More Info
Private Name Tags
ContractCreator
Latest 1 internal transaction
Parent Transaction Hash | Block | From | To | |||
---|---|---|---|---|---|---|
368312 | 7 days ago | Contract Creation | 0 S |
Loading...
Loading
Contract Name:
ProtocolFeesCollector
Compiler Version
v0.7.1+commit.f4a555be
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "../lib/openzeppelin/IERC20.sol"; import "../lib/helpers/InputHelpers.sol"; import "../lib/helpers/Authentication.sol"; import "../lib/openzeppelin/ReentrancyGuard.sol"; import "../lib/openzeppelin/SafeERC20.sol"; import "./interfaces/IVault.sol"; import "./interfaces/IAuthorizer.sol"; /** * @dev This an auxiliary contract to the Vault, deployed by it during construction. It offloads some of the tasks the * Vault performs to reduce its overall bytecode size. * * The current values for all protocol fee percentages are stored here, and any tokens charged as protocol fees are * sent to this contract, where they may be withdrawn by authorized entities. All authorization tasks are delegated * to the Vault's own authorizer. */ contract ProtocolFeesCollector is Authentication, ReentrancyGuard { using SafeERC20 for IERC20; // Absolute maximum fee percentages (1e18 = 100%, 1e16 = 1%). uint256 private constant _MAX_PROTOCOL_SWAP_FEE_PERCENTAGE = 50e16; // 50% uint256 private constant _MAX_PROTOCOL_FLASH_LOAN_FEE_PERCENTAGE = 1e16; // 1% IVault public immutable vault; // All fee percentages are 18-decimal fixed point numbers. // The swap fee is charged whenever a swap occurs, as a percentage of the fee charged by the Pool. These are not // actually charged on each individual swap: the `Vault` relies on the Pools being honest and reporting fees due // when users join and exit them. uint256 private _swapFeePercentage; // The flash loan fee is charged whenever a flash loan occurs, as a percentage of the tokens lent. uint256 private _flashLoanFeePercentage; event SwapFeePercentageChanged(uint256 newSwapFeePercentage); event FlashLoanFeePercentageChanged(uint256 newFlashLoanFeePercentage); constructor(IVault _vault) // The ProtocolFeesCollector is a singleton, so it simply uses its own address to disambiguate action // identifiers. Authentication(bytes32(uint256(address(this)))) { vault = _vault; } function withdrawCollectedFees( IERC20[] calldata tokens, uint256[] calldata amounts, address recipient ) external nonReentrant authenticate { InputHelpers.ensureInputLengthMatch(tokens.length, amounts.length); for (uint256 i = 0; i < tokens.length; ++i) { IERC20 token = tokens[i]; uint256 amount = amounts[i]; token.safeTransfer(recipient, amount); } } function setSwapFeePercentage(uint256 newSwapFeePercentage) external authenticate { _require(newSwapFeePercentage <= _MAX_PROTOCOL_SWAP_FEE_PERCENTAGE, Errors.SWAP_FEE_PERCENTAGE_TOO_HIGH); _swapFeePercentage = newSwapFeePercentage; emit SwapFeePercentageChanged(newSwapFeePercentage); } function setFlashLoanFeePercentage(uint256 newFlashLoanFeePercentage) external authenticate { _require( newFlashLoanFeePercentage <= _MAX_PROTOCOL_FLASH_LOAN_FEE_PERCENTAGE, Errors.FLASH_LOAN_FEE_PERCENTAGE_TOO_HIGH ); _flashLoanFeePercentage = newFlashLoanFeePercentage; emit FlashLoanFeePercentageChanged(newFlashLoanFeePercentage); } function getSwapFeePercentage() external view returns (uint256) { return _swapFeePercentage; } function getFlashLoanFeePercentage() external view returns (uint256) { return _flashLoanFeePercentage; } function getCollectedFeeAmounts(IERC20[] memory tokens) external view returns (uint256[] memory feeAmounts) { feeAmounts = new uint256[](tokens.length); for (uint256 i = 0; i < tokens.length; ++i) { feeAmounts[i] = tokens[i].balanceOf(address(this)); } } function getAuthorizer() external view returns (IAuthorizer) { return _getAuthorizer(); } function _canPerform(bytes32 actionId, address account) internal view override returns (bool) { return _getAuthorizer().canPerform(actionId, account, address(this)); } function _getAuthorizer() internal view returns (IAuthorizer) { return vault.getAuthorizer(); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address sender, address recipient, uint256 amount ) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "../openzeppelin/IERC20.sol"; import "./BalancerErrors.sol"; import "../../vault/interfaces/IAsset.sol"; library InputHelpers { function ensureInputLengthMatch(uint256 a, uint256 b) internal pure { _require(a == b, Errors.INPUT_LENGTH_MISMATCH); } function ensureInputLengthMatch( uint256 a, uint256 b, uint256 c ) internal pure { _require(a == b && b == c, Errors.INPUT_LENGTH_MISMATCH); } function ensureArrayIsSorted(IAsset[] memory array) internal pure { address[] memory addressArray; // solhint-disable-next-line no-inline-assembly assembly { addressArray := array } ensureArrayIsSorted(addressArray); } function ensureArrayIsSorted(IERC20[] memory array) internal pure { address[] memory addressArray; // solhint-disable-next-line no-inline-assembly assembly { addressArray := array } ensureArrayIsSorted(addressArray); } function ensureArrayIsSorted(address[] memory array) internal pure { if (array.length < 2) { return; } address previous = array[0]; for (uint256 i = 1; i < array.length; ++i) { address current = array[i]; _require(previous < current, Errors.UNSORTED_ARRAY); previous = current; } } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "./BalancerErrors.sol"; import "./IAuthentication.sol"; /** * @dev Building block for performing access control on external functions. * * This contract is used via the `authenticate` modifier (or the `_authenticateCaller` function), which can be applied * to external functions to only make them callable by authorized accounts. * * Derived contracts must implement the `_canPerform` function, which holds the actual access control logic. */ abstract contract Authentication is IAuthentication { bytes32 private immutable _actionIdDisambiguator; /** * @dev The main purpose of the `actionIdDisambiguator` is to prevent accidental function selector collisions in * multi contract systems. * * There are two main uses for it: * - if the contract is a singleton, any unique identifier can be used to make the associated action identifiers * unique. The contract's own address is a good option. * - if the contract belongs to a family that shares action identifiers for the same functions, an identifier * shared by the entire family (and no other contract) should be used instead. */ constructor(bytes32 actionIdDisambiguator) { _actionIdDisambiguator = actionIdDisambiguator; } /** * @dev Reverts unless the caller is allowed to call this function. Should only be applied to external functions. */ modifier authenticate() { _authenticateCaller(); _; } /** * @dev Reverts unless the caller is allowed to call the entry point function. */ function _authenticateCaller() internal view { bytes32 actionId = getActionId(msg.sig); _require(_canPerform(actionId, msg.sender), Errors.SENDER_NOT_ALLOWED); } function getActionId(bytes4 selector) public view override returns (bytes32) { // Each external function is dynamically assigned an action identifier as the hash of the disambiguator and the // function selector. Disambiguation is necessary to avoid potential collisions in the function selectors of // multiple contracts. return keccak256(abi.encodePacked(_actionIdDisambiguator, selector)); } function _canPerform(bytes32 actionId, address user) internal view virtual returns (bool); }
// SPDX-License-Identifier: MIT // Based on the ReentrancyGuard library from OpenZeppelin Contracts, altered to reduce bytecode size. // Modifier code is inlined by the compiler, which causes its code to appear multiple times in the codebase. By using // private functions, we achieve the same end result with slightly higher runtime gas costs, but reduced bytecode size. pragma solidity ^0.7.0; import "../helpers/BalancerErrors.sol"; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant _NOT_ENTERED = 1; uint256 private constant _ENTERED = 2; uint256 private _status; constructor() { _status = _NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and make it call a * `private` function that does the actual work. */ modifier nonReentrant() { _enterNonReentrant(); _; _exitNonReentrant(); } function _enterNonReentrant() private { // On the first call to nonReentrant, _status will be _NOT_ENTERED _require(_status != _ENTERED, Errors.REENTRANCY); // Any calls to nonReentrant after this point will fail _status = _ENTERED; } function _exitNonReentrant() private { // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = _NOT_ENTERED; } }
// SPDX-License-Identifier: MIT // Based on the ReentrancyGuard library from OpenZeppelin Contracts, altered to reduce gas costs. // The `safeTransfer` and `safeTransferFrom` functions assume that `token` is a contract (an account with code), and // work differently from the OpenZeppelin version if it is not. pragma solidity ^0.7.0; import "../helpers/BalancerErrors.sol"; import "./IERC20.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { function safeTransfer( IERC20 token, address to, uint256 value ) internal { _callOptionalReturn(address(token), abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom( IERC20 token, address from, address to, uint256 value ) internal { _callOptionalReturn(address(token), abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * * WARNING: `token` is assumed to be a contract: calls to EOAs will *not* revert. */ function _callOptionalReturn(address token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. (bool success, bytes memory returndata) = token.call(data); // If the low-level call didn't succeed we return whatever was returned from it. assembly { if eq(success, 0) { returndatacopy(0, 0, returndatasize()) revert(0, returndatasize()) } } // Finally we check the returndata size is either zero or true - note that this check will always pass for EOAs _require(returndata.length == 0 || abi.decode(returndata, (bool)), Errors.SAFE_ERC20_CALL_FAILED); } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma experimental ABIEncoderV2; import "../../lib/openzeppelin/IERC20.sol"; import "./IWETH.sol"; import "./IAsset.sol"; import "./IAuthorizer.sol"; import "./IFlashLoanRecipient.sol"; import "../ProtocolFeesCollector.sol"; import "../../lib/helpers/ISignaturesValidator.sol"; import "../../lib/helpers/ITemporarilyPausable.sol"; pragma solidity ^0.7.0; /** * @dev Full external interface for the Vault core contract - no external or public methods exist in the contract that * don't override one of these declarations. */ interface IVault is ISignaturesValidator, ITemporarilyPausable { // Generalities about the Vault: // // - Whenever documentation refers to 'tokens', it strictly refers to ERC20-compliant token contracts. Tokens are // transferred out of the Vault by calling the `IERC20.transfer` function, and transferred in by calling // `IERC20.transferFrom`. In these cases, the sender must have previously allowed the Vault to use their tokens by // calling `IERC20.approve`. The only deviation from the ERC20 standard that is supported is functions not returning // a boolean value: in these scenarios, a non-reverting call is assumed to be successful. // // - All non-view functions in the Vault are non-reentrant: calling them while another one is mid-execution (e.g. // while execution control is transferred to a token contract during a swap) will result in a revert. View // functions can be called in a re-reentrant way, but doing so might cause them to return inconsistent results. // Contracts calling view functions in the Vault must make sure the Vault has not already been entered. // // - View functions revert if referring to either unregistered Pools, or unregistered tokens for registered Pools. // Authorizer // // Some system actions are permissioned, like setting and collecting protocol fees. This permissioning system exists // outside of the Vault in the Authorizer contract: the Vault simply calls the Authorizer to check if the caller // can perform a given action. /** * @dev Returns the Vault's Authorizer. */ function getAuthorizer() external view returns (IAuthorizer); /** * @dev Sets a new Authorizer for the Vault. The caller must be allowed by the current Authorizer to do this. * * Emits an `AuthorizerChanged` event. */ function setAuthorizer(IAuthorizer newAuthorizer) external; /** * @dev Emitted when a new authorizer is set by `setAuthorizer`. */ event AuthorizerChanged(IAuthorizer indexed newAuthorizer); // Relayers // // Additionally, it is possible for an account to perform certain actions on behalf of another one, using their // Vault ERC20 allowance and Internal Balance. These accounts are said to be 'relayers' for these Vault functions, // and are expected to be smart contracts with sound authentication mechanisms. For an account to be able to wield // this power, two things must occur: // - The Authorizer must grant the account the permission to be a relayer for the relevant Vault function. This // means that Balancer governance must approve each individual contract to act as a relayer for the intended // functions. // - Each user must approve the relayer to act on their behalf. // This double protection means users cannot be tricked into approving malicious relayers (because they will not // have been allowed by the Authorizer via governance), nor can malicious relayers approved by a compromised // Authorizer or governance drain user funds, since they would also need to be approved by each individual user. /** * @dev Returns true if `user` has approved `relayer` to act as a relayer for them. */ function hasApprovedRelayer(address user, address relayer) external view returns (bool); /** * @dev Allows `relayer` to act as a relayer for `sender` if `approved` is true, and disallows it otherwise. * * Emits a `RelayerApprovalChanged` event. */ function setRelayerApproval( address sender, address relayer, bool approved ) external; /** * @dev Emitted every time a relayer is approved or disapproved by `setRelayerApproval`. */ event RelayerApprovalChanged(address indexed relayer, address indexed sender, bool approved); // Internal Balance // // Users can deposit tokens into the Vault, where they are allocated to their Internal Balance, and later // transferred or withdrawn. It can also be used as a source of tokens when joining Pools, as a destination // when exiting them, and as either when performing swaps. This usage of Internal Balance results in greatly reduced // gas costs when compared to relying on plain ERC20 transfers, leading to large savings for frequent users. // // Internal Balance management features batching, which means a single contract call can be used to perform multiple // operations of different kinds, with different senders and recipients, at once. /** * @dev Returns `user`'s Internal Balance for a set of tokens. */ function getInternalBalance(address user, IERC20[] memory tokens) external view returns (uint256[] memory); /** * @dev Performs a set of user balance operations, which involve Internal Balance (deposit, withdraw or transfer) * and plain ERC20 transfers using the Vault's allowance. This last feature is particularly useful for relayers, as * it lets integrators reuse a user's Vault allowance. * * For each operation, if the caller is not `sender`, it must be an authorized relayer for them. */ function manageUserBalance(UserBalanceOp[] memory ops) external payable; /** * @dev Data for `manageUserBalance` operations, which include the possibility for ETH to be sent and received without manual WETH wrapping or unwrapping. */ struct UserBalanceOp { UserBalanceOpKind kind; IAsset asset; uint256 amount; address sender; address payable recipient; } // There are four possible operations in `manageUserBalance`: // // - DEPOSIT_INTERNAL // Increases the Internal Balance of the `recipient` account by transferring tokens from the corresponding // `sender`. The sender must have allowed the Vault to use their tokens via `IERC20.approve()`. // // ETH can be used by passing the ETH sentinel value as the asset and forwarding ETH in the call: it will be wrapped // and deposited as WETH. Any ETH amount remaining will be sent back to the caller (not the sender, which is // relevant for relayers). // // Emits an `InternalBalanceChanged` event. // // // - WITHDRAW_INTERNAL // Decreases the Internal Balance of the `sender` account by transferring tokens to the `recipient`. // // ETH can be used by passing the ETH sentinel value as the asset. This will deduct WETH instead, unwrap it and send // it to the recipient as ETH. // // Emits an `InternalBalanceChanged` event. // // // - TRANSFER_INTERNAL // Transfers tokens from the Internal Balance of the `sender` account to the Internal Balance of `recipient`. // // Reverts if the ETH sentinel value is passed. // // Emits an `InternalBalanceChanged` event. // // // - TRANSFER_EXTERNAL // Transfers tokens from `sender` to `recipient`, using the Vault's ERC20 allowance. This is typically used by // relayers, as it lets them reuse a user's Vault allowance. // // Reverts if the ETH sentinel value is passed. // // Emits an `ExternalBalanceTransfer` event. enum UserBalanceOpKind { DEPOSIT_INTERNAL, WITHDRAW_INTERNAL, TRANSFER_INTERNAL, TRANSFER_EXTERNAL } /** * @dev Emitted when a user's Internal Balance changes, either from calls to `manageUserBalance`, or through * interacting with Pools using Internal Balance. * * Because Internal Balance works exclusively with ERC20 tokens, ETH deposits and withdrawals will use the WETH * address. */ event InternalBalanceChanged(address indexed user, IERC20 indexed token, int256 delta); /** * @dev Emitted when a user's Vault ERC20 allowance is used by the Vault to transfer tokens to an external account. */ event ExternalBalanceTransfer(IERC20 indexed token, address indexed sender, address recipient, uint256 amount); // Pools // // There are three specialization settings for Pools, which allow for cheaper swaps at the cost of reduced // functionality: // // - General: no specialization, suited for all Pools. IGeneralPool is used for swap request callbacks, passing the // balance of all tokens in the Pool. These Pools have the largest swap costs (because of the extra storage reads), // which increase with the number of registered tokens. // // - Minimal Swap Info: IMinimalSwapInfoPool is used instead of IGeneralPool, which saves gas by only passing the // balance of the two tokens involved in the swap. This is suitable for some pricing algorithms, like the weighted // constant product one popularized by Balancer V1. Swap costs are smaller compared to general Pools, and are // independent of the number of registered tokens. // // - Two Token: only allows two tokens to be registered. This achieves the lowest possible swap gas cost. Like // minimal swap info Pools, these are called via IMinimalSwapInfoPool. enum PoolSpecialization { GENERAL, MINIMAL_SWAP_INFO, TWO_TOKEN } /** * @dev Registers the caller account as a Pool with a given specialization setting. Returns the Pool's ID, which * is used in all Pool-related functions. Pools cannot be deregistered, nor can the Pool's specialization be * changed. * * The caller is expected to be a smart contract that implements either `IGeneralPool` or `IMinimalSwapInfoPool`, * depending on the chosen specialization setting. This contract is known as the Pool's contract. * * Note that the same contract may register itself as multiple Pools with unique Pool IDs, or in other words, * multiple Pools may share the same contract. * * Emits a `PoolRegistered` event. */ function registerPool(PoolSpecialization specialization) external returns (bytes32); /** * @dev Emitted when a Pool is registered by calling `registerPool`. */ event PoolRegistered(bytes32 indexed poolId, address indexed poolAddress, PoolSpecialization specialization); /** * @dev Returns a Pool's contract address and specialization setting. */ function getPool(bytes32 poolId) external view returns (address, PoolSpecialization); /** * @dev Registers `tokens` for the `poolId` Pool. Must be called by the Pool's contract. * * Pools can only interact with tokens they have registered. Users join a Pool by transferring registered tokens, * exit by receiving registered tokens, and can only swap registered tokens. * * Each token can only be registered once. For Pools with the Two Token specialization, `tokens` must have a length * of two, that is, both tokens must be registered in the same `registerTokens` call, and they must be sorted in * ascending order. * * The `tokens` and `assetManagers` arrays must have the same length, and each entry in these indicates the Asset * Manager for the corresponding token. Asset Managers can manage a Pool's tokens via `managePoolBalance`, * depositing and withdrawing them directly, and can even set their balance to arbitrary amounts. They are therefore * expected to be highly secured smart contracts with sound design principles, and the decision to register an * Asset Manager should not be made lightly. * * Pools can choose not to assign an Asset Manager to a given token by passing in the zero address. Once an Asset * Manager is set, it cannot be changed except by deregistering the associated token and registering again with a * different Asset Manager. * * Emits a `TokensRegistered` event. */ function registerTokens( bytes32 poolId, IERC20[] memory tokens, address[] memory assetManagers ) external; /** * @dev Emitted when a Pool registers tokens by calling `registerTokens`. */ event TokensRegistered(bytes32 indexed poolId, IERC20[] tokens, address[] assetManagers); /** * @dev Deregisters `tokens` for the `poolId` Pool. Must be called by the Pool's contract. * * Only registered tokens (via `registerTokens`) can be deregistered. Additionally, they must have zero total * balance. For Pools with the Two Token specialization, `tokens` must have a length of two, that is, both tokens * must be deregistered in the same `deregisterTokens` call. * * A deregistered token can be re-registered later on, possibly with a different Asset Manager. * * Emits a `TokensDeregistered` event. */ function deregisterTokens(bytes32 poolId, IERC20[] memory tokens) external; /** * @dev Emitted when a Pool deregisters tokens by calling `deregisterTokens`. */ event TokensDeregistered(bytes32 indexed poolId, IERC20[] tokens); /** * @dev Returns detailed information for a Pool's registered token. * * `cash` is the number of tokens the Vault currently holds for the Pool. `managed` is the number of tokens * withdrawn and held outside the Vault by the Pool's token Asset Manager. The Pool's total balance for `token` * equals the sum of `cash` and `managed`. * * Internally, `cash` and `managed` are stored using 112 bits. No action can ever cause a Pool's token `cash`, * `managed` or `total` balance to be greater than 2^112 - 1. * * `lastChangeBlock` is the number of the block in which `token`'s total balance was last modified (via either a * join, exit, swap, or Asset Manager update). This value is useful to avoid so-called 'sandwich attacks', for * example when developing price oracles. A change of zero (e.g. caused by a swap with amount zero) is considered a * change for this purpose, and will update `lastChangeBlock`. * * `assetManager` is the Pool's token Asset Manager. */ function getPoolTokenInfo(bytes32 poolId, IERC20 token) external view returns ( uint256 cash, uint256 managed, uint256 lastChangeBlock, address assetManager ); /** * @dev Returns a Pool's registered tokens, the total balance for each, and the latest block when *any* of * the tokens' `balances` changed. * * The order of the `tokens` array is the same order that will be used in `joinPool`, `exitPool`, as well as in all * Pool hooks (where applicable). Calls to `registerTokens` and `deregisterTokens` may change this order. * * If a Pool only registers tokens once, and these are sorted in ascending order, they will be stored in the same * order as passed to `registerTokens`. * * Total balances include both tokens held by the Vault and those withdrawn by the Pool's Asset Managers. These are * the amounts used by joins, exits and swaps. For a detailed breakdown of token balances, use `getPoolTokenInfo` * instead. */ function getPoolTokens(bytes32 poolId) external view returns ( IERC20[] memory tokens, uint256[] memory balances, uint256 lastChangeBlock ); /** * @dev Called by users to join a Pool, which transfers tokens from `sender` into the Pool's balance. This will * trigger custom Pool behavior, which will typically grant something in return to `recipient` - often tokenized * Pool shares. * * If the caller is not `sender`, it must be an authorized relayer for them. * * The `assets` and `maxAmountsIn` arrays must have the same length, and each entry indicates the maximum amount * to send for each asset. The amounts to send are decided by the Pool and not the Vault: it just enforces * these maximums. * * If joining a Pool that holds WETH, it is possible to send ETH directly: the Vault will do the wrapping. To enable * this mechanism, the IAsset sentinel value (the zero address) must be passed in the `assets` array instead of the * WETH address. Note that it is not possible to combine ETH and WETH in the same join. Any excess ETH will be sent * back to the caller (not the sender, which is important for relayers). * * `assets` must have the same length and order as the array returned by `getPoolTokens`. This prevents issues when * interacting with Pools that register and deregister tokens frequently. If sending ETH however, the array must be * sorted *before* replacing the WETH address with the ETH sentinel value (the zero address), which means the final * `assets` array might not be sorted. Pools with no registered tokens cannot be joined. * * If `fromInternalBalance` is true, the caller's Internal Balance will be preferred: ERC20 transfers will only * be made for the difference between the requested amount and Internal Balance (if any). Note that ETH cannot be * withdrawn from Internal Balance: attempting to do so will trigger a revert. * * This causes the Vault to call the `IBasePool.onJoinPool` hook on the Pool's contract, where Pools implement * their own custom logic. This typically requires additional information from the user (such as the expected number * of Pool shares). This can be encoded in the `userData` argument, which is ignored by the Vault and passed * directly to the Pool's contract, as is `recipient`. * * Emits a `PoolBalanceChanged` event. */ function joinPool( bytes32 poolId, address sender, address recipient, JoinPoolRequest memory request ) external payable; struct JoinPoolRequest { IAsset[] assets; uint256[] maxAmountsIn; bytes userData; bool fromInternalBalance; } /** * @dev Called by users to exit a Pool, which transfers tokens from the Pool's balance to `recipient`. This will * trigger custom Pool behavior, which will typically ask for something in return from `sender` - often tokenized * Pool shares. The amount of tokens that can be withdrawn is limited by the Pool's `cash` balance (see * `getPoolTokenInfo`). * * If the caller is not `sender`, it must be an authorized relayer for them. * * The `tokens` and `minAmountsOut` arrays must have the same length, and each entry in these indicates the minimum * token amount to receive for each token contract. The amounts to send are decided by the Pool and not the Vault: * it just enforces these minimums. * * If exiting a Pool that holds WETH, it is possible to receive ETH directly: the Vault will do the unwrapping. To * enable this mechanism, the IAsset sentinel value (the zero address) must be passed in the `assets` array instead * of the WETH address. Note that it is not possible to combine ETH and WETH in the same exit. * * `assets` must have the same length and order as the array returned by `getPoolTokens`. This prevents issues when * interacting with Pools that register and deregister tokens frequently. If receiving ETH however, the array must * be sorted *before* replacing the WETH address with the ETH sentinel value (the zero address), which means the * final `assets` array might not be sorted. Pools with no registered tokens cannot be exited. * * If `toInternalBalance` is true, the tokens will be deposited to `recipient`'s Internal Balance. Otherwise, * an ERC20 transfer will be performed. Note that ETH cannot be deposited to Internal Balance: attempting to * do so will trigger a revert. * * `minAmountsOut` is the minimum amount of tokens the user expects to get out of the Pool, for each token in the * `tokens` array. This array must match the Pool's registered tokens. * * This causes the Vault to call the `IBasePool.onExitPool` hook on the Pool's contract, where Pools implement * their own custom logic. This typically requires additional information from the user (such as the expected number * of Pool shares to return). This can be encoded in the `userData` argument, which is ignored by the Vault and * passed directly to the Pool's contract. * * Emits a `PoolBalanceChanged` event. */ function exitPool( bytes32 poolId, address sender, address payable recipient, ExitPoolRequest memory request ) external; struct ExitPoolRequest { IAsset[] assets; uint256[] minAmountsOut; bytes userData; bool toInternalBalance; } /** * @dev Emitted when a user joins or exits a Pool by calling `joinPool` or `exitPool`, respectively. */ event PoolBalanceChanged( bytes32 indexed poolId, address indexed liquidityProvider, IERC20[] tokens, int256[] deltas, uint256[] protocolFeeAmounts ); enum PoolBalanceChangeKind { JOIN, EXIT } // Swaps // // Users can swap tokens with Pools by calling the `swap` and `batchSwap` functions. To do this, // they need not trust Pool contracts in any way: all security checks are made by the Vault. They must however be // aware of the Pools' pricing algorithms in order to estimate the prices Pools will quote. // // The `swap` function executes a single swap, while `batchSwap` can perform multiple swaps in sequence. // In each individual swap, tokens of one kind are sent from the sender to the Pool (this is the 'token in'), // and tokens of another kind are sent from the Pool to the recipient in exchange (this is the 'token out'). // More complex swaps, such as one token in to multiple tokens out can be achieved by batching together // individual swaps. // // There are two swap kinds: // - 'given in' swaps, where the amount of tokens in (sent to the Pool) is known, and the Pool determines (via the // `onSwap` hook) the amount of tokens out (to send to the recipient). // - 'given out' swaps, where the amount of tokens out (received from the Pool) is known, and the Pool determines // (via the `onSwap` hook) the amount of tokens in (to receive from the sender). // // Additionally, it is possible to chain swaps using a placeholder input amount, which the Vault replaces with // the calculated output of the previous swap. If the previous swap was 'given in', this will be the calculated // tokenOut amount. If the previous swap was 'given out', it will use the calculated tokenIn amount. These extended // swaps are known as 'multihop' swaps, since they 'hop' through a number of intermediate tokens before arriving at // the final intended token. // // In all cases, tokens are only transferred in and out of the Vault (or withdrawn from and deposited into Internal // Balance) after all individual swaps have been completed, and the net token balance change computed. This makes // certain swap patterns, such as multihops, or swaps that interact with the same token pair in multiple Pools, cost // much less gas than they would otherwise. // // It also means that under certain conditions it is possible to perform arbitrage by swapping with multiple // Pools in a way that results in net token movement out of the Vault (profit), with no tokens being sent in (only // updating the Pool's internal accounting). // // To protect users from front-running or the market changing rapidly, they supply a list of 'limits' for each token // involved in the swap, where either the maximum number of tokens to send (by passing a positive value) or the // minimum amount of tokens to receive (by passing a negative value) is specified. // // Additionally, a 'deadline' timestamp can also be provided, forcing the swap to fail if it occurs after // this point in time (e.g. if the transaction failed to be included in a block promptly). // // If interacting with Pools that hold WETH, it is possible to both send and receive ETH directly: the Vault will do // the wrapping and unwrapping. To enable this mechanism, the IAsset sentinel value (the zero address) must be // passed in the `assets` array instead of the WETH address. Note that it is possible to combine ETH and WETH in the // same swap. Any excess ETH will be sent back to the caller (not the sender, which is relevant for relayers). // // Finally, Internal Balance can be used when either sending or receiving tokens. enum SwapKind { GIVEN_IN, GIVEN_OUT } /** * @dev Performs a swap with a single Pool. * * If the swap is 'given in' (the number of tokens to send to the Pool is known), it returns the amount of tokens * taken from the Pool, which must be greater than or equal to `limit`. * * If the swap is 'given out' (the number of tokens to take from the Pool is known), it returns the amount of tokens * sent to the Pool, which must be less than or equal to `limit`. * * Internal Balance usage and the recipient are determined by the `funds` struct. * * Emits a `Swap` event. */ function swap( SingleSwap memory singleSwap, FundManagement memory funds, uint256 limit, uint256 deadline ) external payable returns (uint256); /** * @dev Data for a single swap executed by `swap`. `amount` is either `amountIn` or `amountOut` depending on * the `kind` value. * * `assetIn` and `assetOut` are either token addresses, or the IAsset sentinel value for ETH (the zero address). * Note that Pools never interact with ETH directly: it will be wrapped to or unwrapped from WETH by the Vault. * * The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be * used to extend swap behavior. */ struct SingleSwap { bytes32 poolId; SwapKind kind; IAsset assetIn; IAsset assetOut; uint256 amount; bytes userData; } /** * @dev Performs a series of swaps with one or multiple Pools. In each individual swap, the caller determines either * the amount of tokens sent to or received from the Pool, depending on the `kind` value. * * Returns an array with the net Vault asset balance deltas. Positive amounts represent tokens (or ETH) sent to the * Vault, and negative amounts represent tokens (or ETH) sent by the Vault. Each delta corresponds to the asset at * the same index in the `assets` array. * * Swaps are executed sequentially, in the order specified by the `swaps` array. Each array element describes a * Pool, the token to be sent to this Pool, the token to receive from it, and an amount that is either `amountIn` or * `amountOut` depending on the swap kind. * * Multihop swaps can be executed by passing an `amount` value of zero for a swap. This will cause the amount in/out * of the previous swap to be used as the amount in for the current one. In a 'given in' swap, 'tokenIn' must equal * the previous swap's `tokenOut`. For a 'given out' swap, `tokenOut` must equal the previous swap's `tokenIn`. * * The `assets` array contains the addresses of all assets involved in the swaps. These are either token addresses, * or the IAsset sentinel value for ETH (the zero address). Each entry in the `swaps` array specifies tokens in and * out by referencing an index in `assets`. Note that Pools never interact with ETH directly: it will be wrapped to * or unwrapped from WETH by the Vault. * * Internal Balance usage, sender, and recipient are determined by the `funds` struct. The `limits` array specifies * the minimum or maximum amount of each token the vault is allowed to transfer. * * `batchSwap` can be used to make a single swap, like `swap` does, but doing so requires more gas than the * equivalent `swap` call. * * Emits `Swap` events. */ function batchSwap( SwapKind kind, BatchSwapStep[] memory swaps, IAsset[] memory assets, FundManagement memory funds, int256[] memory limits, uint256 deadline ) external payable returns (int256[] memory); /** * @dev Data for each individual swap executed by `batchSwap`. The asset in and out fields are indexes into the * `assets` array passed to that function, and ETH assets are converted to WETH. * * If `amount` is zero, the multihop mechanism is used to determine the actual amount based on the amount in/out * from the previous swap, depending on the swap kind. * * The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be * used to extend swap behavior. */ struct BatchSwapStep { bytes32 poolId; uint256 assetInIndex; uint256 assetOutIndex; uint256 amount; bytes userData; } /** * @dev Emitted for each individual swap performed by `swap` or `batchSwap`. */ event Swap( bytes32 indexed poolId, IERC20 indexed tokenIn, IERC20 indexed tokenOut, uint256 amountIn, uint256 amountOut ); /** * @dev All tokens in a swap are either sent from the `sender` account to the Vault, or from the Vault to the * `recipient` account. * * If the caller is not `sender`, it must be an authorized relayer for them. * * If `fromInternalBalance` is true, the `sender`'s Internal Balance will be preferred, performing an ERC20 * transfer for the difference between the requested amount and the User's Internal Balance (if any). The `sender` * must have allowed the Vault to use their tokens via `IERC20.approve()`. This matches the behavior of * `joinPool`. * * If `toInternalBalance` is true, tokens will be deposited to `recipient`'s internal balance instead of * transferred. This matches the behavior of `exitPool`. * * Note that ETH cannot be deposited to or withdrawn from Internal Balance: attempting to do so will trigger a * revert. */ struct FundManagement { address sender; bool fromInternalBalance; address payable recipient; bool toInternalBalance; } /** * @dev Simulates a call to `batchSwap`, returning an array of Vault asset deltas. Calls to `swap` cannot be * simulated directly, but an equivalent `batchSwap` call can and will yield the exact same result. * * Each element in the array corresponds to the asset at the same index, and indicates the number of tokens (or ETH) * the Vault would take from the sender (if positive) or send to the recipient (if negative). The arguments it * receives are the same that an equivalent `batchSwap` call would receive. * * Unlike `batchSwap`, this function performs no checks on the sender or recipient field in the `funds` struct. * This makes it suitable to be called by off-chain applications via eth_call without needing to hold tokens, * approve them for the Vault, or even know a user's address. * * Note that this function is not 'view' (due to implementation details): the client code must explicitly execute * eth_call instead of eth_sendTransaction. */ function queryBatchSwap( SwapKind kind, BatchSwapStep[] memory swaps, IAsset[] memory assets, FundManagement memory funds ) external returns (int256[] memory assetDeltas); // Flash Loans /** * @dev Performs a 'flash loan', sending tokens to `recipient`, executing the `receiveFlashLoan` hook on it, * and then reverting unless the tokens plus a proportional protocol fee have been returned. * * The `tokens` and `amounts` arrays must have the same length, and each entry in these indicates the loan amount * for each token contract. `tokens` must be sorted in ascending order. * * The 'userData' field is ignored by the Vault, and forwarded as-is to `recipient` as part of the * `receiveFlashLoan` call. * * Emits `FlashLoan` events. */ function flashLoan( IFlashLoanRecipient recipient, IERC20[] memory tokens, uint256[] memory amounts, bytes memory userData ) external; /** * @dev Emitted for each individual flash loan performed by `flashLoan`. */ event FlashLoan(IFlashLoanRecipient indexed recipient, IERC20 indexed token, uint256 amount, uint256 feeAmount); // Asset Management // // Each token registered for a Pool can be assigned an Asset Manager, which is able to freely withdraw the Pool's // tokens from the Vault, deposit them, or assign arbitrary values to its `managed` balance (see // `getPoolTokenInfo`). This makes them extremely powerful and dangerous. Even if an Asset Manager only directly // controls one of the tokens in a Pool, a malicious manager could set that token's balance to manipulate the // prices of the other tokens, and then drain the Pool with swaps. The risk of using Asset Managers is therefore // not constrained to the tokens they are managing, but extends to the entire Pool's holdings. // // However, a properly designed Asset Manager smart contract can be safely used for the Pool's benefit, // for example by lending unused tokens out for interest, or using them to participate in voting protocols. // // This concept is unrelated to the IAsset interface. /** * @dev Performs a set of Pool balance operations, which may be either withdrawals, deposits or updates. * * Pool Balance management features batching, which means a single contract call can be used to perform multiple * operations of different kinds, with different Pools and tokens, at once. * * For each operation, the caller must be registered as the Asset Manager for `token` in `poolId`. */ function managePoolBalance(PoolBalanceOp[] memory ops) external; struct PoolBalanceOp { PoolBalanceOpKind kind; bytes32 poolId; IERC20 token; uint256 amount; } /** * Withdrawals decrease the Pool's cash, but increase its managed balance, leaving the total balance unchanged. * * Deposits increase the Pool's cash, but decrease its managed balance, leaving the total balance unchanged. * * Updates don't affect the Pool's cash balance, but because the managed balance changes, it does alter the total. * The external amount can be either increased or decreased by this call (i.e., reporting a gain or a loss). */ enum PoolBalanceOpKind { WITHDRAW, DEPOSIT, UPDATE } /** * @dev Emitted when a Pool's token Asset Manager alters its balance via `managePoolBalance`. */ event PoolBalanceManaged( bytes32 indexed poolId, address indexed assetManager, IERC20 indexed token, int256 cashDelta, int256 managedDelta ); // Protocol Fees // // Some operations cause the Vault to collect tokens in the form of protocol fees, which can then be withdrawn by // permissioned accounts. // // There are two kinds of protocol fees: // // - flash loan fees: charged on all flash loans, as a percentage of the amounts lent. // // - swap fees: a percentage of the fees charged by Pools when performing swaps. For a number of reasons, including // swap gas costs and interface simplicity, protocol swap fees are not charged on each individual swap. Rather, // Pools are expected to keep track of how much they have charged in swap fees, and pay any outstanding debts to the // Vault when they are joined or exited. This prevents users from joining a Pool with unpaid debt, as well as // exiting a Pool in debt without first paying their share. /** * @dev Returns the current protocol fee module. */ function getProtocolFeesCollector() external view returns (ProtocolFeesCollector); /** * @dev Safety mechanism to pause most Vault operations in the event of an emergency - typically detection of an * error in some part of the system. * * The Vault can only be paused during an initial time period, after which pausing is forever disabled. * * While the contract is paused, the following features are disabled: * - depositing and transferring internal balance * - transferring external balance (using the Vault's allowance) * - swaps * - joining Pools * - Asset Manager interactions * * Internal Balance can still be withdrawn, and Pools exited. */ function setPaused(bool paused) external; /** * @dev Returns the Vault's WETH instance. */ function WETH() external view returns (IWETH); // solhint-disable-previous-line func-name-mixedcase }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; interface IAuthorizer { /** * @dev Returns true if `account` can perform the action described by `actionId` in the contract `where`. */ function canPerform( bytes32 actionId, address account, address where ) external view returns (bool); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; // solhint-disable /** * @dev Reverts if `condition` is false, with a revert reason containing `errorCode`. Only codes up to 999 are * supported. */ function _require(bool condition, uint256 errorCode) pure { if (!condition) _revert(errorCode); } /** * @dev Reverts with a revert reason containing `errorCode`. Only codes up to 999 are supported. */ function _revert(uint256 errorCode) pure { // We're going to dynamically create a revert string based on the error code, with the following format: // 'BAL#{errorCode}' // where the code is left-padded with zeroes to three digits (so they range from 000 to 999). // // We don't have revert strings embedded in the contract to save bytecode size: it takes much less space to store a // number (8 to 16 bits) than the individual string characters. // // The dynamic string creation algorithm that follows could be implemented in Solidity, but assembly allows for a // much denser implementation, again saving bytecode size. Given this function unconditionally reverts, this is a // safe place to rely on it without worrying about how its usage might affect e.g. memory contents. assembly { // First, we need to compute the ASCII representation of the error code. We assume that it is in the 0-999 // range, so we only need to convert three digits. To convert the digits to ASCII, we add 0x30, the value for // the '0' character. let units := add(mod(errorCode, 10), 0x30) errorCode := div(errorCode, 10) let tenths := add(mod(errorCode, 10), 0x30) errorCode := div(errorCode, 10) let hundreds := add(mod(errorCode, 10), 0x30) // With the individual characters, we can now construct the full string. The "BAL#" part is a known constant // (0x42414c23): we simply shift this by 24 (to provide space for the 3 bytes of the error code), and add the // characters to it, each shifted by a multiple of 8. // The revert reason is then shifted left by 200 bits (256 minus the length of the string, 7 characters * 8 bits // per character = 56) to locate it in the most significant part of the 256 slot (the beginning of a byte // array). let revertReason := shl(200, add(0x42414c23000000, add(add(units, shl(8, tenths)), shl(16, hundreds)))) // We can now encode the reason in memory, which can be safely overwritten as we're about to revert. The encoded // message will have the following layout: // [ revert reason identifier ] [ string location offset ] [ string length ] [ string contents ] // The Solidity revert reason identifier is 0x08c739a0, the function selector of the Error(string) function. We // also write zeroes to the next 28 bytes of memory, but those are about to be overwritten. mstore(0x0, 0x08c379a000000000000000000000000000000000000000000000000000000000) // Next is the offset to the location of the string, which will be placed immediately after (20 bytes away). mstore(0x04, 0x0000000000000000000000000000000000000000000000000000000000000020) // The string length is fixed: 7 characters. mstore(0x24, 7) // Finally, the string itself is stored. mstore(0x44, revertReason) // Even if the string is only 7 bytes long, we need to return a full 32 byte slot containing it. The length of // the encoded message is therefore 4 + 32 + 32 + 32 = 100. revert(0, 100) } } library Errors { // Math uint256 internal constant ADD_OVERFLOW = 0; uint256 internal constant SUB_OVERFLOW = 1; uint256 internal constant SUB_UNDERFLOW = 2; uint256 internal constant MUL_OVERFLOW = 3; uint256 internal constant ZERO_DIVISION = 4; uint256 internal constant DIV_INTERNAL = 5; uint256 internal constant X_OUT_OF_BOUNDS = 6; uint256 internal constant Y_OUT_OF_BOUNDS = 7; uint256 internal constant PRODUCT_OUT_OF_BOUNDS = 8; uint256 internal constant INVALID_EXPONENT = 9; // Input uint256 internal constant OUT_OF_BOUNDS = 100; uint256 internal constant UNSORTED_ARRAY = 101; uint256 internal constant UNSORTED_TOKENS = 102; uint256 internal constant INPUT_LENGTH_MISMATCH = 103; uint256 internal constant ZERO_TOKEN = 104; // Shared pools uint256 internal constant MIN_TOKENS = 200; uint256 internal constant MAX_TOKENS = 201; uint256 internal constant MAX_SWAP_FEE_PERCENTAGE = 202; uint256 internal constant MIN_SWAP_FEE_PERCENTAGE = 203; uint256 internal constant MINIMUM_BPT = 204; uint256 internal constant CALLER_NOT_VAULT = 205; uint256 internal constant UNINITIALIZED = 206; uint256 internal constant BPT_IN_MAX_AMOUNT = 207; uint256 internal constant BPT_OUT_MIN_AMOUNT = 208; uint256 internal constant EXPIRED_PERMIT = 209; // Pools uint256 internal constant MIN_AMP = 300; uint256 internal constant MAX_AMP = 301; uint256 internal constant MIN_WEIGHT = 302; uint256 internal constant MAX_STABLE_TOKENS = 303; uint256 internal constant MAX_IN_RATIO = 304; uint256 internal constant MAX_OUT_RATIO = 305; uint256 internal constant MIN_BPT_IN_FOR_TOKEN_OUT = 306; uint256 internal constant MAX_OUT_BPT_FOR_TOKEN_IN = 307; uint256 internal constant NORMALIZED_WEIGHT_INVARIANT = 308; uint256 internal constant INVALID_TOKEN = 309; uint256 internal constant UNHANDLED_JOIN_KIND = 310; uint256 internal constant ZERO_INVARIANT = 311; uint256 internal constant ORACLE_INVALID_SECONDS_QUERY = 312; uint256 internal constant ORACLE_NOT_INITIALIZED = 313; uint256 internal constant ORACLE_QUERY_TOO_OLD = 314; uint256 internal constant ORACLE_INVALID_INDEX = 315; uint256 internal constant ORACLE_BAD_SECS = 316; // Lib uint256 internal constant REENTRANCY = 400; uint256 internal constant SENDER_NOT_ALLOWED = 401; uint256 internal constant PAUSED = 402; uint256 internal constant PAUSE_WINDOW_EXPIRED = 403; uint256 internal constant MAX_PAUSE_WINDOW_DURATION = 404; uint256 internal constant MAX_BUFFER_PERIOD_DURATION = 405; uint256 internal constant INSUFFICIENT_BALANCE = 406; uint256 internal constant INSUFFICIENT_ALLOWANCE = 407; uint256 internal constant ERC20_TRANSFER_FROM_ZERO_ADDRESS = 408; uint256 internal constant ERC20_TRANSFER_TO_ZERO_ADDRESS = 409; uint256 internal constant ERC20_MINT_TO_ZERO_ADDRESS = 410; uint256 internal constant ERC20_BURN_FROM_ZERO_ADDRESS = 411; uint256 internal constant ERC20_APPROVE_FROM_ZERO_ADDRESS = 412; uint256 internal constant ERC20_APPROVE_TO_ZERO_ADDRESS = 413; uint256 internal constant ERC20_TRANSFER_EXCEEDS_ALLOWANCE = 414; uint256 internal constant ERC20_DECREASED_ALLOWANCE_BELOW_ZERO = 415; uint256 internal constant ERC20_TRANSFER_EXCEEDS_BALANCE = 416; uint256 internal constant ERC20_BURN_EXCEEDS_ALLOWANCE = 417; uint256 internal constant SAFE_ERC20_CALL_FAILED = 418; uint256 internal constant ADDRESS_INSUFFICIENT_BALANCE = 419; uint256 internal constant ADDRESS_CANNOT_SEND_VALUE = 420; uint256 internal constant SAFE_CAST_VALUE_CANT_FIT_INT256 = 421; uint256 internal constant GRANT_SENDER_NOT_ADMIN = 422; uint256 internal constant REVOKE_SENDER_NOT_ADMIN = 423; uint256 internal constant RENOUNCE_SENDER_NOT_ALLOWED = 424; uint256 internal constant BUFFER_PERIOD_EXPIRED = 425; // Vault uint256 internal constant INVALID_POOL_ID = 500; uint256 internal constant CALLER_NOT_POOL = 501; uint256 internal constant SENDER_NOT_ASSET_MANAGER = 502; uint256 internal constant USER_DOESNT_ALLOW_RELAYER = 503; uint256 internal constant INVALID_SIGNATURE = 504; uint256 internal constant EXIT_BELOW_MIN = 505; uint256 internal constant JOIN_ABOVE_MAX = 506; uint256 internal constant SWAP_LIMIT = 507; uint256 internal constant SWAP_DEADLINE = 508; uint256 internal constant CANNOT_SWAP_SAME_TOKEN = 509; uint256 internal constant UNKNOWN_AMOUNT_IN_FIRST_SWAP = 510; uint256 internal constant MALCONSTRUCTED_MULTIHOP_SWAP = 511; uint256 internal constant INTERNAL_BALANCE_OVERFLOW = 512; uint256 internal constant INSUFFICIENT_INTERNAL_BALANCE = 513; uint256 internal constant INVALID_ETH_INTERNAL_BALANCE = 514; uint256 internal constant INVALID_POST_LOAN_BALANCE = 515; uint256 internal constant INSUFFICIENT_ETH = 516; uint256 internal constant UNALLOCATED_ETH = 517; uint256 internal constant ETH_TRANSFER = 518; uint256 internal constant CANNOT_USE_ETH_SENTINEL = 519; uint256 internal constant TOKENS_MISMATCH = 520; uint256 internal constant TOKEN_NOT_REGISTERED = 521; uint256 internal constant TOKEN_ALREADY_REGISTERED = 522; uint256 internal constant TOKENS_ALREADY_SET = 523; uint256 internal constant TOKENS_LENGTH_MUST_BE_2 = 524; uint256 internal constant NONZERO_TOKEN_BALANCE = 525; uint256 internal constant BALANCE_TOTAL_OVERFLOW = 526; uint256 internal constant POOL_NO_TOKENS = 527; uint256 internal constant INSUFFICIENT_FLASH_LOAN_BALANCE = 528; // Fees uint256 internal constant SWAP_FEE_PERCENTAGE_TOO_HIGH = 600; uint256 internal constant FLASH_LOAN_FEE_PERCENTAGE_TOO_HIGH = 601; uint256 internal constant INSUFFICIENT_FLASH_LOAN_FEE_AMOUNT = 602; }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; /** * @dev This is an empty interface used to represent either ERC20-conforming token contracts or ETH (using the zero * address sentinel value). We're just relying on the fact that `interface` can be used to declare new address-like * types. * * This concept is unrelated to a Pool's Asset Managers. */ interface IAsset { // solhint-disable-previous-line no-empty-blocks }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; interface IAuthentication { /** * @dev Returns the action identifier associated with the external function described by `selector`. */ function getActionId(bytes4 selector) external view returns (bytes32); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "../../lib/openzeppelin/IERC20.sol"; /** * @dev Interface for the WETH token contract used internally for wrapping and unwrapping, to support * sending and receiving ETH in joins, swaps, and internal balance deposits and withdrawals. */ interface IWETH is IERC20 { function deposit() external payable; function withdraw(uint256 amount) external; }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; // Inspired by Aave Protocol's IFlashLoanReceiver. import "../../lib/openzeppelin/IERC20.sol"; interface IFlashLoanRecipient { /** * @dev When `flashLoan` is called on the Vault, it invokes the `receiveFlashLoan` hook on the recipient. * * At the time of the call, the Vault will have transferred `amounts` for `tokens` to the recipient. Before this * call returns, the recipient must have transferred `amounts` plus `feeAmounts` for each token back to the * Vault, or else the entire flash loan will revert. * * `userData` is the same value passed in the `IVault.flashLoan` call. */ function receiveFlashLoan( IERC20[] memory tokens, uint256[] memory amounts, uint256[] memory feeAmounts, bytes memory userData ) external; }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; /** * @dev Interface for the SignatureValidator helper, used to support meta-transactions. */ interface ISignaturesValidator { /** * @dev Returns the EIP712 domain separator. */ function getDomainSeparator() external view returns (bytes32); /** * @dev Returns the next nonce used by an address to sign messages. */ function getNextNonce(address user) external view returns (uint256); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; /** * @dev Interface for the TemporarilyPausable helper. */ interface ITemporarilyPausable { /** * @dev Emitted every time the pause state changes by `_setPaused`. */ event PausedStateChanged(bool paused); /** * @dev Returns the current paused state. */ function getPausedState() external view returns ( bool paused, uint256 pauseWindowEndTime, uint256 bufferPeriodEndTime ); }
{ "optimizer": { "enabled": true, "runs": 1500 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "abi" ] } }, "metadata": { "useLiteralContent": true }, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"contract IVault","name":"_vault","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"newFlashLoanFeePercentage","type":"uint256"}],"name":"FlashLoanFeePercentageChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"newSwapFeePercentage","type":"uint256"}],"name":"SwapFeePercentageChanged","type":"event"},{"inputs":[{"internalType":"bytes4","name":"selector","type":"bytes4"}],"name":"getActionId","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAuthorizer","outputs":[{"internalType":"contract IAuthorizer","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20[]","name":"tokens","type":"address[]"}],"name":"getCollectedFeeAmounts","outputs":[{"internalType":"uint256[]","name":"feeAmounts","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getFlashLoanFeePercentage","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getSwapFeePercentage","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"newFlashLoanFeePercentage","type":"uint256"}],"name":"setFlashLoanFeePercentage","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newSwapFeePercentage","type":"uint256"}],"name":"setSwapFeePercentage","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"vault","outputs":[{"internalType":"contract IVault","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20[]","name":"tokens","type":"address[]"},{"internalType":"uint256[]","name":"amounts","type":"uint256[]"},{"internalType":"address","name":"recipient","type":"address"}],"name":"withdrawCollectedFees","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
60c060405234801561001057600080fd5b50604051610be6380380610be683398101604081905261002f9161004d565b30608052600160005560601b6001600160601b03191660a05261007b565b60006020828403121561005e578081fd5b81516001600160a01b0381168114610074578182fd5b9392505050565b60805160a05160601c610b406100a66000398061041352806105495250806102a75250610b406000f3fe608060405234801561001057600080fd5b50600436106100a35760003560e01c8063851c1bb311610076578063d877845c1161005b578063d877845c14610129578063e42abf3514610131578063fbfa77cf14610151576100a3565b8063851c1bb314610101578063aaabadc514610114576100a3565b806338e9922e146100a857806355c67628146100bd5780636b6b9f69146100db5780636daefab6146100ee575b600080fd5b6100bb6100b636600461099c565b610159565b005b6100c56101b8565b6040516100d29190610aa6565b60405180910390f35b6100bb6100e936600461099c565b6101be565b6100bb6100fc3660046107d1565b610211565b6100c561010f366004610924565b6102a3565b61011c6102f5565b6040516100d29190610a35565b6100c5610304565b61014461013f366004610852565b61030a565b6040516100d29190610a62565b61011c610411565b610161610435565b6101786706f05b59d3b2000082111561025861047e565b60018190556040517fa9ba3ffe0b6c366b81232caab38605a0699ad5398d6cce76f91ee809e322dafc906101ad908390610aa6565b60405180910390a150565b60015490565b6101c6610435565b6101dc662386f26fc1000082111561025961047e565b60028190556040517f5a0b7386237e7f07fa741efc64e59c9387d2cccafec760efed4d53387f20e19a906101ad908390610aa6565b610219610490565b610221610435565b61022b84836104a9565b60005b8481101561029357600086868381811061024457fe5b90506020020160208101906102599190610980565b9050600085858481811061026957fe5b6020029190910135915061028990506001600160a01b03831685836104b6565b505060010161022e565b5061029c61053e565b5050505050565b60007f0000000000000000000000000000000000000000000000000000000000000000826040516020016102d89291906109cc565b604051602081830303815290604052805190602001209050919050565b60006102ff610545565b905090565b60025490565b6060815167ffffffffffffffff8111801561032457600080fd5b5060405190808252806020026020018201604052801561034e578160200160208202803683370190505b50905060005b825181101561040b5782818151811061036957fe5b60200260200101516001600160a01b03166370a08231306040518263ffffffff1660e01b815260040161039c9190610a35565b60206040518083038186803b1580156103b457600080fd5b505afa1580156103c8573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906103ec91906109b4565b8282815181106103f857fe5b6020908102919091010152600101610354565b50919050565b7f000000000000000000000000000000000000000000000000000000000000000081565b60006104646000357fffffffff00000000000000000000000000000000000000000000000000000000166102a3565b905061047b61047382336105d8565b61019161047e565b50565b8161048c5761048c8161066a565b5050565b6104a26002600054141561019061047e565b6002600055565b61048c818314606761047e565b6105398363a9059cbb60e01b84846040516024016104d5929190610a49565b60408051601f198184030181529190526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167fffffffff00000000000000000000000000000000000000000000000000000000909316929092179091526106d7565b505050565b6001600055565b60007f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031663aaabadc56040518163ffffffff1660e01b815260040160206040518083038186803b1580156105a057600080fd5b505afa1580156105b4573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906102ff9190610964565b60006105e2610545565b6001600160a01b0316639be2a8848484306040518463ffffffff1660e01b815260040161061193929190610aaf565b60206040518083038186803b15801561062957600080fd5b505afa15801561063d573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061066191906108fd565b90505b92915050565b7f08c379a0000000000000000000000000000000000000000000000000000000006000908152602060045260076024526642414c23000030600a808404818106603090810160081b95839006959095019082900491820690940160101b939093010160c81b604452606490fd5b60006060836001600160a01b0316836040516106f391906109fc565b6000604051808303816000865af19150503d8060008114610730576040519150601f19603f3d011682016040523d82523d6000602084013e610735565b606091505b5091509150600082141561074d573d6000803e3d6000fd5b61077781516000148061076f57508180602001905181019061076f91906108fd565b6101a261047e565b50505050565b60008083601f84011261078e578182fd5b50813567ffffffffffffffff8111156107a5578182fd5b60208301915083602080830285010111156107bf57600080fd5b9250929050565b803561066481610af5565b6000806000806000606086880312156107e8578081fd5b853567ffffffffffffffff808211156107ff578283fd5b61080b89838a0161077d565b90975095506020880135915080821115610823578283fd5b506108308882890161077d565b909450925050604086013561084481610af5565b809150509295509295909350565b60006020808385031215610864578182fd5b823567ffffffffffffffff8082111561087b578384fd5b818501915085601f83011261088e578384fd5b81358181111561089c578485fd5b83810291506108ac848301610ace565b8181528481019084860184860187018a10156108c6578788fd5b8795505b838610156108f0576108dc8a826107c6565b8352600195909501949186019186016108ca565b5098975050505050505050565b60006020828403121561090e578081fd5b8151801515811461091d578182fd5b9392505050565b600060208284031215610935578081fd5b81357fffffffff000000000000000000000000000000000000000000000000000000008116811461091d578182fd5b600060208284031215610975578081fd5b815161091d81610af5565b600060208284031215610991578081fd5b813561091d81610af5565b6000602082840312156109ad578081fd5b5035919050565b6000602082840312156109c5578081fd5b5051919050565b9182527fffffffff0000000000000000000000000000000000000000000000000000000016602082015260240190565b60008251815b81811015610a1c5760208186018101518583015201610a02565b81811115610a2a5782828501525b509190910192915050565b6001600160a01b0391909116815260200190565b6001600160a01b03929092168252602082015260400190565b6020808252825182820181905260009190848201906040850190845b81811015610a9a57835183529284019291840191600101610a7e565b50909695505050505050565b90815260200190565b9283526001600160a01b03918216602084015216604082015260600190565b60405181810167ffffffffffffffff81118282101715610aed57600080fd5b604052919050565b6001600160a01b038116811461047b57600080fdfea2646970667358221220be72bdf8e7a3c38606c5f954fbe2d77798347aaa1cfb76fe77ec2f6c245d24bc64736f6c63430007010033000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c8
Deployed Bytecode
0x608060405234801561001057600080fd5b50600436106100a35760003560e01c8063851c1bb311610076578063d877845c1161005b578063d877845c14610129578063e42abf3514610131578063fbfa77cf14610151576100a3565b8063851c1bb314610101578063aaabadc514610114576100a3565b806338e9922e146100a857806355c67628146100bd5780636b6b9f69146100db5780636daefab6146100ee575b600080fd5b6100bb6100b636600461099c565b610159565b005b6100c56101b8565b6040516100d29190610aa6565b60405180910390f35b6100bb6100e936600461099c565b6101be565b6100bb6100fc3660046107d1565b610211565b6100c561010f366004610924565b6102a3565b61011c6102f5565b6040516100d29190610a35565b6100c5610304565b61014461013f366004610852565b61030a565b6040516100d29190610a62565b61011c610411565b610161610435565b6101786706f05b59d3b2000082111561025861047e565b60018190556040517fa9ba3ffe0b6c366b81232caab38605a0699ad5398d6cce76f91ee809e322dafc906101ad908390610aa6565b60405180910390a150565b60015490565b6101c6610435565b6101dc662386f26fc1000082111561025961047e565b60028190556040517f5a0b7386237e7f07fa741efc64e59c9387d2cccafec760efed4d53387f20e19a906101ad908390610aa6565b610219610490565b610221610435565b61022b84836104a9565b60005b8481101561029357600086868381811061024457fe5b90506020020160208101906102599190610980565b9050600085858481811061026957fe5b6020029190910135915061028990506001600160a01b03831685836104b6565b505060010161022e565b5061029c61053e565b5050505050565b60007f000000000000000000000000ce88686553686da562ce7cea497ce749da109f9f826040516020016102d89291906109cc565b604051602081830303815290604052805190602001209050919050565b60006102ff610545565b905090565b60025490565b6060815167ffffffffffffffff8111801561032457600080fd5b5060405190808252806020026020018201604052801561034e578160200160208202803683370190505b50905060005b825181101561040b5782818151811061036957fe5b60200260200101516001600160a01b03166370a08231306040518263ffffffff1660e01b815260040161039c9190610a35565b60206040518083038186803b1580156103b457600080fd5b505afa1580156103c8573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906103ec91906109b4565b8282815181106103f857fe5b6020908102919091010152600101610354565b50919050565b7f000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c881565b60006104646000357fffffffff00000000000000000000000000000000000000000000000000000000166102a3565b905061047b61047382336105d8565b61019161047e565b50565b8161048c5761048c8161066a565b5050565b6104a26002600054141561019061047e565b6002600055565b61048c818314606761047e565b6105398363a9059cbb60e01b84846040516024016104d5929190610a49565b60408051601f198184030181529190526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167fffffffff00000000000000000000000000000000000000000000000000000000909316929092179091526106d7565b505050565b6001600055565b60007f000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c86001600160a01b031663aaabadc56040518163ffffffff1660e01b815260040160206040518083038186803b1580156105a057600080fd5b505afa1580156105b4573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906102ff9190610964565b60006105e2610545565b6001600160a01b0316639be2a8848484306040518463ffffffff1660e01b815260040161061193929190610aaf565b60206040518083038186803b15801561062957600080fd5b505afa15801561063d573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061066191906108fd565b90505b92915050565b7f08c379a0000000000000000000000000000000000000000000000000000000006000908152602060045260076024526642414c23000030600a808404818106603090810160081b95839006959095019082900491820690940160101b939093010160c81b604452606490fd5b60006060836001600160a01b0316836040516106f391906109fc565b6000604051808303816000865af19150503d8060008114610730576040519150601f19603f3d011682016040523d82523d6000602084013e610735565b606091505b5091509150600082141561074d573d6000803e3d6000fd5b61077781516000148061076f57508180602001905181019061076f91906108fd565b6101a261047e565b50505050565b60008083601f84011261078e578182fd5b50813567ffffffffffffffff8111156107a5578182fd5b60208301915083602080830285010111156107bf57600080fd5b9250929050565b803561066481610af5565b6000806000806000606086880312156107e8578081fd5b853567ffffffffffffffff808211156107ff578283fd5b61080b89838a0161077d565b90975095506020880135915080821115610823578283fd5b506108308882890161077d565b909450925050604086013561084481610af5565b809150509295509295909350565b60006020808385031215610864578182fd5b823567ffffffffffffffff8082111561087b578384fd5b818501915085601f83011261088e578384fd5b81358181111561089c578485fd5b83810291506108ac848301610ace565b8181528481019084860184860187018a10156108c6578788fd5b8795505b838610156108f0576108dc8a826107c6565b8352600195909501949186019186016108ca565b5098975050505050505050565b60006020828403121561090e578081fd5b8151801515811461091d578182fd5b9392505050565b600060208284031215610935578081fd5b81357fffffffff000000000000000000000000000000000000000000000000000000008116811461091d578182fd5b600060208284031215610975578081fd5b815161091d81610af5565b600060208284031215610991578081fd5b813561091d81610af5565b6000602082840312156109ad578081fd5b5035919050565b6000602082840312156109c5578081fd5b5051919050565b9182527fffffffff0000000000000000000000000000000000000000000000000000000016602082015260240190565b60008251815b81811015610a1c5760208186018101518583015201610a02565b81811115610a2a5782828501525b509190910192915050565b6001600160a01b0391909116815260200190565b6001600160a01b03929092168252602082015260400190565b6020808252825182820181905260009190848201906040850190845b81811015610a9a57835183529284019291840191600101610a7e565b50909695505050505050565b90815260200190565b9283526001600160a01b03918216602084015216604082015260600190565b60405181810167ffffffffffffffff81118282101715610aed57600080fd5b604052919050565b6001600160a01b038116811461047b57600080fdfea2646970667358221220be72bdf8e7a3c38606c5f954fbe2d77798347aaa1cfb76fe77ec2f6c245d24bc64736f6c63430007010033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c8
-----Decoded View---------------
Arg [0] : _vault (address): 0xBA12222222228d8Ba445958a75a0704d566BF2C8
-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c8
Deployed Bytecode Sourcemap
1494:3408:9:-:0;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;3244:315;;;;;;:::i;:::-;;:::i;:::-;;3967:106;;;:::i;:::-;;;;;;;:::i;:::-;;;;;;;;3565:396;;;;;;:::i;:::-;;:::i;2791:447::-;;;;;;:::i;:::-;;:::i;2487:430:0:-;;;;;;:::i;:::-;;:::i;4501:101:9:-;;;:::i;:::-;;;;;;;:::i;4079:116::-;;;:::i;4201:294::-;;;;;;:::i;:::-;;:::i;:::-;;;;;;;:::i;1828:29::-;;;:::i;3244:315::-;2156:21:0;:19;:21::i;:::-;3336:104:9::1;1726:5;3345:20;:57;;9987:3:1;3336:8:9;:104::i;:::-;3450:18;:41:::0;;;3506:46:::1;::::0;::::1;::::0;::::1;::::0;3471:20;;3506:46:::1;:::i;:::-;;;;;;;;3244:315:::0;:::o;3967:106::-;4048:18;;3967:106;:::o;3565:396::-;2156:21:0;:19;:21::i;:::-;3667:155:9::1;1811:4;3689:25;:68;;10059:3:1;3667:8:9;:155::i;:::-;3832:23;:51:::0;;;3898:56:::1;::::0;::::1;::::0;::::1;::::0;3858:25;;3898:56:::1;:::i;2791:447::-:0;2562:20:7;:18;:20::i;:::-;2156:21:0::1;:19;:21::i;:::-;2970:66:9::2;3006:6:::0;3021:7;2970:35:::2;:66::i;:::-;3052:9;3047:185;3067:17:::0;;::::2;3047:185;;;3105:12;3120:6;;3127:1;3120:9;;;;;;;;;;;;;;;;;;;;:::i;:::-;3105:24;;3143:14;3160:7;;3168:1;3160:10;;;;;;;;;::::0;;;::::2;;::::0;-1:-1:-1;3184:37:9::2;::::0;-1:-1:-1;;;;;;3184:18:9;::::2;3203:9:::0;3160:10;3184:18:::2;:37::i;:::-;-1:-1:-1::0;;3086:3:9::2;;3047:185;;;;2603:19:7::0;:17;:19::i;:::-;2791:447:9;;;;;:::o;2487:430:0:-;2555:7;2876:22;2900:8;2859:50;;;;;;;;;:::i;:::-;;;;;;;;;;;;;2849:61;;;;;;2842:68;;2487:430;;;:::o;4501:101:9:-;4549:11;4579:16;:14;:16::i;:::-;4572:23;;4501:101;:::o;4079:116::-;4165:23;;4079:116;:::o;4201:294::-;4280:27;4346:6;:13;4332:28;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;-1:-1:-1;4332:28:9;;4319:41;;4375:9;4370:119;4394:6;:13;4390:1;:17;4370:119;;;4444:6;4451:1;4444:9;;;;;;;;;;;;;;-1:-1:-1;;;;;4444:19:9;;4472:4;4444:34;;;;;;;;;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;4428:10;4439:1;4428:13;;;;;;;;;;;;;;;;;:50;4409:3;;4370:119;;;;4201:294;;;:::o;1828:29::-;;;:::o;2300:181:0:-;2355:16;2374:20;2386:7;;;;2374:11;:20::i;:::-;2355:39;;2404:70;2413:33;2425:8;2435:10;2413:11;:33::i;:::-;6674:3:1;2404:8:0;:70::i;:::-;2300:181;:::o;866:101:1:-;935:9;930:34;;946:18;954:9;946:7;:18::i;:::-;866:101;;:::o;2635:271:7:-;2758:48;2062:1;2767:7;;:19;;6618:3:1;2758:8:7;:48::i;:::-;2062:1;2881:7;:18;2635:271::o;855:131:5:-;933:46;947:1;942;:6;5002:3:1;933:8:5;:46::i;885:214:8:-;997:95;1025:5;1056:23;;;1081:2;1085:5;1033:58;;;;;;;;;:::i;:::-;;;;-1:-1:-1;;1033:58:8;;;;;;;;;;;;;;;;;;;;;;;;;;;997:19;:95::i;:::-;885:214;;;:::o;2912:208:7:-;2019:1;3091:7;:22;2912:208::o;4793:107:9:-;4842:11;4872:5;-1:-1:-1;;;;;4872:19:9;;:21;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;4608:179::-;4696:4;4719:16;:14;:16::i;:::-;-1:-1:-1;;;;;4719:27:9;;4747:8;4757:7;4774:4;4719:61;;;;;;;;;;;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;4712:68;;4608:179;;;;;:::o;1074:3172:1:-;3593:66;3588:3;3581:79;;;3799:66;3793:4;3786:80;3941:1;3935:4;3928:15;2999:73;2210:2;2243:18;;;2288;;;2215:4;2284:29;;;3040:1;3036:14;2195:18;;;;3025:26;;;;2336:18;;;;2383;;;2379:29;;;3057:2;3053:17;3021:50;;;;2999:73;2994:3;2990:83;4008:4;4001:26;4234:3;;4224:14;1695:799:8;1938:12;1952:23;1979:5;-1:-1:-1;;;;;1979:10:8;1990:4;1979:16;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;1937:58;;;;2133:1;2124:7;2121:14;2118:2;;;2175:16;2172:1;2169;2154:38;2219:16;2216:1;2209:27;2118:2;2390:97;2399:10;:17;2420:1;2399:22;:56;;;;2436:10;2425:30;;;;;;;;;;;;:::i;:::-;7763:3:1;2390:8:8;:97::i;:::-;1695:799;;;;:::o;168:366:-1:-;;;312:3;305:4;297:6;293:17;289:27;279:2;;-1:-1;;320:12;279:2;-1:-1;350:20;;390:18;379:30;;376:2;;;-1:-1;;412:12;376:2;456:4;448:6;444:17;432:29;;507:3;456:4;;491:6;487:17;448:6;473:32;;470:41;467:2;;;524:1;;514:12;467:2;272:262;;;;;:::o;2154:158::-;2235:20;;2260:47;2235:20;2260:47;:::i;2597:831::-;;;;;;2819:2;2807:9;2798:7;2794:23;2790:32;2787:2;;;-1:-1;;2825:12;2787:2;2883:17;2870:31;2921:18;;2913:6;2910:30;2907:2;;;-1:-1;;2943:12;2907:2;2981:94;3067:7;3058:6;3047:9;3043:22;2981:94;:::i;:::-;2963:112;;-1:-1;2963:112;-1:-1;3140:2;3125:18;;3112:32;;-1:-1;3153:30;;;3150:2;;;-1:-1;;3186:12;3150:2;;3224:80;3296:7;3287:6;3276:9;3272:22;3224:80;:::i;:::-;3206:98;;-1:-1;3206:98;-1:-1;;3341:2;3380:22;;72:20;97:33;72:20;97:33;:::i;:::-;3349:63;;;;2781:647;;;;;;;;:::o;3435:405::-;;3578:2;;3566:9;3557:7;3553:23;3549:32;3546:2;;;-1:-1;;3584:12;3546:2;3642:17;3629:31;3680:18;;3672:6;3669:30;3666:2;;;-1:-1;;3702:12;3666:2;3807:6;3796:9;3792:22;;;699:3;692:4;684:6;680:17;676:27;666:2;;-1:-1;;707:12;666:2;754:6;741:20;3680:18;11338:6;11335:30;11332:2;;;-1:-1;;11368:12;11332:2;3578;11405:6;11401:17;;;776:94;3578:2;11401:17;11466:15;776:94;:::i;:::-;898:21;;;955:14;;;;930:17;;;1035:27;;;;;1032:36;-1:-1;1029:2;;;-1:-1;;1071:12;1029:2;-1:-1;1097:10;;1091:220;1116:6;1113:1;1110:13;1091:220;;;1196:51;1243:3;1231:10;1196:51;:::i;:::-;1184:64;;1138:1;1131:9;;;;;1262:14;;;;1290;;1091:220;;;-1:-1;3722:102;3540:300;-1:-1;;;;;;;;3540:300::o;3847:257::-;;3959:2;3947:9;3938:7;3934:23;3930:32;3927:2;;;-1:-1;;3965:12;3927:2;1784:6;1778:13;14474:5;12547:13;12540:21;14452:5;14449:32;14439:2;;-1:-1;;14485:12;14439:2;4017:71;3921:183;-1:-1;;;3921:183::o;4111:239::-;;4214:2;4202:9;4193:7;4189:23;4185:32;4182:2;;;-1:-1;;4220:12;4182:2;1917:6;1904:20;12724:66;14596:5;12713:78;14572:5;14569:34;14559:2;;-1:-1;;14607:12;4357:303;;4492:2;4480:9;4471:7;4467:23;4463:32;4460:2;;;-1:-1;;4498:12;4460:2;2077:6;2071:13;2089:53;2136:5;2089:53;:::i;4667:269::-;;4785:2;4773:9;4764:7;4760:23;4756:32;4753:2;;;-1:-1;;4791:12;4753:2;2248:6;2235:20;2260:47;2301:5;2260:47;:::i;4943:241::-;;5047:2;5035:9;5026:7;5022:23;5018:32;5015:2;;;-1:-1;;5053:12;5015:2;-1:-1;2386:20;;5009:175;-1:-1;5009:175::o;5191:263::-;;5306:2;5294:9;5285:7;5281:23;5277:32;5274:2;;;-1:-1;;5312:12;5274:2;-1:-1;2534:13;;5268:186;-1:-1;5268:186::o;7855:387::-;6563:37;;;12724:66;12713:78;8106:2;8097:12;;6858:56;8206:11;;;7997:245::o;8249:271::-;;7086:5;11759:12;-1:-1;13904:101;13918:6;13915:1;13912:13;13904:101;;;7230:4;13985:11;;;;;13979:18;13966:11;;;13959:39;13933:10;13904:101;;;14020:6;14017:1;14014:13;14011:2;;;-1:-1;14076:6;14071:3;14067:16;14060:27;14011:2;-1:-1;7261:16;;;;;8383:137;-1:-1;;8383:137::o;8527:222::-;-1:-1;;;;;13095:54;;;;5714:37;;8654:2;8639:18;;8625:124::o;8756:333::-;-1:-1;;;;;13095:54;;;;5714:37;;9075:2;9060:18;;6563:37;8911:2;8896:18;;8882:207::o;9096:370::-;9273:2;9287:47;;;11759:12;;9258:18;;;12162:19;;;9096:370;;9273:2;11613:14;;;;12202;;;;9096:370;6202:260;6227:6;6224:1;6221:13;6202:260;;;6288:13;;6563:37;;12017:14;;;;5615;;;;6249:1;6242:9;6202:260;;;-1:-1;9340:116;;9244:222;-1:-1;;;;;;9244:222::o;9473:::-;6563:37;;;9600:2;9585:18;;9571:124::o;9702:444::-;6563:37;;;-1:-1;;;;;13095:54;;;10049:2;10034:18;;5714:37;13095:54;10132:2;10117:18;;5714:37;9885:2;9870:18;;9856:290::o;10910:256::-;10972:2;10966:9;10998:17;;;11073:18;11058:34;;11094:22;;;11055:62;11052:2;;;11130:1;;11120:12;11052:2;10972;11139:22;10950:216;;-1:-1;10950:216::o;14269:117::-;-1:-1;;;;;14356:5;13095:54;14331:5;14328:35;14318:2;;14377:1;;14367:12
Swarm Source
ipfs://be72bdf8e7a3c38606c5f954fbe2d77798347aaa1cfb76fe77ec2f6c245d24bc
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|---|---|---|---|---|
ETH | 33.23% | $3,503.34 | 3.0373 | $10,640.7 | |
ETH | 12.56% | $2.75 | 1,462.4028 | $4,021.61 | |
ETH | 3.68% | $3,931.09 | 0.2998 | $1,178.5 | |
ETH | 3.18% | $0.025371 | 40,120.4445 | $1,017.91 | |
ETH | 2.56% | $4,117.05 | 0.1987 | $818.26 | |
ETH | 2.40% | $0.018069 | 42,451.6513 | $767.06 | |
ETH | 2.37% | $7.51 | 101.0922 | $759.2 | |
ETH | 2.30% | $3.75 | 196.0668 | $735.25 | |
ETH | 2.11% | $0.038151 | 17,679.499 | $674.49 | |
ETH | 1.96% | $0.162367 | 3,873.9019 | $628.99 | |
ETH | 1.83% | $0.999412 | 585.0291 | $584.69 | |
ETH | 1.46% | $0.408923 | 1,146.2383 | $468.72 | |
ETH | 1.45% | $0.064201 | 7,209.8338 | $462.88 | |
ETH | 1.27% | $4.96 | 81.9321 | $406.38 | |
ETH | 1.24% | $0.024494 | 16,207.7023 | $396.99 | |
ETH | 1.24% | $0.581261 | 681.5371 | $396.15 | |
ETH | 1.22% | $0.029664 | 13,130.5218 | $389.51 | |
ETH | 1.20% | $0.000149 | 2,579,257.7259 | $384.95 | |
ETH | 1.17% | $46.16 | 8.1489 | $376.15 | |
ETH | 1.14% | $0.516213 | 707.8343 | $365.39 | |
ETH | 0.93% | $0.041296 | 7,173.0889 | $296.22 | |
ETH | 0.86% | $0.306992 | 897.1588 | $275.42 | |
ETH | 0.78% | $1.81 | 138.3332 | $250.38 | |
ETH | 0.76% | $21.63 | 11.2687 | $243.79 | |
ETH | 0.66% | $0.998941 | 211.3395 | $211.12 | |
ETH | 0.62% | $0.579786 | 342.94 | $198.83 | |
ETH | 0.61% | $0.999335 | 194.5548 | $194.43 | |
ETH | 0.55% | $0.653147 | 267.6564 | $174.82 | |
ETH | 0.53% | $9,455.33 | 0.0181 | $170.99 | |
ETH | 0.53% | $0.120108 | 1,420.3334 | $170.59 | |
ETH | 0.47% | $0.004799 | 31,397.014 | $150.68 | |
ETH | 0.44% | $154.54 | 0.9191 | $142.04 | |
ETH | 0.44% | $0.000199 | 712,621.2222 | $141.68 | |
ETH | 0.44% | $14.61 | 9.6116 | $140.42 | |
ETH | 0.43% | $0.771427 | 178.8905 | $138 | |
ETH | 0.42% | $1.02 | 132.3294 | $134.84 | |
ETH | 0.37% | $18.53 | 6.4783 | $120.04 | |
ETH | 0.36% | $89.48 | 1.2802 | $114.55 | |
ETH | 0.33% | $0.399944 | 260.5295 | $104.2 | |
ETH | 0.30% | $78,084 | 0.00124759 | $97.42 | |
ETH | 0.28% | $0.001041 | 86,040.1039 | $89.61 | |
ETH | 0.27% | $0.001247 | 70,207.1122 | $87.54 | |
ETH | 0.26% | $0.030762 | 2,725.5766 | $83.84 | |
ETH | 0.18% | $0.006027 | 9,812.17 | $59.14 | |
ETH | 0.18% | $11.26 | 5.0548 | $56.92 | |
ETH | 0.17% | $0.535662 | 103.3949 | $55.38 | |
ETH | 0.16% | $0.018921 | 2,755.3804 | $52.14 | |
ETH | 0.15% | $0.006798 | 7,019.9572 | $47.72 | |
ETH | 0.13% | $1.07 | 39.2099 | $41.99 | |
ETH | 0.13% | $0.998183 | 41.741 | $41.67 | |
ETH | 0.10% | $0.032662 | 1,005.1322 | $32.83 | |
ETH | 0.10% | $9.62 | 3.2019 | $30.8 | |
ETH | 0.08% | $0.307796 | 82.8632 | $25.51 | |
ETH | 0.08% | $0.992598 | 25.2722 | $25.09 | |
ETH | 0.06% | $0.036159 | 574.1087 | $20.76 | |
ETH | 0.05% | $1.16 | 13.5521 | $15.72 | |
ETH | 0.05% | $14.69 | 1.0173 | $14.94 | |
ETH | 0.04% | $197.55 | 0.0658 | $13 | |
ETH | 0.04% | $0.000086 | 146,820.7553 | $12.58 | |
ETH | 0.04% | $0.02074 | 540.5422 | $11.21 | |
ETH | 0.03% | $0.497834 | 19.966 | $9.94 | |
ETH | 0.03% | $0.028952 | 317.1512 | $9.18 | |
ETH | 0.03% | $0.779482 | 11.4933 | $8.96 | |
ETH | 0.03% | $2.83 | 3.1012 | $8.78 | |
ETH | 0.03% | $15.48 | 0.5579 | $8.64 | |
ETH | 0.02% | <$0.000001 | 57,362,872.5658 | $6.38 | |
ETH | 0.02% | $0.718666 | 8.1711 | $5.87 | |
ETH | 0.02% | $0.995855 | 4.8668 | $4.85 | |
ETH | 0.01% | $0.000004 | 1,098,284.2232 | $4.76 | |
ETH | 0.01% | $0.921503 | 3.7403 | $3.45 | |
ETH | <0.01% | $0.0003 | 9,340.0184 | $2.8 | |
ETH | <0.01% | $0.001589 | 1,247.3744 | $1.98 | |
ETH | <0.01% | $0.000304 | 6,331.4256 | $1.93 | |
ETH | <0.01% | $0.025793 | 71.0568 | $1.83 | |
ETH | <0.01% | $0.008401 | 167.1321 | $1.4 | |
ETH | <0.01% | $302.89 | 0.00432053 | $1.31 | |
ETH | <0.01% | $0.001322 | 985.971 | $1.3 | |
ETH | <0.01% | $0.167383 | 5.5795 | $0.9339 | |
ETH | <0.01% | $0.227498 | 4.0935 | $0.9312 | |
ETH | <0.01% | $3.01 | 0.2393 | $0.7202 | |
ETH | <0.01% | $0.519077 | 1.2757 | $0.6621 | |
ETH | <0.01% | $2,625.83 | 0.00019545 | $0.5132 | |
ETH | <0.01% | $0.005938 | 76.0862 | $0.4517 | |
ETH | <0.01% | $0.032705 | 12.9885 | $0.4247 | |
ETH | <0.01% | $0.17544 | 1.7899 | $0.314 | |
ETH | <0.01% | $0.001553 | 151.1399 | $0.2347 | |
ETH | <0.01% | $0.004521 | 35.2918 | $0.1595 | |
ETH | <0.01% | $2.98 | 0.0498 | $0.1485 | |
POL | 1.39% | $0.515614 | 861.3468 | $444.12 | |
POL | 0.58% | $0.999551 | 186.1372 | $186.05 | |
POL | 0.45% | $357.19 | 0.404 | $144.31 | |
POL | 0.27% | $0.003639 | 23,434.4255 | $85.28 | |
POL | 0.26% | $0.000424 | 199,629.6911 | $84.73 | |
POL | 0.19% | $0.000839 | 71,594.7714 | $60.04 | |
POL | 0.18% | $0.004799 | 12,174.2296 | $58.43 | |
POL | 0.18% | $0.000493 | 118,086.4906 | $58.27 | |
POL | 0.18% | $0.588057 | 96.3654 | $56.67 | |
POL | 0.17% | $2.76 | 19.7041 | $54.38 | |
POL | 0.14% | $1 | 45.9743 | $46.07 | |
POL | 0.14% | $0.026693 | 1,710.6765 | $45.66 | |
POL | 0.14% | $0.999351 | 45.5515 | $45.52 | |
POL | 0.14% | $0.004436 | 10,240.5412 | $45.42 | |
POL | 0.12% | $2.27 | 16.4684 | $37.38 | |
POL | 0.11% | $0.00086 | 42,195.7955 | $36.29 | |
POL | 0.11% | $98,198 | 0.00035306 | $34.67 | |
POL | 0.10% | $2.27 | 14.5009 | $32.92 | |
POL | 0.06% | $0.042616 | 476 | $20.28 | |
POL | 0.06% | $1 | 19.6753 | $19.68 | |
POL | 0.04% | $3,511.63 | 0.00392538 | $13.78 | |
POL | 0.04% | $0.807486 | 16.6271 | $13.43 | |
POL | 0.04% | $0.228003 | 55.5662 | $12.67 | |
POL | 0.04% | $1.67 | 6.9357 | $11.58 | |
POL | 0.03% | $0.791726 | 12.7946 | $10.13 | |
POL | 0.03% | $0.214007 | 38.0382 | $8.14 | |
POL | 0.02% | $1.02 | 7.2664 | $7.43 | |
POL | 0.02% | $12.14 | 0.5841 | $7.09 | |
POL | 0.02% | $0.991247 | 7.0311 | $6.97 | |
POL | 0.01% | $0.000468 | 8,832.6344 | $4.14 | |
POL | <0.01% | $0.000004 | 652,765.6174 | $2.68 | |
POL | <0.01% | $92,473 | 0.00002478 | $2.29 | |
POL | <0.01% | $0.004143 | 372.9085 | $1.54 | |
POL | <0.01% | $1.04 | 1.3348 | $1.38 | |
POL | <0.01% | $0.003812 | 347.5861 | $1.32 | |
POL | <0.01% | $0.010669 | 93.203 | $0.9944 | |
POL | <0.01% | $0.926059 | 0.8923 | $0.8263 | |
POL | <0.01% | $0.999989 | 0.6667 | $0.6666 | |
POL | <0.01% | $0.563431 | 1.1308 | $0.6371 | |
POL | <0.01% | $155.06 | 0.00334551 | $0.5187 | |
POL | <0.01% | $90.04 | 0.00517004 | $0.4655 | |
POL | <0.01% | $1.9 | 0.2084 | $0.3959 | |
POL | <0.01% | $0.116905 | 2.4844 | $0.2904 | |
POL | <0.01% | $0.010533 | 21.0514 | $0.2217 | |
POL | <0.01% | $0.414216 | 0.5269 | $0.2182 | |
POL | <0.01% | $41.49 | 0.00437371 | $0.1814 | |
ARB | 0.20% | $2.75 | 23.6896 | $65.15 | |
ARB | 0.14% | $2.29 | 18.8833 | $43.24 | |
ARB | 0.13% | $1.81 | 22.2755 | $40.32 | |
ARB | 0.11% | $89.57 | 0.3893 | $34.87 | |
ARB | 0.11% | $4,159.47 | 0.00813036 | $33.82 | |
ARB | 0.10% | $30.7 | 1.0359 | $31.8 | |
ARB | 0.10% | $98,067 | 0.00031419 | $30.81 | |
ARB | 0.07% | $0.990758 | 21.2361 | $21.04 | |
ARB | 0.05% | $0.007196 | 2,384.2615 | $17.16 | |
ARB | 0.05% | $0.998967 | 16.2859 | $16.27 | |
ARB | 0.04% | $0.215236 | 52.9153 | $11.39 | |
ARB | 0.03% | $1 | 8.4424 | $8.44 | |
ARB | 0.02% | $0.064707 | 109.8472 | $7.11 | |
ARB | 0.02% | $0.085858 | 71.1147 | $6.11 | |
ARB | 0.02% | $14.69 | 0.3672 | $5.39 | |
ARB | 0.02% | $0.999455 | 5.229 | $5.23 | |
ARB | 0.01% | $278.54 | 0.0157 | $4.36 | |
ARB | 0.01% | $1.12 | 3.8387 | $4.3 | |
ARB | 0.01% | $0.46208 | 8.4768 | $3.92 | |
ARB | <0.01% | $0.000306 | 9,992.445 | $3.06 | |
ARB | <0.01% | $0.000446 | 5,578.8892 | $2.49 | |
ARB | <0.01% | $0.092782 | 7.9368 | $0.7363 | |
ARB | <0.01% | $9,459.64 | 0.00005501 | $0.5204 | |
ARB | <0.01% | $0.918815 | 0.3619 | $0.3324 | |
ARB | <0.01% | $0.000397 | 501 | $0.1991 | |
ARB | <0.01% | $1.65 | 0.1018 | $0.1679 | |
ARB | <0.01% | $0.610952 | 0.2378 | $0.1452 | |
ARB | <0.01% | $0.998967 | 0.1273 | $0.1271 | |
OP | 0.09% | $0.027212 | 1,095.8113 | $29.82 | |
OP | 0.03% | $3,935.32 | 0.00214521 | $8.44 | |
OP | <0.01% | $0.003626 | 781.0612 | $2.83 | |
OP | <0.01% | $98,110 | 0.00002804 | $2.75 | |
OP | <0.01% | $4,166.15 | 0.00063785 | $2.66 | |
OP | <0.01% | $0.311767 | 1.8167 | $0.5663 | |
OP | <0.01% | $0.998045 | 0.3424 | $0.3417 | |
OP | <0.01% | $0.018837 | 12.6886 | $0.239 | |
OP | <0.01% | $1.97 | 0.0961 | $0.1892 | |
OP | <0.01% | $0.99997 | 0.1192 | $0.1191 | |
AVAX | 0.04% | $1 | 11.9184 | $11.92 | |
GNO | <0.01% | $0.999553 | 1.3566 | $1.36 | |
BASE | <0.01% | $0.999221 | 0.3547 | $0.3543 |
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.