Overview
S Balance
S Value
$0.00More Info
Private Name Tags
ContractCreator
Loading...
Loading
Contract Name:
WithdrawPool
Compiler Version
v0.8.13+commit.abaa5c0e
Optimization Enabled:
Yes with 800 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.0; import "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol"; import "@openzeppelin/contracts-upgradeable/utils/cryptography/draft-EIP712Upgradeable.sol"; import "./libraries/MathHelper.sol"; import "./interfaces/IEndpoint.sol"; import "./Verifier.sol"; import "./interfaces/engine/ISpotEngine.sol"; import "./interfaces/IERC20Base.sol"; import "./libraries/ERC20Helper.sol"; import "./common/Constants.sol"; contract WithdrawPool is EIP712Upgradeable, OwnableUpgradeable { using ERC20Helper for IERC20Base; using MathSD21x18 for int128; /// @custom:oz-upgrades-unsafe-allow constructor constructor() { _disableInitializers(); } function initialize(address _clearinghouse, address _verifier) external initializer { __Ownable_init(); clearinghouse = _clearinghouse; verifier = _verifier; } address internal clearinghouse; address internal verifier; // submitted withdrawal idxs mapping(uint64 => bool) public markedIdxs; // collected withdrawal fees in native token decimals mapping(uint32 => int128) public fees; uint64 public minIdx; function submitFastWithdrawal( uint64 idx, bytes calldata transaction, bytes[] calldata signatures ) public { require(!markedIdxs[idx], "Withdrawal already submitted"); require(idx > minIdx, "idx too small"); markedIdxs[idx] = true; Verifier v = Verifier(verifier); v.requireValidTxSignatures(transaction, idx, signatures); IEndpoint.SignedWithdrawCollateral memory signedTx = abi.decode( transaction[1:], (IEndpoint.SignedWithdrawCollateral) ); IERC20Base token = getToken(signedTx.tx.productId); address sendTo = address(uint160(bytes20(signedTx.tx.sender))); uint128 transferAmount = signedTx.tx.amount; require(transferAmount <= INT128_MAX, ERR_CONVERSION_OVERFLOW); int128 fee = fastWithdrawalFeeAmount( token, signedTx.tx.productId, transferAmount ); require(transferAmount > uint128(fee), "Fee larger than balance"); transferAmount -= uint128(fee); fees[signedTx.tx.productId] += fee; handleWithdrawTransfer(token, sendTo, transferAmount); } function submitWithdrawal( IERC20Base token, address sendTo, uint128 amount, uint64 idx ) public { require(msg.sender == clearinghouse); if (markedIdxs[idx]) { return; } markedIdxs[idx] = true; // set minIdx to most recent withdrawal submitted by sequencer minIdx = idx; handleWithdrawTransfer(token, sendTo, amount); } function fastWithdrawalFeeAmount( IERC20Base token, uint32 productId, uint128 amount ) public view returns (int128) { uint8 decimals = token.decimals(); require(decimals <= MAX_DECIMALS); int256 multiplier = int256(10**(MAX_DECIMALS - uint8(decimals))); int128 amountX18 = int128(amount) * int128(multiplier); int128 proportionalFeeX18 = FAST_WITHDRAWAL_FEE_RATE.mul(amountX18); int128 minFeeX18 = 5 * spotEngine().getWithdrawFee(productId); int128 feeX18 = MathHelper.max(proportionalFeeX18, minFeeX18); return feeX18 / int128(multiplier); } function removeLiquidity( uint32 productId, uint128 amount, address sendTo ) external onlyOwner { handleWithdrawTransfer(getToken(productId), sendTo, amount); } function checkMarkedIdxs(uint64[] calldata idxs) public view returns (bool[] memory) { bool[] memory marked = new bool[](idxs.length); for (uint256 i = 0; i < idxs.length; i++) { marked[i] = markedIdxs[idxs[i]]; } return marked; } function checkProductBalances(uint32[] calldata productIds) public view returns (uint256[] memory) { uint256[] memory balances = new uint256[](productIds.length); for (uint256 i = 0; i < productIds.length; i++) { IERC20Base token = getToken(productIds[i]); balances[i] = token.balanceOf(address(this)); } return balances; } function handleWithdrawTransfer( IERC20Base token, address to, uint128 amount ) internal virtual { token.safeTransfer(to, uint256(amount)); } function safeTransferFrom( IERC20Base token, address from, uint256 amount ) internal virtual { token.safeTransferFrom(from, address(this), amount); } function getToken(uint32 productId) internal view returns (IERC20Base) { IERC20Base token = IERC20Base(spotEngine().getConfig(productId).token); require(address(token) != address(0)); return token; } function spotEngine() internal view returns (ISpotEngine) { return ISpotEngine( IClearinghouse(clearinghouse).getEngineByType( IProductEngine.EngineType.SPOT ) ); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/ContextUpgradeable.sol"; import "../proxy/utils/Initializable.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ function __Ownable_init() internal onlyInitializing { __Ownable_init_unchained(); } function __Ownable_init_unchained() internal onlyInitializing { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[49] private __gap; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0-rc.2) (utils/cryptography/draft-EIP712.sol) pragma solidity ^0.8.0; // EIP-712 is Final as of 2022-08-11. This file is deprecated. import "./EIP712Upgradeable.sol";
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.0; import "./MathSD21x18.sol"; /// @title MathHelper /// @dev Provides basic math functions library MathHelper { using MathSD21x18 for int128; /// @notice Returns market id for two given product ids function max(int128 a, int128 b) internal pure returns (int128) { return a > b ? a : b; } function min(int128 a, int128 b) internal pure returns (int128) { return a < b ? a : b; } function abs(int128 val) internal pure returns (int128) { return val < 0 ? -val : val; } // babylonian method (https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method) function sqrt(int128 y) internal pure returns (int128 z) { require(y >= 0, "ds-math-sqrt-non-positive"); if (y > 3) { z = y; int128 x = y / 2 + 1; while (x < z) { z = x; x = (y / x + x) / 2; } } else if (y != 0) { z = 1; } } function sqrt256(int256 y) internal pure returns (int256 z) { require(y >= 0, "ds-math-sqrt-non-positive"); if (y > 3) { z = y; int256 x = y / 2 + 1; while (x < z) { z = x; x = (y / x + x) / 2; } } else if (y != 0) { z = 1; } } function int2str(int128 value) internal pure returns (string memory) { if (value == 0) { return "0"; } bool negative = value < 0; uint128 absval = uint128(negative ? -value : value); string memory out = uint2str(absval); if (negative) { out = string.concat("-", out); } return out; } function uint2str(uint128 value) internal pure returns (string memory) { if (value == 0) { return "0"; } uint128 temp = value; uint128 digits; while (temp != 0) { digits++; temp /= 10; } bytes memory buffer = new bytes(digits); while (value != 0) { digits -= 1; buffer[digits] = bytes1(uint8(48 + uint128(value % 10))); value /= 10; } return string(buffer); } // https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v3.1.0/contracts/math/SignedSafeMath.sol#L86 function add(int128 x, int128 y) internal pure returns (int128) { int128 z = x + y; require((y >= 0 && z >= x) || (y < 0 && z < x), "ds-math-add-overflow"); return z; } // https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v3.1.0/contracts/math/SignedSafeMath.sol#L69 function sub(int128 x, int128 y) internal pure returns (int128) { int128 z = x - y; require( (y >= 0 && z <= x) || (y < 0 && z > x), "ds-math-sub-underflow" ); return z; } function mul(int128 x, int128 y) internal pure returns (int128 z) { require(y == 0 || (z = x * y) / y == x, "ds-math-mul-overflow"); } function floor(int128 x, int128 y) internal pure returns (int128 z) { require(y > 0, "ds-math-floor-neg-mod"); int128 r = x % y; if (r == 0) { z = x; } else { z = (x >= 0 ? x - r : x - r - y); } } function ceil(int128 x, int128 y) internal pure returns (int128 z) { require(y > 0, "ds-math-ceil-neg-mod"); int128 r = x % y; if (r == 0) { z = x; } else { z = (x >= 0 ? x + y - r : x - r); } } // we don't need to floor base with sizeIncrement in this function // because this function is only used by `view` functions, which means // the returned values will not be written into storage. function ammEquilibrium( int128 base, int128 quote, int128 priceX18 ) internal pure returns (int128, int128) { if (base == 0 || quote == 0) { return (0, 0); } int256 k = int256(base) * quote; // base * price * base == k // base = sqrt(k / price); base = int128(MathHelper.sqrt256((k * 1e18) / priceX18)); quote = (base == 0) ? int128(0) : int128(k / base); return (base, quote); } function isSwapValid( int128 baseDelta, int128 quoteDelta, int128 base, int128 quote ) internal pure returns (bool) { if ( base == 0 || quote == 0 || base + baseDelta <= 0 || quote + quoteDelta <= 0 ) { return false; } int256 kPrev = int256(base) * quote; int256 kNew = int256(base + baseDelta) * (quote + quoteDelta); return kNew > kPrev; } function swap( int128 amountSwap, int128 base, int128 quote, int128 priceX18, int128 sizeIncrement, int128 lpSpreadX18 ) internal pure returns (int128, int128) { // (amountSwap % sizeIncrement) is guaranteed to be 0 if (base == 0 || quote == 0) { return (0, 0); } int128 currentPriceX18 = quote.div(base); int128 keepRateX18 = 1e18 - lpSpreadX18; // selling if (amountSwap > 0) { priceX18 = priceX18.div(keepRateX18); if (priceX18 >= currentPriceX18) { return (0, 0); } } else { priceX18 = priceX18.mul(keepRateX18); if (priceX18 <= currentPriceX18) { return (0, 0); } } int256 k = int256(base) * quote; int128 baseAtPrice = int128( (MathHelper.sqrt256(k) * 1e9) / MathHelper.sqrt(priceX18) ); // base -> base + amountSwap int128 baseSwapped; if ( (amountSwap > 0 && base + amountSwap > baseAtPrice) || (amountSwap < 0 && base + amountSwap < baseAtPrice) ) { // we hit price limits before we exhaust amountSwap if (baseAtPrice >= base) { baseSwapped = MathHelper.floor( baseAtPrice - base, sizeIncrement ); } else { baseSwapped = MathHelper.ceil( baseAtPrice - base, sizeIncrement ); } } else { // just swap it all // amountSwap is already guaranteed to adhere to sizeIncrement baseSwapped = amountSwap; } int128 quoteSwapped = int128(k / (base + baseSwapped) - quote); if (amountSwap > 0) { quoteSwapped = quoteSwapped.mul(keepRateX18); } else { quoteSwapped = quoteSwapped.div(keepRateX18); } return (baseSwapped, quoteSwapped); } }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.0; import "./clearinghouse/IClearinghouse.sol"; interface IEndpoint { event SubmitTransactions(); // events that we parse transactions into enum TransactionType { LiquidateSubaccount, DepositCollateral, WithdrawCollateral, SpotTick, UpdatePrice, SettlePnl, MatchOrders, DepositInsurance, ExecuteSlowMode, MintLp, BurnLp, SwapAMM, MatchOrderAMM, DumpFees, ClaimSequencerFees, PerpTick, ManualAssert, Rebate, // deprecated UpdateProduct, LinkSigner, UpdateFeeRates, BurnLpAndTransfer, MatchOrdersRFQ, TransferQuote, RebalanceXWithdraw, UpdateMinDepositRate, AssertCode, WithdrawInsurance, CreateIsolatedSubaccount } struct UpdateProduct { address engine; bytes tx; } /// requires signature from sender enum LiquidationMode { SPREAD, SPOT, PERP } struct LegacyLiquidateSubaccount { bytes32 sender; bytes32 liquidatee; uint8 mode; uint32 healthGroup; int128 amount; uint64 nonce; } struct LiquidateSubaccount { bytes32 sender; bytes32 liquidatee; uint32 productId; bool isEncodedSpread; int128 amount; uint64 nonce; } struct LegacySignedLiquidateSubaccount { LegacyLiquidateSubaccount tx; bytes signature; } struct SignedLiquidateSubaccount { LiquidateSubaccount tx; bytes signature; } struct DepositCollateral { bytes32 sender; uint32 productId; uint128 amount; } struct SignedDepositCollateral { DepositCollateral tx; bytes signature; } struct WithdrawCollateral { bytes32 sender; uint32 productId; uint128 amount; uint64 nonce; } struct SignedWithdrawCollateral { WithdrawCollateral tx; bytes signature; } struct MintLp { bytes32 sender; uint32 productId; uint128 amountBase; uint128 quoteAmountLow; uint128 quoteAmountHigh; uint64 nonce; } struct SignedMintLp { MintLp tx; bytes signature; } struct BurnLp { bytes32 sender; uint32 productId; uint128 amount; uint64 nonce; } struct SignedBurnLp { BurnLp tx; bytes signature; } struct LinkSigner { bytes32 sender; bytes32 signer; uint64 nonce; } struct SignedLinkSigner { LinkSigner tx; bytes signature; } /// callable by endpoint; no signature verifications needed struct PerpTick { uint128 time; int128[] avgPriceDiffs; } struct LegacySpotTick { uint128 time; } struct SpotTick { uint128 time; // utilization ratio across all chains int128[] utilizationRatiosX18; } struct ManualAssert { int128[] openInterests; int128[] totalDeposits; int128[] totalBorrows; } struct AssertCode { string[] contractNames; bytes32[] codeHashes; } struct WithdrawInsurance { uint128 amount; address sendTo; } struct Rebate { bytes32[] subaccounts; int128[] amounts; } struct UpdateFeeRates { address user; uint32 productId; // the absolute value of fee rates can't be larger than 100%, // so their X18 values are in the range [-1e18, 1e18], which // can be stored by using int64. int64 makerRateX18; int64 takerRateX18; } struct ClaimSequencerFees { bytes32 subaccount; } struct RebalanceXWithdraw { uint32 productId; uint128 amount; address sendTo; } struct UpdateMinDepositRate { uint32 productId; int128 minDepositRateX18; } struct UpdatePrice { uint32 productId; int128 priceX18; } struct SettlePnl { bytes32[] subaccounts; uint256[] productIds; } /// matching struct Order { bytes32 sender; int128 priceX18; int128 amount; uint64 expiration; uint64 nonce; } struct SignedOrder { Order order; bytes signature; } struct LegacyMatchOrders { uint32 productId; bool amm; SignedOrder taker; SignedOrder maker; } struct MatchOrders { uint32 productId; SignedOrder taker; SignedOrder maker; } struct MatchOrdersWithSigner { MatchOrders matchOrders; address takerLinkedSigner; address makerLinkedSigner; } // just swap against AMM -- theres no maker order struct MatchOrderAMM { uint32 productId; int128 baseDelta; int128 quoteDelta; SignedOrder taker; } struct SwapAMM { bytes32 sender; uint32 productId; int128 amount; int128 priceX18; } struct DepositInsurance { uint128 amount; } struct SlowModeTx { uint64 executableAt; address sender; bytes tx; } struct SlowModeConfig { uint64 timeout; uint64 txCount; uint64 txUpTo; } // legacy :( struct Prices { int128 spotPriceX18; int128 perpPriceX18; } struct BurnLpAndTransfer { bytes32 sender; uint32 productId; uint128 amount; bytes32 recipient; } struct TransferQuote { bytes32 sender; bytes32 recipient; uint128 amount; uint64 nonce; } struct SignedTransferQuote { TransferQuote tx; bytes signature; } struct IsolatedOrder { bytes32 sender; int128 priceX18; int128 amount; uint64 expiration; uint64 nonce; int128 margin; } struct CreateIsolatedSubaccount { IsolatedOrder order; uint32 productId; bytes signature; } function depositCollateral( bytes12 subaccountName, uint32 productId, uint128 amount ) external; function depositCollateralWithReferral( bytes12 subaccountName, uint32 productId, uint128 amount, string calldata referralCode ) external; function depositCollateralWithReferral( bytes32 subaccount, uint32 productId, uint128 amount, string calldata referralCode ) external; function submitSlowModeTransaction(bytes calldata transaction) external; function getTime() external view returns (uint128); function getSequencer() external view returns (address); function getNonce(address sender) external view returns (uint64); function getOffchainExchange() external view returns (address); function getPriceX18(uint32 productId) external view returns (int128); }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.0; import "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol"; import "@openzeppelin/contracts-upgradeable/utils/cryptography/draft-EIP712Upgradeable.sol"; import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol"; import "./common/Errors.sol"; import "./libraries/MathHelper.sol"; import "./interfaces/IVerifier.sol"; contract Verifier is EIP712Upgradeable, OwnableUpgradeable, IVerifier { Point[8] internal pubkeys; Point[256] internal aggregatePubkey; bool[256] internal isAggregatePubkeyLatest; uint256 internal nSigner; /// @custom:oz-upgrades-unsafe-allow constructor constructor() { _disableInitializers(); } function initialize(Point[8] memory initialSet) external initializer { __Ownable_init(); for (uint256 i = 0; i < 8; ++i) { if (!isPointNone(initialSet[i])) { _assignPubkey(i, initialSet[i].x, initialSet[i].y); } } } function revertGasInfo(uint256 i, uint256 gasUsed) external pure { revert( string.concat( "G ", MathHelper.uint2str(uint128(i)), " ", MathHelper.uint2str(uint128(gasUsed)) ) ); } function assignPubKey( uint256 i, uint256 x, uint256 y ) public onlyOwner { _assignPubkey(i, x, y); } function _assignPubkey( uint256 i, uint256 x, uint256 y ) internal { require(i < 8); if (isPointNone(pubkeys[i])) { nSigner += 1; } pubkeys[i] = Point(x, y); for (uint256 s = (1 << i); s < 256; s = (s + 1) | (1 << i)) { isAggregatePubkeyLatest[s] = false; } } function deletePubkey(uint256 index) public onlyOwner { if (!isPointNone(pubkeys[index])) { nSigner -= 1; delete pubkeys[index]; } } function getPubkey(uint8 index) public view returns (Point memory) { return pubkeys[index]; } function getPubkeyAddress(uint8 index) public view returns (address) { Point memory p = getPubkey(index); return address(uint160(uint256(keccak256(abi.encode(p.x, p.y))))); } function getAggregatePubkey(uint8 signerBitmask) internal returns (Point memory) { if (signerBitmask == 0 || isAggregatePubkeyLatest[signerBitmask]) return aggregatePubkey[signerBitmask]; Point memory res; for (uint256 i = 0; i < 8; ++i) { if ((signerBitmask >> i) % 2 == 1) { require(!isPointNone(pubkeys[i])); res = pointAdd( getAggregatePubkey(signerBitmask ^ uint8(1 << i)), pubkeys[i] ); break; } } aggregatePubkey[signerBitmask] = res; isAggregatePubkeyLatest[signerBitmask] = true; return res; } // determine if 2/3 of the signers are included in this signing mask // and if the keys are present function checkQuorum(uint8 signerBitmask) internal view returns (bool) { uint256 nSigned = 0; for (uint256 i = 0; i < 8; ++i) { bool signed = ((signerBitmask >> i) & 1) == 1; if (signed) { if (isPointNone(pubkeys[i])) { return false; } nSigned += 1; } } return nSigned * 2 > nSigner; } function requireValidSignature( bytes32 message, bytes32 e, bytes32 s, uint8 signerBitmask ) public { require(checkQuorum(signerBitmask)); Point memory pubkey = getAggregatePubkey(signerBitmask); require( verify( pubkey.y % 2 == 0 ? 27 : 28, bytes32(pubkey.x), message, e, s ), "Verification failed" ); } /// SCHNORR IMPLEMENTATION BELOW // secp256k1 group order uint256 public constant Q = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141; // parity := public key y-coord parity (27 or 28) // px := public key x-coord // message := 32-byte message // e := schnorr signature challenge // s := schnorr signature function verify( uint8 parity, bytes32 px, bytes32 message, bytes32 e, bytes32 s ) internal pure returns (bool) { // ecrecover = (m, v, r, s); bytes32 sp = bytes32(Q - mulmod(uint256(s), uint256(px), Q)); bytes32 ep = bytes32(Q - mulmod(uint256(e), uint256(px), Q)); require(sp != 0); // the ecrecover precompile implementation checks that the `r` and `s` // inputs are non-zero (in this case, `px` and `ep`), thus we don't need to // check if they're zero. address R = ecrecover(sp, parity, px, ep); require(R != address(0), "ecrecover failed"); return e == keccak256(abi.encodePacked(R, uint8(parity), px, message)); } uint256 public constant _P = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F; struct Point { uint256 x; uint256 y; } function pow( uint256 a, uint256 b, uint256 mod ) internal pure returns (uint256) { // a ^ b % mod uint256 res = 1; while (b > 0) { if (b % 2 == 1) { res = mulmod(res, a, mod); } a = mulmod(a, a, mod); b /= 2; } return res; } function isPointNone(Point memory u) internal pure returns (bool) { return u.x == 0 && u.y == 0; } function pointAdd(Point memory u, Point memory v) internal pure returns (Point memory) { if (isPointNone(u)) return v; if (isPointNone(v)) return u; uint256 lam = 0; if (u.x == v.x) { if (u.y != v.y) return Point(0, 0); lam = mulmod(3, u.x, _P); lam = mulmod(lam, u.x, _P); lam = mulmod(lam, pow(mulmod(2, v.y, _P), _P - 2, _P), _P); } else { lam = mulmod( addmod(v.y, _P - u.y, _P), pow(addmod(v.x, _P - u.x, _P), _P - 2, _P), _P ); } uint256 x3 = mulmod(lam, lam, _P); x3 = addmod(x3, _P - u.x, _P); x3 = addmod(x3, _P - v.x, _P); uint256 y3 = addmod(u.x, _P - x3, _P); y3 = mulmod(y3, lam, _P); y3 = addmod(y3, _P - u.y, _P); return Point(x3, y3); } function checkIndividualSignature( bytes32 digest, bytes memory signature, uint8 signerIndex ) public view returns (bool) { address expectedAddress = getPubkeyAddress(signerIndex); address recovered = ECDSA.recover(digest, signature); return expectedAddress == recovered; } function requireValidTxSignatures( bytes calldata txn, uint64 idx, bytes[] calldata signatures ) public { bytes32 data = keccak256( abi.encodePacked(uint256(block.chainid), uint256(idx), txn) ); bytes32 hashedMsg = keccak256( abi.encodePacked("\x19Ethereum Signed Message:\n32", data) ); uint256 nSignatures = 0; for (uint256 i = 0; i < signatures.length; i++) { if (signatures[i].length > 0) { nSignatures += 1; require( checkIndividualSignature( hashedMsg, signatures[i], uint8(i) ), "invalid signature" ); } } require(nSignatures == nSigner, "not enough signatures"); } }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.0; import "./IProductEngine.sol"; import "../../libraries/RiskHelper.sol"; interface ISpotEngine is IProductEngine { event InterestPayment( uint32 productId, uint128 dt, int128 depositRateMultiplierX18, int128 borrowRateMultiplierX18, int128 feeAmount ); struct Config { address token; int128 interestInflectionUtilX18; int128 interestFloorX18; int128 interestSmallCapX18; int128 interestLargeCapX18; } struct State { int128 cumulativeDepositsMultiplierX18; int128 cumulativeBorrowsMultiplierX18; int128 totalDepositsNormalized; int128 totalBorrowsNormalized; } struct Balance { int128 amount; int128 lastCumulativeMultiplierX18; } struct BalanceNormalized { int128 amountNormalized; } struct LpState { int128 supply; Balance quote; Balance base; } struct LpBalance { int128 amount; } struct Balances { BalanceNormalized balance; LpBalance lpBalance; } struct UpdateProductTx { uint32 productId; int128 sizeIncrement; int128 minSize; int128 lpSpreadX18; Config config; RiskHelper.RiskStore riskStore; } function getStateAndBalance(uint32 productId, bytes32 subaccount) external view returns (State memory, Balance memory); function getBalance(uint32 productId, bytes32 subaccount) external view returns (Balance memory); function getStatesAndBalances(uint32 productId, bytes32 subaccount) external view returns ( LpState memory, LpBalance memory, State memory, Balance memory ); function getConfig(uint32 productId) external view returns (Config memory); function getWithdrawFee(uint32 productId) external view returns (int128); function getToken(uint32 productId) external view returns (address); function updateBalance( uint32 productId, bytes32 subaccount, int128 amountDelta ) external; function updateBalance( uint32 productId, bytes32 subaccount, int128 amountDelta, int128 quoteDelta ) external; function updateQuoteFromInsurance(bytes32 subaccount, int128 insurance) external returns (int128); function updateStates(uint128 dt) external; function updateMinDepositRate(uint32 productId, int128 minDepositRateX18) external; function manualAssert( int128[] calldata totalDeposits, int128[] calldata totalBorrows ) external view; function socializeSubaccount(bytes32 subaccount) external; function assertUtilization(uint32 productId) external view; }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.0; interface IERC20Base { function decimals() external view returns (uint8); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); function increaseAllowance(address spender, uint256 addedValue) external returns (bool); function decreaseAllowance(address spender, uint256 subtractedValue) external returns (bool); function balanceOf(address account) external view returns (uint256); }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.0; import "../interfaces/IERC20Base.sol"; import "../common/Errors.sol"; import "hardhat/console.sol"; // @dev Adapted from https://github.com/Uniswap/v3-core/blob/main/contracts/libraries/TransferHelper.sol library ERC20Helper { function safeTransfer( IERC20Base self, address to, uint256 amount ) internal { (bool success, bytes memory data) = address(self).call( abi.encodeWithSelector(IERC20Base.transfer.selector, to, amount) ); require( success && (data.length == 0 || abi.decode(data, (bool))), ERR_TRANSFER_FAILED ); } function safeTransferFrom( IERC20Base self, address from, address to, uint256 amount ) internal { (bool success, bytes memory data) = address(self).call( abi.encodeWithSelector( IERC20Base.transferFrom.selector, from, to, amount ) ); require( success && (data.length == 0 || abi.decode(data, (bool))), ERR_TRANSFER_FAILED ); } }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.0; /// @dev Each clearinghouse has a unique quote product uint32 constant QUOTE_PRODUCT_ID = 0; /// @dev Fees account bytes32 constant FEES_ACCOUNT = bytes32(0); bytes32 constant X_ACCOUNT = 0x0000000000000000000000000000000000000000000000000000000000000001; string constant DEFAULT_REFERRAL_CODE = "-1"; uint128 constant MINIMUM_LIQUIDITY = 10**3; int128 constant ONE = 10**18; uint8 constant MAX_DECIMALS = 18; int128 constant TAKER_SEQUENCER_FEE = 0; // $0.00 int128 constant SLOW_MODE_FEE = 1000000; // $1 int128 constant FAST_WITHDRAWAL_FEE_RATE = 1_000_000_000_000_000; // 0.1% int128 constant LIQUIDATION_FEE = 1e18; // $1 int128 constant HEALTHCHECK_FEE = 1e18; // $1 uint128 constant INT128_MAX = uint128(type(int128).max); uint64 constant SECONDS_PER_DAY = 3600 * 24; uint32 constant VRTX_PRODUCT_ID = 41; int128 constant LIQUIDATION_FEE_FRACTION = 500_000_000_000_000_000; // 50% int128 constant INTEREST_FEE_FRACTION = 200_000_000_000_000_000; // 20% int256 constant MIN_DEPOSIT_AMOUNT = 5 * ONE; uint32 constant MAX_ISOLATED_SUBACCOUNTS_PER_ADDRESS = 10;
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; import "../proxy/utils/Initializable.sol"; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract ContextUpgradeable is Initializable { function __Context_init() internal onlyInitializing { } function __Context_init_unchained() internal onlyInitializing { } function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[50] private __gap; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0-rc.2) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; import "../../utils/AddressUpgradeable.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ``` * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a * constructor. * * Emits an {Initialized} event. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: setting the version to 255 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized < type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } /** * @dev Internal function that returns the initialized version. Returns `_initialized` */ function _getInitializedVersion() internal view returns (uint8) { return _initialized; } /** * @dev Internal function that returns the initialized version. Returns `_initializing` */ function _isInitializing() internal view returns (bool) { return _initializing; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0-rc.2) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library AddressUpgradeable { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0-rc.2) (utils/cryptography/EIP712.sol) pragma solidity ^0.8.0; import "./ECDSAUpgradeable.sol"; import "../../proxy/utils/Initializable.sol"; /** * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data. * * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible, * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding * they need in their contracts using a combination of `abi.encode` and `keccak256`. * * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA * ({_hashTypedDataV4}). * * The implementation of the domain separator was designed to be as efficient as possible while still properly updating * the chain id to protect against replay attacks on an eventual fork of the chain. * * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask]. * * _Available since v3.4._ * * @custom:storage-size 52 */ abstract contract EIP712Upgradeable is Initializable { /* solhint-disable var-name-mixedcase */ bytes32 private _HASHED_NAME; bytes32 private _HASHED_VERSION; bytes32 private constant _TYPE_HASH = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"); /* solhint-enable var-name-mixedcase */ /** * @dev Initializes the domain separator and parameter caches. * * The meaning of `name` and `version` is specified in * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]: * * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol. * - `version`: the current major version of the signing domain. * * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart * contract upgrade]. */ function __EIP712_init(string memory name, string memory version) internal onlyInitializing { __EIP712_init_unchained(name, version); } function __EIP712_init_unchained(string memory name, string memory version) internal onlyInitializing { bytes32 hashedName = keccak256(bytes(name)); bytes32 hashedVersion = keccak256(bytes(version)); _HASHED_NAME = hashedName; _HASHED_VERSION = hashedVersion; } /** * @dev Returns the domain separator for the current chain. */ function _domainSeparatorV4() internal view returns (bytes32) { return _buildDomainSeparator(_TYPE_HASH, _EIP712NameHash(), _EIP712VersionHash()); } function _buildDomainSeparator( bytes32 typeHash, bytes32 nameHash, bytes32 versionHash ) private view returns (bytes32) { return keccak256(abi.encode(typeHash, nameHash, versionHash, block.chainid, address(this))); } /** * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this * function returns the hash of the fully encoded EIP712 message for this domain. * * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example: * * ```solidity * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode( * keccak256("Mail(address to,string contents)"), * mailTo, * keccak256(bytes(mailContents)) * ))); * address signer = ECDSA.recover(digest, signature); * ``` */ function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) { return ECDSAUpgradeable.toTypedDataHash(_domainSeparatorV4(), structHash); } /** * @dev The hash of the name parameter for the EIP712 domain. * * NOTE: This function reads from storage by default, but can be redefined to return a constant value if gas costs * are a concern. */ function _EIP712NameHash() internal virtual view returns (bytes32) { return _HASHED_NAME; } /** * @dev The hash of the version parameter for the EIP712 domain. * * NOTE: This function reads from storage by default, but can be redefined to return a constant value if gas costs * are a concern. */ function _EIP712VersionHash() internal virtual view returns (bytes32) { return _HASHED_VERSION; } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[50] private __gap; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0-rc.2) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.0; import "../StringsUpgradeable.sol"; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSAUpgradeable { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS, InvalidSignatureV // Deprecated in v4.8 } function _throwError(RecoverError error) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert("ECDSA: invalid signature"); } else if (error == RecoverError.InvalidSignatureLength) { revert("ECDSA: invalid signature length"); } else if (error == RecoverError.InvalidSignatureS) { revert("ECDSA: invalid signature 's' value"); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature` or error string. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, signature); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures] * * _Available since v4.3._ */ function tryRecover( bytes32 hash, bytes32 r, bytes32 vs ) internal pure returns (address, RecoverError) { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. * * _Available since v4.2._ */ function recover( bytes32 hash, bytes32 r, bytes32 vs ) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, r, vs); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. * * _Available since v4.3._ */ function tryRecover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address, RecoverError) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature); } return (signer, RecoverError.NoError); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, v, r, s); _throwError(error); return recovered; } /** * @dev Returns an Ethereum Signed Message, created from a `hash`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) { // 32 is the length in bytes of hash, // enforced by the type signature above return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash)); } /** * @dev Returns an Ethereum Signed Message, created from `s`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", StringsUpgradeable.toString(s.length), s)); } /** * @dev Returns an Ethereum Signed Typed Data, created from a * `domainSeparator` and a `structHash`. This produces hash corresponding * to the one signed with the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] * JSON-RPC method as part of EIP-712. * * See {recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0-rc.2) (utils/Strings.sol) pragma solidity ^0.8.0; import "./math/MathUpgradeable.sol"; /** * @dev String operations. */ library StringsUpgradeable { bytes16 private constant _SYMBOLS = "0123456789abcdef"; uint8 private constant _ADDRESS_LENGTH = 20; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = MathUpgradeable.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), _SYMBOLS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, MathUpgradeable.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0-rc.2) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library MathUpgradeable { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv( uint256 x, uint256 y, uint256 denominator, Rounding rounding ) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10**64) { value /= 10**64; result += 64; } if (value >= 10**32) { value /= 10**32; result += 32; } if (value >= 10**16) { value /= 10**16; result += 16; } if (value >= 10**8) { value /= 10**8; result += 8; } if (value >= 10**4) { value /= 10**4; result += 4; } if (value >= 10**2) { value /= 10**2; result += 2; } if (value >= 10**1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0); } } }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.0; import "prb-math/contracts/PRBMathSD59x18.sol"; library MathSD21x18 { using PRBMathSD59x18 for int256; int128 private constant ONE_X18 = 1000000000000000000; int128 private constant MIN_X18 = -0x80000000000000000000000000000000; int128 private constant MAX_X18 = 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; string private constant ERR_OVERFLOW = "OF"; string private constant ERR_DIV_BY_ZERO = "DBZ"; function fromInt(int128 x) internal pure returns (int128) { unchecked { int256 result = int256(x) * ONE_X18; require(result >= MIN_X18 && result <= MAX_X18, ERR_OVERFLOW); return int128(result); } } function mulDiv( int128 x, int128 y, int128 z ) internal pure returns (int128) { unchecked { require(z != 0, ERR_DIV_BY_ZERO); int256 result = (int256(x) * y) / z; require(result >= MIN_X18 && result <= MAX_X18, ERR_OVERFLOW); return int128(result); } } function toInt(int128 x) internal pure returns (int128) { unchecked { return int128(x / ONE_X18); } } function add(int128 x, int128 y) internal pure returns (int128) { unchecked { int256 result = int256(x) + y; require(result >= MIN_X18 && result <= MAX_X18, ERR_OVERFLOW); return int128(result); } } function sub(int128 x, int128 y) internal pure returns (int128) { unchecked { int256 result = int256(x) - y; require(result >= MIN_X18 && result <= MAX_X18, ERR_OVERFLOW); return int128(result); } } function mul(int128 x, int128 y) internal pure returns (int128) { unchecked { int256 result = (int256(x) * y) / ONE_X18; require(result >= MIN_X18 && result <= MAX_X18, ERR_OVERFLOW); return int128(result); } } function div(int128 x, int128 y) internal pure returns (int128) { unchecked { require(y != 0, ERR_DIV_BY_ZERO); int256 result = (int256(x) * ONE_X18) / y; require(result >= MIN_X18 && result <= MAX_X18, ERR_OVERFLOW); return int128(result); } } function abs(int128 x) internal pure returns (int128) { unchecked { require(x != MIN_X18, ERR_OVERFLOW); return x < 0 ? -x : x; } } function sqrt(int128 x) internal pure returns (int128) { unchecked { int256 result = int256(x).sqrt(); require(result >= MIN_X18 && result <= MAX_X18, ERR_OVERFLOW); return int128(result); } } // note that y is not X18 function pow(int128 x, int128 y) internal pure returns (int128) { unchecked { require(y >= 0, ERR_OVERFLOW); int128 result = ONE_X18; for (int128 i = 1; i <= y; i *= 2) { if (i & y != 0) { result = mul(result, x); } x = mul(x, x); } return result; } } }
// SPDX-License-Identifier: Unlicense pragma solidity >=0.8.4; import "./PRBMath.sol"; /// @title PRBMathSD59x18 /// @author Paul Razvan Berg /// @notice Smart contract library for advanced fixed-point math that works with int256 numbers considered to have 18 /// trailing decimals. We call this number representation signed 59.18-decimal fixed-point, since the numbers can have /// a sign and there can be up to 59 digits in the integer part and up to 18 decimals in the fractional part. The numbers /// are bound by the minimum and the maximum values permitted by the Solidity type int256. library PRBMathSD59x18 { /// @dev log2(e) as a signed 59.18-decimal fixed-point number. int256 internal constant LOG2_E = 1_442695040888963407; /// @dev Half the SCALE number. int256 internal constant HALF_SCALE = 5e17; /// @dev The maximum value a signed 59.18-decimal fixed-point number can have. int256 internal constant MAX_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_792003956564819967; /// @dev The maximum whole value a signed 59.18-decimal fixed-point number can have. int256 internal constant MAX_WHOLE_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_000000000000000000; /// @dev The minimum value a signed 59.18-decimal fixed-point number can have. int256 internal constant MIN_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_792003956564819968; /// @dev The minimum whole value a signed 59.18-decimal fixed-point number can have. int256 internal constant MIN_WHOLE_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_000000000000000000; /// @dev How many trailing decimals can be represented. int256 internal constant SCALE = 1e18; /// INTERNAL FUNCTIONS /// /// @notice Calculate the absolute value of x. /// /// @dev Requirements: /// - x must be greater than MIN_SD59x18. /// /// @param x The number to calculate the absolute value for. /// @param result The absolute value of x. function abs(int256 x) internal pure returns (int256 result) { unchecked { if (x == MIN_SD59x18) { revert PRBMathSD59x18__AbsInputTooSmall(); } result = x < 0 ? -x : x; } } /// @notice Calculates the arithmetic average of x and y, rounding down. /// @param x The first operand as a signed 59.18-decimal fixed-point number. /// @param y The second operand as a signed 59.18-decimal fixed-point number. /// @return result The arithmetic average as a signed 59.18-decimal fixed-point number. function avg(int256 x, int256 y) internal pure returns (int256 result) { // The operations can never overflow. unchecked { int256 sum = (x >> 1) + (y >> 1); if (sum < 0) { // If at least one of x and y is odd, we add 1 to the result. This is because shifting negative numbers to the // right rounds down to infinity. assembly { result := add(sum, and(or(x, y), 1)) } } else { // If both x and y are odd, we add 1 to the result. This is because if both numbers are odd, the 0.5 // remainder gets truncated twice. result = sum + (x & y & 1); } } } /// @notice Yields the least greatest signed 59.18 decimal fixed-point number greater than or equal to x. /// /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional counterparts. /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be less than or equal to MAX_WHOLE_SD59x18. /// /// @param x The signed 59.18-decimal fixed-point number to ceil. /// @param result The least integer greater than or equal to x, as a signed 58.18-decimal fixed-point number. function ceil(int256 x) internal pure returns (int256 result) { if (x > MAX_WHOLE_SD59x18) { revert PRBMathSD59x18__CeilOverflow(x); } unchecked { int256 remainder = x % SCALE; if (remainder == 0) { result = x; } else { // Solidity uses C fmod style, which returns a modulus with the same sign as x. result = x - remainder; if (x > 0) { result += SCALE; } } } } /// @notice Divides two signed 59.18-decimal fixed-point numbers, returning a new signed 59.18-decimal fixed-point number. /// /// @dev Variant of "mulDiv" that works with signed numbers. Works by computing the signs and the absolute values separately. /// /// Requirements: /// - All from "PRBMath.mulDiv". /// - None of the inputs can be MIN_SD59x18. /// - The denominator cannot be zero. /// - The result must fit within int256. /// /// Caveats: /// - All from "PRBMath.mulDiv". /// /// @param x The numerator as a signed 59.18-decimal fixed-point number. /// @param y The denominator as a signed 59.18-decimal fixed-point number. /// @param result The quotient as a signed 59.18-decimal fixed-point number. function div(int256 x, int256 y) internal pure returns (int256 result) { if (x == MIN_SD59x18 || y == MIN_SD59x18) { revert PRBMathSD59x18__DivInputTooSmall(); } // Get hold of the absolute values of x and y. uint256 ax; uint256 ay; unchecked { ax = x < 0 ? uint256(-x) : uint256(x); ay = y < 0 ? uint256(-y) : uint256(y); } // Compute the absolute value of (x*SCALE)÷y. The result must fit within int256. uint256 rAbs = PRBMath.mulDiv(ax, uint256(SCALE), ay); if (rAbs > uint256(MAX_SD59x18)) { revert PRBMathSD59x18__DivOverflow(rAbs); } // Get the signs of x and y. uint256 sx; uint256 sy; assembly { sx := sgt(x, sub(0, 1)) sy := sgt(y, sub(0, 1)) } // XOR over sx and sy. This is basically checking whether the inputs have the same sign. If yes, the result // should be positive. Otherwise, it should be negative. result = sx ^ sy == 1 ? -int256(rAbs) : int256(rAbs); } /// @notice Returns Euler's number as a signed 59.18-decimal fixed-point number. /// @dev See https://en.wikipedia.org/wiki/E_(mathematical_constant). function e() internal pure returns (int256 result) { result = 2_718281828459045235; } /// @notice Calculates the natural exponent of x. /// /// @dev Based on the insight that e^x = 2^(x * log2(e)). /// /// Requirements: /// - All from "log2". /// - x must be less than 133.084258667509499441. /// /// Caveats: /// - All from "exp2". /// - For any x less than -41.446531673892822322, the result is zero. /// /// @param x The exponent as a signed 59.18-decimal fixed-point number. /// @return result The result as a signed 59.18-decimal fixed-point number. function exp(int256 x) internal pure returns (int256 result) { // Without this check, the value passed to "exp2" would be less than -59.794705707972522261. if (x < -41_446531673892822322) { return 0; } // Without this check, the value passed to "exp2" would be greater than 192. if (x >= 133_084258667509499441) { revert PRBMathSD59x18__ExpInputTooBig(x); } // Do the fixed-point multiplication inline to save gas. unchecked { int256 doubleScaleProduct = x * LOG2_E; result = exp2((doubleScaleProduct + HALF_SCALE) / SCALE); } } /// @notice Calculates the binary exponent of x using the binary fraction method. /// /// @dev See https://ethereum.stackexchange.com/q/79903/24693. /// /// Requirements: /// - x must be 192 or less. /// - The result must fit within MAX_SD59x18. /// /// Caveats: /// - For any x less than -59.794705707972522261, the result is zero. /// /// @param x The exponent as a signed 59.18-decimal fixed-point number. /// @return result The result as a signed 59.18-decimal fixed-point number. function exp2(int256 x) internal pure returns (int256 result) { // This works because 2^(-x) = 1/2^x. if (x < 0) { // 2^59.794705707972522262 is the maximum number whose inverse does not truncate down to zero. if (x < -59_794705707972522261) { return 0; } // Do the fixed-point inversion inline to save gas. The numerator is SCALE * SCALE. unchecked { result = 1e36 / exp2(-x); } } else { // 2^192 doesn't fit within the 192.64-bit format used internally in this function. if (x >= 192e18) { revert PRBMathSD59x18__Exp2InputTooBig(x); } unchecked { // Convert x to the 192.64-bit fixed-point format. uint256 x192x64 = (uint256(x) << 64) / uint256(SCALE); // Safe to convert the result to int256 directly because the maximum input allowed is 192. result = int256(PRBMath.exp2(x192x64)); } } } /// @notice Yields the greatest signed 59.18 decimal fixed-point number less than or equal to x. /// /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional counterparts. /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be greater than or equal to MIN_WHOLE_SD59x18. /// /// @param x The signed 59.18-decimal fixed-point number to floor. /// @param result The greatest integer less than or equal to x, as a signed 58.18-decimal fixed-point number. function floor(int256 x) internal pure returns (int256 result) { if (x < MIN_WHOLE_SD59x18) { revert PRBMathSD59x18__FloorUnderflow(x); } unchecked { int256 remainder = x % SCALE; if (remainder == 0) { result = x; } else { // Solidity uses C fmod style, which returns a modulus with the same sign as x. result = x - remainder; if (x < 0) { result -= SCALE; } } } } /// @notice Yields the excess beyond the floor of x for positive numbers and the part of the number to the right /// of the radix point for negative numbers. /// @dev Based on the odd function definition. https://en.wikipedia.org/wiki/Fractional_part /// @param x The signed 59.18-decimal fixed-point number to get the fractional part of. /// @param result The fractional part of x as a signed 59.18-decimal fixed-point number. function frac(int256 x) internal pure returns (int256 result) { unchecked { result = x % SCALE; } } /// @notice Converts a number from basic integer form to signed 59.18-decimal fixed-point representation. /// /// @dev Requirements: /// - x must be greater than or equal to MIN_SD59x18 divided by SCALE. /// - x must be less than or equal to MAX_SD59x18 divided by SCALE. /// /// @param x The basic integer to convert. /// @param result The same number in signed 59.18-decimal fixed-point representation. function fromInt(int256 x) internal pure returns (int256 result) { unchecked { if (x < MIN_SD59x18 / SCALE) { revert PRBMathSD59x18__FromIntUnderflow(x); } if (x > MAX_SD59x18 / SCALE) { revert PRBMathSD59x18__FromIntOverflow(x); } result = x * SCALE; } } /// @notice Calculates geometric mean of x and y, i.e. sqrt(x * y), rounding down. /// /// @dev Requirements: /// - x * y must fit within MAX_SD59x18, lest it overflows. /// - x * y cannot be negative. /// /// @param x The first operand as a signed 59.18-decimal fixed-point number. /// @param y The second operand as a signed 59.18-decimal fixed-point number. /// @return result The result as a signed 59.18-decimal fixed-point number. function gm(int256 x, int256 y) internal pure returns (int256 result) { if (x == 0) { return 0; } unchecked { // Checking for overflow this way is faster than letting Solidity do it. int256 xy = x * y; if (xy / x != y) { revert PRBMathSD59x18__GmOverflow(x, y); } // The product cannot be negative. if (xy < 0) { revert PRBMathSD59x18__GmNegativeProduct(x, y); } // We don't need to multiply by the SCALE here because the x*y product had already picked up a factor of SCALE // during multiplication. See the comments within the "sqrt" function. result = int256(PRBMath.sqrt(uint256(xy))); } } /// @notice Calculates 1 / x, rounding toward zero. /// /// @dev Requirements: /// - x cannot be zero. /// /// @param x The signed 59.18-decimal fixed-point number for which to calculate the inverse. /// @return result The inverse as a signed 59.18-decimal fixed-point number. function inv(int256 x) internal pure returns (int256 result) { unchecked { // 1e36 is SCALE * SCALE. result = 1e36 / x; } } /// @notice Calculates the natural logarithm of x. /// /// @dev Based on the insight that ln(x) = log2(x) / log2(e). /// /// Requirements: /// - All from "log2". /// /// Caveats: /// - All from "log2". /// - This doesn't return exactly 1 for 2718281828459045235, for that we would need more fine-grained precision. /// /// @param x The signed 59.18-decimal fixed-point number for which to calculate the natural logarithm. /// @return result The natural logarithm as a signed 59.18-decimal fixed-point number. function ln(int256 x) internal pure returns (int256 result) { // Do the fixed-point multiplication inline to save gas. This is overflow-safe because the maximum value that log2(x) // can return is 195205294292027477728. unchecked { result = (log2(x) * SCALE) / LOG2_E; } } /// @notice Calculates the common logarithm of x. /// /// @dev First checks if x is an exact power of ten and it stops if yes. If it's not, calculates the common /// logarithm based on the insight that log10(x) = log2(x) / log2(10). /// /// Requirements: /// - All from "log2". /// /// Caveats: /// - All from "log2". /// /// @param x The signed 59.18-decimal fixed-point number for which to calculate the common logarithm. /// @return result The common logarithm as a signed 59.18-decimal fixed-point number. function log10(int256 x) internal pure returns (int256 result) { if (x <= 0) { revert PRBMathSD59x18__LogInputTooSmall(x); } // Note that the "mul" in this block is the assembly mul operation, not the "mul" function defined in this contract. // prettier-ignore assembly { switch x case 1 { result := mul(SCALE, sub(0, 18)) } case 10 { result := mul(SCALE, sub(1, 18)) } case 100 { result := mul(SCALE, sub(2, 18)) } case 1000 { result := mul(SCALE, sub(3, 18)) } case 10000 { result := mul(SCALE, sub(4, 18)) } case 100000 { result := mul(SCALE, sub(5, 18)) } case 1000000 { result := mul(SCALE, sub(6, 18)) } case 10000000 { result := mul(SCALE, sub(7, 18)) } case 100000000 { result := mul(SCALE, sub(8, 18)) } case 1000000000 { result := mul(SCALE, sub(9, 18)) } case 10000000000 { result := mul(SCALE, sub(10, 18)) } case 100000000000 { result := mul(SCALE, sub(11, 18)) } case 1000000000000 { result := mul(SCALE, sub(12, 18)) } case 10000000000000 { result := mul(SCALE, sub(13, 18)) } case 100000000000000 { result := mul(SCALE, sub(14, 18)) } case 1000000000000000 { result := mul(SCALE, sub(15, 18)) } case 10000000000000000 { result := mul(SCALE, sub(16, 18)) } case 100000000000000000 { result := mul(SCALE, sub(17, 18)) } case 1000000000000000000 { result := 0 } case 10000000000000000000 { result := SCALE } case 100000000000000000000 { result := mul(SCALE, 2) } case 1000000000000000000000 { result := mul(SCALE, 3) } case 10000000000000000000000 { result := mul(SCALE, 4) } case 100000000000000000000000 { result := mul(SCALE, 5) } case 1000000000000000000000000 { result := mul(SCALE, 6) } case 10000000000000000000000000 { result := mul(SCALE, 7) } case 100000000000000000000000000 { result := mul(SCALE, 8) } case 1000000000000000000000000000 { result := mul(SCALE, 9) } case 10000000000000000000000000000 { result := mul(SCALE, 10) } case 100000000000000000000000000000 { result := mul(SCALE, 11) } case 1000000000000000000000000000000 { result := mul(SCALE, 12) } case 10000000000000000000000000000000 { result := mul(SCALE, 13) } case 100000000000000000000000000000000 { result := mul(SCALE, 14) } case 1000000000000000000000000000000000 { result := mul(SCALE, 15) } case 10000000000000000000000000000000000 { result := mul(SCALE, 16) } case 100000000000000000000000000000000000 { result := mul(SCALE, 17) } case 1000000000000000000000000000000000000 { result := mul(SCALE, 18) } case 10000000000000000000000000000000000000 { result := mul(SCALE, 19) } case 100000000000000000000000000000000000000 { result := mul(SCALE, 20) } case 1000000000000000000000000000000000000000 { result := mul(SCALE, 21) } case 10000000000000000000000000000000000000000 { result := mul(SCALE, 22) } case 100000000000000000000000000000000000000000 { result := mul(SCALE, 23) } case 1000000000000000000000000000000000000000000 { result := mul(SCALE, 24) } case 10000000000000000000000000000000000000000000 { result := mul(SCALE, 25) } case 100000000000000000000000000000000000000000000 { result := mul(SCALE, 26) } case 1000000000000000000000000000000000000000000000 { result := mul(SCALE, 27) } case 10000000000000000000000000000000000000000000000 { result := mul(SCALE, 28) } case 100000000000000000000000000000000000000000000000 { result := mul(SCALE, 29) } case 1000000000000000000000000000000000000000000000000 { result := mul(SCALE, 30) } case 10000000000000000000000000000000000000000000000000 { result := mul(SCALE, 31) } case 100000000000000000000000000000000000000000000000000 { result := mul(SCALE, 32) } case 1000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 33) } case 10000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 34) } case 100000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 35) } case 1000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 36) } case 10000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 37) } case 100000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 38) } case 1000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 39) } case 10000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 40) } case 100000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 41) } case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 42) } case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 43) } case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 44) } case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 45) } case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 46) } case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 47) } case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 48) } case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 49) } case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 50) } case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 51) } case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 52) } case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 53) } case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 54) } case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 55) } case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 56) } case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 57) } case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 58) } default { result := MAX_SD59x18 } } if (result == MAX_SD59x18) { // Do the fixed-point division inline to save gas. The denominator is log2(10). unchecked { result = (log2(x) * SCALE) / 3_321928094887362347; } } } /// @notice Calculates the binary logarithm of x. /// /// @dev Based on the iterative approximation algorithm. /// https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation /// /// Requirements: /// - x must be greater than zero. /// /// Caveats: /// - The results are not perfectly accurate to the last decimal, due to the lossy precision of the iterative approximation. /// /// @param x The signed 59.18-decimal fixed-point number for which to calculate the binary logarithm. /// @return result The binary logarithm as a signed 59.18-decimal fixed-point number. function log2(int256 x) internal pure returns (int256 result) { if (x <= 0) { revert PRBMathSD59x18__LogInputTooSmall(x); } unchecked { // This works because log2(x) = -log2(1/x). int256 sign; if (x >= SCALE) { sign = 1; } else { sign = -1; // Do the fixed-point inversion inline to save gas. The numerator is SCALE * SCALE. assembly { x := div(1000000000000000000000000000000000000, x) } } // Calculate the integer part of the logarithm and add it to the result and finally calculate y = x * 2^(-n). uint256 n = PRBMath.mostSignificantBit(uint256(x / SCALE)); // The integer part of the logarithm as a signed 59.18-decimal fixed-point number. The operation can't overflow // because n is maximum 255, SCALE is 1e18 and sign is either 1 or -1. result = int256(n) * SCALE; // This is y = x * 2^(-n). int256 y = x >> n; // If y = 1, the fractional part is zero. if (y == SCALE) { return result * sign; } // Calculate the fractional part via the iterative approximation. // The "delta >>= 1" part is equivalent to "delta /= 2", but shifting bits is faster. for (int256 delta = int256(HALF_SCALE); delta > 0; delta >>= 1) { y = (y * y) / SCALE; // Is y^2 > 2 and so in the range [2,4)? if (y >= 2 * SCALE) { // Add the 2^(-m) factor to the logarithm. result += delta; // Corresponds to z/2 on Wikipedia. y >>= 1; } } result *= sign; } } /// @notice Multiplies two signed 59.18-decimal fixed-point numbers together, returning a new signed 59.18-decimal /// fixed-point number. /// /// @dev Variant of "mulDiv" that works with signed numbers and employs constant folding, i.e. the denominator is /// always 1e18. /// /// Requirements: /// - All from "PRBMath.mulDivFixedPoint". /// - None of the inputs can be MIN_SD59x18 /// - The result must fit within MAX_SD59x18. /// /// Caveats: /// - The body is purposely left uncommented; see the NatSpec comments in "PRBMath.mulDiv" to understand how this works. /// /// @param x The multiplicand as a signed 59.18-decimal fixed-point number. /// @param y The multiplier as a signed 59.18-decimal fixed-point number. /// @return result The product as a signed 59.18-decimal fixed-point number. function mul(int256 x, int256 y) internal pure returns (int256 result) { if (x == MIN_SD59x18 || y == MIN_SD59x18) { revert PRBMathSD59x18__MulInputTooSmall(); } unchecked { uint256 ax; uint256 ay; ax = x < 0 ? uint256(-x) : uint256(x); ay = y < 0 ? uint256(-y) : uint256(y); uint256 rAbs = PRBMath.mulDivFixedPoint(ax, ay); if (rAbs > uint256(MAX_SD59x18)) { revert PRBMathSD59x18__MulOverflow(rAbs); } uint256 sx; uint256 sy; assembly { sx := sgt(x, sub(0, 1)) sy := sgt(y, sub(0, 1)) } result = sx ^ sy == 1 ? -int256(rAbs) : int256(rAbs); } } /// @notice Returns PI as a signed 59.18-decimal fixed-point number. function pi() internal pure returns (int256 result) { result = 3_141592653589793238; } /// @notice Raises x to the power of y. /// /// @dev Based on the insight that x^y = 2^(log2(x) * y). /// /// Requirements: /// - All from "exp2", "log2" and "mul". /// - z cannot be zero. /// /// Caveats: /// - All from "exp2", "log2" and "mul". /// - Assumes 0^0 is 1. /// /// @param x Number to raise to given power y, as a signed 59.18-decimal fixed-point number. /// @param y Exponent to raise x to, as a signed 59.18-decimal fixed-point number. /// @return result x raised to power y, as a signed 59.18-decimal fixed-point number. function pow(int256 x, int256 y) internal pure returns (int256 result) { if (x == 0) { result = y == 0 ? SCALE : int256(0); } else { result = exp2(mul(log2(x), y)); } } /// @notice Raises x (signed 59.18-decimal fixed-point number) to the power of y (basic unsigned integer) using the /// famous algorithm "exponentiation by squaring". /// /// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring /// /// Requirements: /// - All from "abs" and "PRBMath.mulDivFixedPoint". /// - The result must fit within MAX_SD59x18. /// /// Caveats: /// - All from "PRBMath.mulDivFixedPoint". /// - Assumes 0^0 is 1. /// /// @param x The base as a signed 59.18-decimal fixed-point number. /// @param y The exponent as an uint256. /// @return result The result as a signed 59.18-decimal fixed-point number. function powu(int256 x, uint256 y) internal pure returns (int256 result) { uint256 xAbs = uint256(abs(x)); // Calculate the first iteration of the loop in advance. uint256 rAbs = y & 1 > 0 ? xAbs : uint256(SCALE); // Equivalent to "for(y /= 2; y > 0; y /= 2)" but faster. uint256 yAux = y; for (yAux >>= 1; yAux > 0; yAux >>= 1) { xAbs = PRBMath.mulDivFixedPoint(xAbs, xAbs); // Equivalent to "y % 2 == 1" but faster. if (yAux & 1 > 0) { rAbs = PRBMath.mulDivFixedPoint(rAbs, xAbs); } } // The result must fit within the 59.18-decimal fixed-point representation. if (rAbs > uint256(MAX_SD59x18)) { revert PRBMathSD59x18__PowuOverflow(rAbs); } // Is the base negative and the exponent an odd number? bool isNegative = x < 0 && y & 1 == 1; result = isNegative ? -int256(rAbs) : int256(rAbs); } /// @notice Returns 1 as a signed 59.18-decimal fixed-point number. function scale() internal pure returns (int256 result) { result = SCALE; } /// @notice Calculates the square root of x, rounding down. /// @dev Uses the Babylonian method https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Requirements: /// - x cannot be negative. /// - x must be less than MAX_SD59x18 / SCALE. /// /// @param x The signed 59.18-decimal fixed-point number for which to calculate the square root. /// @return result The result as a signed 59.18-decimal fixed-point . function sqrt(int256 x) internal pure returns (int256 result) { unchecked { if (x < 0) { revert PRBMathSD59x18__SqrtNegativeInput(x); } if (x > MAX_SD59x18 / SCALE) { revert PRBMathSD59x18__SqrtOverflow(x); } // Multiply x by the SCALE to account for the factor of SCALE that is picked up when multiplying two signed // 59.18-decimal fixed-point numbers together (in this case, those two numbers are both the square root). result = int256(PRBMath.sqrt(uint256(x * SCALE))); } } /// @notice Converts a signed 59.18-decimal fixed-point number to basic integer form, rounding down in the process. /// @param x The signed 59.18-decimal fixed-point number to convert. /// @return result The same number in basic integer form. function toInt(int256 x) internal pure returns (int256 result) { unchecked { result = x / SCALE; } } }
// SPDX-License-Identifier: Unlicense pragma solidity >=0.8.4; /// @notice Emitted when the result overflows uint256. error PRBMath__MulDivFixedPointOverflow(uint256 prod1); /// @notice Emitted when the result overflows uint256. error PRBMath__MulDivOverflow(uint256 prod1, uint256 denominator); /// @notice Emitted when one of the inputs is type(int256).min. error PRBMath__MulDivSignedInputTooSmall(); /// @notice Emitted when the intermediary absolute result overflows int256. error PRBMath__MulDivSignedOverflow(uint256 rAbs); /// @notice Emitted when the input is MIN_SD59x18. error PRBMathSD59x18__AbsInputTooSmall(); /// @notice Emitted when ceiling a number overflows SD59x18. error PRBMathSD59x18__CeilOverflow(int256 x); /// @notice Emitted when one of the inputs is MIN_SD59x18. error PRBMathSD59x18__DivInputTooSmall(); /// @notice Emitted when one of the intermediary unsigned results overflows SD59x18. error PRBMathSD59x18__DivOverflow(uint256 rAbs); /// @notice Emitted when the input is greater than 133.084258667509499441. error PRBMathSD59x18__ExpInputTooBig(int256 x); /// @notice Emitted when the input is greater than 192. error PRBMathSD59x18__Exp2InputTooBig(int256 x); /// @notice Emitted when flooring a number underflows SD59x18. error PRBMathSD59x18__FloorUnderflow(int256 x); /// @notice Emitted when converting a basic integer to the fixed-point format overflows SD59x18. error PRBMathSD59x18__FromIntOverflow(int256 x); /// @notice Emitted when converting a basic integer to the fixed-point format underflows SD59x18. error PRBMathSD59x18__FromIntUnderflow(int256 x); /// @notice Emitted when the product of the inputs is negative. error PRBMathSD59x18__GmNegativeProduct(int256 x, int256 y); /// @notice Emitted when multiplying the inputs overflows SD59x18. error PRBMathSD59x18__GmOverflow(int256 x, int256 y); /// @notice Emitted when the input is less than or equal to zero. error PRBMathSD59x18__LogInputTooSmall(int256 x); /// @notice Emitted when one of the inputs is MIN_SD59x18. error PRBMathSD59x18__MulInputTooSmall(); /// @notice Emitted when the intermediary absolute result overflows SD59x18. error PRBMathSD59x18__MulOverflow(uint256 rAbs); /// @notice Emitted when the intermediary absolute result overflows SD59x18. error PRBMathSD59x18__PowuOverflow(uint256 rAbs); /// @notice Emitted when the input is negative. error PRBMathSD59x18__SqrtNegativeInput(int256 x); /// @notice Emitted when the calculating the square root overflows SD59x18. error PRBMathSD59x18__SqrtOverflow(int256 x); /// @notice Emitted when addition overflows UD60x18. error PRBMathUD60x18__AddOverflow(uint256 x, uint256 y); /// @notice Emitted when ceiling a number overflows UD60x18. error PRBMathUD60x18__CeilOverflow(uint256 x); /// @notice Emitted when the input is greater than 133.084258667509499441. error PRBMathUD60x18__ExpInputTooBig(uint256 x); /// @notice Emitted when the input is greater than 192. error PRBMathUD60x18__Exp2InputTooBig(uint256 x); /// @notice Emitted when converting a basic integer to the fixed-point format format overflows UD60x18. error PRBMathUD60x18__FromUintOverflow(uint256 x); /// @notice Emitted when multiplying the inputs overflows UD60x18. error PRBMathUD60x18__GmOverflow(uint256 x, uint256 y); /// @notice Emitted when the input is less than 1. error PRBMathUD60x18__LogInputTooSmall(uint256 x); /// @notice Emitted when the calculating the square root overflows UD60x18. error PRBMathUD60x18__SqrtOverflow(uint256 x); /// @notice Emitted when subtraction underflows UD60x18. error PRBMathUD60x18__SubUnderflow(uint256 x, uint256 y); /// @dev Common mathematical functions used in both PRBMathSD59x18 and PRBMathUD60x18. Note that this shared library /// does not always assume the signed 59.18-decimal fixed-point or the unsigned 60.18-decimal fixed-point /// representation. When it does not, it is explicitly mentioned in the NatSpec documentation. library PRBMath { /// STRUCTS /// struct SD59x18 { int256 value; } struct UD60x18 { uint256 value; } /// STORAGE /// /// @dev How many trailing decimals can be represented. uint256 internal constant SCALE = 1e18; /// @dev Largest power of two divisor of SCALE. uint256 internal constant SCALE_LPOTD = 262144; /// @dev SCALE inverted mod 2^256. uint256 internal constant SCALE_INVERSE = 78156646155174841979727994598816262306175212592076161876661_508869554232690281; /// FUNCTIONS /// /// @notice Calculates the binary exponent of x using the binary fraction method. /// @dev Has to use 192.64-bit fixed-point numbers. /// See https://ethereum.stackexchange.com/a/96594/24693. /// @param x The exponent as an unsigned 192.64-bit fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. function exp2(uint256 x) internal pure returns (uint256 result) { unchecked { // Start from 0.5 in the 192.64-bit fixed-point format. result = 0x800000000000000000000000000000000000000000000000; // Multiply the result by root(2, 2^-i) when the bit at position i is 1. None of the intermediary results overflows // because the initial result is 2^191 and all magic factors are less than 2^65. if (x & 0x8000000000000000 > 0) { result = (result * 0x16A09E667F3BCC909) >> 64; } if (x & 0x4000000000000000 > 0) { result = (result * 0x1306FE0A31B7152DF) >> 64; } if (x & 0x2000000000000000 > 0) { result = (result * 0x1172B83C7D517ADCE) >> 64; } if (x & 0x1000000000000000 > 0) { result = (result * 0x10B5586CF9890F62A) >> 64; } if (x & 0x800000000000000 > 0) { result = (result * 0x1059B0D31585743AE) >> 64; } if (x & 0x400000000000000 > 0) { result = (result * 0x102C9A3E778060EE7) >> 64; } if (x & 0x200000000000000 > 0) { result = (result * 0x10163DA9FB33356D8) >> 64; } if (x & 0x100000000000000 > 0) { result = (result * 0x100B1AFA5ABCBED61) >> 64; } if (x & 0x80000000000000 > 0) { result = (result * 0x10058C86DA1C09EA2) >> 64; } if (x & 0x40000000000000 > 0) { result = (result * 0x1002C605E2E8CEC50) >> 64; } if (x & 0x20000000000000 > 0) { result = (result * 0x100162F3904051FA1) >> 64; } if (x & 0x10000000000000 > 0) { result = (result * 0x1000B175EFFDC76BA) >> 64; } if (x & 0x8000000000000 > 0) { result = (result * 0x100058BA01FB9F96D) >> 64; } if (x & 0x4000000000000 > 0) { result = (result * 0x10002C5CC37DA9492) >> 64; } if (x & 0x2000000000000 > 0) { result = (result * 0x1000162E525EE0547) >> 64; } if (x & 0x1000000000000 > 0) { result = (result * 0x10000B17255775C04) >> 64; } if (x & 0x800000000000 > 0) { result = (result * 0x1000058B91B5BC9AE) >> 64; } if (x & 0x400000000000 > 0) { result = (result * 0x100002C5C89D5EC6D) >> 64; } if (x & 0x200000000000 > 0) { result = (result * 0x10000162E43F4F831) >> 64; } if (x & 0x100000000000 > 0) { result = (result * 0x100000B1721BCFC9A) >> 64; } if (x & 0x80000000000 > 0) { result = (result * 0x10000058B90CF1E6E) >> 64; } if (x & 0x40000000000 > 0) { result = (result * 0x1000002C5C863B73F) >> 64; } if (x & 0x20000000000 > 0) { result = (result * 0x100000162E430E5A2) >> 64; } if (x & 0x10000000000 > 0) { result = (result * 0x1000000B172183551) >> 64; } if (x & 0x8000000000 > 0) { result = (result * 0x100000058B90C0B49) >> 64; } if (x & 0x4000000000 > 0) { result = (result * 0x10000002C5C8601CC) >> 64; } if (x & 0x2000000000 > 0) { result = (result * 0x1000000162E42FFF0) >> 64; } if (x & 0x1000000000 > 0) { result = (result * 0x10000000B17217FBB) >> 64; } if (x & 0x800000000 > 0) { result = (result * 0x1000000058B90BFCE) >> 64; } if (x & 0x400000000 > 0) { result = (result * 0x100000002C5C85FE3) >> 64; } if (x & 0x200000000 > 0) { result = (result * 0x10000000162E42FF1) >> 64; } if (x & 0x100000000 > 0) { result = (result * 0x100000000B17217F8) >> 64; } if (x & 0x80000000 > 0) { result = (result * 0x10000000058B90BFC) >> 64; } if (x & 0x40000000 > 0) { result = (result * 0x1000000002C5C85FE) >> 64; } if (x & 0x20000000 > 0) { result = (result * 0x100000000162E42FF) >> 64; } if (x & 0x10000000 > 0) { result = (result * 0x1000000000B17217F) >> 64; } if (x & 0x8000000 > 0) { result = (result * 0x100000000058B90C0) >> 64; } if (x & 0x4000000 > 0) { result = (result * 0x10000000002C5C860) >> 64; } if (x & 0x2000000 > 0) { result = (result * 0x1000000000162E430) >> 64; } if (x & 0x1000000 > 0) { result = (result * 0x10000000000B17218) >> 64; } if (x & 0x800000 > 0) { result = (result * 0x1000000000058B90C) >> 64; } if (x & 0x400000 > 0) { result = (result * 0x100000000002C5C86) >> 64; } if (x & 0x200000 > 0) { result = (result * 0x10000000000162E43) >> 64; } if (x & 0x100000 > 0) { result = (result * 0x100000000000B1721) >> 64; } if (x & 0x80000 > 0) { result = (result * 0x10000000000058B91) >> 64; } if (x & 0x40000 > 0) { result = (result * 0x1000000000002C5C8) >> 64; } if (x & 0x20000 > 0) { result = (result * 0x100000000000162E4) >> 64; } if (x & 0x10000 > 0) { result = (result * 0x1000000000000B172) >> 64; } if (x & 0x8000 > 0) { result = (result * 0x100000000000058B9) >> 64; } if (x & 0x4000 > 0) { result = (result * 0x10000000000002C5D) >> 64; } if (x & 0x2000 > 0) { result = (result * 0x1000000000000162E) >> 64; } if (x & 0x1000 > 0) { result = (result * 0x10000000000000B17) >> 64; } if (x & 0x800 > 0) { result = (result * 0x1000000000000058C) >> 64; } if (x & 0x400 > 0) { result = (result * 0x100000000000002C6) >> 64; } if (x & 0x200 > 0) { result = (result * 0x10000000000000163) >> 64; } if (x & 0x100 > 0) { result = (result * 0x100000000000000B1) >> 64; } if (x & 0x80 > 0) { result = (result * 0x10000000000000059) >> 64; } if (x & 0x40 > 0) { result = (result * 0x1000000000000002C) >> 64; } if (x & 0x20 > 0) { result = (result * 0x10000000000000016) >> 64; } if (x & 0x10 > 0) { result = (result * 0x1000000000000000B) >> 64; } if (x & 0x8 > 0) { result = (result * 0x10000000000000006) >> 64; } if (x & 0x4 > 0) { result = (result * 0x10000000000000003) >> 64; } if (x & 0x2 > 0) { result = (result * 0x10000000000000001) >> 64; } if (x & 0x1 > 0) { result = (result * 0x10000000000000001) >> 64; } // We're doing two things at the same time: // // 1. Multiply the result by 2^n + 1, where "2^n" is the integer part and the one is added to account for // the fact that we initially set the result to 0.5. This is accomplished by subtracting from 191 // rather than 192. // 2. Convert the result to the unsigned 60.18-decimal fixed-point format. // // This works because 2^(191-ip) = 2^ip / 2^191, where "ip" is the integer part "2^n". result *= SCALE; result >>= (191 - (x >> 64)); } } /// @notice Finds the zero-based index of the first one in the binary representation of x. /// @dev See the note on msb in the "Find First Set" Wikipedia article https://en.wikipedia.org/wiki/Find_first_set /// @param x The uint256 number for which to find the index of the most significant bit. /// @return msb The index of the most significant bit as an uint256. function mostSignificantBit(uint256 x) internal pure returns (uint256 msb) { if (x >= 2**128) { x >>= 128; msb += 128; } if (x >= 2**64) { x >>= 64; msb += 64; } if (x >= 2**32) { x >>= 32; msb += 32; } if (x >= 2**16) { x >>= 16; msb += 16; } if (x >= 2**8) { x >>= 8; msb += 8; } if (x >= 2**4) { x >>= 4; msb += 4; } if (x >= 2**2) { x >>= 2; msb += 2; } if (x >= 2**1) { // No need to shift x any more. msb += 1; } } /// @notice Calculates floor(x*y÷denominator) with full precision. /// /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv. /// /// Requirements: /// - The denominator cannot be zero. /// - The result must fit within uint256. /// /// Caveats: /// - This function does not work with fixed-point numbers. /// /// @param x The multiplicand as an uint256. /// @param y The multiplier as an uint256. /// @param denominator The divisor as an uint256. /// @return result The result as an uint256. function mulDiv( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 result) { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { unchecked { result = prod0 / denominator; } return result; } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (prod1 >= denominator) { revert PRBMath__MulDivOverflow(prod1, denominator); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. unchecked { // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 lpotdod = denominator & (~denominator + 1); assembly { // Divide denominator by lpotdod. denominator := div(denominator, lpotdod) // Divide [prod1 prod0] by lpotdod. prod0 := div(prod0, lpotdod) // Flip lpotdod such that it is 2^256 / lpotdod. If lpotdod is zero, then it becomes one. lpotdod := add(div(sub(0, lpotdod), lpotdod), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * lpotdod; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /// @notice Calculates floor(x*y÷1e18) with full precision. /// /// @dev Variant of "mulDiv" with constant folding, i.e. in which the denominator is always 1e18. Before returning the /// final result, we add 1 if (x * y) % SCALE >= HALF_SCALE. Without this, 6.6e-19 would be truncated to 0 instead of /// being rounded to 1e-18. See "Listing 6" and text above it at https://accu.org/index.php/journals/1717. /// /// Requirements: /// - The result must fit within uint256. /// /// Caveats: /// - The body is purposely left uncommented; see the NatSpec comments in "PRBMath.mulDiv" to understand how this works. /// - It is assumed that the result can never be type(uint256).max when x and y solve the following two equations: /// 1. x * y = type(uint256).max * SCALE /// 2. (x * y) % SCALE >= SCALE / 2 /// /// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number. /// @param y The multiplier as an unsigned 60.18-decimal fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. function mulDivFixedPoint(uint256 x, uint256 y) internal pure returns (uint256 result) { uint256 prod0; uint256 prod1; assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } if (prod1 >= SCALE) { revert PRBMath__MulDivFixedPointOverflow(prod1); } uint256 remainder; uint256 roundUpUnit; assembly { remainder := mulmod(x, y, SCALE) roundUpUnit := gt(remainder, 499999999999999999) } if (prod1 == 0) { unchecked { result = (prod0 / SCALE) + roundUpUnit; return result; } } assembly { result := add( mul( or( div(sub(prod0, remainder), SCALE_LPOTD), mul(sub(prod1, gt(remainder, prod0)), add(div(sub(0, SCALE_LPOTD), SCALE_LPOTD), 1)) ), SCALE_INVERSE ), roundUpUnit ) } } /// @notice Calculates floor(x*y÷denominator) with full precision. /// /// @dev An extension of "mulDiv" for signed numbers. Works by computing the signs and the absolute values separately. /// /// Requirements: /// - None of the inputs can be type(int256).min. /// - The result must fit within int256. /// /// @param x The multiplicand as an int256. /// @param y The multiplier as an int256. /// @param denominator The divisor as an int256. /// @return result The result as an int256. function mulDivSigned( int256 x, int256 y, int256 denominator ) internal pure returns (int256 result) { if (x == type(int256).min || y == type(int256).min || denominator == type(int256).min) { revert PRBMath__MulDivSignedInputTooSmall(); } // Get hold of the absolute values of x, y and the denominator. uint256 ax; uint256 ay; uint256 ad; unchecked { ax = x < 0 ? uint256(-x) : uint256(x); ay = y < 0 ? uint256(-y) : uint256(y); ad = denominator < 0 ? uint256(-denominator) : uint256(denominator); } // Compute the absolute value of (x*y)÷denominator. The result must fit within int256. uint256 rAbs = mulDiv(ax, ay, ad); if (rAbs > uint256(type(int256).max)) { revert PRBMath__MulDivSignedOverflow(rAbs); } // Get the signs of x, y and the denominator. uint256 sx; uint256 sy; uint256 sd; assembly { sx := sgt(x, sub(0, 1)) sy := sgt(y, sub(0, 1)) sd := sgt(denominator, sub(0, 1)) } // XOR over sx, sy and sd. This is checking whether there are one or three negative signs in the inputs. // If yes, the result should be negative. result = sx ^ sy ^ sd == 0 ? -int256(rAbs) : int256(rAbs); } /// @notice Calculates the square root of x, rounding down. /// @dev Uses the Babylonian method https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Caveats: /// - This function does not work with fixed-point numbers. /// /// @param x The uint256 number for which to calculate the square root. /// @return result The result as an uint256. function sqrt(uint256 x) internal pure returns (uint256 result) { if (x == 0) { return 0; } // Set the initial guess to the least power of two that is greater than or equal to sqrt(x). uint256 xAux = uint256(x); result = 1; if (xAux >= 0x100000000000000000000000000000000) { xAux >>= 128; result <<= 64; } if (xAux >= 0x10000000000000000) { xAux >>= 64; result <<= 32; } if (xAux >= 0x100000000) { xAux >>= 32; result <<= 16; } if (xAux >= 0x10000) { xAux >>= 16; result <<= 8; } if (xAux >= 0x100) { xAux >>= 8; result <<= 4; } if (xAux >= 0x10) { xAux >>= 4; result <<= 2; } if (xAux >= 0x8) { result <<= 1; } // The operations can never overflow because the result is max 2^127 when it enters this block. unchecked { result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; // Seven iterations should be enough uint256 roundedDownResult = x / result; return result >= roundedDownResult ? roundedDownResult : result; } } }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.0; import "./IClearinghouseEventEmitter.sol"; import "../engine/IProductEngine.sol"; import "../IEndpoint.sol"; import "../IEndpointGated.sol"; import "../../libraries/RiskHelper.sol"; interface IClearinghouse is IClearinghouseEventEmitter, IEndpointGated { function addEngine( address engine, address offchainExchange, IProductEngine.EngineType engineType ) external; function registerProduct(uint32 productId) external; function transferQuote(IEndpoint.TransferQuote calldata tx) external; function depositCollateral(IEndpoint.DepositCollateral calldata tx) external; function withdrawCollateral( bytes32 sender, uint32 productId, uint128 amount, address sendTo, uint64 idx ) external; function mintLp(IEndpoint.MintLp calldata tx) external; function burnLp(IEndpoint.BurnLp calldata tx) external; function liquidateSubaccount(IEndpoint.LiquidateSubaccount calldata tx) external; function depositInsurance(bytes calldata transaction) external; function withdrawInsurance(bytes calldata transaction, uint64 idx) external; function settlePnl(bytes calldata transaction) external; function claimSequencerFees( IEndpoint.ClaimSequencerFees calldata tx, int128[] calldata fees ) external; /// @notice Retrieve quote ERC20 address function getQuote() external view returns (address); /// @notice Returns the registered engine address by type function getEngineByType(IProductEngine.EngineType engineType) external view returns (address); /// @notice Returns the engine associated with a product ID function getEngineByProduct(uint32 productId) external view returns (address); /// @notice Returns health for the subaccount across all engines function getHealth(bytes32 subaccount, IProductEngine.HealthType healthType) external view returns (int128); /// @notice Returns the amount of insurance remaining in this clearinghouse function getInsurance() external view returns (int128); function getSpreads() external view returns (uint256); function upgradeClearinghouseLiq(address _clearinghouseLiq) external; function getClearinghouseLiq() external view returns (address); function burnLpAndTransfer(IEndpoint.BurnLpAndTransfer calldata txn) external; function requireMinDeposit(uint32 productId, uint128 amount) external; function assertCode(bytes calldata tx) external; function manualAssert(bytes calldata tx) external; function getWithdrawPool() external view returns (address); function getSlowModeFee() external view returns (uint256); function setWithdrawPool(address _withdrawPool) external; }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.0; interface IClearinghouseEventEmitter { /// @notice Emitted during initialization event ClearinghouseInitialized(address endpoint, address quote); /// @notice Emitted when collateral is modified for a subaccount event ModifyCollateral( int128 amount, bytes32 indexed subaccount, uint32 productId ); event Liquidation( bytes32 indexed liquidatorSubaccount, bytes32 indexed liquidateeSubaccount, uint32 productId, bool isEncodedSpread, int128 amount, int128 amountQuote ); }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.0; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "../clearinghouse/IClearinghouse.sol"; import "../../libraries/RiskHelper.sol"; interface IProductEngine { event AddProduct(uint32 productId); enum EngineType { SPOT, PERP } enum HealthType { INITIAL, MAINTENANCE, PNL } struct ProductDelta { uint32 productId; bytes32 subaccount; int128 amountDelta; int128 vQuoteDelta; } struct CoreRisk { int128 amount; int128 price; int128 longWeight; } /// @notice Initializes the engine function initialize( address _clearinghouse, address _offchainExchange, address _quote, address _endpoint, address _admin ) external; function getHealthContribution( bytes32 subaccount, IProductEngine.HealthType healthType ) external view returns (int128); function getCoreRisk( bytes32 subaccount, uint32 productId, IProductEngine.HealthType healthType ) external view returns (IProductEngine.CoreRisk memory); function updateProduct(bytes calldata txn) external; function swapLp( uint32 productId, int128 baseDelta, int128 quoteDelta ) external returns (int128, int128); function mintLp( uint32 productId, bytes32 subaccount, int128 amountBase, int128 quoteAmountLow, int128 quoteAmountHigh ) external; function burnLp( uint32 productId, bytes32 subaccount, // passing 0 here means to burn all int128 amountLp ) external returns (int128, int128); function decomposeLps(bytes32 liquidatee, bytes32 liquidator) external returns (int128); /// @notice return clearinghouse addr function getClearinghouse() external view returns (address); /// @notice return productIds associated with engine function getProductIds() external view returns (uint32[] memory); function getRisk(uint32 productId) external view returns (RiskHelper.Risk memory); /// @notice return the type of engine function getEngineType() external pure returns (IProductEngine.EngineType); function updatePrice(uint32 productId, int128 priceX18) external; }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.13; import "./IEndpoint.sol"; interface IEndpointGated { function getEndpoint() external view returns (address endpoint); }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.0; import "./MathSD21x18.sol"; import "../interfaces/engine/IProductEngine.sol"; import "../common/Constants.sol"; import "../common/Errors.sol"; import "./MathHelper.sol"; /// @title RiskHelper /// @dev Provides basic math functions library RiskHelper { using MathSD21x18 for int128; struct RiskStore { // these weights are all // between 0 and 2 // these integers are the real // weights times 1e9 int32 longWeightInitial; int32 shortWeightInitial; int32 longWeightMaintenance; int32 shortWeightMaintenance; int128 priceX18; } struct Risk { int128 longWeightInitialX18; int128 shortWeightInitialX18; int128 longWeightMaintenanceX18; int128 shortWeightMaintenanceX18; int128 priceX18; } function _getSpreadHealthRebateAmount( Risk memory perpRisk, int128 basisAmount, int128 priceSumX18, IProductEngine.HealthType healthType ) internal pure returns (int128) { // 5x more leverage than the standard perp // by refunding 4/5 of the health penalty int128 rebateRateX18 = ((ONE - _getWeightX18(perpRisk, 1, healthType)) * 4) / 5; return rebateRateX18.mul(priceSumX18).mul(basisAmount); } function _getLpRawValue( int128 baseAmount, int128 quoteAmount, int128 priceX18 ) internal pure returns (int128) { // naive way: value an LP token by value of the raw components 2 * arithmetic mean of base value and quote value // price manipulation proof way: use the geometric mean return 2 * int128( MathHelper.sqrt256( int256(baseAmount.mul(priceX18)) * quoteAmount ) ); } function _getWeightX18( Risk memory risk, int128 amount, IProductEngine.HealthType healthType ) internal pure returns (int128) { // (1 + imf * sqrt(amount)) if (healthType == IProductEngine.HealthType.PNL) { return ONE; } int128 weight; if (amount >= 0) { weight = healthType == IProductEngine.HealthType.INITIAL ? risk.longWeightInitialX18 : risk.longWeightMaintenanceX18; } else { weight = healthType == IProductEngine.HealthType.INITIAL ? risk.shortWeightInitialX18 : risk.shortWeightMaintenanceX18; } return weight; } function isIsolatedSubaccount(bytes32 subaccount) internal pure returns (bool) { return uint256(subaccount) & 0xFFFFFF == 6910831; } function getIsolatedProductId(bytes32 subaccount) internal pure returns (uint32) { if (!isIsolatedSubaccount(subaccount)) { return 0; } return uint32((uint256(subaccount) >> 32) & 0xFFFF); } function getIsolatedId(bytes32 subaccount) internal pure returns (uint8) { if (!isIsolatedSubaccount(subaccount)) { return 0; } return uint8((uint256(subaccount) >> 24) & 0xFF); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.0; // Trying to take an action on vertex when string constant ERR_REQUIRES_DEPOSIT = "RS"; // ERC20 Transfer failed string constant ERR_TRANSFER_FAILED = "TF"; // Unauthorized string constant ERR_UNAUTHORIZED = "U"; // Invalid product string constant ERR_INVALID_PRODUCT = "IP"; // Subaccount health too low string constant ERR_SUBACCT_HEALTH = "SH"; // Not liquidatable string constant ERR_NOT_LIQUIDATABLE = "NL"; // Liquidator health too low string constant ERR_NOT_LIQUIDATABLE_INITIAL = "NLI"; // Liquidatee has positive initial health string constant ERR_LIQUIDATED_TOO_MUCH = "LTM"; // Trying to liquidate quote, or string constant ERR_INVALID_LIQUIDATION_PARAMS = "NILP"; // Trying to liquidate perp but the amount is not divisible by sizeIncrement string constant ERR_INVALID_LIQUIDATION_AMOUNT = "NILA"; // Tried to liquidate too little, too much or signs are different string constant ERR_NOT_LIQUIDATABLE_AMT = "NLA"; // Tried to liquidate liabilities before perps string constant ERR_NOT_LIQUIDATABLE_LIABILITIES = "NLL"; // Tried to finalize subaccount that cannot be finalized string constant ERR_NOT_FINALIZABLE_SUBACCOUNT = "NFS"; // Not enough quote to settle string constant ERR_CANNOT_SETTLE = "CS"; // Not enough insurance to settle string constant ERR_NO_INSURANCE = "NI"; // Above reserve ratio string constant ERR_RESERVE_RATIO = "RR"; // Invalid socialize amount string constant ERR_INVALID_SOCIALIZE_AMT = "ISA"; // Socializing product with no open interest string constant ERR_NO_OPEN_INTEREST = "NOI"; // FOK not filled, this isn't rly an error so this is jank string constant ERR_FOK_NOT_FILLED = "ENF"; // bad product config via weights string constant ERR_BAD_PRODUCT_CONFIG = "BPC"; // subacct name too long string constant ERR_LONG_NAME = "LN"; // already registered in health group string constant ERR_ALREADY_REGISTERED = "AR"; // invalid health group provided string constant ERR_INVALID_HEALTH_GROUP = "IHG"; string constant ERR_GETTING_ZERO_HEALTH_GROUP = "GZHG"; // trying to burn more LP than owned string constant ERR_INSUFFICIENT_LP = "ILP"; // taker order subaccount fails risk or is invalid string constant ERR_INVALID_TAKER = "IT"; // maker order subaccount fails risk or is invalid string constant ERR_INVALID_MAKER = "IM"; string constant ERR_INVALID_SIGNATURE = "IS"; string constant ERR_ORDERS_CANNOT_BE_MATCHED = "OCBM"; string constant ERR_INVALID_LP_AMOUNT = "ILA"; string constant ERR_SLIPPAGE_TOO_HIGH = "STH"; string constant ERR_SUBACCOUNT_NOT_FOUND = "SNF"; string constant ERR_INVALID_PRICE = "IPR"; string constant ERR_INVALID_TIME = "ITI"; // states on node and engine are not same string constant ERR_DSYNC = "DSYNC"; string constant ERR_INVALID_SWAP_PARAMS = "ISP"; string constant ERR_CONVERSION_OVERFLOW = "CO"; string constant ERR_ONLY_CLEARINGHOUSE_CAN_SET_BOOK = "OCCSB"; // we match on containing these strings in sequencer string constant ERR_INVALID_SUBMISSION_INDEX = "IX"; string constant ERR_NO_SLOW_MODE_TXS_REMAINING = "no slow mode transactions remaining"; string constant ERR_INVALID_COUNT = "IC"; string constant ERR_SLOW_TX_TOO_RECENT = "STTR"; string constant ERR_WALLET_NOT_TRANSFERABLE = "WNT"; string constant ERR_WALLET_SANCTIONED = "WS"; string constant ERR_SLOW_MODE_WRONG_SENDER = "SMWS"; string constant ERR_WRONG_NONCE = "WN"; // initially wanted to call this // ERR_FULL_UTILIZATION but the shortened // error string may make people mad on the frontend string constant ERR_MAX_UTILIZATION = "MU"; string constant ERR_INVALID_RISK_GROUP = "IRG"; string constant ERR_VERIFY_SCHNORR = "VSR"; string constant ERR_DEPOSIT_TOO_SMALL = "DTS"; string constant ERR_CODE_NOT_MATCH = "CNM";
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0-rc.2) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.0; import "../Strings.sol"; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS, InvalidSignatureV // Deprecated in v4.8 } function _throwError(RecoverError error) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert("ECDSA: invalid signature"); } else if (error == RecoverError.InvalidSignatureLength) { revert("ECDSA: invalid signature length"); } else if (error == RecoverError.InvalidSignatureS) { revert("ECDSA: invalid signature 's' value"); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature` or error string. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, signature); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures] * * _Available since v4.3._ */ function tryRecover( bytes32 hash, bytes32 r, bytes32 vs ) internal pure returns (address, RecoverError) { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. * * _Available since v4.2._ */ function recover( bytes32 hash, bytes32 r, bytes32 vs ) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, r, vs); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. * * _Available since v4.3._ */ function tryRecover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address, RecoverError) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature); } return (signer, RecoverError.NoError); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, v, r, s); _throwError(error); return recovered; } /** * @dev Returns an Ethereum Signed Message, created from a `hash`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) { // 32 is the length in bytes of hash, // enforced by the type signature above return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash)); } /** * @dev Returns an Ethereum Signed Message, created from `s`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s)); } /** * @dev Returns an Ethereum Signed Typed Data, created from a * `domainSeparator` and a `structHash`. This produces hash corresponding * to the one signed with the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] * JSON-RPC method as part of EIP-712. * * See {recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash)); } }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.0; interface IVerifier { function requireValidSignature( bytes32 message, bytes32 e, bytes32 s, uint8 signerBitmask ) external; function revertGasInfo(uint256 i, uint256 gasUsed) external pure; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0-rc.2) (utils/Strings.sol) pragma solidity ^0.8.0; import "./math/Math.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant _SYMBOLS = "0123456789abcdef"; uint8 private constant _ADDRESS_LENGTH = 20; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), _SYMBOLS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0-rc.2) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv( uint256 x, uint256 y, uint256 denominator, Rounding rounding ) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10**64) { value /= 10**64; result += 64; } if (value >= 10**32) { value /= 10**32; result += 32; } if (value >= 10**16) { value /= 10**16; result += 16; } if (value >= 10**8) { value /= 10**8; result += 8; } if (value >= 10**4) { value /= 10**4; result += 4; } if (value >= 10**2) { value /= 10**2; result += 2; } if (value >= 10**1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0); } } }
// SPDX-License-Identifier: MIT pragma solidity >= 0.4.22 <0.9.0; library console { address constant CONSOLE_ADDRESS = address(0x000000000000000000636F6e736F6c652e6c6f67); function _sendLogPayload(bytes memory payload) private view { uint256 payloadLength = payload.length; address consoleAddress = CONSOLE_ADDRESS; assembly { let payloadStart := add(payload, 32) let r := staticcall(gas(), consoleAddress, payloadStart, payloadLength, 0, 0) } } function log() internal view { _sendLogPayload(abi.encodeWithSignature("log()")); } function logInt(int p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(int)", p0)); } function logUint(uint p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint)", p0)); } function logString(string memory p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(string)", p0)); } function logBool(bool p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool)", p0)); } function logAddress(address p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(address)", p0)); } function logBytes(bytes memory p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes)", p0)); } function logBytes1(bytes1 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes1)", p0)); } function logBytes2(bytes2 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes2)", p0)); } function logBytes3(bytes3 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes3)", p0)); } function logBytes4(bytes4 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes4)", p0)); } function logBytes5(bytes5 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes5)", p0)); } function logBytes6(bytes6 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes6)", p0)); } function logBytes7(bytes7 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes7)", p0)); } function logBytes8(bytes8 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes8)", p0)); } function logBytes9(bytes9 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes9)", p0)); } function logBytes10(bytes10 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes10)", p0)); } function logBytes11(bytes11 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes11)", p0)); } function logBytes12(bytes12 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes12)", p0)); } function logBytes13(bytes13 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes13)", p0)); } function logBytes14(bytes14 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes14)", p0)); } function logBytes15(bytes15 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes15)", p0)); } function logBytes16(bytes16 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes16)", p0)); } function logBytes17(bytes17 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes17)", p0)); } function logBytes18(bytes18 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes18)", p0)); } function logBytes19(bytes19 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes19)", p0)); } function logBytes20(bytes20 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes20)", p0)); } function logBytes21(bytes21 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes21)", p0)); } function logBytes22(bytes22 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes22)", p0)); } function logBytes23(bytes23 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes23)", p0)); } function logBytes24(bytes24 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes24)", p0)); } function logBytes25(bytes25 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes25)", p0)); } function logBytes26(bytes26 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes26)", p0)); } function logBytes27(bytes27 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes27)", p0)); } function logBytes28(bytes28 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes28)", p0)); } function logBytes29(bytes29 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes29)", p0)); } function logBytes30(bytes30 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes30)", p0)); } function logBytes31(bytes31 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes31)", p0)); } function logBytes32(bytes32 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes32)", p0)); } function log(uint p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint)", p0)); } function log(string memory p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(string)", p0)); } function log(bool p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool)", p0)); } function log(address p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(address)", p0)); } function log(uint p0, uint p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint)", p0, p1)); } function log(uint p0, string memory p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string)", p0, p1)); } function log(uint p0, bool p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool)", p0, p1)); } function log(uint p0, address p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address)", p0, p1)); } function log(string memory p0, uint p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint)", p0, p1)); } function log(string memory p0, string memory p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string)", p0, p1)); } function log(string memory p0, bool p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool)", p0, p1)); } function log(string memory p0, address p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address)", p0, p1)); } function log(bool p0, uint p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint)", p0, p1)); } function log(bool p0, string memory p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string)", p0, p1)); } function log(bool p0, bool p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool)", p0, p1)); } function log(bool p0, address p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address)", p0, p1)); } function log(address p0, uint p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint)", p0, p1)); } function log(address p0, string memory p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string)", p0, p1)); } function log(address p0, bool p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool)", p0, p1)); } function log(address p0, address p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address)", p0, p1)); } function log(uint p0, uint p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,uint)", p0, p1, p2)); } function log(uint p0, uint p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,string)", p0, p1, p2)); } function log(uint p0, uint p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,bool)", p0, p1, p2)); } function log(uint p0, uint p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,address)", p0, p1, p2)); } function log(uint p0, string memory p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,uint)", p0, p1, p2)); } function log(uint p0, string memory p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,string)", p0, p1, p2)); } function log(uint p0, string memory p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,bool)", p0, p1, p2)); } function log(uint p0, string memory p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,address)", p0, p1, p2)); } function log(uint p0, bool p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,uint)", p0, p1, p2)); } function log(uint p0, bool p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,string)", p0, p1, p2)); } function log(uint p0, bool p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,bool)", p0, p1, p2)); } function log(uint p0, bool p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,address)", p0, p1, p2)); } function log(uint p0, address p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,uint)", p0, p1, p2)); } function log(uint p0, address p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,string)", p0, p1, p2)); } function log(uint p0, address p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,bool)", p0, p1, p2)); } function log(uint p0, address p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,address)", p0, p1, p2)); } function log(string memory p0, uint p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,uint)", p0, p1, p2)); } function log(string memory p0, uint p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,string)", p0, p1, p2)); } function log(string memory p0, uint p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,bool)", p0, p1, p2)); } function log(string memory p0, uint p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,address)", p0, p1, p2)); } function log(string memory p0, string memory p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,uint)", p0, p1, p2)); } function log(string memory p0, string memory p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,string)", p0, p1, p2)); } function log(string memory p0, string memory p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,bool)", p0, p1, p2)); } function log(string memory p0, string memory p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,address)", p0, p1, p2)); } function log(string memory p0, bool p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,uint)", p0, p1, p2)); } function log(string memory p0, bool p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,string)", p0, p1, p2)); } function log(string memory p0, bool p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,bool)", p0, p1, p2)); } function log(string memory p0, bool p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,address)", p0, p1, p2)); } function log(string memory p0, address p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,uint)", p0, p1, p2)); } function log(string memory p0, address p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,string)", p0, p1, p2)); } function log(string memory p0, address p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,bool)", p0, p1, p2)); } function log(string memory p0, address p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,address)", p0, p1, p2)); } function log(bool p0, uint p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,uint)", p0, p1, p2)); } function log(bool p0, uint p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,string)", p0, p1, p2)); } function log(bool p0, uint p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,bool)", p0, p1, p2)); } function log(bool p0, uint p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,address)", p0, p1, p2)); } function log(bool p0, string memory p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,uint)", p0, p1, p2)); } function log(bool p0, string memory p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,string)", p0, p1, p2)); } function log(bool p0, string memory p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,bool)", p0, p1, p2)); } function log(bool p0, string memory p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,address)", p0, p1, p2)); } function log(bool p0, bool p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint)", p0, p1, p2)); } function log(bool p0, bool p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,string)", p0, p1, p2)); } function log(bool p0, bool p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool)", p0, p1, p2)); } function log(bool p0, bool p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,address)", p0, p1, p2)); } function log(bool p0, address p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,uint)", p0, p1, p2)); } function log(bool p0, address p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,string)", p0, p1, p2)); } function log(bool p0, address p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,bool)", p0, p1, p2)); } function log(bool p0, address p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,address)", p0, p1, p2)); } function log(address p0, uint p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,uint)", p0, p1, p2)); } function log(address p0, uint p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,string)", p0, p1, p2)); } function log(address p0, uint p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,bool)", p0, p1, p2)); } function log(address p0, uint p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,address)", p0, p1, p2)); } function log(address p0, string memory p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,uint)", p0, p1, p2)); } function log(address p0, string memory p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,string)", p0, p1, p2)); } function log(address p0, string memory p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,bool)", p0, p1, p2)); } function log(address p0, string memory p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,address)", p0, p1, p2)); } function log(address p0, bool p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,uint)", p0, p1, p2)); } function log(address p0, bool p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,string)", p0, p1, p2)); } function log(address p0, bool p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,bool)", p0, p1, p2)); } function log(address p0, bool p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,address)", p0, p1, p2)); } function log(address p0, address p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,uint)", p0, p1, p2)); } function log(address p0, address p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,string)", p0, p1, p2)); } function log(address p0, address p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,bool)", p0, p1, p2)); } function log(address p0, address p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,address)", p0, p1, p2)); } function log(uint p0, uint p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,uint,uint)", p0, p1, p2, p3)); } function log(uint p0, uint p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,uint,string)", p0, p1, p2, p3)); } function log(uint p0, uint p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,uint,bool)", p0, p1, p2, p3)); } function log(uint p0, uint p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,uint,address)", p0, p1, p2, p3)); } function log(uint p0, uint p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,string,uint)", p0, p1, p2, p3)); } function log(uint p0, uint p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,string,string)", p0, p1, p2, p3)); } function log(uint p0, uint p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,string,bool)", p0, p1, p2, p3)); } function log(uint p0, uint p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,string,address)", p0, p1, p2, p3)); } function log(uint p0, uint p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,bool,uint)", p0, p1, p2, p3)); } function log(uint p0, uint p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,bool,string)", p0, p1, p2, p3)); } function log(uint p0, uint p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,bool,bool)", p0, p1, p2, p3)); } function log(uint p0, uint p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,bool,address)", p0, p1, p2, p3)); } function log(uint p0, uint p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,address,uint)", p0, p1, p2, p3)); } function log(uint p0, uint p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,address,string)", p0, p1, p2, p3)); } function log(uint p0, uint p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,address,bool)", p0, p1, p2, p3)); } function log(uint p0, uint p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,address,address)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,uint,uint)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,uint,string)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,uint,bool)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,uint,address)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,string,uint)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,string,string)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,string,bool)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,string,address)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,bool,uint)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,bool,string)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,bool,bool)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,bool,address)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,address,uint)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,address,string)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,address,bool)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,address,address)", p0, p1, p2, p3)); } function log(uint p0, bool p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,uint,uint)", p0, p1, p2, p3)); } function log(uint p0, bool p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,uint,string)", p0, p1, p2, p3)); } function log(uint p0, bool p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,uint,bool)", p0, p1, p2, p3)); } function log(uint p0, bool p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,uint,address)", p0, p1, p2, p3)); } function log(uint p0, bool p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,string,uint)", p0, p1, p2, p3)); } function log(uint p0, bool p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,string,string)", p0, p1, p2, p3)); } function log(uint p0, bool p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,string,bool)", p0, p1, p2, p3)); } function log(uint p0, bool p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,string,address)", p0, p1, p2, p3)); } function log(uint p0, bool p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,bool,uint)", p0, p1, p2, p3)); } function log(uint p0, bool p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,bool,string)", p0, p1, p2, p3)); } function log(uint p0, bool p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,bool,bool)", p0, p1, p2, p3)); } function log(uint p0, bool p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,bool,address)", p0, p1, p2, p3)); } function log(uint p0, bool p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,address,uint)", p0, p1, p2, p3)); } function log(uint p0, bool p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,address,string)", p0, p1, p2, p3)); } function log(uint p0, bool p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,address,bool)", p0, p1, p2, p3)); } function log(uint p0, bool p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,address,address)", p0, p1, p2, p3)); } function log(uint p0, address p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,uint,uint)", p0, p1, p2, p3)); } function log(uint p0, address p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,uint,string)", p0, p1, p2, p3)); } function log(uint p0, address p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,uint,bool)", p0, p1, p2, p3)); } function log(uint p0, address p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,uint,address)", p0, p1, p2, p3)); } function log(uint p0, address p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,string,uint)", p0, p1, p2, p3)); } function log(uint p0, address p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,string,string)", p0, p1, p2, p3)); } function log(uint p0, address p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,string,bool)", p0, p1, p2, p3)); } function log(uint p0, address p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,string,address)", p0, p1, p2, p3)); } function log(uint p0, address p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,bool,uint)", p0, p1, p2, p3)); } function log(uint p0, address p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,bool,string)", p0, p1, p2, p3)); } function log(uint p0, address p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,bool,bool)", p0, p1, p2, p3)); } function log(uint p0, address p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,bool,address)", p0, p1, p2, p3)); } function log(uint p0, address p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,address,uint)", p0, p1, p2, p3)); } function log(uint p0, address p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,address,string)", p0, p1, p2, p3)); } function log(uint p0, address p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,address,bool)", p0, p1, p2, p3)); } function log(uint p0, address p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,address,address)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,uint,uint)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,uint,string)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,uint,bool)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,uint,address)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,string,uint)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,string,string)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,string,bool)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,string,address)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,bool,uint)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,bool,string)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,bool,bool)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,bool,address)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,address,uint)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,address,string)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,address,bool)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,address,address)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,uint,uint)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,uint,string)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,uint,bool)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,uint,address)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,string,uint)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,string,string)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,string,bool)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,string,address)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,bool,uint)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,bool,string)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,bool,bool)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,bool,address)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,address,uint)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,address,string)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,address,bool)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,address,address)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,uint,uint)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,uint,string)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,uint,bool)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,uint,address)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,string,uint)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,string,string)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,string,bool)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,string,address)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,uint)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,string)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,bool)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,address)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,address,uint)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,address,string)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,address,bool)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,address,address)", p0, p1, p2, p3)); } function log(string memory p0, address p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,uint,uint)", p0, p1, p2, p3)); } function log(string memory p0, address p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,uint,string)", p0, p1, p2, p3)); } function log(string memory p0, address p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,uint,bool)", p0, p1, p2, p3)); } function log(string memory p0, address p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,uint,address)", p0, p1, p2, p3)); } function log(string memory p0, address p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,string,uint)", p0, p1, p2, p3)); } function log(string memory p0, address p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,string,string)", p0, p1, p2, p3)); } function log(string memory p0, address p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,string,bool)", p0, p1, p2, p3)); } function log(string memory p0, address p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,string,address)", p0, p1, p2, p3)); } function log(string memory p0, address p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,bool,uint)", p0, p1, p2, p3)); } function log(string memory p0, address p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,bool,string)", p0, p1, p2, p3)); } function log(string memory p0, address p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,bool,bool)", p0, p1, p2, p3)); } function log(string memory p0, address p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,bool,address)", p0, p1, p2, p3)); } function log(string memory p0, address p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,address,uint)", p0, p1, p2, p3)); } function log(string memory p0, address p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,address,string)", p0, p1, p2, p3)); } function log(string memory p0, address p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,address,bool)", p0, p1, p2, p3)); } function log(string memory p0, address p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,address,address)", p0, p1, p2, p3)); } function log(bool p0, uint p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,uint,uint)", p0, p1, p2, p3)); } function log(bool p0, uint p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,uint,string)", p0, p1, p2, p3)); } function log(bool p0, uint p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,uint,bool)", p0, p1, p2, p3)); } function log(bool p0, uint p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,uint,address)", p0, p1, p2, p3)); } function log(bool p0, uint p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,string,uint)", p0, p1, p2, p3)); } function log(bool p0, uint p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,string,string)", p0, p1, p2, p3)); } function log(bool p0, uint p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,string,bool)", p0, p1, p2, p3)); } function log(bool p0, uint p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,string,address)", p0, p1, p2, p3)); } function log(bool p0, uint p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,bool,uint)", p0, p1, p2, p3)); } function log(bool p0, uint p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,bool,string)", p0, p1, p2, p3)); } function log(bool p0, uint p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,bool,bool)", p0, p1, p2, p3)); } function log(bool p0, uint p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,bool,address)", p0, p1, p2, p3)); } function log(bool p0, uint p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,address,uint)", p0, p1, p2, p3)); } function log(bool p0, uint p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,address,string)", p0, p1, p2, p3)); } function log(bool p0, uint p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,address,bool)", p0, p1, p2, p3)); } function log(bool p0, uint p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,address,address)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,uint,uint)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,uint,string)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,uint,bool)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,uint,address)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,string,uint)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,string,string)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,string,bool)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,string,address)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,uint)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,string)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,bool)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,address)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,address,uint)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,address,string)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,address,bool)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,address,address)", p0, p1, p2, p3)); } function log(bool p0, bool p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint,uint)", p0, p1, p2, p3)); } function log(bool p0, bool p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint,string)", p0, p1, p2, p3)); } function log(bool p0, bool p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint,bool)", p0, p1, p2, p3)); } function log(bool p0, bool p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint,address)", p0, p1, p2, p3)); } function log(bool p0, bool p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,uint)", p0, p1, p2, p3)); } function log(bool p0, bool p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,string)", p0, p1, p2, p3)); } function log(bool p0, bool p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,bool)", p0, p1, p2, p3)); } function log(bool p0, bool p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,address)", p0, p1, p2, p3)); } function log(bool p0, bool p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,uint)", p0, p1, p2, p3)); } function log(bool p0, bool p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,string)", p0, p1, p2, p3)); } function log(bool p0, bool p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,bool)", p0, p1, p2, p3)); } function log(bool p0, bool p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,address)", p0, p1, p2, p3)); } function log(bool p0, bool p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,uint)", p0, p1, p2, p3)); } function log(bool p0, bool p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,string)", p0, p1, p2, p3)); } function log(bool p0, bool p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,bool)", p0, p1, p2, p3)); } function log(bool p0, bool p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,address)", p0, p1, p2, p3)); } function log(bool p0, address p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,uint,uint)", p0, p1, p2, p3)); } function log(bool p0, address p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,uint,string)", p0, p1, p2, p3)); } function log(bool p0, address p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,uint,bool)", p0, p1, p2, p3)); } function log(bool p0, address p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,uint,address)", p0, p1, p2, p3)); } function log(bool p0, address p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,string,uint)", p0, p1, p2, p3)); } function log(bool p0, address p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,string,string)", p0, p1, p2, p3)); } function log(bool p0, address p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,string,bool)", p0, p1, p2, p3)); } function log(bool p0, address p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,string,address)", p0, p1, p2, p3)); } function log(bool p0, address p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,uint)", p0, p1, p2, p3)); } function log(bool p0, address p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,string)", p0, p1, p2, p3)); } function log(bool p0, address p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,bool)", p0, p1, p2, p3)); } function log(bool p0, address p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,address)", p0, p1, p2, p3)); } function log(bool p0, address p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,address,uint)", p0, p1, p2, p3)); } function log(bool p0, address p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,address,string)", p0, p1, p2, p3)); } function log(bool p0, address p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,address,bool)", p0, p1, p2, p3)); } function log(bool p0, address p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,address,address)", p0, p1, p2, p3)); } function log(address p0, uint p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,uint,uint)", p0, p1, p2, p3)); } function log(address p0, uint p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,uint,string)", p0, p1, p2, p3)); } function log(address p0, uint p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,uint,bool)", p0, p1, p2, p3)); } function log(address p0, uint p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,uint,address)", p0, p1, p2, p3)); } function log(address p0, uint p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,string,uint)", p0, p1, p2, p3)); } function log(address p0, uint p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,string,string)", p0, p1, p2, p3)); } function log(address p0, uint p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,string,bool)", p0, p1, p2, p3)); } function log(address p0, uint p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,string,address)", p0, p1, p2, p3)); } function log(address p0, uint p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,bool,uint)", p0, p1, p2, p3)); } function log(address p0, uint p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,bool,string)", p0, p1, p2, p3)); } function log(address p0, uint p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,bool,bool)", p0, p1, p2, p3)); } function log(address p0, uint p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,bool,address)", p0, p1, p2, p3)); } function log(address p0, uint p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,address,uint)", p0, p1, p2, p3)); } function log(address p0, uint p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,address,string)", p0, p1, p2, p3)); } function log(address p0, uint p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,address,bool)", p0, p1, p2, p3)); } function log(address p0, uint p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,address,address)", p0, p1, p2, p3)); } function log(address p0, string memory p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,uint,uint)", p0, p1, p2, p3)); } function log(address p0, string memory p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,uint,string)", p0, p1, p2, p3)); } function log(address p0, string memory p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,uint,bool)", p0, p1, p2, p3)); } function log(address p0, string memory p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,uint,address)", p0, p1, p2, p3)); } function log(address p0, string memory p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,string,uint)", p0, p1, p2, p3)); } function log(address p0, string memory p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,string,string)", p0, p1, p2, p3)); } function log(address p0, string memory p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,string,bool)", p0, p1, p2, p3)); } function log(address p0, string memory p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,string,address)", p0, p1, p2, p3)); } function log(address p0, string memory p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,bool,uint)", p0, p1, p2, p3)); } function log(address p0, string memory p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,bool,string)", p0, p1, p2, p3)); } function log(address p0, string memory p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,bool,bool)", p0, p1, p2, p3)); } function log(address p0, string memory p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,bool,address)", p0, p1, p2, p3)); } function log(address p0, string memory p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,address,uint)", p0, p1, p2, p3)); } function log(address p0, string memory p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,address,string)", p0, p1, p2, p3)); } function log(address p0, string memory p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,address,bool)", p0, p1, p2, p3)); } function log(address p0, string memory p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,address,address)", p0, p1, p2, p3)); } function log(address p0, bool p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,uint,uint)", p0, p1, p2, p3)); } function log(address p0, bool p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,uint,string)", p0, p1, p2, p3)); } function log(address p0, bool p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,uint,bool)", p0, p1, p2, p3)); } function log(address p0, bool p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,uint,address)", p0, p1, p2, p3)); } function log(address p0, bool p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,string,uint)", p0, p1, p2, p3)); } function log(address p0, bool p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,string,string)", p0, p1, p2, p3)); } function log(address p0, bool p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,string,bool)", p0, p1, p2, p3)); } function log(address p0, bool p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,string,address)", p0, p1, p2, p3)); } function log(address p0, bool p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,uint)", p0, p1, p2, p3)); } function log(address p0, bool p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,string)", p0, p1, p2, p3)); } function log(address p0, bool p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,bool)", p0, p1, p2, p3)); } function log(address p0, bool p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,address)", p0, p1, p2, p3)); } function log(address p0, bool p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,address,uint)", p0, p1, p2, p3)); } function log(address p0, bool p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,address,string)", p0, p1, p2, p3)); } function log(address p0, bool p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,address,bool)", p0, p1, p2, p3)); } function log(address p0, bool p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,address,address)", p0, p1, p2, p3)); } function log(address p0, address p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,uint,uint)", p0, p1, p2, p3)); } function log(address p0, address p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,uint,string)", p0, p1, p2, p3)); } function log(address p0, address p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,uint,bool)", p0, p1, p2, p3)); } function log(address p0, address p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,uint,address)", p0, p1, p2, p3)); } function log(address p0, address p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,string,uint)", p0, p1, p2, p3)); } function log(address p0, address p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,string,string)", p0, p1, p2, p3)); } function log(address p0, address p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,string,bool)", p0, p1, p2, p3)); } function log(address p0, address p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,string,address)", p0, p1, p2, p3)); } function log(address p0, address p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,bool,uint)", p0, p1, p2, p3)); } function log(address p0, address p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,bool,string)", p0, p1, p2, p3)); } function log(address p0, address p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,bool,bool)", p0, p1, p2, p3)); } function log(address p0, address p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,bool,address)", p0, p1, p2, p3)); } function log(address p0, address p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,address,uint)", p0, p1, p2, p3)); } function log(address p0, address p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,address,string)", p0, p1, p2, p3)); } function log(address p0, address p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,address,bool)", p0, p1, p2, p3)); } function log(address p0, address p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,address,address)", p0, p1, p2, p3)); } }
{ "optimizer": { "enabled": true, "runs": 800 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "metadata": { "useLiteralContent": true }, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint8","name":"version","type":"uint8"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"inputs":[{"internalType":"uint64[]","name":"idxs","type":"uint64[]"}],"name":"checkMarkedIdxs","outputs":[{"internalType":"bool[]","name":"","type":"bool[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint32[]","name":"productIds","type":"uint32[]"}],"name":"checkProductBalances","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20Base","name":"token","type":"address"},{"internalType":"uint32","name":"productId","type":"uint32"},{"internalType":"uint128","name":"amount","type":"uint128"}],"name":"fastWithdrawalFeeAmount","outputs":[{"internalType":"int128","name":"","type":"int128"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint32","name":"","type":"uint32"}],"name":"fees","outputs":[{"internalType":"int128","name":"","type":"int128"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_clearinghouse","type":"address"},{"internalType":"address","name":"_verifier","type":"address"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint64","name":"","type":"uint64"}],"name":"markedIdxs","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"minIdx","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint32","name":"productId","type":"uint32"},{"internalType":"uint128","name":"amount","type":"uint128"},{"internalType":"address","name":"sendTo","type":"address"}],"name":"removeLiquidity","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint64","name":"idx","type":"uint64"},{"internalType":"bytes","name":"transaction","type":"bytes"},{"internalType":"bytes[]","name":"signatures","type":"bytes[]"}],"name":"submitFastWithdrawal","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20Base","name":"token","type":"address"},{"internalType":"address","name":"sendTo","type":"address"},{"internalType":"uint128","name":"amount","type":"uint128"},{"internalType":"uint64","name":"idx","type":"uint64"}],"name":"submitWithdrawal","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
608060405234801561001057600080fd5b5061001961001e565b6100de565b600054610100900460ff161561008a5760405162461bcd60e51b815260206004820152602760248201527f496e697469616c697a61626c653a20636f6e747261637420697320696e697469604482015266616c697a696e6760c81b606482015260840160405180910390fd5b60005460ff90811610156100dc576000805460ff191660ff9081179091556040519081527f7f26b83ff96e1f2b6a682f133852f6798a09c465da95921460cefb38474024989060200160405180910390a15b565b611b02806100ed6000396000f3fe608060405234801561001057600080fd5b50600436106100df5760003560e01c80638da5cb5b1161008c578063c3b5813811610066578063c3b58138146101eb578063ef7b769014610211578063f2fde38b14610234578063fd8c52cd1461024757600080fd5b80638da5cb5b1461019d578063b46f3cb2146101b8578063b72c37f0146101cb57600080fd5b806366b32dad116100bd57806366b32dad14610135578063715018a6146101685780637dde18e21461017057600080fd5b806334fb0541146100e4578063485cc955146100f95780635a5937f01461010c575b600080fd5b6100f76100f236600461100d565b61025a565b005b6100f7610107366004611065565b6102db565b61011f61011a3660046110ea565b61043f565b60405161012c919061112c565b60405180910390f35b610158610143366004611170565b609b6020526000908152604090205460ff1681565b604051901515815260200161012c565b6100f7610569565b609d546101849067ffffffffffffffff1681565b60405167ffffffffffffffff909116815260200161012c565b6067546040516001600160a01b03909116815260200161012c565b6100f76101c636600461118b565b61057d565b6101de6101d93660046110ea565b610864565b60405161012c919061123a565b6101fe6101f9366004611288565b61093a565b604051600f9190910b815260200161012c565b6101fe61021f3660046112cd565b609c60205260009081526040902054600f0b81565b6100f76102423660046112e8565b610a9c565b6100f7610255366004611305565b610b2c565b6099546001600160a01b0316331461027157600080fd5b67ffffffffffffffff81166000908152609b602052604090205460ff166102d55767ffffffffffffffff81166000818152609b60205260409020805460ff19166001179055609d805467ffffffffffffffff191690911790556102d5848484610b43565b50505050565b600054610100900460ff16158080156102fb5750600054600160ff909116105b806103155750303b158015610315575060005460ff166001145b61038c5760405162461bcd60e51b815260206004820152602e60248201527f496e697469616c697a61626c653a20636f6e747261637420697320616c72656160448201527f647920696e697469616c697a656400000000000000000000000000000000000060648201526084015b60405180910390fd5b6000805460ff1916600117905580156103af576000805461ff0019166101001790555b6103b7610b60565b609980546001600160a01b0380861673ffffffffffffffffffffffffffffffffffffffff1992831617909255609a805492851692909116919091179055801561043a576000805461ff0019169055604051600181527f7f26b83ff96e1f2b6a682f133852f6798a09c465da95921460cefb38474024989060200160405180910390a15b505050565b606060008267ffffffffffffffff81111561045c5761045c61134c565b604051908082528060200260200182016040528015610485578160200160208202803683370190505b50905060005b8381101561055f5760006104c48686848181106104aa576104aa611362565b90506020020160208101906104bf91906112cd565b610bd3565b6040516370a0823160e01b81523060048201529091506001600160a01b038216906370a0823190602401602060405180830381865afa15801561050b573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061052f9190611378565b83838151811061054157610541611362565b60209081029190910101525080610557816113a7565b91505061048b565b5090505b92915050565b610571610c64565b61057b6000610cbe565b565b67ffffffffffffffff85166000908152609b602052604090205460ff16156105e75760405162461bcd60e51b815260206004820152601c60248201527f5769746864726177616c20616c7265616479207375626d6974746564000000006044820152606401610383565b609d5467ffffffffffffffff908116908616116106465760405162461bcd60e51b815260206004820152600d60248201527f69647820746f6f20736d616c6c000000000000000000000000000000000000006044820152606401610383565b67ffffffffffffffff85166000908152609b602052604090819020805460ff19166001179055609a5490516355757dbf60e01b81526001600160a01b039091169081906355757dbf906106a590889088908b90899089906004016113e9565b600060405180830381600087803b1580156106bf57600080fd5b505af11580156106d3573d6000803e3d6000fd5b50600092506106e99150869050600181896114a5565b8101906106f691906115a8565b9050600061070b826000015160200151610bd3565b8251805160409182015182518084019093526002835261434f60f01b602084015292935060601c91906f7fffffffffffffffffffffffffffffff6001600160801b038316111561076e5760405162461bcd60e51b8152600401610383919061169b565b506000610784848660000151602001518461093a565b9050806001600160801b0316826001600160801b0316116107e75760405162461bcd60e51b815260206004820152601760248201527f466565206c6172676572207468616e2062616c616e63650000000000000000006044820152606401610383565b6107f181836116ce565b855160209081015163ffffffff166000908152609c9091526040812080549294508392909190610825908490600f0b6116f6565b92506101000a8154816001600160801b030219169083600f0b6001600160801b03160217905550610857848484610b43565b5050505050505050505050565b606060008267ffffffffffffffff8111156108815761088161134c565b6040519080825280602002602001820160405280156108aa578160200160208202803683370190505b50905060005b8381101561055f57609b60008686848181106108ce576108ce611362565b90506020020160208101906108e39190611170565b67ffffffffffffffff168152602081019190915260400160002054825160ff9091169083908390811061091857610918611362565b9115156020928302919091019091015280610932816113a7565b9150506108b0565b600080846001600160a01b031663313ce5676040518163ffffffff1660e01b8152600401602060405180830381865afa15801561097b573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061099f9190611757565b9050601260ff821611156109b257600080fd5b60006109bf82601261177a565b6109ca90600a611881565b905060006109d88286611890565b905060006109ed66038d7ea4c6800083610d1d565b905060006109f9610d9d565b6040516303f7d28360e61b815263ffffffff8a1660048201526001600160a01b03919091169063fdf4a0c090602401602060405180830381865afa158015610a45573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610a699190611949565b610a74906005611890565b90506000610a828383610e14565b9050610a8e8582611964565b9a9950505050505050505050565b610aa4610c64565b6001600160a01b038116610b205760405162461bcd60e51b815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201527f64647265737300000000000000000000000000000000000000000000000000006064820152608401610383565b610b2981610cbe565b50565b610b34610c64565b61043a610b4084610bd3565b82845b61043a6001600160a01b038416836001600160801b038416610e32565b600054610100900460ff16610bcb5760405162461bcd60e51b815260206004820152602b60248201527f496e697469616c697a61626c653a20636f6e7472616374206973206e6f74206960448201526a6e697469616c697a696e6760a81b6064820152608401610383565b61057b610f50565b600080610bde610d9d565b6040516338d0dce360e21b815263ffffffff851660048201526001600160a01b03919091169063e343738c9060240160a060405180830381865afa158015610c2a573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610c4e91906119b9565b5190506001600160a01b03811661056357600080fd5b6067546001600160a01b0316331461057b5760405162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65726044820152606401610383565b606780546001600160a01b0383811673ffffffffffffffffffffffffffffffffffffffff19831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e090600090a35050565b6000670de0b6b3a7640000600f83810b9085900b02056f7fffffffffffffffffffffffffffffff198112801590610d6457506f7fffffffffffffffffffffffffffffff8113155b6040518060400160405280600281526020016127a360f11b8152509061055f5760405162461bcd60e51b8152600401610383919061169b565b609954604051635d2e9ad160e01b81526000916001600160a01b031690635d2e9ad190610dce908490600401611a49565b602060405180830381865afa158015610deb573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610e0f9190611a71565b905090565b600081600f0b83600f0b13610e295781610e2b565b825b9392505050565b604080516001600160a01b038481166024830152604480830185905283518084039091018152606490920183526020820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff1663a9059cbb60e01b1790529151600092839290871691610ea39190611a8e565b6000604051808303816000865af19150503d8060008114610ee0576040519150601f19603f3d011682016040523d82523d6000602084013e610ee5565b606091505b5091509150818015610f0f575080511580610f0f575080806020019051810190610f0f9190611aaa565b604051806040016040528060028152602001612a2360f11b81525090610f485760405162461bcd60e51b8152600401610383919061169b565b505050505050565b600054610100900460ff16610fbb5760405162461bcd60e51b815260206004820152602b60248201527f496e697469616c697a61626c653a20636f6e7472616374206973206e6f74206960448201526a6e697469616c697a696e6760a81b6064820152608401610383565b61057b33610cbe565b6001600160a01b0381168114610b2957600080fd5b80356001600160801b0381168114610ff057600080fd5b919050565b803567ffffffffffffffff81168114610ff057600080fd5b6000806000806080858703121561102357600080fd5b843561102e81610fc4565b9350602085013561103e81610fc4565b925061104c60408601610fd9565b915061105a60608601610ff5565b905092959194509250565b6000806040838503121561107857600080fd5b823561108381610fc4565b9150602083013561109381610fc4565b809150509250929050565b60008083601f8401126110b057600080fd5b50813567ffffffffffffffff8111156110c857600080fd5b6020830191508360208260051b85010111156110e357600080fd5b9250929050565b600080602083850312156110fd57600080fd5b823567ffffffffffffffff81111561111457600080fd5b6111208582860161109e565b90969095509350505050565b6020808252825182820181905260009190848201906040850190845b8181101561116457835183529284019291840191600101611148565b50909695505050505050565b60006020828403121561118257600080fd5b610e2b82610ff5565b6000806000806000606086880312156111a357600080fd5b6111ac86610ff5565b9450602086013567ffffffffffffffff808211156111c957600080fd5b818801915088601f8301126111dd57600080fd5b8135818111156111ec57600080fd5b8960208285010111156111fe57600080fd5b60208301965080955050604088013591508082111561121c57600080fd5b506112298882890161109e565b969995985093965092949392505050565b6020808252825182820181905260009190848201906040850190845b81811015611164578351151583529284019291840191600101611256565b803563ffffffff81168114610ff057600080fd5b60008060006060848603121561129d57600080fd5b83356112a881610fc4565b92506112b660208501611274565b91506112c460408501610fd9565b90509250925092565b6000602082840312156112df57600080fd5b610e2b82611274565b6000602082840312156112fa57600080fd5b8135610e2b81610fc4565b60008060006060848603121561131a57600080fd5b61132384611274565b925061133160208501610fd9565b9150604084013561134181610fc4565b809150509250925092565b634e487b7160e01b600052604160045260246000fd5b634e487b7160e01b600052603260045260246000fd5b60006020828403121561138a57600080fd5b5051919050565b634e487b7160e01b600052601160045260246000fd5b6000600182016113b9576113b9611391565b5060010190565b81835281816020850137506000828201602090810191909152601f909101601f19169091010190565b6060815260006113fd6060830187896113c0565b602067ffffffffffffffff808816828601528483036040860152828684528284019050828760051b8501018860005b8981101561149357868303601f190184528135368c9003601e1901811261145257600080fd5b8b0180358681111561146357600080fd5b8036038d131561147257600080fd5b61147f85828a85016113c0565b95880195945050509085019060010161142c565b50909c9b505050505050505050505050565b600080858511156114b557600080fd5b838611156114c257600080fd5b5050820193919092039150565b6040805190810167ffffffffffffffff811182821017156114f2576114f261134c565b60405290565b6040516080810167ffffffffffffffff811182821017156114f2576114f261134c565b600082601f83011261152c57600080fd5b813567ffffffffffffffff808211156115475761154761134c565b604051601f8301601f19908116603f0116810190828211818310171561156f5761156f61134c565b8160405283815286602085880101111561158857600080fd5b836020870160208301376000602085830101528094505050505092915050565b6000602082840312156115ba57600080fd5b813567ffffffffffffffff808211156115d257600080fd5b9083019081850360a08112156115e757600080fd5b6115ef6114cf565b60808212156115fd57600080fd5b6116056114f8565b91508335825261161760208501611274565b602083015261162860408501610fd9565b604083015261163960608501610ff5565b60608301529081526080830135908282111561165457600080fd5b6116608783860161151b565b60208201529695505050505050565b60005b8381101561168a578181015183820152602001611672565b838111156102d55750506000910152565b60208152600082518060208401526116ba81604085016020870161166f565b601f01601f19169190910160400192915050565b60006001600160801b03838116908316818110156116ee576116ee611391565b039392505050565b600081600f0b83600f0b60008212826f7fffffffffffffffffffffffffffffff0382138115161561172957611729611391565b826f7fffffffffffffffffffffffffffffff1903821281161561174e5761174e611391565b50019392505050565b60006020828403121561176957600080fd5b815160ff81168114610e2b57600080fd5b600060ff821660ff84168082101561179457611794611391565b90039392505050565b600181815b808511156117d85781600019048211156117be576117be611391565b808516156117cb57918102915b93841c93908002906117a2565b509250929050565b6000826117ef57506001610563565b816117fc57506000610563565b8160018114611812576002811461181c57611838565b6001915050610563565b60ff84111561182d5761182d611391565b50506001821b610563565b5060208310610133831016604e8410600b841016171561185b575081810a610563565b611865838361179d565b806000190482111561187957611879611391565b029392505050565b6000610e2b60ff8416836117e0565b600081600f0b83600f0b6f7fffffffffffffffffffffffffffffff6000821360008413838304851182821616156118c9576118c9611391565b6f7fffffffffffffffffffffffffffffff1960008512828116878305871216156118f5576118f5611391565b6000871292508582058712848416161561191157611911611391565b8585058712818416161561192757611927611391565b5050509290910295945050505050565b8051600f81900b8114610ff057600080fd5b60006020828403121561195b57600080fd5b610e2b82611937565b600081600f0b83600f0b8061198957634e487b7160e01b600052601260045260246000fd5b6f7fffffffffffffffffffffffffffffff198214600019821416156119b0576119b0611391565b90059392505050565b600060a082840312156119cb57600080fd5b60405160a0810181811067ffffffffffffffff821117156119ee576119ee61134c565b60405282516119fc81610fc4565b8152611a0a60208401611937565b6020820152611a1b60408401611937565b6040820152611a2c60608401611937565b6060820152611a3d60808401611937565b60808201529392505050565b6020810160028310611a6b57634e487b7160e01b600052602160045260246000fd5b91905290565b600060208284031215611a8357600080fd5b8151610e2b81610fc4565b60008251611aa081846020870161166f565b9190910192915050565b600060208284031215611abc57600080fd5b81518015158114610e2b57600080fdfea2646970667358221220e7621ee9b77fe64d0037bb08bfef65e833b69994bcf2cfc93f18932314fa4d9e64736f6c634300080d0033
Deployed Bytecode
0x608060405234801561001057600080fd5b50600436106100df5760003560e01c80638da5cb5b1161008c578063c3b5813811610066578063c3b58138146101eb578063ef7b769014610211578063f2fde38b14610234578063fd8c52cd1461024757600080fd5b80638da5cb5b1461019d578063b46f3cb2146101b8578063b72c37f0146101cb57600080fd5b806366b32dad116100bd57806366b32dad14610135578063715018a6146101685780637dde18e21461017057600080fd5b806334fb0541146100e4578063485cc955146100f95780635a5937f01461010c575b600080fd5b6100f76100f236600461100d565b61025a565b005b6100f7610107366004611065565b6102db565b61011f61011a3660046110ea565b61043f565b60405161012c919061112c565b60405180910390f35b610158610143366004611170565b609b6020526000908152604090205460ff1681565b604051901515815260200161012c565b6100f7610569565b609d546101849067ffffffffffffffff1681565b60405167ffffffffffffffff909116815260200161012c565b6067546040516001600160a01b03909116815260200161012c565b6100f76101c636600461118b565b61057d565b6101de6101d93660046110ea565b610864565b60405161012c919061123a565b6101fe6101f9366004611288565b61093a565b604051600f9190910b815260200161012c565b6101fe61021f3660046112cd565b609c60205260009081526040902054600f0b81565b6100f76102423660046112e8565b610a9c565b6100f7610255366004611305565b610b2c565b6099546001600160a01b0316331461027157600080fd5b67ffffffffffffffff81166000908152609b602052604090205460ff166102d55767ffffffffffffffff81166000818152609b60205260409020805460ff19166001179055609d805467ffffffffffffffff191690911790556102d5848484610b43565b50505050565b600054610100900460ff16158080156102fb5750600054600160ff909116105b806103155750303b158015610315575060005460ff166001145b61038c5760405162461bcd60e51b815260206004820152602e60248201527f496e697469616c697a61626c653a20636f6e747261637420697320616c72656160448201527f647920696e697469616c697a656400000000000000000000000000000000000060648201526084015b60405180910390fd5b6000805460ff1916600117905580156103af576000805461ff0019166101001790555b6103b7610b60565b609980546001600160a01b0380861673ffffffffffffffffffffffffffffffffffffffff1992831617909255609a805492851692909116919091179055801561043a576000805461ff0019169055604051600181527f7f26b83ff96e1f2b6a682f133852f6798a09c465da95921460cefb38474024989060200160405180910390a15b505050565b606060008267ffffffffffffffff81111561045c5761045c61134c565b604051908082528060200260200182016040528015610485578160200160208202803683370190505b50905060005b8381101561055f5760006104c48686848181106104aa576104aa611362565b90506020020160208101906104bf91906112cd565b610bd3565b6040516370a0823160e01b81523060048201529091506001600160a01b038216906370a0823190602401602060405180830381865afa15801561050b573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061052f9190611378565b83838151811061054157610541611362565b60209081029190910101525080610557816113a7565b91505061048b565b5090505b92915050565b610571610c64565b61057b6000610cbe565b565b67ffffffffffffffff85166000908152609b602052604090205460ff16156105e75760405162461bcd60e51b815260206004820152601c60248201527f5769746864726177616c20616c7265616479207375626d6974746564000000006044820152606401610383565b609d5467ffffffffffffffff908116908616116106465760405162461bcd60e51b815260206004820152600d60248201527f69647820746f6f20736d616c6c000000000000000000000000000000000000006044820152606401610383565b67ffffffffffffffff85166000908152609b602052604090819020805460ff19166001179055609a5490516355757dbf60e01b81526001600160a01b039091169081906355757dbf906106a590889088908b90899089906004016113e9565b600060405180830381600087803b1580156106bf57600080fd5b505af11580156106d3573d6000803e3d6000fd5b50600092506106e99150869050600181896114a5565b8101906106f691906115a8565b9050600061070b826000015160200151610bd3565b8251805160409182015182518084019093526002835261434f60f01b602084015292935060601c91906f7fffffffffffffffffffffffffffffff6001600160801b038316111561076e5760405162461bcd60e51b8152600401610383919061169b565b506000610784848660000151602001518461093a565b9050806001600160801b0316826001600160801b0316116107e75760405162461bcd60e51b815260206004820152601760248201527f466565206c6172676572207468616e2062616c616e63650000000000000000006044820152606401610383565b6107f181836116ce565b855160209081015163ffffffff166000908152609c9091526040812080549294508392909190610825908490600f0b6116f6565b92506101000a8154816001600160801b030219169083600f0b6001600160801b03160217905550610857848484610b43565b5050505050505050505050565b606060008267ffffffffffffffff8111156108815761088161134c565b6040519080825280602002602001820160405280156108aa578160200160208202803683370190505b50905060005b8381101561055f57609b60008686848181106108ce576108ce611362565b90506020020160208101906108e39190611170565b67ffffffffffffffff168152602081019190915260400160002054825160ff9091169083908390811061091857610918611362565b9115156020928302919091019091015280610932816113a7565b9150506108b0565b600080846001600160a01b031663313ce5676040518163ffffffff1660e01b8152600401602060405180830381865afa15801561097b573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061099f9190611757565b9050601260ff821611156109b257600080fd5b60006109bf82601261177a565b6109ca90600a611881565b905060006109d88286611890565b905060006109ed66038d7ea4c6800083610d1d565b905060006109f9610d9d565b6040516303f7d28360e61b815263ffffffff8a1660048201526001600160a01b03919091169063fdf4a0c090602401602060405180830381865afa158015610a45573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610a699190611949565b610a74906005611890565b90506000610a828383610e14565b9050610a8e8582611964565b9a9950505050505050505050565b610aa4610c64565b6001600160a01b038116610b205760405162461bcd60e51b815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201527f64647265737300000000000000000000000000000000000000000000000000006064820152608401610383565b610b2981610cbe565b50565b610b34610c64565b61043a610b4084610bd3565b82845b61043a6001600160a01b038416836001600160801b038416610e32565b600054610100900460ff16610bcb5760405162461bcd60e51b815260206004820152602b60248201527f496e697469616c697a61626c653a20636f6e7472616374206973206e6f74206960448201526a6e697469616c697a696e6760a81b6064820152608401610383565b61057b610f50565b600080610bde610d9d565b6040516338d0dce360e21b815263ffffffff851660048201526001600160a01b03919091169063e343738c9060240160a060405180830381865afa158015610c2a573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610c4e91906119b9565b5190506001600160a01b03811661056357600080fd5b6067546001600160a01b0316331461057b5760405162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65726044820152606401610383565b606780546001600160a01b0383811673ffffffffffffffffffffffffffffffffffffffff19831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e090600090a35050565b6000670de0b6b3a7640000600f83810b9085900b02056f7fffffffffffffffffffffffffffffff198112801590610d6457506f7fffffffffffffffffffffffffffffff8113155b6040518060400160405280600281526020016127a360f11b8152509061055f5760405162461bcd60e51b8152600401610383919061169b565b609954604051635d2e9ad160e01b81526000916001600160a01b031690635d2e9ad190610dce908490600401611a49565b602060405180830381865afa158015610deb573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610e0f9190611a71565b905090565b600081600f0b83600f0b13610e295781610e2b565b825b9392505050565b604080516001600160a01b038481166024830152604480830185905283518084039091018152606490920183526020820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff1663a9059cbb60e01b1790529151600092839290871691610ea39190611a8e565b6000604051808303816000865af19150503d8060008114610ee0576040519150601f19603f3d011682016040523d82523d6000602084013e610ee5565b606091505b5091509150818015610f0f575080511580610f0f575080806020019051810190610f0f9190611aaa565b604051806040016040528060028152602001612a2360f11b81525090610f485760405162461bcd60e51b8152600401610383919061169b565b505050505050565b600054610100900460ff16610fbb5760405162461bcd60e51b815260206004820152602b60248201527f496e697469616c697a61626c653a20636f6e7472616374206973206e6f74206960448201526a6e697469616c697a696e6760a81b6064820152608401610383565b61057b33610cbe565b6001600160a01b0381168114610b2957600080fd5b80356001600160801b0381168114610ff057600080fd5b919050565b803567ffffffffffffffff81168114610ff057600080fd5b6000806000806080858703121561102357600080fd5b843561102e81610fc4565b9350602085013561103e81610fc4565b925061104c60408601610fd9565b915061105a60608601610ff5565b905092959194509250565b6000806040838503121561107857600080fd5b823561108381610fc4565b9150602083013561109381610fc4565b809150509250929050565b60008083601f8401126110b057600080fd5b50813567ffffffffffffffff8111156110c857600080fd5b6020830191508360208260051b85010111156110e357600080fd5b9250929050565b600080602083850312156110fd57600080fd5b823567ffffffffffffffff81111561111457600080fd5b6111208582860161109e565b90969095509350505050565b6020808252825182820181905260009190848201906040850190845b8181101561116457835183529284019291840191600101611148565b50909695505050505050565b60006020828403121561118257600080fd5b610e2b82610ff5565b6000806000806000606086880312156111a357600080fd5b6111ac86610ff5565b9450602086013567ffffffffffffffff808211156111c957600080fd5b818801915088601f8301126111dd57600080fd5b8135818111156111ec57600080fd5b8960208285010111156111fe57600080fd5b60208301965080955050604088013591508082111561121c57600080fd5b506112298882890161109e565b969995985093965092949392505050565b6020808252825182820181905260009190848201906040850190845b81811015611164578351151583529284019291840191600101611256565b803563ffffffff81168114610ff057600080fd5b60008060006060848603121561129d57600080fd5b83356112a881610fc4565b92506112b660208501611274565b91506112c460408501610fd9565b90509250925092565b6000602082840312156112df57600080fd5b610e2b82611274565b6000602082840312156112fa57600080fd5b8135610e2b81610fc4565b60008060006060848603121561131a57600080fd5b61132384611274565b925061133160208501610fd9565b9150604084013561134181610fc4565b809150509250925092565b634e487b7160e01b600052604160045260246000fd5b634e487b7160e01b600052603260045260246000fd5b60006020828403121561138a57600080fd5b5051919050565b634e487b7160e01b600052601160045260246000fd5b6000600182016113b9576113b9611391565b5060010190565b81835281816020850137506000828201602090810191909152601f909101601f19169091010190565b6060815260006113fd6060830187896113c0565b602067ffffffffffffffff808816828601528483036040860152828684528284019050828760051b8501018860005b8981101561149357868303601f190184528135368c9003601e1901811261145257600080fd5b8b0180358681111561146357600080fd5b8036038d131561147257600080fd5b61147f85828a85016113c0565b95880195945050509085019060010161142c565b50909c9b505050505050505050505050565b600080858511156114b557600080fd5b838611156114c257600080fd5b5050820193919092039150565b6040805190810167ffffffffffffffff811182821017156114f2576114f261134c565b60405290565b6040516080810167ffffffffffffffff811182821017156114f2576114f261134c565b600082601f83011261152c57600080fd5b813567ffffffffffffffff808211156115475761154761134c565b604051601f8301601f19908116603f0116810190828211818310171561156f5761156f61134c565b8160405283815286602085880101111561158857600080fd5b836020870160208301376000602085830101528094505050505092915050565b6000602082840312156115ba57600080fd5b813567ffffffffffffffff808211156115d257600080fd5b9083019081850360a08112156115e757600080fd5b6115ef6114cf565b60808212156115fd57600080fd5b6116056114f8565b91508335825261161760208501611274565b602083015261162860408501610fd9565b604083015261163960608501610ff5565b60608301529081526080830135908282111561165457600080fd5b6116608783860161151b565b60208201529695505050505050565b60005b8381101561168a578181015183820152602001611672565b838111156102d55750506000910152565b60208152600082518060208401526116ba81604085016020870161166f565b601f01601f19169190910160400192915050565b60006001600160801b03838116908316818110156116ee576116ee611391565b039392505050565b600081600f0b83600f0b60008212826f7fffffffffffffffffffffffffffffff0382138115161561172957611729611391565b826f7fffffffffffffffffffffffffffffff1903821281161561174e5761174e611391565b50019392505050565b60006020828403121561176957600080fd5b815160ff81168114610e2b57600080fd5b600060ff821660ff84168082101561179457611794611391565b90039392505050565b600181815b808511156117d85781600019048211156117be576117be611391565b808516156117cb57918102915b93841c93908002906117a2565b509250929050565b6000826117ef57506001610563565b816117fc57506000610563565b8160018114611812576002811461181c57611838565b6001915050610563565b60ff84111561182d5761182d611391565b50506001821b610563565b5060208310610133831016604e8410600b841016171561185b575081810a610563565b611865838361179d565b806000190482111561187957611879611391565b029392505050565b6000610e2b60ff8416836117e0565b600081600f0b83600f0b6f7fffffffffffffffffffffffffffffff6000821360008413838304851182821616156118c9576118c9611391565b6f7fffffffffffffffffffffffffffffff1960008512828116878305871216156118f5576118f5611391565b6000871292508582058712848416161561191157611911611391565b8585058712818416161561192757611927611391565b5050509290910295945050505050565b8051600f81900b8114610ff057600080fd5b60006020828403121561195b57600080fd5b610e2b82611937565b600081600f0b83600f0b8061198957634e487b7160e01b600052601260045260246000fd5b6f7fffffffffffffffffffffffffffffff198214600019821416156119b0576119b0611391565b90059392505050565b600060a082840312156119cb57600080fd5b60405160a0810181811067ffffffffffffffff821117156119ee576119ee61134c565b60405282516119fc81610fc4565b8152611a0a60208401611937565b6020820152611a1b60408401611937565b6040820152611a2c60608401611937565b6060820152611a3d60808401611937565b60808201529392505050565b6020810160028310611a6b57634e487b7160e01b600052602160045260246000fd5b91905290565b600060208284031215611a8357600080fd5b8151610e2b81610fc4565b60008251611aa081846020870161166f565b9190910192915050565b600060208284031215611abc57600080fd5b81518015158114610e2b57600080fdfea2646970667358221220e7621ee9b77fe64d0037bb08bfef65e833b69994bcf2cfc93f18932314fa4d9e64736f6c634300080d0033
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 34 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
Loading...
Loading
Loading...
Loading
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.