Source Code
Overview
S Balance
S Value
$0.00Cross-Chain Transactions
Loading...
Loading
Contract Name:
BatchCollector
Compiler Version
v0.8.28+commit.7893614a
Optimization Enabled:
Yes with 99999 runs
Other Settings:
paris EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
import {ISonicWagmi} from "./interfaces/ISonicWagmi.sol";
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
interface ISW is ISonicWagmi {
function tokens(uint256 i) external view returns (address);
}
contract BatchCollector {
ISW constant sw = ISW(0x6ff5DdC2Ee51BD5076d3607076cD0Aa810f6E2e6);
function collect(uint256 start, uint256 iters) external {
uint256 numTokens = sw.numTokens();
require(start < numTokens);
uint256 end = Math.min(start + iters, numTokens);
for (uint256 i = start; i < end; i++) {
sw.collectFee(sw.tokens(i));
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
/**
* @dev Muldiv operation overflow.
*/
error MathOverflowedMulDiv();
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an overflow flag.
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
return a / b;
}
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
if (denominator <= prod1) {
revert MathOverflowedMulDiv();
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;
interface ISonicWagmi {
struct TokenInfo {
address creator;
address feeCollector;
address pool;
address gauge;
uint256 positionId;
}
error BadDeploySalt(address token);
error LaunchWithoutBuyout();
event NewToken(
address token,
address pool,
address creator,
uint256 buyoutSAmount,
uint256 buyoutTokenAmount
);
function tokenInfo(address token) external view returns (TokenInfo memory);
function numTokens() external view returns (uint256);
function launch(
int24 tickLower,
int24 tickUpper,
int24 tickSpacing,
bytes32 deploySalt,
uint256 totalSupply,
string memory name,
string memory symbol
) external payable returns (address token, uint256 buyoutTokenAmount);
function collectFee(
address token
) external returns (uint256 wsAmount, uint256 tokenAmount);
function calcDeploySalt(
uint256 totalSupply,
string memory name,
string memory symbol
) external returns (bytes32 deploySalt);
}{
"optimizer": {
"enabled": true,
"runs": 99999
},
"evmVersion": "paris",
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"libraries": {}
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"uint256","name":"start","type":"uint256"},{"internalType":"uint256","name":"iters","type":"uint256"}],"name":"collect","outputs":[],"stateMutability":"nonpayable","type":"function"}]Contract Creation Code
6080604052348015600f57600080fd5b506103538061001f6000396000f3fe608060405234801561001057600080fd5b506004361061002b5760003560e01c8063cfa6f82714610030575b600080fd5b61004361003e366004610247565b610045565b005b6000736ff5ddc2ee51bd5076d3607076cd0aa810f6e2e673ffffffffffffffffffffffffffffffffffffffff16638e499bcf6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156100a6573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906100ca9190610269565b90508083106100d857600080fd5b60006100ed6100e78486610282565b8361022d565b9050835b81811015610226576040517f4f64b2be00000000000000000000000000000000000000000000000000000000815260048101829052736ff5ddc2ee51bd5076d3607076cd0aa810f6e2e6906369b59e75908290634f64b2be90602401602060405180830381865afa15801561016a573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061018e91906102bc565b6040517fffffffff0000000000000000000000000000000000000000000000000000000060e084901b16815273ffffffffffffffffffffffffffffffffffffffff909116600482015260240160408051808303816000875af11580156101f8573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061021c91906102f9565b50506001016100f1565b5050505050565b600081831061023c578161023e565b825b90505b92915050565b6000806040838503121561025a57600080fd5b50508035926020909101359150565b60006020828403121561027b57600080fd5b5051919050565b80820180821115610241577f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b6000602082840312156102ce57600080fd5b815173ffffffffffffffffffffffffffffffffffffffff811681146102f257600080fd5b9392505050565b6000806040838503121561030c57600080fd5b50508051602090910151909290915056fea2646970667358221220d92e7409b4f399ffc85fecc4415e35f10e18b3a50edb9d1b35598c43859570bd64736f6c634300081c0033
Deployed Bytecode
0x608060405234801561001057600080fd5b506004361061002b5760003560e01c8063cfa6f82714610030575b600080fd5b61004361003e366004610247565b610045565b005b6000736ff5ddc2ee51bd5076d3607076cd0aa810f6e2e673ffffffffffffffffffffffffffffffffffffffff16638e499bcf6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156100a6573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906100ca9190610269565b90508083106100d857600080fd5b60006100ed6100e78486610282565b8361022d565b9050835b81811015610226576040517f4f64b2be00000000000000000000000000000000000000000000000000000000815260048101829052736ff5ddc2ee51bd5076d3607076cd0aa810f6e2e6906369b59e75908290634f64b2be90602401602060405180830381865afa15801561016a573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061018e91906102bc565b6040517fffffffff0000000000000000000000000000000000000000000000000000000060e084901b16815273ffffffffffffffffffffffffffffffffffffffff909116600482015260240160408051808303816000875af11580156101f8573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061021c91906102f9565b50506001016100f1565b5050505050565b600081831061023c578161023e565b825b90505b92915050565b6000806040838503121561025a57600080fd5b50508035926020909101359150565b60006020828403121561027b57600080fd5b5051919050565b80820180821115610241577f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b6000602082840312156102ce57600080fd5b815173ffffffffffffffffffffffffffffffffffffffff811681146102f257600080fd5b9392505050565b6000806040838503121561030c57600080fd5b50508051602090910151909290915056fea2646970667358221220d92e7409b4f399ffc85fecc4415e35f10e18b3a50edb9d1b35598c43859570bd64736f6c634300081c0033
Loading...
Loading
Loading...
Loading
Loading...
Loading
Net Worth in USD
$0.00
Net Worth in S
Multichain Portfolio | 35 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|
Loading...
Loading
Loading...
Loading
Loading...
Loading
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.