Overview
S Balance
S Value
$0.00More Info
Private Name Tags
ContractCreator
Loading...
Loading
Contract Name:
ChainlinkPriceOracle
Compiler Version
v0.8.20+commit.a1b79de6
Optimization Enabled:
Yes with 1000 runs
Other Settings:
shanghai EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: GPL-3.0 pragma solidity 0.8.20; import "../PriceOracle.sol"; interface IAggregatorV3 { function decimals() external view returns (uint8); function latestRoundData() external view returns ( uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound ); } interface ICToken { function underlying() external view returns (address); } contract ChainlinkPriceOracle is PriceOracle { mapping(string => IAggregatorV3) public priceFeeds; mapping(string => uint256) public baseUnits; constructor( string[] memory symbols_, IAggregatorV3[] memory feeds_, uint256[] memory baseUnits_ ) { for (uint256 i = 0; i < symbols_.length; i++) { priceFeeds[symbols_[i]] = feeds_[i]; baseUnits[symbols_[i]] = baseUnits_[i]; } } // price in 18 decimals function getPrice(CToken cToken) public view returns (uint256) { string memory symbol = cToken.symbol(); uint256 feedDecimals = priceFeeds[symbol].decimals(); (uint256 price, ) = _getLatestPrice(symbol); return price * 10**(18 - feedDecimals); } // price is extended for comptroller usage based on decimals of exchangeRate function getUnderlyingPrice(CToken cToken) external view override returns (uint256) { string memory symbol = cToken.symbol(); uint256 feedDecimals = priceFeeds[symbol].decimals(); (uint256 price, ) = _getLatestPrice(symbol); return (price * (10**(36 - feedDecimals))) / baseUnits[symbol]; } function _getLatestPrice(string memory symbol) internal view returns (uint256, uint256) { require(address(priceFeeds[symbol]) != address(0), "missing priceFeed"); ( , //uint80 roundID int256 price, //uint256 startedAt , uint256 timeStamp, //uint80 answeredInRound ) = priceFeeds[symbol].latestRoundData(); require(price > 0, "price cannot be zero"); uint256 uPrice = uint256(price); return (uPrice, timeStamp); } }
// SPDX-License-Identifier: BSD-3-Clause pragma solidity 0.8.20; abstract contract ComptrollerInterface { /// @notice Indicator that this is a Comptroller contract (for inspection) bool public constant isComptroller = true; /*** Assets You Are In ***/ function enterMarkets(address[] calldata cTokens) virtual external returns (uint[] memory); function exitMarket(address cToken) virtual external returns (uint); /*** Policy Hooks ***/ function mintAllowed(address cToken, address minter, uint mintAmount) virtual external returns (uint); function mintVerify(address cToken, address minter, uint mintAmount, uint mintTokens) virtual external; function redeemAllowed(address cToken, address redeemer, uint redeemTokens) virtual external returns (uint); function redeemVerify(address cToken, address redeemer, uint redeemAmount, uint redeemTokens) virtual external; function borrowAllowed(address cToken, address borrower, uint borrowAmount) virtual external returns (uint); function borrowVerify(address cToken, address borrower, uint borrowAmount) virtual external; function repayBorrowAllowed( address cToken, address payer, address borrower, uint repayAmount) virtual external returns (uint); function repayBorrowVerify( address cToken, address payer, address borrower, uint repayAmount, uint borrowerIndex) virtual external; function liquidateBorrowAllowed( address cTokenBorrowed, address cTokenCollateral, address liquidator, address borrower, uint repayAmount) virtual external returns (uint); function liquidateBorrowVerify( address cTokenBorrowed, address cTokenCollateral, address liquidator, address borrower, uint repayAmount, uint seizeTokens) virtual external; function seizeAllowed( address cTokenCollateral, address cTokenBorrowed, address liquidator, address borrower, uint seizeTokens) virtual external returns (uint); function seizeVerify( address cTokenCollateral, address cTokenBorrowed, address liquidator, address borrower, uint seizeTokens) virtual external; function transferAllowed(address cToken, address src, address dst, uint transferTokens) virtual external returns (uint); function transferVerify(address cToken, address src, address dst, uint transferTokens) virtual external; /*** Liquidity/Liquidation Calculations ***/ function liquidateCalculateSeizeTokens( address cTokenBorrowed, address cTokenCollateral, uint repayAmount) virtual external view returns (uint, uint); }
// SPDX-License-Identifier: BSD-3-Clause pragma solidity 0.8.20; import "./ComptrollerInterface.sol"; import "./CTokenInterfaces.sol"; import "./ErrorReporter.sol"; import "./EIP20Interface.sol"; import "./InterestRateModel.sol"; import "./ExponentialNoError.sol"; /** * @title Compound's CToken Contract * @notice Abstract base for CTokens * @author Compound */ abstract contract CToken is CTokenInterface, ExponentialNoError, TokenErrorReporter { /** * @notice Initialize the money market * @param comptroller_ The address of the Comptroller * @param interestRateModel_ The address of the interest rate model * @param initialExchangeRateMantissa_ The initial exchange rate, scaled by 1e18 * @param name_ EIP-20 name of this token * @param symbol_ EIP-20 symbol of this token * @param decimals_ EIP-20 decimal precision of this token */ function initialize( ComptrollerInterface comptroller_, InterestRateModel interestRateModel_, uint256 initialExchangeRateMantissa_, string memory name_, string memory symbol_, uint8 decimals_ ) public { require(msg.sender == admin, "only admin may initialize the market"); require( accrualBlockNumber == 0 && borrowIndex == 0, "market may only be initialized once" ); // Set initial exchange rate initialExchangeRateMantissa = initialExchangeRateMantissa_; require( initialExchangeRateMantissa > 0, "initial exchange rate must be greater than zero." ); // Set the comptroller uint256 err = _setComptroller(comptroller_); require(err == NO_ERROR, "setting comptroller failed"); // Initialize block number and borrow index (block number mocks depend on comptroller being set) accrualBlockNumber = getBlockNumber(); borrowIndex = mantissaOne; // Set the interest rate model (depends on block number / borrow index) err = _setInterestRateModelFresh(interestRateModel_); require(err == NO_ERROR, "setting interest rate model failed"); name = name_; symbol = symbol_; decimals = decimals_; // The counter starts true to prevent changing it from zero to non-zero (i.e. smaller cost/refund) _notEntered = true; } /** * @notice Transfer `tokens` tokens from `src` to `dst` by `spender` * @dev Called by both `transfer` and `transferFrom` internally * @param spender The address of the account performing the transfer * @param src The address of the source account * @param dst The address of the destination account * @param tokens The number of tokens to transfer * @return 0 if the transfer succeeded, else revert */ function transferTokens( address spender, address src, address dst, uint256 tokens ) internal returns (uint256) { /* Fail if transfer not allowed */ uint256 allowed = comptroller.transferAllowed( address(this), src, dst, tokens ); if (allowed != 0) { revert TransferComptrollerRejection(allowed); } /* Do not allow self-transfers */ if (src == dst) { revert TransferNotAllowed(); } /* Get the allowance, infinite for the account owner */ uint256 startingAllowance = 0; if (spender == src) { startingAllowance = type(uint256).max; } else { startingAllowance = transferAllowances[src][spender]; } /* Do the calculations, checking for {under,over}flow */ uint256 allowanceNew = startingAllowance - tokens; uint256 srcTokensNew = accountTokens[src] - tokens; uint256 dstTokensNew = accountTokens[dst] + tokens; ///////////////////////// // EFFECTS & INTERACTIONS // (No safe failures beyond this point) accountTokens[src] = srcTokensNew; accountTokens[dst] = dstTokensNew; /* Eat some of the allowance (if necessary) */ if (startingAllowance != type(uint256).max) { transferAllowances[src][spender] = allowanceNew; } /* We emit a Transfer event */ emit Transfer(src, dst, tokens); // unused function // comptroller.transferVerify(address(this), src, dst, tokens); return NO_ERROR; } /** * @notice Transfer `amount` tokens from `msg.sender` to `dst` * @param dst The address of the destination account * @param amount The number of tokens to transfer * @return Whether or not the transfer succeeded */ function transfer(address dst, uint256 amount) external override nonReentrant returns (bool) { return transferTokens(msg.sender, msg.sender, dst, amount) == NO_ERROR; } /** * @notice Transfer `amount` tokens from `src` to `dst` * @param src The address of the source account * @param dst The address of the destination account * @param amount The number of tokens to transfer * @return Whether or not the transfer succeeded */ function transferFrom( address src, address dst, uint256 amount ) external override nonReentrant returns (bool) { return transferTokens(msg.sender, src, dst, amount) == NO_ERROR; } /** * @notice Approve `spender` to transfer up to `amount` from `src` * @dev This will overwrite the approval amount for `spender` * and is subject to issues noted [here](https://eips.ethereum.org/EIPS/eip-20#approve) * @param spender The address of the account which may transfer tokens * @param amount The number of tokens that are approved (uint256.max means infinite) * @return Whether or not the approval succeeded */ function approve(address spender, uint256 amount) external override returns (bool) { address src = msg.sender; transferAllowances[src][spender] = amount; emit Approval(src, spender, amount); return true; } /** * @notice Get the current allowance from `owner` for `spender` * @param owner The address of the account which owns the tokens to be spent * @param spender The address of the account which may transfer tokens * @return The number of tokens allowed to be spent (-1 means infinite) */ function allowance(address owner, address spender) external view override returns (uint256) { return transferAllowances[owner][spender]; } /** * @notice Get the token balance of the `owner` * @param owner The address of the account to query * @return The number of tokens owned by `owner` */ function balanceOf(address owner) external view override returns (uint256) { return accountTokens[owner]; } /** * @notice Get the underlying balance of the `owner` * @dev This also accrues interest in a transaction * @param owner The address of the account to query * @return The amount of underlying owned by `owner` */ function balanceOfUnderlying(address owner) external override returns (uint256) { Exp memory exchangeRate = Exp({mantissa: exchangeRateCurrent()}); return mul_ScalarTruncate(exchangeRate, accountTokens[owner]); } /** * @notice Get a snapshot of the account's balances, and the cached exchange rate * @dev This is used by comptroller to more efficiently perform liquidity checks. * @param account Address of the account to snapshot * @return (possible error, token balance, borrow balance, exchange rate mantissa) */ function getAccountSnapshot(address account) external view override returns ( uint256, uint256, uint256, uint256 ) { return ( NO_ERROR, accountTokens[account], borrowBalanceStoredInternal(account), exchangeRateStoredInternal() ); } /** * @dev Function to simply retrieve block number * This exists mainly for inheriting test contracts to stub this result. */ function getBlockNumber() internal view virtual returns (uint256) { return block.timestamp; } /** * @notice Returns the current per-block borrow interest rate for this cToken * @return The borrow interest rate per block, scaled by 1e18 */ function borrowRatePerBlock() external view override returns (uint256) { return interestRateModel.getBorrowRate( getCashPrior(), totalBorrows, totalReserves ); } /** * @notice Returns the current per-block supply interest rate for this cToken * @return The supply interest rate per block, scaled by 1e18 */ function supplyRatePerBlock() external view override returns (uint256) { return interestRateModel.getSupplyRate( getCashPrior(), totalBorrows, totalReserves, reserveFactorMantissa ); } /** * @notice Returns the current total borrows plus accrued interest * @return The total borrows with interest */ function totalBorrowsCurrent() external override nonReentrant returns (uint256) { accrueInterest(); return totalBorrows; } /** * @notice Accrue interest to updated borrowIndex and then calculate account's borrow balance using the updated borrowIndex * @param account The address whose balance should be calculated after updating borrowIndex * @return The calculated balance */ function borrowBalanceCurrent(address account) external override nonReentrant returns (uint256) { accrueInterest(); return borrowBalanceStored(account); } /** * @notice Return the borrow balance of account based on stored data * @param account The address whose balance should be calculated * @return The calculated balance */ function borrowBalanceStored(address account) public view override returns (uint256) { return borrowBalanceStoredInternal(account); } /** * @notice Return the borrow balance of account based on stored data * @param account The address whose balance should be calculated * @return (error code, the calculated balance or 0 if error code is non-zero) */ function borrowBalanceStoredInternal(address account) internal view returns (uint256) { /* Get borrowBalance and borrowIndex */ BorrowSnapshot storage borrowSnapshot = accountBorrows[account]; /* If borrowBalance = 0 then borrowIndex is likely also 0. * Rather than failing the calculation with a division by 0, we immediately return 0 in this case. */ if (borrowSnapshot.principal == 0) { return 0; } /* Calculate new borrow balance using the interest index: * recentBorrowBalance = borrower.borrowBalance * market.borrowIndex / borrower.borrowIndex */ uint256 principalTimesIndex = borrowSnapshot.principal * borrowIndex; return principalTimesIndex / borrowSnapshot.interestIndex; } /** * @notice Accrue interest then return the up-to-date exchange rate * @return Calculated exchange rate scaled by 1e18 */ function exchangeRateCurrent() public override nonReentrant returns (uint256) { accrueInterest(); return exchangeRateStored(); } /** * @notice Calculates the exchange rate from the underlying to the CToken * @dev This function does not accrue interest before calculating the exchange rate * @return Calculated exchange rate scaled by 1e18 */ function exchangeRateStored() public view override returns (uint256) { return exchangeRateStoredInternal(); } /** * @notice Calculates the exchange rate from the underlying to the CToken * @dev This function does not accrue interest before calculating the exchange rate * @return calculated exchange rate scaled by 1e18 */ function exchangeRateStoredInternal() internal view virtual returns (uint256) { uint256 _totalSupply = totalSupply; if (_totalSupply == 0) { /* * If there are no tokens minted: * exchangeRate = initialExchangeRate */ return initialExchangeRateMantissa; } else { /* * Otherwise: * exchangeRate = (totalCash + totalBorrows - totalReserves) / totalSupply */ uint256 totalCash = getCashPrior(); uint256 cashPlusBorrowsMinusReserves = totalCash + totalBorrows - totalReserves; uint256 exchangeRate = (cashPlusBorrowsMinusReserves * expScale) / _totalSupply; return exchangeRate; } } /** * @notice Get cash balance of this cToken in the underlying asset * @return The quantity of underlying asset owned by this contract */ function getCash() external view override returns (uint256) { return getCashPrior(); } /** * @notice Applies accrued interest to total borrows and reserves * @dev This calculates interest accrued from the last checkpointed block * up to the current block and writes new checkpoint to storage. */ function accrueInterest() public virtual override returns (uint256) { /* Remember the initial block number */ uint256 currentBlockNumber = getBlockNumber(); uint256 accrualBlockNumberPrior = accrualBlockNumber; /* Short-circuit accumulating 0 interest */ if (accrualBlockNumberPrior == currentBlockNumber) { return NO_ERROR; } /* Read the previous values out of storage */ uint256 cashPrior = getCashPrior(); uint256 borrowsPrior = totalBorrows; uint256 reservesPrior = totalReserves; uint256 borrowIndexPrior = borrowIndex; /* Calculate the current borrow interest rate */ uint256 borrowRateMantissa = interestRateModel.getBorrowRate( cashPrior, borrowsPrior, reservesPrior ); require( borrowRateMantissa <= borrowRateMaxMantissa, "borrow rate is absurdly high" ); /* Calculate the number of blocks elapsed since the last accrual */ uint256 blockDelta = currentBlockNumber - accrualBlockNumberPrior; /* * Calculate the interest accumulated into borrows and reserves and the new index: * simpleInterestFactor = borrowRate * blockDelta * interestAccumulated = simpleInterestFactor * totalBorrows * totalBorrowsNew = interestAccumulated + totalBorrows * totalReservesNew = interestAccumulated * reserveFactor + totalReserves * borrowIndexNew = simpleInterestFactor * borrowIndex + borrowIndex */ Exp memory simpleInterestFactor = mul_( Exp({mantissa: borrowRateMantissa}), blockDelta ); uint256 interestAccumulated = mul_ScalarTruncate( simpleInterestFactor, borrowsPrior ); uint256 totalBorrowsNew = interestAccumulated + borrowsPrior; uint256 totalReservesNew = mul_ScalarTruncateAddUInt( Exp({mantissa: reserveFactorMantissa}), interestAccumulated, reservesPrior ); uint256 borrowIndexNew = mul_ScalarTruncateAddUInt( simpleInterestFactor, borrowIndexPrior, borrowIndexPrior ); ///////////////////////// // EFFECTS & INTERACTIONS // (No safe failures beyond this point) /* We write the previously calculated values into storage */ accrualBlockNumber = currentBlockNumber; borrowIndex = borrowIndexNew; totalBorrows = totalBorrowsNew; totalReserves = totalReservesNew; /* We emit an AccrueInterest event */ emit AccrueInterest( cashPrior, interestAccumulated, borrowIndexNew, totalBorrowsNew ); return NO_ERROR; } /** * @notice Sender supplies assets into the market and receives cTokens in exchange * @dev Accrues interest whether or not the operation succeeds, unless reverted * @param mintAmount The amount of the underlying asset to supply */ function mintInternal(uint256 mintAmount) internal nonReentrant { accrueInterest(); // mintFresh emits the actual Mint event if successful and logs on errors, so we don't need to mintFresh(msg.sender, mintAmount); } /** * @notice User supplies assets into the market and receives cTokens in exchange * @dev Assumes interest has already been accrued up to the current block * @param minter The address of the account which is supplying the assets * @param mintAmount The amount of the underlying asset to supply */ function mintFresh(address minter, uint256 mintAmount) internal { /* Fail if mint not allowed */ uint256 allowed = comptroller.mintAllowed( address(this), minter, mintAmount ); if (allowed != 0) { revert MintComptrollerRejection(allowed); } /* Verify market's block number equals current block number */ if (accrualBlockNumber != getBlockNumber()) { revert MintFreshnessCheck(); } Exp memory exchangeRate = Exp({mantissa: exchangeRateStoredInternal()}); ///////////////////////// // EFFECTS & INTERACTIONS // (No safe failures beyond this point) /* * We call `doTransferIn` for the minter and the mintAmount. * Note: The cToken must handle variations between ERC-20 and ETH underlying. * `doTransferIn` reverts if anything goes wrong, since we can't be sure if * side-effects occurred. The function returns the amount actually transferred, * in case of a fee. On success, the cToken holds an additional `actualMintAmount` * of cash. */ uint256 actualMintAmount = doTransferIn(minter, mintAmount); /* * We get the current exchange rate and calculate the number of cTokens to be minted: * mintTokens = actualMintAmount / exchangeRate */ uint256 mintTokens = div_(actualMintAmount, exchangeRate); /* * We calculate the new total supply of cTokens and minter token balance, checking for overflow: * totalSupplyNew = totalSupply + mintTokens * accountTokensNew = accountTokens[minter] + mintTokens * And write them into storage */ totalSupply = totalSupply + mintTokens; accountTokens[minter] = accountTokens[minter] + mintTokens; /* We emit a Mint event, and a Transfer event */ emit Mint(minter, actualMintAmount, mintTokens); emit Transfer(address(this), minter, mintTokens); /* We call the defense hook */ comptroller.mintVerify(address(this), minter, actualMintAmount, mintTokens); } /** * @notice Sender redeems cTokens in exchange for the underlying asset * @dev Accrues interest whether or not the operation succeeds, unless reverted * @param redeemTokens The number of cTokens to redeem into underlying */ function redeemInternal(uint256 redeemTokens) internal nonReentrant { accrueInterest(); // redeemFresh emits redeem-specific logs on errors, so we don't need to redeemFresh(payable(msg.sender), redeemTokens, 0); } /** * @notice Sender redeems cTokens in exchange for a specified amount of underlying asset * @dev Accrues interest whether or not the operation succeeds, unless reverted * @param redeemAmount The amount of underlying to receive from redeeming cTokens */ function redeemUnderlyingInternal(uint256 redeemAmount) internal nonReentrant { accrueInterest(); // redeemFresh emits redeem-specific logs on errors, so we don't need to redeemFresh(payable(msg.sender), 0, redeemAmount); } /** * @notice User redeems cTokens in exchange for the underlying asset * @dev Assumes interest has already been accrued up to the current block * @param redeemer The address of the account which is redeeming the tokens * @param redeemTokensIn The number of cTokens to redeem into underlying (only one of redeemTokensIn or redeemAmountIn may be non-zero) * @param redeemAmountIn The number of underlying tokens to receive from redeeming cTokens (only one of redeemTokensIn or redeemAmountIn may be non-zero) */ function redeemFresh( address payable redeemer, uint256 redeemTokensIn, uint256 redeemAmountIn ) internal { require( redeemTokensIn == 0 || redeemAmountIn == 0, "one of redeemTokensIn or redeemAmountIn must be zero" ); /* exchangeRate = invoke Exchange Rate Stored() */ Exp memory exchangeRate = Exp({mantissa: exchangeRateStoredInternal()}); uint256 redeemTokens; uint256 redeemAmount; /* If redeemTokensIn > 0: */ if (redeemTokensIn > 0) { /* * We calculate the exchange rate and the amount of underlying to be redeemed: * redeemTokens = redeemTokensIn * redeemAmount = redeemTokensIn x exchangeRateCurrent */ redeemTokens = redeemTokensIn; redeemAmount = mul_ScalarTruncate(exchangeRate, redeemTokensIn); } else { /* * We get the current exchange rate and calculate the amount to be redeemed: * redeemTokens = redeemAmountIn / exchangeRate * redeemAmount = redeemAmountIn */ redeemTokens = div_(redeemAmountIn, exchangeRate); redeemAmount = redeemAmountIn; } /* Fail if redeem not allowed */ uint256 allowed = comptroller.redeemAllowed( address(this), redeemer, redeemTokens ); if (allowed != 0) { revert RedeemComptrollerRejection(allowed); } /* Verify market's block number equals current block number */ if (accrualBlockNumber != getBlockNumber()) { revert RedeemFreshnessCheck(); } /* Fail gracefully if protocol has insufficient cash */ if (getCashPrior() < redeemAmount) { revert RedeemTransferOutNotPossible(); } ///////////////////////// // EFFECTS & INTERACTIONS // (No safe failures beyond this point) /* * We write the previously calculated values into storage. * Note: Avoid token reentrancy attacks by writing reduced supply before external transfer. */ totalSupply = totalSupply - redeemTokens; accountTokens[redeemer] = accountTokens[redeemer] - redeemTokens; /* * We invoke doTransferOut for the redeemer and the redeemAmount. * Note: The cToken must handle variations between ERC-20 and ETH underlying. * On success, the cToken has redeemAmount less of cash. * doTransferOut reverts if anything goes wrong, since we can't be sure if side effects occurred. */ doTransferOut(redeemer, redeemAmount); /* We emit a Transfer event, and a Redeem event */ emit Transfer(redeemer, address(this), redeemTokens); emit Redeem(redeemer, redeemAmount, redeemTokens); /* We call the defense hook */ comptroller.redeemVerify( address(this), redeemer, redeemAmount, redeemTokens ); } /** * @notice Sender borrows assets from the protocol to their own address * @param borrowAmount The amount of the underlying asset to borrow */ function borrowInternal(uint256 borrowAmount) internal nonReentrant { accrueInterest(); // borrowFresh emits borrow-specific logs on errors, so we don't need to borrowFresh(payable(msg.sender), borrowAmount); } /** * @notice Users borrow assets from the protocol to their own address * @param borrowAmount The amount of the underlying asset to borrow */ function borrowFresh(address payable borrower, uint256 borrowAmount) internal { /* Fail if borrow not allowed */ uint256 allowed = comptroller.borrowAllowed( address(this), borrower, borrowAmount ); if (allowed != 0) { revert BorrowComptrollerRejection(allowed); } /* Verify market's block number equals current block number */ if (accrualBlockNumber != getBlockNumber()) { revert BorrowFreshnessCheck(); } /* Fail gracefully if protocol has insufficient underlying cash */ if (getCashPrior() < borrowAmount) { revert BorrowCashNotAvailable(); } /* * We calculate the new borrower and total borrow balances, failing on overflow: * accountBorrowNew = accountBorrow + borrowAmount * totalBorrowsNew = totalBorrows + borrowAmount */ uint256 accountBorrowsPrev = borrowBalanceStoredInternal(borrower); uint256 accountBorrowsNew = accountBorrowsPrev + borrowAmount; uint256 totalBorrowsNew = totalBorrows + borrowAmount; ///////////////////////// // EFFECTS & INTERACTIONS // (No safe failures beyond this point) /* * We write the previously calculated values into storage. * Note: Avoid token reentrancy attacks by writing increased borrow before external transfer. `*/ accountBorrows[borrower].principal = accountBorrowsNew; accountBorrows[borrower].interestIndex = borrowIndex; totalBorrows = totalBorrowsNew; /* * We invoke doTransferOut for the borrower and the borrowAmount. * Note: The cToken must handle variations between ERC-20 and ETH underlying. * On success, the cToken borrowAmount less of cash. * doTransferOut reverts if anything goes wrong, since we can't be sure if side effects occurred. */ doTransferOut(borrower, borrowAmount); /* We emit a Borrow event */ emit Borrow(borrower, borrowAmount, accountBorrowsNew, totalBorrowsNew); } /** * @notice Sender repays their own borrow * @param repayAmount The amount to repay, or -1 for the full outstanding amount */ function repayBorrowInternal(uint256 repayAmount) internal nonReentrant { accrueInterest(); // repayBorrowFresh emits repay-borrow-specific logs on errors, so we don't need to repayBorrowFresh(msg.sender, msg.sender, repayAmount); } /** * @notice Sender repays a borrow belonging to borrower * @param borrower the account with the debt being payed off * @param repayAmount The amount to repay, or -1 for the full outstanding amount */ function repayBorrowBehalfInternal(address borrower, uint256 repayAmount) internal nonReentrant { accrueInterest(); // repayBorrowFresh emits repay-borrow-specific logs on errors, so we don't need to repayBorrowFresh(msg.sender, borrower, repayAmount); } /** * @notice Borrows are repaid by another user (possibly the borrower). * @param payer the account paying off the borrow * @param borrower the account with the debt being payed off * @param repayAmount the amount of underlying tokens being returned, or -1 for the full outstanding amount * @return (uint) the actual repayment amount. */ function repayBorrowFresh( address payer, address borrower, uint256 repayAmount ) internal returns (uint256) { /* Fail if repayBorrow not allowed */ uint256 allowed = comptroller.repayBorrowAllowed( address(this), payer, borrower, repayAmount ); if (allowed != 0) { revert RepayBorrowComptrollerRejection(allowed); } /* Verify market's block number equals current block number */ if (accrualBlockNumber != getBlockNumber()) { revert RepayBorrowFreshnessCheck(); } /* We fetch the amount the borrower owes, with accumulated interest */ uint256 accountBorrowsPrev = borrowBalanceStoredInternal(borrower); /* If repayAmount == -1, repayAmount = accountBorrows */ uint256 repayAmountFinal = repayAmount == type(uint256).max ? accountBorrowsPrev : repayAmount; ///////////////////////// // EFFECTS & INTERACTIONS // (No safe failures beyond this point) /* * We call doTransferIn for the payer and the repayAmount * Note: The cToken must handle variations between ERC-20 and ETH underlying. * On success, the cToken holds an additional repayAmount of cash. * doTransferIn reverts if anything goes wrong, since we can't be sure if side effects occurred. * it returns the amount actually transferred, in case of a fee. */ uint256 actualRepayAmount = doTransferIn(payer, repayAmountFinal); /* * We calculate the new borrower and total borrow balances, failing on underflow: * accountBorrowsNew = accountBorrows - actualRepayAmount * totalBorrowsNew = totalBorrows - actualRepayAmount */ uint256 accountBorrowsNew = accountBorrowsPrev - actualRepayAmount; uint256 totalBorrowsNew = totalBorrows - actualRepayAmount; /* We write the previously calculated values into storage */ accountBorrows[borrower].principal = accountBorrowsNew; accountBorrows[borrower].interestIndex = borrowIndex; totalBorrows = totalBorrowsNew; /* We emit a RepayBorrow event */ emit RepayBorrow( payer, borrower, actualRepayAmount, accountBorrowsNew, totalBorrowsNew ); return actualRepayAmount; } /** * @notice Sender repays their own borrow using cTokens * @param repayAmount The amount of the underlying debt to repay */ function repayBorrowWithCTokenInternal(uint repayAmount) internal nonReentrant { accrueInterest(); // repayBorrowWithCTokenFresh emits repay-borrow-specific logs on errors, so we don't need to repayBorrowWithCTokenFresh(msg.sender, msg.sender, repayAmount); } /** * @notice Sender repays a borrow belonging to borrower using cTokens * @param borrower The account with the debt being paid off * @param repayAmount The amount of the underlying debt to repay */ function repayBorrowBehalfWithCTokenInternal(address borrower, uint repayAmount) internal nonReentrant { accrueInterest(); // repayBorrowWithCTokenFresh emits repay-borrow-specific logs on errors, so we don't need to repayBorrowWithCTokenFresh(msg.sender, borrower, repayAmount); } /** * @notice Core logic for repaying a borrow with cTokens * @param payer The account providing the cTokens * @param borrower The account with the debt being paid off * @param repayAmount The amount of underlying being repaid */ function repayBorrowWithCTokenFresh( address payer, address borrower, uint repayAmount ) internal returns (uint) { /* Fail if repayBorrow not allowed */ uint256 allowed = comptroller.repayBorrowAllowed( address(this), payer, borrower, repayAmount ); if (allowed != 0) { revert RepayBorrowComptrollerRejection(allowed); } /* Verify market's block number equals current block number */ if (accrualBlockNumber != getBlockNumber()) { revert RepayBorrowFreshnessCheck(); } /* Get the borrower's borrow balance */ uint accountBorrowsPrev = borrowBalanceStoredInternal(borrower); /* If repayAmount = -1, repay the full amount */ uint repayAmountFinal = (repayAmount == type(uint256).max) ? accountBorrowsPrev : repayAmount; /* Fail gracefully if trying to repay more than owed */ if (repayAmountFinal > accountBorrowsPrev) { revert TransferTooMuch(); } /* Calculate how many cTokens need to be burned based on underlying amount */ Exp memory exchangeRate = Exp({mantissa: exchangeRateStoredInternal()}); uint cTokenAmount = div_(repayAmountFinal, exchangeRate); /* Check redeem allowed before checking balances - if not allowed, no need to check balances */ allowed = comptroller.redeemAllowed(address(this), payer, cTokenAmount); if (allowed != 0) { revert RedeemComptrollerRejection(allowed); } /* Verify payer has enough cTokens */ if (accountTokens[payer] < cTokenAmount) { revert TransferNotEnough(); } ///////////////////////// // EFFECTS & INTERACTIONS // (No safe failures beyond this point) /* Reduce payer's cToken balance and total supply */ totalSupply = totalSupply - cTokenAmount; accountTokens[payer] = accountTokens[payer] - cTokenAmount; /* We calculate the new borrower and total borrow balances, failing on underflow: */ uint256 accountBorrowsNew = accountBorrowsPrev - repayAmountFinal; uint256 totalBorrowsNew = totalBorrows - repayAmountFinal; /* We write the previously calculated values into storage */ accountBorrows[borrower].principal = accountBorrowsNew; accountBorrows[borrower].interestIndex = borrowIndex; totalBorrows = totalBorrowsNew; /* Emit events */ emit Transfer(payer, address(this), cTokenAmount); emit RepayBorrow(payer, borrower, repayAmountFinal, accountBorrowsNew, totalBorrowsNew); /* Call verification hooks */ comptroller.redeemVerify(address(this), payer, repayAmountFinal, cTokenAmount); return NO_ERROR; } /** * @notice The sender liquidates the borrowers collateral. * The collateral seized is transferred to the liquidator. * @param borrower The borrower of this cToken to be liquidated * @param cTokenCollateral The market in which to seize collateral from the borrower * @param repayAmount The amount of the underlying borrowed asset to repay */ function liquidateBorrowInternal( address borrower, uint256 repayAmount, CTokenInterface cTokenCollateral ) internal nonReentrant { accrueInterest(); uint256 error = cTokenCollateral.accrueInterest(); if (error != NO_ERROR) { // accrueInterest emits logs on errors, but we still want to log the fact that an attempted liquidation failed revert LiquidateAccrueCollateralInterestFailed(error); } // liquidateBorrowFresh emits borrow-specific logs on errors, so we don't need to liquidateBorrowFresh( msg.sender, borrower, repayAmount, cTokenCollateral ); } /** * @notice The liquidator liquidates the borrowers collateral. * The collateral seized is transferred to the liquidator. * @param borrower The borrower of this cToken to be liquidated * @param liquidator The address repaying the borrow and seizing collateral * @param cTokenCollateral The market in which to seize collateral from the borrower * @param repayAmount The amount of the underlying borrowed asset to repay */ function liquidateBorrowFresh( address liquidator, address borrower, uint256 repayAmount, CTokenInterface cTokenCollateral ) internal { /* Fail if liquidate not allowed */ uint256 allowed = comptroller.liquidateBorrowAllowed( address(this), address(cTokenCollateral), liquidator, borrower, repayAmount ); if (allowed != 0) { revert LiquidateComptrollerRejection(allowed); } /* Verify market's block number equals current block number */ if (accrualBlockNumber != getBlockNumber()) { revert LiquidateFreshnessCheck(); } /* Verify cTokenCollateral market's block number equals current block number */ if (cTokenCollateral.accrualBlockNumber() != getBlockNumber()) { revert LiquidateCollateralFreshnessCheck(); } /* Fail if borrower = liquidator */ if (borrower == liquidator) { revert LiquidateLiquidatorIsBorrower(); } /* Fail if repayAmount = 0 */ if (repayAmount == 0) { revert LiquidateCloseAmountIsZero(); } /* Fail if repayAmount = -1 */ if (repayAmount == type(uint256).max) { revert LiquidateCloseAmountIsUintMax(); } /* Fail if repayBorrow fails */ uint256 actualRepayAmount = repayBorrowFresh( liquidator, borrower, repayAmount ); ///////////////////////// // EFFECTS & INTERACTIONS // (No safe failures beyond this point) /* We calculate the number of collateral tokens that will be seized */ (uint256 amountSeizeError, uint256 seizeTokens) = comptroller .liquidateCalculateSeizeTokens( address(this), address(cTokenCollateral), actualRepayAmount ); require( amountSeizeError == NO_ERROR, "LIQUIDATE_COMPTROLLER_CALCULATE_AMOUNT_SEIZE_FAILED" ); /* Revert if borrower collateral token balance < seizeTokens */ require( cTokenCollateral.balanceOf(borrower) >= seizeTokens, "LIQUIDATE_SEIZE_TOO_MUCH" ); // If this is also the collateral, run seizeInternal to avoid re-entrancy, otherwise make an external call if (address(cTokenCollateral) == address(this)) { seizeInternal(address(this), liquidator, borrower, seizeTokens); } else { require( cTokenCollateral.seize(liquidator, borrower, seizeTokens) == NO_ERROR, "token seizure failed" ); } /* We emit a LiquidateBorrow event */ emit LiquidateBorrow( liquidator, borrower, actualRepayAmount, address(cTokenCollateral), seizeTokens ); } /** * @notice Transfers collateral tokens (this market) to the liquidator. * @dev Will fail unless called by another cToken during the process of liquidation. * Its absolutely critical to use msg.sender as the borrowed cToken and not a parameter. * @param liquidator The account receiving seized collateral * @param borrower The account having collateral seized * @param seizeTokens The number of cTokens to seize * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function seize( address liquidator, address borrower, uint256 seizeTokens ) external override nonReentrant returns (uint256) { seizeInternal(msg.sender, liquidator, borrower, seizeTokens); return NO_ERROR; } /** * @notice Transfers collateral tokens (this market) to the liquidator. * @dev Called only during an in-kind liquidation, or by liquidateBorrow during the liquidation of another CToken. * Its absolutely critical to use msg.sender as the seizer cToken and not a parameter. * @param seizerToken The contract seizing the collateral (i.e. borrowed cToken) * @param liquidator The account receiving seized collateral * @param borrower The account having collateral seized * @param seizeTokens The number of cTokens to seize */ function seizeInternal( address seizerToken, address liquidator, address borrower, uint256 seizeTokens ) internal { /* Fail if seize not allowed */ uint256 allowed = comptroller.seizeAllowed( address(this), seizerToken, liquidator, borrower, seizeTokens ); if (allowed != 0) { revert LiquidateSeizeComptrollerRejection(allowed); } /* Fail if borrower = liquidator */ if (borrower == liquidator) { revert LiquidateSeizeLiquidatorIsBorrower(); } /* * We calculate the new borrower and liquidator token balances, failing on underflow/overflow: * borrowerTokensNew = accountTokens[borrower] - seizeTokens * liquidatorTokensNew = accountTokens[liquidator] + seizeTokens */ uint256 protocolSeizeTokens = mul_( seizeTokens, Exp({mantissa: protocolSeizeShareMantissa}) ); uint256 liquidatorSeizeTokens = seizeTokens - protocolSeizeTokens; Exp memory exchangeRate = Exp({mantissa: exchangeRateStoredInternal()}); uint256 protocolSeizeAmount = mul_ScalarTruncate( exchangeRate, protocolSeizeTokens ); uint256 totalReservesNew = totalReserves + protocolSeizeAmount; ///////////////////////// // EFFECTS & INTERACTIONS // (No safe failures beyond this point) /* We write the calculated values into storage */ totalReserves = totalReservesNew; totalSupply = totalSupply - protocolSeizeTokens; accountTokens[borrower] = accountTokens[borrower] - seizeTokens; accountTokens[liquidator] = accountTokens[liquidator] + liquidatorSeizeTokens; /* Emit a Transfer event */ emit Transfer(borrower, liquidator, liquidatorSeizeTokens); emit Transfer(borrower, address(this), protocolSeizeTokens); emit ReservesAdded( address(this), protocolSeizeAmount, totalReservesNew ); } /*** Admin Functions ***/ /** * @notice Begins transfer of admin rights. The newPendingAdmin must call `_acceptAdmin` to finalize the transfer. * @dev Admin function to begin change of admin. The newPendingAdmin must call `_acceptAdmin` to finalize the transfer. * @param newPendingAdmin New pending admin. * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _setPendingAdmin(address payable newPendingAdmin) external override returns (uint256) { // Check caller = admin if (msg.sender != admin) { revert SetPendingAdminOwnerCheck(); } // Save current value, if any, for inclusion in log address oldPendingAdmin = pendingAdmin; // Store pendingAdmin with value newPendingAdmin pendingAdmin = newPendingAdmin; // Emit NewPendingAdmin(oldPendingAdmin, newPendingAdmin) emit NewPendingAdmin(oldPendingAdmin, newPendingAdmin); return NO_ERROR; } /** * @notice Accepts transfer of admin rights. msg.sender must be pendingAdmin * @dev Admin function for pending admin to accept role and update admin * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _acceptAdmin() external override returns (uint256) { // Check caller is pendingAdmin and pendingAdmin ≠ address(0) if (msg.sender != pendingAdmin || msg.sender == address(0)) { revert AcceptAdminPendingAdminCheck(); } // Save current values for inclusion in log address oldAdmin = admin; address oldPendingAdmin = pendingAdmin; // Store admin with value pendingAdmin admin = pendingAdmin; // Clear the pending value pendingAdmin = payable(address(0)); emit NewAdmin(oldAdmin, admin); emit NewPendingAdmin(oldPendingAdmin, pendingAdmin); return NO_ERROR; } /** * @notice Sets a new comptroller for the market * @dev Admin function to set a new comptroller * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _setComptroller(ComptrollerInterface newComptroller) public override returns (uint256) { // Check caller is admin if (msg.sender != admin) { revert SetComptrollerOwnerCheck(); } ComptrollerInterface oldComptroller = comptroller; // Ensure invoke comptroller.isComptroller() returns true require(newComptroller.isComptroller(), "marker method returned false"); // Set market's comptroller to newComptroller comptroller = newComptroller; // Emit NewComptroller(oldComptroller, newComptroller) emit NewComptroller(oldComptroller, newComptroller); return NO_ERROR; } /** * @notice accrues interest and sets a new reserve factor for the protocol using _setReserveFactorFresh * @dev Admin function to accrue interest and set a new reserve factor * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _setReserveFactor(uint256 newReserveFactorMantissa) external override nonReentrant returns (uint256) { accrueInterest(); // _setReserveFactorFresh emits reserve-factor-specific logs on errors, so we don't need to. return _setReserveFactorFresh(newReserveFactorMantissa); } /** * @notice Sets a new reserve factor for the protocol (*requires fresh interest accrual) * @dev Admin function to set a new reserve factor * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _setReserveFactorFresh(uint256 newReserveFactorMantissa) internal returns (uint256) { // Check caller is admin if (msg.sender != admin) { revert SetReserveFactorAdminCheck(); } // Verify market's block number equals current block number if (accrualBlockNumber != getBlockNumber()) { revert SetReserveFactorFreshCheck(); } // Check newReserveFactor ≤ maxReserveFactor if (newReserveFactorMantissa > reserveFactorMaxMantissa) { revert SetReserveFactorBoundsCheck(); } uint256 oldReserveFactorMantissa = reserveFactorMantissa; reserveFactorMantissa = newReserveFactorMantissa; emit NewReserveFactor( oldReserveFactorMantissa, newReserveFactorMantissa ); return NO_ERROR; } /** * @notice Accrues interest and reduces reserves by transferring from msg.sender * @param addAmount Amount of addition to reserves * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _addReservesInternal(uint256 addAmount) internal nonReentrant returns (uint256) { accrueInterest(); // _addReservesFresh emits reserve-addition-specific logs on errors, so we don't need to. _addReservesFresh(addAmount); return NO_ERROR; } /** * @notice Add reserves by transferring from caller * @dev Requires fresh interest accrual * @param addAmount Amount of addition to reserves * @return (uint, uint) An error code (0=success, otherwise a failure (see ErrorReporter.sol for details)) and the actual amount added, net token fees */ function _addReservesFresh(uint256 addAmount) internal returns (uint256, uint256) { // totalReserves + actualAddAmount uint256 totalReservesNew; uint256 actualAddAmount; // We fail gracefully unless market's block number equals current block number if (accrualBlockNumber != getBlockNumber()) { revert AddReservesFactorFreshCheck(actualAddAmount); } ///////////////////////// // EFFECTS & INTERACTIONS // (No safe failures beyond this point) /* * We call doTransferIn for the caller and the addAmount * Note: The cToken must handle variations between ERC-20 and ETH underlying. * On success, the cToken holds an additional addAmount of cash. * doTransferIn reverts if anything goes wrong, since we can't be sure if side effects occurred. * it returns the amount actually transferred, in case of a fee. */ actualAddAmount = doTransferIn(msg.sender, addAmount); totalReservesNew = totalReserves + actualAddAmount; // Store reserves[n+1] = reserves[n] + actualAddAmount totalReserves = totalReservesNew; /* Emit NewReserves(admin, actualAddAmount, reserves[n+1]) */ emit ReservesAdded(msg.sender, actualAddAmount, totalReservesNew); /* Return (NO_ERROR, actualAddAmount) */ return (NO_ERROR, actualAddAmount); } /** * @notice Accrues interest and reduces reserves by transferring to admin * @param reduceAmount Amount of reduction to reserves * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _reduceReserves(uint256 reduceAmount, address payable reserveReceiver) external override nonReentrant returns (uint256) { accrueInterest(); // _reduceReservesFresh emits reserve-reduction-specific logs on errors, so we don't need to. return _reduceReservesFresh(reduceAmount, reserveReceiver); } /** * @notice Reduces reserves by transferring to admin * @dev Requires fresh interest accrual * @param reduceAmount Amount of reduction to reserves * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _reduceReservesFresh(uint256 reduceAmount, address payable reserveReceiver) internal returns (uint256) { // totalReserves - reduceAmount uint256 totalReservesNew; // Check caller is admin if (msg.sender != admin) { revert ReduceReservesAdminCheck(); } if(reserveReceiver == address(0)){ revert ZeroAddress(); } // We fail gracefully unless market's block number equals current block number if (accrualBlockNumber != getBlockNumber()) { revert ReduceReservesFreshCheck(); } // Fail gracefully if protocol has insufficient underlying cash if (getCashPrior() < reduceAmount) { revert ReduceReservesCashNotAvailable(); } // Check reduceAmount ≤ reserves[n] (totalReserves) if (reduceAmount > totalReserves) { revert ReduceReservesCashValidation(); } ///////////////////////// // EFFECTS & INTERACTIONS // (No safe failures beyond this point) totalReservesNew = totalReserves - reduceAmount; // Store reserves[n+1] = reserves[n] - reduceAmount totalReserves = totalReservesNew; // doTransferOut reverts if anything goes wrong, since we can't be sure if side effects occurred. doTransferOut(reserveReceiver, reduceAmount); emit ReservesReduced(admin, reduceAmount, totalReservesNew, reserveReceiver); return NO_ERROR; } /** * @notice accrues interest and updates the interest rate model using _setInterestRateModelFresh * @dev Admin function to accrue interest and update the interest rate model * @param newInterestRateModel the new interest rate model to use * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _setInterestRateModel(InterestRateModel newInterestRateModel) public override returns (uint256) { accrueInterest(); // _setInterestRateModelFresh emits interest-rate-model-update-specific logs on errors, so we don't need to. return _setInterestRateModelFresh(newInterestRateModel); } /** * @notice updates the interest rate model (*requires fresh interest accrual) * @dev Admin function to update the interest rate model * @param newInterestRateModel the new interest rate model to use * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _setInterestRateModelFresh(InterestRateModel newInterestRateModel) internal returns (uint256) { // Used to store old model for use in the event that is emitted on success InterestRateModel oldInterestRateModel; // Check caller is admin if (msg.sender != admin) { revert SetInterestRateModelOwnerCheck(); } // We fail gracefully unless market's block number equals current block number if (accrualBlockNumber != getBlockNumber()) { revert SetInterestRateModelFreshCheck(); } // Track the market's current interest rate model oldInterestRateModel = interestRateModel; // Ensure invoke newInterestRateModel.isInterestRateModel() returns true require( newInterestRateModel.isInterestRateModel(), "marker method returned false" ); // Set the interest rate model to newInterestRateModel interestRateModel = newInterestRateModel; // Emit NewMarketInterestRateModel(oldInterestRateModel, newInterestRateModel) emit NewMarketInterestRateModel( oldInterestRateModel, newInterestRateModel ); return NO_ERROR; } /*** Safe Token ***/ /** * @notice Gets balance of this contract in terms of the underlying * @dev This excludes the value of the current message, if any * @return The quantity of underlying owned by this contract */ function getCashPrior() internal view virtual returns (uint256); /** * @dev Performs a transfer in, reverting upon failure. Returns the amount actually transferred to the protocol, in case of a fee. * This may revert due to insufficient balance or insufficient allowance. */ function doTransferIn(address from, uint256 amount) internal virtual returns (uint256); /** * @dev Performs a transfer out, ideally returning an explanatory error code upon failure rather than reverting. * If caller has not called checked protocol's balance, may revert due to insufficient cash held in the contract. * If caller has checked protocol's balance, and verified it is >= amount, this should not revert in normal conditions. */ function doTransferOut(address payable to, uint256 amount) internal virtual; /*** Reentrancy Guard ***/ /** * @dev Prevents a contract from calling itself, directly or indirectly. */ modifier nonReentrant() { require(_notEntered, "re-entered"); _notEntered = false; _; _notEntered = true; // get a gas-refund post-Istanbul } }
// SPDX-License-Identifier: BSD-3-Clause pragma solidity 0.8.20; import "./ComptrollerInterface.sol"; import "./InterestRateModel.sol"; import "./EIP20NonStandardInterface.sol"; import "./ErrorReporter.sol"; contract CTokenStorage { /** * @dev Guard variable for re-entrancy checks */ bool internal _notEntered; /** * @notice EIP-20 token name for this token */ string public name; /** * @notice EIP-20 token symbol for this token */ string public symbol; /** * @notice EIP-20 token decimals for this token */ uint8 public decimals; // Maximum borrow rate that can ever be applied (.00004% / block) uint internal constant borrowRateMaxMantissa = 0.00004e16; // Maximum fraction of interest that can be set aside for reserves uint internal constant reserveFactorMaxMantissa = 1e18; /** * @notice Administrator for this contract */ address payable public admin; /** * @notice Pending administrator for this contract */ address payable public pendingAdmin; /** * @notice Contract which oversees inter-cToken operations */ ComptrollerInterface public comptroller; /** * @notice Model which tells what the current interest rate should be */ InterestRateModel public interestRateModel; // Initial exchange rate used when minting the first CTokens (used when totalSupply = 0) uint internal initialExchangeRateMantissa; /** * @notice Fraction of interest currently set aside for reserves */ uint public reserveFactorMantissa; /** * @notice Block number that interest was last accrued at */ uint public accrualBlockNumber; /** * @notice Accumulator of the total earned interest rate since the opening of the market */ uint public borrowIndex; /** * @notice Total amount of outstanding borrows of the underlying in this market */ uint public totalBorrows; /** * @notice Total amount of reserves of the underlying held in this market */ uint public totalReserves; /** * @notice Total number of tokens in circulation */ uint public totalSupply; // Official record of token balances for each account mapping (address => uint) internal accountTokens; // Approved token transfer amounts on behalf of others mapping (address => mapping (address => uint)) internal transferAllowances; /** * @notice Container for borrow balance information * @member principal Total balance (with accrued interest), after applying the most recent balance-changing action * @member interestIndex Global borrowIndex as of the most recent balance-changing action */ struct BorrowSnapshot { uint principal; uint interestIndex; } // Mapping of account addresses to outstanding borrow balances mapping(address => BorrowSnapshot) internal accountBorrows; /** * @notice Share of seized collateral that is added to reserves */ uint public constant protocolSeizeShareMantissa = 2.8e16; //2.8% } abstract contract CTokenInterface is CTokenStorage { /** * @notice Indicator that this is a CToken contract (for inspection) */ bool public constant isCToken = true; /*** Market Events ***/ /** * @notice Event emitted when interest is accrued */ event AccrueInterest(uint cashPrior, uint interestAccumulated, uint borrowIndex, uint totalBorrows); /** * @notice Event emitted when tokens are minted */ event Mint(address minter, uint mintAmount, uint mintTokens); /** * @notice Event emitted when tokens are redeemed */ event Redeem(address redeemer, uint redeemAmount, uint redeemTokens); /** * @notice Event emitted when underlying is borrowed */ event Borrow(address borrower, uint borrowAmount, uint accountBorrows, uint totalBorrows); /** * @notice Event emitted when a borrow is repaid */ event RepayBorrow(address payer, address borrower, uint repayAmount, uint accountBorrows, uint totalBorrows); /** * @notice Event emitted when a borrow is liquidated */ event LiquidateBorrow(address liquidator, address borrower, uint repayAmount, address cTokenCollateral, uint seizeTokens); /*** Admin Events ***/ /** * @notice Event emitted when pendingAdmin is changed */ event NewPendingAdmin(address oldPendingAdmin, address newPendingAdmin); /** * @notice Event emitted when pendingAdmin is accepted, which means admin is updated */ event NewAdmin(address oldAdmin, address newAdmin); /** * @notice Event emitted when comptroller is changed */ event NewComptroller(ComptrollerInterface oldComptroller, ComptrollerInterface newComptroller); /** * @notice Event emitted when interestRateModel is changed */ event NewMarketInterestRateModel(InterestRateModel oldInterestRateModel, InterestRateModel newInterestRateModel); /** * @notice Event emitted when the reserve factor is changed */ event NewReserveFactor(uint oldReserveFactorMantissa, uint newReserveFactorMantissa); /** * @notice Event emitted when the reserves are added */ event ReservesAdded(address benefactor, uint addAmount, uint newTotalReserves); /** * @notice Event emitted when the reserves are reduced */ event ReservesReduced(address admin, uint reduceAmount, uint newTotalReserves, address payable reserveReceiver); /** * @notice EIP20 Transfer event */ event Transfer(address indexed from, address indexed to, uint amount); /** * @notice EIP20 Approval event */ event Approval(address indexed owner, address indexed spender, uint amount); /*** User Interface ***/ function transfer(address dst, uint amount) virtual external returns (bool); function transferFrom(address src, address dst, uint amount) virtual external returns (bool); function approve(address spender, uint amount) virtual external returns (bool); function allowance(address owner, address spender) virtual external view returns (uint); function balanceOf(address owner) virtual external view returns (uint); function balanceOfUnderlying(address owner) virtual external returns (uint); function getAccountSnapshot(address account) virtual external view returns (uint, uint, uint, uint); function borrowRatePerBlock() virtual external view returns (uint); function supplyRatePerBlock() virtual external view returns (uint); function totalBorrowsCurrent() virtual external returns (uint); function borrowBalanceCurrent(address account) virtual external returns (uint); function borrowBalanceStored(address account) virtual external view returns (uint); function exchangeRateCurrent() virtual external returns (uint); function exchangeRateStored() virtual external view returns (uint); function getCash() virtual external view returns (uint); function accrueInterest() virtual external returns (uint); function seize(address liquidator, address borrower, uint seizeTokens) virtual external returns (uint); /*** Admin Functions ***/ function _setPendingAdmin(address payable newPendingAdmin) virtual external returns (uint); function _acceptAdmin() virtual external returns (uint); function _setComptroller(ComptrollerInterface newComptroller) virtual external returns (uint); function _setReserveFactor(uint newReserveFactorMantissa) virtual external returns (uint); function _reduceReserves(uint reduceAmount, address payable reserveReceiver) virtual external returns (uint); function _setInterestRateModel(InterestRateModel newInterestRateModel) virtual external returns (uint); } contract CErc20Storage { /** * @notice Underlying asset for this CToken */ address public underlying; } abstract contract CErc20Interface is CErc20Storage { /*** User Interface ***/ function mint(uint mintAmount) virtual external returns (uint); function redeem(uint redeemTokens) virtual external returns (uint); function redeemUnderlying(uint redeemAmount) virtual external returns (uint); function borrow(uint borrowAmount) virtual external returns (uint); function repayBorrow(uint repayAmount) virtual external returns (uint); function repayBorrowBehalf(address borrower, uint repayAmount) virtual external returns (uint); function repayBorrowWithCToken(uint repayAmount) virtual external returns (uint); function repayBorrowBehalfWithCToken(address borrower, uint repayAmount) virtual external returns (uint); function liquidateBorrow(address borrower, uint repayAmount, CTokenInterface cTokenCollateral) virtual external returns (uint); function sweepToken(EIP20NonStandardInterface token) virtual external; /*** Admin Functions ***/ function _addReserves(uint addAmount) virtual external returns (uint); } contract CDelegationStorage { /** * @notice Implementation address for this contract */ address public implementation; } abstract contract CDelegatorInterface is CDelegationStorage { /** * @notice Emitted when implementation is changed */ event NewImplementation(address oldImplementation, address newImplementation); /** * @notice Called by the admin to update the implementation of the delegator * @param implementation_ The address of the new implementation for delegation * @param allowResign Flag to indicate whether to call _resignImplementation on the old implementation * @param becomeImplementationData The encoded bytes data to be passed to _becomeImplementation */ function _setImplementation(address implementation_, bool allowResign, bytes memory becomeImplementationData) virtual external; } abstract contract CDelegateInterface is CDelegationStorage { /** * @notice Called by the delegator on a delegate to initialize it for duty * @dev Should revert if any issues arise which make it unfit for delegation * @param data The encoded bytes data for any initialization */ function _becomeImplementation(bytes memory data) virtual external; /** * @notice Called by the delegator on a delegate to forfeit its responsibility */ function _resignImplementation() virtual external; }
// SPDX-License-Identifier: BSD-3-Clause pragma solidity 0.8.20; /** * @title ERC 20 Token Standard Interface * https://eips.ethereum.org/EIPS/eip-20 */ interface EIP20Interface { function name() external view returns (string memory); function symbol() external view returns (string memory); function decimals() external view returns (uint8); /** * @notice Get the total number of tokens in circulation * @return The supply of tokens */ function totalSupply() external view returns (uint256); /** * @notice Gets the balance of the specified address * @param owner The address from which the balance will be retrieved * @return balance The balance */ function balanceOf(address owner) external view returns (uint256 balance); /** * @notice Transfer `amount` tokens from `msg.sender` to `dst` * @param dst The address of the destination account * @param amount The number of tokens to transfer * @return success Whether or not the transfer succeeded */ function transfer(address dst, uint256 amount) external returns (bool success); /** * @notice Transfer `amount` tokens from `src` to `dst` * @param src The address of the source account * @param dst The address of the destination account * @param amount The number of tokens to transfer * @return success Whether or not the transfer succeeded */ function transferFrom(address src, address dst, uint256 amount) external returns (bool success); /** * @notice Approve `spender` to transfer up to `amount` from `src` * @dev This will overwrite the approval amount for `spender` * and is subject to issues noted [here](https://eips.ethereum.org/EIPS/eip-20#approve) * @param spender The address of the account which may transfer tokens * @param amount The number of tokens that are approved (-1 means infinite) * @return success Whether or not the approval succeeded */ function approve(address spender, uint256 amount) external returns (bool success); /** * @notice Get the current allowance from `owner` for `spender` * @param owner The address of the account which owns the tokens to be spent * @param spender The address of the account which may transfer tokens * @return remaining The number of tokens allowed to be spent (-1 means infinite) */ function allowance(address owner, address spender) external view returns (uint256 remaining); event Transfer(address indexed from, address indexed to, uint256 amount); event Approval(address indexed owner, address indexed spender, uint256 amount); }
// SPDX-License-Identifier: BSD-3-Clause pragma solidity 0.8.20; /** * @title EIP20NonStandardInterface * @dev Version of ERC20 with no return values for `transfer` and `transferFrom` * See https://medium.com/coinmonks/missing-return-value-bug-at-least-130-tokens-affected-d67bf08521ca */ interface EIP20NonStandardInterface { /** * @notice Get the total number of tokens in circulation * @return The supply of tokens */ function totalSupply() external view returns (uint256); /** * @notice Gets the balance of the specified address * @param owner The address from which the balance will be retrieved * @return balance The balance */ function balanceOf(address owner) external view returns (uint256 balance); /// /// !!!!!!!!!!!!!! /// !!! NOTICE !!! `transfer` does not return a value, in violation of the ERC-20 specification /// !!!!!!!!!!!!!! /// /** * @notice Transfer `amount` tokens from `msg.sender` to `dst` * @param dst The address of the destination account * @param amount The number of tokens to transfer */ function transfer(address dst, uint256 amount) external; /// /// !!!!!!!!!!!!!! /// !!! NOTICE !!! `transferFrom` does not return a value, in violation of the ERC-20 specification /// !!!!!!!!!!!!!! /// /** * @notice Transfer `amount` tokens from `src` to `dst` * @param src The address of the source account * @param dst The address of the destination account * @param amount The number of tokens to transfer */ function transferFrom(address src, address dst, uint256 amount) external; /** * @notice Approve `spender` to transfer up to `amount` from `src` * @dev This will overwrite the approval amount for `spender` * and is subject to issues noted [here](https://eips.ethereum.org/EIPS/eip-20#approve) * @param spender The address of the account which may transfer tokens * @param amount The number of tokens that are approved * @return success Whether or not the approval succeeded */ function approve(address spender, uint256 amount) external returns (bool success); /** * @notice Get the current allowance from `owner` for `spender` * @param owner The address of the account which owns the tokens to be spent * @param spender The address of the account which may transfer tokens * @return remaining The number of tokens allowed to be spent */ function allowance(address owner, address spender) external view returns (uint256 remaining); event Transfer(address indexed from, address indexed to, uint256 amount); event Approval(address indexed owner, address indexed spender, uint256 amount); }
// SPDX-License-Identifier: BSD-3-Clause pragma solidity 0.8.20; contract ComptrollerErrorReporter { enum Error { NO_ERROR, UNAUTHORIZED, COMPTROLLER_MISMATCH, INSUFFICIENT_SHORTFALL, INSUFFICIENT_LIQUIDITY, INVALID_CLOSE_FACTOR, INVALID_COLLATERAL_FACTOR, INVALID_LIQUIDATION_INCENTIVE, MARKET_NOT_ENTERED, // no longer possible MARKET_NOT_LISTED, MARKET_ALREADY_LISTED, MATH_ERROR, NONZERO_BORROW_BALANCE, PRICE_ERROR, REJECTION, SNAPSHOT_ERROR, TOO_MANY_ASSETS, TOO_MUCH_REPAY } enum FailureInfo { ACCEPT_ADMIN_PENDING_ADMIN_CHECK, ACCEPT_PENDING_IMPLEMENTATION_ADDRESS_CHECK, EXIT_MARKET_BALANCE_OWED, EXIT_MARKET_REJECTION, SET_CLOSE_FACTOR_OWNER_CHECK, SET_CLOSE_FACTOR_VALIDATION, SET_COLLATERAL_FACTOR_OWNER_CHECK, SET_COLLATERAL_FACTOR_NO_EXISTS, SET_COLLATERAL_FACTOR_VALIDATION, SET_COLLATERAL_FACTOR_WITHOUT_PRICE, SET_IMPLEMENTATION_OWNER_CHECK, SET_LIQUIDATION_INCENTIVE_OWNER_CHECK, SET_LIQUIDATION_INCENTIVE_VALIDATION, SET_MAX_ASSETS_OWNER_CHECK, SET_PENDING_ADMIN_OWNER_CHECK, SET_PENDING_IMPLEMENTATION_OWNER_CHECK, SET_PRICE_ORACLE_OWNER_CHECK, SUPPORT_MARKET_EXISTS, SUPPORT_MARKET_OWNER_CHECK, SET_PAUSE_GUARDIAN_OWNER_CHECK } /** * @dev `error` corresponds to enum Error; `info` corresponds to enum FailureInfo, and `detail` is an arbitrary * contract-specific code that enables us to report opaque error codes from upgradeable contracts. **/ event Failure(uint error, uint info, uint detail); /** * @dev use this when reporting a known error from the money market or a non-upgradeable collaborator */ function fail(Error err, FailureInfo info) internal returns (uint) { emit Failure(uint(err), uint(info), 0); return uint(err); } /** * @dev use this when reporting an opaque error from an upgradeable collaborator contract */ function failOpaque(Error err, FailureInfo info, uint opaqueError) internal returns (uint) { emit Failure(uint(err), uint(info), opaqueError); return uint(err); } } contract TokenErrorReporter { uint public constant NO_ERROR = 0; // support legacy return codes error TransferComptrollerRejection(uint256 errorCode); error TransferNotAllowed(); error TransferNotEnough(); error TransferTooMuch(); error MintComptrollerRejection(uint256 errorCode); error MintFreshnessCheck(); error RedeemComptrollerRejection(uint256 errorCode); error RedeemFreshnessCheck(); error RedeemTransferOutNotPossible(); error BorrowComptrollerRejection(uint256 errorCode); error BorrowFreshnessCheck(); error BorrowCashNotAvailable(); error RepayBorrowComptrollerRejection(uint256 errorCode); error RepayBorrowFreshnessCheck(); error LiquidateComptrollerRejection(uint256 errorCode); error LiquidateFreshnessCheck(); error LiquidateCollateralFreshnessCheck(); error LiquidateAccrueBorrowInterestFailed(uint256 errorCode); error LiquidateAccrueCollateralInterestFailed(uint256 errorCode); error LiquidateLiquidatorIsBorrower(); error LiquidateCloseAmountIsZero(); error LiquidateCloseAmountIsUintMax(); error LiquidateRepayBorrowFreshFailed(uint256 errorCode); error LiquidateSeizeComptrollerRejection(uint256 errorCode); error LiquidateSeizeLiquidatorIsBorrower(); error AcceptAdminPendingAdminCheck(); error SetComptrollerOwnerCheck(); error SetPendingAdminOwnerCheck(); error SetReserveFactorAdminCheck(); error SetReserveFactorFreshCheck(); error SetReserveFactorBoundsCheck(); error AddReservesFactorFreshCheck(uint256 actualAddAmount); error ReduceReservesAdminCheck(); error ReduceReservesFreshCheck(); error ReduceReservesCashNotAvailable(); error ReduceReservesCashValidation(); error SetInterestRateModelOwnerCheck(); error SetInterestRateModelFreshCheck(); error ZeroAddress(); }
// SPDX-License-Identifier: BSD-3-Clause pragma solidity 0.8.20; /** * @title Exponential module for storing fixed-precision decimals * @author Compound * @notice Exp is a struct which stores decimals with a fixed precision of 18 decimal places. * Thus, if we wanted to store the 5.1, mantissa would store 5.1e18. That is: * `Exp({mantissa: 5100000000000000000})`. */ contract ExponentialNoError { uint constant expScale = 1e18; uint constant doubleScale = 1e36; uint constant halfExpScale = expScale/2; uint constant mantissaOne = expScale; struct Exp { uint mantissa; } struct Double { uint mantissa; } /** * @dev Truncates the given exp to a whole number value. * For example, truncate(Exp{mantissa: 15 * expScale}) = 15 */ function truncate(Exp memory exp) pure internal returns (uint) { // Note: We are not using careful math here as we're performing a division that cannot fail return exp.mantissa / expScale; } /** * @dev Multiply an Exp by a scalar, then truncate to return an unsigned integer. */ function mul_ScalarTruncate(Exp memory a, uint scalar) pure internal returns (uint) { Exp memory product = mul_(a, scalar); return truncate(product); } /** * @dev Multiply an Exp by a scalar, truncate, then add an to an unsigned integer, returning an unsigned integer. */ function mul_ScalarTruncateAddUInt(Exp memory a, uint scalar, uint addend) pure internal returns (uint) { Exp memory product = mul_(a, scalar); return add_(truncate(product), addend); } /** * @dev Checks if first Exp is less than second Exp. */ function lessThanExp(Exp memory left, Exp memory right) pure internal returns (bool) { return left.mantissa < right.mantissa; } /** * @dev Checks if left Exp <= right Exp. */ function lessThanOrEqualExp(Exp memory left, Exp memory right) pure internal returns (bool) { return left.mantissa <= right.mantissa; } /** * @dev Checks if left Exp > right Exp. */ function greaterThanExp(Exp memory left, Exp memory right) pure internal returns (bool) { return left.mantissa > right.mantissa; } /** * @dev returns true if Exp is exactly zero */ function isZeroExp(Exp memory value) pure internal returns (bool) { return value.mantissa == 0; } function safe224(uint n, string memory errorMessage) pure internal returns (uint224) { require(n < 2**224, errorMessage); return uint224(n); } function safe32(uint n, string memory errorMessage) pure internal returns (uint32) { require(n < 2**32, errorMessage); return uint32(n); } function add_(Exp memory a, Exp memory b) pure internal returns (Exp memory) { return Exp({mantissa: add_(a.mantissa, b.mantissa)}); } function add_(Double memory a, Double memory b) pure internal returns (Double memory) { return Double({mantissa: add_(a.mantissa, b.mantissa)}); } function add_(uint a, uint b) pure internal returns (uint) { return a + b; } function sub_(Exp memory a, Exp memory b) pure internal returns (Exp memory) { return Exp({mantissa: sub_(a.mantissa, b.mantissa)}); } function sub_(Double memory a, Double memory b) pure internal returns (Double memory) { return Double({mantissa: sub_(a.mantissa, b.mantissa)}); } function sub_(uint a, uint b) pure internal returns (uint) { return a - b; } function mul_(Exp memory a, Exp memory b) pure internal returns (Exp memory) { return Exp({mantissa: mul_(a.mantissa, b.mantissa) / expScale}); } function mul_(Exp memory a, uint b) pure internal returns (Exp memory) { return Exp({mantissa: mul_(a.mantissa, b)}); } function mul_(uint a, Exp memory b) pure internal returns (uint) { return mul_(a, b.mantissa) / expScale; } function mul_(Double memory a, Double memory b) pure internal returns (Double memory) { return Double({mantissa: mul_(a.mantissa, b.mantissa) / doubleScale}); } function mul_(Double memory a, uint b) pure internal returns (Double memory) { return Double({mantissa: mul_(a.mantissa, b)}); } function mul_(uint a, Double memory b) pure internal returns (uint) { return mul_(a, b.mantissa) / doubleScale; } function mul_(uint a, uint b) pure internal returns (uint) { return a * b; } function div_(Exp memory a, Exp memory b) pure internal returns (Exp memory) { return Exp({mantissa: div_(mul_(a.mantissa, expScale), b.mantissa)}); } function div_(Exp memory a, uint b) pure internal returns (Exp memory) { return Exp({mantissa: div_(a.mantissa, b)}); } function div_(uint a, Exp memory b) pure internal returns (uint) { return div_(mul_(a, expScale), b.mantissa); } function div_(Double memory a, Double memory b) pure internal returns (Double memory) { return Double({mantissa: div_(mul_(a.mantissa, doubleScale), b.mantissa)}); } function div_(Double memory a, uint b) pure internal returns (Double memory) { return Double({mantissa: div_(a.mantissa, b)}); } function div_(uint a, Double memory b) pure internal returns (uint) { return div_(mul_(a, doubleScale), b.mantissa); } function div_(uint a, uint b) pure internal returns (uint) { return a / b; } function fraction(uint a, uint b) pure internal returns (Double memory) { return Double({mantissa: div_(mul_(a, doubleScale), b)}); } }
// SPDX-License-Identifier: BSD-3-Clause pragma solidity 0.8.20; /** * @title Compound's InterestRateModel Interface * @author Compound */ abstract contract InterestRateModel { /// @notice Indicator that this is an InterestRateModel contract (for inspection) bool public constant isInterestRateModel = true; /** * @notice Calculates the current borrow interest rate per block * @param cash The total amount of cash the market has * @param borrows The total amount of borrows the market has outstanding * @param reserves The total amount of reserves the market has * @return The borrow rate per block (as a percentage, and scaled by 1e18) */ function getBorrowRate(uint cash, uint borrows, uint reserves) virtual external view returns (uint); /** * @notice Calculates the current supply interest rate per block * @param cash The total amount of cash the market has * @param borrows The total amount of borrows the market has outstanding * @param reserves The total amount of reserves the market has * @param reserveFactorMantissa The current reserve factor the market has * @return The supply rate per block (as a percentage, and scaled by 1e18) */ function getSupplyRate(uint cash, uint borrows, uint reserves, uint reserveFactorMantissa) virtual external view returns (uint); }
// SPDX-License-Identifier: BSD-3-Clause pragma solidity 0.8.20; import "./CToken.sol"; abstract contract PriceOracle { /// @notice Indicator that this is a PriceOracle contract (for inspection) bool public constant isPriceOracle = true; /** * @notice Get the underlying price of a cToken asset * @param cToken The cToken to get the underlying price of * @return The underlying asset price mantissa (scaled by 1e18). * Zero means the price is unavailable. */ function getUnderlyingPrice(CToken cToken) virtual external view returns (uint); }
{ "optimizer": { "enabled": true, "runs": 1000 }, "evmVersion": "shanghai", "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"string[]","name":"symbols_","type":"string[]"},{"internalType":"contract IAggregatorV3[]","name":"feeds_","type":"address[]"},{"internalType":"uint256[]","name":"baseUnits_","type":"uint256[]"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"string","name":"","type":"string"}],"name":"baseUnits","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract CToken","name":"cToken","type":"address"}],"name":"getPrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract CToken","name":"cToken","type":"address"}],"name":"getUnderlyingPrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isPriceOracle","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"string","name":"","type":"string"}],"name":"priceFeeds","outputs":[{"internalType":"contract IAggregatorV3","name":"","type":"address"}],"stateMutability":"view","type":"function"}]
Contract Creation Code
608060405234801562000010575f80fd5b5060405162000d4738038062000d478339810160408190526200003391620002a9565b5f5b83518110156200012a5782818151811062000054576200005462000403565b60200260200101515f85838151811062000072576200007262000403565b602002602001015160405162000089919062000417565b90815260200160405180910390205f6101000a8154816001600160a01b0302191690836001600160a01b03160217905550818181518110620000cf57620000cf62000403565b60200260200101516001858381518110620000ee57620000ee62000403565b602002602001015160405162000105919062000417565b9081526040519081900360200190205580620001218162000434565b91505062000035565b5050505062000459565b634e487b7160e01b5f52604160045260245ffd5b604051601f8201601f191681016001600160401b038111828210171562000173576200017362000134565b604052919050565b5f6001600160401b0382111562000196576200019662000134565b5060051b60200190565b5f5b83811015620001bc578181015183820152602001620001a2565b50505f910152565b5f82601f830112620001d4575f80fd5b81516020620001ed620001e7836200017b565b62000148565b82815260059290921b840181019181810190868411156200020c575f80fd5b8286015b848110156200023f5780516001600160a01b038116811462000231575f8081fd5b835291830191830162000210565b509695505050505050565b5f82601f8301126200025a575f80fd5b815160206200026d620001e7836200017b565b82815260059290921b840181019181810190868411156200028c575f80fd5b8286015b848110156200023f578051835291830191830162000290565b5f805f60608486031215620002bc575f80fd5b83516001600160401b0380821115620002d3575f80fd5b818601915086601f830112620002e7575f80fd5b81516020620002fa620001e7836200017b565b82815260059290921b8401810191818101908a84111562000319575f80fd5b8286015b84811015620003ac5780518681111562000336575f8081fd5b8701603f81018d1362000348575f8081fd5b8481015160408882111562000361576200036162000134565b62000375601f8301601f1916880162000148565b8281528f828486010111156200038a575f8081fd5b6200039b83898301848701620001a0565b86525050509183019183016200031d565b5091890151919750909350505080821115620003c6575f80fd5b620003d487838801620001c4565b93506040860151915080821115620003ea575f80fd5b50620003f9868287016200024a565b9150509250925092565b634e487b7160e01b5f52603260045260245ffd5b5f82516200042a818460208701620001a0565b9190910192915050565b5f600182016200045257634e487b7160e01b5f52601160045260245ffd5b5060010190565b6108e080620004675f395ff3fe608060405234801561000f575f80fd5b5060043610610064575f3560e01c806366331bba1161004d57806366331bba146100b9578063cb8ae86c146100d1578063fc57d4df1461011c575f80fd5b806341976e0914610068578063510036831461008e575b5f80fd5b61007b610076366004610519565b61012f565b6040519081526020015b60405180910390f35b61007b61009c3660046105b2565b805160208183018101805160018252928201919093012091525481565b6100c1600181565b6040519015158152602001610085565b6101046100df3660046105b2565b80516020818301810180515f825292820191909301209152546001600160a01b031681565b6040516001600160a01b039091168152602001610085565b61007b61012a366004610519565b610251565b5f80826001600160a01b03166395d89b416040518163ffffffff1660e01b81526004015f60405180830381865afa15801561016c573d5f803e3d5ffd5b505050506040513d5f823e601f3d908101601f19168201604052610193919081019061064e565b90505f80826040516101a591906106b7565b90815260408051602092819003830181205463313ce56760e01b825291516001600160a01b039092169263313ce567926004808401938290030181865afa1580156101f2573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061021691906106d2565b60ff1690505f61022583610394565b509050610233826012610706565b61023e90600a6107ff565b610248908261080a565b95945050505050565b5f80826001600160a01b03166395d89b416040518163ffffffff1660e01b81526004015f60405180830381865afa15801561028e573d5f803e3d5ffd5b505050506040513d5f823e601f3d908101601f191682016040526102b5919081019061064e565b90505f80826040516102c791906106b7565b90815260408051602092819003830181205463313ce56760e01b825291516001600160a01b039092169263313ce567926004808401938290030181865afa158015610314573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061033891906106d2565b60ff1690505f61034783610394565b50905060018360405161035a91906106b7565b90815260405190819003602001902054610375836024610706565b61038090600a6107ff565b61038a908361080a565b6102489190610821565b5f805f6001600160a01b03165f846040516103af91906106b7565b908152604051908190036020019020546001600160a01b03160361041a5760405162461bcd60e51b815260206004820152601160248201527f6d697373696e672070726963654665656400000000000000000000000000000060448201526064015b60405180910390fd5b5f805f8560405161042b91906106b7565b90815260408051918290036020018220547ffeaf968c00000000000000000000000000000000000000000000000000000000835290516001600160a01b039091169163feaf968c9160048083019260a09291908290030181865afa158015610495573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906104b9919061085e565b509350509250505f821361050f5760405162461bcd60e51b815260206004820152601460248201527f70726963652063616e6e6f74206265207a65726f0000000000000000000000006044820152606401610411565b9094909350915050565b5f60208284031215610529575f80fd5b81356001600160a01b038116811461053f575f80fd5b9392505050565b634e487b7160e01b5f52604160045260245ffd5b604051601f8201601f1916810167ffffffffffffffff8111828210171561058357610583610546565b604052919050565b5f67ffffffffffffffff8211156105a4576105a4610546565b50601f01601f191660200190565b5f602082840312156105c2575f80fd5b813567ffffffffffffffff8111156105d8575f80fd5b8201601f810184136105e8575f80fd5b80356105fb6105f68261058b565b61055a565b81815285602083850101111561060f575f80fd5b816020840160208301375f91810160200191909152949350505050565b5f5b8381101561064657818101518382015260200161062e565b50505f910152565b5f6020828403121561065e575f80fd5b815167ffffffffffffffff811115610674575f80fd5b8201601f81018413610684575f80fd5b80516106926105f68261058b565b8181528560208385010111156106a6575f80fd5b61024882602083016020860161062c565b5f82516106c881846020870161062c565b9190910192915050565b5f602082840312156106e2575f80fd5b815160ff8116811461053f575f80fd5b634e487b7160e01b5f52601160045260245ffd5b81810381811115610719576107196106f2565b92915050565b600181815b8085111561075957815f190482111561073f5761073f6106f2565b8085161561074c57918102915b93841c9390800290610724565b509250929050565b5f8261076f57506001610719565b8161077b57505f610719565b8160018114610791576002811461079b576107b7565b6001915050610719565b60ff8411156107ac576107ac6106f2565b50506001821b610719565b5060208310610133831016604e8410600b84101617156107da575081810a610719565b6107e4838361071f565b805f19048211156107f7576107f76106f2565b029392505050565b5f61053f8383610761565b8082028115828204841417610719576107196106f2565b5f8261083b57634e487b7160e01b5f52601260045260245ffd5b500490565b805169ffffffffffffffffffff81168114610859575f80fd5b919050565b5f805f805f60a08688031215610872575f80fd5b61087b86610840565b945060208601519350604086015192506060860151915061089e60808701610840565b9050929550929590935056fea264697066735822122082d0733c51db6cf69da86d14d04f1c813c95e872897b1d37e12f02a11973f65a64736f6c63430008140033000000000000000000000000000000000000000000000000000000000000006000000000000000000000000000000000000000000000000000000000000000e0000000000000000000000000000000000000000000000000000000000000012000000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000000574657374530000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001000000000000000000000000207f5f5048f289cb47a1e0c4122c3d1b63f30a2a00000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000de0b6b3a7640000
Deployed Bytecode
0x608060405234801561000f575f80fd5b5060043610610064575f3560e01c806366331bba1161004d57806366331bba146100b9578063cb8ae86c146100d1578063fc57d4df1461011c575f80fd5b806341976e0914610068578063510036831461008e575b5f80fd5b61007b610076366004610519565b61012f565b6040519081526020015b60405180910390f35b61007b61009c3660046105b2565b805160208183018101805160018252928201919093012091525481565b6100c1600181565b6040519015158152602001610085565b6101046100df3660046105b2565b80516020818301810180515f825292820191909301209152546001600160a01b031681565b6040516001600160a01b039091168152602001610085565b61007b61012a366004610519565b610251565b5f80826001600160a01b03166395d89b416040518163ffffffff1660e01b81526004015f60405180830381865afa15801561016c573d5f803e3d5ffd5b505050506040513d5f823e601f3d908101601f19168201604052610193919081019061064e565b90505f80826040516101a591906106b7565b90815260408051602092819003830181205463313ce56760e01b825291516001600160a01b039092169263313ce567926004808401938290030181865afa1580156101f2573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061021691906106d2565b60ff1690505f61022583610394565b509050610233826012610706565b61023e90600a6107ff565b610248908261080a565b95945050505050565b5f80826001600160a01b03166395d89b416040518163ffffffff1660e01b81526004015f60405180830381865afa15801561028e573d5f803e3d5ffd5b505050506040513d5f823e601f3d908101601f191682016040526102b5919081019061064e565b90505f80826040516102c791906106b7565b90815260408051602092819003830181205463313ce56760e01b825291516001600160a01b039092169263313ce567926004808401938290030181865afa158015610314573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061033891906106d2565b60ff1690505f61034783610394565b50905060018360405161035a91906106b7565b90815260405190819003602001902054610375836024610706565b61038090600a6107ff565b61038a908361080a565b6102489190610821565b5f805f6001600160a01b03165f846040516103af91906106b7565b908152604051908190036020019020546001600160a01b03160361041a5760405162461bcd60e51b815260206004820152601160248201527f6d697373696e672070726963654665656400000000000000000000000000000060448201526064015b60405180910390fd5b5f805f8560405161042b91906106b7565b90815260408051918290036020018220547ffeaf968c00000000000000000000000000000000000000000000000000000000835290516001600160a01b039091169163feaf968c9160048083019260a09291908290030181865afa158015610495573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906104b9919061085e565b509350509250505f821361050f5760405162461bcd60e51b815260206004820152601460248201527f70726963652063616e6e6f74206265207a65726f0000000000000000000000006044820152606401610411565b9094909350915050565b5f60208284031215610529575f80fd5b81356001600160a01b038116811461053f575f80fd5b9392505050565b634e487b7160e01b5f52604160045260245ffd5b604051601f8201601f1916810167ffffffffffffffff8111828210171561058357610583610546565b604052919050565b5f67ffffffffffffffff8211156105a4576105a4610546565b50601f01601f191660200190565b5f602082840312156105c2575f80fd5b813567ffffffffffffffff8111156105d8575f80fd5b8201601f810184136105e8575f80fd5b80356105fb6105f68261058b565b61055a565b81815285602083850101111561060f575f80fd5b816020840160208301375f91810160200191909152949350505050565b5f5b8381101561064657818101518382015260200161062e565b50505f910152565b5f6020828403121561065e575f80fd5b815167ffffffffffffffff811115610674575f80fd5b8201601f81018413610684575f80fd5b80516106926105f68261058b565b8181528560208385010111156106a6575f80fd5b61024882602083016020860161062c565b5f82516106c881846020870161062c565b9190910192915050565b5f602082840312156106e2575f80fd5b815160ff8116811461053f575f80fd5b634e487b7160e01b5f52601160045260245ffd5b81810381811115610719576107196106f2565b92915050565b600181815b8085111561075957815f190482111561073f5761073f6106f2565b8085161561074c57918102915b93841c9390800290610724565b509250929050565b5f8261076f57506001610719565b8161077b57505f610719565b8160018114610791576002811461079b576107b7565b6001915050610719565b60ff8411156107ac576107ac6106f2565b50506001821b610719565b5060208310610133831016604e8410600b84101617156107da575081810a610719565b6107e4838361071f565b805f19048211156107f7576107f76106f2565b029392505050565b5f61053f8383610761565b8082028115828204841417610719576107196106f2565b5f8261083b57634e487b7160e01b5f52601260045260245ffd5b500490565b805169ffffffffffffffffffff81168114610859575f80fd5b919050565b5f805f805f60a08688031215610872575f80fd5b61087b86610840565b945060208601519350604086015192506060860151915061089e60808701610840565b9050929550929590935056fea264697066735822122082d0733c51db6cf69da86d14d04f1c813c95e872897b1d37e12f02a11973f65a64736f6c63430008140033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000000000000000000000000000000000000000006000000000000000000000000000000000000000000000000000000000000000e0000000000000000000000000000000000000000000000000000000000000012000000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000000574657374530000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001000000000000000000000000207f5f5048f289cb47a1e0c4122c3d1b63f30a2a00000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000de0b6b3a7640000
-----Decoded View---------------
Arg [0] : symbols_ (string[]): testS
Arg [1] : feeds_ (address[]): 0x207F5F5048F289Cb47A1e0C4122c3d1B63F30A2A
Arg [2] : baseUnits_ (uint256[]): 1000000000000000000
-----Encoded View---------------
11 Constructor Arguments found :
Arg [0] : 0000000000000000000000000000000000000000000000000000000000000060
Arg [1] : 00000000000000000000000000000000000000000000000000000000000000e0
Arg [2] : 0000000000000000000000000000000000000000000000000000000000000120
Arg [3] : 0000000000000000000000000000000000000000000000000000000000000001
Arg [4] : 0000000000000000000000000000000000000000000000000000000000000020
Arg [5] : 0000000000000000000000000000000000000000000000000000000000000005
Arg [6] : 7465737453000000000000000000000000000000000000000000000000000000
Arg [7] : 0000000000000000000000000000000000000000000000000000000000000001
Arg [8] : 000000000000000000000000207f5f5048f289cb47a1e0c4122c3d1b63f30a2a
Arg [9] : 0000000000000000000000000000000000000000000000000000000000000001
Arg [10] : 0000000000000000000000000000000000000000000000000de0b6b3a7640000
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.