permit.offset, 0x20)            // store value     = copy permit.offset 0x00..0x19
                    mstore(add(ptr, 0x64), sub(deadline, 1))                     // store deadline  = deadline - 1
                    mstore(add(ptr, 0x84), add(27, shr(255, vs)))                // store v         = most significant bit of vs + 27 (27 or 28)
                    calldatacopy(add(ptr, 0xa4), add(permit.offset, 0x24), 0x20) // store r         = copy permit.offset 0x24..0x43
                    mstore(add(ptr, 0xc4), shr(1, shl(1, vs)))                   // store s         = vs without most significant bit
                }
                // IERC20Permit.permit(address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s)
                success := call(gas(), token, 0, ptr, 0xe4, 0, 0)
            }
            // Compact IDaiLikePermit
            case 72 {
                mstore(ptr, daiPermitSelector)  // store selector
                mstore(add(ptr, 0x04), owner)   // store owner
                mstore(add(ptr, 0x24), spender) // store spender

                // Compact IDaiLikePermit.permit(uint32 nonce, uint32 expiry, uint256 r, uint256 vs)
                {  // stack too deep
                    let expiry := shr(224, calldataload(add(permit.offset, 0x04))) // loads permit.offset 0x04..0x07
                    let vs := calldataload(add(permit.offset, 0x28))               // loads permit.offset 0x28..0x47

                    mstore(add(ptr, 0x44), shr(224, calldataload(permit.offset))) // store nonce   = copy permit.offset 0x00..0x03
                    mstore(add(ptr, 0x64), sub(expiry, 1))                        // store expiry  = expiry - 1
                    mstore(add(ptr, 0x84), true)                                  // store allowed = true
                    mstore(add(ptr, 0xa4), add(27, shr(255, vs)))                 // store v       = most significant bit of vs + 27 (27 or 28)
                    calldatacopy(add(ptr, 0xc4), add(permit.offset, 0x08), 0x20)  // store r       = copy permit.offset 0x08..0x27
                    mstore(add(ptr, 0xe4), shr(1, shl(1, vs)))                    // store s       = vs without most significant bit
                }
                // IDaiLikePermit.permit(address holder, address spender, uint256 nonce, uint256 expiry, bool allowed, uint8 v, bytes32 r, bytes32 s)
                success := call(gas(), token, 0, ptr, 0x104, 0, 0)
            }
            // IERC20Permit
            case 224 {
                mstore(ptr, permitSelector)
                calldatacopy(add(ptr, 0x04), permit.offset, permit.length) // copy permit calldata
                // IERC20Permit.permit(address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s)
                success := call(gas(), token, 0, ptr, 0xe4, 0, 0)
            }
            // IDaiLikePermit
            case 256 {
                mstore(ptr, daiPermitSelector)
                calldatacopy(add(ptr, 0x04), permit.offset, permit.length) // copy permit calldata
                // IDaiLikePermit.permit(address holder, address spender, uint256 nonce, uint256 expiry, bool allowed, uint8 v, bytes32 r, bytes32 s)
                success := call(gas(), token, 0, ptr, 0x104, 0, 0)
            }
            // Compact IPermit2
            case 96 {
                // Compact IPermit2.permit(uint160 amount, uint32 expiration, uint32 nonce, uint32 sigDeadline, uint256 r, uint256 vs)
                mstore(ptr, permit2Selector)  // store selector
                mstore(add(ptr, 0x04), owner) // store owner
                mstore(add(ptr, 0x24), token) // store token

                calldatacopy(add(ptr, 0x50), permit.offset, 0x14)             // store amount = copy permit.offset 0x00..0x13
                // and(0xffffffffffff, ...) - conversion to uint48
                mstore(add(ptr, 0x64), and(0xffffffffffff, sub(shr(224, calldataload(add(permit.offset, 0x14))), 1))) // store expiration = ((permit.offset 0x14..0x17 - 1) & 0xffffffffffff)
                mstore(add(ptr, 0x84), shr(224, calldataload(add(permit.offset, 0x18)))) // store nonce = copy permit.offset 0x18..0x1b
                mstore(add(ptr, 0xa4), spender)                               // store spender
                // and(0xffffffffffff, ...) - conversion to uint48
                mstore(add(ptr, 0xc4), and(0xffffffffffff, sub(shr(224, calldataload(add(permit.offset, 0x1c))), 1))) // store sigDeadline = ((permit.offset 0x1c..0x1f - 1) & 0xffffffffffff)
                mstore(add(ptr, 0xe4), 0x100)                                 // store offset = 256
                mstore(add(ptr, 0x104), 0x40)                                 // store length = 64
                calldatacopy(add(ptr, 0x124), add(permit.offset, 0x20), 0x20) // store r      = copy permit.offset 0x20..0x3f
                calldatacopy(add(ptr, 0x144), add(permit.offset, 0x40), 0x20) // store vs     = copy permit.offset 0x40..0x5f
                // IPermit2.permit(address owner, PermitSingle calldata permitSingle, bytes calldata signature)
                success := call(gas(), permit2, 0, ptr, 0x164, 0, 0)
            }
            // IPermit2
            case 352 {
                mstore(ptr, permit2Selector)
                calldatacopy(add(ptr, 0x04), permit.offset, permit.length) // copy permit calldata
                // IPermit2.permit(address owner, PermitSingle calldata permitSingle, bytes calldata signature)
                success := call(gas(), permit2, 0, ptr, 0x164, 0, 0)
            }
            // Dynamic length
            default {
                mstore(ptr, erc7597PermitSelector)
                calldatacopy(add(ptr, 0x04), permit.offset, permit.length) // copy permit calldata
                // IERC7597Permit.permit(address owner, address spender, uint256 value, uint256 deadline, bytes memory signature)
                success := call(gas(), token, 0, ptr, add(permit.length, 4), 0, 0)
            }
        }
    }

    /**
     * @dev Executes a low level call to a token contract, making it resistant to reversion and erroneous boolean returns.
     * @param token The IERC20 token contract on which the call will be made.
     * @param selector The function signature that is to be called on the token contract.
     * @param to The address to which the token amount will be transferred.
     * @param amount The token amount to be transferred.
     * @return success A boolean indicating if the call was successful. Returns 'true' on success and 'false' on failure.
     * In case of success but no returned data, validates that the contract code exists.
     * In case of returned data, ensures that it's a boolean `true`.
     */
    function _makeCall(
        IERC20 token,
        bytes4 selector,
        address to,
        uint256 amount
    ) private returns (bool success) {
        assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
            let data := mload(0x40)

            mstore(data, selector)
            mstore(add(data, 0x04), to)
            mstore(add(data, 0x24), amount)
            success := call(gas(), token, 0, data, 0x44, 0x0, 0x20)
            if success {
                switch returndatasize()
                case 0 {
                    success := gt(extcodesize(token), 0)
                }
                default {
                    success := and(gt(returndatasize(), 31), eq(mload(0), 1))
                }
            }
        }
    }

    /**
     * @notice Safely deposits a specified amount of Ether into the IWETH contract. Consumes less gas then regular `IWETH.deposit`.
     * @param weth The IWETH token contract.
     * @param amount The amount of Ether to deposit into the IWETH contract.
     */
    function safeDeposit(IWETH weth, uint256 amount) internal {
        bytes4 selector = IWETH.deposit.selector;
        assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
            mstore(0, selector)
            if iszero(call(gas(), weth, amount, 0, 4, 0, 0)) {
                let ptr := mload(0x40)
                returndatacopy(ptr, 0, returndatasize())
                revert(ptr, returndatasize())
            }
        }
    }

    /**
     * @notice Safely withdraws a specified amount of wrapped Ether from the IWETH contract. Consumes less gas then regular `IWETH.withdraw`.
     * @dev Uses inline assembly to interact with the IWETH contract.
     * @param weth The IWETH token contract.
     * @param amount The amount of wrapped Ether to withdraw from the IWETH contract.
     */
    function safeWithdraw(IWETH weth, uint256 amount) internal {
        bytes4 selector = IWETH.withdraw.selector;
        assembly ("memory-safe") {  // solhint-disable-line no-inline-assembly
            mstore(0, selector)
            mstore(4, amount)
            if iszero(call(gas(), weth, 0, 0, 0x24, 0, 0)) {
                let ptr := mload(0x40)
                returndatacopy(ptr, 0, returndatasize())
                revert(ptr, returndatasize())
            }
        }
    }

    /**
     * @notice Safely withdraws a specified amount of wrapped Ether from the IWETH contract to a specified recipient.
     * Consumes less gas then regular `IWETH.withdraw`.
     * @param weth The IWETH token contract.
     * @param amount The amount of wrapped Ether to withdraw from the IWETH contract.
     * @param to The recipient of the withdrawn Ether.
     */
    function safeWithdrawTo(IWETH weth, uint256 amount, address to) internal {
        safeWithdraw(weth, amount);
        if (to != address(this)) {
            assembly ("memory-safe") {  // solhint-disable-line no-inline-assembly
                if iszero(call(gas(), to, amount, 0, 0, 0, 0)) {
                    let ptr := mload(0x40)
                    returndatacopy(ptr, 0, returndatasize())
                    revert(ptr, returndatasize())
                }
            }
        }
    }

    function _getPermit2Address() private view returns (address permit2) {
        assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
            switch chainid()
            case 324 { // zksync mainnet
                permit2 := _PERMIT2_ZKSYNC
            }
            case 300 { // zksync testnet
                permit2 := _PERMIT2_ZKSYNC
            }
            case 260 { // zksync fork network
                permit2 := _PERMIT2_ZKSYNC
            }
            default {
                permit2 := _PERMIT2
            }
        }
    }
}

File 10 of 36 : EthReceiver.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

/**
 * @title EthReceiver
 * @dev Abstract contract for rejecting direct ETH transfers from EOAs.
 * Implements a custom error and logic to reject ETH deposits from non-contract addresses.
 */
abstract contract EthReceiver {
    /// @dev Error thrown when an ETH deposit from an EOA is attempted.
    error EthDepositRejected();

    /// @dev External payable function to receive ETH, automatically rejects deposits from EOAs.
    receive() external payable {
        _receive();
    }

    /**
     * @dev Internal function containing the logic to reject ETH deposits.
     * Can be overridden by derived contracts for specific behaviors while maintaining the base rejection mechanism.
     */
    function _receive() internal virtual {
        // solhint-disable-next-line avoid-tx-origin
        if (msg.sender == tx.origin) revert EthDepositRejected();
    }
}

File 11 of 36 : OnlyWethReceiver.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import "./EthReceiver.sol";

/**
 * @title OnlyWethReceiver
 * @dev Abstract contract extending EthReceiver to accept only ETH deposits from a specified WETH contract.
 * This contract ensures that only wrapped ETH (WETH) can be deposited, rejecting all other direct ETH transfers.
 */
abstract contract OnlyWethReceiver is EthReceiver {
    /// @notice Address of the WETH contract allowed to deposit ETH.
    address private immutable _WETH; // solhint-disable-line var-name-mixedcase

    /**
     * @dev Sets the WETH contract address during construction.
     * @param weth Address of the WETH contract.
     */
    constructor(address weth) {
        _WETH = address(weth);
    }

    /**
     * @dev Overrides _receive to restrict ETH transfers solely to the WETH contract.
     * Reverts with EthDepositRejected if ETH is sent from any other address.
     */
    function _receive() internal virtual override {
        if (msg.sender != _WETH) revert EthDepositRejected();
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1271.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-1271 standard signature validation method for
 * contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271].
 */
interface IERC1271 {
    /**
     * @dev Should return whether the signature provided is valid for the provided data
     * @param hash      Hash of the data to be signed
     * @param signature Signature byte array associated with _data
     */
    function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (proxy/Clones.sol)

pragma solidity ^0.8.20;

import {Errors} from "../utils/Errors.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-1167[ERC-1167] is a standard for
 * deploying minimal proxy contracts, also known as "clones".
 *
 * > To simply and cheaply clone contract functionality in an immutable way, this standard specifies
 * > a minimal bytecode implementation that delegates all calls to a known, fixed address.
 *
 * The library includes functions to deploy a proxy using either `create` (traditional deployment) or `create2`
 * (salted deterministic deployment). It also includes functions to predict the addresses of clones deployed using the
 * deterministic method.
 */
library Clones {
    /**
     * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`.
     *
     * This function uses the create opcode, which should never revert.
     */
    function clone(address implementation) internal returns (address instance) {
        return clone(implementation, 0);
    }

    /**
     * @dev Same as {xref-Clones-clone-address-}[clone], but with a `value` parameter to send native currency
     * to the new contract.
     *
     * NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
     * to always have enough balance for new deployments. Consider exposing this function under a payable method.
     */
    function clone(address implementation, uint256 value) internal returns (address instance) {
        if (address(this).balance < value) {
            revert Errors.InsufficientBalance(address(this).balance, value);
        }
        assembly ("memory-safe") {
            // Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes
            // of the `implementation` address with the bytecode before the address.
            mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000))
            // Packs the remaining 17 bytes of `implementation` with the bytecode after the address.
            mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3))
            instance := create(value, 0x09, 0x37)
        }
        if (instance == address(0)) {
            revert Errors.FailedDeployment();
        }
    }

    /**
     * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`.
     *
     * This function uses the create2 opcode and a `salt` to deterministically deploy
     * the clone. Using the same `implementation` and `salt` multiple time will revert, since
     * the clones cannot be deployed twice at the same address.
     */
    function cloneDeterministic(address implementation, bytes32 salt) internal returns (address instance) {
        return cloneDeterministic(implementation, salt, 0);
    }

    /**
     * @dev Same as {xref-Clones-cloneDeterministic-address-bytes32-}[cloneDeterministic], but with
     * a `value` parameter to send native currency to the new contract.
     *
     * NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
     * to always have enough balance for new deployments. Consider exposing this function under a payable method.
     */
    function cloneDeterministic(
        address implementation,
        bytes32 salt,
        uint256 value
    ) internal returns (address instance) {
        if (address(this).balance < value) {
            revert Errors.InsufficientBalance(address(this).balance, value);
        }
        assembly ("memory-safe") {
            // Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes
            // of the `implementation` address with the bytecode before the address.
            mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000))
            // Packs the remaining 17 bytes of `implementation` with the bytecode after the address.
            mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3))
            instance := create2(value, 0x09, 0x37, salt)
        }
        if (instance == address(0)) {
            revert Errors.FailedDeployment();
        }
    }

    /**
     * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
     */
    function predictDeterministicAddress(
        address implementation,
        bytes32 salt,
        address deployer
    ) internal pure returns (address predicted) {
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            mstore(add(ptr, 0x38), deployer)
            mstore(add(ptr, 0x24), 0x5af43d82803e903d91602b57fd5bf3ff)
            mstore(add(ptr, 0x14), implementation)
            mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73)
            mstore(add(ptr, 0x58), salt)
            mstore(add(ptr, 0x78), keccak256(add(ptr, 0x0c), 0x37))
            predicted := and(keccak256(add(ptr, 0x43), 0x55), 0xffffffffffffffffffffffffffffffffffffffff)
        }
    }

    /**
     * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
     */
    function predictDeterministicAddress(
        address implementation,
        bytes32 salt
    ) internal view returns (address predicted) {
        return predictDeterministicAddress(implementation, salt, address(this));
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.20;

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS
    }

    /**
     * @dev The signature derives the `address(0)`.
     */
    error ECDSAInvalidSignature();

    /**
     * @dev The signature has an invalid length.
     */
    error ECDSAInvalidSignatureLength(uint256 length);

    /**
     * @dev The signature has an S value that is in the upper half order.
     */
    error ECDSAInvalidSignatureS(bytes32 s);

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
     * return address(0) without also returning an error description. Errors are documented using an enum (error type)
     * and a bytes32 providing additional information about the error.
     *
     * If no error is returned, then the address can be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     */
    function tryRecover(
        bytes32 hash,
        bytes memory signature
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            assembly ("memory-safe") {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
     */
    function tryRecover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        unchecked {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            // We do not check for an overflow here since the shift operation results in 0 or 1.
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS, s);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature, bytes32(0));
        }

        return (signer, RecoverError.NoError, bytes32(0));
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
     */
    function _throwError(RecoverError error, bytes32 errorArg) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert ECDSAInvalidSignature();
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert ECDSAInvalidSignatureLength(uint256(errorArg));
        } else if (error == RecoverError.InvalidSignatureS) {
            revert ECDSAInvalidSignatureS(errorArg);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MessageHashUtils.sol)

pragma solidity ^0.8.20;

import {Strings} from "../Strings.sol";

/**
 * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
 *
 * The library provides methods for generating a hash of a message that conforms to the
 * https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
 * specifications.
 */
library MessageHashUtils {
    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing a bytes32 `messageHash` with
     * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
     * keccak256, although any bytes32 value can be safely used because the final digest will
     * be re-hashed.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
            mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
            digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing an arbitrary `message` with
     * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
        return
            keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
    }

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x00` (data with intended validator).
     *
     * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
     * `validator` address. Then hashing the result.
     *
     * See {ECDSA-recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked(hex"19_00", validator, data));
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`).
     *
     * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
     * `\x19\x01` and hashing the result. It corresponds to the hash signed by the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
     *
     * See {ECDSA-recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            mstore(ptr, hex"19_01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            digest := keccak256(ptr, 0x42)
        }
    }
}

File 20 of 36 : Errors.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of common custom errors used in multiple contracts
 *
 * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
 * It is recommended to avoid relying on the error API for critical functionality.
 *
 * _Available since v5.1._
 */
library Errors {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error InsufficientBalance(uint256 balance, uint256 needed);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedCall();

    /**
     * @dev The deployment failed.
     */
    error FailedDeployment();

    /**
     * @dev A necessary precompile is missing.
     */
    error MissingPrecompile(address);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
            // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2²⁵⁶ + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= prod1) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 exp;
        unchecked {
            exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
            value >>= exp;
            result += exp;

            exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
            value >>= exp;
            result += exp;

            exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
            value >>= exp;
            result += exp;

            exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
            value >>= exp;
            result += exp;

            exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
            value >>= exp;
            result += exp;

            exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
            value >>= exp;
            result += exp;

            exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
            value >>= exp;
            result += exp;

            result += SafeCast.toUint(value > 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 isGt;
        unchecked {
            isGt = SafeCast.toUint(value > (1 << 128) - 1);
            value >>= isGt * 128;
            result += isGt * 16;

            isGt = SafeCast.toUint(value > (1 << 64) - 1);
            value >>= isGt * 64;
            result += isGt * 8;

            isGt = SafeCast.toUint(value > (1 << 32) - 1);
            value >>= isGt * 32;
            result += isGt * 4;

            isGt = SafeCast.toUint(value > (1 << 16) - 1);
            value >>= isGt * 16;
            result += isGt * 2;

            result += SafeCast.toUint(value > (1 << 8) - 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 22 of 36 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
        }
    }

    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
            // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
            // taking advantage of the most significant (or "sign" bit) in two's complement representation.
            // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
            // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
            int256 mask = n >> 255;

            // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
            return uint256((n + mask) ^ mask);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            assembly ("memory-safe") {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                assembly ("memory-safe") {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
     * representation, according to EIP-55.
     */
    function toChecksumHexString(address addr) internal pure returns (string memory) {
        bytes memory buffer = bytes(toHexString(addr));

        // hash the hex part of buffer (skip length + 2 bytes, length 40)
        uint256 hashValue;
        assembly ("memory-safe") {
            hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
        }

        for (uint256 i = 41; i > 1; --i) {
            // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
            if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
                // case shift by xoring with 0x20
                buffer[i] ^= 0x20;
            }
            hashValue >>= 4;
        }
        return string(buffer);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

// SPDX-License-Identifier: MIT

pragma solidity 0.8.30;

import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
import { Clones } from "@openzeppelin/contracts/proxy/Clones.sol";
import { IERC1271 } from "@openzeppelin/contracts/interfaces/IERC1271.sol";
import { Address, AddressLib } from "@1inch/solidity-utils/contracts/libraries/AddressLib.sol";
import { SafeERC20, IERC20, IWETH } from "@1inch/solidity-utils/contracts/libraries/SafeERC20.sol";
import { OnlyWethReceiver } from "@1inch/solidity-utils/contracts/mixins/OnlyWethReceiver.sol";

import { MakerTraits, MakerTraitsLib } from "../libraries/MakerTraitsLib.sol";
import { Errors } from "../libraries/Errors.sol";
import { EIP712Alien } from "../utils/EIP712Alien.sol";
import { OrderLib, IOrderMixin } from "../OrderLib.sol";

contract NativeOrderImpl is IERC1271, EIP712Alien, OnlyWethReceiver {
    using Clones for address;
    using AddressLib for Address;
    using SafeERC20 for IERC20;
    using SafeERC20 for IWETH;
    using OrderLib for IOrderMixin.Order;
    using MakerTraitsLib for MakerTraits;

    event NativeOrderCancelled(bytes32 orderHash, uint256 balance);
    event NativeOrderCancelledByResolver(bytes32 orderHash, uint256 balance, uint256 resolverReward);

    error OnlyFactoryViolation(address sender, address factory);
    error OnlyMakerViolation(address sender, address maker);
    error ResolverAccessTokenMissing(address resolver, address accessToken);
    error OrderIsIncorrect(address expected, address actual);
    error OrderShouldBeExpired(uint256 currentTime, uint256 expirationTime);
    error CanNotCancelForZeroBalance();
    error CancellationDelayViolation(uint256 timePassedSinceExpiration, uint256 requiredDelay);

    uint256 private constant _CANCEL_GAS_LOWER_BOUND = 70_000;

    IWETH private immutable _WETH;
    address private immutable _LOP;
    address private immutable _IMPLEMENTATION = address(this);
    address private immutable _FACTORY;
    IERC20 private immutable _ACCESS_TOKEN;
    uint256 private immutable _CANCELLATION_DELAY;

    modifier onlyFactory {
        if (msg.sender != _FACTORY) revert OnlyFactoryViolation(msg.sender, _FACTORY);
        _;
    }

    modifier onlyResolver {
        if (_ACCESS_TOKEN.balanceOf(msg.sender) == 0) revert ResolverAccessTokenMissing(msg.sender, address(_ACCESS_TOKEN));
        _;
    }

    modifier onlyMaker(address maker) {
        if (msg.sender != maker) revert OnlyMakerViolation(msg.sender, maker);
        _;
    }

    modifier validateOrder(IOrderMixin.Order calldata makerOrder) {
        address clone = _calcCloneAddress(makerOrder);
        if (clone != address(this)) revert OrderIsIncorrect(clone, address(this));
        _;
    }

    constructor(
        IWETH weth,
        address nativeOrderFactory,
        address limitOrderProtocol,
        IERC20 accessToken,
        uint256 cancellationDelay, // Recommended 60 seconds delay after order expiration for rewardable cancellation
        string memory name,
        string memory version
    )
        OnlyWethReceiver(address(weth))
        EIP712Alien(limitOrderProtocol, name, version)
    {
        _WETH = weth;
        _LOP = limitOrderProtocol;
        _FACTORY = nativeOrderFactory;
        _ACCESS_TOKEN = accessToken;
        _CANCELLATION_DELAY = cancellationDelay;
    }

    function depositAndApprove() external payable onlyFactory {
        _WETH.safeDeposit(msg.value);
        _WETH.forceApprove(_LOP, msg.value);
    }

    function isValidSignature(bytes32 hash, bytes calldata signature) external view returns(bytes4) {
        // Extract order from signature via calldata type casting
        IOrderMixin.Order calldata makerOrder;
        assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
            makerOrder := signature.offset
        }

        // Check order args by CREATE2 salt validation
        address clone = _calcCloneAddress(makerOrder);
        if (clone != address(this)) {
            return bytes4(0);
        }

        // Check if patched order from signature matches LOP filling order
        bytes32 orderHash = _patchOrderMakerAndHash(makerOrder);
        if (orderHash != hash) {
            return bytes4(0);
        }

        return this.isValidSignature.selector;
    }

    function cancelOrder(IOrderMixin.Order calldata makerOrder)
        external
        onlyMaker(makerOrder.maker.get())
        validateOrder(makerOrder)
    {
        uint256 balance = _cancelOrder(makerOrder, 0);
        bytes32 orderHash = _patchOrderMakerAndHash(makerOrder);
        emit NativeOrderCancelled(orderHash, balance);
    }

    function cancelExpiredOrderByResolver(IOrderMixin.Order calldata makerOrder, uint256 rewardLimit)
        external
        onlyResolver
        validateOrder(makerOrder)
    {
        uint256 orderExpiration = makerOrder.makerTraits.getExpirationTime();
        if (!makerOrder.makerTraits.isExpired()) revert OrderShouldBeExpired(block.timestamp, orderExpiration);

        uint256 resolverReward = 0;
        if (rewardLimit > 0) {
            if (block.timestamp - orderExpiration < _CANCELLATION_DELAY) revert CancellationDelayViolation(block.timestamp - orderExpiration, _CANCELLATION_DELAY);
            resolverReward = Math.min(rewardLimit, block.basefee * _CANCEL_GAS_LOWER_BOUND * 1.1e18 / 1e18);
        }
        uint256 balance = _cancelOrder(makerOrder, resolverReward);
        bytes32 orderHash = _patchOrderMakerAndHash(makerOrder);
        emit NativeOrderCancelledByResolver(orderHash, balance, resolverReward);
    }

    function _cancelOrder(IOrderMixin.Order calldata makerOrder, uint256 resolverReward) private returns(uint256 balance) {
        balance = _WETH.safeBalanceOf(address(this));
        if (balance == 0) revert CanNotCancelForZeroBalance();

        _WETH.safeWithdraw(balance);
        if (resolverReward > 0) {
            balance -= resolverReward;
            (bool success, ) = msg.sender.call{ value: resolverReward }("");
            if (!success) revert Errors.ETHTransferFailed();
        }
        if (balance > 0) {
            (bool success, ) = makerOrder.maker.get().call{ value: balance }("");
            if (!success) revert Errors.ETHTransferFailed();
        }
    }

    function withdraw(IOrderMixin.Order calldata makerOrder, address target, uint256 value, bytes memory data)
        external
        validateOrder(makerOrder)
        onlyMaker(makerOrder.maker.get())
        returns (bool, bytes memory)
    {
        return target.call{ value: value }(data);
    }

    function _patchOrderMakerAndHash(IOrderMixin.Order memory order) private view returns(bytes32) {
        order.maker = Address.wrap(uint160(address(this)));
        return order.hashMemory(_domainSeparatorV4());
    }

    function _calcCloneAddress(IOrderMixin.Order calldata makerOrder) private view returns(address) {
        bytes32 makerOrderHash = makerOrder.hash(_domainSeparatorV4());
        return _IMPLEMENTATION.predictDeterministicAddress(makerOrderHash, _FACTORY);
    }
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import "./IOrderMixin.sol";

/**
 * @title IAmountGetter
 * @notice Interface for external logic to determine actual making and taking amounts for orders.
 */
interface IAmountGetter {
    /**
     * @notice View method that gets called to determine the actual making amount
     * @param order Order being processed
     * @param extension Order extension data
     * @param orderHash Hash of the order being processed
     * @param taker Taker address
     * @param takingAmount Actual taking amount
     * @param remainingMakingAmount Order remaining making amount
     * @param extraData Extra data
     * @return makingAmount Actual making amount that should be used for the order
     */
    function getMakingAmount(
        IOrderMixin.Order calldata order,
        bytes calldata extension,
        bytes32 orderHash,
        address taker,
        uint256 takingAmount,
        uint256 remainingMakingAmount,
        bytes calldata extraData
    ) external view returns (uint256);

    /**
     * @notice View method that gets called to determine the actual taking amount
     * @param order Order being processed
     * @param extension Order extension data
     * @param orderHash Hash of the order being processed
     * @param taker Taker address
     * @param makingAmount Actual taking amount
     * @param remainingMakingAmount Order remaining making amount
     * @param extraData Extra data
     * @return takingAmount Actual taking amount that should be used for the order
     */
    function getTakingAmount(
        IOrderMixin.Order calldata order,
        bytes calldata extension,
        bytes32 orderHash,
        address taker,
        uint256 makingAmount,
        uint256 remainingMakingAmount,
        bytes calldata extraData
    ) external view returns (uint256);
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import "@1inch/solidity-utils/contracts/libraries/AddressLib.sol";
import "../libraries/MakerTraitsLib.sol";
import "../libraries/TakerTraitsLib.sol";

/**
 * @title IOrderMixin
 * @notice Interface for order processing logic in the 1inch Limit Order Protocol.
 */
interface IOrderMixin {
    struct Order {
        uint256 salt;
        Address maker;
        Address receiver;
        Address makerAsset;
        Address takerAsset;
        uint256 makingAmount;
        uint256 takingAmount;
        MakerTraits makerTraits;
    }

    error InvalidatedOrder();
    error TakingAmountExceeded();
    error PrivateOrder();
    error BadSignature();
    error OrderExpired();
    error WrongSeriesNonce();
    error SwapWithZeroAmount();
    error PartialFillNotAllowed();
    error OrderIsNotSuitableForMassInvalidation();
    error EpochManagerAndBitInvalidatorsAreIncompatible();
    error ReentrancyDetected();
    error PredicateIsNotTrue();
    error TakingAmountTooHigh();
    error MakingAmountTooLow();
    error TransferFromMakerToTakerFailed();
    error TransferFromTakerToMakerFailed();
    error MismatchArraysLengths();
    error InvalidPermit2Transfer();
    error SimulationResults(bool success, bytes res);

    /**
     * @notice Emitted when order gets filled
     * @param orderHash Hash of the order
     * @param remainingAmount Amount of the maker asset that remains to be filled
     */
    event OrderFilled(
        bytes32 orderHash,
        uint256 remainingAmount
    );

    /**
     * @notice Emitted when order without `useBitInvalidator` gets cancelled
     * @param orderHash Hash of the order
     */
    event OrderCancelled(
        bytes32 orderHash
    );

    /**
     * @notice Emitted when order with `useBitInvalidator` gets cancelled
     * @param maker Maker address
     * @param slotIndex Slot index that was updated
     * @param slotValue New slot value
     */
    event BitInvalidatorUpdated(
        address indexed maker,
        uint256 slotIndex,
        uint256 slotValue
    );

    /**
     * @notice Delegates execution to custom implementation. Could be used to validate if `transferFrom` works properly
     * @dev The function always reverts and returns the simulation results in revert data.
     * @param target Addresses that will be delegated
     * @param data Data that will be passed to delegatee
     */
    function simulate(address target, bytes calldata data) external;

    /**
     * @notice Cancels order's quote
     * @param makerTraits Order makerTraits
     * @param orderHash Hash of the order to cancel
     */
    function cancelOrder(MakerTraits makerTraits, bytes32 orderHash) external;

    /**
     * @notice Cancels orders' quotes
     * @param makerTraits Orders makerTraits
     * @param orderHashes Hashes of the orders to cancel
     */
    function cancelOrders(MakerTraits[] calldata makerTraits, bytes32[] calldata orderHashes) external;

    /**
     * @notice Cancels all quotes of the maker (works for bit-invalidating orders only)
     * @param makerTraits Order makerTraits
     * @param additionalMask Additional bitmask to invalidate orders
     */
    function bitsInvalidateForOrder(MakerTraits makerTraits, uint256 additionalMask) external;

    /**
     * @notice Fills order's quote, fully or partially (whichever is possible).
     * @param order Order quote to fill
     * @param r R component of signature
     * @param vs VS component of signature
     * @param amount Taker amount to fill
     * @param takerTraits Specifies threshold as maximum allowed takingAmount when takingAmount is zero, otherwise specifies
     * minimum allowed makingAmount. The 2nd (0 based index) highest bit specifies whether taker wants to skip maker's permit.
     * @return makingAmount Actual amount transferred from maker to taker
     * @return takingAmount Actual amount transferred from taker to maker
     * @return orderHash Hash of the filled order
     */
    function fillOrder(
        Order calldata order,
        bytes32 r,
        bytes32 vs,
        uint256 amount,
        TakerTraits takerTraits
    ) external payable returns(uint256 makingAmount, uint256 takingAmount, bytes32 orderHash);

    /**
     * @notice Same as `fillOrder` but allows to specify arguments that are used by the taker.
     * @param order Order quote to fill
     * @param r R component of signature
     * @param vs VS component of signature
     * @param amount Taker amount to fill
     * @param takerTraits Specifies threshold as maximum allowed takingAmount when takingAmount is zero, otherwise specifies
     * minimum allowed makingAmount. The 2nd (0 based index) highest bit specifies whether taker wants to skip maker's permit.
     * @param args Arguments that are used by the taker (target, extension, interaction, permit)
     * @return makingAmount Actual amount transferred from maker to taker
     * @return takingAmount Actual amount transferred from taker to maker
     * @return orderHash Hash of the filled order
     */
    function fillOrderArgs(
        IOrderMixin.Order calldata order,
        bytes32 r,
        bytes32 vs,
        uint256 amount,
        TakerTraits takerTraits,
        bytes calldata args
    ) external payable returns(uint256 makingAmount, uint256 takingAmount, bytes32 orderHash);

    /**
     * @notice Same as `fillOrder` but uses contract-based signatures.
     * @param order Order quote to fill
     * @param signature Signature to confirm quote ownership
     * @param amount Taker amount to fill
     * @param takerTraits Specifies threshold as maximum allowed takingAmount when takingAmount is zero, otherwise specifies
     * minimum allowed makingAmount. The 2nd (0 based index) highest bit specifies whether taker wants to skip maker's permit.
     * @return makingAmount Actual amount transferred from maker to taker
     * @return takingAmount Actual amount transferred from taker to maker
     * @return orderHash Hash of the filled order
     * @dev See tests for examples
     */
    function fillContractOrder(
        Order calldata order,
        bytes calldata signature,
        uint256 amount,
        TakerTraits takerTraits
    ) external returns(uint256 makingAmount, uint256 takingAmount, bytes32 orderHash);

    /**
     * @notice Same as `fillContractOrder` but allows to specify arguments that are used by the taker.
     * @param order Order quote to fill
     * @param signature Signature to confirm quote ownership
     * @param amount Taker amount to fill
     * @param takerTraits Specifies threshold as maximum allowed takingAmount when takingAmount is zero, otherwise specifies
     * minimum allowed makingAmount. The 2nd (0 based index) highest bit specifies whether taker wants to skip maker's permit.
     * @param args Arguments that are used by the taker (target, extension, interaction, permit)
     * @return makingAmount Actual amount transferred from maker to taker
     * @return takingAmount Actual amount transferred from taker to maker
     * @return orderHash Hash of the filled order
     * @dev See tests for examples
     */
    function fillContractOrderArgs(
        Order calldata order,
        bytes calldata signature,
        uint256 amount,
        TakerTraits takerTraits,
        bytes calldata args
    ) external returns(uint256 makingAmount, uint256 takingAmount, bytes32 orderHash);

    /**
     * @notice Returns bitmask for double-spend invalidators based on lowest byte of order.info and filled quotes
     * @param maker Maker address
     * @param slot Slot number to return bitmask for
     * @return result Each bit represents whether corresponding was already invalidated
     */
    function bitInvalidatorForOrder(address maker, uint256 slot) external view returns(uint256 result);

    /**
     * @notice Returns bitmask for double-spend invalidators based on lowest byte of order.info and filled quotes
     * @param orderHash Hash of the order
     * @return remaining Remaining amount of the order
     */
    function remainingInvalidatorForOrder(address maker, bytes32 orderHash) external view returns(uint256 remaining);

    /**
     * @notice Returns bitmask for double-spend invalidators based on lowest byte of order.info and filled quotes
     * @param orderHash Hash of the order
     * @return remainingRaw Inverse of the remaining amount of the order if order was filled at least once, otherwise 0
     */
    function rawRemainingInvalidatorForOrder(address maker, bytes32 orderHash) external view returns(uint256 remainingRaw);

    /**
     * @notice Returns order hash, hashed with limit order protocol contract EIP712
     * @param order Order
     * @return orderHash Hash of the order
     */
    function hashOrder(IOrderMixin.Order calldata order) external view returns(bytes32 orderHash);
}

// SPDX-License-Identifier: MIT

pragma solidity 0.8.30;

/// @title The helper library to calculate linearly taker amount from maker amount and vice versa.
library AmountCalculatorLib {
    /// @notice Calculates maker amount
    /// @return Result Floored maker amount
    function getMakingAmount(uint256 orderMakerAmount, uint256 orderTakerAmount, uint256 swapTakerAmount) internal pure returns(uint256) {
        if ((swapTakerAmount | orderMakerAmount) >> 128 == 0) {
            unchecked {
                return (swapTakerAmount * orderMakerAmount) / orderTakerAmount;
            }
        }
        return swapTakerAmount * orderMakerAmount / orderTakerAmount;
    }

    /// @notice Calculates taker amount
    /// @return Result Ceiled taker amount
    function getTakingAmount(uint256 orderMakerAmount, uint256 orderTakerAmount, uint256 swapMakerAmount) internal pure returns(uint256) {
        if ((swapMakerAmount | orderTakerAmount) >> 128 == 0) {
            unchecked {
                return (swapMakerAmount * orderTakerAmount + orderMakerAmount - 1) / orderMakerAmount;
            }
        }
        return (swapMakerAmount * orderTakerAmount + orderMakerAmount - 1) / orderMakerAmount;
    }
}

File 30 of 36 : Errors.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

library Errors {
    error InvalidMsgValue();
    error ETHTransferFailed();
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import "../interfaces/IOrderMixin.sol";
import "./OffsetsLib.sol";

/**
 * @title ExtensionLib
 * @notice Library for retrieving extensions information for the IOrderMixin Interface.
 */
library ExtensionLib {
    using AddressLib for Address;
    using OffsetsLib for Offsets;

    enum DynamicField {
        MakerAssetSuffix,
        TakerAssetSuffix,
        MakingAmountData,
        TakingAmountData,
        Predicate,
        MakerPermit,
        PreInteractionData,
        PostInteractionData,
        CustomData
    }

    /**
     * @notice Returns the MakerAssetSuffix from the provided extension calldata.
     * @param extension The calldata from which the MakerAssetSuffix is to be retrieved.
     * @return calldata Bytes representing the MakerAssetSuffix.
     */
    function makerAssetSuffix(bytes calldata extension) internal pure returns(bytes calldata) {
        return _get(extension, DynamicField.MakerAssetSuffix);
    }

    /**
     * @notice Returns the TakerAssetSuffix from the provided extension calldata.
     * @param extension The calldata from which the TakerAssetSuffix is to be retrieved.
     * @return calldata Bytes representing the TakerAssetSuffix.
     */
    function takerAssetSuffix(bytes calldata extension) internal pure returns(bytes calldata) {
        return _get(extension, DynamicField.TakerAssetSuffix);
    }

    /**
     * @notice Returns the MakingAmountData from the provided extension calldata.
     * @param extension The calldata from which the MakingAmountData is to be retrieved.
     * @return calldata Bytes representing the MakingAmountData.
     */
    function makingAmountData(bytes calldata extension) internal pure returns(bytes calldata) {
        return _get(extension, DynamicField.MakingAmountData);
    }

    /**
     * @notice Returns the TakingAmountData from the provided extension calldata.
     * @param extension The calldata from which the TakingAmountData is to be retrieved.
     * @return calldata Bytes representing the TakingAmountData.
     */
    function takingAmountData(bytes calldata extension) internal pure returns(bytes calldata) {
        return _get(extension, DynamicField.TakingAmountData);
    }

    /**
     * @notice Returns the order's predicate from the provided extension calldata.
     * @param extension The calldata from which the predicate is to be retrieved.
     * @return calldata Bytes representing the predicate.
     */
    function predicate(bytes calldata extension) internal pure returns(bytes calldata) {
        return _get(extension, DynamicField.Predicate);
    }

    /**
     * @notice Returns the maker's permit from the provided extension calldata.
     * @param extension The calldata from which the maker's permit is to be retrieved.
     * @return calldata Bytes representing the maker's permit.
     */
    function makerPermit(bytes calldata extension) internal pure returns(bytes calldata) {
        return _get(extension, DynamicField.MakerPermit);
    }


    /**
     * @notice Returns the pre-interaction from the provided extension calldata.
     * @param extension The calldata from which the pre-interaction is to be retrieved.
     * @return calldata Bytes representing the pre-interaction.
     */
    function preInteractionTargetAndData(bytes calldata extension) internal pure returns(bytes calldata) {
        return _get(extension, DynamicField.PreInteractionData);
    }

    /**
     * @notice Returns the post-interaction from the provided extension calldata.
     * @param extension The calldata from which the post-interaction is to be retrieved.
     * @return calldata Bytes representing the post-interaction.
     */
    function postInteractionTargetAndData(bytes calldata extension) internal pure returns(bytes calldata) {
        return _get(extension, DynamicField.PostInteractionData);
    }

    /**
     * @notice Returns extra suffix data from the provided extension calldata.
     * @param extension The calldata from which the extra suffix data is to be retrieved.
     * @return calldata Bytes representing the extra suffix data.
     */
    function customData(bytes calldata extension) internal pure returns(bytes calldata) {
        if (extension.length < 0x20) return msg.data[:0];
        uint256 offsets = uint256(bytes32(extension));
        unchecked {
            return extension[0x20 + (offsets >> 224):];
        }
    }

    /**
     * @notice Retrieves a specific field from the provided extension calldata.
     * @dev The first 32 bytes of an extension calldata contain offsets to the end of each field within the calldata.
     * @param extension The calldata from which the field is to be retrieved.
     * @param field The specific dynamic field to retrieve from the extension.
     * @return calldata Bytes representing the requested field.
     */
    function _get(bytes calldata extension, DynamicField field) private pure returns(bytes calldata) {
        if (extension.length < 0x20) return msg.data[:0];

        Offsets offsets;
        bytes calldata concat;
        assembly ("memory-safe") {  // solhint-disable-line no-inline-assembly
            offsets := calldataload(extension.offset)
            concat.offset := add(extension.offset, 0x20)
            concat.length := sub(extension.length, 0x20)
        }

        return offsets.get(concat, uint256(field));
    }
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

type MakerTraits is uint256;

/**
 * @title MakerTraitsLib
 * @notice A library to manage and check MakerTraits, which are used to encode the maker's preferences for an order in a single uint256.
 * @dev
 * The MakerTraits type is a uint256 and different parts of the number are used to encode different traits.
 * High bits are used for flags
 * 255 bit `NO_PARTIAL_FILLS_FLAG`          - if set, the order does not allow partial fills
 * 254 bit `ALLOW_MULTIPLE_FILLS_FLAG`      - if set, the order permits multiple fills
 * 253 bit                                  - unused
 * 252 bit `PRE_INTERACTION_CALL_FLAG`      - if set, the order requires pre-interaction call
 * 251 bit `POST_INTERACTION_CALL_FLAG`     - if set, the order requires post-interaction call
 * 250 bit `NEED_CHECK_EPOCH_MANAGER_FLAG`  - if set, the order requires to check the epoch manager
 * 249 bit `HAS_EXTENSION_FLAG`             - if set, the order has extension(s)
 * 248 bit `USE_PERMIT2_FLAG`               - if set, the order uses permit2
 * 247 bit `UNWRAP_WETH_FLAG`               - if set, the order requires to unwrap WETH

 * Low 200 bits are used for allowed sender, expiration, nonceOrEpoch, and series
 * uint80 last 10 bytes of allowed sender address (0 if any)
 * uint40 expiration timestamp (0 if none)
 * uint40 nonce or epoch
 * uint40 series
 */
library MakerTraitsLib {
    // Low 200 bits are used for allowed sender, expiration, nonceOrEpoch, and series
    uint256 private constant _ALLOWED_SENDER_MASK = type(uint80).max;
    uint256 private constant _EXPIRATION_OFFSET = 80;
    uint256 private constant _EXPIRATION_MASK = type(uint40).max;
    uint256 private constant _NONCE_OR_EPOCH_OFFSET = 120;
    uint256 private constant _NONCE_OR_EPOCH_MASK = type(uint40).max;
    uint256 private constant _SERIES_OFFSET = 160;
    uint256 private constant _SERIES_MASK = type(uint40).max;

    uint256 private constant _NO_PARTIAL_FILLS_FLAG = 1 << 255;
    uint256 private constant _ALLOW_MULTIPLE_FILLS_FLAG = 1 << 254;
    uint256 private constant _PRE_INTERACTION_CALL_FLAG = 1 << 252;
    uint256 private constant _POST_INTERACTION_CALL_FLAG = 1 << 251;
    uint256 private constant _NEED_CHECK_EPOCH_MANAGER_FLAG = 1 << 250;
    uint256 private constant _HAS_EXTENSION_FLAG = 1 << 249;
    uint256 private constant _USE_PERMIT2_FLAG = 1 << 248;
    uint256 private constant _UNWRAP_WETH_FLAG = 1 << 247;

    /**
     * @notice Checks if the order has the extension flag set.
     * @dev If the `HAS_EXTENSION_FLAG` is set in the makerTraits, then the protocol expects that the order has extension(s).
     * @param makerTraits The traits of the maker.
     * @return result A boolean indicating whether the flag is set.
     */
    function hasExtension(MakerTraits makerTraits) internal pure returns (bool) {
        return (MakerTraits.unwrap(makerTraits) & _HAS_EXTENSION_FLAG) != 0;
    }

    /**
     * @notice Checks if the maker allows a specific taker to fill the order.
     * @param makerTraits The traits of the maker.
     * @param sender The address of the taker to be checked.
     * @return result A boolean indicating whether the taker is allowed.
     */
    function isAllowedSender(MakerTraits makerTraits, address sender) internal pure returns (bool) {
        uint160 allowedSender = uint160(MakerTraits.unwrap(makerTraits) & _ALLOWED_SENDER_MASK);
        return allowedSender == 0 || allowedSender == uint160(sender) & _ALLOWED_SENDER_MASK;
    }

    /**
     * @notice Returns the expiration time of the order.
     * @param makerTraits The traits of the maker.
     * @return result The expiration timestamp of the order.
     */
    function getExpirationTime(MakerTraits makerTraits) internal pure returns (uint256) {
        return (MakerTraits.unwrap(makerTraits) >> _EXPIRATION_OFFSET) & _EXPIRATION_MASK;
    }

    /**
     * @notice Checks if the order has expired.
     * @param makerTraits The traits of the maker.
     * @return result A boolean indicating whether the order has expired.
     */
    function isExpired(MakerTraits makerTraits) internal view returns (bool) {
        uint256 expiration = getExpirationTime(makerTraits);
        return expiration != 0 && expiration < block.timestamp;  // solhint-disable-line not-rely-on-time
    }

    /**
     * @notice Returns the nonce or epoch of the order.
     * @param makerTraits The traits of the maker.
     * @return result The nonce or epoch of the order.
     */
    function nonceOrEpoch(MakerTraits makerTraits) internal pure returns (uint256) {
        return (MakerTraits.unwrap(makerTraits) >> _NONCE_OR_EPOCH_OFFSET) & _NONCE_OR_EPOCH_MASK;
    }

    /**
     * @notice Returns the series of the order.
     * @param makerTraits The traits of the maker.
     * @return result The series of the order.
     */
    function series(MakerTraits makerTraits) internal pure returns (uint256) {
        return (MakerTraits.unwrap(makerTraits) >> _SERIES_OFFSET) & _SERIES_MASK;
    }

    /**
      * @notice Determines if the order allows partial fills.
      * @dev If the _NO_PARTIAL_FILLS_FLAG is not set in the makerTraits, then the order allows partial fills.
      * @param makerTraits The traits of the maker, determining their preferences for the order.
      * @return result A boolean indicating whether the maker allows partial fills.
      */
    function allowPartialFills(MakerTraits makerTraits) internal pure returns (bool) {
        return (MakerTraits.unwrap(makerTraits) & _NO_PARTIAL_FILLS_FLAG) == 0;
    }

    /**
     * @notice Checks if the maker needs pre-interaction call.
     * @param makerTraits The traits of the maker.
     * @return result A boolean indicating whether the maker needs a pre-interaction call.
     */
    function needPreInteractionCall(MakerTraits makerTraits) internal pure returns (bool) {
        return (MakerTraits.unwrap(makerTraits) & _PRE_INTERACTION_CALL_FLAG) != 0;
    }

    /**
     * @notice Checks if the maker needs post-interaction call.
     * @param makerTraits The traits of the maker.
     * @return result A boolean indicating whether the maker needs a post-interaction call.
     */
    function needPostInteractionCall(MakerTraits makerTraits) internal pure returns (bool) {
        return (MakerTraits.unwrap(makerTraits) & _POST_INTERACTION_CALL_FLAG) != 0;
    }

    /**
      * @notice Determines if the order allows multiple fills.
      * @dev If the _ALLOW_MULTIPLE_FILLS_FLAG is set in the makerTraits, then the maker allows multiple fills.
      * @param makerTraits The traits of the maker, determining their preferences for the order.
      * @return result A boolean indicating whether the maker allows multiple fills.
      */
    function allowMultipleFills(MakerTraits makerTraits) internal pure returns (bool) {
        return (MakerTraits.unwrap(makerTraits) & _ALLOW_MULTIPLE_FILLS_FLAG) != 0;
    }

    /**
      * @notice Determines if an order should use the bit invalidator or remaining amount validator.
      * @dev The bit invalidator can be used if the order does not allow partial or multiple fills.
      * @param makerTraits The traits of the maker, determining their preferences for the order.
      * @return result A boolean indicating whether the bit invalidator should be used.
      * True if the order requires the use of the bit invalidator.
      */
    function useBitInvalidator(MakerTraits makerTraits) internal pure returns (bool) {
        return !allowPartialFills(makerTraits) || !allowMultipleFills(makerTraits);
    }

    /**
     * @notice Checks if the maker needs to check the epoch.
     * @param makerTraits The traits of the maker.
     * @return result A boolean indicating whether the maker needs to check the epoch manager.
     */
    function needCheckEpochManager(MakerTraits makerTraits) internal pure returns (bool) {
        return (MakerTraits.unwrap(makerTraits) & _NEED_CHECK_EPOCH_MANAGER_FLAG) != 0;
    }

    /**
     * @notice Checks if the maker uses permit2.
     * @param makerTraits The traits of the maker.
     * @return result A boolean indicating whether the maker uses permit2.
     */
    function usePermit2(MakerTraits makerTraits) internal pure returns (bool) {
        return MakerTraits.unwrap(makerTraits) & _USE_PERMIT2_FLAG != 0;
    }

    /**
     * @notice Checks if the maker needs to unwraps WETH.
     * @param makerTraits The traits of the maker.
     * @return result A boolean indicating whether the maker needs to unwrap WETH.
     */
    function unwrapWeth(MakerTraits makerTraits) internal pure returns (bool) {
        return MakerTraits.unwrap(makerTraits) & _UNWRAP_WETH_FLAG != 0;
    }
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

type Offsets is uint256;

/// @title OffsetsLib
/// @dev A library for retrieving values by offsets from a concatenated calldata.
library OffsetsLib {

    /// @dev Error to be thrown when the offset is out of bounds.
    error OffsetOutOfBounds();

    /**
     * @notice Retrieves the field value calldata corresponding to the provided field index from the concatenated calldata.
     * @dev 
     * The function performs the following steps:
     * 1. Retrieve the start and end of the segment corresponding to the provided index from the offsets array.
     * 2. Get the value from segment using offset and length calculated based on the start and end of the segment.
     * 3. Throw `OffsetOutOfBounds` error if the length of the segment is greater than the length of the concatenated data.
     * @param offsets The offsets encoding the start and end of each segment within the concatenated calldata.
     * @param concat The concatenated calldata.
     * @param index The index of the segment to retrieve. The field index 0 corresponds to the lowest bytes of the offsets array.
     * @return result The calldata from a segment of the concatenated calldata corresponding to the provided index.
     */
    function get(Offsets offsets, bytes calldata concat, uint256 index) internal pure returns(bytes calldata result) {
        bytes4 exception = OffsetOutOfBounds.selector;
        assembly ("memory-safe") {  // solhint-disable-line no-inline-assembly
            let bitShift := shl(5, index)                                   // bitShift = index * 32
            let begin := and(0xffffffff, shr(bitShift, shl(32, offsets)))   // begin = offsets[ bitShift : bitShift + 32 ]
            let end := and(0xffffffff, shr(bitShift, offsets))              // end   = offsets[ bitShift + 32 : bitShift + 64 ]
            result.offset := add(concat.offset, begin)
            result.length := sub(end, begin)
            if gt(end, concat.length) {
                mstore(0, exception)
                revert(0, 4)
            }
        }
    }
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

type TakerTraits is uint256;

/**
 * @title TakerTraitsLib
 * @notice This library to manage and check TakerTraits, which are used to encode the taker's preferences for an order in a single uint256.
 * @dev The TakerTraits are structured as follows:
 * High bits are used for flags
 * 255 bit `_MAKER_AMOUNT_FLAG`           - If set, the taking amount is calculated based on making amount, otherwise making amount is calculated based on taking amount.
 * 254 bit `_UNWRAP_WETH_FLAG`            - If set, the WETH will be unwrapped into ETH before sending to taker.
 * 253 bit `_SKIP_ORDER_PERMIT_FLAG`      - If set, the order skips maker's permit execution.
 * 252 bit `_USE_PERMIT2_FLAG`            - If set, the order uses the permit2 function for authorization.
 * 251 bit `_ARGS_HAS_TARGET`             - If set, then first 20 bytes of args are treated as target address for maker’s funds transfer.
 * 224-247 bits `ARGS_EXTENSION_LENGTH`   - The length of the extension calldata in the args.
 * 200-223 bits `ARGS_INTERACTION_LENGTH` - The length of the interaction calldata in the args.
 * 0-184 bits                             - The threshold amount (the maximum amount a taker agrees to give in exchange for a making amount).
 */
library TakerTraitsLib {
    uint256 private constant _MAKER_AMOUNT_FLAG = 1 << 255;
    uint256 private constant _UNWRAP_WETH_FLAG = 1 << 254;
    uint256 private constant _SKIP_ORDER_PERMIT_FLAG = 1 << 253;
    uint256 private constant _USE_PERMIT2_FLAG = 1 << 252;
    uint256 private constant _ARGS_HAS_TARGET = 1 << 251;

    uint256 private constant _ARGS_EXTENSION_LENGTH_OFFSET = 224;
    uint256 private constant _ARGS_EXTENSION_LENGTH_MASK = 0xffffff;
    uint256 private constant _ARGS_INTERACTION_LENGTH_OFFSET = 200;
    uint256 private constant _ARGS_INTERACTION_LENGTH_MASK = 0xffffff;

    uint256 private constant _AMOUNT_MASK = 0x000000000000000000ffffffffffffffffffffffffffffffffffffffffffffff;

    /**
     * @notice Checks if the args should contain target address.
     * @param takerTraits The traits of the taker.
     * @return result A boolean indicating whether the args should contain target address.
     */
    function argsHasTarget(TakerTraits takerTraits) internal pure returns (bool) {
        return (TakerTraits.unwrap(takerTraits) & _ARGS_HAS_TARGET) != 0;
    }

    /**
     * @notice Retrieves the length of the extension calldata from the takerTraits.
     * @param takerTraits The traits of the taker.
     * @return result The length of the extension calldata encoded in the takerTraits.
     */
    function argsExtensionLength(TakerTraits takerTraits) internal pure returns (uint256) {
        return (TakerTraits.unwrap(takerTraits) >> _ARGS_EXTENSION_LENGTH_OFFSET) & _ARGS_EXTENSION_LENGTH_MASK;
    }

    /**
     * @notice Retrieves the length of the interaction calldata from the takerTraits.
     * @param takerTraits The traits of the taker.
     * @return result The length of the interaction calldata encoded in the takerTraits.
     */
    function argsInteractionLength(TakerTraits takerTraits) internal pure returns (uint256) {
        return (TakerTraits.unwrap(takerTraits) >> _ARGS_INTERACTION_LENGTH_OFFSET) & _ARGS_INTERACTION_LENGTH_MASK;
    }

    /**
     * @notice Checks if the taking amount should be calculated based on making amount.
     * @param takerTraits The traits of the taker.
     * @return result A boolean indicating whether the taking amount should be calculated based on making amount.
     */
    function isMakingAmount(TakerTraits takerTraits) internal pure returns (bool) {
        return (TakerTraits.unwrap(takerTraits) & _MAKER_AMOUNT_FLAG) != 0;
    }

    /**
     * @notice Checks if the order should unwrap WETH and send ETH to taker.
     * @param takerTraits The traits of the taker.
     * @return result A boolean indicating whether the order should unwrap WETH.
     */
    function unwrapWeth(TakerTraits takerTraits) internal pure returns (bool) {
        return (TakerTraits.unwrap(takerTraits) & _UNWRAP_WETH_FLAG) != 0;
    }

    /**
     * @notice Checks if the order should skip maker's permit execution.
     * @param takerTraits The traits of the taker.
     * @return result A boolean indicating whether the order don't apply permit.
     */
    function skipMakerPermit(TakerTraits takerTraits) internal pure returns (bool) {
        return (TakerTraits.unwrap(takerTraits) & _SKIP_ORDER_PERMIT_FLAG) != 0;
    }

    /**
     * @notice Checks if the order uses the permit2 instead of permit.
     * @param takerTraits The traits of the taker.
     * @return result A boolean indicating whether the order uses the permit2.
     */
    function usePermit2(TakerTraits takerTraits) internal pure returns (bool) {
        return (TakerTraits.unwrap(takerTraits) & _USE_PERMIT2_FLAG) != 0;
    }

    /**
     * @notice Retrieves the threshold amount from the takerTraits.
     * The maximum amount a taker agrees to give in exchange for a making amount.
     * @param takerTraits The traits of the taker.
     * @return result The threshold amount encoded in the takerTraits.
     */
    function threshold(TakerTraits takerTraits) internal pure returns (uint256) {
        return TakerTraits.unwrap(takerTraits) & _AMOUNT_MASK;
    }
}

// SPDX-License-Identifier: MIT

pragma solidity 0.8.30;

import "@1inch/solidity-utils/contracts/libraries/ECDSA.sol";
import "@1inch/solidity-utils/contracts/libraries/AddressLib.sol";

import "./interfaces/IOrderMixin.sol";
import "./libraries/MakerTraitsLib.sol";
import "./libraries/ExtensionLib.sol";
import "./libraries/AmountCalculatorLib.sol";
import "./interfaces/IAmountGetter.sol";

/**
 * @title OrderLib
 * @dev The library provides common functionality for processing and manipulating limit orders.
 * It provides functionality to calculate and verify order hashes, calculate trade amounts, and validate
 * extension data associated with orders. The library also contains helper methods to get the receiver of
 * an order and call getter functions.
 */
 library OrderLib {
    using AddressLib for Address;
    using MakerTraitsLib for MakerTraits;
    using ExtensionLib for bytes;

    /// @dev Error to be thrown when the extension data of an order is missing.
    error MissingOrderExtension();
    /// @dev Error to be thrown when the order has an unexpected extension.
    error UnexpectedOrderExtension();
    /// @dev Error to be thrown when the order extension hash is invalid.
    error InvalidExtensionHash();

    /// @dev The typehash of the order struct.
    bytes32 constant internal _LIMIT_ORDER_TYPEHASH = keccak256(
        "Order("
            "uint256 salt,"
            "address maker,"
            "address receiver,"
            "address makerAsset,"
            "address takerAsset,"
            "uint256 makingAmount,"
            "uint256 takingAmount,"
            "uint256 makerTraits"
        ")"
    );
    uint256 constant internal _ORDER_STRUCT_SIZE = 0x100;
    uint256 constant internal _DATA_HASH_SIZE = 0x120;

    /**
      * @notice Calculates the hash of an order.
      * @param order The order to be hashed.
      * @param domainSeparator The domain separator to be used for the EIP-712 hashing.
      * @return result The EIP-712 hash of the order data.
      */
    function hash(IOrderMixin.Order calldata order, bytes32 domainSeparator) internal pure returns(bytes32 result) {
        bytes32 typehash = _LIMIT_ORDER_TYPEHASH;
        assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
            let ptr := mload(0x40)

            // keccak256(abi.encode(_LIMIT_ORDER_TYPEHASH, order));
            mstore(ptr, typehash)
            calldatacopy(add(ptr, 0x20), order, _ORDER_STRUCT_SIZE)
            result := keccak256(ptr, _DATA_HASH_SIZE)
        }
        result = ECDSA.toTypedDataHash(domainSeparator, result);
    }

    /**
      * @notice Calculates the hash of an order in memory.
      * @param order The order to be hashed.
      * @param domainSeparator The domain separator to be used for the EIP-712 hashing.
      * @return result The EIP-712 hash of the order data.
      */
    function hashMemory(IOrderMixin.Order memory order, bytes32 domainSeparator) internal pure returns(bytes32 result) {
        bytes32 typehash = OrderLib._LIMIT_ORDER_TYPEHASH;
        uint256 dataHashSize = OrderLib._DATA_HASH_SIZE;
        assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
            let ptr := sub(order, 0x20)
            let backup := mload(ptr)
            mstore(ptr, typehash)

            // keccak256(abi.encode(OrderLib._LIMIT_ORDER_TYPEHASH, order))
            result := keccak256(ptr, dataHashSize)

            mstore(ptr, backup)
        }
        result = ECDSA.toTypedDataHash(domainSeparator, result);
    }

    /**
      * @notice Returns the receiver address for an order.
      * @param order The order.
      * @return receiver The address of the receiver, either explicitly defined in the order or the maker's address if not specified.
      */
    function getReceiver(IOrderMixin.Order calldata order) internal pure returns(address /*receiver*/) {
        address receiver = order.receiver.get();
        return receiver != address(0) ? receiver : order.maker.get();
    }

    /**
      * @notice Calculates the making amount based on the requested taking amount.
      * @dev If getter is specified in the extension data, the getter is called to calculate the making amount,
      * otherwise the making amount is calculated linearly.
      * @param order The order.
      * @param extension The extension data associated with the order.
      * @param requestedTakingAmount The amount the taker wants to take.
      * @param remainingMakingAmount The remaining amount of the asset left to fill.
      * @param orderHash The hash of the order.
      * @return makingAmount The amount of the asset the maker receives.
      */
    function calculateMakingAmount(
        IOrderMixin.Order calldata order,
        bytes calldata extension,
        uint256 requestedTakingAmount,
        uint256 remainingMakingAmount,
        bytes32 orderHash
    ) internal view returns(uint256) {
        bytes calldata data = extension.makingAmountData();
        if (data.length == 0) {
            // Linear proportion
            return AmountCalculatorLib.getMakingAmount(order.makingAmount, order.takingAmount, requestedTakingAmount);
        }
        return IAmountGetter(address(bytes20(data))).getMakingAmount(
            order,
            extension,
            orderHash,
            msg.sender,
            requestedTakingAmount,
            remainingMakingAmount,
            data[20:]
        );
    }

    /**
      * @notice Calculates the taking amount based on the requested making amount.
      * @dev If getter is specified in the extension data, the getter is called to calculate the taking amount,
      * otherwise the taking amount is calculated linearly.
      * @param order The order.
      * @param extension The extension data associated with the order.
      * @param requestedMakingAmount The amount the maker wants to receive.
      * @param remainingMakingAmount The remaining amount of the asset left to be filled.
      * @param orderHash The hash of the order.
      * @return takingAmount The amount of the asset the taker takes.
      */
    function calculateTakingAmount(
        IOrderMixin.Order calldata order,
        bytes calldata extension,
        uint256 requestedMakingAmount,
        uint256 remainingMakingAmount,
        bytes32 orderHash
    ) internal view returns(uint256) {
        bytes calldata data = extension.takingAmountData();
        if (data.length == 0) {
            // Linear proportion
            return AmountCalculatorLib.getTakingAmount(order.makingAmount, order.takingAmount, requestedMakingAmount);
        }
        return IAmountGetter(address(bytes20(data))).getTakingAmount(
            order,
            extension,
            orderHash,
            msg.sender,
            requestedMakingAmount,
            remainingMakingAmount,
            data[20:]
        );
    }

    /**
      * @dev Validates the extension associated with an order.
      * @param order The order to validate against.
      * @param extension The extension associated with the order.
      * @return valid True if the extension is valid, false otherwise.
      * @return errorSelector The error selector if the extension is invalid, 0x00000000 otherwise.
      */
    function isValidExtension(IOrderMixin.Order calldata order, bytes calldata extension) internal pure returns(bool, bytes4) {
        if (order.makerTraits.hasExtension()) {
            if (extension.length == 0) return (false, MissingOrderExtension.selector);
            // Lowest 160 bits of the order salt must be equal to the lowest 160 bits of the extension hash
            if (uint256(keccak256(extension)) & type(uint160).max != order.salt & type(uint160).max) return (false, InvalidExtensionHash.selector);
        } else {
            if (extension.length > 0) return (false, UnexpectedOrderExtension.selector);
        }
        return (true, 0x00000000);
    }
}

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import "@openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible,
 * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding
 * they need in their contracts using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * _Available since v3.4._
 */
abstract contract EIP712Alien {
    /* solhint-disable var-name-mixedcase */
    // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
    // invalidate the cached domain separator if the chain id changes.
    bytes32 private immutable _CACHED_DOMAIN_SEPARATOR;
    uint256 private immutable _CACHED_CHAIN_ID;

    bytes32 private immutable _HASHED_NAME;
    bytes32 private immutable _HASHED_VERSION;
    bytes32 private immutable _TYPE_HASH;
    address private immutable _ALIEN_ADDRESS;
    /* solhint-enable var-name-mixedcase */

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    constructor(address alien, string memory name, string memory version) {
        bytes32 hashedName = keccak256(bytes(name));
        bytes32 hashedVersion = keccak256(bytes(version));
        bytes32 typeHash = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
        _ALIEN_ADDRESS = alien;
        _HASHED_NAME = hashedName;
        _HASHED_VERSION = hashedVersion;
        _CACHED_CHAIN_ID = block.chainid;
        _CACHED_DOMAIN_SEPARATOR = _buildDomainSeparator(typeHash, hashedName, hashedVersion, alien);
        _TYPE_HASH = typeHash;
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view returns (bytes32) {
        if (block.chainid == _CACHED_CHAIN_ID) {
            return _CACHED_DOMAIN_SEPARATOR;
        } else {
            return _buildDomainSeparator(_TYPE_HASH, _HASHED_NAME, _HASHED_VERSION, _ALIEN_ADDRESS);
        }
    }

    function _buildDomainSeparator(bytes32 typeHash, bytes32 name, bytes32 version, address alien) private view returns (bytes32) {
        return keccak256(
            abi.encode(
                typeHash,
                name,
                version,
                block.chainid,
                alien
            )
        );
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
    }
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 1000000
  },
  "evmVersion": "shanghai",
  "viaIR": true,
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "metadata": {
    "useLiteralContent": true
  }
}

Contract Security Audit

Contract ABI

API
[{"inputs":[{"internalType":"contract IWETH","name":"weth","type":"address"},{"internalType":"address","name":"limitOrderProtocol","type":"address"},{"internalType":"contract IERC20","name":"accessToken","type":"address"},{"internalType":"uint256","name":"cancellationDelay","type":"uint256"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"ETHTransferFailed","type":"error"},{"inputs":[],"name":"FailedDeployment","type":"error"},{"inputs":[{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"expected","type":"address"},{"internalType":"address","name":"actual","type":"address"}],"name":"OrderMakerShouldBeMsgSender","type":"error"},{"inputs":[{"internalType":"uint256","name":"expected","type":"uint256"},{"internalType":"uint256","name":"actual","type":"uint256"}],"name":"OrderMakingAmountShouldBeEqualToMsgValue","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"OrderReceiverShouldBeSetCorrectly","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"SafeTransferFailed","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"maker","type":"address"},{"indexed":false,"internalType":"bytes32","name":"orderHash","type":"bytes32"},{"indexed":false,"internalType":"address","name":"clone","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"NativeOrderCreated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"inputs":[],"name":"IMPLEMENTATION","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint256","name":"salt","type":"uint256"},{"internalType":"Address","name":"maker","type":"uint256"},{"internalType":"Address","name":"receiver","type":"uint256"},{"internalType":"Address","name":"makerAsset","type":"uint256"},{"internalType":"Address","name":"takerAsset","type":"uint256"},{"internalType":"uint256","name":"makingAmount","type":"uint256"},{"internalType":"uint256","name":"takingAmount","type":"uint256"},{"internalType":"MakerTraits","name":"makerTraits","type":"uint256"}],"internalType":"struct IOrderMixin.Order","name":"makerOrder","type":"tuple"}],"name":"create","outputs":[{"internalType":"address","name":"clone","type":"address"}],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"rescueFunds","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"}]

610160806040523461027d5761227e803803809161001d8285610281565b833981019060c08183031261027d5780516001600160a01b0381169081900361027d5760208201516001600160a01b038116929083810361027d5760408201516001600160a01b038116929083900361027d57606081015160808201519091906001600160401b03811161027d57876100979183016102c5565b60a08201519097906001600160401b03811161027d576100b792016102c5565b91331561026a575f8054336001600160a01b03198216811783556040519290916001600160a01b0316907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09080a387516020890120918451602086012090610120528260c0528060e0524660a05260208201925f51602061225e5f395f51905f528452604083015260608201524660808201528660a082015260a0815261015f60c082610281565b5190206080525f51602061225e5f395f51905f5261010052604051956114ac808801949092906001600160401b038611898710176102565788976101dc976101ce95610db28b39875230602088015260408701526060860152608085015260e060a085015260e0840190610319565b9160c0818403910152610319565b03905ff0801561024b576001600160a01b031661014052604051610a73908161033f82396080518161094d015260a05181610927015260c0518161099c015260e051816109c20152610100518161097901526101205181610a030152610140518181816102bf01526108500152f35b6040513d5f823e3d90fd5b634e487b7160e01b5f52604160045260245ffd5b631e4fbdf760e01b5f525f60045260245ffd5b5f80fd5b601f909101601f19168101906001600160401b0382119082101761025657604052565b5f5b8381106102b55750505f910152565b81810151838201526020016102a6565b81601f8201121561027d5780516001600160401b03811161025657604051926102f8601f8301601f191660200185610281565b8184526020828401011161027d5761031691602080850191016102a4565b90565b90602091610332815180928185528580860191016102a4565b601f01601f191601019056fe6080806040526004361015610012575f80fd5b5f905f3560e01c9081633a4741bd14610808575080636ccae0541461062e578063715018a6146105945780638c72b608146101a15780638da5cb5b146101505763f2fde38b14610060575f80fd5b3461014d5760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261014d5773ffffffffffffffffffffffffffffffffffffffff6100ac610874565b6100b46108d8565b1680156101215773ffffffffffffffffffffffffffffffffffffffff8254827fffffffffffffffffffffffff00000000000000000000000000000000000000008216178455167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08380a380f35b6024827f1e4fbdf700000000000000000000000000000000000000000000000000000000815280600452fd5b80fd5b503461014d57807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261014d5773ffffffffffffffffffffffffffffffffffffffff6020915416604051908152f35b506101007ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126104d65773ffffffffffffffffffffffffffffffffffffffff60243516338103610565575060443573ffffffffffffffffffffffffffffffffffffffff81168015801561055c575b610531575060a4358034036105025773ffffffffffffffffffffffffffffffffffffffff6102ad610240610924565b6101206040517f3af21ec5a20011b88d3b7b4ed7c806cef05a5980cf34974bcd53566a131f7e4c8152610100600460208301372090604291604051917f19010000000000000000000000000000000000000000000000000000000000008352600283015260228201522090565b6e5af43d82803e903d91602b57fd5bf37f0000000000000000000000000000000000000000000000000000000000000000763d602d80600a3d3981f3363d3d373d3d3d363d7300000062ffffff8260881c16175f5260781b17602052603760095ff5169182156104da57823b156104d6576040517f501016d50000000000000000000000000000000000000000000000000000000081525f8160048134885af180156104cb576104b6575b506040519361010085019085821067ffffffffffffffff83111761048957506020947f283d7294adf3707552a0898f20486ec8259aa76a7911d7e12229462afe5d326893608093610469936040526004358352604083015260643560608301526084358483015260a082015260c43560c082015260e43560e082015284868201527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0610402610924565b91019081517f3af21ec5a20011b88d3b7b4ed7c806cef05a5980cf34974bcd53566a131f7e4c835261012083209252604291604051917f19010000000000000000000000000000000000000000000000000000000000008352600283015260228201522090565b6040519033825285820152836040820152346060820152a1604051908152f35b807f4e487b7100000000000000000000000000000000000000000000000000000000602492526041600452fd5b6104c39194505f90610897565b5f925f610358565b6040513d5f823e3d90fd5b5f80fd5b7fb06ebf3d000000000000000000000000000000000000000000000000000000005f5260045ffd5b7fa4864152000000000000000000000000000000000000000000000000000000005f526004523460245260445ffd5b7ffa4f3704000000000000000000000000000000000000000000000000000000005f5260045260245ffd5b50308114610211565b7f8b022b83000000000000000000000000000000000000000000000000000000005f523360045260245260445ffd5b346104d6575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126104d6576105ca6108d8565b5f73ffffffffffffffffffffffffffffffffffffffff81547fffffffffffffffffffffffff000000000000000000000000000000000000000081168355167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a3005b346104d65760607ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126104d657610665610874565b60243573ffffffffffffffffffffffffffffffffffffffff8116908181036104d65773ffffffffffffffffffffffffffffffffffffffff604435936106a86108d8565b1690816107705750505f80809381935af13d1561076b573d67ffffffffffffffff811161073e576040519061070560207fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f8401160183610897565b81525f60203d92013e5b1561071657005b7fb12d13eb000000000000000000000000000000000000000000000000000000005f5260045ffd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b61070f565b602092506044905f9294604051917fa9059cbb0000000000000000000000000000000000000000000000000000000083526004830152602482015282855af190816107e6575b50156107be57005b7ffb7f5079000000000000000000000000000000000000000000000000000000005f5260045ffd5b90503d15610800575060015f5114601f3d11165b816107b6565b3b15156107fa565b346104d6575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126104d65760209073ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000168152f35b6004359073ffffffffffffffffffffffffffffffffffffffff821682036104d657565b90601f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0910116810190811067ffffffffffffffff82111761073e57604052565b73ffffffffffffffffffffffffffffffffffffffff5f541633036108f857565b7f118cdaa7000000000000000000000000000000000000000000000000000000005f523360045260245ffd5b467f00000000000000000000000000000000000000000000000000000000000000000361096f577f000000000000000000000000000000000000000000000000000000000000000090565b60405160208101907f000000000000000000000000000000000000000000000000000000000000000082527f000000000000000000000000000000000000000000000000000000000000000060408201527f0000000000000000000000000000000000000000000000000000000000000000606082015246608082015273ffffffffffffffffffffffffffffffffffffffff7f00000000000000000000000000000000000000000000000000000000000000001660a082015260a08152610a3760c082610897565b5190209056fea2646970667358221220c66dd09508b95306408fdd2d1497a5ffeb5381ec3a959e3b853ae8ffe1d97d9464736f6c634300081e00336102208060405234610202576114ac803803809161001d8285610206565b8339810160e0828203126102025781516001600160a01b0381168082036102025761004a6020850161023d565b916100576040860161023d565b6060860151949092906001600160a01b038616860361020257608087015160a08801519097906001600160401b0381116102025782610097918301610251565b60c08201519092906001600160401b038111610202576100b79201610251565b9060208151910120906020815191012084610120528160c0528060e0524660a0526040519060208201925f51602061148c5f395f51905f5284526040830152606082015246608082015260018060a01b03851660a082015260a0815261011e60c082610206565b5190206080525f51602061148c5f395f51905f526101005261014052306101a05261016052610180526101c0526101e052610200526040516111cd90816102bf823960805181611043015260a0518161101d015260c05181611092015260e051816110b80152610100518161106f015261012051816110f901526101405181602f01526101605181818161030b0152818161050401526107680152610180518161037301526101a051818181610d2a0152610f2b01526101c0518181816102e201528181610cee0152610eef01526101e051816106b0015261020051816108f90152f35b5f80fd5b601f909101601f19168101906001600160401b0382119082101761022957604052565b634e487b7160e01b5f52604160045260245ffd5b51906001600160a01b038216820361020257565b81601f82011215610202578051906001600160401b0382116102295760405192610285601f8401601f191660200185610206565b82845260208383010111610202575f5b8281106102a957505060205f918301015290565b8060208092840101518282870101520161029556fe6080604052600436101561007f575b3615610018575f80fd5b73ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000000000000000000000000000000000000000000016330361005757005b7f1b10b0f9000000000000000000000000000000000000000000000000000000005f5260045ffd5b5f3560e01c80631626ba7e14610a745780631b75972c1461065c5780633a0918531461048c578063501016d5146102a25763dae3356b0361000e573461029e577ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601610160811261029e576101001361029e576101043573ffffffffffffffffffffffffffffffffffffffff8116810361029e57610144359067ffffffffffffffff821161029e573660238301121561029e57816004013561014181610ba6565b9061014f6040519283610b65565b8082526020820193366024838301011161029e57815f9260246020930187378301015273ffffffffffffffffffffffffffffffffffffffff61018f610e58565b1630810361026f575073ffffffffffffffffffffffffffffffffffffffff60243516803303610240575f80848685519161012435905af16101ce610e29565b604051911515825260406020830152818151918260408301525f5b8381106102285750507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f835f606080968601015201168101030190f35b602082820181015160608784010152859350016101e9565b7f99516c0e000000000000000000000000000000000000000000000000000000005f523360045260245260445ffd5b7f41b9adfc000000000000000000000000000000000000000000000000000000005f526004523060245260445ffd5b5f80fd5b5f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261029e5773ffffffffffffffffffffffffffffffffffffffff7f00000000000000000000000000000000000000000000000000000000000000001680330361045d577f00000000000000000000000000000000000000000000000000000000000000007fd0e30db0000000000000000000000000000000000000000000000000000000005f525f8060048134855af1156104525773ffffffffffffffffffffffffffffffffffffffff167f00000000000000000000000000000000000000000000000000000000000000009061039e348383611133565b156103a557005b60205f60446040517f095ea7b300000000000000000000000000000000000000000000000000000000815285600482015282602482015282855af180610433575b1591821561041f575b50506103f757005b7f19be9a90000000000000000000000000000000000000000000000000000000005f5260045ffd5b61042b92503491611133565b1581806103ef565b503d156104495760015f5114601f3d11166103e6565b803b15156103e6565b6040513d5f823e3d90fd5b7f1f71d67d000000000000000000000000000000000000000000000000000000005f523360045260245260445ffd5b3461029e576101007ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261029e5773ffffffffffffffffffffffffffffffffffffffff602435168033036102405773ffffffffffffffffffffffffffffffffffffffff6104f9610e58565b1630810361026f57507f0000000000000000000000000000000000000000000000000000000000000000907f70a08231000000000000000000000000000000000000000000000000000000005f523060045260205f60248173ffffffffffffffffffffffffffffffffffffffff86165afa5f5192901560203d1017610452578215610634575f6024818080947f2e1a7d4d000000000000000000000000000000000000000000000000000000008252876004525af115610452575f80808481945af16105c3610e29565b501561060c5760407f84d669b9ea8666709ee6bd1b617534aac0106acfa94c9364a322a36b5a6362eb916105fe6105f936610be0565b610f7d565b9082519182526020820152a1005b7fb12d13eb000000000000000000000000000000000000000000000000000000005f5260045ffd5b7fce268e60000000000000000000000000000000000000000000000000000000005f5260045ffd5b3461029e577ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601610120811261029e576101001361029e576101043573ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000166040517f70a08231000000000000000000000000000000000000000000000000000000008152336004820152602081602481855afa908115610452575f91610a42575b5015610a13575073ffffffffffffffffffffffffffffffffffffffff610737610e58565b1630810361026f575064ffffffffff60e43560501c169081151580610a0a575b156109da575f91816108e9575b50507f0000000000000000000000000000000000000000000000000000000000000000907f70a08231000000000000000000000000000000000000000000000000000000005f523060045260205f60248173ffffffffffffffffffffffffffffffffffffffff86165afa5f51901560203d10176104525780928115610634575f6024818080947f2e1a7d4d000000000000000000000000000000000000000000000000000000008252866004525af11561045257816108bf575b508161086a575b7f22770c588cf5c5f476664dc9b7c78816ad26f3d653e290d5a4f0053f015ae9ea916060916108566105f936610be0565b9160405192835260208301526040820152a1005b5f8080808573ffffffffffffffffffffffffffffffffffffffff602435165af1610892610e29565b50610825577fb12d13eb000000000000000000000000000000000000000000000000000000005f5260045ffd5b819250906108cc91610e1c565b905f80808084335af16108dd610e29565b501561060c578261081e565b9091506108f68142610e1c565b907f00000000000000000000000000000000000000000000000000000000000000008092106109a25750506201117048024881046201117014481517156109755769104e2da94483f6200000480290808204670f43fc2c04ee0000149015171561097557670de0b6b3a764000090049081808210911802188180610764565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b6109ac9042610e1c565b7f2e00a366000000000000000000000000000000000000000000000000000000005f5260045260245260445ffd5b507ff0c82d23000000000000000000000000000000000000000000000000000000005f524260045260245260445ffd5b50428210610757565b7fd3445e80000000000000000000000000000000000000000000000000000000005f523360045260245260445ffd5b90506020813d602011610a6c575b81610a5d60209383610b65565b8101031261029e575183610713565b3d9150610a50565b3461029e5760407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261029e5760243567ffffffffffffffff811161029e573660238201121561029e57806004013567ffffffffffffffff811161029e57602436918301011161029e57610af1602460209201600435610c57565b7fffffffff0000000000000000000000000000000000000000000000000000000060405191168152f35b610100810190811067ffffffffffffffff821117610b3857604052565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b90601f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0910116810190811067ffffffffffffffff821117610b3857604052565b67ffffffffffffffff8111610b3857601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe01660200190565b7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc61010091011261029e5760405190610c1882610b1b565b6004358252602435602083015260443560408301526064356060830152608435608083015260a43560a083015260c43560c083015260e43560e0830152565b9073ffffffffffffffffffffffffffffffffffffffff60556043610ce8610c7c61101a565b6101206040517f3af21ec5a20011b88d3b7b4ed7c806cef05a5980cf34974bcd53566a131f7e4c81526101008860208301372090604291604051917f19010000000000000000000000000000000000000000000000000000000000008352600283015260228201522090565b604051907f000000000000000000000000000000000000000000000000000000000000000060388301526f5af43d82803e903d91602b57fd5bf3ff60248301527f00000000000000000000000000000000000000000000000000000000000000006014830152733d602d80600a3d3981f3363d3d373d3d3d363d73825260588201526037600c82012060788201520120163003610e16576101008136031261029e57610de99060e060405191610d9d83610b1b565b803583526020810135602084015260408101356040840152606081013560608401526080810135608084015260a081013560a084015260c081013560c0840152013560e0820152610f7d565b03610e12577f1626ba7e0000000000000000000000000000000000000000000000000000000090565b5f90565b50505f90565b9190820391821161097557565b3d15610e53573d90610e3a82610ba6565b91610e486040519384610b65565b82523d5f602084013e565b606090565b73ffffffffffffffffffffffffffffffffffffffff60556043610ee9610e7c61101a565b6101206040517f3af21ec5a20011b88d3b7b4ed7c806cef05a5980cf34974bcd53566a131f7e4c8152610100600460208301372090604291604051917f19010000000000000000000000000000000000000000000000000000000000008352600283015260228201522090565b604051907f000000000000000000000000000000000000000000000000000000000000000060388301526f5af43d82803e903d91602b57fd5bf3ff60248301527f00000000000000000000000000000000000000000000000000000000000000006014830152733d602d80600a3d3981f3363d3d373d3d3d363d73825260588201526037600c820120607882015201201690565b611017903060208201527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0610fb061101a565b91019081517f3af21ec5a20011b88d3b7b4ed7c806cef05a5980cf34974bcd53566a131f7e4c835261012083209252604291604051917f19010000000000000000000000000000000000000000000000000000000000008352600283015260228201522090565b90565b467f000000000000000000000000000000000000000000000000000000000000000003611065577f000000000000000000000000000000000000000000000000000000000000000090565b60405160208101907f000000000000000000000000000000000000000000000000000000000000000082527f000000000000000000000000000000000000000000000000000000000000000060408201527f0000000000000000000000000000000000000000000000000000000000000000606082015246608082015273ffffffffffffffffffffffffffffffffffffffff7f00000000000000000000000000000000000000000000000000000000000000001660a082015260a0815261112d60c082610b65565b51902090565b929160446020925f92604051917f095ea7b30000000000000000000000000000000000000000000000000000000083526004830152602482015282865af1918261117a5750565b9091503d15611191575060015f5114601f3d111690565b3b15159056fea2646970667358221220d1dd272108828d3842dc77c02ad902979c987106e811d3fbc76a59e1c8f38bbd64736f6c634300081e00338b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f000000000000000000000000039e2fb66102314ce7b64ce5ce3e5183bc94ad38000000000000000000000000111111125421ca6dc452d289314280a0f8842a65000000000000000000000000acce5500000f71a32b5e5514d1577e14b7aacc4a000000000000000000000000000000000000000000000000000000000000003c00000000000000000000000000000000000000000000000000000000000000c00000000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000001831696e6368204167677265676174696f6e20526f75746572000000000000000000000000000000000000000000000000000000000000000000000000000000013600000000000000000000000000000000000000000000000000000000000000

Deployed Bytecode

0x6080806040526004361015610012575f80fd5b5f905f3560e01c9081633a4741bd14610808575080636ccae0541461062e578063715018a6146105945780638c72b608146101a15780638da5cb5b146101505763f2fde38b14610060575f80fd5b3461014d5760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261014d5773ffffffffffffffffffffffffffffffffffffffff6100ac610874565b6100b46108d8565b1680156101215773ffffffffffffffffffffffffffffffffffffffff8254827fffffffffffffffffffffffff00000000000000000000000000000000000000008216178455167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08380a380f35b6024827f1e4fbdf700000000000000000000000000000000000000000000000000000000815280600452fd5b80fd5b503461014d57807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261014d5773ffffffffffffffffffffffffffffffffffffffff6020915416604051908152f35b506101007ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126104d65773ffffffffffffffffffffffffffffffffffffffff60243516338103610565575060443573ffffffffffffffffffffffffffffffffffffffff81168015801561055c575b610531575060a4358034036105025773ffffffffffffffffffffffffffffffffffffffff6102ad610240610924565b6101206040517f3af21ec5a20011b88d3b7b4ed7c806cef05a5980cf34974bcd53566a131f7e4c8152610100600460208301372090604291604051917f19010000000000000000000000000000000000000000000000000000000000008352600283015260228201522090565b6e5af43d82803e903d91602b57fd5bf37f000000000000000000000000f3eaf3c54f1ef887914b9c19e1ab9d3e581557eb763d602d80600a3d3981f3363d3d373d3d3d363d7300000062ffffff8260881c16175f5260781b17602052603760095ff5169182156104da57823b156104d6576040517f501016d50000000000000000000000000000000000000000000000000000000081525f8160048134885af180156104cb576104b6575b506040519361010085019085821067ffffffffffffffff83111761048957506020947f283d7294adf3707552a0898f20486ec8259aa76a7911d7e12229462afe5d326893608093610469936040526004358352604083015260643560608301526084358483015260a082015260c43560c082015260e43560e082015284868201527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0610402610924565b91019081517f3af21ec5a20011b88d3b7b4ed7c806cef05a5980cf34974bcd53566a131f7e4c835261012083209252604291604051917f19010000000000000000000000000000000000000000000000000000000000008352600283015260228201522090565b6040519033825285820152836040820152346060820152a1604051908152f35b807f4e487b7100000000000000000000000000000000000000000000000000000000602492526041600452fd5b6104c39194505f90610897565b5f925f610358565b6040513d5f823e3d90fd5b5f80fd5b7fb06ebf3d000000000000000000000000000000000000000000000000000000005f5260045ffd5b7fa4864152000000000000000000000000000000000000000000000000000000005f526004523460245260445ffd5b7ffa4f3704000000000000000000000000000000000000000000000000000000005f5260045260245ffd5b50308114610211565b7f8b022b83000000000000000000000000000000000000000000000000000000005f523360045260245260445ffd5b346104d6575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126104d6576105ca6108d8565b5f73ffffffffffffffffffffffffffffffffffffffff81547fffffffffffffffffffffffff000000000000000000000000000000000000000081168355167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a3005b346104d65760607ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126104d657610665610874565b60243573ffffffffffffffffffffffffffffffffffffffff8116908181036104d65773ffffffffffffffffffffffffffffffffffffffff604435936106a86108d8565b1690816107705750505f80809381935af13d1561076b573d67ffffffffffffffff811161073e576040519061070560207fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f8401160183610897565b81525f60203d92013e5b1561071657005b7fb12d13eb000000000000000000000000000000000000000000000000000000005f5260045ffd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b61070f565b602092506044905f9294604051917fa9059cbb0000000000000000000000000000000000000000000000000000000083526004830152602482015282855af190816107e6575b50156107be57005b7ffb7f5079000000000000000000000000000000000000000000000000000000005f5260045ffd5b90503d15610800575060015f5114601f3d11165b816107b6565b3b15156107fa565b346104d6575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126104d65760209073ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000f3eaf3c54f1ef887914b9c19e1ab9d3e581557eb168152f35b6004359073ffffffffffffffffffffffffffffffffffffffff821682036104d657565b90601f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0910116810190811067ffffffffffffffff82111761073e57604052565b73ffffffffffffffffffffffffffffffffffffffff5f541633036108f857565b7f118cdaa7000000000000000000000000000000000000000000000000000000005f523360045260245ffd5b467f00000000000000000000000000000000000000000000000000000000000000920361096f577f91ffb1d22647474347f3626f8c22bfb7ebf218fb42a6d9c85323ee74408e7bf390565b60405160208101907f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f82527f5c6cbfb2848b981a8f93044b3530be1fac304ecd5042396ca8729cb8fdd718f360408201527fe455bf8ea6e7463a1046a0b52804526e119b4bf5136279614e0b1e8e296a4e2d606082015246608082015273ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000111111125421ca6dc452d289314280a0f8842a651660a082015260a08152610a3760c082610897565b5190209056fea2646970667358221220c66dd09508b95306408fdd2d1497a5ffeb5381ec3a959e3b853ae8ffe1d97d9464736f6c634300081e0033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

000000000000000000000000039e2fb66102314ce7b64ce5ce3e5183bc94ad38000000000000000000000000111111125421ca6dc452d289314280a0f8842a65000000000000000000000000acce5500000f71a32b5e5514d1577e14b7aacc4a000000000000000000000000000000000000000000000000000000000000003c00000000000000000000000000000000000000000000000000000000000000c00000000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000001831696e6368204167677265676174696f6e20526f75746572000000000000000000000000000000000000000000000000000000000000000000000000000000013600000000000000000000000000000000000000000000000000000000000000

-----Decoded View---------------
Arg [0] : weth (address): 0x039e2fB66102314Ce7b64Ce5Ce3E5183bc94aD38
Arg [1] : limitOrderProtocol (address): 0x111111125421cA6dc452d289314280a0f8842A65
Arg [2] : accessToken (address): 0xAcce5500000f71A32B5E5514D1577E14b7aacC4a
Arg [3] : cancellationDelay (uint256): 60
Arg [4] : name (string): 1inch Aggregation Router
Arg [5] : version (string): 6

-----Encoded View---------------
10 Constructor Arguments found :
Arg [0] : 000000000000000000000000039e2fb66102314ce7b64ce5ce3e5183bc94ad38
Arg [1] : 000000000000000000000000111111125421ca6dc452d289314280a0f8842a65
Arg [2] : 000000000000000000000000acce5500000f71a32b5e5514d1577e14b7aacc4a
Arg [3] : 000000000000000000000000000000000000000000000000000000000000003c
Arg [4] : 00000000000000000000000000000000000000000000000000000000000000c0
Arg [5] : 0000000000000000000000000000000000000000000000000000000000000100
Arg [6] : 0000000000000000000000000000000000000000000000000000000000000018
Arg [7] : 31696e6368204167677265676174696f6e20526f757465720000000000000000
Arg [8] : 0000000000000000000000000000000000000000000000000000000000000001
Arg [9] : 3600000000000000000000000000000000000000000000000000000000000000


Block Transaction Gas Used Reward
view all blocks ##produced##

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.